Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/page_pool/helpers.h>
  42#include <net/selftests.h>
  43#include <net/tso.h>
  44#include <linux/tcp.h>
  45#include <linux/udp.h>
  46#include <linux/icmp.h>
  47#include <linux/spinlock.h>
  48#include <linux/workqueue.h>
  49#include <linux/bitops.h>
  50#include <linux/io.h>
  51#include <linux/irq.h>
  52#include <linux/clk.h>
  53#include <linux/crc32.h>
  54#include <linux/platform_device.h>
  55#include <linux/property.h>
  56#include <linux/mdio.h>
  57#include <linux/phy.h>
  58#include <linux/fec.h>
  59#include <linux/of.h>
 
 
  60#include <linux/of_mdio.h>
  61#include <linux/of_net.h>
  62#include <linux/regulator/consumer.h>
  63#include <linux/if_vlan.h>
  64#include <linux/pinctrl/consumer.h>
  65#include <linux/gpio/consumer.h>
  66#include <linux/prefetch.h>
  67#include <linux/mfd/syscon.h>
  68#include <linux/regmap.h>
  69#include <soc/imx/cpuidle.h>
  70#include <linux/filter.h>
  71#include <linux/bpf.h>
  72#include <linux/bpf_trace.h>
  73
  74#include <asm/cacheflush.h>
  75
  76#include "fec.h"
  77
  78static void set_multicast_list(struct net_device *ndev);
  79static void fec_enet_itr_coal_set(struct net_device *ndev);
  80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
  81				int cpu, struct xdp_buff *xdp,
  82				u32 dma_sync_len);
  83
  84#define DRIVER_NAME	"fec"
  85
  86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  87
  88/* Pause frame feild and FIFO threshold */
  89#define FEC_ENET_FCE	(1 << 5)
  90#define FEC_ENET_RSEM_V	0x84
  91#define FEC_ENET_RSFL_V	16
  92#define FEC_ENET_RAEM_V	0x8
  93#define FEC_ENET_RAFL_V	0x8
  94#define FEC_ENET_OPD_V	0xFFF0
  95#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  96
  97#define FEC_ENET_XDP_PASS          0
  98#define FEC_ENET_XDP_CONSUMED      BIT(0)
  99#define FEC_ENET_XDP_TX            BIT(1)
 100#define FEC_ENET_XDP_REDIR         BIT(2)
 101
 102struct fec_devinfo {
 103	u32 quirks;
 104};
 105
 106static const struct fec_devinfo fec_imx25_info = {
 107	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
 108		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
 109};
 110
 111static const struct fec_devinfo fec_imx27_info = {
 112	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
 113		  FEC_QUIRK_HAS_MDIO_C45,
 114};
 115
 116static const struct fec_devinfo fec_imx28_info = {
 117	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 118		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 119		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
 120		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
 121};
 122
 123static const struct fec_devinfo fec_imx6q_info = {
 124	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 125		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 126		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 127		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
 128		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
 129};
 130
 131static const struct fec_devinfo fec_mvf600_info = {
 132	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
 133		  FEC_QUIRK_HAS_MDIO_C45,
 134};
 135
 136static const struct fec_devinfo fec_imx6x_info = {
 137	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 138		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 139		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 140		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 141		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 142		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 143		  FEC_QUIRK_HAS_MDIO_C45,
 144};
 145
 146static const struct fec_devinfo fec_imx6ul_info = {
 147	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 148		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 149		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 150		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 151		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
 152		  FEC_QUIRK_HAS_MDIO_C45,
 153};
 154
 155static const struct fec_devinfo fec_imx8mq_info = {
 156	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 157		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 158		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 159		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 160		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 161		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 162		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
 163		  FEC_QUIRK_HAS_MDIO_C45,
 164};
 165
 166static const struct fec_devinfo fec_imx8qm_info = {
 167	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 168		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 169		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 170		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 171		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 172		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 173		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
 174};
 175
 176static const struct fec_devinfo fec_s32v234_info = {
 177	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 178		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 179		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 180		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 181		  FEC_QUIRK_HAS_MDIO_C45,
 182};
 183
 184static struct platform_device_id fec_devtype[] = {
 185	{
 186		/* keep it for coldfire */
 187		.name = DRIVER_NAME,
 188		.driver_data = 0,
 189	}, {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190		/* sentinel */
 191	}
 192};
 193MODULE_DEVICE_TABLE(platform, fec_devtype);
 194
 
 
 
 
 
 
 
 
 
 195static const struct of_device_id fec_dt_ids[] = {
 196	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
 197	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
 198	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
 199	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
 200	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
 201	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
 202	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
 203	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
 204	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
 205	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
 206	{ /* sentinel */ }
 207};
 208MODULE_DEVICE_TABLE(of, fec_dt_ids);
 209
 210static unsigned char macaddr[ETH_ALEN];
 211module_param_array(macaddr, byte, NULL, 0);
 212MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 213
 214#if defined(CONFIG_M5272)
 215/*
 216 * Some hardware gets it MAC address out of local flash memory.
 217 * if this is non-zero then assume it is the address to get MAC from.
 218 */
 219#if defined(CONFIG_NETtel)
 220#define	FEC_FLASHMAC	0xf0006006
 221#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 222#define	FEC_FLASHMAC	0xf0006000
 223#elif defined(CONFIG_CANCam)
 224#define	FEC_FLASHMAC	0xf0020000
 225#elif defined (CONFIG_M5272C3)
 226#define	FEC_FLASHMAC	(0xffe04000 + 4)
 227#elif defined(CONFIG_MOD5272)
 228#define FEC_FLASHMAC	0xffc0406b
 229#else
 230#define	FEC_FLASHMAC	0
 231#endif
 232#endif /* CONFIG_M5272 */
 233
 234/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 235 *
 236 * 2048 byte skbufs are allocated. However, alignment requirements
 237 * varies between FEC variants. Worst case is 64, so round down by 64.
 238 */
 239#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 240#define PKT_MINBUF_SIZE		64
 
 241
 242/* FEC receive acceleration */
 243#define FEC_RACC_IPDIS		(1 << 1)
 244#define FEC_RACC_PRODIS		(1 << 2)
 245#define FEC_RACC_SHIFT16	BIT(7)
 246#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 247
 248/* MIB Control Register */
 249#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 250
 251/*
 252 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 253 * size bits. Other FEC hardware does not, so we need to take that into
 254 * account when setting it.
 255 */
 256#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 257    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 258    defined(CONFIG_ARM64)
 259#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 260#else
 261#define	OPT_FRAME_SIZE	0
 262#endif
 263
 264/* FEC MII MMFR bits definition */
 265#define FEC_MMFR_ST		(1 << 30)
 266#define FEC_MMFR_ST_C45		(0)
 267#define FEC_MMFR_OP_READ	(2 << 28)
 268#define FEC_MMFR_OP_READ_C45	(3 << 28)
 269#define FEC_MMFR_OP_WRITE	(1 << 28)
 270#define FEC_MMFR_OP_ADDR_WRITE	(0)
 271#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 272#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 273#define FEC_MMFR_TA		(2 << 16)
 274#define FEC_MMFR_DATA(v)	(v & 0xffff)
 275/* FEC ECR bits definition */
 276#define FEC_ECR_MAGICEN		(1 << 2)
 277#define FEC_ECR_SLEEP		(1 << 3)
 278
 279#define FEC_MII_TIMEOUT		30000 /* us */
 280
 281/* Transmitter timeout */
 282#define TX_TIMEOUT (2 * HZ)
 283
 284#define FEC_PAUSE_FLAG_AUTONEG	0x1
 285#define FEC_PAUSE_FLAG_ENABLE	0x2
 286#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 287#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 288#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 289
 
 
 
 290/* Max number of allowed TCP segments for software TSO */
 291#define FEC_MAX_TSO_SEGS	100
 292#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 293
 294#define IS_TSO_HEADER(txq, addr) \
 295	((addr >= txq->tso_hdrs_dma) && \
 296	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 297
 298static int mii_cnt;
 299
 300static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 301					     struct bufdesc_prop *bd)
 302{
 303	return (bdp >= bd->last) ? bd->base
 304			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 305}
 306
 307static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 308					     struct bufdesc_prop *bd)
 309{
 310	return (bdp <= bd->base) ? bd->last
 311			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 312}
 313
 314static int fec_enet_get_bd_index(struct bufdesc *bdp,
 315				 struct bufdesc_prop *bd)
 316{
 317	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 318}
 319
 320static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 321{
 322	int entries;
 323
 324	entries = (((const char *)txq->dirty_tx -
 325			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 326
 327	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 328}
 329
 330static void swap_buffer(void *bufaddr, int len)
 331{
 332	int i;
 333	unsigned int *buf = bufaddr;
 334
 335	for (i = 0; i < len; i += 4, buf++)
 336		swab32s(buf);
 337}
 338
 
 
 
 
 
 
 
 
 
 
 339static void fec_dump(struct net_device *ndev)
 340{
 341	struct fec_enet_private *fep = netdev_priv(ndev);
 342	struct bufdesc *bdp;
 343	struct fec_enet_priv_tx_q *txq;
 344	int index = 0;
 345
 346	netdev_info(ndev, "TX ring dump\n");
 347	pr_info("Nr     SC     addr       len  SKB\n");
 348
 349	txq = fep->tx_queue[0];
 350	bdp = txq->bd.base;
 351
 352	do {
 353		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 354			index,
 355			bdp == txq->bd.cur ? 'S' : ' ',
 356			bdp == txq->dirty_tx ? 'H' : ' ',
 357			fec16_to_cpu(bdp->cbd_sc),
 358			fec32_to_cpu(bdp->cbd_bufaddr),
 359			fec16_to_cpu(bdp->cbd_datlen),
 360			txq->tx_buf[index].buf_p);
 361		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 362		index++;
 363	} while (bdp != txq->bd.base);
 364}
 365
 366/*
 367 * Coldfire does not support DMA coherent allocations, and has historically used
 368 * a band-aid with a manual flush in fec_enet_rx_queue.
 369 */
 370#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
 371static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 372		gfp_t gfp)
 373{
 374	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
 375}
 376
 377static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 378		dma_addr_t handle)
 379{
 380	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
 381}
 382#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 383static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 384		gfp_t gfp)
 385{
 386	return dma_alloc_coherent(dev, size, handle, gfp);
 387}
 388
 389static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 390		dma_addr_t handle)
 391{
 392	dma_free_coherent(dev, size, cpu_addr, handle);
 393}
 394#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 395
 396struct fec_dma_devres {
 397	size_t		size;
 398	void		*vaddr;
 399	dma_addr_t	dma_handle;
 400};
 401
 402static void fec_dmam_release(struct device *dev, void *res)
 403{
 404	struct fec_dma_devres *this = res;
 405
 406	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
 407}
 408
 409static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 410		gfp_t gfp)
 411{
 412	struct fec_dma_devres *dr;
 413	void *vaddr;
 414
 415	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
 416	if (!dr)
 417		return NULL;
 418	vaddr = fec_dma_alloc(dev, size, handle, gfp);
 419	if (!vaddr) {
 420		devres_free(dr);
 421		return NULL;
 422	}
 423	dr->vaddr = vaddr;
 424	dr->dma_handle = *handle;
 425	dr->size = size;
 426	devres_add(dev, dr);
 427	return vaddr;
 428}
 429
 430static inline bool is_ipv4_pkt(struct sk_buff *skb)
 431{
 432	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 433}
 434
 435static int
 436fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 437{
 438	/* Only run for packets requiring a checksum. */
 439	if (skb->ip_summed != CHECKSUM_PARTIAL)
 440		return 0;
 441
 442	if (unlikely(skb_cow_head(skb, 0)))
 443		return -1;
 444
 445	if (is_ipv4_pkt(skb))
 446		ip_hdr(skb)->check = 0;
 447	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 448
 449	return 0;
 450}
 451
 452static int
 453fec_enet_create_page_pool(struct fec_enet_private *fep,
 454			  struct fec_enet_priv_rx_q *rxq, int size)
 455{
 456	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
 457	struct page_pool_params pp_params = {
 458		.order = 0,
 459		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
 460		.pool_size = size,
 461		.nid = dev_to_node(&fep->pdev->dev),
 462		.dev = &fep->pdev->dev,
 463		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
 464		.offset = FEC_ENET_XDP_HEADROOM,
 465		.max_len = FEC_ENET_RX_FRSIZE,
 466	};
 467	int err;
 468
 469	rxq->page_pool = page_pool_create(&pp_params);
 470	if (IS_ERR(rxq->page_pool)) {
 471		err = PTR_ERR(rxq->page_pool);
 472		rxq->page_pool = NULL;
 473		return err;
 474	}
 475
 476	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
 477	if (err < 0)
 478		goto err_free_pp;
 479
 480	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
 481					 rxq->page_pool);
 482	if (err)
 483		goto err_unregister_rxq;
 484
 485	return 0;
 486
 487err_unregister_rxq:
 488	xdp_rxq_info_unreg(&rxq->xdp_rxq);
 489err_free_pp:
 490	page_pool_destroy(rxq->page_pool);
 491	rxq->page_pool = NULL;
 492	return err;
 493}
 494
 495static struct bufdesc *
 496fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 497			     struct sk_buff *skb,
 498			     struct net_device *ndev)
 499{
 500	struct fec_enet_private *fep = netdev_priv(ndev);
 501	struct bufdesc *bdp = txq->bd.cur;
 502	struct bufdesc_ex *ebdp;
 503	int nr_frags = skb_shinfo(skb)->nr_frags;
 504	int frag, frag_len;
 505	unsigned short status;
 506	unsigned int estatus = 0;
 507	skb_frag_t *this_frag;
 508	unsigned int index;
 509	void *bufaddr;
 510	dma_addr_t addr;
 511	int i;
 512
 513	for (frag = 0; frag < nr_frags; frag++) {
 514		this_frag = &skb_shinfo(skb)->frags[frag];
 515		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 516		ebdp = (struct bufdesc_ex *)bdp;
 517
 518		status = fec16_to_cpu(bdp->cbd_sc);
 519		status &= ~BD_ENET_TX_STATS;
 520		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 521		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 522
 523		/* Handle the last BD specially */
 524		if (frag == nr_frags - 1) {
 525			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 526			if (fep->bufdesc_ex) {
 527				estatus |= BD_ENET_TX_INT;
 528				if (unlikely(skb_shinfo(skb)->tx_flags &
 529					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 530					estatus |= BD_ENET_TX_TS;
 531			}
 532		}
 533
 534		if (fep->bufdesc_ex) {
 535			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 536				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 537			if (skb->ip_summed == CHECKSUM_PARTIAL)
 538				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 539
 540			ebdp->cbd_bdu = 0;
 541			ebdp->cbd_esc = cpu_to_fec32(estatus);
 542		}
 543
 544		bufaddr = skb_frag_address(this_frag);
 545
 546		index = fec_enet_get_bd_index(bdp, &txq->bd);
 547		if (((unsigned long) bufaddr) & fep->tx_align ||
 548			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 549			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 550			bufaddr = txq->tx_bounce[index];
 551
 552			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 553				swap_buffer(bufaddr, frag_len);
 554		}
 555
 556		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 557				      DMA_TO_DEVICE);
 558		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 559			if (net_ratelimit())
 560				netdev_err(ndev, "Tx DMA memory map failed\n");
 561			goto dma_mapping_error;
 562		}
 563
 564		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 565		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 566		/* Make sure the updates to rest of the descriptor are
 567		 * performed before transferring ownership.
 568		 */
 569		wmb();
 570		bdp->cbd_sc = cpu_to_fec16(status);
 571	}
 572
 573	return bdp;
 574dma_mapping_error:
 575	bdp = txq->bd.cur;
 576	for (i = 0; i < frag; i++) {
 577		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 578		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 579				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 580	}
 581	return ERR_PTR(-ENOMEM);
 582}
 583
 584static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 585				   struct sk_buff *skb, struct net_device *ndev)
 586{
 587	struct fec_enet_private *fep = netdev_priv(ndev);
 588	int nr_frags = skb_shinfo(skb)->nr_frags;
 589	struct bufdesc *bdp, *last_bdp;
 590	void *bufaddr;
 591	dma_addr_t addr;
 592	unsigned short status;
 593	unsigned short buflen;
 594	unsigned int estatus = 0;
 595	unsigned int index;
 596	int entries_free;
 597
 598	entries_free = fec_enet_get_free_txdesc_num(txq);
 599	if (entries_free < MAX_SKB_FRAGS + 1) {
 600		dev_kfree_skb_any(skb);
 601		if (net_ratelimit())
 602			netdev_err(ndev, "NOT enough BD for SG!\n");
 603		return NETDEV_TX_OK;
 604	}
 605
 606	/* Protocol checksum off-load for TCP and UDP. */
 607	if (fec_enet_clear_csum(skb, ndev)) {
 608		dev_kfree_skb_any(skb);
 609		return NETDEV_TX_OK;
 610	}
 611
 612	/* Fill in a Tx ring entry */
 613	bdp = txq->bd.cur;
 614	last_bdp = bdp;
 615	status = fec16_to_cpu(bdp->cbd_sc);
 616	status &= ~BD_ENET_TX_STATS;
 617
 618	/* Set buffer length and buffer pointer */
 619	bufaddr = skb->data;
 620	buflen = skb_headlen(skb);
 621
 622	index = fec_enet_get_bd_index(bdp, &txq->bd);
 623	if (((unsigned long) bufaddr) & fep->tx_align ||
 624		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 625		memcpy(txq->tx_bounce[index], skb->data, buflen);
 626		bufaddr = txq->tx_bounce[index];
 627
 628		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 629			swap_buffer(bufaddr, buflen);
 630	}
 631
 632	/* Push the data cache so the CPM does not get stale memory data. */
 633	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 634	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 635		dev_kfree_skb_any(skb);
 636		if (net_ratelimit())
 637			netdev_err(ndev, "Tx DMA memory map failed\n");
 638		return NETDEV_TX_OK;
 639	}
 640
 641	if (nr_frags) {
 642		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 643		if (IS_ERR(last_bdp)) {
 644			dma_unmap_single(&fep->pdev->dev, addr,
 645					 buflen, DMA_TO_DEVICE);
 646			dev_kfree_skb_any(skb);
 647			return NETDEV_TX_OK;
 648		}
 649	} else {
 650		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 651		if (fep->bufdesc_ex) {
 652			estatus = BD_ENET_TX_INT;
 653			if (unlikely(skb_shinfo(skb)->tx_flags &
 654				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 655				estatus |= BD_ENET_TX_TS;
 656		}
 657	}
 658	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 659	bdp->cbd_datlen = cpu_to_fec16(buflen);
 660
 661	if (fep->bufdesc_ex) {
 662
 663		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 664
 665		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 666			fep->hwts_tx_en))
 667			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 668
 669		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 670			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 671
 672		if (skb->ip_summed == CHECKSUM_PARTIAL)
 673			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 674
 675		ebdp->cbd_bdu = 0;
 676		ebdp->cbd_esc = cpu_to_fec32(estatus);
 677	}
 678
 679	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 680	/* Save skb pointer */
 681	txq->tx_buf[index].buf_p = skb;
 682
 683	/* Make sure the updates to rest of the descriptor are performed before
 684	 * transferring ownership.
 685	 */
 686	wmb();
 687
 688	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 689	 * it's the last BD of the frame, and to put the CRC on the end.
 690	 */
 691	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 692	bdp->cbd_sc = cpu_to_fec16(status);
 693
 694	/* If this was the last BD in the ring, start at the beginning again. */
 695	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 696
 697	skb_tx_timestamp(skb);
 698
 699	/* Make sure the update to bdp is performed before txq->bd.cur. */
 
 
 700	wmb();
 701	txq->bd.cur = bdp;
 702
 703	/* Trigger transmission start */
 704	writel(0, txq->bd.reg_desc_active);
 705
 706	return 0;
 707}
 708
 709static int
 710fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 711			  struct net_device *ndev,
 712			  struct bufdesc *bdp, int index, char *data,
 713			  int size, bool last_tcp, bool is_last)
 714{
 715	struct fec_enet_private *fep = netdev_priv(ndev);
 716	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 717	unsigned short status;
 718	unsigned int estatus = 0;
 719	dma_addr_t addr;
 720
 721	status = fec16_to_cpu(bdp->cbd_sc);
 722	status &= ~BD_ENET_TX_STATS;
 723
 724	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 725
 726	if (((unsigned long) data) & fep->tx_align ||
 727		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 728		memcpy(txq->tx_bounce[index], data, size);
 729		data = txq->tx_bounce[index];
 730
 731		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 732			swap_buffer(data, size);
 733	}
 734
 735	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 736	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 737		dev_kfree_skb_any(skb);
 738		if (net_ratelimit())
 739			netdev_err(ndev, "Tx DMA memory map failed\n");
 740		return NETDEV_TX_OK;
 741	}
 742
 743	bdp->cbd_datlen = cpu_to_fec16(size);
 744	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 745
 746	if (fep->bufdesc_ex) {
 747		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 748			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 749		if (skb->ip_summed == CHECKSUM_PARTIAL)
 750			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 751		ebdp->cbd_bdu = 0;
 752		ebdp->cbd_esc = cpu_to_fec32(estatus);
 753	}
 754
 755	/* Handle the last BD specially */
 756	if (last_tcp)
 757		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 758	if (is_last) {
 759		status |= BD_ENET_TX_INTR;
 760		if (fep->bufdesc_ex)
 761			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 762	}
 763
 764	bdp->cbd_sc = cpu_to_fec16(status);
 765
 766	return 0;
 767}
 768
 769static int
 770fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 771			 struct sk_buff *skb, struct net_device *ndev,
 772			 struct bufdesc *bdp, int index)
 773{
 774	struct fec_enet_private *fep = netdev_priv(ndev);
 775	int hdr_len = skb_tcp_all_headers(skb);
 776	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 777	void *bufaddr;
 778	unsigned long dmabuf;
 779	unsigned short status;
 780	unsigned int estatus = 0;
 781
 782	status = fec16_to_cpu(bdp->cbd_sc);
 783	status &= ~BD_ENET_TX_STATS;
 784	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 785
 786	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 787	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 788	if (((unsigned long)bufaddr) & fep->tx_align ||
 789		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 790		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 791		bufaddr = txq->tx_bounce[index];
 792
 793		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 794			swap_buffer(bufaddr, hdr_len);
 795
 796		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 797					hdr_len, DMA_TO_DEVICE);
 798		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 799			dev_kfree_skb_any(skb);
 800			if (net_ratelimit())
 801				netdev_err(ndev, "Tx DMA memory map failed\n");
 802			return NETDEV_TX_OK;
 803		}
 804	}
 805
 806	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 807	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 808
 809	if (fep->bufdesc_ex) {
 810		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 811			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 812		if (skb->ip_summed == CHECKSUM_PARTIAL)
 813			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 814		ebdp->cbd_bdu = 0;
 815		ebdp->cbd_esc = cpu_to_fec32(estatus);
 816	}
 817
 818	bdp->cbd_sc = cpu_to_fec16(status);
 819
 820	return 0;
 821}
 822
 823static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 824				   struct sk_buff *skb,
 825				   struct net_device *ndev)
 826{
 827	struct fec_enet_private *fep = netdev_priv(ndev);
 828	int hdr_len, total_len, data_left;
 
 829	struct bufdesc *bdp = txq->bd.cur;
 830	struct tso_t tso;
 831	unsigned int index = 0;
 832	int ret;
 833
 834	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 835		dev_kfree_skb_any(skb);
 836		if (net_ratelimit())
 837			netdev_err(ndev, "NOT enough BD for TSO!\n");
 838		return NETDEV_TX_OK;
 839	}
 840
 841	/* Protocol checksum off-load for TCP and UDP. */
 842	if (fec_enet_clear_csum(skb, ndev)) {
 843		dev_kfree_skb_any(skb);
 844		return NETDEV_TX_OK;
 845	}
 846
 847	/* Initialize the TSO handler, and prepare the first payload */
 848	hdr_len = tso_start(skb, &tso);
 849
 850	total_len = skb->len - hdr_len;
 851	while (total_len > 0) {
 852		char *hdr;
 853
 854		index = fec_enet_get_bd_index(bdp, &txq->bd);
 855		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 856		total_len -= data_left;
 857
 858		/* prepare packet headers: MAC + IP + TCP */
 859		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 860		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 861		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 862		if (ret)
 863			goto err_release;
 864
 865		while (data_left > 0) {
 866			int size;
 867
 868			size = min_t(int, tso.size, data_left);
 869			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 870			index = fec_enet_get_bd_index(bdp, &txq->bd);
 871			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 872							bdp, index,
 873							tso.data, size,
 874							size == data_left,
 875							total_len == 0);
 876			if (ret)
 877				goto err_release;
 878
 879			data_left -= size;
 880			tso_build_data(skb, &tso, size);
 881		}
 882
 883		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 884	}
 885
 886	/* Save skb pointer */
 887	txq->tx_buf[index].buf_p = skb;
 888
 889	skb_tx_timestamp(skb);
 890	txq->bd.cur = bdp;
 891
 892	/* Trigger transmission start */
 893	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 894	    !readl(txq->bd.reg_desc_active) ||
 895	    !readl(txq->bd.reg_desc_active) ||
 896	    !readl(txq->bd.reg_desc_active) ||
 897	    !readl(txq->bd.reg_desc_active))
 898		writel(0, txq->bd.reg_desc_active);
 899
 900	return 0;
 901
 902err_release:
 903	/* TODO: Release all used data descriptors for TSO */
 904	return ret;
 905}
 906
 907static netdev_tx_t
 908fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 909{
 910	struct fec_enet_private *fep = netdev_priv(ndev);
 911	int entries_free;
 912	unsigned short queue;
 913	struct fec_enet_priv_tx_q *txq;
 914	struct netdev_queue *nq;
 915	int ret;
 916
 917	queue = skb_get_queue_mapping(skb);
 918	txq = fep->tx_queue[queue];
 919	nq = netdev_get_tx_queue(ndev, queue);
 920
 921	if (skb_is_gso(skb))
 922		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 923	else
 924		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 925	if (ret)
 926		return ret;
 927
 928	entries_free = fec_enet_get_free_txdesc_num(txq);
 929	if (entries_free <= txq->tx_stop_threshold)
 930		netif_tx_stop_queue(nq);
 931
 932	return NETDEV_TX_OK;
 933}
 934
 935/* Init RX & TX buffer descriptors
 936 */
 937static void fec_enet_bd_init(struct net_device *dev)
 938{
 939	struct fec_enet_private *fep = netdev_priv(dev);
 940	struct fec_enet_priv_tx_q *txq;
 941	struct fec_enet_priv_rx_q *rxq;
 942	struct bufdesc *bdp;
 943	unsigned int i;
 944	unsigned int q;
 945
 946	for (q = 0; q < fep->num_rx_queues; q++) {
 947		/* Initialize the receive buffer descriptors. */
 948		rxq = fep->rx_queue[q];
 949		bdp = rxq->bd.base;
 950
 951		for (i = 0; i < rxq->bd.ring_size; i++) {
 952
 953			/* Initialize the BD for every fragment in the page. */
 954			if (bdp->cbd_bufaddr)
 955				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 956			else
 957				bdp->cbd_sc = cpu_to_fec16(0);
 958			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 959		}
 960
 961		/* Set the last buffer to wrap */
 962		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 963		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 964
 965		rxq->bd.cur = rxq->bd.base;
 966	}
 967
 968	for (q = 0; q < fep->num_tx_queues; q++) {
 969		/* ...and the same for transmit */
 970		txq = fep->tx_queue[q];
 971		bdp = txq->bd.base;
 972		txq->bd.cur = bdp;
 973
 974		for (i = 0; i < txq->bd.ring_size; i++) {
 975			/* Initialize the BD for every fragment in the page. */
 976			bdp->cbd_sc = cpu_to_fec16(0);
 977			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
 978				if (bdp->cbd_bufaddr &&
 979				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 980					dma_unmap_single(&fep->pdev->dev,
 981							 fec32_to_cpu(bdp->cbd_bufaddr),
 982							 fec16_to_cpu(bdp->cbd_datlen),
 983							 DMA_TO_DEVICE);
 984				if (txq->tx_buf[i].buf_p)
 985					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
 986			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
 987				if (bdp->cbd_bufaddr)
 988					dma_unmap_single(&fep->pdev->dev,
 989							 fec32_to_cpu(bdp->cbd_bufaddr),
 990							 fec16_to_cpu(bdp->cbd_datlen),
 991							 DMA_TO_DEVICE);
 992
 993				if (txq->tx_buf[i].buf_p)
 994					xdp_return_frame(txq->tx_buf[i].buf_p);
 995			} else {
 996				struct page *page = txq->tx_buf[i].buf_p;
 997
 998				if (page)
 999					page_pool_put_page(page->pp, page, 0, false);
1000			}
1001
1002			txq->tx_buf[i].buf_p = NULL;
1003			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1004			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1005			bdp->cbd_bufaddr = cpu_to_fec32(0);
1006			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1007		}
1008
1009		/* Set the last buffer to wrap */
1010		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1011		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1012		txq->dirty_tx = bdp;
1013	}
1014}
1015
1016static void fec_enet_active_rxring(struct net_device *ndev)
1017{
1018	struct fec_enet_private *fep = netdev_priv(ndev);
1019	int i;
1020
1021	for (i = 0; i < fep->num_rx_queues; i++)
1022		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1023}
1024
1025static void fec_enet_enable_ring(struct net_device *ndev)
1026{
1027	struct fec_enet_private *fep = netdev_priv(ndev);
1028	struct fec_enet_priv_tx_q *txq;
1029	struct fec_enet_priv_rx_q *rxq;
1030	int i;
1031
1032	for (i = 0; i < fep->num_rx_queues; i++) {
1033		rxq = fep->rx_queue[i];
1034		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1035		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1036
1037		/* enable DMA1/2 */
1038		if (i)
1039			writel(RCMR_MATCHEN | RCMR_CMP(i),
1040			       fep->hwp + FEC_RCMR(i));
1041	}
1042
1043	for (i = 0; i < fep->num_tx_queues; i++) {
1044		txq = fep->tx_queue[i];
1045		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1046
1047		/* enable DMA1/2 */
1048		if (i)
1049			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1050			       fep->hwp + FEC_DMA_CFG(i));
1051	}
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054/*
1055 * This function is called to start or restart the FEC during a link
1056 * change, transmit timeout, or to reconfigure the FEC.  The network
1057 * packet processing for this device must be stopped before this call.
1058 */
1059static void
1060fec_restart(struct net_device *ndev)
1061{
1062	struct fec_enet_private *fep = netdev_priv(ndev);
 
1063	u32 temp_mac[2];
1064	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1065	u32 ecntl = 0x2; /* ETHEREN */
1066
1067	/* Whack a reset.  We should wait for this.
1068	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1069	 * instead of reset MAC itself.
1070	 */
1071	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1072	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1073		writel(0, fep->hwp + FEC_ECNTRL);
1074	} else {
1075		writel(1, fep->hwp + FEC_ECNTRL);
1076		udelay(10);
1077	}
1078
1079	/*
1080	 * enet-mac reset will reset mac address registers too,
1081	 * so need to reconfigure it.
1082	 */
1083	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1084	writel((__force u32)cpu_to_be32(temp_mac[0]),
1085	       fep->hwp + FEC_ADDR_LOW);
1086	writel((__force u32)cpu_to_be32(temp_mac[1]),
1087	       fep->hwp + FEC_ADDR_HIGH);
 
