Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/page_pool/helpers.h>
  42#include <net/selftests.h>
  43#include <net/tso.h>
  44#include <linux/tcp.h>
  45#include <linux/udp.h>
  46#include <linux/icmp.h>
  47#include <linux/spinlock.h>
  48#include <linux/workqueue.h>
  49#include <linux/bitops.h>
  50#include <linux/io.h>
  51#include <linux/irq.h>
  52#include <linux/clk.h>
  53#include <linux/crc32.h>
  54#include <linux/platform_device.h>
  55#include <linux/property.h>
  56#include <linux/mdio.h>
  57#include <linux/phy.h>
  58#include <linux/fec.h>
  59#include <linux/of.h>
  60#include <linux/of_mdio.h>
 
  61#include <linux/of_net.h>
  62#include <linux/regulator/consumer.h>
  63#include <linux/if_vlan.h>
  64#include <linux/pinctrl/consumer.h>
  65#include <linux/gpio/consumer.h>
  66#include <linux/prefetch.h>
  67#include <linux/mfd/syscon.h>
  68#include <linux/regmap.h>
  69#include <soc/imx/cpuidle.h>
  70#include <linux/filter.h>
  71#include <linux/bpf.h>
  72#include <linux/bpf_trace.h>
  73
  74#include <asm/cacheflush.h>
  75
  76#include "fec.h"
  77
  78static void set_multicast_list(struct net_device *ndev);
  79static void fec_enet_itr_coal_set(struct net_device *ndev);
  80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
  81				int cpu, struct xdp_buff *xdp,
  82				u32 dma_sync_len);
  83
  84#define DRIVER_NAME	"fec"
 
 
 
 
  85
  86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  87
  88/* Pause frame feild and FIFO threshold */
  89#define FEC_ENET_FCE	(1 << 5)
  90#define FEC_ENET_RSEM_V	0x84
  91#define FEC_ENET_RSFL_V	16
  92#define FEC_ENET_RAEM_V	0x8
  93#define FEC_ENET_RAFL_V	0x8
  94#define FEC_ENET_OPD_V	0xFFF0
  95#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  96
  97#define FEC_ENET_XDP_PASS          0
  98#define FEC_ENET_XDP_CONSUMED      BIT(0)
  99#define FEC_ENET_XDP_TX            BIT(1)
 100#define FEC_ENET_XDP_REDIR         BIT(2)
 101
 102struct fec_devinfo {
 103	u32 quirks;
 104};
 105
 106static const struct fec_devinfo fec_imx25_info = {
 107	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
 108		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
 109};
 110
 111static const struct fec_devinfo fec_imx27_info = {
 112	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
 113		  FEC_QUIRK_HAS_MDIO_C45,
 114};
 115
 116static const struct fec_devinfo fec_imx28_info = {
 117	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 118		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 119		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
 120		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
 121};
 122
 123static const struct fec_devinfo fec_imx6q_info = {
 124	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 125		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 126		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 127		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
 128		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
 129};
 130
 131static const struct fec_devinfo fec_mvf600_info = {
 132	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
 133		  FEC_QUIRK_HAS_MDIO_C45,
 134};
 135
 136static const struct fec_devinfo fec_imx6x_info = {
 137	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 138		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 139		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 140		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 141		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 142		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 143		  FEC_QUIRK_HAS_MDIO_C45,
 144};
 145
 146static const struct fec_devinfo fec_imx6ul_info = {
 147	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 148		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 149		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 150		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 151		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
 152		  FEC_QUIRK_HAS_MDIO_C45,
 153};
 154
 155static const struct fec_devinfo fec_imx8mq_info = {
 156	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 157		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 158		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 159		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 160		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 161		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 162		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
 163		  FEC_QUIRK_HAS_MDIO_C45,
 164};
 165
 166static const struct fec_devinfo fec_imx8qm_info = {
 167	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 168		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 169		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 170		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 171		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 172		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 173		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
 174};
 175
 176static const struct fec_devinfo fec_s32v234_info = {
 177	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 178		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 179		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 180		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 181		  FEC_QUIRK_HAS_MDIO_C45,
 182};
 183
 184static struct platform_device_id fec_devtype[] = {
 185	{
 186		/* keep it for coldfire */
 187		.name = DRIVER_NAME,
 188		.driver_data = 0,
 189	}, {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190		/* sentinel */
 191	}
 192};
 193MODULE_DEVICE_TABLE(platform, fec_devtype);
 194
 
 
 
 
 
 
 
 
 195static const struct of_device_id fec_dt_ids[] = {
 196	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
 197	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
 198	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
 199	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
 200	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
 201	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
 202	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
 203	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
 204	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
 205	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
 206	{ /* sentinel */ }
 207};
 208MODULE_DEVICE_TABLE(of, fec_dt_ids);
 209
 210static unsigned char macaddr[ETH_ALEN];
 211module_param_array(macaddr, byte, NULL, 0);
 212MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 213
 214#if defined(CONFIG_M5272)
 215/*
 216 * Some hardware gets it MAC address out of local flash memory.
 217 * if this is non-zero then assume it is the address to get MAC from.
 218 */
 219#if defined(CONFIG_NETtel)
 220#define	FEC_FLASHMAC	0xf0006006
 221#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 222#define	FEC_FLASHMAC	0xf0006000
 223#elif defined(CONFIG_CANCam)
 224#define	FEC_FLASHMAC	0xf0020000
 225#elif defined (CONFIG_M5272C3)
 226#define	FEC_FLASHMAC	(0xffe04000 + 4)
 227#elif defined(CONFIG_MOD5272)
 228#define FEC_FLASHMAC	0xffc0406b
 229#else
 230#define	FEC_FLASHMAC	0
 231#endif
 232#endif /* CONFIG_M5272 */
 233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 235 *
 236 * 2048 byte skbufs are allocated. However, alignment requirements
 237 * varies between FEC variants. Worst case is 64, so round down by 64.
 238 */
 239#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 240#define PKT_MINBUF_SIZE		64
 
 241
 242/* FEC receive acceleration */
 243#define FEC_RACC_IPDIS		(1 << 1)
 244#define FEC_RACC_PRODIS		(1 << 2)
 245#define FEC_RACC_SHIFT16	BIT(7)
 246#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 247
 248/* MIB Control Register */
 249#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 250
 251/*
 252 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 253 * size bits. Other FEC hardware does not, so we need to take that into
 254 * account when setting it.
 255 */
 256#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 257    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 258    defined(CONFIG_ARM64)
 259#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 260#else
 261#define	OPT_FRAME_SIZE	0
 262#endif
 263
 264/* FEC MII MMFR bits definition */
 265#define FEC_MMFR_ST		(1 << 30)
 266#define FEC_MMFR_ST_C45		(0)
 267#define FEC_MMFR_OP_READ	(2 << 28)
 268#define FEC_MMFR_OP_READ_C45	(3 << 28)
 269#define FEC_MMFR_OP_WRITE	(1 << 28)
 270#define FEC_MMFR_OP_ADDR_WRITE	(0)
 271#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 272#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 273#define FEC_MMFR_TA		(2 << 16)
 274#define FEC_MMFR_DATA(v)	(v & 0xffff)
 275/* FEC ECR bits definition */
 276#define FEC_ECR_MAGICEN		(1 << 2)
 277#define FEC_ECR_SLEEP		(1 << 3)
 278
 279#define FEC_MII_TIMEOUT		30000 /* us */
 280
 281/* Transmitter timeout */
 282#define TX_TIMEOUT (2 * HZ)
 283
 284#define FEC_PAUSE_FLAG_AUTONEG	0x1
 285#define FEC_PAUSE_FLAG_ENABLE	0x2
 286#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 287#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 288#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 289
 290/* Max number of allowed TCP segments for software TSO */
 291#define FEC_MAX_TSO_SEGS	100
 292#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 293
 294#define IS_TSO_HEADER(txq, addr) \
 295	((addr >= txq->tso_hdrs_dma) && \
 296	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 297
 298static int mii_cnt;
 299
 300static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 301					     struct bufdesc_prop *bd)
 302{
 303	return (bdp >= bd->last) ? bd->base
 304			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 305}
 306
 307static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 308					     struct bufdesc_prop *bd)
 309{
 310	return (bdp <= bd->base) ? bd->last
 311			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 312}
 
 
 
 
 
 313
 314static int fec_enet_get_bd_index(struct bufdesc *bdp,
 315				 struct bufdesc_prop *bd)
 316{
 317	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 
 
 318}
 319
 320static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 
 321{
 322	int entries;
 323
 324	entries = (((const char *)txq->dirty_tx -
 325			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 
 
 
 
 
 
 
 
 
 
 
 326
 327	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 
 
 
 
 328}
 329
 330static void swap_buffer(void *bufaddr, int len)
 331{
 332	int i;
 333	unsigned int *buf = bufaddr;
 334
 335	for (i = 0; i < len; i += 4, buf++)
 336		swab32s(buf);
 337}
 338
 339static void fec_dump(struct net_device *ndev)
 340{
 341	struct fec_enet_private *fep = netdev_priv(ndev);
 342	struct bufdesc *bdp;
 343	struct fec_enet_priv_tx_q *txq;
 344	int index = 0;
 345
 346	netdev_info(ndev, "TX ring dump\n");
 347	pr_info("Nr     SC     addr       len  SKB\n");
 348
 349	txq = fep->tx_queue[0];
 350	bdp = txq->bd.base;
 351
 352	do {
 353		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 354			index,
 355			bdp == txq->bd.cur ? 'S' : ' ',
 356			bdp == txq->dirty_tx ? 'H' : ' ',
 357			fec16_to_cpu(bdp->cbd_sc),
 358			fec32_to_cpu(bdp->cbd_bufaddr),
 359			fec16_to_cpu(bdp->cbd_datlen),
 360			txq->tx_buf[index].buf_p);
 361		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 362		index++;
 363	} while (bdp != txq->bd.base);
 364}
 365
 366/*
 367 * Coldfire does not support DMA coherent allocations, and has historically used
 368 * a band-aid with a manual flush in fec_enet_rx_queue.
 369 */
 370#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
 371static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 372		gfp_t gfp)
 373{
 374	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
 375}
 376
 377static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 378		dma_addr_t handle)
 379{
 380	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
 381}
 382#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 383static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 384		gfp_t gfp)
 385{
 386	return dma_alloc_coherent(dev, size, handle, gfp);
 387}
 388
 389static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 390		dma_addr_t handle)
 391{
 392	dma_free_coherent(dev, size, cpu_addr, handle);
 393}
 394#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 395
 396struct fec_dma_devres {
 397	size_t		size;
 398	void		*vaddr;
 399	dma_addr_t	dma_handle;
 400};
 401
 402static void fec_dmam_release(struct device *dev, void *res)
 403{
 404	struct fec_dma_devres *this = res;
 405
 406	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
 407}
 408
 409static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 410		gfp_t gfp)
 411{
 412	struct fec_dma_devres *dr;
 413	void *vaddr;
 414
 415	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
 416	if (!dr)
 417		return NULL;
 418	vaddr = fec_dma_alloc(dev, size, handle, gfp);
 419	if (!vaddr) {
 420		devres_free(dr);
 421		return NULL;
 422	}
 423	dr->vaddr = vaddr;
 424	dr->dma_handle = *handle;
 425	dr->size = size;
 426	devres_add(dev, dr);
 427	return vaddr;
 428}
 429
 430static inline bool is_ipv4_pkt(struct sk_buff *skb)
 431{
 432	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 433}
 434
 435static int
 436fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 437{
 438	/* Only run for packets requiring a checksum. */
 439	if (skb->ip_summed != CHECKSUM_PARTIAL)
 440		return 0;
 441
 442	if (unlikely(skb_cow_head(skb, 0)))
 443		return -1;
 444
 445	if (is_ipv4_pkt(skb))
 446		ip_hdr(skb)->check = 0;
 447	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 448
 449	return 0;
 450}
 451
 452static int
 453fec_enet_create_page_pool(struct fec_enet_private *fep,
 454			  struct fec_enet_priv_rx_q *rxq, int size)
 455{
 456	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
 457	struct page_pool_params pp_params = {
 458		.order = 0,
 459		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
 460		.pool_size = size,
 461		.nid = dev_to_node(&fep->pdev->dev),
 462		.dev = &fep->pdev->dev,
 463		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
 464		.offset = FEC_ENET_XDP_HEADROOM,
 465		.max_len = FEC_ENET_RX_FRSIZE,
 466	};
 467	int err;
 468
 469	rxq->page_pool = page_pool_create(&pp_params);
 470	if (IS_ERR(rxq->page_pool)) {
 471		err = PTR_ERR(rxq->page_pool);
 472		rxq->page_pool = NULL;
 473		return err;
 474	}
 475
 476	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
 477	if (err < 0)
 478		goto err_free_pp;
 479
 480	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
 481					 rxq->page_pool);
 482	if (err)
 483		goto err_unregister_rxq;
 484
 485	return 0;
 486
 487err_unregister_rxq:
 488	xdp_rxq_info_unreg(&rxq->xdp_rxq);
 489err_free_pp:
 490	page_pool_destroy(rxq->page_pool);
 491	rxq->page_pool = NULL;
 492	return err;
 493}
 494
 495static struct bufdesc *
 496fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 497			     struct sk_buff *skb,
 498			     struct net_device *ndev)
 499{
 500	struct fec_enet_private *fep = netdev_priv(ndev);
 501	struct bufdesc *bdp = txq->bd.cur;
 502	struct bufdesc_ex *ebdp;
 503	int nr_frags = skb_shinfo(skb)->nr_frags;
 504	int frag, frag_len;
 505	unsigned short status;
 506	unsigned int estatus = 0;
 507	skb_frag_t *this_frag;
 508	unsigned int index;
 509	void *bufaddr;
 510	dma_addr_t addr;
 511	int i;
 512
 513	for (frag = 0; frag < nr_frags; frag++) {
 514		this_frag = &skb_shinfo(skb)->frags[frag];
 515		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 516		ebdp = (struct bufdesc_ex *)bdp;
 517
 518		status = fec16_to_cpu(bdp->cbd_sc);
 519		status &= ~BD_ENET_TX_STATS;
 520		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 521		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 522
 523		/* Handle the last BD specially */
 524		if (frag == nr_frags - 1) {
 525			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 526			if (fep->bufdesc_ex) {
 527				estatus |= BD_ENET_TX_INT;
 528				if (unlikely(skb_shinfo(skb)->tx_flags &
 529					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 530					estatus |= BD_ENET_TX_TS;
 531			}
 532		}
 533
 534		if (fep->bufdesc_ex) {
 535			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 536				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 537			if (skb->ip_summed == CHECKSUM_PARTIAL)
 538				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 539
 540			ebdp->cbd_bdu = 0;
 541			ebdp->cbd_esc = cpu_to_fec32(estatus);
 542		}
 543
 544		bufaddr = skb_frag_address(this_frag);
 545
 546		index = fec_enet_get_bd_index(bdp, &txq->bd);
 547		if (((unsigned long) bufaddr) & fep->tx_align ||
 548			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 549			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 550			bufaddr = txq->tx_bounce[index];
 551
 552			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 553				swap_buffer(bufaddr, frag_len);
 554		}
 555
 556		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 557				      DMA_TO_DEVICE);
 558		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 559			if (net_ratelimit())
 560				netdev_err(ndev, "Tx DMA memory map failed\n");
 561			goto dma_mapping_error;
 562		}
 563
 564		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 565		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 566		/* Make sure the updates to rest of the descriptor are
 567		 * performed before transferring ownership.
 568		 */
 569		wmb();
 570		bdp->cbd_sc = cpu_to_fec16(status);
 571	}
 572
 573	return bdp;
 574dma_mapping_error:
 575	bdp = txq->bd.cur;
 576	for (i = 0; i < frag; i++) {
 577		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 578		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 579				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 580	}
 581	return ERR_PTR(-ENOMEM);
 582}
 583
 584static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 585				   struct sk_buff *skb, struct net_device *ndev)
 586{
 587	struct fec_enet_private *fep = netdev_priv(ndev);
 588	int nr_frags = skb_shinfo(skb)->nr_frags;
 589	struct bufdesc *bdp, *last_bdp;
 590	void *bufaddr;
 591	dma_addr_t addr;
 592	unsigned short status;
 593	unsigned short buflen;
 594	unsigned int estatus = 0;
 595	unsigned int index;
 596	int entries_free;
 597
 598	entries_free = fec_enet_get_free_txdesc_num(txq);
 599	if (entries_free < MAX_SKB_FRAGS + 1) {
 600		dev_kfree_skb_any(skb);
 601		if (net_ratelimit())
 602			netdev_err(ndev, "NOT enough BD for SG!\n");
 603		return NETDEV_TX_OK;
 604	}
 605
 606	/* Protocol checksum off-load for TCP and UDP. */
 607	if (fec_enet_clear_csum(skb, ndev)) {
 608		dev_kfree_skb_any(skb);
 609		return NETDEV_TX_OK;
 610	}
 611
 612	/* Fill in a Tx ring entry */
 613	bdp = txq->bd.cur;
 614	last_bdp = bdp;
 615	status = fec16_to_cpu(bdp->cbd_sc);
 616	status &= ~BD_ENET_TX_STATS;
 617
 618	/* Set buffer length and buffer pointer */
 619	bufaddr = skb->data;
 620	buflen = skb_headlen(skb);
 621
 622	index = fec_enet_get_bd_index(bdp, &txq->bd);
 623	if (((unsigned long) bufaddr) & fep->tx_align ||
 624		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 625		memcpy(txq->tx_bounce[index], skb->data, buflen);
 626		bufaddr = txq->tx_bounce[index];
 
 
 
 
 
 627
 628		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 629			swap_buffer(bufaddr, buflen);
 
 630	}
 631
 632	/* Push the data cache so the CPM does not get stale memory data. */
 633	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 634	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635		dev_kfree_skb_any(skb);
 636		if (net_ratelimit())
 637			netdev_err(ndev, "Tx DMA memory map failed\n");
 638		return NETDEV_TX_OK;
 639	}
 640
 641	if (nr_frags) {
 642		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 643		if (IS_ERR(last_bdp)) {
 644			dma_unmap_single(&fep->pdev->dev, addr,
 645					 buflen, DMA_TO_DEVICE);
 646			dev_kfree_skb_any(skb);
 647			return NETDEV_TX_OK;
 648		}
 649	} else {
 650		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 651		if (fep->bufdesc_ex) {
 652			estatus = BD_ENET_TX_INT;
 653			if (unlikely(skb_shinfo(skb)->tx_flags &
 654				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 655				estatus |= BD_ENET_TX_TS;
 656		}
 657	}
 658	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 659	bdp->cbd_datlen = cpu_to_fec16(buflen);
 660
 661	if (fep->bufdesc_ex) {
 662
 663		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 664
 665		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 666			fep->hwts_tx_en))
 
 667			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 
 
 668
 669		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 670			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 671
 672		if (skb->ip_summed == CHECKSUM_PARTIAL)
 673			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 674
 675		ebdp->cbd_bdu = 0;
 676		ebdp->cbd_esc = cpu_to_fec32(estatus);
 677	}
 678
 679	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 680	/* Save skb pointer */
 681	txq->tx_buf[index].buf_p = skb;
 682
 683	/* Make sure the updates to rest of the descriptor are performed before
 684	 * transferring ownership.
 685	 */
 686	wmb();
 687
 688	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 689	 * it's the last BD of the frame, and to put the CRC on the end.
 690	 */
 691	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 692	bdp->cbd_sc = cpu_to_fec16(status);
 
 
 
 
 
 
 
 
 