 
1088
1089	/* Clear any outstanding interrupt, except MDIO. */
1090	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1091
1092	fec_enet_bd_init(ndev);
1093
1094	fec_enet_enable_ring(ndev);
1095
 
 
 
1096	/* Enable MII mode */
1097	if (fep->full_duplex == DUPLEX_FULL) {
1098		/* FD enable */
1099		writel(0x04, fep->hwp + FEC_X_CNTRL);
1100	} else {
1101		/* No Rcv on Xmit */
1102		rcntl |= 0x02;
1103		writel(0x0, fep->hwp + FEC_X_CNTRL);
1104	}
1105
1106	/* Set MII speed */
1107	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1108
1109#if !defined(CONFIG_M5272)
1110	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1111		u32 val = readl(fep->hwp + FEC_RACC);
1112
1113		/* align IP header */
1114		val |= FEC_RACC_SHIFT16;
1115		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1116			/* set RX checksum */
1117			val |= FEC_RACC_OPTIONS;
1118		else
1119			val &= ~FEC_RACC_OPTIONS;
1120		writel(val, fep->hwp + FEC_RACC);
1121		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1122	}
1123#endif
1124
1125	/*
1126	 * The phy interface and speed need to get configured
1127	 * differently on enet-mac.
1128	 */
1129	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1130		/* Enable flow control and length check */
1131		rcntl |= 0x40000000 | 0x00000020;
1132
1133		/* RGMII, RMII or MII */
1134		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1135		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1136		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1137		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1138			rcntl |= (1 << 6);
1139		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1140			rcntl |= (1 << 8);
1141		else
1142			rcntl &= ~(1 << 8);
1143
1144		/* 1G, 100M or 10M */
1145		if (ndev->phydev) {
1146			if (ndev->phydev->speed == SPEED_1000)
1147				ecntl |= (1 << 5);
1148			else if (ndev->phydev->speed == SPEED_100)
1149				rcntl &= ~(1 << 9);
1150			else
1151				rcntl |= (1 << 9);
1152		}
1153	} else {
1154#ifdef FEC_MIIGSK_ENR
1155		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1156			u32 cfgr;
1157			/* disable the gasket and wait */
1158			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1159			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1160				udelay(1);
1161
1162			/*
1163			 * configure the gasket:
1164			 *   RMII, 50 MHz, no loopback, no echo
1165			 *   MII, 25 MHz, no loopback, no echo
1166			 */
1167			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1168				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1169			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1170				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1171			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1172
1173			/* re-enable the gasket */
1174			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1175		}
1176#endif
1177	}
1178
1179#if !defined(CONFIG_M5272)
1180	/* enable pause frame*/
1181	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1182	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1183	     ndev->phydev && ndev->phydev->pause)) {
1184		rcntl |= FEC_ENET_FCE;
1185
1186		/* set FIFO threshold parameter to reduce overrun */
1187		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1188		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1189		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1190		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1191
1192		/* OPD */
1193		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1194	} else {
1195		rcntl &= ~FEC_ENET_FCE;
1196	}
1197#endif /* !defined(CONFIG_M5272) */
1198
1199	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1200
1201	/* Setup multicast filter. */
1202	set_multicast_list(ndev);
1203#ifndef CONFIG_M5272
1204	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1205	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1206#endif
1207
1208	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1209		/* enable ENET endian swap */
1210		ecntl |= (1 << 8);
1211		/* enable ENET store and forward mode */
1212		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1213	}
1214
1215	if (fep->bufdesc_ex)
1216		ecntl |= (1 << 4);
1217
1218	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219	    fep->rgmii_txc_dly)
1220		ecntl |= FEC_ENET_TXC_DLY;
1221	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1222	    fep->rgmii_rxc_dly)
1223		ecntl |= FEC_ENET_RXC_DLY;
1224
1225#ifndef CONFIG_M5272
1226	/* Enable the MIB statistic event counters */
1227	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1228#endif
1229
1230	/* And last, enable the transmit and receive processing */
1231	writel(ecntl, fep->hwp + FEC_ECNTRL);
1232	fec_enet_active_rxring(ndev);
1233
1234	if (fep->bufdesc_ex)
1235		fec_ptp_start_cyclecounter(ndev);
1236
1237	/* Enable interrupts we wish to service */
1238	if (fep->link)
1239		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1240	else
1241		writel(0, fep->hwp + FEC_IMASK);
1242
1243	/* Init the interrupt coalescing */
1244	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1245		fec_enet_itr_coal_set(ndev);
1246}
1247
1248static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1249{
1250	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1251	      of_machine_is_compatible("fsl,imx8qxp") ||
1252	      of_machine_is_compatible("fsl,imx8dxl")))
1253		return 0;
1254
1255	return imx_scu_get_handle(&fep->ipc_handle);
1256}
1257
1258static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1259{
1260	struct device_node *np = fep->pdev->dev.of_node;
1261	u32 rsrc_id, val;
1262	int idx;
1263
1264	if (!np || !fep->ipc_handle)
1265		return;
1266
1267	idx = of_alias_get_id(np, "ethernet");
1268	if (idx < 0)
1269		idx = 0;
1270	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1271
1272	val = enabled ? 1 : 0;
1273	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1274}
1275
1276static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1277{
1278	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1279	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1280
1281	if (stop_gpr->gpr) {
1282		if (enabled)
1283			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1284					   BIT(stop_gpr->bit),
1285					   BIT(stop_gpr->bit));
1286		else
1287			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1288					   BIT(stop_gpr->bit), 0);
1289	} else if (pdata && pdata->sleep_mode_enable) {
1290		pdata->sleep_mode_enable(enabled);
1291	} else {
1292		fec_enet_ipg_stop_set(fep, enabled);
1293	}
1294}
1295
1296static void fec_irqs_disable(struct net_device *ndev)
1297{
1298	struct fec_enet_private *fep = netdev_priv(ndev);
1299
1300	writel(0, fep->hwp + FEC_IMASK);
1301}
1302
1303static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1304{
1305	struct fec_enet_private *fep = netdev_priv(ndev);
1306
1307	writel(0, fep->hwp + FEC_IMASK);
1308	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1309}
1310
1311static void
1312fec_stop(struct net_device *ndev)
1313{
1314	struct fec_enet_private *fep = netdev_priv(ndev);
 
1315	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1316	u32 val;
1317
1318	/* We cannot expect a graceful transmit stop without link !!! */
1319	if (fep->link) {
1320		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1321		udelay(10);
1322		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1323			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1324	}
1325
1326	/* Whack a reset.  We should wait for this.
1327	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1328	 * instead of reset MAC itself.
1329	 */
1330	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1331		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1332			writel(0, fep->hwp + FEC_ECNTRL);
1333		} else {
1334			writel(1, fep->hwp + FEC_ECNTRL);
1335			udelay(10);
1336		}
 
1337	} else {
 
1338		val = readl(fep->hwp + FEC_ECNTRL);
1339		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1340		writel(val, fep->hwp + FEC_ECNTRL);
 
 
 
1341	}
1342	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1343	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1344
1345	/* We have to keep ENET enabled to have MII interrupt stay working */
1346	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1347		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1348		writel(2, fep->hwp + FEC_ECNTRL);
1349		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1350	}
1351}
1352
1353
1354static void
1355fec_timeout(struct net_device *ndev, unsigned int txqueue)
1356{
1357	struct fec_enet_private *fep = netdev_priv(ndev);
1358
1359	fec_dump(ndev);
1360
1361	ndev->stats.tx_errors++;
1362
1363	schedule_work(&fep->tx_timeout_work);
1364}
1365
1366static void fec_enet_timeout_work(struct work_struct *work)
1367{
1368	struct fec_enet_private *fep =
1369		container_of(work, struct fec_enet_private, tx_timeout_work);
1370	struct net_device *ndev = fep->netdev;
1371
1372	rtnl_lock();
1373	if (netif_device_present(ndev) || netif_running(ndev)) {
1374		napi_disable(&fep->napi);
1375		netif_tx_lock_bh(ndev);
1376		fec_restart(ndev);
1377		netif_tx_wake_all_queues(ndev);
1378		netif_tx_unlock_bh(ndev);
1379		napi_enable(&fep->napi);
1380	}
1381	rtnl_unlock();
1382}
1383
1384static void
1385fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1386	struct skb_shared_hwtstamps *hwtstamps)
1387{
1388	unsigned long flags;
1389	u64 ns;
1390
1391	spin_lock_irqsave(&fep->tmreg_lock, flags);
1392	ns = timecounter_cyc2time(&fep->tc, ts);
1393	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1394
1395	memset(hwtstamps, 0, sizeof(*hwtstamps));
1396	hwtstamps->hwtstamp = ns_to_ktime(ns);
1397}
1398
1399static void
1400fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1401{
1402	struct	fec_enet_private *fep;
1403	struct xdp_frame *xdpf;
1404	struct bufdesc *bdp;
1405	unsigned short status;
1406	struct	sk_buff	*skb;
1407	struct fec_enet_priv_tx_q *txq;
1408	struct netdev_queue *nq;
1409	int	index = 0;
1410	int	entries_free;
1411	struct page *page;
1412	int frame_len;
1413
1414	fep = netdev_priv(ndev);
1415
 
 
1416	txq = fep->tx_queue[queue_id];
1417	/* get next bdp of dirty_tx */
1418	nq = netdev_get_tx_queue(ndev, queue_id);
1419	bdp = txq->dirty_tx;
1420
1421	/* get next bdp of dirty_tx */
1422	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1423
1424	while (bdp != READ_ONCE(txq->bd.cur)) {
1425		/* Order the load of bd.cur and cbd_sc */
1426		rmb();
1427		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1428		if (status & BD_ENET_TX_READY)
1429			break;
1430
1431		index = fec_enet_get_bd_index(bdp, &txq->bd);
1432
1433		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1434			skb = txq->tx_buf[index].buf_p;
1435			if (bdp->cbd_bufaddr &&
1436			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1437				dma_unmap_single(&fep->pdev->dev,
1438						 fec32_to_cpu(bdp->cbd_bufaddr),
1439						 fec16_to_cpu(bdp->cbd_datlen),
1440						 DMA_TO_DEVICE);
1441			bdp->cbd_bufaddr = cpu_to_fec32(0);
1442			if (!skb)
1443				goto tx_buf_done;
1444		} else {
1445			/* Tx processing cannot call any XDP (or page pool) APIs if
1446			 * the "budget" is 0. Because NAPI is called with budget of
1447			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1448			 * however, we can't use the page pool from IRQ context.
1449			 */
1450			if (unlikely(!budget))
1451				break;
1452
1453			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1454				xdpf = txq->tx_buf[index].buf_p;
1455				if (bdp->cbd_bufaddr)
1456					dma_unmap_single(&fep->pdev->dev,
1457							 fec32_to_cpu(bdp->cbd_bufaddr),
1458							 fec16_to_cpu(bdp->cbd_datlen),
1459							 DMA_TO_DEVICE);
1460			} else {
1461				page = txq->tx_buf[index].buf_p;
1462			}
1463
1464			bdp->cbd_bufaddr = cpu_to_fec32(0);
1465			if (unlikely(!txq->tx_buf[index].buf_p)) {
1466				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1467				goto tx_buf_done;
1468			}
1469
1470			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1471		}
1472
1473		/* Check for errors. */
1474		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1475				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1476				   BD_ENET_TX_CSL)) {
1477			ndev->stats.tx_errors++;
1478			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1479				ndev->stats.tx_heartbeat_errors++;
1480			if (status & BD_ENET_TX_LC)  /* Late collision */
1481				ndev->stats.tx_window_errors++;
1482			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1483				ndev->stats.tx_aborted_errors++;
1484			if (status & BD_ENET_TX_UN)  /* Underrun */
1485				ndev->stats.tx_fifo_errors++;
1486			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1487				ndev->stats.tx_carrier_errors++;
1488		} else {
1489			ndev->stats.tx_packets++;
 
 
1490
1491			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1492				ndev->stats.tx_bytes += skb->len;
1493			else
1494				ndev->stats.tx_bytes += frame_len;
 
 
 
1495		}
1496
1497		/* Deferred means some collisions occurred during transmit,
1498		 * but we eventually sent the packet OK.
1499		 */
1500		if (status & BD_ENET_TX_DEF)
1501			ndev->stats.collisions++;
1502
1503		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1504			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1505			 * are to time stamp the packet, so we still need to check time
1506			 * stamping enabled flag.
1507			 */
1508			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1509				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1510				struct skb_shared_hwtstamps shhwtstamps;
1511				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1512
1513				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1514				skb_tstamp_tx(skb, &shhwtstamps);
1515			}
1516
1517			/* Free the sk buffer associated with this last transmit */
1518			napi_consume_skb(skb, budget);
1519		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1520			xdp_return_frame_rx_napi(xdpf);
1521		} else { /* recycle pages of XDP_TX frames */
1522			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1523			page_pool_put_page(page->pp, page, 0, true);
1524		}
1525
1526		txq->tx_buf[index].buf_p = NULL;
1527		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1528		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1529
1530tx_buf_done:
1531		/* Make sure the update to bdp and tx_buf are performed
1532		 * before dirty_tx
1533		 */
1534		wmb();
1535		txq->dirty_tx = bdp;
1536
1537		/* Update pointer to next buffer descriptor to be transmitted */
1538		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1539
1540		/* Since we have freed up a buffer, the ring is no longer full
1541		 */
1542		if (netif_tx_queue_stopped(nq)) {
1543			entries_free = fec_enet_get_free_txdesc_num(txq);
1544			if (entries_free >= txq->tx_wake_threshold)
1545				netif_tx_wake_queue(nq);
1546		}
1547	}
1548
1549	/* ERR006358: Keep the transmitter going */
1550	if (bdp != txq->bd.cur &&
1551	    readl(txq->bd.reg_desc_active) == 0)
1552		writel(0, txq->bd.reg_desc_active);
1553}
1554
1555static void fec_enet_tx(struct net_device *ndev, int budget)
 
1556{
1557	struct fec_enet_private *fep = netdev_priv(ndev);
1558	int i;
1559
1560	/* Make sure that AVB queues are processed first. */
1561	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1562		fec_enet_tx_queue(ndev, i, budget);
 
 
1563}
1564
1565static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1566				struct bufdesc *bdp, int index)
1567{
1568	struct page *new_page;
1569	dma_addr_t phys_addr;
 
 
 
 
1570
1571	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1572	WARN_ON(!new_page);
1573	rxq->rx_skb_info[index].page = new_page;
 
 
 
1574
1575	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1576	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1577	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1578}
1579
1580static u32
1581fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1582		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1583{
1584	unsigned int sync, len = xdp->data_end - xdp->data;
1585	u32 ret = FEC_ENET_XDP_PASS;
1586	struct page *page;
1587	int err;
1588	u32 act;
1589
1590	act = bpf_prog_run_xdp(prog, xdp);
1591
1592	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1593	 * max len CPU touch
1594	 */
1595	sync = xdp->data_end - xdp->data;
1596	sync = max(sync, len);
1597
1598	switch (act) {
1599	case XDP_PASS:
1600		rxq->stats[RX_XDP_PASS]++;
1601		ret = FEC_ENET_XDP_PASS;
1602		break;
1603
1604	case XDP_REDIRECT:
1605		rxq->stats[RX_XDP_REDIRECT]++;
1606		err = xdp_do_redirect(fep->netdev, xdp, prog);
1607		if (unlikely(err))
1608			goto xdp_err;
1609
1610		ret = FEC_ENET_XDP_REDIR;
1611		break;
1612
1613	case XDP_TX:
1614		rxq->stats[RX_XDP_TX]++;
1615		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1616		if (unlikely(err)) {
1617			rxq->stats[RX_XDP_TX_ERRORS]++;
1618			goto xdp_err;
1619		}
1620
1621		ret = FEC_ENET_XDP_TX;
1622		break;
1623
1624	default:
1625		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1626		fallthrough;
1627
1628	case XDP_ABORTED:
1629		fallthrough;    /* handle aborts by dropping packet */
1630
1631	case XDP_DROP:
1632		rxq->stats[RX_XDP_DROP]++;
1633xdp_err:
1634		ret = FEC_ENET_XDP_CONSUMED;
1635		page = virt_to_head_page(xdp->data);
1636		page_pool_put_page(rxq->page_pool, page, sync, true);
1637		if (act != XDP_DROP)
1638			trace_xdp_exception(fep->netdev, prog, act);
1639		break;
1640	}
1641
1642	return ret;
1643}
1644
1645/* During a receive, the bd_rx.cur points to the current incoming buffer.
1646 * When we update through the ring, if the next incoming buffer has
1647 * not been given to the system, we just set the empty indicator,
1648 * effectively tossing the packet.
1649 */
1650static int
1651fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1652{
1653	struct fec_enet_private *fep = netdev_priv(ndev);
1654	struct fec_enet_priv_rx_q *rxq;
1655	struct bufdesc *bdp;
1656	unsigned short status;
 
1657	struct  sk_buff *skb;
1658	ushort	pkt_len;
1659	__u8 *data;
1660	int	pkt_received = 0;
1661	struct	bufdesc_ex *ebdp = NULL;
1662	bool	vlan_packet_rcvd = false;
1663	u16	vlan_tag;
1664	int	index = 0;
 
1665	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1666	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1667	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1668	u32 data_start = FEC_ENET_XDP_HEADROOM;
1669	int cpu = smp_processor_id();
1670	struct xdp_buff xdp;
1671	struct page *page;
1672	u32 sub_len = 4;
1673
1674#if !defined(CONFIG_M5272)
1675	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1676	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1677	 */
1678	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1679		data_start += 2;
1680		sub_len += 2;
1681	}
1682#endif
1683
1684#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1685	/*
1686	 * Hacky flush of all caches instead of using the DMA API for the TSO
1687	 * headers.
1688	 */
1689	flush_cache_all();
1690#endif
 
1691	rxq = fep->rx_queue[queue_id];
1692
1693	/* First, grab all of the stats for the incoming packet.
1694	 * These get messed up if we get called due to a busy condition.
1695	 */
1696	bdp = rxq->bd.cur;
1697	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1698
1699	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1700
1701		if (pkt_received >= budget)
1702			break;
1703		pkt_received++;
1704
1705		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1706
1707		/* Check for errors. */
1708		status ^= BD_ENET_RX_LAST;
1709		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1710			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1711			   BD_ENET_RX_CL)) {
1712			ndev->stats.rx_errors++;
1713			if (status & BD_ENET_RX_OV) {
1714				/* FIFO overrun */
1715				ndev->stats.rx_fifo_errors++;
1716				goto rx_processing_done;
1717			}
1718			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1719						| BD_ENET_RX_LAST)) {
1720				/* Frame too long or too short. */
1721				ndev->stats.rx_length_errors++;
1722				if (status & BD_ENET_RX_LAST)
1723					netdev_err(ndev, "rcv is not +last\n");
1724			}
1725			if (status & BD_ENET_RX_CR)	/* CRC Error */
1726				ndev->stats.rx_crc_errors++;
1727			/* Report late collisions as a frame error. */
1728			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1729				ndev->stats.rx_frame_errors++;
1730			goto rx_processing_done;
1731		}
1732
1733		/* Process the incoming frame. */
1734		ndev->stats.rx_packets++;
1735		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1736		ndev->stats.rx_bytes += pkt_len;
1737
1738		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1739		page = rxq->rx_skb_info[index].page;
1740		dma_sync_single_for_cpu(&fep->pdev->dev,
1741					fec32_to_cpu(bdp->cbd_bufaddr),
1742					pkt_len,
1743					DMA_FROM_DEVICE);
1744		prefetch(page_address(page));
1745		fec_enet_update_cbd(rxq, bdp, index);
1746
1747		if (xdp_prog) {
1748			xdp_buff_clear_frags_flag(&xdp);
1749			/* subtract 16bit shift and FCS */
1750			xdp_prepare_buff(&xdp, page_address(page),
1751					 data_start, pkt_len - sub_len, false);
1752			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1753			xdp_result |= ret;
1754			if (ret != FEC_ENET_XDP_PASS)
1755				goto rx_processing_done;
1756		}
1757
1758		/* The packet length includes FCS, but we don't want to
1759		 * include that when passing upstream as it messes up
1760		 * bridging applications.
1761		 */
1762		skb = build_skb(page_address(page), PAGE_SIZE);
1763		if (unlikely(!skb)) {
1764			page_pool_recycle_direct(rxq->page_pool, page);
1765			ndev->stats.rx_dropped++;
1766
1767			netdev_err_once(ndev, "build_skb failed!\n");
1768			goto rx_processing_done;
 
 
 
 
 
1769		}
1770
1771		skb_reserve(skb, data_start);
1772		skb_put(skb, pkt_len - sub_len);
1773		skb_mark_for_recycle(skb);
1774
1775		if (unlikely(need_swap)) {
1776			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1777			swap_buffer(data, pkt_len);
1778		}
1779		data = skb->data;
 
 
1780
1781		/* Extract the enhanced buffer descriptor */
1782		ebdp = NULL;
1783		if (fep->bufdesc_ex)
1784			ebdp = (struct bufdesc_ex *)bdp;
1785
1786		/* If this is a VLAN packet remove the VLAN Tag */
1787		vlan_packet_rcvd = false;
1788		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1789		    fep->bufdesc_ex &&
1790		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1791			/* Push and remove the vlan tag */
1792			struct vlan_hdr *vlan_header =
1793					(struct vlan_hdr *) (data + ETH_HLEN);
1794			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1795
1796			vlan_packet_rcvd = true;
1797
1798			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1799			skb_pull(skb, VLAN_HLEN);
1800		}
1801
1802		skb->protocol = eth_type_trans(skb, ndev);
1803
1804		/* Get receive timestamp from the skb */
1805		if (fep->hwts_rx_en && fep->bufdesc_ex)
1806			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1807					  skb_hwtstamps(skb));
1808
1809		if (fep->bufdesc_ex &&
1810		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1811			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1812				/* don't check it */
1813				skb->ip_summed = CHECKSUM_UNNECESSARY;
1814			} else {
1815				skb_checksum_none_assert(skb);
1816			}
1817		}
1818
1819		/* Handle received VLAN packets */
1820		if (vlan_packet_rcvd)
1821			__vlan_hwaccel_put_tag(skb,
1822					       htons(ETH_P_8021Q),
1823					       vlan_tag);
1824
1825		skb_record_rx_queue(skb, queue_id);
1826		napi_gro_receive(&fep->napi, skb);
1827
 
 
 
 
 
 
 
 
 
 
1828rx_processing_done:
1829		/* Clear the status flags for this buffer */
1830		status &= ~BD_ENET_RX_STATS;
1831
1832		/* Mark the buffer empty */
1833		status |= BD_ENET_RX_EMPTY;
1834
1835		if (fep->bufdesc_ex) {
1836			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1837
1838			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1839			ebdp->cbd_prot = 0;
1840			ebdp->cbd_bdu = 0;
1841		}
1842		/* Make sure the updates to rest of the descriptor are
1843		 * performed before transferring ownership.
1844		 */
1845		wmb();
1846		bdp->cbd_sc = cpu_to_fec16(status);
1847
1848		/* Update BD pointer to next entry */
1849		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1850
1851		/* Doing this here will keep the FEC running while we process
1852		 * incoming frames.  On a heavily loaded network, we should be
1853		 * able to keep up at the expense of system resources.
1854		 */
1855		writel(0, rxq->bd.reg_desc_active);
1856	}
1857	rxq->bd.cur = bdp;
1858
1859	if (xdp_result & FEC_ENET_XDP_REDIR)
1860		xdp_do_flush();
1861
1862	return pkt_received;
1863}
1864
1865static int fec_enet_rx(struct net_device *ndev, int budget)
 
1866{
 
 
1867	struct fec_enet_private *fep = netdev_priv(ndev);
1868	int i, done = 0;
1869
1870	/* Make sure that AVB queues are processed first. */
1871	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1872		done += fec_enet_rx_queue(ndev, budget - done, i);
1873
1874	return done;
1875}
1876
1877static bool fec_enet_collect_events(struct fec_enet_private *fep)
1878{
1879	uint int_events;
1880
1881	int_events = readl(fep->hwp + FEC_IEVENT);
 
 
 
1882
1883	/* Don't clear MDIO events, we poll for those */
1884	int_events &= ~FEC_ENET_MII;
 
 
 
1885
1886	writel(int_events, fep->hwp + FEC_IEVENT);
 
 
 
 
 
 
 
 
 
 
 
 
1887
1888	return int_events != 0;
1889}
1890
1891static irqreturn_t
1892fec_enet_interrupt(int irq, void *dev_id)
1893{
1894	struct net_device *ndev = dev_id;
1895	struct fec_enet_private *fep = netdev_priv(ndev);
 
1896	irqreturn_t ret = IRQ_NONE;
1897
1898	if (fec_enet_collect_events(fep) && fep->link) {
 
 
 
 
1899		ret = IRQ_HANDLED;
1900
1901		if (napi_schedule_prep(&fep->napi)) {
1902			/* Disable interrupts */
1903			writel(0, fep->hwp + FEC_IMASK);
1904			__napi_schedule(&fep->napi);
1905		}
1906	}
1907
 
 
 
 
 
 
 
 
1908	return ret;
1909}
1910
1911static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1912{
1913	struct net_device *ndev = napi->dev;
1914	struct fec_enet_private *fep = netdev_priv(ndev);
1915	int done = 0;
1916
1917	do {
1918		done += fec_enet_rx(ndev, budget - done);
1919		fec_enet_tx(ndev, budget);
1920	} while ((done < budget) && fec_enet_collect_events(fep));
1921
1922	if (done < budget) {
1923		napi_complete_done(napi, done);
 
 
1924		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1925	}
1926
1927	return done;
1928}
1929
1930/* ------------------------------------------------------------------------- */
1931static int fec_get_mac(struct net_device *ndev)
1932{
1933	struct fec_enet_private *fep = netdev_priv(ndev);
 
1934	unsigned char *iap, tmpaddr[ETH_ALEN];
1935	int ret;
1936
1937	/*
1938	 * try to get mac address in following order:
1939	 *
1940	 * 1) module parameter via kernel command line in form
1941	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1942	 */
1943	iap = macaddr;
1944
1945	/*
1946	 * 2) from device tree data
1947	 */
1948	if (!is_valid_ether_addr(iap)) {
1949		struct device_node *np = fep->pdev->dev.of_node;
1950		if (np) {
1951			ret = of_get_mac_address(np, tmpaddr);
1952			if (!ret)
1953				iap = tmpaddr;
1954			else if (ret == -EPROBE_DEFER)
1955				return ret;
1956		}
1957	}
1958
1959	/*
1960	 * 3) from flash or fuse (via platform data)
1961	 */
1962	if (!is_valid_ether_addr(iap)) {
1963#ifdef CONFIG_M5272
1964		if (FEC_FLASHMAC)
1965			iap = (unsigned char *)FEC_FLASHMAC;
1966#else
1967		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1968
1969		if (pdata)
1970			iap = (unsigned char *)&pdata->mac;
1971#endif
1972	}
1973
1974	/*
1975	 * 4) FEC mac registers set by bootloader
1976	 */
1977	if (!is_valid_ether_addr(iap)) {
1978		*((__be32 *) &tmpaddr[0]) =
1979			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1980		*((__be16 *) &tmpaddr[4]) =
1981			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1982		iap = &tmpaddr[0];
1983	}
1984
1985	/*
1986	 * 5) random mac address
1987	 */
1988	if (!is_valid_ether_addr(iap)) {
1989		/* Report it and use a random ethernet address instead */
1990		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1991		eth_hw_addr_random(ndev);
1992		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1993			 ndev->dev_addr);
1994		return 0;
1995	}
1996
1997	/* Adjust MAC if using macaddr */
1998	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1999
2000	return 0;
 
 
2001}
2002
2003/* ------------------------------------------------------------------------- */
2004
2005/*
2006 * Phy section
2007 */
2008static void fec_enet_adjust_link(struct net_device *ndev)
2009{
2010	struct fec_enet_private *fep = netdev_priv(ndev);
2011	struct phy_device *phy_dev = ndev->phydev;
2012	int status_change = 0;
2013
 
 
 
 
 
 
2014	/*
2015	 * If the netdev is down, or is going down, we're not interested
2016	 * in link state events, so just mark our idea of the link as down
2017	 * and ignore the event.
2018	 */
2019	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2020		fep->link = 0;
2021	} else if (phy_dev->link) {
2022		if (!fep->link) {
2023			fep->link = phy_dev->link;
2024			status_change = 1;
2025		}
2026
2027		if (fep->full_duplex != phy_dev->duplex) {
2028			fep->full_duplex = phy_dev->duplex;
2029			status_change = 1;
2030		}
2031
2032		if (phy_dev->speed != fep->speed) {
2033			fep->speed = phy_dev->speed;
2034			status_change = 1;
2035		}
2036
2037		/* if any of the above changed restart the FEC */
2038		if (status_change) {
2039			netif_stop_queue(ndev);
2040			napi_disable(&fep->napi);
2041			netif_tx_lock_bh(ndev);
2042			fec_restart(ndev);
2043			netif_tx_wake_all_queues(ndev);
2044			netif_tx_unlock_bh(ndev);
2045			napi_enable(&fep->napi);
2046		}
2047	} else {
2048		if (fep->link) {
2049			netif_stop_queue(ndev);
2050			napi_disable(&fep->napi);
2051			netif_tx_lock_bh(ndev);
2052			fec_stop(ndev);
2053			netif_tx_unlock_bh(ndev);
2054			napi_enable(&fep->napi);
2055			fep->link = phy_dev->link;
2056			status_change = 1;
2057		}
2058	}
2059
2060	if (status_change)
2061		phy_print_status(phy_dev);
2062}
2063
2064static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2065{
2066	uint ievent;
2067	int ret;
2068
2069	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2070					ievent & FEC_ENET_MII, 2, 30000);
2071
2072	if (!ret)
2073		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2074
2075	return ret;
2076}
2077
2078static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2079{
2080	struct fec_enet_private *fep = bus->priv;
2081	struct device *dev = &fep->pdev->dev;
2082	int ret = 0, frame_start, frame_addr, frame_op;
2083
2084	ret = pm_runtime_resume_and_get(dev);
2085	if (ret < 0)
2086		return ret;
2087
2088	/* C22 read */
2089	frame_op = FEC_MMFR_OP_READ;
2090	frame_start = FEC_MMFR_ST;
2091	frame_addr = regnum;
2092
2093	/* start a read op */
2094	writel(frame_start | frame_op |
2095	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2096	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2097
2098	/* wait for end of transfer */
2099	ret = fec_enet_mdio_wait(fep);
2100	if (ret) {
2101		netdev_err(fep->netdev, "MDIO read timeout\n");
2102		goto out;
2103	}
2104
2105	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2106
2107out:
2108	pm_runtime_mark_last_busy(dev);
2109	pm_runtime_put_autosuspend(dev);
2110
2111	return ret;
2112}
2113
2114static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2115				  int devad, int regnum)
2116{
2117	struct fec_enet_private *fep = bus->priv;
2118	struct device *dev = &fep->pdev->dev;
2119	int ret = 0, frame_start, frame_op;
 
2120
2121	ret = pm_runtime_resume_and_get(dev);
2122	if (ret < 0)
2123		return ret;
2124
2125	frame_start = FEC_MMFR_ST_C45;
2126
2127	/* write address */
2128	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2129	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2130	       FEC_MMFR_TA | (regnum & 0xFFFF),
2131	       fep->hwp + FEC_MII_DATA);
2132
2133	/* wait for end of transfer */
2134	ret = fec_enet_mdio_wait(fep);
2135	if (ret) {
2136		netdev_err(fep->netdev, "MDIO address write timeout\n");
2137		goto out;
2138	}
2139
2140	frame_op = FEC_MMFR_OP_READ_C45;
2141
2142	/* start a read op */
2143	writel(frame_start | frame_op |
2144	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2145	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2146
2147	/* wait for end of transfer */
2148	ret = fec_enet_mdio_wait(fep);
2149	if (ret) {
 