 693
 694	/* If this was the last BD in the ring, start at the beginning again. */
 695	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 696
 697	skb_tx_timestamp(skb);
 698
 699	/* Make sure the update to bdp is performed before txq->bd.cur. */
 700	wmb();
 701	txq->bd.cur = bdp;
 702
 703	/* Trigger transmission start */
 704	writel(0, txq->bd.reg_desc_active);
 705
 706	return 0;
 707}
 708
 709static int
 710fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 711			  struct net_device *ndev,
 712			  struct bufdesc *bdp, int index, char *data,
 713			  int size, bool last_tcp, bool is_last)
 714{
 715	struct fec_enet_private *fep = netdev_priv(ndev);
 716	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 717	unsigned short status;
 718	unsigned int estatus = 0;
 719	dma_addr_t addr;
 720
 721	status = fec16_to_cpu(bdp->cbd_sc);
 722	status &= ~BD_ENET_TX_STATS;
 723
 724	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 725
 726	if (((unsigned long) data) & fep->tx_align ||
 727		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 728		memcpy(txq->tx_bounce[index], data, size);
 729		data = txq->tx_bounce[index];
 730
 731		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 732			swap_buffer(data, size);
 733	}
 734
 735	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 736	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 737		dev_kfree_skb_any(skb);
 738		if (net_ratelimit())
 739			netdev_err(ndev, "Tx DMA memory map failed\n");
 740		return NETDEV_TX_OK;
 741	}
 742
 743	bdp->cbd_datlen = cpu_to_fec16(size);
 744	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 745
 746	if (fep->bufdesc_ex) {
 747		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 748			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 749		if (skb->ip_summed == CHECKSUM_PARTIAL)
 750			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 751		ebdp->cbd_bdu = 0;
 752		ebdp->cbd_esc = cpu_to_fec32(estatus);
 753	}
 754
 755	/* Handle the last BD specially */
 756	if (last_tcp)
 757		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 758	if (is_last) {
 759		status |= BD_ENET_TX_INTR;
 760		if (fep->bufdesc_ex)
 761			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 762	}
 763
 764	bdp->cbd_sc = cpu_to_fec16(status);
 765
 766	return 0;
 767}
 768
 769static int
 770fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 771			 struct sk_buff *skb, struct net_device *ndev,
 772			 struct bufdesc *bdp, int index)
 773{
 774	struct fec_enet_private *fep = netdev_priv(ndev);
 775	int hdr_len = skb_tcp_all_headers(skb);
 776	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 777	void *bufaddr;
 778	unsigned long dmabuf;
 779	unsigned short status;
 780	unsigned int estatus = 0;
 781
 782	status = fec16_to_cpu(bdp->cbd_sc);
 783	status &= ~BD_ENET_TX_STATS;
 784	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 785
 786	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 787	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 788	if (((unsigned long)bufaddr) & fep->tx_align ||
 789		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 790		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 791		bufaddr = txq->tx_bounce[index];
 792
 793		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 794			swap_buffer(bufaddr, hdr_len);
 795
 796		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 797					hdr_len, DMA_TO_DEVICE);
 798		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 799			dev_kfree_skb_any(skb);
 800			if (net_ratelimit())
 801				netdev_err(ndev, "Tx DMA memory map failed\n");
 802			return NETDEV_TX_OK;
 803		}
 804	}
 805
 806	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 807	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 808
 809	if (fep->bufdesc_ex) {
 810		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 811			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 812		if (skb->ip_summed == CHECKSUM_PARTIAL)
 813			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 814		ebdp->cbd_bdu = 0;
 815		ebdp->cbd_esc = cpu_to_fec32(estatus);
 816	}
 817
 818	bdp->cbd_sc = cpu_to_fec16(status);
 819
 820	return 0;
 821}
 822
 823static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 824				   struct sk_buff *skb,
 825				   struct net_device *ndev)
 826{
 827	struct fec_enet_private *fep = netdev_priv(ndev);
 828	int hdr_len, total_len, data_left;
 829	struct bufdesc *bdp = txq->bd.cur;
 830	struct tso_t tso;
 831	unsigned int index = 0;
 832	int ret;
 833
 834	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 835		dev_kfree_skb_any(skb);
 836		if (net_ratelimit())
 837			netdev_err(ndev, "NOT enough BD for TSO!\n");
 838		return NETDEV_TX_OK;
 839	}
 840
 841	/* Protocol checksum off-load for TCP and UDP. */
 842	if (fec_enet_clear_csum(skb, ndev)) {
 843		dev_kfree_skb_any(skb);
 844		return NETDEV_TX_OK;
 845	}
 846
 847	/* Initialize the TSO handler, and prepare the first payload */
 848	hdr_len = tso_start(skb, &tso);
 849
 850	total_len = skb->len - hdr_len;
 851	while (total_len > 0) {
 852		char *hdr;
 853
 854		index = fec_enet_get_bd_index(bdp, &txq->bd);
 855		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 856		total_len -= data_left;
 857
 858		/* prepare packet headers: MAC + IP + TCP */
 859		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 860		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 861		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 862		if (ret)
 863			goto err_release;
 864
 865		while (data_left > 0) {
 866			int size;
 867
 868			size = min_t(int, tso.size, data_left);
 869			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 870			index = fec_enet_get_bd_index(bdp, &txq->bd);
 871			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 872							bdp, index,
 873							tso.data, size,
 874							size == data_left,
 875							total_len == 0);
 876			if (ret)
 877				goto err_release;
 878
 879			data_left -= size;
 880			tso_build_data(skb, &tso, size);
 881		}
 882
 883		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 884	}
 885
 886	/* Save skb pointer */
 887	txq->tx_buf[index].buf_p = skb;
 888
 889	skb_tx_timestamp(skb);
 890	txq->bd.cur = bdp;
 891
 892	/* Trigger transmission start */
 893	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 894	    !readl(txq->bd.reg_desc_active) ||
 895	    !readl(txq->bd.reg_desc_active) ||
 896	    !readl(txq->bd.reg_desc_active) ||
 897	    !readl(txq->bd.reg_desc_active))
 898		writel(0, txq->bd.reg_desc_active);
 899
 900	return 0;
 901
 902err_release:
 903	/* TODO: Release all used data descriptors for TSO */
 904	return ret;
 905}
 906
 907static netdev_tx_t
 908fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 909{
 910	struct fec_enet_private *fep = netdev_priv(ndev);
 911	int entries_free;
 912	unsigned short queue;
 913	struct fec_enet_priv_tx_q *txq;
 914	struct netdev_queue *nq;
 915	int ret;
 916
 917	queue = skb_get_queue_mapping(skb);
 918	txq = fep->tx_queue[queue];
 919	nq = netdev_get_tx_queue(ndev, queue);
 920
 921	if (skb_is_gso(skb))
 922		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 923	else
 924		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 925	if (ret)
 926		return ret;
 927
 928	entries_free = fec_enet_get_free_txdesc_num(txq);
 929	if (entries_free <= txq->tx_stop_threshold)
 930		netif_tx_stop_queue(nq);
 931
 932	return NETDEV_TX_OK;
 933}
 934
 935/* Init RX & TX buffer descriptors
 936 */
 937static void fec_enet_bd_init(struct net_device *dev)
 938{
 939	struct fec_enet_private *fep = netdev_priv(dev);
 940	struct fec_enet_priv_tx_q *txq;
 941	struct fec_enet_priv_rx_q *rxq;
 942	struct bufdesc *bdp;
 943	unsigned int i;
 944	unsigned int q;
 945
 946	for (q = 0; q < fep->num_rx_queues; q++) {
 947		/* Initialize the receive buffer descriptors. */
 948		rxq = fep->rx_queue[q];
 949		bdp = rxq->bd.base;
 950
 951		for (i = 0; i < rxq->bd.ring_size; i++) {
 952
 953			/* Initialize the BD for every fragment in the page. */
 954			if (bdp->cbd_bufaddr)
 955				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 956			else
 957				bdp->cbd_sc = cpu_to_fec16(0);
 958			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 959		}
 960
 961		/* Set the last buffer to wrap */
 962		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 963		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 964
 965		rxq->bd.cur = rxq->bd.base;
 966	}
 967
 968	for (q = 0; q < fep->num_tx_queues; q++) {
 969		/* ...and the same for transmit */
 970		txq = fep->tx_queue[q];
 971		bdp = txq->bd.base;
 972		txq->bd.cur = bdp;
 973
 974		for (i = 0; i < txq->bd.ring_size; i++) {
 975			/* Initialize the BD for every fragment in the page. */
 976			bdp->cbd_sc = cpu_to_fec16(0);
 977			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
 978				if (bdp->cbd_bufaddr &&
 979				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 980					dma_unmap_single(&fep->pdev->dev,
 981							 fec32_to_cpu(bdp->cbd_bufaddr),
 982							 fec16_to_cpu(bdp->cbd_datlen),
 983							 DMA_TO_DEVICE);
 984				if (txq->tx_buf[i].buf_p)
 985					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
 986			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
 987				if (bdp->cbd_bufaddr)
 988					dma_unmap_single(&fep->pdev->dev,
 989							 fec32_to_cpu(bdp->cbd_bufaddr),
 990							 fec16_to_cpu(bdp->cbd_datlen),
 991							 DMA_TO_DEVICE);
 992
 993				if (txq->tx_buf[i].buf_p)
 994					xdp_return_frame(txq->tx_buf[i].buf_p);
 995			} else {
 996				struct page *page = txq->tx_buf[i].buf_p;
 997
 998				if (page)
 999					page_pool_put_page(page->pp, page, 0, false);
1000			}
1001
1002			txq->tx_buf[i].buf_p = NULL;
1003			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1004			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1005			bdp->cbd_bufaddr = cpu_to_fec32(0);
1006			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1007		}
1008
1009		/* Set the last buffer to wrap */
1010		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1011		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1012		txq->dirty_tx = bdp;
1013	}
1014}
1015
1016static void fec_enet_active_rxring(struct net_device *ndev)
1017{
1018	struct fec_enet_private *fep = netdev_priv(ndev);
1019	int i;
1020
1021	for (i = 0; i < fep->num_rx_queues; i++)
1022		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1023}
1024
1025static void fec_enet_enable_ring(struct net_device *ndev)
1026{
1027	struct fec_enet_private *fep = netdev_priv(ndev);
1028	struct fec_enet_priv_tx_q *txq;
1029	struct fec_enet_priv_rx_q *rxq;
1030	int i;
1031
1032	for (i = 0; i < fep->num_rx_queues; i++) {
1033		rxq = fep->rx_queue[i];
1034		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1035		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1036
1037		/* enable DMA1/2 */
1038		if (i)
1039			writel(RCMR_MATCHEN | RCMR_CMP(i),
1040			       fep->hwp + FEC_RCMR(i));
1041	}
1042
1043	for (i = 0; i < fep->num_tx_queues; i++) {
1044		txq = fep->tx_queue[i];
1045		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1046
1047		/* enable DMA1/2 */
1048		if (i)
1049			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1050			       fep->hwp + FEC_DMA_CFG(i));
1051	}
 
 
 
 
 
1052}
1053
1054/*
1055 * This function is called to start or restart the FEC during a link
1056 * change, transmit timeout, or to reconfigure the FEC.  The network
1057 * packet processing for this device must be stopped before this call.
1058 */
1059static void
1060fec_restart(struct net_device *ndev)
1061{
1062	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 
1063	u32 temp_mac[2];
1064	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1065	u32 ecntl = 0x2; /* ETHEREN */
1066
1067	/* Whack a reset.  We should wait for this.
1068	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1069	 * instead of reset MAC itself.
1070	 */
1071	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1072	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1073		writel(0, fep->hwp + FEC_ECNTRL);
1074	} else {
1075		writel(1, fep->hwp + FEC_ECNTRL);
1076		udelay(10);
1077	}
1078
 
 
 
 
1079	/*
1080	 * enet-mac reset will reset mac address registers too,
1081	 * so need to reconfigure it.
1082	 */
1083	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1084	writel((__force u32)cpu_to_be32(temp_mac[0]),
1085	       fep->hwp + FEC_ADDR_LOW);
1086	writel((__force u32)cpu_to_be32(temp_mac[1]),
1087	       fep->hwp + FEC_ADDR_HIGH);
 
 
 
1088
1089	/* Clear any outstanding interrupt, except MDIO. */
1090	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1091
1092	fec_enet_bd_init(ndev);
1093
1094	fec_enet_enable_ring(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095
1096	/* Enable MII mode */
1097	if (fep->full_duplex == DUPLEX_FULL) {
1098		/* FD enable */
1099		writel(0x04, fep->hwp + FEC_X_CNTRL);
1100	} else {
1101		/* No Rcv on Xmit */
1102		rcntl |= 0x02;
1103		writel(0x0, fep->hwp + FEC_X_CNTRL);
1104	}
1105
 
 
1106	/* Set MII speed */
1107	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1108
1109#if !defined(CONFIG_M5272)
1110	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1111		u32 val = readl(fep->hwp + FEC_RACC);
1112
1113		/* align IP header */
1114		val |= FEC_RACC_SHIFT16;
1115		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1116			/* set RX checksum */
1117			val |= FEC_RACC_OPTIONS;
1118		else
1119			val &= ~FEC_RACC_OPTIONS;
1120		writel(val, fep->hwp + FEC_RACC);
1121		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1122	}
1123#endif
1124
1125	/*
1126	 * The phy interface and speed need to get configured
1127	 * differently on enet-mac.
1128	 */
1129	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1130		/* Enable flow control and length check */
1131		rcntl |= 0x40000000 | 0x00000020;
1132
1133		/* RGMII, RMII or MII */
1134		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1135		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1136		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1137		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1138			rcntl |= (1 << 6);
1139		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1140			rcntl |= (1 << 8);
1141		else
1142			rcntl &= ~(1 << 8);
1143
1144		/* 1G, 100M or 10M */
1145		if (ndev->phydev) {
1146			if (ndev->phydev->speed == SPEED_1000)
1147				ecntl |= (1 << 5);
1148			else if (ndev->phydev->speed == SPEED_100)
1149				rcntl &= ~(1 << 9);
1150			else
1151				rcntl |= (1 << 9);
1152		}
1153	} else {
1154#ifdef FEC_MIIGSK_ENR
1155		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1156			u32 cfgr;
1157			/* disable the gasket and wait */
1158			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1159			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1160				udelay(1);
1161
1162			/*
1163			 * configure the gasket:
1164			 *   RMII, 50 MHz, no loopback, no echo
1165			 *   MII, 25 MHz, no loopback, no echo
1166			 */
1167			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1168				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1169			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1170				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1171			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1172
1173			/* re-enable the gasket */
1174			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1175		}
1176#endif
1177	}
1178
1179#if !defined(CONFIG_M5272)
1180	/* enable pause frame*/
1181	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1182	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1183	     ndev->phydev && ndev->phydev->pause)) {
1184		rcntl |= FEC_ENET_FCE;
1185
1186		/* set FIFO threshold parameter to reduce overrun */
1187		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1188		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1189		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1190		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1191
1192		/* OPD */
1193		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1194	} else {
1195		rcntl &= ~FEC_ENET_FCE;
1196	}
1197#endif /* !defined(CONFIG_M5272) */
1198
1199	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1200
1201	/* Setup multicast filter. */
1202	set_multicast_list(ndev);
1203#ifndef CONFIG_M5272
1204	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1205	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1206#endif
1207
1208	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1209		/* enable ENET endian swap */
1210		ecntl |= (1 << 8);
1211		/* enable ENET store and forward mode */
1212		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1213	}
1214
1215	if (fep->bufdesc_ex)
1216		ecntl |= (1 << 4);
1217
1218	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219	    fep->rgmii_txc_dly)
1220		ecntl |= FEC_ENET_TXC_DLY;
1221	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1222	    fep->rgmii_rxc_dly)
1223		ecntl |= FEC_ENET_RXC_DLY;
1224
1225#ifndef CONFIG_M5272
1226	/* Enable the MIB statistic event counters */
1227	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1228#endif
1229
1230	/* And last, enable the transmit and receive processing */
1231	writel(ecntl, fep->hwp + FEC_ECNTRL);
1232	fec_enet_active_rxring(ndev);
1233
1234	if (fep->bufdesc_ex)
1235		fec_ptp_start_cyclecounter(ndev);
1236
1237	/* Enable interrupts we wish to service */
1238	if (fep->link)
1239		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1240	else
1241		writel(0, fep->hwp + FEC_IMASK);
1242
1243	/* Init the interrupt coalescing */
1244	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1245		fec_enet_itr_coal_set(ndev);
1246}
1247
1248static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1249{
1250	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1251	      of_machine_is_compatible("fsl,imx8qxp") ||
1252	      of_machine_is_compatible("fsl,imx8dxl")))
1253		return 0;
1254
1255	return imx_scu_get_handle(&fep->ipc_handle);
1256}
1257
1258static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1259{
1260	struct device_node *np = fep->pdev->dev.of_node;
1261	u32 rsrc_id, val;
1262	int idx;
1263
1264	if (!np || !fep->ipc_handle)
1265		return;
1266
1267	idx = of_alias_get_id(np, "ethernet");
1268	if (idx < 0)
1269		idx = 0;
1270	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1271
1272	val = enabled ? 1 : 0;
1273	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1274}
1275
1276static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1277{
1278	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1279	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1280
1281	if (stop_gpr->gpr) {
1282		if (enabled)
1283			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1284					   BIT(stop_gpr->bit),
1285					   BIT(stop_gpr->bit));
1286		else
1287			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1288					   BIT(stop_gpr->bit), 0);
1289	} else if (pdata && pdata->sleep_mode_enable) {
1290		pdata->sleep_mode_enable(enabled);
1291	} else {
1292		fec_enet_ipg_stop_set(fep, enabled);
1293	}
1294}
1295
1296static void fec_irqs_disable(struct net_device *ndev)
1297{
1298	struct fec_enet_private *fep = netdev_priv(ndev);
1299
1300	writel(0, fep->hwp + FEC_IMASK);
1301}
1302
1303static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1304{
1305	struct fec_enet_private *fep = netdev_priv(ndev);
1306
1307	writel(0, fep->hwp + FEC_IMASK);
1308	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1309}
1310
1311static void
1312fec_stop(struct net_device *ndev)
1313{
1314	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
1315	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1316	u32 val;
1317
1318	/* We cannot expect a graceful transmit stop without link !!! */
1319	if (fep->link) {
1320		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1321		udelay(10);
1322		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1323			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1324	}
1325
1326	/* Whack a reset.  We should wait for this.
1327	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1328	 * instead of reset MAC itself.
1329	 */
1330	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1331		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1332			writel(0, fep->hwp + FEC_ECNTRL);
1333		} else {
1334			writel(1, fep->hwp + FEC_ECNTRL);
1335			udelay(10);
1336		}
1337	} else {
1338		val = readl(fep->hwp + FEC_ECNTRL);
1339		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1340		writel(val, fep->hwp + FEC_ECNTRL);
1341	}
1342	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1343	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1344
1345	/* We have to keep ENET enabled to have MII interrupt stay working */
1346	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1347		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1348		writel(2, fep->hwp + FEC_ECNTRL);
1349		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1350	}
1351}
1352
1353
1354static void
1355fec_timeout(struct net_device *ndev, unsigned int txqueue)
1356{
1357	struct fec_enet_private *fep = netdev_priv(ndev);
1358
1359	fec_dump(ndev);
1360
1361	ndev->stats.tx_errors++;
1362
1363	schedule_work(&fep->tx_timeout_work);
 
1364}
1365
1366static void fec_enet_timeout_work(struct work_struct *work)
1367{
1368	struct fec_enet_private *fep =
1369		container_of(work, struct fec_enet_private, tx_timeout_work);
1370	struct net_device *ndev = fep->netdev;
1371
1372	rtnl_lock();
1373	if (netif_device_present(ndev) || netif_running(ndev)) {
1374		napi_disable(&fep->napi);
1375		netif_tx_lock_bh(ndev);
1376		fec_restart(ndev);
1377		netif_tx_wake_all_queues(ndev);
1378		netif_tx_unlock_bh(ndev);
1379		napi_enable(&fep->napi);
1380	}
1381	rtnl_unlock();
1382}
1383
1384static void
1385fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1386	struct skb_shared_hwtstamps *hwtstamps)
1387{
1388	unsigned long flags;
1389	u64 ns;
1390
1391	spin_lock_irqsave(&fep->tmreg_lock, flags);
1392	ns = timecounter_cyc2time(&fep->tc, ts);
1393	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1394
1395	memset(hwtstamps, 0, sizeof(*hwtstamps));
1396	hwtstamps->hwtstamp = ns_to_ktime(ns);
1397}
1398
1399static void
1400fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1401{
1402	struct	fec_enet_private *fep;
1403	struct xdp_frame *xdpf;
1404	struct bufdesc *bdp;
1405	unsigned short status;
1406	struct	sk_buff	*skb;
1407	struct fec_enet_priv_tx_q *txq;
1408	struct netdev_queue *nq;
1409	int	index = 0;
1410	int	entries_free;
1411	struct page *page;
1412	int frame_len;
1413
1414	fep = netdev_priv(ndev);
 
1415
1416	txq = fep->tx_queue[queue_id];
1417	/* get next bdp of dirty_tx */
1418	nq = netdev_get_tx_queue(ndev, queue_id);
1419	bdp = txq->dirty_tx;
1420
1421	/* get next bdp of dirty_tx */
1422	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1423
1424	while (bdp != READ_ONCE(txq->bd.cur)) {
1425		/* Order the load of bd.cur and cbd_sc */
1426		rmb();
1427		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1428		if (status & BD_ENET_TX_READY)
1429			break;
1430
1431		index = fec_enet_get_bd_index(bdp, &txq->bd);
1432
1433		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1434			skb = txq->tx_buf[index].buf_p;
1435			if (bdp->cbd_bufaddr &&
1436			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1437				dma_unmap_single(&fep->pdev->dev,
1438						 fec32_to_cpu(bdp->cbd_bufaddr),
1439						 fec16_to_cpu(bdp->cbd_datlen),
1440						 DMA_TO_DEVICE);
1441			bdp->cbd_bufaddr = cpu_to_fec32(0);
1442			if (!skb)
1443				goto tx_buf_done;
1444		} else {
1445			/* Tx processing cannot call any XDP (or page pool) APIs if
1446			 * the "budget" is 0. Because NAPI is called with budget of
1447			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1448			 * however, we can't use the page pool from IRQ context.
1449			 */
1450			if (unlikely(!budget))
1451				break;
1452
1453			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1454				xdpf = txq->tx_buf[index].buf_p;
1455				if (bdp->cbd_bufaddr)
1456					dma_unmap_single(&fep->pdev->dev,
1457							 fec32_to_cpu(bdp->cbd_bufaddr),
1458							 fec16_to_cpu(bdp->cbd_datlen),
1459							 DMA_TO_DEVICE);
1460			} else {
1461				page = txq->tx_buf[index].buf_p;
1462			}
1463
1464			bdp->cbd_bufaddr = cpu_to_fec32(0);
1465			if (unlikely(!txq->tx_buf[index].buf_p)) {
1466				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1467				goto tx_buf_done;
1468			}
1469
1470			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1471		}
 
 
1472
1473		/* Check for errors. */
1474		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1475				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1476				   BD_ENET_TX_CSL)) {
1477			ndev->stats.tx_errors++;
1478			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1479				ndev->stats.tx_heartbeat_errors++;
1480			if (status & BD_ENET_TX_LC)  /* Late collision */
1481				ndev->stats.tx_window_errors++;
1482			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1483				ndev->stats.tx_aborted_errors++;
1484			if (status & BD_ENET_TX_UN)  /* Underrun */
1485				ndev->stats.tx_fifo_errors++;
1486			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1487				ndev->stats.tx_carrier_errors++;
1488		} else {
1489			ndev->stats.tx_packets++;
 
 
1490
1491			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1492				ndev->stats.tx_bytes += skb->len;
1493			else
1494				ndev->stats.tx_bytes += frame_len;
 
 
 
 
 
 
 
 
1495		}
1496
 
 
 
1497		/* Deferred means some collisions occurred during transmit,
1498		 * but we eventually sent the packet OK.
1499		 */
1500		if (status & BD_ENET_TX_DEF)
1501			ndev->stats.collisions++;
1502
1503		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1504			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1505			 * are to time stamp the packet, so we still need to check time
1506			 * stamping enabled flag.
1507			 */
1508			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1509				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1510				struct skb_shared_hwtstamps shhwtstamps;
1511				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1512
1513				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1514				skb_tstamp_tx(skb, &shhwtstamps);
1515			}
1516
1517			/* Free the sk buffer associated with this last transmit */
1518			napi_consume_skb(skb, budget);
1519		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1520			xdp_return_frame_rx_napi(xdpf);
1521		} else { /* recycle pages of XDP_TX frames */
1522			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1523			page_pool_put_page(page->pp, page, 0, true);
1524		}
1525
1526		txq->tx_buf[index].buf_p = NULL;
1527		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1528		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1529
1530tx_buf_done:
1531		/* Make sure the update to bdp and tx_buf are performed
1532		 * before dirty_tx
1533		 */
1534		wmb();
1535		txq->dirty_tx = bdp;
1536
1537		/* Update pointer to next buffer descriptor to be transmitted */
1538		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1539
1540		/* Since we have freed up a buffer, the ring is no longer full
1541		 */
1542		if (netif_tx_queue_stopped(nq)) {
1543			entries_free = fec_enet_get_free_txdesc_num(txq);
1544			if (entries_free >= txq->tx_wake_threshold)
1545				netif_tx_wake_queue(nq);
1546		}
1547	}
1548
1549	/* ERR006358: Keep the transmitter going */
1550	if (bdp != txq->bd.cur &&
1551	    readl(txq->bd.reg_desc_active) == 0)
1552		writel(0, txq->bd.reg_desc_active);
1553}
1554
1555static void fec_enet_tx(struct net_device *ndev, int budget)
1556{
1557	struct fec_enet_private *fep = netdev_priv(ndev);
1558	int i;
1559
1560	/* Make sure that AVB queues are processed first. */
1561	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1562		fec_enet_tx_queue(ndev, i, budget);
1563}
1564
1565static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1566				struct bufdesc *bdp, int index)
1567{
1568	struct page *new_page;
1569	dma_addr_t phys_addr;
1570
1571	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1572	WARN_ON(!new_page);
1573	rxq->rx_skb_info[index].page = new_page;
1574
1575	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1576	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1577	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1578}
1579
1580static u32
1581fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1582		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1583{
1584	unsigned int sync, len = xdp->data_end - xdp->data;
1585	u32 ret = FEC_ENET_XDP_PASS;
1586	struct page *page;
1587	int err;
1588	u32 act;
1589
1590	act = bpf_prog_run_xdp(prog, xdp);
1591
1592	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1593	 * max len CPU touch
1594	 */
1595	sync = xdp->data_end - xdp->data;
1596	sync = max(sync, len);
1597
1598	switch (act) {
1599	case XDP_PASS:
1600		rxq->stats[RX_XDP_PASS]++;
1601		ret = FEC_ENET_XDP_PASS;
1602		break;
1603
1604	case XDP_REDIRECT:
1605		rxq->stats[RX_XDP_REDIRECT]++;
1606		err = xdp_do_redirect(fep->netdev, xdp, prog);
1607		if (unlikely(err))
1608			goto xdp_err;
1609
1610		ret = FEC_ENET_XDP_REDIR;
1611		break;
1612
1613	case XDP_TX:
1614		rxq->stats[RX_XDP_TX]++;
1615		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1616		if (unlikely(err)) {
1617			rxq->stats[RX_XDP_TX_ERRORS]++;
1618			goto xdp_err;
1619		}
1620
1621		ret = FEC_ENET_XDP_TX;
1622		break;
1623
1624	default:
1625		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1626		fallthrough;
1627
1628	case XDP_ABORTED:
1629		fallthrough;    /* handle aborts by dropping packet */
1630
1631	case XDP_DROP:
1632		rxq->stats[RX_XDP_DROP]++;
1633xdp_err:
1634		ret = FEC_ENET_XDP_CONSUMED;
1635		page = virt_to_head_page(xdp->data);
1636		page_pool_put_page(rxq->page_pool, page, sync, true);
1637		if (act != XDP_DROP)
1638			trace_xdp_exception(fep->netdev, prog, act);
1639		break;
1640	}
1641
1642	return ret;
1643}
1644
1645/* During a receive, the bd_rx.cur points to the current incoming buffer.
1646 * When we update through the ring, if the next incoming buffer has
1647 * not been given to the system, we just set the empty indicator,
1648 * effectively tossing the packet.
1649 */
1650static int
1651fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1652{
1653	struct fec_enet_private *fep = netdev_priv(ndev);
1654	struct fec_enet_priv_rx_q *rxq;
 
1655	struct bufdesc *bdp;
1656	unsigned short status;
1657	struct  sk_buff *skb;
1658	ushort	pkt_len;
1659	__u8 *data;
1660	int	pkt_received = 0;
1661	struct	bufdesc_ex *ebdp = NULL;
1662	bool	vlan_packet_rcvd = false;
1663	u16	vlan_tag;
1664	int	index = 0;
1665	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1666	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1667	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1668	u32 data_start = FEC_ENET_XDP_HEADROOM;
1669	int cpu = smp_processor_id();
1670	struct xdp_buff xdp;
1671	struct page *page;
1672	u32 sub_len = 4;
1673
1674#if !defined(CONFIG_M5272)
1675	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1676	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1677	 */
1678	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1679		data_start += 2;
1680		sub_len += 2;
1681	}
1682#endif
1683
1684#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1685	/*
1686	 * Hacky flush of all caches instead of using the DMA API for the TSO
1687	 * headers.
1688	 */
1689	flush_cache_all();
1690#endif
1691	rxq = fep->rx_queue[queue_id];
1692
1693	/* First, grab all of the stats for the incoming packet.
1694	 * These get messed up if we get called due to a busy condition.
1695	 */
1696	bdp = rxq->bd.cur;
1697	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1698
1699	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1700
1701		if (pkt_received >= budget)
1702			break;
1703		pkt_received++;
1704
1705		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
 
 
 
 
 
 
 
1706
1707		/* Check for errors. */
1708		status ^= BD_ENET_RX_LAST;
1709		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1710			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1711			   BD_ENET_RX_CL)) {
1712			ndev->stats.rx_errors++;
1713			if (status & BD_ENET_RX_OV) {
1714				/* FIFO overrun */
1715				ndev->stats.rx_fifo_errors++;
1716				goto rx_processing_done;
1717			}
1718			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1719						| BD_ENET_RX_LAST)) {
1720				/* Frame too long or too short. */
1721				ndev->stats.rx_length_errors++;
1722				if (status & BD_ENET_RX_LAST)
1723					netdev_err(ndev, "rcv is not +last\n");
1724			}
 
 
1725			if (status & BD_ENET_RX_CR)	/* CRC Error */
1726				ndev->stats.rx_crc_errors++;
1727			/* Report late collisions as a frame error. */
1728			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1729				ndev->stats.rx_frame_errors++;
 
 
 
 
 
 
 
 
1730			goto rx_processing_done;
1731		}
1732
1733		/* Process the incoming frame. */
1734		ndev->stats.rx_packets++;
1735		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1736		ndev->stats.rx_bytes += pkt_len;
1737
1738		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1739		page = rxq->rx_skb_info[index].page;
1740		dma_sync_single_for_cpu(&fep->pdev->dev,
1741					fec32_to_cpu(bdp->cbd_bufaddr),
1742					pkt_len,
1743					DMA_FROM_DEVICE);
1744		prefetch(page_address(page));
1745		fec_enet_update_cbd(rxq, bdp, index);
1746
1747		if (xdp_prog) {
1748			xdp_buff_clear_frags_flag(&xdp);
1749			/* subtract 16bit shift and FCS */
1750			xdp_prepare_buff(&xdp, page_address(page),
1751					 data_start, pkt_len - sub_len, false);
1752			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1753			xdp_result |= ret;
1754			if (ret != FEC_ENET_XDP_PASS)
1755				goto rx_processing_done;
1756		}
1757
1758		/* The packet length includes FCS, but we don't want to
1759		 * include that when passing upstream as it messes up
1760		 * bridging applications.
1761		 */
1762		skb = build_skb(page_address(page), PAGE_SIZE);
1763		if (unlikely(!skb)) {
1764			page_pool_recycle_direct(rxq->page_pool, page);
1765			ndev->stats.rx_dropped++;
1766
1767			netdev_err_once(ndev, "build_skb failed!\n");
1768			goto rx_processing_done;
1769		}
1770
1771		skb_reserve(skb, data_start);
1772		skb_put(skb, pkt_len - sub_len);
1773		skb_mark_for_recycle(skb);
1774
1775		if (unlikely(need_swap)) {
1776			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1777			swap_buffer(data, pkt_len);
1778		}
1779		data = skb->data;
1780
1781		/* Extract the enhanced buffer descriptor */
1782		ebdp = NULL;
1783		if (fep->bufdesc_ex)
1784			ebdp = (struct bufdesc_ex *)bdp;
1785
1786		/* If this is a VLAN packet remove the VLAN Tag */
1787		vlan_packet_rcvd = false;
1788		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1789		    fep->bufdesc_ex &&
1790		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1791			/* Push and remove the vlan tag */
1792			struct vlan_hdr *vlan_header =
1793					(struct vlan_hdr *) (data + ETH_HLEN);
1794			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
 
1795
1796			vlan_packet_rcvd = true;
1797
1798			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1799			skb_pull(skb, VLAN_HLEN);
1800		}
1801
1802		skb->protocol = eth_type_trans(skb, ndev);
 
 
 
 
 
1803
1804		/* Get receive timestamp from the skb */
1805		if (fep->hwts_rx_en && fep->bufdesc_ex)
1806			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1807					  skb_hwtstamps(skb));
1808
1809		if (fep->bufdesc_ex &&
1810		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1811			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1812				/* don't check it */
1813				skb->ip_summed = CHECKSUM_UNNECESSARY;
1814			} else {
1815				skb_checksum_none_assert(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816			}
1817		}
1818
1819		/* Handle received VLAN packets */
1820		if (vlan_packet_rcvd)
1821			__vlan_hwaccel_put_tag(skb,
1822					       htons(ETH_P_8021Q),
1823					       vlan_tag);
1824
1825		skb_record_rx_queue(skb, queue_id);
1826		napi_gro_receive(&fep->napi, skb);
1827
 
 
1828rx_processing_done:
1829		/* Clear the status flags for this buffer */
1830		status &= ~BD_ENET_RX_STATS;
1831
1832		/* Mark the buffer empty */
1833		status |= BD_ENET_RX_EMPTY;
 
1834
1835		if (fep->bufdesc_ex) {
1836			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1837
1838			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1839			ebdp->cbd_prot = 0;
1840			ebdp->cbd_bdu = 0;
1841		}
1842		/* Make sure the updates to rest of the descriptor are
1843		 * performed before transferring ownership.
1844		 */
1845		wmb();
1846		bdp->cbd_sc = cpu_to_fec16(status);
1847
1848		/* Update BD pointer to next entry */
1849		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1850
1851		/* Doing this here will keep the FEC running while we process
1852		 * incoming frames.  On a heavily loaded network, we should be
1853		 * able to keep up at the expense of system resources.
1854		 */
1855		writel(0, rxq->bd.reg_desc_active);
1856	}
1857	rxq->bd.cur = bdp;
1858
1859	if (xdp_result & FEC_ENET_XDP_REDIR)
1860		xdp_do_flush();
1861
1862	return pkt_received;
1863}
1864
1865static int fec_enet_rx(struct net_device *ndev, int budget)
1866{
1867	struct fec_enet_private *fep = netdev_priv(ndev);
1868	int i, done = 0;
1869
1870	/* Make sure that AVB queues are processed first. */
1871	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1872		done += fec_enet_rx_queue(ndev, budget - done, i);
1873
1874	return done;
1875}
1876
1877static bool fec_enet_collect_events(struct fec_enet_private *fep)
1878{
1879	uint int_events;
1880
1881	int_events = readl(fep->hwp + FEC_IEVENT);
1882
1883	/* Don't clear MDIO events, we poll for those */
1884	int_events &= ~FEC_ENET_MII;
1885
1886	writel(int_events, fep->hwp + FEC_IEVENT);
1887
1888	return int_events != 0;
1889}
1890
1891static irqreturn_t
1892fec_enet_interrupt(int irq, void *dev_id)
1893{
1894	struct net_device *ndev = dev_id;
1895	struct fec_enet_private *fep = netdev_priv(ndev);
 
1896	irqreturn_t ret = IRQ_NONE;
1897
1898	if (fec_enet_collect_events(fep) && fep->link) {
1899		ret = IRQ_HANDLED;
 
 
 
 
1900
1901		if (napi_schedule_prep(&fep->napi)) {
1902			/* Disable interrupts */
1903			writel(0, fep->hwp + FEC_IMASK);
1904			__napi_schedule(&fep->napi);
 
 
1905		}
1906	}
 
 
 
 
 
1907
1908	return ret;
1909}
1910
1911static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1912{
1913	struct net_device *ndev = napi->dev;
 
1914	struct fec_enet_private *fep = netdev_priv(ndev);
1915	int done = 0;
1916
1917	do {
1918		done += fec_enet_rx(ndev, budget - done);
1919		fec_enet_tx(ndev, budget);
1920	} while ((done < budget) && fec_enet_collect_events(fep));
1921
1922	if (done < budget) {
1923		napi_complete_done(napi, done);
1924		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1925	}
1926
1927	return done;
1928}
1929
1930/* ------------------------------------------------------------------------- */
1931static int fec_get_mac(struct net_device *ndev)
1932{
1933	struct fec_enet_private *fep = netdev_priv(ndev);
 
1934	unsigned char *iap, tmpaddr[ETH_ALEN];
1935	int ret;
1936
1937	/*
1938	 * try to get mac address in following order:
1939	 *
1940	 * 1) module parameter via kernel command line in form
1941	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1942	 */
1943	iap = macaddr;
1944
1945	/*
1946	 * 2) from device tree data
1947	 */
1948	if (!is_valid_ether_addr(iap)) {
1949		struct device_node *np = fep->pdev->dev.of_node;
1950		if (np) {
1951			ret = of_get_mac_address(np, tmpaddr);
1952			if (!ret)
1953				iap = tmpaddr;
1954			else if (ret == -EPROBE_DEFER)
1955				return ret;
1956		}
1957	}
1958
1959	/*
1960	 * 3) from flash or fuse (via platform data)
1961	 */
1962	if (!is_valid_ether_addr(iap)) {
1963#ifdef CONFIG_M5272
1964		if (FEC_FLASHMAC)
1965			iap = (unsigned char *)FEC_FLASHMAC;
1966#else
1967		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1968
1969		if (pdata)
1970			iap = (unsigned char *)&pdata->mac;
1971#endif
1972	}
1973
1974	/*
1975	 * 4) FEC mac registers set by bootloader
1976	 */
1977	if (!is_valid_ether_addr(iap)) {
1978		*((__be32 *) &tmpaddr[0]) =
1979			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1980		*((__be16 *) &tmpaddr[4]) =
1981			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1982		iap = &tmpaddr[0];
1983	}
1984
1985	/*
1986	 * 5) random mac address
1987	 */
1988	if (!is_valid_ether_addr(iap)) {
1989		/* Report it and use a random ethernet address instead */
1990		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1991		eth_hw_addr_random(ndev);
1992		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1993			 ndev->dev_addr);
1994		return 0;
1995	}
1996
1997	/* Adjust MAC if using macaddr */
1998	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1999
2000	return 0;
 