 
2150		netdev_err(fep->netdev, "MDIO read timeout\n");
 
2151		goto out;
2152	}
2153
2154	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2155
2156out:
2157	pm_runtime_mark_last_busy(dev);
2158	pm_runtime_put_autosuspend(dev);
2159
2160	return ret;
2161}
2162
2163static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2164				   u16 value)
2165{
2166	struct fec_enet_private *fep = bus->priv;
2167	struct device *dev = &fep->pdev->dev;
2168	int ret, frame_start, frame_addr;
 
2169
2170	ret = pm_runtime_resume_and_get(dev);
2171	if (ret < 0)
2172		return ret;
 
 
2173
2174	/* C22 write */
2175	frame_start = FEC_MMFR_ST;
2176	frame_addr = regnum;
2177
2178	/* start a write op */
2179	writel(frame_start | FEC_MMFR_OP_WRITE |
2180	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2181	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2182	       fep->hwp + FEC_MII_DATA);
2183
2184	/* wait for end of transfer */
2185	ret = fec_enet_mdio_wait(fep);
2186	if (ret)
 
 
2187		netdev_err(fep->netdev, "MDIO write timeout\n");
2188
2189	pm_runtime_mark_last_busy(dev);
2190	pm_runtime_put_autosuspend(dev);
2191
2192	return ret;
2193}
2194
2195static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2196				   int devad, int regnum, u16 value)
2197{
2198	struct fec_enet_private *fep = bus->priv;
2199	struct device *dev = &fep->pdev->dev;
2200	int ret, frame_start;
2201
2202	ret = pm_runtime_resume_and_get(dev);
2203	if (ret < 0)
2204		return ret;
2205
2206	frame_start = FEC_MMFR_ST_C45;
2207
2208	/* write address */
2209	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2210	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2211	       FEC_MMFR_TA | (regnum & 0xFFFF),
2212	       fep->hwp + FEC_MII_DATA);
2213
2214	/* wait for end of transfer */
2215	ret = fec_enet_mdio_wait(fep);
2216	if (ret) {
2217		netdev_err(fep->netdev, "MDIO address write timeout\n");
2218		goto out;
2219	}
2220
2221	/* start a write op */
2222	writel(frame_start | FEC_MMFR_OP_WRITE |
2223	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2224	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2225	       fep->hwp + FEC_MII_DATA);
2226
2227	/* wait for end of transfer */
2228	ret = fec_enet_mdio_wait(fep);
2229	if (ret)
2230		netdev_err(fep->netdev, "MDIO write timeout\n");
2231
2232out:
2233	pm_runtime_mark_last_busy(dev);
2234	pm_runtime_put_autosuspend(dev);
2235
2236	return ret;
2237}
2238
2239static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2240{
2241	struct fec_enet_private *fep = netdev_priv(ndev);
2242	struct phy_device *phy_dev = ndev->phydev;
2243
2244	if (phy_dev) {
2245		phy_reset_after_clk_enable(phy_dev);
2246	} else if (fep->phy_node) {
2247		/*
2248		 * If the PHY still is not bound to the MAC, but there is
2249		 * OF PHY node and a matching PHY device instance already,
2250		 * use the OF PHY node to obtain the PHY device instance,
2251		 * and then use that PHY device instance when triggering
2252		 * the PHY reset.
2253		 */
2254		phy_dev = of_phy_find_device(fep->phy_node);
2255		phy_reset_after_clk_enable(phy_dev);
2256		put_device(&phy_dev->mdio.dev);
2257	}
2258}
2259
2260static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2261{
2262	struct fec_enet_private *fep = netdev_priv(ndev);
2263	int ret;
2264
2265	if (enable) {
2266		ret = clk_prepare_enable(fep->clk_enet_out);
2267		if (ret)
2268			return ret;
2269
 
 
 
 
2270		if (fep->clk_ptp) {
2271			mutex_lock(&fep->ptp_clk_mutex);
2272			ret = clk_prepare_enable(fep->clk_ptp);
2273			if (ret) {
2274				mutex_unlock(&fep->ptp_clk_mutex);
2275				goto failed_clk_ptp;
2276			} else {
2277				fep->ptp_clk_on = true;
2278			}
2279			mutex_unlock(&fep->ptp_clk_mutex);
2280		}
2281
2282		ret = clk_prepare_enable(fep->clk_ref);
2283		if (ret)
2284			goto failed_clk_ref;
2285
2286		ret = clk_prepare_enable(fep->clk_2x_txclk);
2287		if (ret)
2288			goto failed_clk_2x_txclk;
2289
2290		fec_enet_phy_reset_after_clk_enable(ndev);
2291	} else {
2292		clk_disable_unprepare(fep->clk_enet_out);
 
 
2293		if (fep->clk_ptp) {
2294			mutex_lock(&fep->ptp_clk_mutex);
2295			clk_disable_unprepare(fep->clk_ptp);
2296			fep->ptp_clk_on = false;
2297			mutex_unlock(&fep->ptp_clk_mutex);
2298		}
2299		clk_disable_unprepare(fep->clk_ref);
2300		clk_disable_unprepare(fep->clk_2x_txclk);
2301	}
2302
2303	return 0;
2304
2305failed_clk_2x_txclk:
2306	if (fep->clk_ref)
2307		clk_disable_unprepare(fep->clk_ref);
2308failed_clk_ref:
2309	if (fep->clk_ptp) {
2310		mutex_lock(&fep->ptp_clk_mutex);
2311		clk_disable_unprepare(fep->clk_ptp);
2312		fep->ptp_clk_on = false;
2313		mutex_unlock(&fep->ptp_clk_mutex);
2314	}
2315failed_clk_ptp:
2316	clk_disable_unprepare(fep->clk_enet_out);
 
 
 
2317
2318	return ret;
2319}
2320
2321static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2322				      struct device_node *np)
2323{
2324	u32 rgmii_tx_delay, rgmii_rx_delay;
2325
2326	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2327	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2328		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2329			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2330			return -EINVAL;
2331		} else if (rgmii_tx_delay == 2000) {
2332			fep->rgmii_txc_dly = true;
2333		}
2334	}
2335
2336	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2337	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2338		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2339			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2340			return -EINVAL;
2341		} else if (rgmii_rx_delay == 2000) {
2342			fep->rgmii_rxc_dly = true;
2343		}
2344	}
2345
2346	return 0;
2347}
2348
2349static int fec_enet_mii_probe(struct net_device *ndev)
2350{
2351	struct fec_enet_private *fep = netdev_priv(ndev);
2352	struct phy_device *phy_dev = NULL;
2353	char mdio_bus_id[MII_BUS_ID_SIZE];
2354	char phy_name[MII_BUS_ID_SIZE + 3];
2355	int phy_id;
2356	int dev_id = fep->dev_id;
2357
 
 
2358	if (fep->phy_node) {
2359		phy_dev = of_phy_connect(ndev, fep->phy_node,
2360					 &fec_enet_adjust_link, 0,
2361					 fep->phy_interface);
2362		if (!phy_dev) {
2363			netdev_err(ndev, "Unable to connect to phy\n");
2364			return -ENODEV;
2365		}
2366	} else {
2367		/* check for attached phy */
2368		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2369			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2370				continue;
2371			if (dev_id--)
2372				continue;
2373			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2374			break;
2375		}
2376
2377		if (phy_id >= PHY_MAX_ADDR) {
2378			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2379			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2380			phy_id = 0;
2381		}
2382
2383		snprintf(phy_name, sizeof(phy_name),
2384			 PHY_ID_FMT, mdio_bus_id, phy_id);
2385		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2386				      fep->phy_interface);
2387	}
2388
2389	if (IS_ERR(phy_dev)) {
2390		netdev_err(ndev, "could not attach to PHY\n");
2391		return PTR_ERR(phy_dev);
2392	}
2393
2394	/* mask with MAC supported features */
2395	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2396		phy_set_max_speed(phy_dev, 1000);
2397		phy_remove_link_mode(phy_dev,
2398				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2399#if !defined(CONFIG_M5272)
2400		phy_support_sym_pause(phy_dev);
2401#endif
2402	}
2403	else
2404		phy_set_max_speed(phy_dev, 100);
 
 
2405
 
2406	fep->link = 0;
2407	fep->full_duplex = 0;
2408
2409	phy_dev->mac_managed_pm = true;
2410
2411	phy_attached_info(phy_dev);
2412
2413	return 0;
2414}
2415
2416static int fec_enet_mii_init(struct platform_device *pdev)
2417{
2418	static struct mii_bus *fec0_mii_bus;
2419	struct net_device *ndev = platform_get_drvdata(pdev);
2420	struct fec_enet_private *fep = netdev_priv(ndev);
2421	bool suppress_preamble = false;
2422	struct device_node *node;
2423	int err = -ENXIO;
2424	u32 mii_speed, holdtime;
2425	u32 bus_freq;
2426
2427	/*
2428	 * The i.MX28 dual fec interfaces are not equal.
2429	 * Here are the differences:
2430	 *
2431	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2432	 *  - fec0 acts as the 1588 time master while fec1 is slave
2433	 *  - external phys can only be configured by fec0
2434	 *
2435	 * That is to say fec1 can not work independently. It only works
2436	 * when fec0 is working. The reason behind this design is that the
2437	 * second interface is added primarily for Switch mode.
2438	 *
2439	 * Because of the last point above, both phys are attached on fec0
2440	 * mdio interface in board design, and need to be configured by
2441	 * fec0 mii_bus.
2442	 */
2443	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2444		/* fec1 uses fec0 mii_bus */
2445		if (mii_cnt && fec0_mii_bus) {
2446			fep->mii_bus = fec0_mii_bus;
2447			mii_cnt++;
2448			return 0;
2449		}
2450		return -ENOENT;
2451	}
2452
2453	bus_freq = 2500000; /* 2.5MHz by default */
2454	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2455	if (node) {
2456		of_property_read_u32(node, "clock-frequency", &bus_freq);
2457		suppress_preamble = of_property_read_bool(node,
2458							  "suppress-preamble");
2459	}
2460
2461	/*
2462	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2463	 *
2464	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2465	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2466	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2467	 * document.
2468	 */
2469	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2470	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2471		mii_speed--;
2472	if (mii_speed > 63) {
2473		dev_err(&pdev->dev,
2474			"fec clock (%lu) too fast to get right mii speed\n",
2475			clk_get_rate(fep->clk_ipg));
2476		err = -EINVAL;
2477		goto err_out;
2478	}
2479
2480	/*
2481	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2482	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2483	 * versions are RAZ there, so just ignore the difference and write the
2484	 * register always.
2485	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2486	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2487	 * output.
2488	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2489	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2490	 * holdtime cannot result in a value greater than 3.
2491	 */
2492	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2493
2494	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2495
2496	if (suppress_preamble)
2497		fep->phy_speed |= BIT(7);
2498
2499	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2500		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2501		 * MII event generation condition:
2502		 * - writing MSCR:
2503		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2504		 *	  mscr_reg_data_in[7:0] != 0
2505		 * - writing MMFR:
2506		 *	- mscr[7:0]_not_zero
2507		 */
2508		writel(0, fep->hwp + FEC_MII_DATA);
2509	}
2510
2511	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2512
2513	/* Clear any pending transaction complete indication */
2514	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2515
2516	fep->mii_bus = mdiobus_alloc();
2517	if (fep->mii_bus == NULL) {
2518		err = -ENOMEM;
2519		goto err_out;
2520	}
2521
2522	fep->mii_bus->name = "fec_enet_mii_bus";
2523	fep->mii_bus->read = fec_enet_mdio_read_c22;
2524	fep->mii_bus->write = fec_enet_mdio_write_c22;
2525	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2526		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2527		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2528	}
2529	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2530		pdev->name, fep->dev_id + 1);
2531	fep->mii_bus->priv = fep;
2532	fep->mii_bus->parent = &pdev->dev;
2533
2534	err = of_mdiobus_register(fep->mii_bus, node);
 
 
 
 
 
 
 
2535	if (err)
2536		goto err_out_free_mdiobus;
2537	of_node_put(node);
2538
2539	mii_cnt++;
2540
2541	/* save fec0 mii_bus */
2542	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2543		fec0_mii_bus = fep->mii_bus;
2544
2545	return 0;
2546
2547err_out_free_mdiobus:
2548	mdiobus_free(fep->mii_bus);
2549err_out:
2550	of_node_put(node);
2551	return err;
2552}
2553
2554static void fec_enet_mii_remove(struct fec_enet_private *fep)
2555{
2556	if (--mii_cnt == 0) {
2557		mdiobus_unregister(fep->mii_bus);
2558		mdiobus_free(fep->mii_bus);
2559	}
2560}
2561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562static void fec_enet_get_drvinfo(struct net_device *ndev,
2563				 struct ethtool_drvinfo *info)
2564{
2565	struct fec_enet_private *fep = netdev_priv(ndev);
2566
2567	strscpy(info->driver, fep->pdev->dev.driver->name,
2568		sizeof(info->driver));
2569	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
 
2570}
2571
2572static int fec_enet_get_regs_len(struct net_device *ndev)
2573{
2574	struct fec_enet_private *fep = netdev_priv(ndev);
2575	struct resource *r;
2576	int s = 0;
2577
2578	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2579	if (r)
2580		s = resource_size(r);
2581
2582	return s;
2583}
2584
2585/* List of registers that can be safety be read to dump them with ethtool */
2586#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2587	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2588	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2589static __u32 fec_enet_register_version = 2;
2590static u32 fec_enet_register_offset[] = {
2591	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2592	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2593	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2594	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2595	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2596	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2597	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2598	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2599	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2600	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2601	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2602	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2603	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2604	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2605	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2606	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2607	RMON_T_P_GTE2048, RMON_T_OCTETS,
2608	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2609	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2610	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2611	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2612	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2613	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2614	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2615	RMON_R_P_GTE2048, RMON_R_OCTETS,
2616	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2617	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2618};
2619/* for i.MX6ul */
2620static u32 fec_enet_register_offset_6ul[] = {
2621	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2622	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2623	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2624	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2625	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2626	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2627	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2628	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2629	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2630	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2631	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2632	RMON_T_P_GTE2048, RMON_T_OCTETS,
2633	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2634	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2635	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2636	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2637	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2638	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2639	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2640	RMON_R_P_GTE2048, RMON_R_OCTETS,
2641	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2642	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2643};
2644#else
2645static __u32 fec_enet_register_version = 1;
2646static u32 fec_enet_register_offset[] = {
2647	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2648	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2649	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2650	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2651	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2652	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2653	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2654	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2655	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2656};
2657#endif
2658
2659static void fec_enet_get_regs(struct net_device *ndev,
2660			      struct ethtool_regs *regs, void *regbuf)
2661{
2662	struct fec_enet_private *fep = netdev_priv(ndev);
2663	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2664	struct device *dev = &fep->pdev->dev;
2665	u32 *buf = (u32 *)regbuf;
2666	u32 i, off;
2667	int ret;
2668#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2669	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2670	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2671	u32 *reg_list;
2672	u32 reg_cnt;
2673
2674	if (!of_machine_is_compatible("fsl,imx6ul")) {
2675		reg_list = fec_enet_register_offset;
2676		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2677	} else {
2678		reg_list = fec_enet_register_offset_6ul;
2679		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2680	}
2681#else
2682	/* coldfire */
2683	static u32 *reg_list = fec_enet_register_offset;
2684	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2685#endif
2686	ret = pm_runtime_resume_and_get(dev);
2687	if (ret < 0)
2688		return;
2689
2690	regs->version = fec_enet_register_version;
2691
2692	memset(buf, 0, regs->len);
2693
2694	for (i = 0; i < reg_cnt; i++) {
2695		off = reg_list[i];
2696
2697		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2698		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2699			continue;
2700
2701		off >>= 2;
2702		buf[off] = readl(&theregs[off]);
2703	}
2704
2705	pm_runtime_mark_last_busy(dev);
2706	pm_runtime_put_autosuspend(dev);
2707}
2708
2709static int fec_enet_get_ts_info(struct net_device *ndev,
2710				struct ethtool_ts_info *info)
2711{
2712	struct fec_enet_private *fep = netdev_priv(ndev);
2713
2714	if (fep->bufdesc_ex) {
2715
2716		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2717					SOF_TIMESTAMPING_RX_SOFTWARE |
2718					SOF_TIMESTAMPING_SOFTWARE |
2719					SOF_TIMESTAMPING_TX_HARDWARE |
2720					SOF_TIMESTAMPING_RX_HARDWARE |
2721					SOF_TIMESTAMPING_RAW_HARDWARE;
2722		if (fep->ptp_clock)
2723			info->phc_index = ptp_clock_index(fep->ptp_clock);
2724		else
2725			info->phc_index = -1;
2726
2727		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2728				 (1 << HWTSTAMP_TX_ON);
2729
2730		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2731				   (1 << HWTSTAMP_FILTER_ALL);
2732		return 0;
2733	} else {
2734		return ethtool_op_get_ts_info(ndev, info);
2735	}
2736}
2737
2738#if !defined(CONFIG_M5272)
2739
2740static void fec_enet_get_pauseparam(struct net_device *ndev,
2741				    struct ethtool_pauseparam *pause)
2742{
2743	struct fec_enet_private *fep = netdev_priv(ndev);
2744
2745	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2746	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2747	pause->rx_pause = pause->tx_pause;
2748}
2749
2750static int fec_enet_set_pauseparam(struct net_device *ndev,
2751				   struct ethtool_pauseparam *pause)
2752{
2753	struct fec_enet_private *fep = netdev_priv(ndev);
2754
2755	if (!ndev->phydev)
2756		return -ENODEV;
2757
2758	if (pause->tx_pause != pause->rx_pause) {
2759		netdev_info(ndev,
2760			"hardware only support enable/disable both tx and rx");
2761		return -EINVAL;
2762	}
2763
2764	fep->pause_flag = 0;
2765
2766	/* tx pause must be same as rx pause */
2767	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2768	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2769
2770	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2771			  pause->autoneg);
 
 
 
 
 
2772
2773	if (pause->autoneg) {
2774		if (netif_running(ndev))
2775			fec_stop(ndev);
2776		phy_start_aneg(ndev->phydev);
2777	}
2778	if (netif_running(ndev)) {
2779		napi_disable(&fep->napi);
2780		netif_tx_lock_bh(ndev);
2781		fec_restart(ndev);
2782		netif_tx_wake_all_queues(ndev);
2783		netif_tx_unlock_bh(ndev);
2784		napi_enable(&fep->napi);
2785	}
2786
2787	return 0;
2788}
2789
2790static const struct fec_stat {
2791	char name[ETH_GSTRING_LEN];
2792	u16 offset;
2793} fec_stats[] = {
2794	/* RMON TX */
2795	{ "tx_dropped", RMON_T_DROP },
2796	{ "tx_packets", RMON_T_PACKETS },
2797	{ "tx_broadcast", RMON_T_BC_PKT },
2798	{ "tx_multicast", RMON_T_MC_PKT },
2799	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2800	{ "tx_undersize", RMON_T_UNDERSIZE },
2801	{ "tx_oversize", RMON_T_OVERSIZE },
2802	{ "tx_fragment", RMON_T_FRAG },
2803	{ "tx_jabber", RMON_T_JAB },
2804	{ "tx_collision", RMON_T_COL },
2805	{ "tx_64byte", RMON_T_P64 },
2806	{ "tx_65to127byte", RMON_T_P65TO127 },
2807	{ "tx_128to255byte", RMON_T_P128TO255 },
2808	{ "tx_256to511byte", RMON_T_P256TO511 },
2809	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2810	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2811	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2812	{ "tx_octets", RMON_T_OCTETS },
2813
2814	/* IEEE TX */
2815	{ "IEEE_tx_drop", IEEE_T_DROP },
2816	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2817	{ "IEEE_tx_1col", IEEE_T_1COL },
2818	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2819	{ "IEEE_tx_def", IEEE_T_DEF },
2820	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2821	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2822	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2823	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2824	{ "IEEE_tx_sqe", IEEE_T_SQE },
2825	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2826	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2827
2828	/* RMON RX */
2829	{ "rx_packets", RMON_R_PACKETS },
2830	{ "rx_broadcast", RMON_R_BC_PKT },
2831	{ "rx_multicast", RMON_R_MC_PKT },
2832	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2833	{ "rx_undersize", RMON_R_UNDERSIZE },
2834	{ "rx_oversize", RMON_R_OVERSIZE },
2835	{ "rx_fragment", RMON_R_FRAG },
2836	{ "rx_jabber", RMON_R_JAB },
2837	{ "rx_64byte", RMON_R_P64 },
2838	{ "rx_65to127byte", RMON_R_P65TO127 },
2839	{ "rx_128to255byte", RMON_R_P128TO255 },
2840	{ "rx_256to511byte", RMON_R_P256TO511 },
2841	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2842	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2843	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2844	{ "rx_octets", RMON_R_OCTETS },
2845
2846	/* IEEE RX */
2847	{ "IEEE_rx_drop", IEEE_R_DROP },
2848	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2849	{ "IEEE_rx_crc", IEEE_R_CRC },
2850	{ "IEEE_rx_align", IEEE_R_ALIGN },
2851	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2852	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2853	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2854};
2855
2856#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2857
2858static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2859	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2860	"rx_xdp_pass",               /* RX_XDP_PASS, */
2861	"rx_xdp_drop",               /* RX_XDP_DROP, */
2862	"rx_xdp_tx",                 /* RX_XDP_TX, */
2863	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2864	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2865	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2866};
2867
2868static void fec_enet_update_ethtool_stats(struct net_device *dev)
2869{
2870	struct fec_enet_private *fep = netdev_priv(dev);
2871	int i;
2872
2873	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2874		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2875}
2876
2877static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2878{
2879	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2880	struct fec_enet_priv_rx_q *rxq;
2881	int i, j;
2882
2883	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2884		rxq = fep->rx_queue[i];
2885
2886		for (j = 0; j < XDP_STATS_TOTAL; j++)
2887			xdp_stats[j] += rxq->stats[j];
2888	}
2889
2890	memcpy(data, xdp_stats, sizeof(xdp_stats));
2891}
2892
2893static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2894{
2895#ifdef CONFIG_PAGE_POOL_STATS
2896	struct page_pool_stats stats = {};
2897	struct fec_enet_priv_rx_q *rxq;
2898	int i;
2899
2900	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2901		rxq = fep->rx_queue[i];
2902
2903		if (!rxq->page_pool)
2904			continue;
2905
2906		page_pool_get_stats(rxq->page_pool, &stats);
2907	}
2908
2909	page_pool_ethtool_stats_get(data, &stats);
2910#endif
2911}
2912
2913static void fec_enet_get_ethtool_stats(struct net_device *dev,
2914				       struct ethtool_stats *stats, u64 *data)
2915{
2916	struct fec_enet_private *fep = netdev_priv(dev);
2917
2918	if (netif_running(dev))
2919		fec_enet_update_ethtool_stats(dev);
2920
2921	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2922	data += FEC_STATS_SIZE / sizeof(u64);
2923
2924	fec_enet_get_xdp_stats(fep, data);
2925	data += XDP_STATS_TOTAL;
2926
2927	fec_enet_page_pool_stats(fep, data);
2928}
2929
2930static void fec_enet_get_strings(struct net_device *netdev,
2931	u32 stringset, u8 *data)
2932{
2933	int i;
2934	switch (stringset) {
2935	case ETH_SS_STATS:
2936		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2937			ethtool_puts(&data, fec_stats[i].name);
2938		}
2939		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2940			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2941		}
2942		page_pool_ethtool_stats_get_strings(data);
2943
2944		break;
2945	case ETH_SS_TEST:
2946		net_selftest_get_strings(data);
2947		break;
2948	}
2949}
2950
2951static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2952{
2953	int count;
2954
2955	switch (sset) {
2956	case ETH_SS_STATS:
2957		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2958		count += page_pool_ethtool_stats_get_count();
2959		return count;
2960
2961	case ETH_SS_TEST:
2962		return net_selftest_get_count();
2963	default:
2964		return -EOPNOTSUPP;
2965	}
2966}
 
2967
2968static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2969{
2970	struct fec_enet_private *fep = netdev_priv(dev);
2971	struct fec_enet_priv_rx_q *rxq;
2972	int i, j;
2973
2974	/* Disable MIB statistics counters */
2975	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2976
2977	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2978		writel(0, fep->hwp + fec_stats[i].offset);
2979
2980	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2981		rxq = fep->rx_queue[i];
2982		for (j = 0; j < XDP_STATS_TOTAL; j++)
2983			rxq->stats[j] = 0;
2984	}
2985
2986	/* Don't disable MIB statistics counters */
2987	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2988}
2989
2990#else	/* !defined(CONFIG_M5272) */
2991#define FEC_STATS_SIZE	0
2992static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2993{
2994}
2995
2996static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2997{
2998}
2999#endif /* !defined(CONFIG_M5272) */
3000
3001/* ITR clock source is enet system clock (clk_ahb).
3002 * TCTT unit is cycle_ns * 64 cycle
3003 * So, the ICTT value = X us / (cycle_ns * 64)
3004 */
3005static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3006{
3007	struct fec_enet_private *fep = netdev_priv(ndev);
3008
3009	return us * (fep->itr_clk_rate / 64000) / 1000;
3010}
3011
3012/* Set threshold for interrupt coalescing */
3013static void fec_enet_itr_coal_set(struct net_device *ndev)
3014{
3015	struct fec_enet_private *fep = netdev_priv(ndev);
3016	int rx_itr, tx_itr;
3017
 
 
 
3018	/* Must be greater than zero to avoid unpredictable behavior */
3019	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3020	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3021		return;
3022
3023	/* Select enet system clock as Interrupt Coalescing
3024	 * timer Clock Source
3025	 */
3026	rx_itr = FEC_ITR_CLK_SEL;
3027	tx_itr = FEC_ITR_CLK_SEL;
3028
3029	/* set ICFT and ICTT */
3030	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3031	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3032	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3033	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3034
3035	rx_itr |= FEC_ITR_EN;
3036	tx_itr |= FEC_ITR_EN;
3037
3038	writel(tx_itr, fep->hwp + FEC_TXIC0);
3039	writel(rx_itr, fep->hwp + FEC_RXIC0);
3040	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3041		writel(tx_itr, fep->hwp + FEC_TXIC1);
3042		writel(rx_itr, fep->hwp + FEC_RXIC1);
3043		writel(tx_itr, fep->hwp + FEC_TXIC2);
3044		writel(rx_itr, fep->hwp + FEC_RXIC2);
3045	}
3046}
3047
3048static int fec_enet_get_coalesce(struct net_device *ndev,
3049				 struct ethtool_coalesce *ec,
3050				 struct kernel_ethtool_coalesce *kernel_coal,
3051				 struct netlink_ext_ack *extack)
3052{
3053	struct fec_enet_private *fep = netdev_priv(ndev);
3054
3055	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3056		return -EOPNOTSUPP;
3057
3058	ec->rx_coalesce_usecs = fep->rx_time_itr;
3059	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3060
3061	ec->tx_coalesce_usecs = fep->tx_time_itr;
3062	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3063
3064	return 0;
3065}
3066
3067static int fec_enet_set_coalesce(struct net_device *ndev,
3068				 struct ethtool_coalesce *ec,
3069				 struct kernel_ethtool_coalesce *kernel_coal,
3070				 struct netlink_ext_ack *extack)
3071{
3072	struct fec_enet_private *fep = netdev_priv(ndev);
3073	struct device *dev = &fep->pdev->dev;
3074	unsigned int cycle;
3075
3076	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3077		return -EOPNOTSUPP;
3078
3079	if (ec->rx_max_coalesced_frames > 255) {
3080		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3081		return -EINVAL;
3082	}
3083
3084	if (ec->tx_max_coalesced_frames > 255) {
3085		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3086		return -EINVAL;
3087	}
3088
3089	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3090	if (cycle > 0xFFFF) {
3091		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3092		return -EINVAL;
3093	}
3094
3095	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3096	if (cycle > 0xFFFF) {
3097		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3098		return -EINVAL;
3099	}
3100
3101	fep->rx_time_itr = ec->rx_coalesce_usecs;
3102	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3103
3104	fep->tx_time_itr = ec->tx_coalesce_usecs;
3105	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3106
3107	fec_enet_itr_coal_set(ndev);
3108
3109	return 0;
3110}
3111
3112/* LPI Sleep Ts count base on tx clk (clk_ref).
3113 * The lpi sleep cnt value = X us / (cycle_ns).
3114 */
3115static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3116{
3117	struct fec_enet_private *fep = netdev_priv(ndev);
3118
3119	return us * (fep->clk_ref_rate / 1000) / 1000;
3120}
3121
3122static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3123{
3124	struct fec_enet_private *fep = netdev_priv(ndev);
3125	struct ethtool_eee *p = &fep->eee;
3126	unsigned int sleep_cycle, wake_cycle;
3127	int ret = 0;
3128
3129	if (enable) {
3130		ret = phy_init_eee(ndev->phydev, false);
3131		if (ret)
3132			return ret;
3133
3134		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3135		wake_cycle = sleep_cycle;
3136	} else {
3137		sleep_cycle = 0;
3138		wake_cycle = 0;
3139	}
3140
3141	p->tx_lpi_enabled = enable;
3142	p->eee_enabled = enable;
3143	p->eee_active = enable;
3144
3145	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3146	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3147
3148	return 0;
3149}
3150
3151static int
3152fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
 
3153{
3154	struct fec_enet_private *fep = netdev_priv(ndev);
3155	struct ethtool_eee *p = &fep->eee;
3156
3157	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3158		return -EOPNOTSUPP;
3159
3160	if (!netif_running(ndev))
3161		return -ENETDOWN;
3162
3163	edata->eee_enabled = p->eee_enabled;
3164	edata->eee_active = p->eee_active;
3165	edata->tx_lpi_timer = p->tx_lpi_timer;
3166	edata->tx_lpi_enabled = p->tx_lpi_enabled;
 
 
 
 
3167
3168	return phy_ethtool_get_eee(ndev->phydev, edata);
3169}
3170
3171static int
3172fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
 
3173{
3174	struct fec_enet_private *fep = netdev_priv(ndev);
3175	struct ethtool_eee *p = &fep->eee;
3176	int ret = 0;
3177
3178	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3179		return -EOPNOTSUPP;
3180
3181	if (!netif_running(ndev))
3182		return -ENETDOWN;
3183
3184	p->tx_lpi_timer = edata->tx_lpi_timer;
3185
3186	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3187	    !edata->tx_lpi_timer)
3188		ret = fec_enet_eee_mode_set(ndev, false);
3189	else
3190		ret = fec_enet_eee_mode_set(ndev, true);
3191
3192	if (ret)
3193		return ret;
3194
3195	return phy_ethtool_set_eee(ndev->phydev, edata);
3196}
3197
3198static void
3199fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3200{
3201	struct fec_enet_private *fep = netdev_priv(ndev);
3202
3203	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3204		wol->supported = WAKE_MAGIC;
3205		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3206	} else {
3207		wol->supported = wol->wolopts = 0;
3208	}
3209}
3210
3211static int
3212fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3213{
3214	struct fec_enet_private *fep = netdev_priv(ndev);
3215
3216	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3217		return -EINVAL;
3218
3219	if (wol->wolopts & ~WAKE_MAGIC)
3220		return -EINVAL;
3221
3222	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3223	if (device_may_wakeup(&ndev->dev))
3224		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3225	else
 