 
2001}
2002
2003/* ------------------------------------------------------------------------- */
2004
2005/*
2006 * Phy section
2007 */
2008static void fec_enet_adjust_link(struct net_device *ndev)
2009{
2010	struct fec_enet_private *fep = netdev_priv(ndev);
2011	struct phy_device *phy_dev = ndev->phydev;
2012	int status_change = 0;
2013
2014	/*
2015	 * If the netdev is down, or is going down, we're not interested
2016	 * in link state events, so just mark our idea of the link as down
2017	 * and ignore the event.
2018	 */
2019	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2020		fep->link = 0;
2021	} else if (phy_dev->link) {
2022		if (!fep->link) {
2023			fep->link = phy_dev->link;
2024			status_change = 1;
2025		}
2026
2027		if (fep->full_duplex != phy_dev->duplex) {
2028			fep->full_duplex = phy_dev->duplex;
2029			status_change = 1;
2030		}
2031
2032		if (phy_dev->speed != fep->speed) {
2033			fep->speed = phy_dev->speed;
2034			status_change = 1;
2035		}
2036
2037		/* if any of the above changed restart the FEC */
2038		if (status_change) {
2039			netif_stop_queue(ndev);
2040			napi_disable(&fep->napi);
2041			netif_tx_lock_bh(ndev);
2042			fec_restart(ndev);
2043			netif_tx_wake_all_queues(ndev);
2044			netif_tx_unlock_bh(ndev);
2045			napi_enable(&fep->napi);
2046		}
2047	} else {
2048		if (fep->link) {
2049			netif_stop_queue(ndev);
2050			napi_disable(&fep->napi);
2051			netif_tx_lock_bh(ndev);
2052			fec_stop(ndev);
2053			netif_tx_unlock_bh(ndev);
2054			napi_enable(&fep->napi);
2055			fep->link = phy_dev->link;
2056			status_change = 1;
2057		}
2058	}
2059
2060	if (status_change)
2061		phy_print_status(phy_dev);
2062}
2063
2064static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2065{
2066	uint ievent;
2067	int ret;
2068
2069	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2070					ievent & FEC_ENET_MII, 2, 30000);
2071
2072	if (!ret)
2073		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2074
2075	return ret;
2076}
2077
2078static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2079{
2080	struct fec_enet_private *fep = bus->priv;
2081	struct device *dev = &fep->pdev->dev;
2082	int ret = 0, frame_start, frame_addr, frame_op;
2083
2084	ret = pm_runtime_resume_and_get(dev);
2085	if (ret < 0)
2086		return ret;
2087
2088	/* C22 read */
2089	frame_op = FEC_MMFR_OP_READ;
2090	frame_start = FEC_MMFR_ST;
2091	frame_addr = regnum;
2092
2093	/* start a read op */
2094	writel(frame_start | frame_op |
2095	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2096	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2097
2098	/* wait for end of transfer */
2099	ret = fec_enet_mdio_wait(fep);
2100	if (ret) {
2101		netdev_err(fep->netdev, "MDIO read timeout\n");
2102		goto out;
2103	}
2104
2105	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2106
2107out:
2108	pm_runtime_mark_last_busy(dev);
2109	pm_runtime_put_autosuspend(dev);
2110
2111	return ret;
2112}
2113
2114static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2115				  int devad, int regnum)
2116{
2117	struct fec_enet_private *fep = bus->priv;
2118	struct device *dev = &fep->pdev->dev;
2119	int ret = 0, frame_start, frame_op;
2120
2121	ret = pm_runtime_resume_and_get(dev);
2122	if (ret < 0)
2123		return ret;
2124
2125	frame_start = FEC_MMFR_ST_C45;
2126
2127	/* write address */
2128	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2129	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2130	       FEC_MMFR_TA | (regnum & 0xFFFF),
2131	       fep->hwp + FEC_MII_DATA);
2132
2133	/* wait for end of transfer */
2134	ret = fec_enet_mdio_wait(fep);
2135	if (ret) {
2136		netdev_err(fep->netdev, "MDIO address write timeout\n");
2137		goto out;
2138	}
2139
2140	frame_op = FEC_MMFR_OP_READ_C45;
2141
2142	/* start a read op */
2143	writel(frame_start | frame_op |
2144	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2145	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2146
2147	/* wait for end of transfer */
2148	ret = fec_enet_mdio_wait(fep);
2149	if (ret) {
 
 
2150		netdev_err(fep->netdev, "MDIO read timeout\n");
2151		goto out;
2152	}
2153
2154	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2155
2156out:
2157	pm_runtime_mark_last_busy(dev);
2158	pm_runtime_put_autosuspend(dev);
2159
2160	return ret;
2161}
2162
2163static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2164				   u16 value)
2165{
2166	struct fec_enet_private *fep = bus->priv;
2167	struct device *dev = &fep->pdev->dev;
2168	int ret, frame_start, frame_addr;
2169
2170	ret = pm_runtime_resume_and_get(dev);
2171	if (ret < 0)
2172		return ret;
2173
2174	/* C22 write */
2175	frame_start = FEC_MMFR_ST;
2176	frame_addr = regnum;
2177
2178	/* start a write op */
2179	writel(frame_start | FEC_MMFR_OP_WRITE |
2180	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2181	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2182	       fep->hwp + FEC_MII_DATA);
2183
2184	/* wait for end of transfer */
2185	ret = fec_enet_mdio_wait(fep);
2186	if (ret)
2187		netdev_err(fep->netdev, "MDIO write timeout\n");
2188
2189	pm_runtime_mark_last_busy(dev);
2190	pm_runtime_put_autosuspend(dev);
2191
2192	return ret;
2193}
2194
2195static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2196				   int devad, int regnum, u16 value)
2197{
2198	struct fec_enet_private *fep = bus->priv;
2199	struct device *dev = &fep->pdev->dev;
2200	int ret, frame_start;
2201
2202	ret = pm_runtime_resume_and_get(dev);
2203	if (ret < 0)
2204		return ret;
2205
2206	frame_start = FEC_MMFR_ST_C45;
2207
2208	/* write address */
2209	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2210	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2211	       FEC_MMFR_TA | (regnum & 0xFFFF),
2212	       fep->hwp + FEC_MII_DATA);
2213
2214	/* wait for end of transfer */
2215	ret = fec_enet_mdio_wait(fep);
2216	if (ret) {
2217		netdev_err(fep->netdev, "MDIO address write timeout\n");
2218		goto out;
2219	}
2220
2221	/* start a write op */
2222	writel(frame_start | FEC_MMFR_OP_WRITE |
2223	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2224	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2225	       fep->hwp + FEC_MII_DATA);
2226
2227	/* wait for end of transfer */
2228	ret = fec_enet_mdio_wait(fep);
2229	if (ret)
 
 
2230		netdev_err(fep->netdev, "MDIO write timeout\n");
2231
2232out:
2233	pm_runtime_mark_last_busy(dev);
2234	pm_runtime_put_autosuspend(dev);
2235
2236	return ret;
2237}
2238
2239static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2240{
2241	struct fec_enet_private *fep = netdev_priv(ndev);
2242	struct phy_device *phy_dev = ndev->phydev;
2243
2244	if (phy_dev) {
2245		phy_reset_after_clk_enable(phy_dev);
2246	} else if (fep->phy_node) {
2247		/*
2248		 * If the PHY still is not bound to the MAC, but there is
2249		 * OF PHY node and a matching PHY device instance already,
2250		 * use the OF PHY node to obtain the PHY device instance,
2251		 * and then use that PHY device instance when triggering
2252		 * the PHY reset.
2253		 */
2254		phy_dev = of_phy_find_device(fep->phy_node);
2255		phy_reset_after_clk_enable(phy_dev);
2256		put_device(&phy_dev->mdio.dev);
2257	}
2258}
2259
2260static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2261{
2262	struct fec_enet_private *fep = netdev_priv(ndev);
2263	int ret;
2264
2265	if (enable) {
2266		ret = clk_prepare_enable(fep->clk_enet_out);
2267		if (ret)
2268			return ret;
2269
2270		if (fep->clk_ptp) {
2271			mutex_lock(&fep->ptp_clk_mutex);
2272			ret = clk_prepare_enable(fep->clk_ptp);
2273			if (ret) {
2274				mutex_unlock(&fep->ptp_clk_mutex);
2275				goto failed_clk_ptp;
2276			} else {
2277				fep->ptp_clk_on = true;
2278			}
2279			mutex_unlock(&fep->ptp_clk_mutex);
2280		}
2281
2282		ret = clk_prepare_enable(fep->clk_ref);
2283		if (ret)
2284			goto failed_clk_ref;
2285
2286		ret = clk_prepare_enable(fep->clk_2x_txclk);
2287		if (ret)
2288			goto failed_clk_2x_txclk;
2289
2290		fec_enet_phy_reset_after_clk_enable(ndev);
2291	} else {
2292		clk_disable_unprepare(fep->clk_enet_out);
2293		if (fep->clk_ptp) {
2294			mutex_lock(&fep->ptp_clk_mutex);
2295			clk_disable_unprepare(fep->clk_ptp);
2296			fep->ptp_clk_on = false;
2297			mutex_unlock(&fep->ptp_clk_mutex);
2298		}
2299		clk_disable_unprepare(fep->clk_ref);
2300		clk_disable_unprepare(fep->clk_2x_txclk);
2301	}
2302
2303	return 0;
2304
2305failed_clk_2x_txclk:
2306	if (fep->clk_ref)
2307		clk_disable_unprepare(fep->clk_ref);
2308failed_clk_ref:
2309	if (fep->clk_ptp) {
2310		mutex_lock(&fep->ptp_clk_mutex);
2311		clk_disable_unprepare(fep->clk_ptp);
2312		fep->ptp_clk_on = false;
2313		mutex_unlock(&fep->ptp_clk_mutex);
2314	}
2315failed_clk_ptp:
2316	clk_disable_unprepare(fep->clk_enet_out);
2317
2318	return ret;
2319}
2320
2321static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2322				      struct device_node *np)
2323{
2324	u32 rgmii_tx_delay, rgmii_rx_delay;
2325
2326	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2327	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2328		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2329			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2330			return -EINVAL;
2331		} else if (rgmii_tx_delay == 2000) {
2332			fep->rgmii_txc_dly = true;
2333		}
2334	}
2335
2336	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2337	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2338		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2339			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2340			return -EINVAL;
2341		} else if (rgmii_rx_delay == 2000) {
2342			fep->rgmii_rxc_dly = true;
2343		}
2344	}
2345
2346	return 0;
2347}
2348
2349static int fec_enet_mii_probe(struct net_device *ndev)
2350{
2351	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
2352	struct phy_device *phy_dev = NULL;
2353	char mdio_bus_id[MII_BUS_ID_SIZE];
2354	char phy_name[MII_BUS_ID_SIZE + 3];
2355	int phy_id;
2356	int dev_id = fep->dev_id;
2357
2358	if (fep->phy_node) {
2359		phy_dev = of_phy_connect(ndev, fep->phy_node,
2360					 &fec_enet_adjust_link, 0,
2361					 fep->phy_interface);
2362		if (!phy_dev) {
2363			netdev_err(ndev, "Unable to connect to phy\n");
2364			return -ENODEV;
2365		}
2366	} else {
2367		/* check for attached phy */
2368		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2369			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2370				continue;
2371			if (dev_id--)
2372				continue;
2373			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2374			break;
2375		}
2376
2377		if (phy_id >= PHY_MAX_ADDR) {
2378			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2379			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2380			phy_id = 0;
2381		}
 
 
 
 
 
 
 
 
2382
2383		snprintf(phy_name, sizeof(phy_name),
2384			 PHY_ID_FMT, mdio_bus_id, phy_id);
2385		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2386				      fep->phy_interface);
2387	}
2388
 
 
 
2389	if (IS_ERR(phy_dev)) {
2390		netdev_err(ndev, "could not attach to PHY\n");
2391		return PTR_ERR(phy_dev);
2392	}
2393
2394	/* mask with MAC supported features */
2395	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2396		phy_set_max_speed(phy_dev, 1000);
2397		phy_remove_link_mode(phy_dev,
2398				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2399#if !defined(CONFIG_M5272)
2400		phy_support_sym_pause(phy_dev);
2401#endif
2402	}
2403	else
2404		phy_set_max_speed(phy_dev, 100);
 
 
2405
 
2406	fep->link = 0;
2407	fep->full_duplex = 0;
2408
2409	phy_dev->mac_managed_pm = true;
2410
2411	phy_attached_info(phy_dev);
2412
2413	return 0;
2414}
2415
2416static int fec_enet_mii_init(struct platform_device *pdev)
2417{
2418	static struct mii_bus *fec0_mii_bus;
2419	struct net_device *ndev = platform_get_drvdata(pdev);
2420	struct fec_enet_private *fep = netdev_priv(ndev);
2421	bool suppress_preamble = false;
2422	struct device_node *node;
2423	int err = -ENXIO;
2424	u32 mii_speed, holdtime;
2425	u32 bus_freq;
2426
2427	/*
2428	 * The i.MX28 dual fec interfaces are not equal.
2429	 * Here are the differences:
2430	 *
2431	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2432	 *  - fec0 acts as the 1588 time master while fec1 is slave
2433	 *  - external phys can only be configured by fec0
2434	 *
2435	 * That is to say fec1 can not work independently. It only works
2436	 * when fec0 is working. The reason behind this design is that the
2437	 * second interface is added primarily for Switch mode.
2438	 *
2439	 * Because of the last point above, both phys are attached on fec0
2440	 * mdio interface in board design, and need to be configured by
2441	 * fec0 mii_bus.
2442	 */
2443	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2444		/* fec1 uses fec0 mii_bus */
2445		if (mii_cnt && fec0_mii_bus) {
2446			fep->mii_bus = fec0_mii_bus;
2447			mii_cnt++;
2448			return 0;
2449		}
2450		return -ENOENT;
2451	}
2452
2453	bus_freq = 2500000; /* 2.5MHz by default */
2454	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2455	if (node) {
2456		of_property_read_u32(node, "clock-frequency", &bus_freq);
2457		suppress_preamble = of_property_read_bool(node,
2458							  "suppress-preamble");
2459	}
2460
2461	/*
2462	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2463	 *
2464	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2465	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2466	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2467	 * document.
2468	 */
2469	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2470	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2471		mii_speed--;
2472	if (mii_speed > 63) {
2473		dev_err(&pdev->dev,
2474			"fec clock (%lu) too fast to get right mii speed\n",
2475			clk_get_rate(fep->clk_ipg));
2476		err = -EINVAL;
2477		goto err_out;
2478	}
2479
2480	/*
2481	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2482	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2483	 * versions are RAZ there, so just ignore the difference and write the
2484	 * register always.
2485	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2486	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2487	 * output.
2488	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2489	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2490	 * holdtime cannot result in a value greater than 3.
2491	 */
2492	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2493
2494	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2495
2496	if (suppress_preamble)
2497		fep->phy_speed |= BIT(7);
2498
2499	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2500		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2501		 * MII event generation condition:
2502		 * - writing MSCR:
2503		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2504		 *	  mscr_reg_data_in[7:0] != 0
2505		 * - writing MMFR:
2506		 *	- mscr[7:0]_not_zero
2507		 */
2508		writel(0, fep->hwp + FEC_MII_DATA);
2509	}
2510
2511	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2512
2513	/* Clear any pending transaction complete indication */
2514	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2515
2516	fep->mii_bus = mdiobus_alloc();
2517	if (fep->mii_bus == NULL) {
2518		err = -ENOMEM;
2519		goto err_out;
2520	}
2521
2522	fep->mii_bus->name = "fec_enet_mii_bus";
2523	fep->mii_bus->read = fec_enet_mdio_read_c22;
2524	fep->mii_bus->write = fec_enet_mdio_write_c22;
2525	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2526		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2527		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2528	}
2529	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2530		pdev->name, fep->dev_id + 1);
2531	fep->mii_bus->priv = fep;
2532	fep->mii_bus->parent = &pdev->dev;
2533
2534	err = of_mdiobus_register(fep->mii_bus, node);
2535	if (err)
 
2536		goto err_out_free_mdiobus;
2537	of_node_put(node);
 
 
 
 
 
 
2538
2539	mii_cnt++;
2540
2541	/* save fec0 mii_bus */
2542	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2543		fec0_mii_bus = fep->mii_bus;
2544
2545	return 0;
2546
 
 
2547err_out_free_mdiobus:
2548	mdiobus_free(fep->mii_bus);
2549err_out:
2550	of_node_put(node);
2551	return err;
2552}
2553
2554static void fec_enet_mii_remove(struct fec_enet_private *fep)
2555{
2556	if (--mii_cnt == 0) {
2557		mdiobus_unregister(fep->mii_bus);
 
2558		mdiobus_free(fep->mii_bus);
2559	}
2560}
2561
2562static void fec_enet_get_drvinfo(struct net_device *ndev,
2563				 struct ethtool_drvinfo *info)
2564{
2565	struct fec_enet_private *fep = netdev_priv(ndev);
 
2566
2567	strscpy(info->driver, fep->pdev->dev.driver->name,
2568		sizeof(info->driver));
2569	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
 
2570}
2571
2572static int fec_enet_get_regs_len(struct net_device *ndev)
 
2573{
2574	struct fec_enet_private *fep = netdev_priv(ndev);
2575	struct resource *r;
2576	int s = 0;
2577
2578	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2579	if (r)
2580		s = resource_size(r);
2581
2582	return s;
2583}
2584
2585/* List of registers that can be safety be read to dump them with ethtool */
2586#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2587	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2588	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2589static __u32 fec_enet_register_version = 2;
2590static u32 fec_enet_register_offset[] = {
2591	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2592	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2593	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2594	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2595	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2596	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2597	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2598	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2599	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2600	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2601	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2602	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2603	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2604	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2605	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2606	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2607	RMON_T_P_GTE2048, RMON_T_OCTETS,
2608	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2609	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2610	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2611	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2612	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2613	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2614	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2615	RMON_R_P_GTE2048, RMON_R_OCTETS,
2616	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2617	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2618};
2619/* for i.MX6ul */
2620static u32 fec_enet_register_offset_6ul[] = {
2621	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2622	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2623	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2624	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2625	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2626	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2627	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2628	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2629	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2630	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2631	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2632	RMON_T_P_GTE2048, RMON_T_OCTETS,
2633	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2634	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2635	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2636	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2637	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2638	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2639	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2640	RMON_R_P_GTE2048, RMON_R_OCTETS,
2641	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2642	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2643};
2644#else
2645static __u32 fec_enet_register_version = 1;
2646static u32 fec_enet_register_offset[] = {
2647	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2648	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2649	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2650	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2651	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2652	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2653	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2654	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2655	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2656};
2657#endif
2658
2659static void fec_enet_get_regs(struct net_device *ndev,
2660			      struct ethtool_regs *regs, void *regbuf)
2661{
2662	struct fec_enet_private *fep = netdev_priv(ndev);
2663	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2664	struct device *dev = &fep->pdev->dev;
2665	u32 *buf = (u32 *)regbuf;
2666	u32 i, off;
2667	int ret;
2668#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2669	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2670	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2671	u32 *reg_list;
2672	u32 reg_cnt;
2673
2674	if (!of_machine_is_compatible("fsl,imx6ul")) {
2675		reg_list = fec_enet_register_offset;
2676		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2677	} else {
2678		reg_list = fec_enet_register_offset_6ul;
2679		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2680	}
2681#else
2682	/* coldfire */
2683	static u32 *reg_list = fec_enet_register_offset;
2684	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2685#endif
2686	ret = pm_runtime_resume_and_get(dev);
2687	if (ret < 0)
2688		return;
2689
2690	regs->version = fec_enet_register_version;
2691
2692	memset(buf, 0, regs->len);
2693
2694	for (i = 0; i < reg_cnt; i++) {
2695		off = reg_list[i];
2696
2697		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2698		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2699			continue;
2700
2701		off >>= 2;
2702		buf[off] = readl(&theregs[off]);
2703	}
2704
2705	pm_runtime_mark_last_busy(dev);
2706	pm_runtime_put_autosuspend(dev);
2707}
2708
2709static int fec_enet_get_ts_info(struct net_device *ndev,
2710				struct ethtool_ts_info *info)
2711{
2712	struct fec_enet_private *fep = netdev_priv(ndev);
2713
2714	if (fep->bufdesc_ex) {
2715
2716		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2717					SOF_TIMESTAMPING_RX_SOFTWARE |
2718					SOF_TIMESTAMPING_SOFTWARE |
2719					SOF_TIMESTAMPING_TX_HARDWARE |
2720					SOF_TIMESTAMPING_RX_HARDWARE |
2721					SOF_TIMESTAMPING_RAW_HARDWARE;
2722		if (fep->ptp_clock)
2723			info->phc_index = ptp_clock_index(fep->ptp_clock);
2724		else
2725			info->phc_index = -1;
2726
2727		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2728				 (1 << HWTSTAMP_TX_ON);
2729
2730		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2731				   (1 << HWTSTAMP_FILTER_ALL);
2732		return 0;
2733	} else {
2734		return ethtool_op_get_ts_info(ndev, info);
2735	}
2736}
2737
2738#if !defined(CONFIG_M5272)
2739
2740static void fec_enet_get_pauseparam(struct net_device *ndev,
2741				    struct ethtool_pauseparam *pause)
2742{
2743	struct fec_enet_private *fep = netdev_priv(ndev);
2744
2745	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2746	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2747	pause->rx_pause = pause->tx_pause;
2748}
2749
2750static int fec_enet_set_pauseparam(struct net_device *ndev,
2751				   struct ethtool_pauseparam *pause)
2752{
2753	struct fec_enet_private *fep = netdev_priv(ndev);
2754
2755	if (!ndev->phydev)
2756		return -ENODEV;
2757
2758	if (pause->tx_pause != pause->rx_pause) {
2759		netdev_info(ndev,
2760			"hardware only support enable/disable both tx and rx");
2761		return -EINVAL;
2762	}
2763
2764	fep->pause_flag = 0;
2765
2766	/* tx pause must be same as rx pause */
2767	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2768	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2769
2770	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2771			  pause->autoneg);
 