 
3226		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
 
 
 
3227
3228	return 0;
3229}
3230
3231static const struct ethtool_ops fec_enet_ethtool_ops = {
3232	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3233				     ETHTOOL_COALESCE_MAX_FRAMES,
3234	.get_drvinfo		= fec_enet_get_drvinfo,
3235	.get_regs_len		= fec_enet_get_regs_len,
3236	.get_regs		= fec_enet_get_regs,
3237	.nway_reset		= phy_ethtool_nway_reset,
3238	.get_link		= ethtool_op_get_link,
3239	.get_coalesce		= fec_enet_get_coalesce,
3240	.set_coalesce		= fec_enet_set_coalesce,
3241#ifndef CONFIG_M5272
3242	.get_pauseparam		= fec_enet_get_pauseparam,
3243	.set_pauseparam		= fec_enet_set_pauseparam,
3244	.get_strings		= fec_enet_get_strings,
3245	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3246	.get_sset_count		= fec_enet_get_sset_count,
3247#endif
3248	.get_ts_info		= fec_enet_get_ts_info,
 
 
3249	.get_wol		= fec_enet_get_wol,
3250	.set_wol		= fec_enet_set_wol,
3251	.get_eee		= fec_enet_get_eee,
3252	.set_eee		= fec_enet_set_eee,
3253	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3254	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3255	.self_test		= net_selftest,
3256};
3257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3258static void fec_enet_free_buffers(struct net_device *ndev)
3259{
3260	struct fec_enet_private *fep = netdev_priv(ndev);
3261	unsigned int i;
 
 
3262	struct fec_enet_priv_tx_q *txq;
3263	struct fec_enet_priv_rx_q *rxq;
3264	unsigned int q;
3265
3266	for (q = 0; q < fep->num_rx_queues; q++) {
3267		rxq = fep->rx_queue[q];
3268		for (i = 0; i < rxq->bd.ring_size; i++)
3269			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3270
3271		for (i = 0; i < XDP_STATS_TOTAL; i++)
3272			rxq->stats[i] = 0;
3273
3274		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3275			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3276		page_pool_destroy(rxq->page_pool);
3277		rxq->page_pool = NULL;
 
 
 
3278	}
3279
3280	for (q = 0; q < fep->num_tx_queues; q++) {
3281		txq = fep->tx_queue[q];
 
3282		for (i = 0; i < txq->bd.ring_size; i++) {
3283			kfree(txq->tx_bounce[i]);
3284			txq->tx_bounce[i] = NULL;
3285
3286			if (!txq->tx_buf[i].buf_p) {
3287				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3288				continue;
3289			}
3290
3291			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3292				dev_kfree_skb(txq->tx_buf[i].buf_p);
3293			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3294				xdp_return_frame(txq->tx_buf[i].buf_p);
3295			} else {
3296				struct page *page = txq->tx_buf[i].buf_p;
3297
3298				page_pool_put_page(page->pp, page, 0, false);
3299			}
3300
3301			txq->tx_buf[i].buf_p = NULL;
3302			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3303		}
3304	}
3305}
3306
3307static void fec_enet_free_queue(struct net_device *ndev)
3308{
3309	struct fec_enet_private *fep = netdev_priv(ndev);
3310	int i;
3311	struct fec_enet_priv_tx_q *txq;
3312
3313	for (i = 0; i < fep->num_tx_queues; i++)
3314		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3315			txq = fep->tx_queue[i];
3316			fec_dma_free(&fep->pdev->dev,
3317				     txq->bd.ring_size * TSO_HEADER_SIZE,
3318				     txq->tso_hdrs, txq->tso_hdrs_dma);
 
3319		}
3320
3321	for (i = 0; i < fep->num_rx_queues; i++)
3322		kfree(fep->rx_queue[i]);
3323	for (i = 0; i < fep->num_tx_queues; i++)
3324		kfree(fep->tx_queue[i]);
3325}
3326
3327static int fec_enet_alloc_queue(struct net_device *ndev)
3328{
3329	struct fec_enet_private *fep = netdev_priv(ndev);
3330	int i;
3331	int ret = 0;
3332	struct fec_enet_priv_tx_q *txq;
3333
3334	for (i = 0; i < fep->num_tx_queues; i++) {
3335		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3336		if (!txq) {
3337			ret = -ENOMEM;
3338			goto alloc_failed;
3339		}
3340
3341		fep->tx_queue[i] = txq;
3342		txq->bd.ring_size = TX_RING_SIZE;
3343		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3344
3345		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3346		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
 
3347
3348		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3349					txq->bd.ring_size * TSO_HEADER_SIZE,
3350					&txq->tso_hdrs_dma, GFP_KERNEL);
 
3351		if (!txq->tso_hdrs) {
3352			ret = -ENOMEM;
3353			goto alloc_failed;
3354		}
3355	}
3356
3357	for (i = 0; i < fep->num_rx_queues; i++) {
3358		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3359					   GFP_KERNEL);
3360		if (!fep->rx_queue[i]) {
3361			ret = -ENOMEM;
3362			goto alloc_failed;
3363		}
3364
3365		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3366		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3367	}
3368	return ret;
3369
3370alloc_failed:
3371	fec_enet_free_queue(ndev);
3372	return ret;
3373}
3374
3375static int
3376fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3377{
3378	struct fec_enet_private *fep = netdev_priv(ndev);
3379	struct fec_enet_priv_rx_q *rxq;
3380	dma_addr_t phys_addr;
3381	struct bufdesc	*bdp;
3382	struct page *page;
3383	int i, err;
3384
3385	rxq = fep->rx_queue[queue];
3386	bdp = rxq->bd.base;
3387
3388	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3389	if (err < 0) {
3390		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3391		return err;
3392	}
3393
3394	for (i = 0; i < rxq->bd.ring_size; i++) {
3395		page = page_pool_dev_alloc_pages(rxq->page_pool);
3396		if (!page)
3397			goto err_alloc;
3398
3399		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3400		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
 
 
3401
3402		rxq->rx_skb_info[i].page = page;
3403		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3404		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3405
3406		if (fep->bufdesc_ex) {
3407			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3408			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3409		}
3410
3411		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3412	}
3413
3414	/* Set the last buffer to wrap. */
3415	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3416	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3417	return 0;
3418
3419 err_alloc:
3420	fec_enet_free_buffers(ndev);
3421	return -ENOMEM;
3422}
3423
3424static int
3425fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3426{
3427	struct fec_enet_private *fep = netdev_priv(ndev);
3428	unsigned int i;
3429	struct bufdesc  *bdp;
3430	struct fec_enet_priv_tx_q *txq;
3431
3432	txq = fep->tx_queue[queue];
3433	bdp = txq->bd.base;
3434	for (i = 0; i < txq->bd.ring_size; i++) {
3435		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3436		if (!txq->tx_bounce[i])
3437			goto err_alloc;
3438
3439		bdp->cbd_sc = cpu_to_fec16(0);
3440		bdp->cbd_bufaddr = cpu_to_fec32(0);
3441
3442		if (fep->bufdesc_ex) {
3443			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3444			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3445		}
3446
3447		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3448	}
3449
3450	/* Set the last buffer to wrap. */
3451	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3452	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3453
3454	return 0;
3455
3456 err_alloc:
3457	fec_enet_free_buffers(ndev);
3458	return -ENOMEM;
3459}
3460
3461static int fec_enet_alloc_buffers(struct net_device *ndev)
3462{
3463	struct fec_enet_private *fep = netdev_priv(ndev);
3464	unsigned int i;
3465
3466	for (i = 0; i < fep->num_rx_queues; i++)
3467		if (fec_enet_alloc_rxq_buffers(ndev, i))
3468			return -ENOMEM;
3469
3470	for (i = 0; i < fep->num_tx_queues; i++)
3471		if (fec_enet_alloc_txq_buffers(ndev, i))
3472			return -ENOMEM;
3473	return 0;
3474}
3475
3476static int
3477fec_enet_open(struct net_device *ndev)
3478{
3479	struct fec_enet_private *fep = netdev_priv(ndev);
3480	int ret;
3481	bool reset_again;
3482
3483	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3484	if (ret < 0)
3485		return ret;
3486
3487	pinctrl_pm_select_default_state(&fep->pdev->dev);
3488	ret = fec_enet_clk_enable(ndev, true);
3489	if (ret)
3490		goto clk_enable;
3491
3492	/* During the first fec_enet_open call the PHY isn't probed at this
3493	 * point. Therefore the phy_reset_after_clk_enable() call within
3494	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3495	 * sure the PHY is working correctly we check if we need to reset again
3496	 * later when the PHY is probed
3497	 */
3498	if (ndev->phydev && ndev->phydev->drv)
3499		reset_again = false;
3500	else
3501		reset_again = true;
3502
3503	/* I should reset the ring buffers here, but I don't yet know
3504	 * a simple way to do that.
3505	 */
3506
3507	ret = fec_enet_alloc_buffers(ndev);
3508	if (ret)
3509		goto err_enet_alloc;
3510
3511	/* Init MAC prior to mii bus probe */
3512	fec_restart(ndev);
3513
3514	/* Call phy_reset_after_clk_enable() again if it failed during
3515	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3516	 */
3517	if (reset_again)
3518		fec_enet_phy_reset_after_clk_enable(ndev);
3519
3520	/* Probe and connect to PHY when open the interface */
3521	ret = fec_enet_mii_probe(ndev);
3522	if (ret)
3523		goto err_enet_mii_probe;
3524
3525	if (fep->quirks & FEC_QUIRK_ERR006687)
3526		imx6q_cpuidle_fec_irqs_used();
3527
3528	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3529		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3530
3531	napi_enable(&fep->napi);
3532	phy_start(ndev->phydev);
3533	netif_tx_start_all_queues(ndev);
3534
3535	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3536				 FEC_WOL_FLAG_ENABLE);
3537
3538	return 0;
3539
3540err_enet_mii_probe:
3541	fec_enet_free_buffers(ndev);
3542err_enet_alloc:
3543	fec_enet_clk_enable(ndev, false);
3544clk_enable:
3545	pm_runtime_mark_last_busy(&fep->pdev->dev);
3546	pm_runtime_put_autosuspend(&fep->pdev->dev);
3547	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3548	return ret;
3549}
3550
3551static int
3552fec_enet_close(struct net_device *ndev)
3553{
3554	struct fec_enet_private *fep = netdev_priv(ndev);
3555
3556	phy_stop(ndev->phydev);
3557
3558	if (netif_device_present(ndev)) {
3559		napi_disable(&fep->napi);
3560		netif_tx_disable(ndev);
3561		fec_stop(ndev);
3562	}
3563
3564	phy_disconnect(ndev->phydev);
3565
3566	if (fep->quirks & FEC_QUIRK_ERR006687)
3567		imx6q_cpuidle_fec_irqs_unused();
3568
3569	fec_enet_update_ethtool_stats(ndev);
3570
3571	fec_enet_clk_enable(ndev, false);
3572	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3573		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3574
3575	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3576	pm_runtime_mark_last_busy(&fep->pdev->dev);
3577	pm_runtime_put_autosuspend(&fep->pdev->dev);
3578
3579	fec_enet_free_buffers(ndev);
3580
3581	return 0;
3582}
3583
3584/* Set or clear the multicast filter for this adaptor.
3585 * Skeleton taken from sunlance driver.
3586 * The CPM Ethernet implementation allows Multicast as well as individual
3587 * MAC address filtering.  Some of the drivers check to make sure it is
3588 * a group multicast address, and discard those that are not.  I guess I
3589 * will do the same for now, but just remove the test if you want
3590 * individual filtering as well (do the upper net layers want or support
3591 * this kind of feature?).
3592 */
3593
3594#define FEC_HASH_BITS	6		/* #bits in hash */
 
3595
3596static void set_multicast_list(struct net_device *ndev)
3597{
3598	struct fec_enet_private *fep = netdev_priv(ndev);
3599	struct netdev_hw_addr *ha;
3600	unsigned int crc, tmp;
3601	unsigned char hash;
3602	unsigned int hash_high = 0, hash_low = 0;
3603
3604	if (ndev->flags & IFF_PROMISC) {
3605		tmp = readl(fep->hwp + FEC_R_CNTRL);
3606		tmp |= 0x8;
3607		writel(tmp, fep->hwp + FEC_R_CNTRL);
3608		return;
3609	}
3610
3611	tmp = readl(fep->hwp + FEC_R_CNTRL);
3612	tmp &= ~0x8;
3613	writel(tmp, fep->hwp + FEC_R_CNTRL);
3614
3615	if (ndev->flags & IFF_ALLMULTI) {
3616		/* Catch all multicast addresses, so set the
3617		 * filter to all 1's
3618		 */
3619		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3620		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3621
3622		return;
3623	}
3624
3625	/* Add the addresses in hash register */
 
 
 
 
3626	netdev_for_each_mc_addr(ha, ndev) {
3627		/* calculate crc32 value of mac address */
3628		crc = ether_crc_le(ndev->addr_len, ha->addr);
3629
3630		/* only upper 6 bits (FEC_HASH_BITS) are used
3631		 * which point to specific bit in the hash registers
 
 
 
 
 
 
 
 
3632		 */
3633		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3634
3635		if (hash > 31)
3636			hash_high |= 1 << (hash - 32);
3637		else
3638			hash_low |= 1 << hash;
 
 
 
 
 
3639	}
3640
3641	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3642	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3643}
3644
3645/* Set a MAC change in hardware. */
3646static int
3647fec_set_mac_address(struct net_device *ndev, void *p)
3648{
3649	struct fec_enet_private *fep = netdev_priv(ndev);
3650	struct sockaddr *addr = p;
3651
3652	if (addr) {
3653		if (!is_valid_ether_addr(addr->sa_data))
3654			return -EADDRNOTAVAIL;
3655		eth_hw_addr_set(ndev, addr->sa_data);
3656	}
3657
3658	/* Add netif status check here to avoid system hang in below case:
3659	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3660	 * After ethx down, fec all clocks are gated off and then register
3661	 * access causes system hang.
3662	 */
3663	if (!netif_running(ndev))
3664		return 0;
3665
3666	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3667		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3668		fep->hwp + FEC_ADDR_LOW);
3669	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3670		fep->hwp + FEC_ADDR_HIGH);
3671	return 0;
3672}
3673
3674#ifdef CONFIG_NET_POLL_CONTROLLER
3675/**
3676 * fec_poll_controller - FEC Poll controller function
3677 * @dev: The FEC network adapter
3678 *
3679 * Polled functionality used by netconsole and others in non interrupt mode
3680 *
3681 */
3682static void fec_poll_controller(struct net_device *dev)
3683{
3684	int i;
3685	struct fec_enet_private *fep = netdev_priv(dev);
3686
3687	for (i = 0; i < FEC_IRQ_NUM; i++) {
3688		if (fep->irq[i] > 0) {
3689			disable_irq(fep->irq[i]);
3690			fec_enet_interrupt(fep->irq[i], dev);
3691			enable_irq(fep->irq[i]);
3692		}
3693	}
3694}
3695#endif
3696
3697static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3698	netdev_features_t features)
3699{
3700	struct fec_enet_private *fep = netdev_priv(netdev);
3701	netdev_features_t changed = features ^ netdev->features;
3702
3703	netdev->features = features;
3704
3705	/* Receive checksum has been changed */
3706	if (changed & NETIF_F_RXCSUM) {
3707		if (features & NETIF_F_RXCSUM)
3708			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3709		else
3710			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3711	}
3712}
3713
3714static int fec_set_features(struct net_device *netdev,
3715	netdev_features_t features)
3716{
3717	struct fec_enet_private *fep = netdev_priv(netdev);
3718	netdev_features_t changed = features ^ netdev->features;
3719
3720	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3721		napi_disable(&fep->napi);
3722		netif_tx_lock_bh(netdev);
3723		fec_stop(netdev);
3724		fec_enet_set_netdev_features(netdev, features);
3725		fec_restart(netdev);
3726		netif_tx_wake_all_queues(netdev);
3727		netif_tx_unlock_bh(netdev);
3728		napi_enable(&fep->napi);
3729	} else {
3730		fec_enet_set_netdev_features(netdev, features);
3731	}
3732
3733	return 0;
3734}
3735
3736static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3737				 struct net_device *sb_dev)
3738{
3739	struct fec_enet_private *fep = netdev_priv(ndev);
3740	u16 vlan_tag = 0;
3741
3742	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3743		return netdev_pick_tx(ndev, skb, NULL);
3744
3745	/* VLAN is present in the payload.*/
3746	if (eth_type_vlan(skb->protocol)) {
3747		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3748
3749		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3750	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3751	} else if (skb_vlan_tag_present(skb)) {
3752		vlan_tag = skb->vlan_tci;
3753	} else {
3754		return vlan_tag;
3755	}
3756
3757	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3758}
3759
3760static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3761{
3762	struct fec_enet_private *fep = netdev_priv(dev);
3763	bool is_run = netif_running(dev);
3764	struct bpf_prog *old_prog;
3765
3766	switch (bpf->command) {
3767	case XDP_SETUP_PROG:
3768		/* No need to support the SoCs that require to
3769		 * do the frame swap because the performance wouldn't be
3770		 * better than the skb mode.
3771		 */
3772		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3773			return -EOPNOTSUPP;
3774
3775		if (!bpf->prog)
3776			xdp_features_clear_redirect_target(dev);
3777
3778		if (is_run) {
3779			napi_disable(&fep->napi);
3780			netif_tx_disable(dev);
3781		}
3782
3783		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3784		if (old_prog)
3785			bpf_prog_put(old_prog);
3786
3787		fec_restart(dev);
3788
3789		if (is_run) {
3790			napi_enable(&fep->napi);
3791			netif_tx_start_all_queues(dev);
3792		}
3793
3794		if (bpf->prog)
3795			xdp_features_set_redirect_target(dev, false);
3796
3797		return 0;
3798
3799	case XDP_SETUP_XSK_POOL:
3800		return -EOPNOTSUPP;
3801
3802	default:
3803		return -EOPNOTSUPP;
3804	}
3805}
3806
3807static int
3808fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3809{
3810	if (unlikely(index < 0))
3811		return 0;
3812
3813	return (index % fep->num_tx_queues);
3814}
3815
3816static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3817				   struct fec_enet_priv_tx_q *txq,
3818				   void *frame, u32 dma_sync_len,
3819				   bool ndo_xmit)
3820{
3821	unsigned int index, status, estatus;
3822	struct bufdesc *bdp;
3823	dma_addr_t dma_addr;
3824	int entries_free;
3825	u16 frame_len;
3826
3827	entries_free = fec_enet_get_free_txdesc_num(txq);
3828	if (entries_free < MAX_SKB_FRAGS + 1) {
3829		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3830		return -EBUSY;
3831	}
3832
3833	/* Fill in a Tx ring entry */
3834	bdp = txq->bd.cur;
3835	status = fec16_to_cpu(bdp->cbd_sc);
3836	status &= ~BD_ENET_TX_STATS;
3837
3838	index = fec_enet_get_bd_index(bdp, &txq->bd);
3839
3840	if (ndo_xmit) {
3841		struct xdp_frame *xdpf = frame;
3842
3843		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3844					  xdpf->len, DMA_TO_DEVICE);
3845		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3846			return -ENOMEM;
3847
3848		frame_len = xdpf->len;
3849		txq->tx_buf[index].buf_p = xdpf;
3850		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3851	} else {
3852		struct xdp_buff *xdpb = frame;
3853		struct page *page;
3854
3855		page = virt_to_page(xdpb->data);
3856		dma_addr = page_pool_get_dma_addr(page) +
3857			   (xdpb->data - xdpb->data_hard_start);
3858		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3859					   dma_sync_len, DMA_BIDIRECTIONAL);
3860		frame_len = xdpb->data_end - xdpb->data;
3861		txq->tx_buf[index].buf_p = page;
3862		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3863	}
3864
3865	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3866	if (fep->bufdesc_ex)
3867		estatus = BD_ENET_TX_INT;
3868
3869	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3870	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3871
3872	if (fep->bufdesc_ex) {
3873		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3874
3875		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3876			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3877
3878		ebdp->cbd_bdu = 0;
3879		ebdp->cbd_esc = cpu_to_fec32(estatus);
3880	}
3881
3882	/* Make sure the updates to rest of the descriptor are performed before
3883	 * transferring ownership.
3884	 */
3885	dma_wmb();
3886
3887	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3888	 * it's the last BD of the frame, and to put the CRC on the end.
3889	 */
3890	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3891	bdp->cbd_sc = cpu_to_fec16(status);
3892
3893	/* If this was the last BD in the ring, start at the beginning again. */
3894	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3895
3896	/* Make sure the update to bdp are performed before txq->bd.cur. */
3897	dma_wmb();
3898
3899	txq->bd.cur = bdp;
3900
3901	/* Trigger transmission start */
3902	writel(0, txq->bd.reg_desc_active);
3903
3904	return 0;
3905}
3906
3907static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3908				int cpu, struct xdp_buff *xdp,
3909				u32 dma_sync_len)
3910{
3911	struct fec_enet_priv_tx_q *txq;
3912	struct netdev_queue *nq;
3913	int queue, ret;
3914
3915	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3916	txq = fep->tx_queue[queue];
3917	nq = netdev_get_tx_queue(fep->netdev, queue);
3918
3919	__netif_tx_lock(nq, cpu);
3920
3921	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3922	txq_trans_cond_update(nq);
3923	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3924
3925	__netif_tx_unlock(nq);
3926
3927	return ret;
3928}
3929
3930static int fec_enet_xdp_xmit(struct net_device *dev,
3931			     int num_frames,
3932			     struct xdp_frame **frames,
3933			     u32 flags)
3934{
3935	struct fec_enet_private *fep = netdev_priv(dev);
3936	struct fec_enet_priv_tx_q *txq;
3937	int cpu = smp_processor_id();
3938	unsigned int sent_frames = 0;
3939	struct netdev_queue *nq;
3940	unsigned int queue;
3941	int i;
3942
3943	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3944	txq = fep->tx_queue[queue];
3945	nq = netdev_get_tx_queue(fep->netdev, queue);
3946
3947	__netif_tx_lock(nq, cpu);
3948
3949	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3950	txq_trans_cond_update(nq);
3951	for (i = 0; i < num_frames; i++) {
3952		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3953			break;
3954		sent_frames++;
3955	}
3956
3957	__netif_tx_unlock(nq);
3958
3959	return sent_frames;
3960}
3961
3962static int fec_hwtstamp_get(struct net_device *ndev,
3963			    struct kernel_hwtstamp_config *config)
3964{
3965	struct fec_enet_private *fep = netdev_priv(ndev);
3966
3967	if (!netif_running(ndev))
3968		return -EINVAL;
3969
3970	if (!fep->bufdesc_ex)
3971		return -EOPNOTSUPP;
3972
3973	fec_ptp_get(ndev, config);
3974
3975	return 0;
3976}
3977
3978static int fec_hwtstamp_set(struct net_device *ndev,
3979			    struct kernel_hwtstamp_config *config,
3980			    struct netlink_ext_ack *extack)
3981{
3982	struct fec_enet_private *fep = netdev_priv(ndev);
3983
3984	if (!netif_running(ndev))
3985		return -EINVAL;
3986
3987	if (!fep->bufdesc_ex)
3988		return -EOPNOTSUPP;
3989
3990	return fec_ptp_set(ndev, config, extack);
3991}
3992
3993static const struct net_device_ops fec_netdev_ops = {
3994	.ndo_open		= fec_enet_open,
3995	.ndo_stop		= fec_enet_close,
3996	.ndo_start_xmit		= fec_enet_start_xmit,
3997	.ndo_select_queue       = fec_enet_select_queue,
3998	.ndo_set_rx_mode	= set_multicast_list,
 
3999	.ndo_validate_addr	= eth_validate_addr,
4000	.ndo_tx_timeout		= fec_timeout,
4001	.ndo_set_mac_address	= fec_set_mac_address,
4002	.ndo_eth_ioctl		= phy_do_ioctl_running,
4003#ifdef CONFIG_NET_POLL_CONTROLLER
4004	.ndo_poll_controller	= fec_poll_controller,
4005#endif
4006	.ndo_set_features	= fec_set_features,
4007	.ndo_bpf		= fec_enet_bpf,
4008	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4009	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4010	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4011};
4012
4013static const unsigned short offset_des_active_rxq[] = {
4014	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4015};
4016
4017static const unsigned short offset_des_active_txq[] = {
4018	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4019};
4020
4021 /*
4022  * XXX:  We need to clean up on failure exits here.
4023  *
4024  */
4025static int fec_enet_init(struct net_device *ndev)
4026{
4027	struct fec_enet_private *fep = netdev_priv(ndev);
4028	struct bufdesc *cbd_base;
4029	dma_addr_t bd_dma;
4030	int bd_size;
4031	unsigned int i;
4032	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4033			sizeof(struct bufdesc);
4034	unsigned dsize_log2 = __fls(dsize);
4035	int ret;
4036
4037	WARN_ON(dsize != (1 << dsize_log2));
4038#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4039	fep->rx_align = 0xf;
4040	fep->tx_align = 0xf;
4041#else
4042	fep->rx_align = 0x3;
4043	fep->tx_align = 0x3;
4044#endif
4045	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4047	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4049
4050	/* Check mask of the streaming and coherent API */
4051	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4052	if (ret < 0) {
4053		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4054		return ret;
4055	}
4056
4057	ret = fec_enet_alloc_queue(ndev);
4058	if (ret)
4059		return ret;
4060
4061	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4062
4063	/* Allocate memory for buffer descriptors. */
4064	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4065				  GFP_KERNEL);
4066	if (!cbd_base) {
4067		ret = -ENOMEM;
4068		goto free_queue_mem;
4069	}
4070
 
 
4071	/* Get the Ethernet address */
4072	ret = fec_get_mac(ndev);
4073	if (ret)
4074		goto free_queue_mem;
4075
4076	/* Set receive and transmit descriptor base. */
4077	for (i = 0; i < fep->num_rx_queues; i++) {
4078		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4079		unsigned size = dsize * rxq->bd.ring_size;
4080
4081		rxq->bd.qid = i;
4082		rxq->bd.base = cbd_base;
4083		rxq->bd.cur = cbd_base;
4084		rxq->bd.dma = bd_dma;
4085		rxq->bd.dsize = dsize;
4086		rxq->bd.dsize_log2 = dsize_log2;
4087		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4088		bd_dma += size;
4089		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4090		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4091	}
4092
4093	for (i = 0; i < fep->num_tx_queues; i++) {
4094		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4095		unsigned size = dsize * txq->bd.ring_size;
4096
4097		txq->bd.qid = i;
4098		txq->bd.base = cbd_base;
4099		txq->bd.cur = cbd_base;
4100		txq->bd.dma = bd_dma;
4101		txq->bd.dsize = dsize;
4102		txq->bd.dsize_log2 = dsize_log2;
4103		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4104		bd_dma += size;
4105		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4106		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4107	}
4108
4109
4110	/* The FEC Ethernet specific entries in the device structure */
4111	ndev->watchdog_timeo = TX_TIMEOUT;
4112	ndev->netdev_ops = &fec_netdev_ops;
4113	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4114
4115	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4116	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4117
4118	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4119		/* enable hw VLAN support */
4120		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4121
4122	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4123		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4124
4125		/* enable hw accelerator */
4126		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4127				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4128		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4129	}
4130
4131	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4132		fep->tx_align = 0;
4133		fep->rx_align = 0x3f;
4134	}
4135
4136	ndev->hw_features = ndev->features;
4137
4138	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4139		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4140				     NETDEV_XDP_ACT_REDIRECT;
4141
4142	fec_restart(ndev);
4143
4144	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4145		fec_enet_clear_ethtool_stats(ndev);
4146	else
4147		fec_enet_update_ethtool_stats(ndev);
4148
4149	return 0;
4150
4151free_queue_mem:
4152	fec_enet_free_queue(ndev);
4153	return ret;
4154}
4155
4156#ifdef CONFIG_OF
4157static int fec_reset_phy(struct platform_device *pdev)
4158{
4159	struct gpio_desc *phy_reset;
4160	int msec = 1, phy_post_delay = 0;
 
4161	struct device_node *np = pdev->dev.of_node;
4162	int err;
4163
4164	if (!np)
4165		return 0;
4166
4167	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4168	/* A sane reset duration should not be longer than 1s */
4169	if (!err && msec > 1000)
4170		msec = 1;
4171
4172	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4173	/* valid reset duration should be less than 1s */
4174	if (!err && phy_post_delay > 1000)
4175		return -EINVAL;
4176
4177	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4178					    GPIOD_OUT_HIGH);
4179	if (IS_ERR(phy_reset))
4180		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4181				     "failed to get phy-reset-gpios\n");
4182
4183	if (!phy_reset)
4184		return 0;
4185
4186	if (msec > 20)
4187		msleep(msec);
4188	else
4189		usleep_range(msec * 1000, msec * 1000 + 1000);
4190
4191	gpiod_set_value_cansleep(phy_reset, 0);
4192
4193	if (!phy_post_delay)
4194		return 0;
4195
4196	if (phy_post_delay > 20)
4197		msleep(phy_post_delay);
4198	else
4199		usleep_range(phy_post_delay * 1000,
4200			     phy_post_delay * 1000 + 1000);
4201
4202	return 0;
 
 
 
 
 
 
 
 
4203}
4204#else /* CONFIG_OF */
4205static int fec_reset_phy(struct platform_device *pdev)
4206{
4207	/*
4208	 * In case of platform probe, the reset has been done
4209	 * by machine code.
4210	 */
4211	return 0;
4212}
4213#endif /* CONFIG_OF */
4214
4215static void
4216fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4217{
4218	struct device_node *np = pdev->dev.of_node;
4219
4220	*num_tx = *num_rx = 1;
4221
4222	if (!np || !of_device_is_available(np))
4223		return;
4224
4225	/* parse the num of tx and rx queues */
4226	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4227
4228	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4229
4230	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4231		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4232			 *num_tx);
4233		*num_tx = 1;
4234		return;
4235	}
4236
4237	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4238		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4239			 *num_rx);
4240		*num_rx = 1;
4241		return;
4242	}
4243
4244}
4245
4246static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4247{
4248	int irq_cnt = platform_irq_count(pdev);
4249
4250	if (irq_cnt > FEC_IRQ_NUM)
4251		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4252	else if (irq_cnt == 2)
4253		irq_cnt = 1;	/* last for pps */
4254	else if (irq_cnt <= 0)
4255		irq_cnt = 1;	/* At least 1 irq is needed */
4256	return irq_cnt;
4257}
4258
4259static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4260{
4261	struct net_device *ndev = platform_get_drvdata(pdev);
4262	struct fec_enet_private *fep = netdev_priv(ndev);
4263
4264	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4265		fep->wake_irq = fep->irq[2];
4266	else
4267		fep->wake_irq = fep->irq[0];
4268}
4269
4270static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4271				   struct device_node *np)
4272{
4273	struct device_node *gpr_np;
4274	u32 out_val[3];
4275	int ret = 0;
4276
4277	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4278	if (!gpr_np)
4279		return 0;
4280
4281	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4282					 ARRAY_SIZE(out_val));
4283	if (ret) {
4284		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4285		goto out;
4286	}
4287
4288	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4289	if (IS_ERR(fep->stop_gpr.gpr)) {
4290		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4291		ret = PTR_ERR(fep->stop_gpr.gpr);
4292		fep->stop_gpr.gpr = NULL;
4293		goto out;
4294	}
4295
4296	fep->stop_gpr.reg = out_val[1];
4297	fep->stop_gpr.bit = out_val[2];
4298
4299out:
4300	of_node_put(gpr_np);
4301
4302	return ret;
4303}
4304
4305static int
4306fec_probe(struct platform_device *pdev)
4307{
4308	struct fec_enet_private *fep;
4309	struct fec_platform_data *pdata;
4310	phy_interface_t interface;
4311	struct net_device *ndev;
4312	int i, irq, ret = 0;
 