 
 
 
 
2772
2773	if (pause->autoneg) {
2774		if (netif_running(ndev))
2775			fec_stop(ndev);
2776		phy_start_aneg(ndev->phydev);
2777	}
2778	if (netif_running(ndev)) {
2779		napi_disable(&fep->napi);
2780		netif_tx_lock_bh(ndev);
2781		fec_restart(ndev);
2782		netif_tx_wake_all_queues(ndev);
2783		netif_tx_unlock_bh(ndev);
2784		napi_enable(&fep->napi);
2785	}
 
 
2786
2787	return 0;
2788}
2789
2790static const struct fec_stat {
2791	char name[ETH_GSTRING_LEN];
2792	u16 offset;
2793} fec_stats[] = {
2794	/* RMON TX */
2795	{ "tx_dropped", RMON_T_DROP },
2796	{ "tx_packets", RMON_T_PACKETS },
2797	{ "tx_broadcast", RMON_T_BC_PKT },
2798	{ "tx_multicast", RMON_T_MC_PKT },
2799	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2800	{ "tx_undersize", RMON_T_UNDERSIZE },
2801	{ "tx_oversize", RMON_T_OVERSIZE },
2802	{ "tx_fragment", RMON_T_FRAG },
2803	{ "tx_jabber", RMON_T_JAB },
2804	{ "tx_collision", RMON_T_COL },
2805	{ "tx_64byte", RMON_T_P64 },
2806	{ "tx_65to127byte", RMON_T_P65TO127 },
2807	{ "tx_128to255byte", RMON_T_P128TO255 },
2808	{ "tx_256to511byte", RMON_T_P256TO511 },
2809	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2810	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2811	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2812	{ "tx_octets", RMON_T_OCTETS },
2813
2814	/* IEEE TX */
2815	{ "IEEE_tx_drop", IEEE_T_DROP },
2816	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2817	{ "IEEE_tx_1col", IEEE_T_1COL },
2818	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2819	{ "IEEE_tx_def", IEEE_T_DEF },
2820	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2821	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2822	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2823	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2824	{ "IEEE_tx_sqe", IEEE_T_SQE },
2825	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2826	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2827
2828	/* RMON RX */
2829	{ "rx_packets", RMON_R_PACKETS },
2830	{ "rx_broadcast", RMON_R_BC_PKT },
2831	{ "rx_multicast", RMON_R_MC_PKT },
2832	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2833	{ "rx_undersize", RMON_R_UNDERSIZE },
2834	{ "rx_oversize", RMON_R_OVERSIZE },
2835	{ "rx_fragment", RMON_R_FRAG },
2836	{ "rx_jabber", RMON_R_JAB },
2837	{ "rx_64byte", RMON_R_P64 },
2838	{ "rx_65to127byte", RMON_R_P65TO127 },
2839	{ "rx_128to255byte", RMON_R_P128TO255 },
2840	{ "rx_256to511byte", RMON_R_P256TO511 },
2841	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2842	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2843	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2844	{ "rx_octets", RMON_R_OCTETS },
2845
2846	/* IEEE RX */
2847	{ "IEEE_rx_drop", IEEE_R_DROP },
2848	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2849	{ "IEEE_rx_crc", IEEE_R_CRC },
2850	{ "IEEE_rx_align", IEEE_R_ALIGN },
2851	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2852	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2853	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2854};
2855
2856#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2857
2858static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2859	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2860	"rx_xdp_pass",               /* RX_XDP_PASS, */
2861	"rx_xdp_drop",               /* RX_XDP_DROP, */
2862	"rx_xdp_tx",                 /* RX_XDP_TX, */
2863	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2864	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2865	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2866};
2867
2868static void fec_enet_update_ethtool_stats(struct net_device *dev)
2869{
2870	struct fec_enet_private *fep = netdev_priv(dev);
2871	int i;
2872
2873	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2874		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2875}
2876
2877static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2878{
2879	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2880	struct fec_enet_priv_rx_q *rxq;
2881	int i, j;
2882
2883	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2884		rxq = fep->rx_queue[i];
2885
2886		for (j = 0; j < XDP_STATS_TOTAL; j++)
2887			xdp_stats[j] += rxq->stats[j];
2888	}
2889
2890	memcpy(data, xdp_stats, sizeof(xdp_stats));
2891}
2892
2893static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2894{
2895#ifdef CONFIG_PAGE_POOL_STATS
2896	struct page_pool_stats stats = {};
2897	struct fec_enet_priv_rx_q *rxq;
2898	int i;
2899
2900	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2901		rxq = fep->rx_queue[i];
2902
2903		if (!rxq->page_pool)
2904			continue;
2905
2906		page_pool_get_stats(rxq->page_pool, &stats);
2907	}
2908
2909	page_pool_ethtool_stats_get(data, &stats);
2910#endif
2911}
2912
2913static void fec_enet_get_ethtool_stats(struct net_device *dev,
2914				       struct ethtool_stats *stats, u64 *data)
2915{
2916	struct fec_enet_private *fep = netdev_priv(dev);
2917
2918	if (netif_running(dev))
2919		fec_enet_update_ethtool_stats(dev);
2920
2921	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2922	data += FEC_STATS_SIZE / sizeof(u64);
2923
2924	fec_enet_get_xdp_stats(fep, data);
2925	data += XDP_STATS_TOTAL;
2926
2927	fec_enet_page_pool_stats(fep, data);
2928}
2929
2930static void fec_enet_get_strings(struct net_device *netdev,
2931	u32 stringset, u8 *data)
2932{
2933	int i;
2934	switch (stringset) {
2935	case ETH_SS_STATS:
2936		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2937			ethtool_puts(&data, fec_stats[i].name);
2938		}
2939		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2940			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2941		}
2942		page_pool_ethtool_stats_get_strings(data);
2943
2944		break;
2945	case ETH_SS_TEST:
2946		net_selftest_get_strings(data);
2947		break;
2948	}
2949}
2950
2951static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2952{
2953	int count;
2954
2955	switch (sset) {
2956	case ETH_SS_STATS:
2957		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2958		count += page_pool_ethtool_stats_get_count();
2959		return count;
2960
2961	case ETH_SS_TEST:
2962		return net_selftest_get_count();
2963	default:
2964		return -EOPNOTSUPP;
2965	}
2966}
2967
2968static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2969{
2970	struct fec_enet_private *fep = netdev_priv(dev);
2971	struct fec_enet_priv_rx_q *rxq;
2972	int i, j;
2973
2974	/* Disable MIB statistics counters */
2975	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2976
2977	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2978		writel(0, fep->hwp + fec_stats[i].offset);
2979
2980	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2981		rxq = fep->rx_queue[i];
2982		for (j = 0; j < XDP_STATS_TOTAL; j++)
2983			rxq->stats[j] = 0;
2984	}
2985
2986	/* Don't disable MIB statistics counters */
2987	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2988}
2989
2990#else	/* !defined(CONFIG_M5272) */
2991#define FEC_STATS_SIZE	0
2992static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2993{
2994}
2995
2996static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2997{
2998}
2999#endif /* !defined(CONFIG_M5272) */
3000
3001/* ITR clock source is enet system clock (clk_ahb).
3002 * TCTT unit is cycle_ns * 64 cycle
3003 * So, the ICTT value = X us / (cycle_ns * 64)
3004 */
3005static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3006{
3007	struct fec_enet_private *fep = netdev_priv(ndev);
3008
3009	return us * (fep->itr_clk_rate / 64000) / 1000;
3010}
3011
3012/* Set threshold for interrupt coalescing */
3013static void fec_enet_itr_coal_set(struct net_device *ndev)
3014{
3015	struct fec_enet_private *fep = netdev_priv(ndev);
3016	int rx_itr, tx_itr;
3017
3018	/* Must be greater than zero to avoid unpredictable behavior */
3019	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3020	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3021		return;
3022
3023	/* Select enet system clock as Interrupt Coalescing
3024	 * timer Clock Source
3025	 */
3026	rx_itr = FEC_ITR_CLK_SEL;
3027	tx_itr = FEC_ITR_CLK_SEL;
3028
3029	/* set ICFT and ICTT */
3030	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3031	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3032	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3033	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3034
3035	rx_itr |= FEC_ITR_EN;
3036	tx_itr |= FEC_ITR_EN;
3037
3038	writel(tx_itr, fep->hwp + FEC_TXIC0);
3039	writel(rx_itr, fep->hwp + FEC_RXIC0);
3040	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3041		writel(tx_itr, fep->hwp + FEC_TXIC1);
3042		writel(rx_itr, fep->hwp + FEC_RXIC1);
3043		writel(tx_itr, fep->hwp + FEC_TXIC2);
3044		writel(rx_itr, fep->hwp + FEC_RXIC2);
3045	}
3046}
3047
3048static int fec_enet_get_coalesce(struct net_device *ndev,
3049				 struct ethtool_coalesce *ec,
3050				 struct kernel_ethtool_coalesce *kernel_coal,
3051				 struct netlink_ext_ack *extack)
3052{
3053	struct fec_enet_private *fep = netdev_priv(ndev);
3054
3055	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3056		return -EOPNOTSUPP;
3057
3058	ec->rx_coalesce_usecs = fep->rx_time_itr;
3059	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3060
3061	ec->tx_coalesce_usecs = fep->tx_time_itr;
3062	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3063
3064	return 0;
3065}
3066
3067static int fec_enet_set_coalesce(struct net_device *ndev,
3068				 struct ethtool_coalesce *ec,
3069				 struct kernel_ethtool_coalesce *kernel_coal,
3070				 struct netlink_ext_ack *extack)
3071{
3072	struct fec_enet_private *fep = netdev_priv(ndev);
3073	struct device *dev = &fep->pdev->dev;
3074	unsigned int cycle;
3075
3076	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3077		return -EOPNOTSUPP;
3078
3079	if (ec->rx_max_coalesced_frames > 255) {
3080		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3081		return -EINVAL;
3082	}
3083
3084	if (ec->tx_max_coalesced_frames > 255) {
3085		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3086		return -EINVAL;
3087	}
3088
3089	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3090	if (cycle > 0xFFFF) {
3091		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3092		return -EINVAL;
3093	}
3094
3095	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3096	if (cycle > 0xFFFF) {
3097		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3098		return -EINVAL;
3099	}
3100
3101	fep->rx_time_itr = ec->rx_coalesce_usecs;
3102	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3103
3104	fep->tx_time_itr = ec->tx_coalesce_usecs;
3105	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3106
3107	fec_enet_itr_coal_set(ndev);
3108
3109	return 0;
3110}
3111
3112/* LPI Sleep Ts count base on tx clk (clk_ref).
3113 * The lpi sleep cnt value = X us / (cycle_ns).
3114 */
3115static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3116{
3117	struct fec_enet_private *fep = netdev_priv(ndev);
3118
3119	return us * (fep->clk_ref_rate / 1000) / 1000;
3120}
3121
3122static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3123{
3124	struct fec_enet_private *fep = netdev_priv(ndev);
3125	struct ethtool_eee *p = &fep->eee;
3126	unsigned int sleep_cycle, wake_cycle;
3127	int ret = 0;
3128
3129	if (enable) {
3130		ret = phy_init_eee(ndev->phydev, false);
3131		if (ret)
3132			return ret;
3133
3134		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3135		wake_cycle = sleep_cycle;
3136	} else {
3137		sleep_cycle = 0;
3138		wake_cycle = 0;
3139	}
3140
3141	p->tx_lpi_enabled = enable;
3142	p->eee_enabled = enable;
3143	p->eee_active = enable;
3144
3145	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3146	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3147
3148	return 0;
3149}
3150
3151static int
3152fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3153{
3154	struct fec_enet_private *fep = netdev_priv(ndev);
3155	struct ethtool_eee *p = &fep->eee;
3156
3157	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3158		return -EOPNOTSUPP;
3159
3160	if (!netif_running(ndev))
3161		return -ENETDOWN;
3162
3163	edata->eee_enabled = p->eee_enabled;
3164	edata->eee_active = p->eee_active;
3165	edata->tx_lpi_timer = p->tx_lpi_timer;
3166	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3167
3168	return phy_ethtool_get_eee(ndev->phydev, edata);
3169}
3170
3171static int
3172fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3173{
3174	struct fec_enet_private *fep = netdev_priv(ndev);
3175	struct ethtool_eee *p = &fep->eee;
3176	int ret = 0;
3177
3178	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3179		return -EOPNOTSUPP;
3180
3181	if (!netif_running(ndev))
3182		return -ENETDOWN;
3183
3184	p->tx_lpi_timer = edata->tx_lpi_timer;
3185
3186	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3187	    !edata->tx_lpi_timer)
3188		ret = fec_enet_eee_mode_set(ndev, false);
3189	else
3190		ret = fec_enet_eee_mode_set(ndev, true);
3191
3192	if (ret)
3193		return ret;
3194
3195	return phy_ethtool_set_eee(ndev->phydev, edata);
3196}
3197
3198static void
3199fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3200{
3201	struct fec_enet_private *fep = netdev_priv(ndev);
3202
3203	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3204		wol->supported = WAKE_MAGIC;
3205		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3206	} else {
3207		wol->supported = wol->wolopts = 0;
3208	}
3209}
3210
3211static int
3212fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3213{
3214	struct fec_enet_private *fep = netdev_priv(ndev);
3215
3216	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3217		return -EINVAL;
3218
3219	if (wol->wolopts & ~WAKE_MAGIC)
3220		return -EINVAL;
3221
3222	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3223	if (device_may_wakeup(&ndev->dev))
3224		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3225	else
3226		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3227
3228	return 0;
3229}
3230
3231static const struct ethtool_ops fec_enet_ethtool_ops = {
3232	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3233				     ETHTOOL_COALESCE_MAX_FRAMES,
 
 
 
 
3234	.get_drvinfo		= fec_enet_get_drvinfo,
3235	.get_regs_len		= fec_enet_get_regs_len,
3236	.get_regs		= fec_enet_get_regs,
3237	.nway_reset		= phy_ethtool_nway_reset,
3238	.get_link		= ethtool_op_get_link,
3239	.get_coalesce		= fec_enet_get_coalesce,
3240	.set_coalesce		= fec_enet_set_coalesce,
3241#ifndef CONFIG_M5272
3242	.get_pauseparam		= fec_enet_get_pauseparam,
3243	.set_pauseparam		= fec_enet_set_pauseparam,
3244	.get_strings		= fec_enet_get_strings,
3245	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
 
3246	.get_sset_count		= fec_enet_get_sset_count,
3247#endif
3248	.get_ts_info		= fec_enet_get_ts_info,
3249	.get_wol		= fec_enet_get_wol,
3250	.set_wol		= fec_enet_set_wol,
3251	.get_eee		= fec_enet_get_eee,
3252	.set_eee		= fec_enet_set_eee,
3253	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3254	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3255	.self_test		= net_selftest,
3256};
3257
3258static void fec_enet_free_buffers(struct net_device *ndev)
3259{
3260	struct fec_enet_private *fep = netdev_priv(ndev);
3261	unsigned int i;
3262	struct fec_enet_priv_tx_q *txq;
3263	struct fec_enet_priv_rx_q *rxq;
3264	unsigned int q;
3265
3266	for (q = 0; q < fep->num_rx_queues; q++) {
3267		rxq = fep->rx_queue[q];
3268		for (i = 0; i < rxq->bd.ring_size; i++)
3269			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3270
3271		for (i = 0; i < XDP_STATS_TOTAL; i++)
3272			rxq->stats[i] = 0;
3273
3274		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3275			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3276		page_pool_destroy(rxq->page_pool);
3277		rxq->page_pool = NULL;
3278	}
3279
3280	for (q = 0; q < fep->num_tx_queues; q++) {
3281		txq = fep->tx_queue[q];
3282		for (i = 0; i < txq->bd.ring_size; i++) {
3283			kfree(txq->tx_bounce[i]);
3284			txq->tx_bounce[i] = NULL;
3285
3286			if (!txq->tx_buf[i].buf_p) {
3287				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3288				continue;
3289			}
3290
3291			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3292				dev_kfree_skb(txq->tx_buf[i].buf_p);
3293			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3294				xdp_return_frame(txq->tx_buf[i].buf_p);
3295			} else {
3296				struct page *page = txq->tx_buf[i].buf_p;
3297
3298				page_pool_put_page(page->pp, page, 0, false);
3299			}
3300
3301			txq->tx_buf[i].buf_p = NULL;
3302			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3303		}
 