 
4313	static int dev_id;
4314	struct device_node *np = pdev->dev.of_node, *phy_node;
4315	int num_tx_qs;
4316	int num_rx_qs;
4317	char irq_name[8];
4318	int irq_cnt;
4319	const struct fec_devinfo *dev_info;
4320
4321	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4322
4323	/* Init network device */
4324	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4325				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4326	if (!ndev)
4327		return -ENOMEM;
4328
4329	SET_NETDEV_DEV(ndev, &pdev->dev);
4330
4331	/* setup board info structure */
4332	fep = netdev_priv(ndev);
4333
4334	dev_info = device_get_match_data(&pdev->dev);
4335	if (!dev_info)
4336		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4337	if (dev_info)
4338		fep->quirks = dev_info->quirks;
4339
4340	fep->netdev = ndev;
4341	fep->num_rx_queues = num_rx_qs;
4342	fep->num_tx_queues = num_tx_qs;
4343
4344#if !defined(CONFIG_M5272)
4345	/* default enable pause frame auto negotiation */
4346	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4347		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4348#endif
4349
4350	/* Select default pin state */
4351	pinctrl_pm_select_default_state(&pdev->dev);
4352
4353	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
 
4354	if (IS_ERR(fep->hwp)) {
4355		ret = PTR_ERR(fep->hwp);
4356		goto failed_ioremap;
4357	}
4358
4359	fep->pdev = pdev;
4360	fep->dev_id = dev_id++;
4361
4362	platform_set_drvdata(pdev, ndev);
4363
4364	if ((of_machine_is_compatible("fsl,imx6q") ||
4365	     of_machine_is_compatible("fsl,imx6dl")) &&
4366	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4367		fep->quirks |= FEC_QUIRK_ERR006687;
4368
4369	ret = fec_enet_ipc_handle_init(fep);
4370	if (ret)
4371		goto failed_ipc_init;
4372
4373	if (of_property_read_bool(np, "fsl,magic-packet"))
4374		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4375
4376	ret = fec_enet_init_stop_mode(fep, np);
4377	if (ret)
4378		goto failed_stop_mode;
4379
4380	phy_node = of_parse_phandle(np, "phy-handle", 0);
4381	if (!phy_node && of_phy_is_fixed_link(np)) {
4382		ret = of_phy_register_fixed_link(np);
4383		if (ret < 0) {
4384			dev_err(&pdev->dev,
4385				"broken fixed-link specification\n");
4386			goto failed_phy;
4387		}
4388		phy_node = of_node_get(np);
4389	}
4390	fep->phy_node = phy_node;
4391
4392	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4393	if (ret) {
4394		pdata = dev_get_platdata(&pdev->dev);
4395		if (pdata)
4396			fep->phy_interface = pdata->phy;
4397		else
4398			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4399	} else {
4400		fep->phy_interface = interface;
4401	}
4402
4403	ret = fec_enet_parse_rgmii_delay(fep, np);
4404	if (ret)
4405		goto failed_rgmii_delay;
4406
4407	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4408	if (IS_ERR(fep->clk_ipg)) {
4409		ret = PTR_ERR(fep->clk_ipg);
4410		goto failed_clk;
4411	}
4412
4413	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4414	if (IS_ERR(fep->clk_ahb)) {
4415		ret = PTR_ERR(fep->clk_ahb);
4416		goto failed_clk;
4417	}
4418
4419	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4420
4421	/* enet_out is optional, depends on board */
4422	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4423	if (IS_ERR(fep->clk_enet_out)) {
4424		ret = PTR_ERR(fep->clk_enet_out);
4425		goto failed_clk;
4426	}
4427
4428	fep->ptp_clk_on = false;
4429	mutex_init(&fep->ptp_clk_mutex);
4430
4431	/* clk_ref is optional, depends on board */
4432	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4433	if (IS_ERR(fep->clk_ref)) {
4434		ret = PTR_ERR(fep->clk_ref);
4435		goto failed_clk;
4436	}
4437	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4438
4439	/* clk_2x_txclk is optional, depends on board */
4440	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4441		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4442		if (IS_ERR(fep->clk_2x_txclk))
4443			fep->clk_2x_txclk = NULL;
4444	}
4445
4446	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4447	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4448	if (IS_ERR(fep->clk_ptp)) {
4449		fep->clk_ptp = NULL;
4450		fep->bufdesc_ex = false;
4451	}
4452
4453	ret = fec_enet_clk_enable(ndev, true);
4454	if (ret)
4455		goto failed_clk;
4456
4457	ret = clk_prepare_enable(fep->clk_ipg);
4458	if (ret)
4459		goto failed_clk_ipg;
4460	ret = clk_prepare_enable(fep->clk_ahb);
4461	if (ret)
4462		goto failed_clk_ahb;
4463
4464	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4465	if (!IS_ERR(fep->reg_phy)) {
4466		ret = regulator_enable(fep->reg_phy);
4467		if (ret) {
4468			dev_err(&pdev->dev,
4469				"Failed to enable phy regulator: %d\n", ret);
4470			goto failed_regulator;
4471		}
4472	} else {
4473		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4474			ret = -EPROBE_DEFER;
4475			goto failed_regulator;
4476		}
4477		fep->reg_phy = NULL;
4478	}
4479
4480	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4481	pm_runtime_use_autosuspend(&pdev->dev);
4482	pm_runtime_get_noresume(&pdev->dev);
4483	pm_runtime_set_active(&pdev->dev);
4484	pm_runtime_enable(&pdev->dev);
4485
4486	ret = fec_reset_phy(pdev);
4487	if (ret)
4488		goto failed_reset;
4489
4490	irq_cnt = fec_enet_get_irq_cnt(pdev);
4491	if (fep->bufdesc_ex)
4492		fec_ptp_init(pdev, irq_cnt);
4493
4494	ret = fec_enet_init(ndev);
4495	if (ret)
4496		goto failed_init;
4497
4498	for (i = 0; i < irq_cnt; i++) {
4499		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4500		irq = platform_get_irq_byname_optional(pdev, irq_name);
4501		if (irq < 0)
4502			irq = platform_get_irq(pdev, i);
4503		if (irq < 0) {
 
 
4504			ret = irq;
4505			goto failed_irq;
4506		}
4507		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4508				       0, pdev->name, ndev);
4509		if (ret)
4510			goto failed_irq;
4511
4512		fep->irq[i] = irq;
4513	}
4514
4515	/* Decide which interrupt line is wakeup capable */
4516	fec_enet_get_wakeup_irq(pdev);
4517
4518	ret = fec_enet_mii_init(pdev);
4519	if (ret)
4520		goto failed_mii_init;
4521
4522	/* Carrier starts down, phylib will bring it up */
4523	netif_carrier_off(ndev);
4524	fec_enet_clk_enable(ndev, false);
4525	pinctrl_pm_select_sleep_state(&pdev->dev);
4526
4527	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4528
4529	ret = register_netdev(ndev);
4530	if (ret)
4531		goto failed_register;
4532
4533	device_init_wakeup(&ndev->dev, fep->wol_flag &
4534			   FEC_WOL_HAS_MAGIC_PACKET);
4535
4536	if (fep->bufdesc_ex && fep->ptp_clock)
4537		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4538
 
4539	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4540
4541	pm_runtime_mark_last_busy(&pdev->dev);
4542	pm_runtime_put_autosuspend(&pdev->dev);
4543
4544	return 0;
4545
4546failed_register:
4547	fec_enet_mii_remove(fep);
4548failed_mii_init:
4549failed_irq:
4550failed_init:
4551	fec_ptp_stop(pdev);
4552failed_reset:
4553	pm_runtime_put_noidle(&pdev->dev);
4554	pm_runtime_disable(&pdev->dev);
4555	if (fep->reg_phy)
4556		regulator_disable(fep->reg_phy);
4557failed_regulator:
4558	clk_disable_unprepare(fep->clk_ahb);
4559failed_clk_ahb:
4560	clk_disable_unprepare(fep->clk_ipg);
4561failed_clk_ipg:
4562	fec_enet_clk_enable(ndev, false);
4563failed_clk:
4564failed_rgmii_delay:
4565	if (of_phy_is_fixed_link(np))
4566		of_phy_deregister_fixed_link(np);
4567	of_node_put(phy_node);
4568failed_stop_mode:
4569failed_ipc_init:
4570failed_phy:
4571	dev_id--;
4572failed_ioremap:
4573	free_netdev(ndev);
4574
4575	return ret;
4576}
4577
4578static void
4579fec_drv_remove(struct platform_device *pdev)
4580{
4581	struct net_device *ndev = platform_get_drvdata(pdev);
4582	struct fec_enet_private *fep = netdev_priv(ndev);
4583	struct device_node *np = pdev->dev.of_node;
4584	int ret;
4585
4586	ret = pm_runtime_get_sync(&pdev->dev);
4587	if (ret < 0)
4588		dev_err(&pdev->dev,
4589			"Failed to resume device in remove callback (%pe)\n",
4590			ERR_PTR(ret));
4591
4592	cancel_work_sync(&fep->tx_timeout_work);
4593	fec_ptp_stop(pdev);
4594	unregister_netdev(ndev);
4595	fec_enet_mii_remove(fep);
4596	if (fep->reg_phy)
4597		regulator_disable(fep->reg_phy);
4598
4599	if (of_phy_is_fixed_link(np))
4600		of_phy_deregister_fixed_link(np);
4601	of_node_put(fep->phy_node);
4602
4603	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4604	 * disabling them again.
4605	 */
4606	if (ret >= 0) {
4607		clk_disable_unprepare(fep->clk_ahb);
4608		clk_disable_unprepare(fep->clk_ipg);
4609	}
4610	pm_runtime_put_noidle(&pdev->dev);
4611	pm_runtime_disable(&pdev->dev);
4612
4613	free_netdev(ndev);
 
 
4614}
4615
4616static int __maybe_unused fec_suspend(struct device *dev)
4617{
4618	struct net_device *ndev = dev_get_drvdata(dev);
4619	struct fec_enet_private *fep = netdev_priv(ndev);
4620	int ret;
4621
4622	rtnl_lock();
4623	if (netif_running(ndev)) {
4624		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4625			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4626		phy_stop(ndev->phydev);
4627		napi_disable(&fep->napi);
4628		netif_tx_lock_bh(ndev);
4629		netif_device_detach(ndev);
4630		netif_tx_unlock_bh(ndev);
4631		fec_stop(ndev);
4632		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4633			fec_irqs_disable(ndev);
4634			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4635		} else {
4636			fec_irqs_disable_except_wakeup(ndev);
4637			if (fep->wake_irq > 0) {
4638				disable_irq(fep->wake_irq);
4639				enable_irq_wake(fep->wake_irq);
4640			}
4641			fec_enet_stop_mode(fep, true);
4642		}
4643		/* It's safe to disable clocks since interrupts are masked */
4644		fec_enet_clk_enable(ndev, false);
4645
4646		fep->rpm_active = !pm_runtime_status_suspended(dev);
4647		if (fep->rpm_active) {
4648			ret = pm_runtime_force_suspend(dev);
4649			if (ret < 0) {
4650				rtnl_unlock();
4651				return ret;
4652			}
4653		}
4654	}
4655	rtnl_unlock();
4656
4657	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4658		regulator_disable(fep->reg_phy);
4659
4660	/* SOC supply clock to phy, when clock is disabled, phy link down
4661	 * SOC control phy regulator, when regulator is disabled, phy link down
4662	 */
4663	if (fep->clk_enet_out || fep->reg_phy)
4664		fep->link = 0;
4665
4666	return 0;
4667}
4668
4669static int __maybe_unused fec_resume(struct device *dev)
4670{
4671	struct net_device *ndev = dev_get_drvdata(dev);
4672	struct fec_enet_private *fep = netdev_priv(ndev);
 
4673	int ret;
4674	int val;
4675
4676	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4677		ret = regulator_enable(fep->reg_phy);
4678		if (ret)
4679			return ret;
4680	}
4681
4682	rtnl_lock();
4683	if (netif_running(ndev)) {
4684		if (fep->rpm_active)
4685			pm_runtime_force_resume(dev);
4686
4687		ret = fec_enet_clk_enable(ndev, true);
4688		if (ret) {
4689			rtnl_unlock();
4690			goto failed_clk;
4691		}
4692		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4693			fec_enet_stop_mode(fep, false);
4694			if (fep->wake_irq) {
4695				disable_irq_wake(fep->wake_irq);
4696				enable_irq(fep->wake_irq);
4697			}
4698
4699			val = readl(fep->hwp + FEC_ECNTRL);
4700			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4701			writel(val, fep->hwp + FEC_ECNTRL);
4702			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4703		} else {
4704			pinctrl_pm_select_default_state(&fep->pdev->dev);
4705		}
4706		fec_restart(ndev);
4707		netif_tx_lock_bh(ndev);
4708		netif_device_attach(ndev);
4709		netif_tx_unlock_bh(ndev);
4710		napi_enable(&fep->napi);
4711		phy_init_hw(ndev->phydev);
4712		phy_start(ndev->phydev);
4713	}
4714	rtnl_unlock();
4715
4716	return 0;
4717
4718failed_clk:
4719	if (fep->reg_phy)
4720		regulator_disable(fep->reg_phy);
4721	return ret;
4722}
4723
4724static int __maybe_unused fec_runtime_suspend(struct device *dev)
4725{
4726	struct net_device *ndev = dev_get_drvdata(dev);
4727	struct fec_enet_private *fep = netdev_priv(ndev);
4728
4729	clk_disable_unprepare(fep->clk_ahb);
4730	clk_disable_unprepare(fep->clk_ipg);
4731
4732	return 0;
4733}
4734
4735static int __maybe_unused fec_runtime_resume(struct device *dev)
4736{
4737	struct net_device *ndev = dev_get_drvdata(dev);
4738	struct fec_enet_private *fep = netdev_priv(ndev);
4739	int ret;
4740
4741	ret = clk_prepare_enable(fep->clk_ahb);
4742	if (ret)
4743		return ret;
4744	ret = clk_prepare_enable(fep->clk_ipg);
4745	if (ret)
4746		goto failed_clk_ipg;
4747
4748	return 0;
4749
4750failed_clk_ipg:
4751	clk_disable_unprepare(fep->clk_ahb);
4752	return ret;
4753}
4754
4755static const struct dev_pm_ops fec_pm_ops = {
4756	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4757	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4758};
4759
4760static struct platform_driver fec_driver = {
4761	.driver	= {
4762		.name	= DRIVER_NAME,
4763		.pm	= &fec_pm_ops,
4764		.of_match_table = fec_dt_ids,
4765		.suppress_bind_attrs = true,
4766	},
4767	.id_table = fec_devtype,
4768	.probe	= fec_probe,
4769	.remove_new = fec_drv_remove,
4770};
4771
4772module_platform_driver(fec_driver);
4773
4774MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4775MODULE_LICENSE("GPL");
v4.6
 
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/ptrace.h>
  29#include <linux/errno.h>
  30#include <linux/ioport.h>
  31#include <linux/slab.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/netdevice.h>
  35#include <linux/etherdevice.h>
  36#include <linux/skbuff.h>
  37#include <linux/in.h>
  38#include <linux/ip.h>
  39#include <net/ip.h>
 
 
  40#include <net/tso.h>
  41#include <linux/tcp.h>
  42#include <linux/udp.h>
  43#include <linux/icmp.h>
  44#include <linux/spinlock.h>
  45#include <linux/workqueue.h>
  46#include <linux/bitops.h>
  47#include <linux/io.h>
  48#include <linux/irq.h>
  49#include <linux/clk.h>
 
  50#include <linux/platform_device.h>
 
  51#include <linux/mdio.h>
  52#include <linux/phy.h>
  53#include <linux/fec.h>
  54#include <linux/of.h>
  55#include <linux/of_device.h>
  56#include <linux/of_gpio.h>
  57#include <linux/of_mdio.h>
  58#include <linux/of_net.h>
  59#include <linux/regulator/consumer.h>
  60#include <linux/if_vlan.h>
  61#include <linux/pinctrl/consumer.h>
 
  62#include <linux/prefetch.h>
 
 
 
 
 
 
  63
  64#include <asm/cacheflush.h>
  65
  66#include "fec.h"
  67
  68static void set_multicast_list(struct net_device *ndev);
  69static void fec_enet_itr_coal_init(struct net_device *ndev);
 
 
 
  70
  71#define DRIVER_NAME	"fec"
  72
  73#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
  74
  75/* Pause frame feild and FIFO threshold */
  76#define FEC_ENET_FCE	(1 << 5)
  77#define FEC_ENET_RSEM_V	0x84
  78#define FEC_ENET_RSFL_V	16
  79#define FEC_ENET_RAEM_V	0x8
  80#define FEC_ENET_RAFL_V	0x8
  81#define FEC_ENET_OPD_V	0xFFF0
  82#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84static struct platform_device_id fec_devtype[] = {
  85	{
  86		/* keep it for coldfire */
  87		.name = DRIVER_NAME,
  88		.driver_data = 0,
  89	}, {
  90		.name = "imx25-fec",
  91		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
  92	}, {
  93		.name = "imx27-fec",
  94		.driver_data = FEC_QUIRK_HAS_RACC,
  95	}, {
  96		.name = "imx28-fec",
  97		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
  98				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
  99	}, {
 100		.name = "imx6q-fec",
 101		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 102				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 103				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 104				FEC_QUIRK_HAS_RACC,
 105	}, {
 106		.name = "mvf600-fec",
 107		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 108	}, {
 109		.name = "imx6sx-fec",
 110		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 111				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 112				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 113				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 114				FEC_QUIRK_HAS_RACC,
 115	}, {
 116		/* sentinel */
 117	}
 118};
 119MODULE_DEVICE_TABLE(platform, fec_devtype);
 120
 121enum imx_fec_type {
 122	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 123	IMX27_FEC,	/* runs on i.mx27/35/51 */
 124	IMX28_FEC,
 125	IMX6Q_FEC,
 126	MVF600_FEC,
 127	IMX6SX_FEC,
 128};
 129
 130static const struct of_device_id fec_dt_ids[] = {
 131	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 132	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 133	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 134	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 135	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 136	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 
 
 
 
 137	{ /* sentinel */ }
 138};
 139MODULE_DEVICE_TABLE(of, fec_dt_ids);
 140
 141static unsigned char macaddr[ETH_ALEN];
 142module_param_array(macaddr, byte, NULL, 0);
 143MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 144
 145#if defined(CONFIG_M5272)
 146/*
 147 * Some hardware gets it MAC address out of local flash memory.
 148 * if this is non-zero then assume it is the address to get MAC from.
 149 */
 150#if defined(CONFIG_NETtel)
 151#define	FEC_FLASHMAC	0xf0006006
 152#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 153#define	FEC_FLASHMAC	0xf0006000
 154#elif defined(CONFIG_CANCam)
 155#define	FEC_FLASHMAC	0xf0020000
 156#elif defined (CONFIG_M5272C3)
 157#define	FEC_FLASHMAC	(0xffe04000 + 4)
 158#elif defined(CONFIG_MOD5272)
 159#define FEC_FLASHMAC	0xffc0406b
 160#else
 161#define	FEC_FLASHMAC	0
 162#endif
 163#endif /* CONFIG_M5272 */
 164
 165/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 
 
 
 166 */
 167#define PKT_MAXBUF_SIZE		1522
 168#define PKT_MINBUF_SIZE		64
 169#define PKT_MAXBLR_SIZE		1536
 170
 171/* FEC receive acceleration */
 172#define FEC_RACC_IPDIS		(1 << 1)
 173#define FEC_RACC_PRODIS		(1 << 2)
 
 174#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 175
 
 
 
 176/*
 177 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 178 * size bits. Other FEC hardware does not, so we need to take that into
 179 * account when setting it.
 180 */
 181#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 182    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 
 183#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 184#else
 185#define	OPT_FRAME_SIZE	0
 186#endif
 187
 188/* FEC MII MMFR bits definition */
 189#define FEC_MMFR_ST		(1 << 30)
 
 190#define FEC_MMFR_OP_READ	(2 << 28)
 
 191#define FEC_MMFR_OP_WRITE	(1 << 28)
 
 192#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 193#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 194#define FEC_MMFR_TA		(2 << 16)
 195#define FEC_MMFR_DATA(v)	(v & 0xffff)
 196/* FEC ECR bits definition */
 197#define FEC_ECR_MAGICEN		(1 << 2)
 198#define FEC_ECR_SLEEP		(1 << 3)
 199
 200#define FEC_MII_TIMEOUT		30000 /* us */
 201
 202/* Transmitter timeout */
 203#define TX_TIMEOUT (2 * HZ)
 204
 205#define FEC_PAUSE_FLAG_AUTONEG	0x1
 206#define FEC_PAUSE_FLAG_ENABLE	0x2
 207#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 208#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 209#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 210
 211#define COPYBREAK_DEFAULT	256
 212
 213#define TSO_HEADER_SIZE		128
 214/* Max number of allowed TCP segments for software TSO */
 215#define FEC_MAX_TSO_SEGS	100
 216#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 217
 218#define IS_TSO_HEADER(txq, addr) \
 219	((addr >= txq->tso_hdrs_dma) && \
 220	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 221
 222static int mii_cnt;
 223
 224static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 225					     struct bufdesc_prop *bd)
 226{
 227	return (bdp >= bd->last) ? bd->base
 228			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
 229}
 230
 231static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 232					     struct bufdesc_prop *bd)
 233{
 234	return (bdp <= bd->base) ? bd->last
 235			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
 236}
 237
 238static int fec_enet_get_bd_index(struct bufdesc *bdp,
 239				 struct bufdesc_prop *bd)
 240{
 241	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 242}
 243
 244static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 245{
 246	int entries;
 247
 248	entries = (((const char *)txq->dirty_tx -
 249			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 250
 251	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 252}
 253
 254static void swap_buffer(void *bufaddr, int len)
 255{
 256	int i;
 257	unsigned int *buf = bufaddr;
 258
 259	for (i = 0; i < len; i += 4, buf++)
 260		swab32s(buf);
 261}
 262
 263static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 264{
 265	int i;
 266	unsigned int *src = src_buf;
 267	unsigned int *dst = dst_buf;
 268
 269	for (i = 0; i < len; i += 4, src++, dst++)
 270		*dst = swab32p(src);
 271}
 272
 273static void fec_dump(struct net_device *ndev)
 274{
 275	struct fec_enet_private *fep = netdev_priv(ndev);
 276	struct bufdesc *bdp;
 277	struct fec_enet_priv_tx_q *txq;
 278	int index = 0;
 279
 280	netdev_info(ndev, "TX ring dump\n");
 281	pr_info("Nr     SC     addr       len  SKB\n");
 282
 283	txq = fep->tx_queue[0];
 284	bdp = txq->bd.base;
 285
 286	do {
 287		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 288			index,
 289			bdp == txq->bd.cur ? 'S' : ' ',
 290			bdp == txq->dirty_tx ? 'H' : ' ',
 291			fec16_to_cpu(bdp->cbd_sc),
 292			fec32_to_cpu(bdp->cbd_bufaddr),
 293			fec16_to_cpu(bdp->cbd_datlen),
 294			txq->tx_skbuff[index]);
 295		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 296		index++;
 297	} while (bdp != txq->bd.base);
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300static inline bool is_ipv4_pkt(struct sk_buff *skb)
 301{
 302	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 303}
 304
 305static int
 306fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 307{
 308	/* Only run for packets requiring a checksum. */
 309	if (skb->ip_summed != CHECKSUM_PARTIAL)
 310		return 0;
 311
 312	if (unlikely(skb_cow_head(skb, 0)))
 313		return -1;
 314
 315	if (is_ipv4_pkt(skb))
 316		ip_hdr(skb)->check = 0;
 317	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 318
 319	return 0;
 320}
 321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322static struct bufdesc *
 323fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 324			     struct sk_buff *skb,
 325			     struct net_device *ndev)
 326{
 327	struct fec_enet_private *fep = netdev_priv(ndev);
 328	struct bufdesc *bdp = txq->bd.cur;
 329	struct bufdesc_ex *ebdp;
 330	int nr_frags = skb_shinfo(skb)->nr_frags;
 331	int frag, frag_len;
 332	unsigned short status;
 333	unsigned int estatus = 0;
 334	skb_frag_t *this_frag;
 335	unsigned int index;
 336	void *bufaddr;
 337	dma_addr_t addr;
 338	int i;
 339
 340	for (frag = 0; frag < nr_frags; frag++) {
 341		this_frag = &skb_shinfo(skb)->frags[frag];
 342		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 343		ebdp = (struct bufdesc_ex *)bdp;
 344
 345		status = fec16_to_cpu(bdp->cbd_sc);
 346		status &= ~BD_ENET_TX_STATS;
 347		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 348		frag_len = skb_shinfo(skb)->frags[frag].size;
 349
 350		/* Handle the last BD specially */
 351		if (frag == nr_frags - 1) {
 352			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 353			if (fep->bufdesc_ex) {
 354				estatus |= BD_ENET_TX_INT;
 355				if (unlikely(skb_shinfo(skb)->tx_flags &
 356					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 357					estatus |= BD_ENET_TX_TS;
 358			}
 359		}
 360
 361		if (fep->bufdesc_ex) {
 362			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 363				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 364			if (skb->ip_summed == CHECKSUM_PARTIAL)
 365				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 
 366			ebdp->cbd_bdu = 0;
 367			ebdp->cbd_esc = cpu_to_fec32(estatus);
 368		}
 369
 370		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
 371
 372		index = fec_enet_get_bd_index(bdp, &txq->bd);
 373		if (((unsigned long) bufaddr) & fep->tx_align ||
 374			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 375			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 376			bufaddr = txq->tx_bounce[index];
 377
 378			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 379				swap_buffer(bufaddr, frag_len);
 380		}
 381
 382		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 383				      DMA_TO_DEVICE);
 384		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 385			if (net_ratelimit())
 386				netdev_err(ndev, "Tx DMA memory map failed\n");
 387			goto dma_mapping_error;
 388		}
 389
 390		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 391		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 392		/* Make sure the updates to rest of the descriptor are
 393		 * performed before transferring ownership.
 394		 */
 395		wmb();
 396		bdp->cbd_sc = cpu_to_fec16(status);
 397	}
 398
 399	return bdp;
 400dma_mapping_error:
 401	bdp = txq->bd.cur;
 402	for (i = 0; i < frag; i++) {
 403		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 404		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 405				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 406	}
 407	return ERR_PTR(-ENOMEM);
 408}
 409
 410static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 411				   struct sk_buff *skb, struct net_device *ndev)
 412{
 413	struct fec_enet_private *fep = netdev_priv(ndev);
 414	int nr_frags = skb_shinfo(skb)->nr_frags;
 415	struct bufdesc *bdp, *last_bdp;
 416	void *bufaddr;
 417	dma_addr_t addr;
 418	unsigned short status;
 419	unsigned short buflen;
 420	unsigned int estatus = 0;
 421	unsigned int index;
 422	int entries_free;
 423
 424	entries_free = fec_enet_get_free_txdesc_num(txq);
 425	if (entries_free < MAX_SKB_FRAGS + 1) {
 426		dev_kfree_skb_any(skb);
 427		if (net_ratelimit())
 428			netdev_err(ndev, "NOT enough BD for SG!\n");
 429		return NETDEV_TX_OK;
 430	}
 431
 432	/* Protocol checksum off-load for TCP and UDP. */
 433	if (fec_enet_clear_csum(skb, ndev)) {
 434		dev_kfree_skb_any(skb);
 435		return NETDEV_TX_OK;
 436	}
 437
 438	/* Fill in a Tx ring entry */
 439	bdp = txq->bd.cur;
 440	last_bdp = bdp;
 441	status = fec16_to_cpu(bdp->cbd_sc);
 442	status &= ~BD_ENET_TX_STATS;
 443
 444	/* Set buffer length and buffer pointer */
 445	bufaddr = skb->data;
 446	buflen = skb_headlen(skb);
 447
 448	index = fec_enet_get_bd_index(bdp, &txq->bd);
 449	if (((unsigned long) bufaddr) & fep->tx_align ||
 450		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 451		memcpy(txq->tx_bounce[index], skb->data, buflen);
 452		bufaddr = txq->tx_bounce[index];
 453
 454		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 455			swap_buffer(bufaddr, buflen);
 456	}
 457
 458	/* Push the data cache so the CPM does not get stale memory data. */
 459	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 460	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 461		dev_kfree_skb_any(skb);
 462		if (net_ratelimit())
 463			netdev_err(ndev, "Tx DMA memory map failed\n");
 464		return NETDEV_TX_OK;
 465	}
 466
 467	if (nr_frags) {
 468		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 469		if (IS_ERR(last_bdp)) {
 470			dma_unmap_single(&fep->pdev->dev, addr,
 471					 buflen, DMA_TO_DEVICE);
 472			dev_kfree_skb_any(skb);
 473			return NETDEV_TX_OK;
 474		}
 475	} else {
 476		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 477		if (fep->bufdesc_ex) {
 478			estatus = BD_ENET_TX_INT;
 479			if (unlikely(skb_shinfo(skb)->tx_flags &
 480				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 481				estatus |= BD_ENET_TX_TS;
 482		}
 483	}
 484	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 485	bdp->cbd_datlen = cpu_to_fec16(buflen);
 486
 487	if (fep->bufdesc_ex) {
 488
 489		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 490
 491		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 492			fep->hwts_tx_en))
 493			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 494
 495		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 496			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 497
 498		if (skb->ip_summed == CHECKSUM_PARTIAL)
 499			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 500
 501		ebdp->cbd_bdu = 0;
 502		ebdp->cbd_esc = cpu_to_fec32(estatus);
 503	}
 504
 505	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 506	/* Save skb pointer */
 507	txq->tx_skbuff[index] = skb;
 508
 509	/* Make sure the updates to rest of the descriptor are performed before
 510	 * transferring ownership.
 511	 */
 512	wmb();
 513
 514	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 515	 * it's the last BD of the frame, and to put the CRC on the end.
 516	 */
 517	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 518	bdp->cbd_sc = cpu_to_fec16(status);
 519
 520	/* If this was the last BD in the ring, start at the beginning again. */
 521	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 522
 523	skb_tx_timestamp(skb);
 524
 525	/* Make sure the update to bdp and tx_skbuff are performed before
 526	 * txq->bd.cur.
 527	 */
 528	wmb();
 529	txq->bd.cur = bdp;
 530
 531	/* Trigger transmission start */
 532	writel(0, txq->bd.reg_desc_active);
 533
 534	return 0;
 535}
 536
 537static int
 538fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 539			  struct net_device *ndev,
 540			  struct bufdesc *bdp, int index, char *data,
 541			  int size, bool last_tcp, bool is_last)
 542{
 543	struct fec_enet_private *fep = netdev_priv(ndev);
 544	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 545	unsigned short status;
 546	unsigned int estatus = 0;
 547	dma_addr_t addr;
 548
 549	status = fec16_to_cpu(bdp->cbd_sc);
 550	status &= ~BD_ENET_TX_STATS;
 551
 552	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 553
 554	if (((unsigned long) data) & fep->tx_align ||
 555		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 556		memcpy(txq->tx_bounce[index], data, size);
 557		data = txq->tx_bounce[index];
 558
 559		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 560			swap_buffer(data, size);
 561	}
 562
 563	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 564	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 565		dev_kfree_skb_any(skb);
 566		if (net_ratelimit())
 567			netdev_err(ndev, "Tx DMA memory map failed\n");
 568		return NETDEV_TX_BUSY;
 569	}
 570
 571	bdp->cbd_datlen = cpu_to_fec16(size);
 572	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 573
 574	if (fep->bufdesc_ex) {
 575		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 576			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 577		if (skb->ip_summed == CHECKSUM_PARTIAL)
 578			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 579		ebdp->cbd_bdu = 0;
 580		ebdp->cbd_esc = cpu_to_fec32(estatus);
 581	}
 582
 583	/* Handle the last BD specially */
 584	if (last_tcp)
 585		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 586	if (is_last) {
 587		status |= BD_ENET_TX_INTR;
 588		if (fep->bufdesc_ex)
 589			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 590	}
 591
 592	bdp->cbd_sc = cpu_to_fec16(status);
 593
 594	return 0;
 595}
 596
 597static int
 598fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 599			 struct sk_buff *skb, struct net_device *ndev,
 600			 struct bufdesc *bdp, int index)
 601{
 602	struct fec_enet_private *fep = netdev_priv(ndev);
 603	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 604	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 605	void *bufaddr;
 606	unsigned long dmabuf;
 607	unsigned short status;
 608	unsigned int estatus = 0;
 609
 610	status = fec16_to_cpu(bdp->cbd_sc);
 611	status &= ~BD_ENET_TX_STATS;
 612	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 613
 614	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 615	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 616	if (((unsigned long)bufaddr) & fep->tx_align ||
 617		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 618		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 619		bufaddr = txq->tx_bounce[index];
 620
 621		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 622			swap_buffer(bufaddr, hdr_len);
 623
 624		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 625					hdr_len, DMA_TO_DEVICE);
 626		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 627			dev_kfree_skb_any(skb);
 628			if (net_ratelimit())
 629				netdev_err(ndev, "Tx DMA memory map failed\n");
 630			return NETDEV_TX_BUSY;
 631		}
 632	}
 633
 634	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 635	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 636
 637	if (fep->bufdesc_ex) {
 638		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 639			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 640		if (skb->ip_summed == CHECKSUM_PARTIAL)
 641			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 642		ebdp->cbd_bdu = 0;
 643		ebdp->cbd_esc = cpu_to_fec32(estatus);
 644	}
 645
 646	bdp->cbd_sc = cpu_to_fec16(status);
 647
 648	return 0;
 649}
 650
 651static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 652				   struct sk_buff *skb,
 653				   struct net_device *ndev)
 654{
 655	struct fec_enet_private *fep = netdev_priv(ndev);
 656	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 657	int total_len, data_left;
 658	struct bufdesc *bdp = txq->bd.cur;
 659	struct tso_t tso;
 660	unsigned int index = 0;
 661	int ret;
 662
 663	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 664		dev_kfree_skb_any(skb);
 665		if (net_ratelimit())
 666			netdev_err(ndev, "NOT enough BD for TSO!\n");
 667		return NETDEV_TX_OK;
 668	}
 669
 670	/* Protocol checksum off-load for TCP and UDP. */
 671	if (fec_enet_clear_csum(skb, ndev)) {
 672		dev_kfree_skb_any(skb);
 673		return NETDEV_TX_OK;
 674	}
 675
 676	/* Initialize the TSO handler, and prepare the first payload */
 677	tso_start(skb, &tso);
 678
 679	total_len = skb->len - hdr_len;
 680	while (total_len > 0) {
 681		char *hdr;
 682
 683		index = fec_enet_get_bd_index(bdp, &txq->bd);
 684		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 685		total_len -= data_left;
 686
 687		/* prepare packet headers: MAC + IP + TCP */
 688		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 689		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 690		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 691		if (ret)
 692			goto err_release;
 693
 694		while (data_left > 0) {
 695			int size;
 696
 697			size = min_t(int, tso.size, data_left);
 698			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 699			index = fec_enet_get_bd_index(bdp, &txq->bd);
 700			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 701							bdp, index,
 702							tso.data, size,
 703							size == data_left,
 704							total_len == 0);
 705			if (ret)
 706				goto err_release;
 707
 708			data_left -= size;
 709			tso_build_data(skb, &tso, size);
 710		}
 711
 712		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 713	}
 714
 715	/* Save skb pointer */
 716	txq->tx_skbuff[index] = skb;
 717
 718	skb_tx_timestamp(skb);
 719	txq->bd.cur = bdp;
 720
 721	/* Trigger transmission start */
 722	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 723	    !readl(txq->bd.reg_desc_active) ||
 724	    !readl(txq->bd.reg_desc_active) ||
 725	    !readl(txq->bd.reg_desc_active) ||
 726	    !readl(txq->bd.reg_desc_active))
 727		writel(0, txq->bd.reg_desc_active);
 728
 729	return 0;
 730
 731err_release:
 732	/* TODO: Release all used data descriptors for TSO */
 733	return ret;
 734}
 735
 736static netdev_tx_t
 737fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 738{
 739	struct fec_enet_private *fep = netdev_priv(ndev);
 740	int entries_free;
 741	unsigned short queue;
 742	struct fec_enet_priv_tx_q *txq;
 743	struct netdev_queue *nq;
 744	int ret;
 745
 746	queue = skb_get_queue_mapping(skb);
 747	txq = fep->tx_queue[queue];
 748	nq = netdev_get_tx_queue(ndev, queue);
 749
 750	if (skb_is_gso(skb))
 751		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 752	else
 753		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 754	if (ret)
 755		return ret;
 756
 757	entries_free = fec_enet_get_free_txdesc_num(txq);
 758	if (entries_free <= txq->tx_stop_threshold)
 759		netif_tx_stop_queue(nq);
 760
 761	return NETDEV_TX_OK;
 762}
 763
 764/* Init RX & TX buffer descriptors
 765 */
 766static void fec_enet_bd_init(struct net_device *dev)
 767{
 768	struct fec_enet_private *fep = netdev_priv(dev);
 769	struct fec_enet_priv_tx_q *txq;
 770	struct fec_enet_priv_rx_q *rxq;
 771	struct bufdesc *bdp;
 772	unsigned int i;
 773	unsigned int q;
 774
 775	for (q = 0; q < fep->num_rx_queues; q++) {
 776		/* Initialize the receive buffer descriptors. */
 777		rxq = fep->rx_queue[q];
 778		bdp = rxq->bd.base;
 779
 780		for (i = 0; i < rxq->bd.ring_size; i++) {
 781
 782			/* Initialize the BD for every fragment in the page. */
 783			if (bdp->cbd_bufaddr)
 784				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 785			else
 786				bdp->cbd_sc = cpu_to_fec16(0);
 787			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 788		}
 789
 790		/* Set the last buffer to wrap */
 791		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 792		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 793
 794		rxq->bd.cur = rxq->bd.base;
 795	}
 796
 797	for (q = 0; q < fep->num_tx_queues; q++) {
 798		/* ...and the same for transmit */
 799		txq = fep->tx_queue[q];
 800		bdp = txq->bd.base;
 801		txq->bd.cur = bdp;
 802
 803		for (i = 0; i < txq->bd.ring_size; i++) {
 804			/* Initialize the BD for every fragment in the page. */
 805			bdp->cbd_sc = cpu_to_fec16(0);
 806			if (txq->tx_skbuff[i]) {
 807				dev_kfree_skb_any(txq->tx_skbuff[i]);
 808				txq->tx_skbuff[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809			}
 
 
 
 
 810			bdp->cbd_bufaddr = cpu_to_fec32(0);
 811			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 812		}
 813
 814		/* Set the last buffer to wrap */
 815		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 816		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 817		txq->dirty_tx = bdp;
 818	}
 819}
 820
 821static void fec_enet_active_rxring(struct net_device *ndev)
 822{
 823	struct fec_enet_private *fep = netdev_priv(ndev);
 824	int i;
 825
 826	for (i = 0; i < fep->num_rx_queues; i++)
 827		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 828}
 829
 830static void fec_enet_enable_ring(struct net_device *ndev)
 831{
 832	struct fec_enet_private *fep = netdev_priv(ndev);
 833	struct fec_enet_priv_tx_q *txq;
 834	struct fec_enet_priv_rx_q *rxq;
 835	int i;
 836
 837	for (i = 0; i < fep->num_rx_queues; i++) {
 838		rxq = fep->rx_queue[i];
 839		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 840		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 841
 842		/* enable DMA1/2 */
 843		if (i)
 844			writel(RCMR_MATCHEN | RCMR_CMP(i),
 845			       fep->hwp + FEC_RCMR(i));
 846	}
 847
 848	for (i = 0; i < fep->num_tx_queues; i++) {
 849		txq = fep->tx_queue[i];
 850		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 851
 852		/* enable DMA1/2 */
 853		if (i)
 854			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 855			       fep->hwp + FEC_DMA_CFG(i));
 856	}
 857}
 858
 859static void fec_enet_reset_skb(struct net_device *ndev)
 860{
 861	struct fec_enet_private *fep = netdev_priv(ndev);
 862	struct fec_enet_priv_tx_q *txq;
 863	int i, j;
 864
 865	for (i = 0; i < fep->num_tx_queues; i++) {
 866		txq = fep->tx_queue[i];
 867
 868		for (j = 0; j < txq->bd.ring_size; j++) {
 869			if (txq->tx_skbuff[j]) {
 870				dev_kfree_skb_any(txq->tx_skbuff[j]);
 871				txq->tx_skbuff[j] = NULL;
 872			}
 873		}
 874	}
 875}
 876
 877/*
 878 * This function is called to start or restart the FEC during a link
 879 * change, transmit timeout, or to reconfigure the FEC.  The network
 880 * packet processing for this device must be stopped before this call.
 881 */
 882static void
 883fec_restart(struct net_device *ndev)
 884{
 885	struct fec_enet_private *fep = netdev_priv(ndev);
 886	u32 val;
 887	u32 temp_mac[2];
 888	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 889	u32 ecntl = 0x2; /* ETHEREN */
 890
 891	/* Whack a reset.  We should wait for this.
 892	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 893	 * instead of reset MAC itself.
 894	 */
 895	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 
 896		writel(0, fep->hwp + FEC_ECNTRL);
 897	} else {
 898		writel(1, fep->hwp + FEC_ECNTRL);
 899		udelay(10);
 900	}
 901
 902	/*
 903	 * enet-mac reset will reset mac address registers too,
 904	 * so need to reconfigure it.
 905	 */
 906	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 907		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 908		writel((__force u32)cpu_to_be32(temp_mac[0]),
 909		       fep->hwp + FEC_ADDR_LOW);
 910		writel((__force u32)cpu_to_be32(temp_mac[1]),
 911		       fep->hwp + FEC_ADDR_HIGH);
 912	}
 913
 914	/* Clear any outstanding interrupt. */
 915	writel(0xffffffff, fep->hwp + FEC_IEVENT);
 916
 917	fec_enet_bd_init(ndev);
 918
 919	fec_enet_enable_ring(ndev);
 920
 921	/* Reset tx SKB buffers. */
 922	fec_enet_reset_skb(ndev);
 923
 924	/* Enable MII mode */
 925	if (fep->full_duplex == DUPLEX_FULL) {
 926		/* FD enable */
 927		writel(0x04, fep->hwp + FEC_X_CNTRL);
 928	} else {
 929		/* No Rcv on Xmit */
 930		rcntl |= 0x02;
 931		writel(0x0, fep->hwp + FEC_X_CNTRL);
 932	}
 933
 934	/* Set MII speed */
 935	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 936
 937#if !defined(CONFIG_M5272)
 938	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 939		/* set RX checksum */
 940		val = readl(fep->hwp + FEC_RACC);
 
 
 941		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 
 942			val |= FEC_RACC_OPTIONS;
 943		else
 944			val &= ~FEC_RACC_OPTIONS;
 945		writel(val, fep->hwp + FEC_RACC);
 946		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
 947	}
 948#endif
 949
 950	/*
 951	 * The phy interface and speed need to get configured
 952	 * differently on enet-mac.
 953	 */
 954	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
 955		/* Enable flow control and length check */
 956		rcntl |= 0x40000000 | 0x00000020;
 957
 958		/* RGMII, RMII or MII */
 959		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
 960		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
 961		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
 962		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
 963			rcntl |= (1 << 6);
 964		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 965			rcntl |= (1 << 8);
 966		else
 967			rcntl &= ~(1 << 8);
 968
 969		/* 1G, 100M or 10M */
 970		if (fep->phy_dev) {
 971			if (fep->phy_dev->speed == SPEED_1000)
 972				ecntl |= (1 << 5);
 973			else if (fep->phy_dev->speed == SPEED_100)
 974				rcntl &= ~(1 << 9);
 975			else
 976				rcntl |= (1 << 9);
 977		}
 978	} else {
 979#ifdef FEC_MIIGSK_ENR
 980		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
 981			u32 cfgr;
 982			/* disable the gasket and wait */
 983			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 984			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 985				udelay(1);
 986
 987			/*
 988			 * configure the gasket:
 989			 *   RMII, 50 MHz, no loopback, no echo
 990			 *   MII, 25 MHz, no loopback, no echo
 991			 */
 992			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 993				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 994			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 995				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 996			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 997
 998			/* re-enable the gasket */
 999			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000		}
1001#endif
1002	}
1003
1004#if !defined(CONFIG_M5272)
1005	/* enable pause frame*/
1006	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008	     fep->phy_dev && fep->phy_dev->pause)) {
1009		rcntl |= FEC_ENET_FCE;
1010
1011		/* set FIFO threshold parameter to reduce overrun */
1012		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016
1017		/* OPD */
1018		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019	} else {
1020		rcntl &= ~FEC_ENET_FCE;
1021	}
1022#endif /* !defined(CONFIG_M5272) */
1023
1024	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025
1026	/* Setup multicast filter. */
1027	set_multicast_list(ndev);
1028#ifndef CONFIG_M5272
1029	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031#endif
1032
1033	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034		/* enable ENET endian swap */
1035		ecntl |= (1 << 8);
1036		/* enable ENET store and forward mode */
1037		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038	}
1039
1040	if (fep->bufdesc_ex)
1041		ecntl |= (1 << 4);
1042
 
 
 
 
 
 
 
1043#ifndef CONFIG_M5272
1044	/* Enable the MIB statistic event counters */
1045	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046#endif
1047
1048	/* And last, enable the transmit and receive processing */
1049	writel(ecntl, fep->hwp + FEC_ECNTRL);
1050	fec_enet_active_rxring(ndev);
1051
1052	if (fep->bufdesc_ex)
1053		fec_ptp_start_cyclecounter(ndev);
1054
1055	/* Enable interrupts we wish to service */
1056	if (fep->link)
1057		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058	else
1059		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060
1061	/* Init the interrupt coalescing */
1062	fec_enet_itr_coal_init(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064}
1065
1066static void
1067fec_stop(struct net_device *ndev)
1068{
1069	struct fec_enet_private *fep = netdev_priv(ndev);
1070	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072	u32 val;
1073
1074	/* We cannot expect a graceful transmit stop without link !!! */
1075	if (fep->link) {
1076		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077		udelay(10);
1078		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080	}
1081
1082	/* Whack a reset.  We should wait for this.
1083	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084	 * instead of reset MAC itself.
1085	 */
1086	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088			writel(0, fep->hwp + FEC_ECNTRL);
1089		} else {
1090			writel(1, fep->hwp + FEC_ECNTRL);
1091			udelay(10);
1092		}
1093		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094	} else {
1095		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096		val = readl(fep->hwp + FEC_ECNTRL);
1097		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098		writel(val, fep->hwp + FEC_ECNTRL);
1099
1100		if (pdata && pdata->sleep_mode_enable)
1101			pdata->sleep_mode_enable(true);
1102	}
1103	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 
1104
1105	/* We have to keep ENET enabled to have MII interrupt stay working */
1106	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108		writel(2, fep->hwp + FEC_ECNTRL);
1109		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110	}
1111}
1112
1113
1114static void
1115fec_timeout(struct net_device *ndev)
1116{
1117	struct fec_enet_private *fep = netdev_priv(ndev);
1118
1119	fec_dump(ndev);
1120
1121	ndev->stats.tx_errors++;
1122
1123	schedule_work(&fep->tx_timeout_work);
1124}
1125
1126static void fec_enet_timeout_work(struct work_struct *work)
1127{
1128	struct fec_enet_private *fep =
1129		container_of(work, struct fec_enet_private, tx_timeout_work);
1130	struct net_device *ndev = fep->netdev;
1131
1132	rtnl_lock();
1133	if (netif_device_present(ndev) || netif_running(ndev)) {
1134		napi_disable(&fep->napi);
1135		netif_tx_lock_bh(ndev);
1136		fec_restart(ndev);
1137		netif_wake_queue(ndev);
1138		netif_tx_unlock_bh(ndev);
1139		napi_enable(&fep->napi);
1140	}
1141	rtnl_unlock();
1142}
1143
1144static void
1145fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146	struct skb_shared_hwtstamps *hwtstamps)
1147{
1148	unsigned long flags;
1149	u64 ns;
1150
1151	spin_lock_irqsave(&fep->tmreg_lock, flags);
1152	ns = timecounter_cyc2time(&fep->tc, ts);
1153	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154
1155	memset(hwtstamps, 0, sizeof(*hwtstamps));
1156	hwtstamps->hwtstamp = ns_to_ktime(ns);
1157}
1158
1159static void
1160fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161{
1162	struct	fec_enet_private *fep;
 
1163	struct bufdesc *bdp;
1164	unsigned short status;
1165	struct	sk_buff	*skb;
1166	struct fec_enet_priv_tx_q *txq;
1167	struct netdev_queue *nq;
1168	int	index = 0;
1169	int	entries_free;
 
 
1170
1171	fep = netdev_priv(ndev);
1172
1173	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174
1175	txq = fep->tx_queue[queue_id];
1176	/* get next bdp of dirty_tx */
1177	nq = netdev_get_tx_queue(ndev, queue_id);
1178	bdp = txq->dirty_tx;
1179
1180	/* get next bdp of dirty_tx */
1181	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182
1183	while (bdp != READ_ONCE(txq->bd.cur)) {
1184		/* Order the load of bd.cur and cbd_sc */
1185		rmb();
1186		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187		if (status & BD_ENET_TX_READY)
1188			break;
1189
1190		index = fec_enet_get_bd_index(bdp, &txq->bd);
1191
1192		skb = txq->tx_skbuff[index];
1193		txq->tx_skbuff[index] = NULL;
1194		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195			dma_unmap_single(&fep->pdev->dev,
1196					 fec32_to_cpu(bdp->cbd_bufaddr),
1197					 fec16_to_cpu(bdp->cbd_datlen),
1198					 DMA_TO_DEVICE);
1199		bdp->cbd_bufaddr = cpu_to_fec32(0);
1200		if (!skb) {
1201			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1202			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		}
1204
1205		/* Check for errors. */
1206		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1207				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1208				   BD_ENET_TX_CSL)) {
1209			ndev->stats.tx_errors++;
1210			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1211				ndev->stats.tx_heartbeat_errors++;
1212			if (status & BD_ENET_TX_LC)  /* Late collision */
1213				ndev->stats.tx_window_errors++;
1214			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1215				ndev->stats.tx_aborted_errors++;
1216			if (status & BD_ENET_TX_UN)  /* Underrun */
1217				ndev->stats.tx_fifo_errors++;
1218			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1219				ndev->stats.tx_carrier_errors++;
1220		} else {
1221			ndev->stats.tx_packets++;
1222			ndev->stats.tx_bytes += skb->len;
1223		}
1224
1225		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1226			fep->bufdesc_ex) {
1227			struct skb_shared_hwtstamps shhwtstamps;
1228			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1229
1230			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1231			skb_tstamp_tx(skb, &shhwtstamps);
1232		}
1233
1234		/* Deferred means some collisions occurred during transmit,
1235		 * but we eventually sent the packet OK.
1236		 */
1237		if (status & BD_ENET_TX_DEF)
1238			ndev->stats.collisions++;
1239
1240		/* Free the sk buffer associated with this last transmit */
1241		dev_kfree_skb_any(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242
1243		/* Make sure the update to bdp and tx_skbuff are performed
 
1244		 * before dirty_tx
1245		 */
1246		wmb();
1247		txq->dirty_tx = bdp;
1248
1249		/* Update pointer to next buffer descriptor to be transmitted */
1250		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1251
1252		/* Since we have freed up a buffer, the ring is no longer full
1253		 */
1254		if (netif_queue_stopped(ndev)) {
1255			entries_free = fec_enet_get_free_txdesc_num(txq);
1256			if (entries_free >= txq->tx_wake_threshold)
1257				netif_tx_wake_queue(nq);
1258		}
1259	}
1260
1261	/* ERR006538: Keep the transmitter going */
1262	if (bdp != txq->bd.cur &&
1263	    readl(txq->bd.reg_desc_active) == 0)
1264		writel(0, txq->bd.reg_desc_active);
1265}
1266
1267static void
1268fec_enet_tx(struct net_device *ndev)
1269{
1270	struct fec_enet_private *fep = netdev_priv(ndev);
1271	u16 queue_id;
1272	/* First process class A queue, then Class B and Best Effort queue */
1273	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1274		clear_bit(queue_id, &fep->work_tx);
1275		fec_enet_tx_queue(ndev, queue_id);
1276	}
1277	return;
1278}
1279
1280static int
1281fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1282{
1283	struct  fec_enet_private *fep = netdev_priv(ndev);
1284	int off;
1285
1286	off = ((unsigned long)skb->data) & fep->rx_align;
1287	if (off)
1288		skb_reserve(skb, fep->rx_align + 1 - off);
1289
1290	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1291	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1292		if (net_ratelimit())
1293			netdev_err(ndev, "Rx DMA memory map failed\n");
1294		return -ENOMEM;
1295	}
1296
1297	return 0;
 
 
1298}
1299
1300static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1301			       struct bufdesc *bdp, u32 length, bool swap)
 
1302{
1303	struct  fec_enet_private *fep = netdev_priv(ndev);
1304	struct sk_buff *new_skb;
 
 
 
 
 
1305
1306	if (length > fep->rx_copybreak)
1307		return false;
 
 
 
1308
1309	new_skb = netdev_alloc_skb(ndev, length);
1310	if (!new_skb)
1311		return false;
1312
1313	dma_sync_single_for_cpu(&fep->pdev->dev,
1314				fec32_to_cpu(bdp->cbd_bufaddr),
1315				FEC_ENET_RX_FRSIZE - fep->rx_align,
1316				DMA_FROM_DEVICE);
1317	if (!swap)
1318		memcpy(new_skb->data, (*skb)->data, length);
1319	else
1320		swap_buffer2(new_skb->data, (*skb)->data, length);
1321	*skb = new_skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322
1323	return true;
1324}
1325
1326/* During a receive, the bd_rx.cur points to the current incoming buffer.
1327 * When we update through the ring, if the next incoming buffer has
1328 * not been given to the system, we just set the empty indicator,
1329 * effectively tossing the packet.
1330 */
1331static int
1332fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1333{
1334	struct fec_enet_private *fep = netdev_priv(ndev);
1335	struct fec_enet_priv_rx_q *rxq;
1336	struct bufdesc *bdp;
1337	unsigned short status;
1338	struct  sk_buff *skb_new = NULL;
1339	struct  sk_buff *skb;
1340	ushort	pkt_len;
1341	__u8 *data;
1342	int	pkt_received = 0;
1343	struct	bufdesc_ex *ebdp = NULL;
1344	bool	vlan_packet_rcvd = false;
1345	u16	vlan_tag;
1346	int	index = 0;
1347	bool	is_copybreak;
1348	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350#ifdef CONFIG_M532x
 
 
 
 
1351	flush_cache_all();
1352#endif
1353	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1354	rxq = fep->rx_queue[queue_id];
1355
1356	/* First, grab all of the stats for the incoming packet.
1357	 * These get messed up if we get called due to a busy condition.
1358	 */
1359	bdp = rxq->bd.cur;
 
1360
1361	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1362
1363		if (pkt_received >= budget)
1364			break;
1365		pkt_received++;
1366
1367		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1368
1369		/* Check for errors. */
1370		status ^= BD_ENET_RX_LAST;
1371		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1372			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1373			   BD_ENET_RX_CL)) {
1374			ndev->stats.rx_errors++;
1375			if (status & BD_ENET_RX_OV) {
1376				/* FIFO overrun */
1377				ndev->stats.rx_fifo_errors++;
1378				goto rx_processing_done;
1379			}
1380			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1381						| BD_ENET_RX_LAST)) {
1382				/* Frame too long or too short. */
1383				ndev->stats.rx_length_errors++;
1384				if (status & BD_ENET_RX_LAST)
1385					netdev_err(ndev, "rcv is not +last\n");
1386			}
1387			if (status & BD_ENET_RX_CR)	/* CRC Error */
1388				ndev->stats.rx_crc_errors++;
1389			/* Report late collisions as a frame error. */
1390			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1391				ndev->stats.rx_frame_errors++;
1392			goto rx_processing_done;
1393		}
1394
1395		/* Process the incoming frame. */
1396		ndev->stats.rx_packets++;
1397		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1398		ndev->stats.rx_bytes += pkt_len;
1399
1400		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1401		skb = rxq->rx_skbuff[index];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402
1403		/* The packet length includes FCS, but we don't want to
1404		 * include that when passing upstream as it messes up
1405		 * bridging applications.
1406		 */
1407		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1408						  need_swap);
1409		if (!is_copybreak) {
1410			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1411			if (unlikely(!skb_new)) {
1412				ndev->stats.rx_dropped++;
1413				goto rx_processing_done;
1414			}
1415			dma_unmap_single(&fep->pdev->dev,
1416					 fec32_to_cpu(bdp->cbd_bufaddr),
1417					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1418					 DMA_FROM_DEVICE);
1419		}
1420
1421		prefetch(skb->data - NET_IP_ALIGN);
1422		skb_put(skb, pkt_len - 4);
 
 
 
 
 
 
1423		data = skb->data;
1424		if (!is_copybreak && need_swap)
1425			swap_buffer(data, pkt_len);
1426
1427		/* Extract the enhanced buffer descriptor */
1428		ebdp = NULL;
1429		if (fep->bufdesc_ex)
1430			ebdp = (struct bufdesc_ex *)bdp;
1431
1432		/* If this is a VLAN packet remove the VLAN Tag */
1433		vlan_packet_rcvd = false;
1434		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1435		    fep->bufdesc_ex &&
1436		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1437			/* Push and remove the vlan tag */
1438			struct vlan_hdr *vlan_header =
1439					(struct vlan_hdr *) (data + ETH_HLEN);
1440			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1441
1442			vlan_packet_rcvd = true;
1443
1444			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1445			skb_pull(skb, VLAN_HLEN);
1446		}
1447
1448		skb->protocol = eth_type_trans(skb, ndev);
1449
1450		/* Get receive timestamp from the skb */
1451		if (fep->hwts_rx_en && fep->bufdesc_ex)
1452			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1453					  skb_hwtstamps(skb));
1454
1455		if (fep->bufdesc_ex &&
1456		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1457			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1458				/* don't check it */
1459				skb->ip_summed = CHECKSUM_UNNECESSARY;
1460			} else {
1461				skb_checksum_none_assert(skb);
1462			}
1463		}
1464
1465		/* Handle received VLAN packets */
1466		if (vlan_packet_rcvd)
1467			__vlan_hwaccel_put_tag(skb,
1468					       htons(ETH_P_8021Q),
1469					       vlan_tag);
1470
 
1471		napi_gro_receive(&fep->napi, skb);
1472
1473		if (is_copybreak) {
1474			dma_sync_single_for_device(&fep->pdev->dev,
1475						   fec32_to_cpu(bdp->cbd_bufaddr),
1476						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1477						   DMA_FROM_DEVICE);
1478		} else {
1479			rxq->rx_skbuff[index] = skb_new;
1480			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1481		}
1482
1483rx_processing_done:
1484		/* Clear the status flags for this buffer */
1485		status &= ~BD_ENET_RX_STATS;
1486
1487		/* Mark the buffer empty */
1488		status |= BD_ENET_RX_EMPTY;
1489
1490		if (fep->bufdesc_ex) {
1491			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1492
1493			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1494			ebdp->cbd_prot = 0;
1495			ebdp->cbd_bdu = 0;
1496		}
1497		/* Make sure the updates to rest of the descriptor are
1498		 * performed before transferring ownership.
1499		 */
1500		wmb();
1501		bdp->cbd_sc = cpu_to_fec16(status);
1502
1503		/* Update BD pointer to next entry */
1504		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1505
1506		/* Doing this here will keep the FEC running while we process
1507		 * incoming frames.  On a heavily loaded network, we should be
1508		 * able to keep up at the expense of system resources.
1509		 */
1510		writel(0, rxq->bd.reg_desc_active);
1511	}
1512	rxq->bd.cur = bdp;
 
 
 
 
1513	return pkt_received;
1514}
1515
1516static int
1517fec_enet_rx(struct net_device *ndev, int budget)
1518{
1519	int     pkt_received = 0;
1520	u16	queue_id;
1521	struct fec_enet_private *fep = netdev_priv(ndev);
 
1522
1523	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1524		int ret;
 
1525
1526		ret = fec_enet_rx_queue(ndev,
1527					budget - pkt_received, queue_id);
1528
1529		if (ret < budget - pkt_received)
1530			clear_bit(queue_id, &fep->work_rx);
 
1531
1532		pkt_received += ret;
1533	}
1534	return pkt_received;
1535}
1536
1537static bool
1538fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1539{
1540	if (int_events == 0)
1541		return false;
1542
1543	if (int_events & FEC_ENET_RXF)
1544		fep->work_rx |= (1 << 2);
1545	if (int_events & FEC_ENET_RXF_1)
1546		fep->work_rx |= (1 << 0);
1547	if (int_events & FEC_ENET_RXF_2)
1548		fep->work_rx |= (1 << 1);
1549
1550	if (int_events & FEC_ENET_TXF)
1551		fep->work_tx |= (1 << 2);
1552	if (int_events & FEC_ENET_TXF_1)
1553		fep->work_tx |= (1 << 0);
1554	if (int_events & FEC_ENET_TXF_2)
1555		fep->work_tx |= (1 << 1);
1556
1557	return true;
1558}
1559
1560static irqreturn_t
1561fec_enet_interrupt(int irq, void *dev_id)
1562{
1563	struct net_device *ndev = dev_id;
1564	struct fec_enet_private *fep = netdev_priv(ndev);
1565	uint int_events;
1566	irqreturn_t ret = IRQ_NONE;
1567
1568	int_events = readl(fep->hwp + FEC_IEVENT);
1569	writel(int_events, fep->hwp + FEC_IEVENT);
1570	fec_enet_collect_events(fep, int_events);
1571
1572	if ((fep->work_tx || fep->work_rx) && fep->link) {
1573		ret = IRQ_HANDLED;
1574
1575		if (napi_schedule_prep(&fep->napi)) {
1576			/* Disable the NAPI interrupts */
1577			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1578			__napi_schedule(&fep->napi);
1579		}
1580	}
1581
1582	if (int_events & FEC_ENET_MII) {
1583		ret = IRQ_HANDLED;
1584		complete(&fep->mdio_done);
1585	}
1586
1587	if (fep->ptp_clock)
1588		fec_ptp_check_pps_event(fep);
1589
1590	return ret;
1591}
1592
1593static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1594{
1595	struct net_device *ndev = napi->dev;
1596	struct fec_enet_private *fep = netdev_priv(ndev);
1597	int pkts;
1598
1599	pkts = fec_enet_rx(ndev, budget);
 