 
3304	}
3305}
3306
3307static void fec_enet_free_queue(struct net_device *ndev)
3308{
3309	struct fec_enet_private *fep = netdev_priv(ndev);
3310	int i;
3311	struct fec_enet_priv_tx_q *txq;
3312
3313	for (i = 0; i < fep->num_tx_queues; i++)
3314		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3315			txq = fep->tx_queue[i];
3316			fec_dma_free(&fep->pdev->dev,
3317				     txq->bd.ring_size * TSO_HEADER_SIZE,
3318				     txq->tso_hdrs, txq->tso_hdrs_dma);
3319		}
3320
3321	for (i = 0; i < fep->num_rx_queues; i++)
3322		kfree(fep->rx_queue[i]);
3323	for (i = 0; i < fep->num_tx_queues; i++)
3324		kfree(fep->tx_queue[i]);
3325}
3326
3327static int fec_enet_alloc_queue(struct net_device *ndev)
3328{
3329	struct fec_enet_private *fep = netdev_priv(ndev);
3330	int i;
3331	int ret = 0;
3332	struct fec_enet_priv_tx_q *txq;
3333
3334	for (i = 0; i < fep->num_tx_queues; i++) {
3335		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3336		if (!txq) {
3337			ret = -ENOMEM;
3338			goto alloc_failed;
3339		}
3340
3341		fep->tx_queue[i] = txq;
3342		txq->bd.ring_size = TX_RING_SIZE;
3343		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3344
3345		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3346		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3347
3348		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3349					txq->bd.ring_size * TSO_HEADER_SIZE,
3350					&txq->tso_hdrs_dma, GFP_KERNEL);
3351		if (!txq->tso_hdrs) {
3352			ret = -ENOMEM;
3353			goto alloc_failed;
3354		}
3355	}
3356
3357	for (i = 0; i < fep->num_rx_queues; i++) {
3358		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3359					   GFP_KERNEL);
3360		if (!fep->rx_queue[i]) {
3361			ret = -ENOMEM;
3362			goto alloc_failed;
3363		}
3364
3365		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3366		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
 
 
 
 
 
 
 
 
3367	}
3368	return ret;
3369
3370alloc_failed:
3371	fec_enet_free_queue(ndev);
3372	return ret;
3373}
3374
3375static int
3376fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3377{
3378	struct fec_enet_private *fep = netdev_priv(ndev);
3379	struct fec_enet_priv_rx_q *rxq;
3380	dma_addr_t phys_addr;
3381	struct bufdesc	*bdp;
3382	struct page *page;
3383	int i, err;
3384
3385	rxq = fep->rx_queue[queue];
3386	bdp = rxq->bd.base;
3387
3388	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3389	if (err < 0) {
3390		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3391		return err;
3392	}
3393
3394	for (i = 0; i < rxq->bd.ring_size; i++) {
3395		page = page_pool_dev_alloc_pages(rxq->page_pool);
3396		if (!page)
3397			goto err_alloc;
3398
3399		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3400		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3401
3402		rxq->rx_skb_info[i].page = page;
3403		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3404		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 
 
 
 
 
 
3405
3406		if (fep->bufdesc_ex) {
3407			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3408			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3409		}
3410
3411		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3412	}
3413
3414	/* Set the last buffer to wrap. */
3415	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3416	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3417	return 0;
3418
3419 err_alloc:
3420	fec_enet_free_buffers(ndev);
3421	return -ENOMEM;
3422}
3423
3424static int
3425fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3426{
3427	struct fec_enet_private *fep = netdev_priv(ndev);
3428	unsigned int i;
3429	struct bufdesc  *bdp;
3430	struct fec_enet_priv_tx_q *txq;
3431
3432	txq = fep->tx_queue[queue];
3433	bdp = txq->bd.base;
3434	for (i = 0; i < txq->bd.ring_size; i++) {
3435		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3436		if (!txq->tx_bounce[i])
3437			goto err_alloc;
3438
3439		bdp->cbd_sc = cpu_to_fec16(0);
3440		bdp->cbd_bufaddr = cpu_to_fec32(0);
3441
3442		if (fep->bufdesc_ex) {
3443			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3444			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3445		}
3446
3447		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3448	}
3449
3450	/* Set the last buffer to wrap. */
3451	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3452	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3453
3454	return 0;
3455
3456 err_alloc:
3457	fec_enet_free_buffers(ndev);
3458	return -ENOMEM;
3459}
3460
3461static int fec_enet_alloc_buffers(struct net_device *ndev)
3462{
3463	struct fec_enet_private *fep = netdev_priv(ndev);
3464	unsigned int i;
3465
3466	for (i = 0; i < fep->num_rx_queues; i++)
3467		if (fec_enet_alloc_rxq_buffers(ndev, i))
3468			return -ENOMEM;
3469
3470	for (i = 0; i < fep->num_tx_queues; i++)
3471		if (fec_enet_alloc_txq_buffers(ndev, i))
3472			return -ENOMEM;
3473	return 0;
3474}
3475
3476static int
3477fec_enet_open(struct net_device *ndev)
3478{
3479	struct fec_enet_private *fep = netdev_priv(ndev);
3480	int ret;
3481	bool reset_again;
3482
3483	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3484	if (ret < 0)
3485		return ret;
3486
3487	pinctrl_pm_select_default_state(&fep->pdev->dev);
3488	ret = fec_enet_clk_enable(ndev, true);
3489	if (ret)
3490		goto clk_enable;
3491
3492	/* During the first fec_enet_open call the PHY isn't probed at this
3493	 * point. Therefore the phy_reset_after_clk_enable() call within
3494	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3495	 * sure the PHY is working correctly we check if we need to reset again
3496	 * later when the PHY is probed
3497	 */
3498	if (ndev->phydev && ndev->phydev->drv)
3499		reset_again = false;
3500	else
3501		reset_again = true;
3502
3503	/* I should reset the ring buffers here, but I don't yet know
3504	 * a simple way to do that.
3505	 */
3506
3507	ret = fec_enet_alloc_buffers(ndev);
3508	if (ret)
3509		goto err_enet_alloc;
3510
3511	/* Init MAC prior to mii bus probe */
3512	fec_restart(ndev);
3513
3514	/* Call phy_reset_after_clk_enable() again if it failed during
3515	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3516	 */
3517	if (reset_again)
3518		fec_enet_phy_reset_after_clk_enable(ndev);
3519
3520	/* Probe and connect to PHY when open the interface */
3521	ret = fec_enet_mii_probe(ndev);
3522	if (ret)
3523		goto err_enet_mii_probe;
3524
3525	if (fep->quirks & FEC_QUIRK_ERR006687)
3526		imx6q_cpuidle_fec_irqs_used();
3527
3528	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3529		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3530
3531	napi_enable(&fep->napi);
3532	phy_start(ndev->phydev);
3533	netif_tx_start_all_queues(ndev);
3534
3535	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3536				 FEC_WOL_FLAG_ENABLE);
3537
3538	return 0;
3539
3540err_enet_mii_probe:
3541	fec_enet_free_buffers(ndev);
3542err_enet_alloc:
3543	fec_enet_clk_enable(ndev, false);
3544clk_enable:
3545	pm_runtime_mark_last_busy(&fep->pdev->dev);
3546	pm_runtime_put_autosuspend(&fep->pdev->dev);
3547	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3548	return ret;
3549}
3550
3551static int
3552fec_enet_close(struct net_device *ndev)
3553{
3554	struct fec_enet_private *fep = netdev_priv(ndev);
3555
3556	phy_stop(ndev->phydev);
3557
3558	if (netif_device_present(ndev)) {
3559		napi_disable(&fep->napi);
3560		netif_tx_disable(ndev);
3561		fec_stop(ndev);
 
 
 
3562	}
3563
3564	phy_disconnect(ndev->phydev);
3565
3566	if (fep->quirks & FEC_QUIRK_ERR006687)
3567		imx6q_cpuidle_fec_irqs_unused();
3568
3569	fec_enet_update_ethtool_stats(ndev);
3570
3571	fec_enet_clk_enable(ndev, false);
3572	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3573		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3574
3575	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3576	pm_runtime_mark_last_busy(&fep->pdev->dev);
3577	pm_runtime_put_autosuspend(&fep->pdev->dev);
3578
3579	fec_enet_free_buffers(ndev);
3580
3581	return 0;
3582}
3583
3584/* Set or clear the multicast filter for this adaptor.
3585 * Skeleton taken from sunlance driver.
3586 * The CPM Ethernet implementation allows Multicast as well as individual
3587 * MAC address filtering.  Some of the drivers check to make sure it is
3588 * a group multicast address, and discard those that are not.  I guess I
3589 * will do the same for now, but just remove the test if you want
3590 * individual filtering as well (do the upper net layers want or support
3591 * this kind of feature?).
3592 */
3593
3594#define FEC_HASH_BITS	6		/* #bits in hash */
 
3595
3596static void set_multicast_list(struct net_device *ndev)
3597{
3598	struct fec_enet_private *fep = netdev_priv(ndev);
3599	struct netdev_hw_addr *ha;
3600	unsigned int crc, tmp;
3601	unsigned char hash;
3602	unsigned int hash_high = 0, hash_low = 0;
3603
3604	if (ndev->flags & IFF_PROMISC) {
3605		tmp = readl(fep->hwp + FEC_R_CNTRL);
3606		tmp |= 0x8;
3607		writel(tmp, fep->hwp + FEC_R_CNTRL);
3608		return;
3609	}
3610
3611	tmp = readl(fep->hwp + FEC_R_CNTRL);
3612	tmp &= ~0x8;
3613	writel(tmp, fep->hwp + FEC_R_CNTRL);
3614
3615	if (ndev->flags & IFF_ALLMULTI) {
3616		/* Catch all multicast addresses, so set the
3617		 * filter to all 1's
3618		 */
3619		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3620		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3621
3622		return;
3623	}
3624
3625	/* Add the addresses in hash register */
 
 
 
 
3626	netdev_for_each_mc_addr(ha, ndev) {
3627		/* calculate crc32 value of mac address */
3628		crc = ether_crc_le(ndev->addr_len, ha->addr);
3629
3630		/* only upper 6 bits (FEC_HASH_BITS) are used
3631		 * which point to specific bit in the hash registers
 
 
 
 
 
 
 
 
3632		 */
3633		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3634
3635		if (hash > 31)
3636			hash_high |= 1 << (hash - 32);
3637		else
3638			hash_low |= 1 << hash;
 
 
 
 
 
3639	}
3640
3641	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3642	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3643}
3644
3645/* Set a MAC change in hardware. */
3646static int
3647fec_set_mac_address(struct net_device *ndev, void *p)
3648{
3649	struct fec_enet_private *fep = netdev_priv(ndev);
3650	struct sockaddr *addr = p;
3651
3652	if (addr) {
3653		if (!is_valid_ether_addr(addr->sa_data))
3654			return -EADDRNOTAVAIL;
3655		eth_hw_addr_set(ndev, addr->sa_data);
3656	}
3657
3658	/* Add netif status check here to avoid system hang in below case:
3659	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3660	 * After ethx down, fec all clocks are gated off and then register
3661	 * access causes system hang.
3662	 */
3663	if (!netif_running(ndev))
3664		return 0;
3665
3666	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3667		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3668		fep->hwp + FEC_ADDR_LOW);
3669	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3670		fep->hwp + FEC_ADDR_HIGH);
3671	return 0;
3672}
3673
3674#ifdef CONFIG_NET_POLL_CONTROLLER
3675/**
3676 * fec_poll_controller - FEC Poll controller function
3677 * @dev: The FEC network adapter
3678 *
3679 * Polled functionality used by netconsole and others in non interrupt mode
3680 *
3681 */
3682static void fec_poll_controller(struct net_device *dev)
3683{
3684	int i;
3685	struct fec_enet_private *fep = netdev_priv(dev);
3686
3687	for (i = 0; i < FEC_IRQ_NUM; i++) {
3688		if (fep->irq[i] > 0) {
3689			disable_irq(fep->irq[i]);
3690			fec_enet_interrupt(fep->irq[i], dev);
3691			enable_irq(fep->irq[i]);
3692		}
3693	}
3694}
3695#endif
3696
3697static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3698	netdev_features_t features)
3699{
3700	struct fec_enet_private *fep = netdev_priv(netdev);
3701	netdev_features_t changed = features ^ netdev->features;
3702
3703	netdev->features = features;
3704
3705	/* Receive checksum has been changed */
3706	if (changed & NETIF_F_RXCSUM) {
3707		if (features & NETIF_F_RXCSUM)
3708			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3709		else
3710			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3711	}
3712}
3713
3714static int fec_set_features(struct net_device *netdev,
3715	netdev_features_t features)
3716{
3717	struct fec_enet_private *fep = netdev_priv(netdev);
3718	netdev_features_t changed = features ^ netdev->features;
3719
3720	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3721		napi_disable(&fep->napi);
3722		netif_tx_lock_bh(netdev);
3723		fec_stop(netdev);
3724		fec_enet_set_netdev_features(netdev, features);
3725		fec_restart(netdev);
3726		netif_tx_wake_all_queues(netdev);
3727		netif_tx_unlock_bh(netdev);
3728		napi_enable(&fep->napi);
3729	} else {
3730		fec_enet_set_netdev_features(netdev, features);
3731	}
3732
3733	return 0;
3734}
3735
3736static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3737				 struct net_device *sb_dev)
3738{
3739	struct fec_enet_private *fep = netdev_priv(ndev);
3740	u16 vlan_tag = 0;
3741
3742	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3743		return netdev_pick_tx(ndev, skb, NULL);
3744
3745	/* VLAN is present in the payload.*/
3746	if (eth_type_vlan(skb->protocol)) {
3747		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3748
3749		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3750	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3751	} else if (skb_vlan_tag_present(skb)) {
3752		vlan_tag = skb->vlan_tci;
3753	} else {
3754		return vlan_tag;
3755	}
3756
3757	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3758}
3759
3760static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3761{
3762	struct fec_enet_private *fep = netdev_priv(dev);
3763	bool is_run = netif_running(dev);
3764	struct bpf_prog *old_prog;
3765
3766	switch (bpf->command) {
3767	case XDP_SETUP_PROG:
3768		/* No need to support the SoCs that require to
3769		 * do the frame swap because the performance wouldn't be
3770		 * better than the skb mode.
3771		 */
3772		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3773			return -EOPNOTSUPP;
3774
3775		if (!bpf->prog)
3776			xdp_features_clear_redirect_target(dev);
3777
3778		if (is_run) {
3779			napi_disable(&fep->napi);
3780			netif_tx_disable(dev);
3781		}
3782
3783		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3784		if (old_prog)
3785			bpf_prog_put(old_prog);
3786
3787		fec_restart(dev);
3788
3789		if (is_run) {
3790			napi_enable(&fep->napi);
3791			netif_tx_start_all_queues(dev);
3792		}
3793
3794		if (bpf->prog)
3795			xdp_features_set_redirect_target(dev, false);
3796
3797		return 0;
3798
3799	case XDP_SETUP_XSK_POOL:
3800		return -EOPNOTSUPP;
3801
3802	default:
3803		return -EOPNOTSUPP;
3804	}
3805}
3806
3807static int
3808fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3809{
3810	if (unlikely(index < 0))
3811		return 0;
3812
3813	return (index % fep->num_tx_queues);
3814}
3815
3816static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3817				   struct fec_enet_priv_tx_q *txq,
3818				   void *frame, u32 dma_sync_len,
3819				   bool ndo_xmit)
3820{
3821	unsigned int index, status, estatus;
3822	struct bufdesc *bdp;
3823	dma_addr_t dma_addr;
3824	int entries_free;
3825	u16 frame_len;
3826
3827	entries_free = fec_enet_get_free_txdesc_num(txq);
3828	if (entries_free < MAX_SKB_FRAGS + 1) {
3829		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3830		return -EBUSY;
3831	}
3832
3833	/* Fill in a Tx ring entry */
3834	bdp = txq->bd.cur;
3835	status = fec16_to_cpu(bdp->cbd_sc);
3836	status &= ~BD_ENET_TX_STATS;
3837
3838	index = fec_enet_get_bd_index(bdp, &txq->bd);
3839
3840	if (ndo_xmit) {
3841		struct xdp_frame *xdpf = frame;
3842
3843		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3844					  xdpf->len, DMA_TO_DEVICE);
3845		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3846			return -ENOMEM;
3847
3848		frame_len = xdpf->len;
3849		txq->tx_buf[index].buf_p = xdpf;
3850		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3851	} else {
3852		struct xdp_buff *xdpb = frame;
3853		struct page *page;
3854
3855		page = virt_to_page(xdpb->data);
3856		dma_addr = page_pool_get_dma_addr(page) +
3857			   (xdpb->data - xdpb->data_hard_start);
3858		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3859					   dma_sync_len, DMA_BIDIRECTIONAL);
3860		frame_len = xdpb->data_end - xdpb->data;
3861		txq->tx_buf[index].buf_p = page;
3862		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3863	}
3864
3865	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3866	if (fep->bufdesc_ex)
3867		estatus = BD_ENET_TX_INT;
3868
3869	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3870	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3871
3872	if (fep->bufdesc_ex) {
3873		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3874
3875		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3876			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3877
3878		ebdp->cbd_bdu = 0;
3879		ebdp->cbd_esc = cpu_to_fec32(estatus);
3880	}
3881
3882	/* Make sure the updates to rest of the descriptor are performed before
3883	 * transferring ownership.
3884	 */
3885	dma_wmb();
3886
3887	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3888	 * it's the last BD of the frame, and to put the CRC on the end.
3889	 */
3890	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3891	bdp->cbd_sc = cpu_to_fec16(status);
3892
3893	/* If this was the last BD in the ring, start at the beginning again. */
3894	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3895
3896	/* Make sure the update to bdp are performed before txq->bd.cur. */
3897	dma_wmb();
3898
3899	txq->bd.cur = bdp;
3900
3901	/* Trigger transmission start */
3902	writel(0, txq->bd.reg_desc_active);
3903
3904	return 0;
3905}
3906
3907static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3908				int cpu, struct xdp_buff *xdp,
3909				u32 dma_sync_len)
3910{
3911	struct fec_enet_priv_tx_q *txq;
3912	struct netdev_queue *nq;
3913	int queue, ret;
3914
3915	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3916	txq = fep->tx_queue[queue];
3917	nq = netdev_get_tx_queue(fep->netdev, queue);
3918
3919	__netif_tx_lock(nq, cpu);
3920
3921	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3922	txq_trans_cond_update(nq);
3923	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3924
3925	__netif_tx_unlock(nq);
3926
3927	return ret;
3928}
3929
3930static int fec_enet_xdp_xmit(struct net_device *dev,
3931			     int num_frames,
3932			     struct xdp_frame **frames,
3933			     u32 flags)
3934{
3935	struct fec_enet_private *fep = netdev_priv(dev);
3936	struct fec_enet_priv_tx_q *txq;
3937	int cpu = smp_processor_id();
3938	unsigned int sent_frames = 0;
3939	struct netdev_queue *nq;
3940	unsigned int queue;
3941	int i;
3942
3943	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3944	txq = fep->tx_queue[queue];
3945	nq = netdev_get_tx_queue(fep->netdev, queue);
3946
3947	__netif_tx_lock(nq, cpu);
3948
3949	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3950	txq_trans_cond_update(nq);
3951	for (i = 0; i < num_frames; i++) {
3952		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3953			break;
3954		sent_frames++;
3955	}
3956
3957	__netif_tx_unlock(nq);
3958
3959	return sent_frames;
3960}
3961
3962static int fec_hwtstamp_get(struct net_device *ndev,
3963			    struct kernel_hwtstamp_config *config)
3964{
3965	struct fec_enet_private *fep = netdev_priv(ndev);
3966
3967	if (!netif_running(ndev))
3968		return -EINVAL;
3969
3970	if (!fep->bufdesc_ex)
3971		return -EOPNOTSUPP;
3972
3973	fec_ptp_get(ndev, config);
3974
3975	return 0;
3976}
3977
3978static int fec_hwtstamp_set(struct net_device *ndev,
3979			    struct kernel_hwtstamp_config *config,
3980			    struct netlink_ext_ack *extack)
3981{
3982	struct fec_enet_private *fep = netdev_priv(ndev);
3983
3984	if (!netif_running(ndev))
3985		return -EINVAL;
3986
3987	if (!fep->bufdesc_ex)
3988		return -EOPNOTSUPP;
3989
3990	return fec_ptp_set(ndev, config, extack);
3991}
3992
3993static const struct net_device_ops fec_netdev_ops = {
3994	.ndo_open		= fec_enet_open,
3995	.ndo_stop		= fec_enet_close,
3996	.ndo_start_xmit		= fec_enet_start_xmit,
3997	.ndo_select_queue       = fec_enet_select_queue,
3998	.ndo_set_rx_mode	= set_multicast_list,
 