 
 
1600
1601	fec_enet_tx(ndev);
1602
1603	if (pkts < budget) {
1604		napi_complete(napi);
1605		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1606	}
1607	return pkts;
 
1608}
1609
1610/* ------------------------------------------------------------------------- */
1611static void fec_get_mac(struct net_device *ndev)
1612{
1613	struct fec_enet_private *fep = netdev_priv(ndev);
1614	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1615	unsigned char *iap, tmpaddr[ETH_ALEN];
 
1616
1617	/*
1618	 * try to get mac address in following order:
1619	 *
1620	 * 1) module parameter via kernel command line in form
1621	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1622	 */
1623	iap = macaddr;
1624
1625	/*
1626	 * 2) from device tree data
1627	 */
1628	if (!is_valid_ether_addr(iap)) {
1629		struct device_node *np = fep->pdev->dev.of_node;
1630		if (np) {
1631			const char *mac = of_get_mac_address(np);
1632			if (mac)
1633				iap = (unsigned char *) mac;
 
 
1634		}
1635	}
1636
1637	/*
1638	 * 3) from flash or fuse (via platform data)
1639	 */
1640	if (!is_valid_ether_addr(iap)) {
1641#ifdef CONFIG_M5272
1642		if (FEC_FLASHMAC)
1643			iap = (unsigned char *)FEC_FLASHMAC;
1644#else
 
 
1645		if (pdata)
1646			iap = (unsigned char *)&pdata->mac;
1647#endif
1648	}
1649
1650	/*
1651	 * 4) FEC mac registers set by bootloader
1652	 */
1653	if (!is_valid_ether_addr(iap)) {
1654		*((__be32 *) &tmpaddr[0]) =
1655			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1656		*((__be16 *) &tmpaddr[4]) =
1657			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1658		iap = &tmpaddr[0];
1659	}
1660
1661	/*
1662	 * 5) random mac address
1663	 */
1664	if (!is_valid_ether_addr(iap)) {
1665		/* Report it and use a random ethernet address instead */
1666		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1667		eth_hw_addr_random(ndev);
1668		netdev_info(ndev, "Using random MAC address: %pM\n",
1669			    ndev->dev_addr);
1670		return;
1671	}
1672
1673	memcpy(ndev->dev_addr, iap, ETH_ALEN);
 
1674
1675	/* Adjust MAC if using macaddr */
1676	if (iap == macaddr)
1677		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1678}
1679
1680/* ------------------------------------------------------------------------- */
1681
1682/*
1683 * Phy section
1684 */
1685static void fec_enet_adjust_link(struct net_device *ndev)
1686{
1687	struct fec_enet_private *fep = netdev_priv(ndev);
1688	struct phy_device *phy_dev = fep->phy_dev;
1689	int status_change = 0;
1690
1691	/* Prevent a state halted on mii error */
1692	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1693		phy_dev->state = PHY_RESUMING;
1694		return;
1695	}
1696
1697	/*
1698	 * If the netdev is down, or is going down, we're not interested
1699	 * in link state events, so just mark our idea of the link as down
1700	 * and ignore the event.
1701	 */
1702	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1703		fep->link = 0;
1704	} else if (phy_dev->link) {
1705		if (!fep->link) {
1706			fep->link = phy_dev->link;
1707			status_change = 1;
1708		}
1709
1710		if (fep->full_duplex != phy_dev->duplex) {
1711			fep->full_duplex = phy_dev->duplex;
1712			status_change = 1;
1713		}
1714
1715		if (phy_dev->speed != fep->speed) {
1716			fep->speed = phy_dev->speed;
1717			status_change = 1;
1718		}
1719
1720		/* if any of the above changed restart the FEC */
1721		if (status_change) {
 
1722			napi_disable(&fep->napi);
1723			netif_tx_lock_bh(ndev);
1724			fec_restart(ndev);
1725			netif_wake_queue(ndev);
1726			netif_tx_unlock_bh(ndev);
1727			napi_enable(&fep->napi);
1728		}
1729	} else {
1730		if (fep->link) {
 
1731			napi_disable(&fep->napi);
1732			netif_tx_lock_bh(ndev);
1733			fec_stop(ndev);
1734			netif_tx_unlock_bh(ndev);
1735			napi_enable(&fep->napi);
1736			fep->link = phy_dev->link;
1737			status_change = 1;
1738		}
1739	}
1740
1741	if (status_change)
1742		phy_print_status(phy_dev);
1743}
1744
1745static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746{
1747	struct fec_enet_private *fep = bus->priv;
1748	struct device *dev = &fep->pdev->dev;
1749	unsigned long time_left;
1750	int ret = 0;
1751
1752	ret = pm_runtime_get_sync(dev);
1753	if (ret < 0)
1754		return ret;
1755
1756	fep->mii_timeout = 0;
1757	reinit_completion(&fep->mdio_done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1758
1759	/* start a read op */
1760	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1761		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1762		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1763
1764	/* wait for end of transfer */
1765	time_left = wait_for_completion_timeout(&fep->mdio_done,
1766			usecs_to_jiffies(FEC_MII_TIMEOUT));
1767	if (time_left == 0) {
1768		fep->mii_timeout = 1;
1769		netdev_err(fep->netdev, "MDIO read timeout\n");
1770		ret = -ETIMEDOUT;
1771		goto out;
1772	}
1773
1774	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1775
1776out:
1777	pm_runtime_mark_last_busy(dev);
1778	pm_runtime_put_autosuspend(dev);
1779
1780	return ret;
1781}
1782
1783static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1784			   u16 value)
1785{
1786	struct fec_enet_private *fep = bus->priv;
1787	struct device *dev = &fep->pdev->dev;
1788	unsigned long time_left;
1789	int ret;
1790
1791	ret = pm_runtime_get_sync(dev);
1792	if (ret < 0)
1793		return ret;
1794	else
1795		ret = 0;
1796
1797	fep->mii_timeout = 0;
1798	reinit_completion(&fep->mdio_done);
 
1799
1800	/* start a write op */
1801	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1802		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1803		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1804		fep->hwp + FEC_MII_DATA);
1805
1806	/* wait for end of transfer */
1807	time_left = wait_for_completion_timeout(&fep->mdio_done,
1808			usecs_to_jiffies(FEC_MII_TIMEOUT));
1809	if (time_left == 0) {
1810		fep->mii_timeout = 1;
1811		netdev_err(fep->netdev, "MDIO write timeout\n");
1812		ret  = -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813	}
1814
 
 
 
 
 
 
 
 
 
 
 
 
1815	pm_runtime_mark_last_busy(dev);
1816	pm_runtime_put_autosuspend(dev);
1817
1818	return ret;
1819}
1820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1822{
1823	struct fec_enet_private *fep = netdev_priv(ndev);
1824	int ret;
1825
1826	if (enable) {
1827		ret = clk_prepare_enable(fep->clk_ahb);
1828		if (ret)
1829			return ret;
1830		if (fep->clk_enet_out) {
1831			ret = clk_prepare_enable(fep->clk_enet_out);
1832			if (ret)
1833				goto failed_clk_enet_out;
1834		}
1835		if (fep->clk_ptp) {
1836			mutex_lock(&fep->ptp_clk_mutex);
1837			ret = clk_prepare_enable(fep->clk_ptp);
1838			if (ret) {
1839				mutex_unlock(&fep->ptp_clk_mutex);
1840				goto failed_clk_ptp;
1841			} else {
1842				fep->ptp_clk_on = true;
1843			}
1844			mutex_unlock(&fep->ptp_clk_mutex);
1845		}
1846		if (fep->clk_ref) {
1847			ret = clk_prepare_enable(fep->clk_ref);
1848			if (ret)
1849				goto failed_clk_ref;
1850		}
 
 
 
 
 
1851	} else {
1852		clk_disable_unprepare(fep->clk_ahb);
1853		if (fep->clk_enet_out)
1854			clk_disable_unprepare(fep->clk_enet_out);
1855		if (fep->clk_ptp) {
1856			mutex_lock(&fep->ptp_clk_mutex);
1857			clk_disable_unprepare(fep->clk_ptp);
1858			fep->ptp_clk_on = false;
1859			mutex_unlock(&fep->ptp_clk_mutex);
1860		}
1861		if (fep->clk_ref)
1862			clk_disable_unprepare(fep->clk_ref);
1863	}
1864
1865	return 0;
1866
1867failed_clk_ref:
1868	if (fep->clk_ref)
1869		clk_disable_unprepare(fep->clk_ref);
 
 
 
 
 
 
 
1870failed_clk_ptp:
1871	if (fep->clk_enet_out)
1872		clk_disable_unprepare(fep->clk_enet_out);
1873failed_clk_enet_out:
1874		clk_disable_unprepare(fep->clk_ahb);
1875
1876	return ret;
1877}
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879static int fec_enet_mii_probe(struct net_device *ndev)
1880{
1881	struct fec_enet_private *fep = netdev_priv(ndev);
1882	struct phy_device *phy_dev = NULL;
1883	char mdio_bus_id[MII_BUS_ID_SIZE];
1884	char phy_name[MII_BUS_ID_SIZE + 3];
1885	int phy_id;
1886	int dev_id = fep->dev_id;
1887
1888	fep->phy_dev = NULL;
1889
1890	if (fep->phy_node) {
1891		phy_dev = of_phy_connect(ndev, fep->phy_node,
1892					 &fec_enet_adjust_link, 0,
1893					 fep->phy_interface);
1894		if (!phy_dev)
 
1895			return -ENODEV;
 
1896	} else {
1897		/* check for attached phy */
1898		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1899			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1900				continue;
1901			if (dev_id--)
1902				continue;
1903			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1904			break;
1905		}
1906
1907		if (phy_id >= PHY_MAX_ADDR) {
1908			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1909			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1910			phy_id = 0;
1911		}
1912
1913		snprintf(phy_name, sizeof(phy_name),
1914			 PHY_ID_FMT, mdio_bus_id, phy_id);
1915		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1916				      fep->phy_interface);
1917	}
1918
1919	if (IS_ERR(phy_dev)) {
1920		netdev_err(ndev, "could not attach to PHY\n");
1921		return PTR_ERR(phy_dev);
1922	}
1923
1924	/* mask with MAC supported features */
1925	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1926		phy_dev->supported &= PHY_GBIT_FEATURES;
1927		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
 
1928#if !defined(CONFIG_M5272)
1929		phy_dev->supported |= SUPPORTED_Pause;
1930#endif
1931	}
1932	else
1933		phy_dev->supported &= PHY_BASIC_FEATURES;
1934
1935	phy_dev->advertising = phy_dev->supported;
1936
1937	fep->phy_dev = phy_dev;
1938	fep->link = 0;
1939	fep->full_duplex = 0;
1940
 
 
1941	phy_attached_info(phy_dev);
1942
1943	return 0;
1944}
1945
1946static int fec_enet_mii_init(struct platform_device *pdev)
1947{
1948	static struct mii_bus *fec0_mii_bus;
1949	struct net_device *ndev = platform_get_drvdata(pdev);
1950	struct fec_enet_private *fep = netdev_priv(ndev);
 
1951	struct device_node *node;
1952	int err = -ENXIO;
1953	u32 mii_speed, holdtime;
 
1954
1955	/*
1956	 * The i.MX28 dual fec interfaces are not equal.
1957	 * Here are the differences:
1958	 *
1959	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1960	 *  - fec0 acts as the 1588 time master while fec1 is slave
1961	 *  - external phys can only be configured by fec0
1962	 *
1963	 * That is to say fec1 can not work independently. It only works
1964	 * when fec0 is working. The reason behind this design is that the
1965	 * second interface is added primarily for Switch mode.
1966	 *
1967	 * Because of the last point above, both phys are attached on fec0
1968	 * mdio interface in board design, and need to be configured by
1969	 * fec0 mii_bus.
1970	 */
1971	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1972		/* fec1 uses fec0 mii_bus */
1973		if (mii_cnt && fec0_mii_bus) {
1974			fep->mii_bus = fec0_mii_bus;
1975			mii_cnt++;
1976			return 0;
1977		}
1978		return -ENOENT;
1979	}
1980
1981	fep->mii_timeout = 0;
 
 
 
 
 
 
1982
1983	/*
1984	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1985	 *
1986	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1987	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1988	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1989	 * document.
1990	 */
1991	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1992	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1993		mii_speed--;
1994	if (mii_speed > 63) {
1995		dev_err(&pdev->dev,
1996			"fec clock (%lu) to fast to get right mii speed\n",
1997			clk_get_rate(fep->clk_ipg));
1998		err = -EINVAL;
1999		goto err_out;
2000	}
2001
2002	/*
2003	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2004	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2005	 * versions are RAZ there, so just ignore the difference and write the
2006	 * register always.
2007	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2008	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2009	 * output.
2010	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2011	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2012	 * holdtime cannot result in a value greater than 3.
2013	 */
2014	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2015
2016	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2019
 
 
 
2020	fep->mii_bus = mdiobus_alloc();
2021	if (fep->mii_bus == NULL) {
2022		err = -ENOMEM;
2023		goto err_out;
2024	}
2025
2026	fep->mii_bus->name = "fec_enet_mii_bus";
2027	fep->mii_bus->read = fec_enet_mdio_read;
2028	fep->mii_bus->write = fec_enet_mdio_write;
 
 
 
 
2029	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2030		pdev->name, fep->dev_id + 1);
2031	fep->mii_bus->priv = fep;
2032	fep->mii_bus->parent = &pdev->dev;
2033
2034	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2035	if (node) {
2036		err = of_mdiobus_register(fep->mii_bus, node);
2037		of_node_put(node);
2038	} else {
2039		err = mdiobus_register(fep->mii_bus);
2040	}
2041
2042	if (err)
2043		goto err_out_free_mdiobus;
 
2044
2045	mii_cnt++;
2046
2047	/* save fec0 mii_bus */
2048	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2049		fec0_mii_bus = fep->mii_bus;
2050
2051	return 0;
2052
2053err_out_free_mdiobus:
2054	mdiobus_free(fep->mii_bus);
2055err_out:
 
2056	return err;
2057}
2058
2059static void fec_enet_mii_remove(struct fec_enet_private *fep)
2060{
2061	if (--mii_cnt == 0) {
2062		mdiobus_unregister(fep->mii_bus);
2063		mdiobus_free(fep->mii_bus);
2064	}
2065}
2066
2067static int fec_enet_get_settings(struct net_device *ndev,
2068				  struct ethtool_cmd *cmd)
2069{
2070	struct fec_enet_private *fep = netdev_priv(ndev);
2071	struct phy_device *phydev = fep->phy_dev;
2072
2073	if (!phydev)
2074		return -ENODEV;
2075
2076	return phy_ethtool_gset(phydev, cmd);
2077}
2078
2079static int fec_enet_set_settings(struct net_device *ndev,
2080				 struct ethtool_cmd *cmd)
2081{
2082	struct fec_enet_private *fep = netdev_priv(ndev);
2083	struct phy_device *phydev = fep->phy_dev;
2084
2085	if (!phydev)
2086		return -ENODEV;
2087
2088	return phy_ethtool_sset(phydev, cmd);
2089}
2090
2091static void fec_enet_get_drvinfo(struct net_device *ndev,
2092				 struct ethtool_drvinfo *info)
2093{
2094	struct fec_enet_private *fep = netdev_priv(ndev);
2095
2096	strlcpy(info->driver, fep->pdev->dev.driver->name,
2097		sizeof(info->driver));
2098	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2099	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2100}
2101
2102static int fec_enet_get_regs_len(struct net_device *ndev)
2103{
2104	struct fec_enet_private *fep = netdev_priv(ndev);
2105	struct resource *r;
2106	int s = 0;
2107
2108	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2109	if (r)
2110		s = resource_size(r);
2111
2112	return s;
2113}
2114
2115/* List of registers that can be safety be read to dump them with ethtool */
2116#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2117	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 
 
2118static u32 fec_enet_register_offset[] = {
2119	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2120	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2121	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2122	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2123	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2124	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2125	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2126	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2127	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2128	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2129	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2130	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2131	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2132	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2133	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2134	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2135	RMON_T_P_GTE2048, RMON_T_OCTETS,
2136	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2137	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2138	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2139	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2140	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2141	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2142	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2143	RMON_R_P_GTE2048, RMON_R_OCTETS,
2144	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2145	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2146};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147#else
 
2148static u32 fec_enet_register_offset[] = {
2149	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2150	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2151	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2152	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2153	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2154	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2155	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2156	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2157	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2158};
2159#endif
2160
2161static void fec_enet_get_regs(struct net_device *ndev,
2162			      struct ethtool_regs *regs, void *regbuf)
2163{
2164	struct fec_enet_private *fep = netdev_priv(ndev);
2165	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
 
2166	u32 *buf = (u32 *)regbuf;
2167	u32 i, off;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168
2169	memset(buf, 0, regs->len);
2170
2171	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2172		off = fec_enet_register_offset[i] / 4;
 
 
 
 
 
 
2173		buf[off] = readl(&theregs[off]);
2174	}
 
 
 
2175}
2176
2177static int fec_enet_get_ts_info(struct net_device *ndev,
2178				struct ethtool_ts_info *info)
2179{
2180	struct fec_enet_private *fep = netdev_priv(ndev);
2181
2182	if (fep->bufdesc_ex) {
2183
2184		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2185					SOF_TIMESTAMPING_RX_SOFTWARE |
2186					SOF_TIMESTAMPING_SOFTWARE |
2187					SOF_TIMESTAMPING_TX_HARDWARE |
2188					SOF_TIMESTAMPING_RX_HARDWARE |
2189					SOF_TIMESTAMPING_RAW_HARDWARE;
2190		if (fep->ptp_clock)
2191			info->phc_index = ptp_clock_index(fep->ptp_clock);
2192		else
2193			info->phc_index = -1;
2194
2195		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2196				 (1 << HWTSTAMP_TX_ON);
2197
2198		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2199				   (1 << HWTSTAMP_FILTER_ALL);
2200		return 0;
2201	} else {
2202		return ethtool_op_get_ts_info(ndev, info);
2203	}
2204}
2205
2206#if !defined(CONFIG_M5272)
2207
2208static void fec_enet_get_pauseparam(struct net_device *ndev,
2209				    struct ethtool_pauseparam *pause)
2210{
2211	struct fec_enet_private *fep = netdev_priv(ndev);
2212
2213	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2214	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2215	pause->rx_pause = pause->tx_pause;
2216}
2217
2218static int fec_enet_set_pauseparam(struct net_device *ndev,
2219				   struct ethtool_pauseparam *pause)
2220{
2221	struct fec_enet_private *fep = netdev_priv(ndev);
2222
2223	if (!fep->phy_dev)
2224		return -ENODEV;
2225
2226	if (pause->tx_pause != pause->rx_pause) {
2227		netdev_info(ndev,
2228			"hardware only support enable/disable both tx and rx");
2229		return -EINVAL;
2230	}
2231
2232	fep->pause_flag = 0;
2233
2234	/* tx pause must be same as rx pause */
2235	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2236	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2237
2238	if (pause->rx_pause || pause->autoneg) {
2239		fep->phy_dev->supported |= ADVERTISED_Pause;
2240		fep->phy_dev->advertising |= ADVERTISED_Pause;
2241	} else {
2242		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2243		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2244	}
2245
2246	if (pause->autoneg) {
2247		if (netif_running(ndev))
2248			fec_stop(ndev);
2249		phy_start_aneg(fep->phy_dev);
2250	}
2251	if (netif_running(ndev)) {
2252		napi_disable(&fep->napi);
2253		netif_tx_lock_bh(ndev);
2254		fec_restart(ndev);
2255		netif_wake_queue(ndev);
2256		netif_tx_unlock_bh(ndev);
2257		napi_enable(&fep->napi);
2258	}
2259
2260	return 0;
2261}
2262
2263static const struct fec_stat {
2264	char name[ETH_GSTRING_LEN];
2265	u16 offset;
2266} fec_stats[] = {
2267	/* RMON TX */
2268	{ "tx_dropped", RMON_T_DROP },
2269	{ "tx_packets", RMON_T_PACKETS },
2270	{ "tx_broadcast", RMON_T_BC_PKT },
2271	{ "tx_multicast", RMON_T_MC_PKT },
2272	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2273	{ "tx_undersize", RMON_T_UNDERSIZE },
2274	{ "tx_oversize", RMON_T_OVERSIZE },
2275	{ "tx_fragment", RMON_T_FRAG },
2276	{ "tx_jabber", RMON_T_JAB },
2277	{ "tx_collision", RMON_T_COL },
2278	{ "tx_64byte", RMON_T_P64 },
2279	{ "tx_65to127byte", RMON_T_P65TO127 },
2280	{ "tx_128to255byte", RMON_T_P128TO255 },
2281	{ "tx_256to511byte", RMON_T_P256TO511 },
2282	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2283	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2284	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2285	{ "tx_octets", RMON_T_OCTETS },
2286
2287	/* IEEE TX */
2288	{ "IEEE_tx_drop", IEEE_T_DROP },
2289	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2290	{ "IEEE_tx_1col", IEEE_T_1COL },
2291	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2292	{ "IEEE_tx_def", IEEE_T_DEF },
2293	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2294	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2295	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2296	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2297	{ "IEEE_tx_sqe", IEEE_T_SQE },
2298	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2299	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2300
2301	/* RMON RX */
2302	{ "rx_packets", RMON_R_PACKETS },
2303	{ "rx_broadcast", RMON_R_BC_PKT },
2304	{ "rx_multicast", RMON_R_MC_PKT },
2305	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2306	{ "rx_undersize", RMON_R_UNDERSIZE },
2307	{ "rx_oversize", RMON_R_OVERSIZE },
2308	{ "rx_fragment", RMON_R_FRAG },
2309	{ "rx_jabber", RMON_R_JAB },
2310	{ "rx_64byte", RMON_R_P64 },
2311	{ "rx_65to127byte", RMON_R_P65TO127 },
2312	{ "rx_128to255byte", RMON_R_P128TO255 },
2313	{ "rx_256to511byte", RMON_R_P256TO511 },
2314	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2315	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2316	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2317	{ "rx_octets", RMON_R_OCTETS },
2318
2319	/* IEEE RX */
2320	{ "IEEE_rx_drop", IEEE_R_DROP },
2321	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2322	{ "IEEE_rx_crc", IEEE_R_CRC },
2323	{ "IEEE_rx_align", IEEE_R_ALIGN },
2324	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2325	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2326	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2327};
2328
2329static void fec_enet_get_ethtool_stats(struct net_device *dev,
2330	struct ethtool_stats *stats, u64 *data)
 
 
 
 
 
 
 
 
 
 
 
2331{
2332	struct fec_enet_private *fep = netdev_priv(dev);
2333	int i;
2334
2335	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2336		data[i] = readl(fep->hwp + fec_stats[i].offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2337}
2338
2339static void fec_enet_get_strings(struct net_device *netdev,
2340	u32 stringset, u8 *data)
2341{
2342	int i;
2343	switch (stringset) {
2344	case ETH_SS_STATS:
2345		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2346			memcpy(data + i * ETH_GSTRING_LEN,
2347				fec_stats[i].name, ETH_GSTRING_LEN);
 
 
 
 
 
 
 
 
2348		break;
2349	}
2350}
2351
2352static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2353{
 
 
2354	switch (sset) {
2355	case ETH_SS_STATS:
2356		return ARRAY_SIZE(fec_stats);
 
 
 
 
 
2357	default:
2358		return -EOPNOTSUPP;
2359	}
2360}
2361#endif /* !defined(CONFIG_M5272) */
2362
2363static int fec_enet_nway_reset(struct net_device *dev)
2364{
2365	struct fec_enet_private *fep = netdev_priv(dev);
2366	struct phy_device *phydev = fep->phy_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
2367
2368	if (!phydev)
2369		return -ENODEV;
 
 
 
 
 
 
 
2370
2371	return genphy_restart_aneg(phydev);
 
2372}
 
2373
2374/* ITR clock source is enet system clock (clk_ahb).
2375 * TCTT unit is cycle_ns * 64 cycle
2376 * So, the ICTT value = X us / (cycle_ns * 64)
2377 */
2378static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2379{
2380	struct fec_enet_private *fep = netdev_priv(ndev);
2381
2382	return us * (fep->itr_clk_rate / 64000) / 1000;
2383}
2384
2385/* Set threshold for interrupt coalescing */
2386static void fec_enet_itr_coal_set(struct net_device *ndev)
2387{
2388	struct fec_enet_private *fep = netdev_priv(ndev);
2389	int rx_itr, tx_itr;
2390
2391	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2392		return;
2393
2394	/* Must be greater than zero to avoid unpredictable behavior */
2395	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2396	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2397		return;
2398
2399	/* Select enet system clock as Interrupt Coalescing
2400	 * timer Clock Source
2401	 */
2402	rx_itr = FEC_ITR_CLK_SEL;
2403	tx_itr = FEC_ITR_CLK_SEL;
2404
2405	/* set ICFT and ICTT */
2406	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2407	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2408	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2409	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2410
2411	rx_itr |= FEC_ITR_EN;
2412	tx_itr |= FEC_ITR_EN;
2413
2414	writel(tx_itr, fep->hwp + FEC_TXIC0);
2415	writel(rx_itr, fep->hwp + FEC_RXIC0);
2416	writel(tx_itr, fep->hwp + FEC_TXIC1);
2417	writel(rx_itr, fep->hwp + FEC_RXIC1);
2418	writel(tx_itr, fep->hwp + FEC_TXIC2);
2419	writel(rx_itr, fep->hwp + FEC_RXIC2);
 
 
2420}
2421
2422static int
2423fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
 
 
2424{
2425	struct fec_enet_private *fep = netdev_priv(ndev);
2426
2427	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2428		return -EOPNOTSUPP;
2429
2430	ec->rx_coalesce_usecs = fep->rx_time_itr;
2431	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2432
2433	ec->tx_coalesce_usecs = fep->tx_time_itr;
2434	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2435
2436	return 0;
2437}
2438
2439static int
2440fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
 
 
2441{
2442	struct fec_enet_private *fep = netdev_priv(ndev);
 
2443	unsigned int cycle;
2444
2445	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2446		return -EOPNOTSUPP;
2447
2448	if (ec->rx_max_coalesced_frames > 255) {
2449		pr_err("Rx coalesced frames exceed hardware limiation");
2450		return -EINVAL;
2451	}
2452
2453	if (ec->tx_max_coalesced_frames > 255) {
2454		pr_err("Tx coalesced frame exceed hardware limiation");
2455		return -EINVAL;
2456	}
2457
2458	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2459	if (cycle > 0xFFFF) {
2460		pr_err("Rx coalesed usec exceeed hardware limiation");
2461		return -EINVAL;
2462	}
2463
2464	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2465	if (cycle > 0xFFFF) {
2466		pr_err("Rx coalesed usec exceeed hardware limiation");
2467		return -EINVAL;
2468	}
2469
2470	fep->rx_time_itr = ec->rx_coalesce_usecs;
2471	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2472
2473	fep->tx_time_itr = ec->tx_coalesce_usecs;
2474	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2475
2476	fec_enet_itr_coal_set(ndev);
2477
2478	return 0;
2479}
2480
2481static void fec_enet_itr_coal_init(struct net_device *ndev)
 
 
 
 
 
 
 
 
 
 
2482{
2483	struct ethtool_coalesce ec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484
2485	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2486	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
 
2487
2488	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2489	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2490
2491	fec_enet_set_coalesce(ndev, &ec);
2492}
2493
2494static int fec_enet_get_tunable(struct net_device *netdev,
2495				const struct ethtool_tunable *tuna,
2496				void *data)
2497{
2498	struct fec_enet_private *fep = netdev_priv(netdev);
2499	int ret = 0;
 
 
 
 
 
 
2500
2501	switch (tuna->id) {
2502	case ETHTOOL_RX_COPYBREAK:
2503		*(u32 *)data = fep->rx_copybreak;
2504		break;
2505	default:
2506		ret = -EINVAL;
2507		break;
2508	}
2509
2510	return ret;
2511}
2512
2513static int fec_enet_set_tunable(struct net_device *netdev,
2514				const struct ethtool_tunable *tuna,
2515				const void *data)
2516{
2517	struct fec_enet_private *fep = netdev_priv(netdev);
 
2518	int ret = 0;
2519
2520	switch (tuna->id) {
2521	case ETHTOOL_RX_COPYBREAK:
2522		fep->rx_copybreak = *(u32 *)data;
2523		break;
2524	default:
2525		ret = -EINVAL;
2526		break;
2527	}
 
 
 
 
 
 
 
 
2528
2529	return ret;
2530}
2531
2532static void
2533fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2534{
2535	struct fec_enet_private *fep = netdev_priv(ndev);
2536
2537	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2538		wol->supported = WAKE_MAGIC;
2539		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2540	} else {
2541		wol->supported = wol->wolopts = 0;
2542	}
2543}
2544
2545static int
2546fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2547{
2548	struct fec_enet_private *fep = netdev_priv(ndev);
2549
2550	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2551		return -EINVAL;
2552
2553	if (wol->wolopts & ~WAKE_MAGIC)
2554		return -EINVAL;
2555
2556	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2557	if (device_may_wakeup(&ndev->dev)) {
2558		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2559		if (fep->irq[0] > 0)
2560			enable_irq_wake(fep->irq[0]);
2561	} else {
2562		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2563		if (fep->irq[0] > 0)
2564			disable_irq_wake(fep->irq[0]);
2565	}
2566
2567	return 0;
2568}
2569
2570static const struct ethtool_ops fec_enet_ethtool_ops = {
2571	.get_settings		= fec_enet_get_settings,
2572	.set_settings		= fec_enet_set_settings,
2573	.get_drvinfo		= fec_enet_get_drvinfo,
2574	.get_regs_len		= fec_enet_get_regs_len,
2575	.get_regs		= fec_enet_get_regs,
2576	.nway_reset		= fec_enet_nway_reset,
2577	.get_link		= ethtool_op_get_link,
2578	.get_coalesce		= fec_enet_get_coalesce,
2579	.set_coalesce		= fec_enet_set_coalesce,
2580#ifndef CONFIG_M5272
2581	.get_pauseparam		= fec_enet_get_pauseparam,
2582	.set_pauseparam		= fec_enet_set_pauseparam,
2583	.get_strings		= fec_enet_get_strings,
2584	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2585	.get_sset_count		= fec_enet_get_sset_count,
2586#endif
2587	.get_ts_info		= fec_enet_get_ts_info,
2588	.get_tunable		= fec_enet_get_tunable,
2589	.set_tunable		= fec_enet_set_tunable,
2590	.get_wol		= fec_enet_get_wol,
2591	.set_wol		= fec_enet_set_wol,
 
 
 
 
 
2592};
2593
2594static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2595{
2596	struct fec_enet_private *fep = netdev_priv(ndev);
2597	struct phy_device *phydev = fep->phy_dev;
2598
2599	if (!netif_running(ndev))
2600		return -EINVAL;
2601
2602	if (!phydev)
2603		return -ENODEV;
2604
2605	if (fep->bufdesc_ex) {
2606		if (cmd == SIOCSHWTSTAMP)
2607			return fec_ptp_set(ndev, rq);
2608		if (cmd == SIOCGHWTSTAMP)
2609			return fec_ptp_get(ndev, rq);
2610	}
2611
2612	return phy_mii_ioctl(phydev, rq, cmd);
2613}
2614
2615static void fec_enet_free_buffers(struct net_device *ndev)
2616{
2617	struct fec_enet_private *fep = netdev_priv(ndev);
2618	unsigned int i;
2619	struct sk_buff *skb;
2620	struct bufdesc	*bdp;
2621	struct fec_enet_priv_tx_q *txq;
2622	struct fec_enet_priv_rx_q *rxq;
2623	unsigned int q;
2624
2625	for (q = 0; q < fep->num_rx_queues; q++) {
2626		rxq = fep->rx_queue[q];
2627		bdp = rxq->bd.base;
2628		for (i = 0; i < rxq->bd.ring_size; i++) {
2629			skb = rxq->rx_skbuff[i];
2630			rxq->rx_skbuff[i] = NULL;
2631			if (skb) {
2632				dma_unmap_single(&fep->pdev->dev,
2633						 fec32_to_cpu(bdp->cbd_bufaddr),
2634						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2635						 DMA_FROM_DEVICE);
2636				dev_kfree_skb(skb);
2637			}
2638			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2639		}
2640	}
2641
2642	for (q = 0; q < fep->num_tx_queues; q++) {
2643		txq = fep->tx_queue[q];
2644		bdp = txq->bd.base;
2645		for (i = 0; i < txq->bd.ring_size; i++) {
2646			kfree(txq->tx_bounce[i]);
2647			txq->tx_bounce[i] = NULL;
2648			skb = txq->tx_skbuff[i];
2649			txq->tx_skbuff[i] = NULL;
2650			dev_kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651		}
2652	}
2653}
2654
2655static void fec_enet_free_queue(struct net_device *ndev)
2656{
2657	struct fec_enet_private *fep = netdev_priv(ndev);
2658	int i;
2659	struct fec_enet_priv_tx_q *txq;
2660
2661	for (i = 0; i < fep->num_tx_queues; i++)
2662		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2663			txq = fep->tx_queue[i];
2664			dma_free_coherent(NULL,
2665					  txq->bd.ring_size * TSO_HEADER_SIZE,
2666					  txq->tso_hdrs,
2667					  txq->tso_hdrs_dma);
2668		}
2669
2670	for (i = 0; i < fep->num_rx_queues; i++)
2671		kfree(fep->rx_queue[i]);
2672	for (i = 0; i < fep->num_tx_queues; i++)
2673		kfree(fep->tx_queue[i]);
2674}
2675
2676static int fec_enet_alloc_queue(struct net_device *ndev)
2677{
2678	struct fec_enet_private *fep = netdev_priv(ndev);
2679	int i;
2680	int ret = 0;
2681	struct fec_enet_priv_tx_q *txq;
2682
2683	for (i = 0; i < fep->num_tx_queues; i++) {
2684		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2685		if (!txq) {
2686			ret = -ENOMEM;
2687			goto alloc_failed;
2688		}
2689
2690		fep->tx_queue[i] = txq;
2691		txq->bd.ring_size = TX_RING_SIZE;
2692		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2693
2694		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2695		txq->tx_wake_threshold =
2696			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2697
2698		txq->tso_hdrs = dma_alloc_coherent(NULL,
2699					txq->bd.ring_size * TSO_HEADER_SIZE,
2700					&txq->tso_hdrs_dma,
2701					GFP_KERNEL);
2702		if (!txq->tso_hdrs) {
2703			ret = -ENOMEM;
2704			goto alloc_failed;
2705		}
2706	}
2707
2708	for (i = 0; i < fep->num_rx_queues; i++) {
2709		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2710					   GFP_KERNEL);
2711		if (!fep->rx_queue[i]) {
2712			ret = -ENOMEM;
2713			goto alloc_failed;
2714		}
2715
2716		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2717		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2718	}
2719	return ret;
2720
2721alloc_failed:
2722	fec_enet_free_queue(ndev);
2723	return ret;
2724}
2725
2726static int
2727fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2728{
2729	struct fec_enet_private *fep = netdev_priv(ndev);
2730	unsigned int i;
2731	struct sk_buff *skb;
2732	struct bufdesc	*bdp;
2733	struct fec_enet_priv_rx_q *rxq;
 
2734
2735	rxq = fep->rx_queue[queue];
2736	bdp = rxq->bd.base;
 
 
 
 
 
 
 
2737	for (i = 0; i < rxq->bd.ring_size; i++) {
2738		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2739		if (!skb)
2740			goto err_alloc;
2741
2742		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2743			dev_kfree_skb(skb);
2744			goto err_alloc;
2745		}
2746
2747		rxq->rx_skbuff[i] = skb;
 
2748		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2749
2750		if (fep->bufdesc_ex) {
2751			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2752			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2753		}
2754
2755		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2756	}
2757
2758	/* Set the last buffer to wrap. */
2759	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2760	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2761	return 0;
2762
2763 err_alloc:
2764	fec_enet_free_buffers(ndev);
2765	return -ENOMEM;
2766}
2767
2768static int
2769fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2770{
2771	struct fec_enet_private *fep = netdev_priv(ndev);
2772	unsigned int i;
2773	struct bufdesc  *bdp;
2774	struct fec_enet_priv_tx_q *txq;
2775
2776	txq = fep->tx_queue[queue];
2777	bdp = txq->bd.base;
2778	for (i = 0; i < txq->bd.ring_size; i++) {
2779		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2780		if (!txq->tx_bounce[i])
2781			goto err_alloc;
2782
2783		bdp->cbd_sc = cpu_to_fec16(0);
2784		bdp->cbd_bufaddr = cpu_to_fec32(0);
2785
2786		if (fep->bufdesc_ex) {
2787			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2788			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2789		}
2790
2791		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2792	}
2793
2794	/* Set the last buffer to wrap. */
2795	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2796	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2797
2798	return 0;
2799
2800 err_alloc:
2801	fec_enet_free_buffers(ndev);
2802	return -ENOMEM;
2803}
2804
2805static int fec_enet_alloc_buffers(struct net_device *ndev)
2806{
2807	struct fec_enet_private *fep = netdev_priv(ndev);
2808	unsigned int i;
2809
2810	for (i = 0; i < fep->num_rx_queues; i++)
2811		if (fec_enet_alloc_rxq_buffers(ndev, i))
2812			return -ENOMEM;
2813
2814	for (i = 0; i < fep->num_tx_queues; i++)
2815		if (fec_enet_alloc_txq_buffers(ndev, i))
2816			return -ENOMEM;
2817	return 0;
2818}
2819
2820static int
2821fec_enet_open(struct net_device *ndev)
2822{
2823	struct fec_enet_private *fep = netdev_priv(ndev);
2824	int ret;
 
2825
2826	ret = pm_runtime_get_sync(&fep->pdev->dev);
2827	if (ret < 0)
2828		return ret;
2829
2830	pinctrl_pm_select_default_state(&fep->pdev->dev);
2831	ret = fec_enet_clk_enable(ndev, true);
2832	if (ret)
2833		goto clk_enable;
2834
 
 
 
 
 
 
 
 
 
 
 
2835	/* I should reset the ring buffers here, but I don't yet know
2836	 * a simple way to do that.
2837	 */
2838
2839	ret = fec_enet_alloc_buffers(ndev);
2840	if (ret)
2841		goto err_enet_alloc;
2842
2843	/* Init MAC prior to mii bus probe */
2844	fec_restart(ndev);
2845
 
 
 
 
 
 
2846	/* Probe and connect to PHY when open the interface */
2847	ret = fec_enet_mii_probe(ndev);
2848	if (ret)
2849		goto err_enet_mii_probe;
2850
 
 
 
 
 
 
2851	napi_enable(&fep->napi);
2852	phy_start(fep->phy_dev);
2853	netif_tx_start_all_queues(ndev);
2854
2855	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2856				 FEC_WOL_FLAG_ENABLE);
2857
2858	return 0;
2859
2860err_enet_mii_probe:
2861	fec_enet_free_buffers(ndev);
2862err_enet_alloc:
2863	fec_enet_clk_enable(ndev, false);
2864clk_enable:
2865	pm_runtime_mark_last_busy(&fep->pdev->dev);
2866	pm_runtime_put_autosuspend(&fep->pdev->dev);
2867	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2868	return ret;
2869}
2870
2871static int
2872fec_enet_close(struct net_device *ndev)
2873{
2874	struct fec_enet_private *fep = netdev_priv(ndev);
2875
2876	phy_stop(fep->phy_dev);
2877
2878	if (netif_device_present(ndev)) {
2879		napi_disable(&fep->napi);
2880		netif_tx_disable(ndev);
2881		fec_stop(ndev);
2882	}
2883
2884	phy_disconnect(fep->phy_dev);
2885	fep->phy_dev = NULL;
 
 
 
 
2886
2887	fec_enet_clk_enable(ndev, false);
 
 
 
2888	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2889	pm_runtime_mark_last_busy(&fep->pdev->dev);
2890	pm_runtime_put_autosuspend(&fep->pdev->dev);
2891
2892	fec_enet_free_buffers(ndev);
2893
2894	return 0;
2895}
2896
2897/* Set or clear the multicast filter for this adaptor.
2898 * Skeleton taken from sunlance driver.
2899 * The CPM Ethernet implementation allows Multicast as well as individual
2900 * MAC address filtering.  Some of the drivers check to make sure it is
2901 * a group multicast address, and discard those that are not.  I guess I
2902 * will do the same for now, but just remove the test if you want
2903 * individual filtering as well (do the upper net layers want or support
2904 * this kind of feature?).
2905 */
2906
2907#define HASH_BITS	6		/* #bits in hash */
2908#define CRC32_POLY	0xEDB88320
2909
2910static void set_multicast_list(struct net_device *ndev)
2911{
2912	struct fec_enet_private *fep = netdev_priv(ndev);
2913	struct netdev_hw_addr *ha;
2914	unsigned int i, bit, data, crc, tmp;
2915	unsigned char hash;
 
2916
2917	if (ndev->flags & IFF_PROMISC) {
2918		tmp = readl(fep->hwp + FEC_R_CNTRL);
2919		tmp |= 0x8;
2920		writel(tmp, fep->hwp + FEC_R_CNTRL);
2921		return;
2922	}
2923
2924	tmp = readl(fep->hwp + FEC_R_CNTRL);
2925	tmp &= ~0x8;
2926	writel(tmp, fep->hwp + FEC_R_CNTRL);
2927
2928	if (ndev->flags & IFF_ALLMULTI) {
2929		/* Catch all multicast addresses, so set the
2930		 * filter to all 1's
2931		 */
2932		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2934
2935		return;
2936	}
2937
2938	/* Clear filter and add the addresses in hash register
2939	 */
2940	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2941	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2942
2943	netdev_for_each_mc_addr(ha, ndev) {
2944		/* calculate crc32 value of mac address */
2945		crc = 0xffffffff;
2946
2947		for (i = 0; i < ndev->addr_len; i++) {
2948			data = ha->addr[i];
2949			for (bit = 0; bit < 8; bit++, data >>= 1) {
2950				crc = (crc >> 1) ^
2951				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2952			}
2953		}
2954
2955		/* only upper 6 bits (HASH_BITS) are used
2956		 * which point to specific bit in he hash registers
2957		 */
2958		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2959
2960		if (hash > 31) {
2961			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2962			tmp |= 1 << (hash - 32);
2963			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2964		} else {
2965			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2966			tmp |= 1 << hash;
2967			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2968		}
2969	}
 
 
 
2970}
2971
2972/* Set a MAC change in hardware. */
2973static int
2974fec_set_mac_address(struct net_device *ndev, void *p)
2975{
2976	struct fec_enet_private *fep = netdev_priv(ndev);
2977	struct sockaddr *addr = p;
2978
2979	if (addr) {
2980		if (!is_valid_ether_addr(addr->sa_data))
2981			return -EADDRNOTAVAIL;
2982		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2983	}
2984
2985	/* Add netif status check here to avoid system hang in below case:
2986	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2987	 * After ethx down, fec all clocks are gated off and then register
2988	 * access causes system hang.
2989	 */
2990	if (!netif_running(ndev))
2991		return 0;
2992
2993	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2994		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2995		fep->hwp + FEC_ADDR_LOW);
2996	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2997		fep->hwp + FEC_ADDR_HIGH);
2998	return 0;
2999}
3000
3001#ifdef CONFIG_NET_POLL_CONTROLLER
3002/**
3003 * fec_poll_controller - FEC Poll controller function
3004 * @dev: The FEC network adapter
3005 *
3006 * Polled functionality used by netconsole and others in non interrupt mode
3007 *
3008 */
3009static void fec_poll_controller(struct net_device *dev)
3010{
3011	int i;
3012	struct fec_enet_private *fep = netdev_priv(dev);
3013
3014	for (i = 0; i < FEC_IRQ_NUM; i++) {
3015		if (fep->irq[i] > 0) {
3016			disable_irq(fep->irq[i]);
3017			fec_enet_interrupt(fep->irq[i], dev);
3018			enable_irq(fep->irq[i]);
3019		}
3020	}
3021}
3022#endif
3023
3024static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3025	netdev_features_t features)
3026{
3027	struct fec_enet_private *fep = netdev_priv(netdev);
3028	netdev_features_t changed = features ^ netdev->features;
3029
3030	netdev->features = features;
3031
3032	/* Receive checksum has been changed */
3033	if (changed & NETIF_F_RXCSUM) {
3034		if (features & NETIF_F_RXCSUM)
3035			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3036		else
3037			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3038	}
3039}
3040
3041static int fec_set_features(struct net_device *netdev,
3042	netdev_features_t features)
3043{
3044	struct fec_enet_private *fep = netdev_priv(netdev);
3045	netdev_features_t changed = features ^ netdev->features;
3046
3047	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3048		napi_disable(&fep->napi);
3049		netif_tx_lock_bh(netdev);
3050		fec_stop(netdev);
3051		fec_enet_set_netdev_features(netdev, features);
3052		fec_restart(netdev);
3053		netif_tx_wake_all_queues(netdev);
3054		netif_tx_unlock_bh(netdev);
3055		napi_enable(&fep->napi);
3056	} else {
3057		fec_enet_set_netdev_features(netdev, features);
3058	}
3059
3060	return 0;
3061}
3062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063static const struct net_device_ops fec_netdev_ops = {
3064	.ndo_open		= fec_enet_open,
3065	.ndo_stop		= fec_enet_close,
3066	.ndo_start_xmit		= fec_enet_start_xmit,
 
3067	.ndo_set_rx_mode	= set_multicast_list,
3068	.ndo_change_mtu		= eth_change_mtu,
3069	.ndo_validate_addr	= eth_validate_addr,
3070	.ndo_tx_timeout		= fec_timeout,
3071	.ndo_set_mac_address	= fec_set_mac_address,
3072	.ndo_do_ioctl		= fec_enet_ioctl,
3073#ifdef CONFIG_NET_POLL_CONTROLLER
3074	.ndo_poll_controller	= fec_poll_controller,
3075#endif
3076	.ndo_set_features	= fec_set_features,
 
 
 
 
3077};
3078
3079static const unsigned short offset_des_active_rxq[] = {
3080	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3081};
3082
3083static const unsigned short offset_des_active_txq[] = {
3084	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3085};
3086
3087 /*
3088  * XXX:  We need to clean up on failure exits here.
3089  *
3090  */
3091static int fec_enet_init(struct net_device *ndev)
3092{
3093	struct fec_enet_private *fep = netdev_priv(ndev);
3094	struct bufdesc *cbd_base;
3095	dma_addr_t bd_dma;
3096	int bd_size;
3097	unsigned int i;
3098	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3099			sizeof(struct bufdesc);
3100	unsigned dsize_log2 = __fls(dsize);
 
3101
3102	WARN_ON(dsize != (1 << dsize_log2));
3103#if defined(CONFIG_ARM)
3104	fep->rx_align = 0xf;
3105	fep->tx_align = 0xf;
3106#else
3107	fep->rx_align = 0x3;
3108	fep->tx_align = 0x3;
3109#endif
 
 
 
 
3110
3111	fec_enet_alloc_queue(ndev);
 
 
 
 
 
 
 
 
 
3112
3113	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3114
3115	/* Allocate memory for buffer descriptors. */
3116	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3117				       GFP_KERNEL);
3118	if (!cbd_base) {
3119		return -ENOMEM;
 
3120	}
3121
3122	memset(cbd_base, 0, bd_size);
3123
3124	/* Get the Ethernet address */
3125	fec_get_mac(ndev);
3126	/* make sure MAC we just acquired is programmed into the hw */
3127	fec_set_mac_address(ndev, NULL);
3128
3129	/* Set receive and transmit descriptor base. */
3130	for (i = 0; i < fep->num_rx_queues; i++) {
3131		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3132		unsigned size = dsize * rxq->bd.ring_size;
3133
3134		rxq->bd.qid = i;
3135		rxq->bd.base = cbd_base;
3136		rxq->bd.cur = cbd_base;
3137		rxq->bd.dma = bd_dma;
3138		rxq->bd.dsize = dsize;
3139		rxq->bd.dsize_log2 = dsize_log2;
3140		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3141		bd_dma += size;
3142		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3143		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3144	}
3145
3146	for (i = 0; i < fep->num_tx_queues; i++) {
3147		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3148		unsigned size = dsize * txq->bd.ring_size;
3149
3150		txq->bd.qid = i;
3151		txq->bd.base = cbd_base;
3152		txq->bd.cur = cbd_base;
3153		txq->bd.dma = bd_dma;
3154		txq->bd.dsize = dsize;
3155		txq->bd.dsize_log2 = dsize_log2;
3156		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3157		bd_dma += size;
3158		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3159		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3160	}
3161
3162
3163	/* The FEC Ethernet specific entries in the device structure */
3164	ndev->watchdog_timeo = TX_TIMEOUT;
3165	ndev->netdev_ops = &fec_netdev_ops;
3166	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3167
3168	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3169	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3170
3171	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3172		/* enable hw VLAN support */
3173		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3174
3175	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3176		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3177
3178		/* enable hw accelerator */
3179		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3180				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3181		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3182	}
3183
3184	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3185		fep->tx_align = 0;
3186		fep->rx_align = 0x3f;
3187	}
3188
3189	ndev->hw_features = ndev->features;
3190
 
 
 
 
3191	fec_restart(ndev);
3192
 
 
 
 
 
3193	return 0;
 
 
 
 
3194}
3195
3196#ifdef CONFIG_OF
3197static void fec_reset_phy(struct platform_device *pdev)
3198{
3199	int err, phy_reset;
3200	bool active_high = false;
3201	int msec = 1;
3202	struct device_node *np = pdev->dev.of_node;
 
3203
3204	if (!np)
3205		return;
3206
3207	of_property_read_u32(np, "phy-reset-duration", &msec);
3208	/* A sane reset duration should not be longer than 1s */
3209	if (msec > 1000)
3210		msec = 1;
3211
3212	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3213	if (!gpio_is_valid(phy_reset))
3214		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3215
3216	active_high = of_property_read_bool(np, "phy-reset-active-high");
 
 
 
 
3217
3218	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3219			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3220			"phy-reset");
3221	if (err) {
3222		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3223		return;
3224	}
3225	msleep(msec);
3226	gpio_set_value_cansleep(phy_reset, !active_high);
3227}
3228#else /* CONFIG_OF */
3229static void fec_reset_phy(struct platform_device *pdev)
3230{
3231	/*
3232	 * In case of platform probe, the reset has been done
3233	 * by machine code.
3234	 */
 
3235}
3236#endif /* CONFIG_OF */
3237
3238static void
3239fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3240{
3241	struct device_node *np = pdev->dev.of_node;
3242
3243	*num_tx = *num_rx = 1;
3244
3245	if (!np || !of_device_is_available(np))
3246		return;
3247
3248	/* parse the num of tx and rx queues */
3249	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3250
3251	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3252
3253	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3254		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3255			 *num_tx);
3256		*num_tx = 1;
3257		return;
3258	}
3259
3260	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3261		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3262			 *num_rx);
3263		*num_rx = 1;
3264		return;
3265	}
3266
3267}
3268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269static int
3270fec_probe(struct platform_device *pdev)
3271{
3272	struct fec_enet_private *fep;
3273	struct fec_platform_data *pdata;
 
3274	struct net_device *ndev;
3275	int i, irq, ret = 0;
3276	struct resource *r;
3277	const struct of_device_id *of_id;
3278	static int dev_id;
3279	struct device_node *np = pdev->dev.of_node, *phy_node;
3280	int num_tx_qs;
3281	int num_rx_qs;
 
 
 
3282
3283	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3284
3285	/* Init network device */
3286	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3287				  num_tx_qs, num_rx_qs);
3288	if (!ndev)
3289		return -ENOMEM;
3290
3291	SET_NETDEV_DEV(ndev, &pdev->dev);
3292
3293	/* setup board info structure */
3294	fep = netdev_priv(ndev);
3295
3296	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3297	if (of_id)
3298		pdev->id_entry = of_id->data;
3299	fep->quirks = pdev->id_entry->driver_data;
 
3300
3301	fep->netdev = ndev;
3302	fep->num_rx_queues = num_rx_qs;
3303	fep->num_tx_queues = num_tx_qs;
3304
3305#if !defined(CONFIG_M5272)
3306	/* default enable pause frame auto negotiation */
3307	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3308		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3309#endif
3310
3311	/* Select default pin state */
3312	pinctrl_pm_select_default_state(&pdev->dev);
3313
3314	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3315	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3316	if (IS_ERR(fep->hwp)) {
3317		ret = PTR_ERR(fep->hwp);
3318		goto failed_ioremap;
3319	}
3320
3321	fep->pdev = pdev;
3322	fep->dev_id = dev_id++;
3323
3324	platform_set_drvdata(pdev, ndev);
3325
3326	if (of_get_property(np, "fsl,magic-packet", NULL))
 
 
 
 
 
 
 
 
 
3327		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3328
 
 
 
 
3329	phy_node = of_parse_phandle(np, "phy-handle", 0);
3330	if (!phy_node && of_phy_is_fixed_link(np)) {
3331		ret = of_phy_register_fixed_link(np);
3332		if (ret < 0) {
3333			dev_err(&pdev->dev,
3334				"broken fixed-link specification\n");
3335			goto failed_phy;
3336		}
3337		phy_node = of_node_get(np);
3338	}
3339	fep->phy_node = phy_node;
3340
3341	ret = of_get_phy_mode(pdev->dev.of_node);
3342	if (ret < 0) {
3343		pdata = dev_get_platdata(&pdev->dev);
3344		if (pdata)
3345			fep->phy_interface = pdata->phy;
3346		else
3347			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3348	} else {
3349		fep->phy_interface = ret;
3350	}
3351
 
 
 
 
3352	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3353	if (IS_ERR(fep->clk_ipg)) {
3354		ret = PTR_ERR(fep->clk_ipg);
3355		goto failed_clk;
3356	}
3357
3358	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3359	if (IS_ERR(fep->clk_ahb)) {
3360		ret = PTR_ERR(fep->clk_ahb);
3361		goto failed_clk;
3362	}
3363
3364	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3365
3366	/* enet_out is optional, depends on board */
3367	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3368	if (IS_ERR(fep->clk_enet_out))
3369		fep->clk_enet_out = NULL;
 
 
3370
3371	fep->ptp_clk_on = false;
3372	mutex_init(&fep->ptp_clk_mutex);
3373
3374	/* clk_ref is optional, depends on board */
3375	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3376	if (IS_ERR(fep->clk_ref))
3377		fep->clk_ref = NULL;
 
 
 
 
 
 
 
 
 
 
3378
3379	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3380	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3381	if (IS_ERR(fep->clk_ptp)) {
3382		fep->clk_ptp = NULL;
3383		fep->bufdesc_ex = false;
3384	}
3385
3386	ret = fec_enet_clk_enable(ndev, true);
3387	if (ret)
3388		goto failed_clk;
3389
3390	ret = clk_prepare_enable(fep->clk_ipg);
3391	if (ret)
3392		goto failed_clk_ipg;
 
 
 
3393
3394	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3395	if (!IS_ERR(fep->reg_phy)) {
3396		ret = regulator_enable(fep->reg_phy);
3397		if (ret) {
3398			dev_err(&pdev->dev,
3399				"Failed to enable phy regulator: %d\n", ret);
3400			goto failed_regulator;
3401		}
3402	} else {
 
 
 
 
3403		fep->reg_phy = NULL;
3404	}
3405
3406	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3407	pm_runtime_use_autosuspend(&pdev->dev);
3408	pm_runtime_get_noresume(&pdev->dev);
3409	pm_runtime_set_active(&pdev->dev);
3410	pm_runtime_enable(&pdev->dev);
3411
3412	fec_reset_phy(pdev);
 
 
3413
 
3414	if (fep->bufdesc_ex)
3415		fec_ptp_init(pdev);
3416
3417	ret = fec_enet_init(ndev);
3418	if (ret)
3419		goto failed_init;
3420
3421	for (i = 0; i < FEC_IRQ_NUM; i++) {
3422		irq = platform_get_irq(pdev, i);
 
 
 
3423		if (irq < 0) {
3424			if (i)
3425				break;
3426			ret = irq;
3427			goto failed_irq;
3428		}
3429		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3430				       0, pdev->name, ndev);
3431		if (ret)
3432			goto failed_irq;
3433
3434		fep->irq[i] = irq;
3435	}
3436
3437	init_completion(&fep->mdio_done);
 
 
3438	ret = fec_enet_mii_init(pdev);
3439	if (ret)
3440		goto failed_mii_init;
3441
3442	/* Carrier starts down, phylib will bring it up */
3443	netif_carrier_off(ndev);
3444	fec_enet_clk_enable(ndev, false);
3445	pinctrl_pm_select_sleep_state(&pdev->dev);
3446
 
 
3447	ret = register_netdev(ndev);
3448	if (ret)
3449		goto failed_register;
3450
3451	device_init_wakeup(&ndev->dev, fep->wol_flag &
3452			   FEC_WOL_HAS_MAGIC_PACKET);
3453
3454	if (fep->bufdesc_ex && fep->ptp_clock)
3455		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3456
3457	fep->rx_copybreak = COPYBREAK_DEFAULT;
3458	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3459
3460	pm_runtime_mark_last_busy(&pdev->dev);
3461	pm_runtime_put_autosuspend(&pdev->dev);
3462
3463	return 0;
3464
3465failed_register:
3466	fec_enet_mii_remove(fep);
3467failed_mii_init:
3468failed_irq:
3469failed_init:
3470	fec_ptp_stop(pdev);
 
 
 
3471	if (fep->reg_phy)
3472		regulator_disable(fep->reg_phy);
3473failed_regulator:
 
 
3474	clk_disable_unprepare(fep->clk_ipg);
3475failed_clk_ipg:
3476	fec_enet_clk_enable(ndev, false);
3477failed_clk:
 
 
 
 
 
 
3478failed_phy:
3479	of_node_put(phy_node);
3480failed_ioremap:
3481	free_netdev(ndev);
3482
3483	return ret;
3484}
3485
3486static int
3487fec_drv_remove(struct platform_device *pdev)
3488{
3489	struct net_device *ndev = platform_get_drvdata(pdev);
3490	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 
 
 
 
 
3491
3492	cancel_work_sync(&fep->tx_timeout_work);
3493	fec_ptp_stop(pdev);
3494	unregister_netdev(ndev);
3495	fec_enet_mii_remove(fep);
3496	if (fep->reg_phy)
3497		regulator_disable(fep->reg_phy);
 
 
 
3498	of_node_put(fep->phy_node);
 
 
 
 
 
 
 
 
 
 
 
3499	free_netdev(ndev);
3500
3501	return 0;
3502}
3503
3504static int __maybe_unused fec_suspend(struct device *dev)
3505{
3506	struct net_device *ndev = dev_get_drvdata(dev);
3507	struct fec_enet_private *fep = netdev_priv(ndev);
 
3508
3509	rtnl_lock();
3510	if (netif_running(ndev)) {
3511		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3512			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3513		phy_stop(fep->phy_dev);
3514		napi_disable(&fep->napi);
3515		netif_tx_lock_bh(ndev);
3516		netif_device_detach(ndev);
3517		netif_tx_unlock_bh(ndev);
3518		fec_stop(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
3519		fec_enet_clk_enable(ndev, false);
3520		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3521			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
 
 
 
 
 
 
 
3522	}
3523	rtnl_unlock();
3524
3525	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3526		regulator_disable(fep->reg_phy);
3527
3528	/* SOC supply clock to phy, when clock is disabled, phy link down
3529	 * SOC control phy regulator, when regulator is disabled, phy link down
3530	 */
3531	if (fep->clk_enet_out || fep->reg_phy)
3532		fep->link = 0;
3533
3534	return 0;
3535}
3536
3537static int __maybe_unused fec_resume(struct device *dev)
3538{
3539	struct net_device *ndev = dev_get_drvdata(dev);
3540	struct fec_enet_private *fep = netdev_priv(ndev);
3541	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3542	int ret;
3543	int val;
3544
3545	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3546		ret = regulator_enable(fep->reg_phy);
3547		if (ret)
3548			return ret;
3549	}
3550
3551	rtnl_lock();
3552	if (netif_running(ndev)) {
 
 
 
3553		ret = fec_enet_clk_enable(ndev, true);
3554		if (ret) {
3555			rtnl_unlock();
3556			goto failed_clk;
3557		}
3558		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3559			if (pdata && pdata->sleep_mode_enable)
3560				pdata->sleep_mode_enable(false);
 
 
 
 
3561			val = readl(fep->hwp + FEC_ECNTRL);
3562			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3563			writel(val, fep->hwp + FEC_ECNTRL);
3564			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3565		} else {
3566			pinctrl_pm_select_default_state(&fep->pdev->dev);
3567		}
3568		fec_restart(ndev);
3569		netif_tx_lock_bh(ndev);
3570		netif_device_attach(ndev);
3571		netif_tx_unlock_bh(ndev);
3572		napi_enable(&fep->napi);
3573		phy_start(fep->phy_dev);
 
3574	}
3575	rtnl_unlock();
3576
3577	return 0;
3578
3579failed_clk:
3580	if (fep->reg_phy)
3581		regulator_disable(fep->reg_phy);
3582	return ret;
3583}
3584
3585static int __maybe_unused fec_runtime_suspend(struct device *dev)
3586{
3587	struct net_device *ndev = dev_get_drvdata(dev);
3588	struct fec_enet_private *fep = netdev_priv(ndev);
3589
 
3590	clk_disable_unprepare(fep->clk_ipg);
3591
3592	return 0;
3593}
3594
3595static int __maybe_unused fec_runtime_resume(struct device *dev)
3596{
3597	struct net_device *ndev = dev_get_drvdata(dev);
3598	struct fec_enet_private *fep = netdev_priv(ndev);
 
3599
3600	return clk_prepare_enable(fep->clk_ipg);
 
 
 
 
 
 
 
 
 
 
 
3601}
3602
3603static const struct dev_pm_ops fec_pm_ops = {
3604	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3605	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3606};
3607
3608static struct platform_driver fec_driver = {
3609	.driver	= {
3610		.name	= DRIVER_NAME,
3611		.pm	= &fec_pm_ops,
3612		.of_match_table = fec_dt_ids,
 
3613	},
3614	.id_table = fec_devtype,
3615	.probe	= fec_probe,
3616	.remove	= fec_drv_remove,
3617};
3618
3619module_platform_driver(fec_driver);
3620
3621MODULE_ALIAS("platform:"DRIVER_NAME);
3622MODULE_LICENSE("GPL");