3999	.ndo_validate_addr	= eth_validate_addr,
4000	.ndo_tx_timeout		= fec_timeout,
4001	.ndo_set_mac_address	= fec_set_mac_address,
4002	.ndo_eth_ioctl		= phy_do_ioctl_running,
4003#ifdef CONFIG_NET_POLL_CONTROLLER
4004	.ndo_poll_controller	= fec_poll_controller,
4005#endif
4006	.ndo_set_features	= fec_set_features,
4007	.ndo_bpf		= fec_enet_bpf,
4008	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4009	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4010	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4011};
4012
4013static const unsigned short offset_des_active_rxq[] = {
4014	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4015};
4016
4017static const unsigned short offset_des_active_txq[] = {
4018	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4019};
4020
4021 /*
4022  * XXX:  We need to clean up on failure exits here.
4023  *
4024  */
4025static int fec_enet_init(struct net_device *ndev)
4026{
4027	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
4028	struct bufdesc *cbd_base;
4029	dma_addr_t bd_dma;
4030	int bd_size;
4031	unsigned int i;
4032	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4033			sizeof(struct bufdesc);
4034	unsigned dsize_log2 = __fls(dsize);
4035	int ret;
4036
4037	WARN_ON(dsize != (1 << dsize_log2));
4038#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4039	fep->rx_align = 0xf;
4040	fep->tx_align = 0xf;
4041#else
4042	fep->rx_align = 0x3;
4043	fep->tx_align = 0x3;
4044#endif
4045	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4047	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4049
4050	/* Check mask of the streaming and coherent API */
4051	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4052	if (ret < 0) {
4053		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4054		return ret;
4055	}
4056
4057	ret = fec_enet_alloc_queue(ndev);
4058	if (ret)
4059		return ret;
4060
4061	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4062
4063	/* Allocate memory for buffer descriptors. */
4064	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4065				  GFP_KERNEL);
4066	if (!cbd_base) {
4067		ret = -ENOMEM;
4068		goto free_queue_mem;
4069	}
4070
4071	/* Get the Ethernet address */
4072	ret = fec_get_mac(ndev);
4073	if (ret)
4074		goto free_queue_mem;
 
 
 
 
4075
4076	/* Set receive and transmit descriptor base. */
4077	for (i = 0; i < fep->num_rx_queues; i++) {
4078		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4079		unsigned size = dsize * rxq->bd.ring_size;
4080
4081		rxq->bd.qid = i;
4082		rxq->bd.base = cbd_base;
4083		rxq->bd.cur = cbd_base;
4084		rxq->bd.dma = bd_dma;
4085		rxq->bd.dsize = dsize;
4086		rxq->bd.dsize_log2 = dsize_log2;
4087		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4088		bd_dma += size;
4089		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4090		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4091	}
4092
4093	for (i = 0; i < fep->num_tx_queues; i++) {
4094		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4095		unsigned size = dsize * txq->bd.ring_size;
4096
4097		txq->bd.qid = i;
4098		txq->bd.base = cbd_base;
4099		txq->bd.cur = cbd_base;
4100		txq->bd.dma = bd_dma;
4101		txq->bd.dsize = dsize;
4102		txq->bd.dsize_log2 = dsize_log2;
4103		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4104		bd_dma += size;
4105		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4106		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4107	}
4108
4109
4110	/* The FEC Ethernet specific entries in the device structure */
4111	ndev->watchdog_timeo = TX_TIMEOUT;
4112	ndev->netdev_ops = &fec_netdev_ops;
4113	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4114
4115	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4116	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4117
4118	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4119		/* enable hw VLAN support */
4120		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
 
 
4121
4122	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4123		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4124
4125		/* enable hw accelerator */
4126		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4127				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
 
 
4128		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4129	}
4130
4131	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4132		fep->tx_align = 0;
4133		fep->rx_align = 0x3f;
4134	}
4135
4136	ndev->hw_features = ndev->features;
4137
4138	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4139		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4140				     NETDEV_XDP_ACT_REDIRECT;
4141
4142	fec_restart(ndev);
4143
4144	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4145		fec_enet_clear_ethtool_stats(ndev);
4146	else
4147		fec_enet_update_ethtool_stats(ndev);
4148
4149	return 0;
4150
4151free_queue_mem:
4152	fec_enet_free_queue(ndev);
4153	return ret;
4154}
4155
4156#ifdef CONFIG_OF
4157static int fec_reset_phy(struct platform_device *pdev)
4158{
4159	struct gpio_desc *phy_reset;
4160	int msec = 1, phy_post_delay = 0;
4161	struct device_node *np = pdev->dev.of_node;
4162	int err;
4163
4164	if (!np)
4165		return 0;
4166
4167	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4168	/* A sane reset duration should not be longer than 1s */
4169	if (!err && msec > 1000)
4170		msec = 1;
4171
4172	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4173	/* valid reset duration should be less than 1s */
4174	if (!err && phy_post_delay > 1000)
4175		return -EINVAL;
4176
4177	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4178					    GPIOD_OUT_HIGH);
4179	if (IS_ERR(phy_reset))
4180		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4181				     "failed to get phy-reset-gpios\n");
4182
4183	if (!phy_reset)
4184		return 0;
4185
4186	if (msec > 20)
4187		msleep(msec);
4188	else
4189		usleep_range(msec * 1000, msec * 1000 + 1000);
4190
4191	gpiod_set_value_cansleep(phy_reset, 0);
4192
4193	if (!phy_post_delay)
4194		return 0;
4195
4196	if (phy_post_delay > 20)
4197		msleep(phy_post_delay);
4198	else
4199		usleep_range(phy_post_delay * 1000,
4200			     phy_post_delay * 1000 + 1000);
4201
4202	return 0;
 
 
 
 
 
 
 
4203}
4204#else /* CONFIG_OF */
4205static int fec_reset_phy(struct platform_device *pdev)
4206{
4207	/*
4208	 * In case of platform probe, the reset has been done
4209	 * by machine code.
4210	 */
4211	return 0;
4212}
4213#endif /* CONFIG_OF */
4214
4215static void
4216fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4217{
4218	struct device_node *np = pdev->dev.of_node;
4219
4220	*num_tx = *num_rx = 1;
4221
4222	if (!np || !of_device_is_available(np))
4223		return;
4224
4225	/* parse the num of tx and rx queues */
4226	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4227
4228	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4229
4230	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4231		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4232			 *num_tx);
4233		*num_tx = 1;
4234		return;
4235	}
4236
4237	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4238		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4239			 *num_rx);
4240		*num_rx = 1;
4241		return;
4242	}
4243
4244}
4245
4246static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4247{
4248	int irq_cnt = platform_irq_count(pdev);
4249
4250	if (irq_cnt > FEC_IRQ_NUM)
4251		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4252	else if (irq_cnt == 2)
4253		irq_cnt = 1;	/* last for pps */
4254	else if (irq_cnt <= 0)
4255		irq_cnt = 1;	/* At least 1 irq is needed */
4256	return irq_cnt;
4257}
4258
4259static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4260{
4261	struct net_device *ndev = platform_get_drvdata(pdev);
4262	struct fec_enet_private *fep = netdev_priv(ndev);
4263
4264	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4265		fep->wake_irq = fep->irq[2];
4266	else
4267		fep->wake_irq = fep->irq[0];
4268}
4269
4270static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4271				   struct device_node *np)
4272{
4273	struct device_node *gpr_np;
4274	u32 out_val[3];
4275	int ret = 0;
4276
4277	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4278	if (!gpr_np)
4279		return 0;
4280
4281	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4282					 ARRAY_SIZE(out_val));
4283	if (ret) {
4284		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4285		goto out;
4286	}
4287
4288	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4289	if (IS_ERR(fep->stop_gpr.gpr)) {
4290		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4291		ret = PTR_ERR(fep->stop_gpr.gpr);
4292		fep->stop_gpr.gpr = NULL;
4293		goto out;
4294	}
4295
4296	fep->stop_gpr.reg = out_val[1];
4297	fep->stop_gpr.bit = out_val[2];
4298
4299out:
4300	of_node_put(gpr_np);
4301
4302	return ret;
4303}
4304
4305static int
4306fec_probe(struct platform_device *pdev)
4307{
4308	struct fec_enet_private *fep;
4309	struct fec_platform_data *pdata;
4310	phy_interface_t interface;
4311	struct net_device *ndev;
4312	int i, irq, ret = 0;
 
 
4313	static int dev_id;
4314	struct device_node *np = pdev->dev.of_node, *phy_node;
4315	int num_tx_qs;
4316	int num_rx_qs;
4317	char irq_name[8];
4318	int irq_cnt;
4319	const struct fec_devinfo *dev_info;
4320
4321	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
 
 
4322
4323	/* Init network device */
4324	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4325				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4326	if (!ndev)
4327		return -ENOMEM;
4328
4329	SET_NETDEV_DEV(ndev, &pdev->dev);
4330
4331	/* setup board info structure */
4332	fep = netdev_priv(ndev);
4333
4334	dev_info = device_get_match_data(&pdev->dev);
4335	if (!dev_info)
4336		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
4337	if (dev_info)
4338		fep->quirks = dev_info->quirks;
4339
4340	fep->netdev = ndev;
4341	fep->num_rx_queues = num_rx_qs;
4342	fep->num_tx_queues = num_tx_qs;
4343
4344#if !defined(CONFIG_M5272)
4345	/* default enable pause frame auto negotiation */
4346	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
 
4347		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4348#endif
4349
4350	/* Select default pin state */
4351	pinctrl_pm_select_default_state(&pdev->dev);
4352
4353	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4354	if (IS_ERR(fep->hwp)) {
4355		ret = PTR_ERR(fep->hwp);
4356		goto failed_ioremap;
4357	}
4358
4359	fep->pdev = pdev;
4360	fep->dev_id = dev_id++;
4361
4362	platform_set_drvdata(pdev, ndev);
4363
4364	if ((of_machine_is_compatible("fsl,imx6q") ||
4365	     of_machine_is_compatible("fsl,imx6dl")) &&
4366	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4367		fep->quirks |= FEC_QUIRK_ERR006687;
4368
4369	ret = fec_enet_ipc_handle_init(fep);
4370	if (ret)
4371		goto failed_ipc_init;
4372
4373	if (of_property_read_bool(np, "fsl,magic-packet"))
4374		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4375
4376	ret = fec_enet_init_stop_mode(fep, np);
4377	if (ret)
4378		goto failed_stop_mode;
4379
4380	phy_node = of_parse_phandle(np, "phy-handle", 0);
4381	if (!phy_node && of_phy_is_fixed_link(np)) {
4382		ret = of_phy_register_fixed_link(np);
4383		if (ret < 0) {
4384			dev_err(&pdev->dev,
4385				"broken fixed-link specification\n");
4386			goto failed_phy;
4387		}
4388		phy_node = of_node_get(np);
4389	}
4390	fep->phy_node = phy_node;
4391
4392	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4393	if (ret) {
4394		pdata = dev_get_platdata(&pdev->dev);
4395		if (pdata)
4396			fep->phy_interface = pdata->phy;
4397		else
4398			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4399	} else {
4400		fep->phy_interface = interface;
4401	}
4402
4403	ret = fec_enet_parse_rgmii_delay(fep, np);
4404	if (ret)
4405		goto failed_rgmii_delay;
4406
4407	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4408	if (IS_ERR(fep->clk_ipg)) {
4409		ret = PTR_ERR(fep->clk_ipg);
4410		goto failed_clk;
4411	}
4412
4413	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4414	if (IS_ERR(fep->clk_ahb)) {
4415		ret = PTR_ERR(fep->clk_ahb);
4416		goto failed_clk;
4417	}
4418
4419	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4420
4421	/* enet_out is optional, depends on board */
4422	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4423	if (IS_ERR(fep->clk_enet_out)) {
4424		ret = PTR_ERR(fep->clk_enet_out);
4425		goto failed_clk;
4426	}
4427
4428	fep->ptp_clk_on = false;
4429	mutex_init(&fep->ptp_clk_mutex);
4430
4431	/* clk_ref is optional, depends on board */
4432	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4433	if (IS_ERR(fep->clk_ref)) {
4434		ret = PTR_ERR(fep->clk_ref);
4435		goto failed_clk;
4436	}
4437	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4438
4439	/* clk_2x_txclk is optional, depends on board */
4440	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4441		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4442		if (IS_ERR(fep->clk_2x_txclk))
4443			fep->clk_2x_txclk = NULL;
4444	}
4445
4446	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4447	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
 
 
4448	if (IS_ERR(fep->clk_ptp)) {
4449		fep->clk_ptp = NULL;
4450		fep->bufdesc_ex = false;
4451	}
4452
4453	ret = fec_enet_clk_enable(ndev, true);
4454	if (ret)
4455		goto failed_clk;
4456
4457	ret = clk_prepare_enable(fep->clk_ipg);
4458	if (ret)
4459		goto failed_clk_ipg;
4460	ret = clk_prepare_enable(fep->clk_ahb);
4461	if (ret)
4462		goto failed_clk_ahb;
4463
4464	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
 
 
 
 
 
 
 
 
 
 
 
 
4465	if (!IS_ERR(fep->reg_phy)) {
4466		ret = regulator_enable(fep->reg_phy);
4467		if (ret) {
4468			dev_err(&pdev->dev,
4469				"Failed to enable phy regulator: %d\n", ret);
4470			goto failed_regulator;
4471		}
4472	} else {
4473		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4474			ret = -EPROBE_DEFER;
4475			goto failed_regulator;
4476		}
4477		fep->reg_phy = NULL;
4478	}
4479
4480	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4481	pm_runtime_use_autosuspend(&pdev->dev);
4482	pm_runtime_get_noresume(&pdev->dev);
4483	pm_runtime_set_active(&pdev->dev);
4484	pm_runtime_enable(&pdev->dev);
4485
4486	ret = fec_reset_phy(pdev);
4487	if (ret)
4488		goto failed_reset;
4489
4490	irq_cnt = fec_enet_get_irq_cnt(pdev);
4491	if (fep->bufdesc_ex)
4492		fec_ptp_init(pdev, irq_cnt);
4493
4494	ret = fec_enet_init(ndev);
4495	if (ret)
4496		goto failed_init;
4497
4498	for (i = 0; i < irq_cnt; i++) {
4499		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4500		irq = platform_get_irq_byname_optional(pdev, irq_name);
4501		if (irq < 0)
4502			irq = platform_get_irq(pdev, i);
4503		if (irq < 0) {
 
 
4504			ret = irq;
4505			goto failed_irq;
4506		}
4507		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4508				       0, pdev->name, ndev);
4509		if (ret)
4510			goto failed_irq;
4511
4512		fep->irq[i] = irq;
4513	}
4514
4515	/* Decide which interrupt line is wakeup capable */
4516	fec_enet_get_wakeup_irq(pdev);
4517
4518	ret = fec_enet_mii_init(pdev);
4519	if (ret)
4520		goto failed_mii_init;
4521
4522	/* Carrier starts down, phylib will bring it up */
4523	netif_carrier_off(ndev);
4524	fec_enet_clk_enable(ndev, false);
4525	pinctrl_pm_select_sleep_state(&pdev->dev);
4526
4527	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4528
4529	ret = register_netdev(ndev);
4530	if (ret)
4531		goto failed_register;
4532
4533	device_init_wakeup(&ndev->dev, fep->wol_flag &
4534			   FEC_WOL_HAS_MAGIC_PACKET);
4535
4536	if (fep->bufdesc_ex && fep->ptp_clock)
4537		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4538
4539	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4540
4541	pm_runtime_mark_last_busy(&pdev->dev);
4542	pm_runtime_put_autosuspend(&pdev->dev);
4543
4544	return 0;
4545
4546failed_register:
4547	fec_enet_mii_remove(fep);
4548failed_mii_init:
4549failed_irq:
4550failed_init:
4551	fec_ptp_stop(pdev);
4552failed_reset:
4553	pm_runtime_put_noidle(&pdev->dev);
4554	pm_runtime_disable(&pdev->dev);
4555	if (fep->reg_phy)
4556		regulator_disable(fep->reg_phy);
4557failed_regulator:
4558	clk_disable_unprepare(fep->clk_ahb);
4559failed_clk_ahb:
 
 
 
 
4560	clk_disable_unprepare(fep->clk_ipg);
4561failed_clk_ipg:
4562	fec_enet_clk_enable(ndev, false);
4563failed_clk:
4564failed_rgmii_delay:
4565	if (of_phy_is_fixed_link(np))
4566		of_phy_deregister_fixed_link(np);
4567	of_node_put(phy_node);
4568failed_stop_mode:
4569failed_ipc_init:
4570failed_phy:
4571	dev_id--;
4572failed_ioremap:
4573	free_netdev(ndev);
4574
4575	return ret;
4576}
4577
4578static void
4579fec_drv_remove(struct platform_device *pdev)
4580{
4581	struct net_device *ndev = platform_get_drvdata(pdev);
4582	struct fec_enet_private *fep = netdev_priv(ndev);
4583	struct device_node *np = pdev->dev.of_node;
4584	int ret;
4585
4586	ret = pm_runtime_get_sync(&pdev->dev);
4587	if (ret < 0)
4588		dev_err(&pdev->dev,
4589			"Failed to resume device in remove callback (%pe)\n",
4590			ERR_PTR(ret));
4591
4592	cancel_work_sync(&fep->tx_timeout_work);
4593	fec_ptp_stop(pdev);
4594	unregister_netdev(ndev);
4595	fec_enet_mii_remove(fep);
 
4596	if (fep->reg_phy)
4597		regulator_disable(fep->reg_phy);
4598
4599	if (of_phy_is_fixed_link(np))
4600		of_phy_deregister_fixed_link(np);
4601	of_node_put(fep->phy_node);
4602
4603	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4604	 * disabling them again.
4605	 */
4606	if (ret >= 0) {
4607		clk_disable_unprepare(fep->clk_ahb);
4608		clk_disable_unprepare(fep->clk_ipg);
4609	}
4610	pm_runtime_put_noidle(&pdev->dev);
4611	pm_runtime_disable(&pdev->dev);
4612
4613	free_netdev(ndev);
 
 
4614}
4615
4616static int __maybe_unused fec_suspend(struct device *dev)
 
 
4617{
4618	struct net_device *ndev = dev_get_drvdata(dev);
4619	struct fec_enet_private *fep = netdev_priv(ndev);
4620	int ret;
4621
4622	rtnl_lock();
4623	if (netif_running(ndev)) {
4624		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4625			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4626		phy_stop(ndev->phydev);
4627		napi_disable(&fep->napi);
4628		netif_tx_lock_bh(ndev);
4629		netif_device_detach(ndev);
4630		netif_tx_unlock_bh(ndev);
4631		fec_stop(ndev);
4632		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4633			fec_irqs_disable(ndev);
4634			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4635		} else {
4636			fec_irqs_disable_except_wakeup(ndev);
4637			if (fep->wake_irq > 0) {
4638				disable_irq(fep->wake_irq);
4639				enable_irq_wake(fep->wake_irq);
4640			}
4641			fec_enet_stop_mode(fep, true);
4642		}
4643		/* It's safe to disable clocks since interrupts are masked */
4644		fec_enet_clk_enable(ndev, false);
4645
4646		fep->rpm_active = !pm_runtime_status_suspended(dev);
4647		if (fep->rpm_active) {
4648			ret = pm_runtime_force_suspend(dev);
4649			if (ret < 0) {
4650				rtnl_unlock();
4651				return ret;
4652			}
4653		}
4654	}
4655	rtnl_unlock();
 
 
 
 
 
4656
4657	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4658		regulator_disable(fep->reg_phy);
4659
4660	/* SOC supply clock to phy, when clock is disabled, phy link down
4661	 * SOC control phy regulator, when regulator is disabled, phy link down
4662	 */
4663	if (fep->clk_enet_out || fep->reg_phy)
4664		fep->link = 0;
4665
4666	return 0;
4667}
4668
4669static int __maybe_unused fec_resume(struct device *dev)
 
4670{
4671	struct net_device *ndev = dev_get_drvdata(dev);
4672	struct fec_enet_private *fep = netdev_priv(ndev);
4673	int ret;
4674	int val;
4675
4676	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4677		ret = regulator_enable(fep->reg_phy);
4678		if (ret)
4679			return ret;
4680	}
4681
4682	rtnl_lock();
4683	if (netif_running(ndev)) {
4684		if (fep->rpm_active)
4685			pm_runtime_force_resume(dev);
4686
4687		ret = fec_enet_clk_enable(ndev, true);
4688		if (ret) {
4689			rtnl_unlock();
4690			goto failed_clk;
4691		}
4692		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4693			fec_enet_stop_mode(fep, false);
4694			if (fep->wake_irq) {
4695				disable_irq_wake(fep->wake_irq);
4696				enable_irq(fep->wake_irq);
4697			}
4698
4699			val = readl(fep->hwp + FEC_ECNTRL);
4700			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4701			writel(val, fep->hwp + FEC_ECNTRL);
4702			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4703		} else {
4704			pinctrl_pm_select_default_state(&fep->pdev->dev);
4705		}
4706		fec_restart(ndev);
4707		netif_tx_lock_bh(ndev);
4708		netif_device_attach(ndev);
4709		netif_tx_unlock_bh(ndev);
4710		napi_enable(&fep->napi);
4711		phy_init_hw(ndev->phydev);
4712		phy_start(ndev->phydev);
4713	}
4714	rtnl_unlock();
4715
4716	return 0;
4717
4718failed_clk:
4719	if (fep->reg_phy)
4720		regulator_disable(fep->reg_phy);
4721	return ret;
4722}
4723
4724static int __maybe_unused fec_runtime_suspend(struct device *dev)
4725{
4726	struct net_device *ndev = dev_get_drvdata(dev);
4727	struct fec_enet_private *fep = netdev_priv(ndev);
4728
4729	clk_disable_unprepare(fep->clk_ahb);
4730	clk_disable_unprepare(fep->clk_ipg);
4731
4732	return 0;
4733}
4734
4735static int __maybe_unused fec_runtime_resume(struct device *dev)
4736{
4737	struct net_device *ndev = dev_get_drvdata(dev);
4738	struct fec_enet_private *fep = netdev_priv(ndev);
4739	int ret;
4740
4741	ret = clk_prepare_enable(fep->clk_ahb);
4742	if (ret)
4743		return ret;
 
4744	ret = clk_prepare_enable(fep->clk_ipg);
4745	if (ret)
4746		goto failed_clk_ipg;
4747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4748	return 0;
4749
 
 
 
 
 
4750failed_clk_ipg:
4751	clk_disable_unprepare(fep->clk_ahb);
 
 
 
4752	return ret;
4753}
 
4754
4755static const struct dev_pm_ops fec_pm_ops = {
4756	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4757	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4758};
4759
4760static struct platform_driver fec_driver = {
4761	.driver	= {
4762		.name	= DRIVER_NAME,
 
4763		.pm	= &fec_pm_ops,
4764		.of_match_table = fec_dt_ids,
4765		.suppress_bind_attrs = true,
4766	},
4767	.id_table = fec_devtype,
4768	.probe	= fec_probe,
4769	.remove_new = fec_drv_remove,
4770};
4771
4772module_platform_driver(fec_driver);
4773
4774MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4775MODULE_LICENSE("GPL");
v3.15
 
   1/*
   2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   4 *
   5 * Right now, I am very wasteful with the buffers.  I allocate memory
   6 * pages and then divide them into 2K frame buffers.  This way I know I
   7 * have buffers large enough to hold one frame within one buffer descriptor.
   8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
   9 * will be much more memory efficient and will easily handle lots of
  10 * small packets.
  11 *
  12 * Much better multiple PHY support by Magnus Damm.
  13 * Copyright (c) 2000 Ericsson Radio Systems AB.
  14 *
  15 * Support for FEC controller of ColdFire processors.
  16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  17 *
  18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  19 * Copyright (c) 2004-2006 Macq Electronique SA.
  20 *
  21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/string.h>
 
  27#include <linux/ptrace.h>
  28#include <linux/errno.h>
  29#include <linux/ioport.h>
  30#include <linux/slab.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/in.h>
  37#include <linux/ip.h>
  38#include <net/ip.h>
 
 
 
  39#include <linux/tcp.h>
  40#include <linux/udp.h>
  41#include <linux/icmp.h>
  42#include <linux/spinlock.h>
  43#include <linux/workqueue.h>
  44#include <linux/bitops.h>
  45#include <linux/io.h>
  46#include <linux/irq.h>
  47#include <linux/clk.h>
 
  48#include <linux/platform_device.h>
 
 
  49#include <linux/phy.h>
  50#include <linux/fec.h>
  51#include <linux/of.h>
  52#include <linux/of_device.h>
  53#include <linux/of_gpio.h>
  54#include <linux/of_net.h>
  55#include <linux/regulator/consumer.h>
  56#include <linux/if_vlan.h>
 
 
 
 
 
 
 
 
 
  57
  58#include <asm/cacheflush.h>
  59
  60#include "fec.h"
  61
  62static void set_multicast_list(struct net_device *ndev);
 
 
 
 
  63
  64#if defined(CONFIG_ARM)
  65#define FEC_ALIGNMENT	0xf
  66#else
  67#define FEC_ALIGNMENT	0x3
  68#endif
  69
  70#define DRIVER_NAME	"fec"
  71
  72/* Pause frame feild and FIFO threshold */
  73#define FEC_ENET_FCE	(1 << 5)
  74#define FEC_ENET_RSEM_V	0x84
  75#define FEC_ENET_RSFL_V	16
  76#define FEC_ENET_RAEM_V	0x8
  77#define FEC_ENET_RAFL_V	0x8
  78#define FEC_ENET_OPD_V	0xFFF0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80/* Controller is ENET-MAC */
  81#define FEC_QUIRK_ENET_MAC		(1 << 0)
  82/* Controller needs driver to swap frame */
  83#define FEC_QUIRK_SWAP_FRAME		(1 << 1)
  84/* Controller uses gasket */
  85#define FEC_QUIRK_USE_GASKET		(1 << 2)
  86/* Controller has GBIT support */
  87#define FEC_QUIRK_HAS_GBIT		(1 << 3)
  88/* Controller has extend desc buffer */
  89#define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
  90/* Controller has hardware checksum support */
  91#define FEC_QUIRK_HAS_CSUM		(1 << 5)
  92/* Controller has hardware vlan support */
  93#define FEC_QUIRK_HAS_VLAN		(1 << 6)
  94/* ENET IP errata ERR006358
  95 *
  96 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
  97 * detected as not set during a prior frame transmission, then the
  98 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
  99 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
 100 * frames not being transmitted until there is a 0-to-1 transition on
 101 * ENET_TDAR[TDAR].
 102 */
 103#define FEC_QUIRK_ERR006358            (1 << 7)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105static struct platform_device_id fec_devtype[] = {
 106	{
 107		/* keep it for coldfire */
 108		.name = DRIVER_NAME,
 109		.driver_data = 0,
 110	}, {
 111		.name = "imx25-fec",
 112		.driver_data = FEC_QUIRK_USE_GASKET,
 113	}, {
 114		.name = "imx27-fec",
 115		.driver_data = 0,
 116	}, {
 117		.name = "imx28-fec",
 118		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
 119	}, {
 120		.name = "imx6q-fec",
 121		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 122				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 123				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
 124	}, {
 125		.name = "mvf600-fec",
 126		.driver_data = FEC_QUIRK_ENET_MAC,
 127	}, {
 128		/* sentinel */
 129	}
 130};
 131MODULE_DEVICE_TABLE(platform, fec_devtype);
 132
 133enum imx_fec_type {
 134	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 135	IMX27_FEC,	/* runs on i.mx27/35/51 */
 136	IMX28_FEC,
 137	IMX6Q_FEC,
 138	MVF600_FEC,
 139};
 140
 141static const struct of_device_id fec_dt_ids[] = {
 142	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 143	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 144	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 145	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 146	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 
 
 
 
 
 147	{ /* sentinel */ }
 148};
 149MODULE_DEVICE_TABLE(of, fec_dt_ids);
 150
 151static unsigned char macaddr[ETH_ALEN];
 152module_param_array(macaddr, byte, NULL, 0);
 153MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 154
 155#if defined(CONFIG_M5272)
 156/*
 157 * Some hardware gets it MAC address out of local flash memory.
 158 * if this is non-zero then assume it is the address to get MAC from.
 159 */
 160#if defined(CONFIG_NETtel)
 161#define	FEC_FLASHMAC	0xf0006006
 162#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 163#define	FEC_FLASHMAC	0xf0006000
 164#elif defined(CONFIG_CANCam)
 165#define	FEC_FLASHMAC	0xf0020000
 166#elif defined (CONFIG_M5272C3)
 167#define	FEC_FLASHMAC	(0xffe04000 + 4)
 168#elif defined(CONFIG_MOD5272)
 169#define FEC_FLASHMAC	0xffc0406b
 170#else
 171#define	FEC_FLASHMAC	0
 172#endif
 173#endif /* CONFIG_M5272 */
 174
 175#if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
 176#error "FEC: descriptor ring size constants too large"
 177#endif
 178
 179/* Interrupt events/masks. */
 180#define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
 181#define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
 182#define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
 183#define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
 184#define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
 185#define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
 186#define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
 187#define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
 188#define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
 189#define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
 190
 191#define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
 192#define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
 193
 194/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 
 
 
 195 */
 196#define PKT_MAXBUF_SIZE		1522
 197#define PKT_MINBUF_SIZE		64
 198#define PKT_MAXBLR_SIZE		1536
 199
 200/* FEC receive acceleration */
 201#define FEC_RACC_IPDIS		(1 << 1)
 202#define FEC_RACC_PRODIS		(1 << 2)
 
 203#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 204
 
 
 
 205/*
 206 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 207 * size bits. Other FEC hardware does not, so we need to take that into
 208 * account when setting it.
 209 */
 210#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 211    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
 
 212#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 213#else
 214#define	OPT_FRAME_SIZE	0
 215#endif
 216
 217/* FEC MII MMFR bits definition */
 218#define FEC_MMFR_ST		(1 << 30)
 
 219#define FEC_MMFR_OP_READ	(2 << 28)
 
 220#define FEC_MMFR_OP_WRITE	(1 << 28)
 
 221#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 222#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 223#define FEC_MMFR_TA		(2 << 16)
 224#define FEC_MMFR_DATA(v)	(v & 0xffff)
 
 
 
 225
 226#define FEC_MII_TIMEOUT		30000 /* us */
 227
 228/* Transmitter timeout */
 229#define TX_TIMEOUT (2 * HZ)
 230
 231#define FEC_PAUSE_FLAG_AUTONEG	0x1
 232#define FEC_PAUSE_FLAG_ENABLE	0x2
 
 
 
 
 
 
 
 
 
 
 
 233
 234static int mii_cnt;
 235
 236static inline
 237struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
 238{
 239	struct bufdesc *new_bd = bdp + 1;
 240	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
 241	struct bufdesc_ex *ex_base;
 242	struct bufdesc *base;
 243	int ring_size;
 244
 245	if (bdp >= fep->tx_bd_base) {
 246		base = fep->tx_bd_base;
 247		ring_size = fep->tx_ring_size;
 248		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
 249	} else {
 250		base = fep->rx_bd_base;
 251		ring_size = fep->rx_ring_size;
 252		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
 253	}
 254
 255	if (fep->bufdesc_ex)
 256		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
 257			ex_base : ex_new_bd);
 258	else
 259		return (new_bd >= (base + ring_size)) ?
 260			base : new_bd;
 261}
 262
 263static inline
 264struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
 265{
 266	struct bufdesc *new_bd = bdp - 1;
 267	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
 268	struct bufdesc_ex *ex_base;
 269	struct bufdesc *base;
 270	int ring_size;
 271
 272	if (bdp >= fep->tx_bd_base) {
 273		base = fep->tx_bd_base;
 274		ring_size = fep->tx_ring_size;
 275		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
 276	} else {
 277		base = fep->rx_bd_base;
 278		ring_size = fep->rx_ring_size;
 279		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
 280	}
 281
 282	if (fep->bufdesc_ex)
 283		return (struct bufdesc *)((ex_new_bd < ex_base) ?
 284			(ex_new_bd + ring_size) : ex_new_bd);
 285	else
 286		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
 287}
 288
 289static void *swap_buffer(void *bufaddr, int len)
 290{
 291	int i;
 292	unsigned int *buf = bufaddr;
 293
 294	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
 295		*buf = cpu_to_be32(*buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	return bufaddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 299
 300static int
 301fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 302{
 303	/* Only run for packets requiring a checksum. */
 304	if (skb->ip_summed != CHECKSUM_PARTIAL)
 305		return 0;
 306
 307	if (unlikely(skb_cow_head(skb, 0)))
 308		return -1;
 309
 
 
 310	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 311
 312	return 0;
 313}
 314
 315static netdev_tx_t
 316fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317{
 318	struct fec_enet_private *fep = netdev_priv(ndev);
 319	const struct platform_device_id *id_entry =
 320				platform_get_device_id(fep->pdev);
 321	struct bufdesc *bdp, *bdp_pre;
 
 
 
 
 
 322	void *bufaddr;
 323	unsigned short	status;
 324	unsigned int index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325
 326	/* Fill in a Tx ring entry */
 327	bdp = fep->cur_tx;
 
 328
 329	status = bdp->cbd_sc;
 
 
 
 
 
 
 330
 331	if (status & BD_ENET_TX_READY) {
 332		/* Ooops.  All transmit buffers are full.  Bail out.
 333		 * This should not happen, since ndev->tbusy should be set.
 
 334		 */
 335		netdev_err(ndev, "tx queue full!\n");
 336		return NETDEV_TX_BUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337	}
 338
 339	/* Protocol checksum off-load for TCP and UDP. */
 340	if (fec_enet_clear_csum(skb, ndev)) {
 341		dev_kfree_skb_any(skb);
 342		return NETDEV_TX_OK;
 343	}
 344
 345	/* Clear all of the status flags */
 
 
 
 346	status &= ~BD_ENET_TX_STATS;
 347
 348	/* Set buffer length and buffer pointer */
 349	bufaddr = skb->data;
 350	bdp->cbd_datlen = skb->len;
 351
 352	/*
 353	 * On some FEC implementations data must be aligned on
 354	 * 4-byte boundaries. Use bounce buffers to copy data
 355	 * and get it aligned. Ugh.
 356	 */
 357	if (fep->bufdesc_ex)
 358		index = (struct bufdesc_ex *)bdp -
 359			(struct bufdesc_ex *)fep->tx_bd_base;
 360	else
 361		index = bdp - fep->tx_bd_base;
 362
 363	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
 364		memcpy(fep->tx_bounce[index], skb->data, skb->len);
 365		bufaddr = fep->tx_bounce[index];
 366	}
 367
 368	/*
 369	 * Some design made an incorrect assumption on endian mode of
 370	 * the system that it's running on. As the result, driver has to
 371	 * swap every frame going to and coming from the controller.
 372	 */
 373	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 374		swap_buffer(bufaddr, skb->len);
 375
 376	/* Save skb pointer */
 377	fep->tx_skbuff[index] = skb;
 378
 379	/* Push the data cache so the CPM does not get stale memory
 380	 * data.
 381	 */
 382	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
 383			skb->len, DMA_TO_DEVICE);
 384	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
 385		bdp->cbd_bufaddr = 0;
 386		fep->tx_skbuff[index] = NULL;
 387		dev_kfree_skb_any(skb);
 388		if (net_ratelimit())
 389			netdev_err(ndev, "Tx DMA memory map failed\n");
 390		return NETDEV_TX_OK;
 391	}
 392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393	if (fep->bufdesc_ex) {
 394
 395		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 396		ebdp->cbd_bdu = 0;
 397		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 398			fep->hwts_tx_en)) {
 399			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
 400			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 401		} else {
 402			ebdp->cbd_esc = BD_ENET_TX_INT;
 403
 404			/* Enable protocol checksum flags
 405			 * We do not bother with the IP Checksum bits as they
 406			 * are done by the kernel
 407			 */
 408			if (skb->ip_summed == CHECKSUM_PARTIAL)
 409				ebdp->cbd_esc |= BD_ENET_TX_PINS;
 410		}
 
 411	}
 412
 
 
 
 
 
 
 
 
 
 413	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 414	 * it's the last BD of the frame, and to put the CRC on the end.
 415	 */
 416	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
 417			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
 418	bdp->cbd_sc = status;
 419
 420	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
 421	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
 422	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
 423		fep->delay_work.trig_tx = true;
 424		schedule_delayed_work(&(fep->delay_work.delay_work),
 425					msecs_to_jiffies(1));
 426	}
 427
 428	/* If this was the last BD in the ring, start at the beginning again. */
 429	bdp = fec_enet_get_nextdesc(bdp, fep);
 430
 431	skb_tx_timestamp(skb);
 432
 433	fep->cur_tx = bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434
 435	if (fep->cur_tx == fep->dirty_tx)
 436		netif_stop_queue(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	/* Trigger transmission start */
 439	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440
 441	return NETDEV_TX_OK;
 442}
 443
 444/* Init RX & TX buffer descriptors
 445 */
 446static void fec_enet_bd_init(struct net_device *dev)
 447{
 448	struct fec_enet_private *fep = netdev_priv(dev);
 
 
 449	struct bufdesc *bdp;
 450	unsigned int i;
 
 451
 452	/* Initialize the receive buffer descriptors. */
 453	bdp = fep->rx_bd_base;
 454	for (i = 0; i < fep->rx_ring_size; i++) {
 455
 456		/* Initialize the BD for every fragment in the page. */
 457		if (bdp->cbd_bufaddr)
 458			bdp->cbd_sc = BD_ENET_RX_EMPTY;
 459		else
 460			bdp->cbd_sc = 0;
 461		bdp = fec_enet_get_nextdesc(bdp, fep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	}
 
 463
 464	/* Set the last buffer to wrap */
 465	bdp = fec_enet_get_prevdesc(bdp, fep);
 466	bdp->cbd_sc |= BD_SC_WRAP;
 
 467
 468	fep->cur_rx = fep->rx_bd_base;
 
 
 469
 470	/* ...and the same for transmit */
 471	bdp = fep->tx_bd_base;
 472	fep->cur_tx = bdp;
 473	for (i = 0; i < fep->tx_ring_size; i++) {
 
 
 474
 475		/* Initialize the BD for every fragment in the page. */
 476		bdp->cbd_sc = 0;
 477		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
 478			dev_kfree_skb_any(fep->tx_skbuff[i]);
 479			fep->tx_skbuff[i] = NULL;
 480		}
 481		bdp->cbd_bufaddr = 0;
 482		bdp = fec_enet_get_nextdesc(bdp, fep);
 
 
 
 
 
 
 
 
 
 
 
 483	}
 484
 485	/* Set the last buffer to wrap */
 486	bdp = fec_enet_get_prevdesc(bdp, fep);
 487	bdp->cbd_sc |= BD_SC_WRAP;
 488	fep->dirty_tx = bdp;
 489}
 490
 491/* This function is called to start or restart the FEC during a link
 492 * change.  This only happens when switching between half and full
 493 * duplex.
 
 494 */
 495static void
 496fec_restart(struct net_device *ndev, int duplex)
 497{
 498	struct fec_enet_private *fep = netdev_priv(ndev);
 499	const struct platform_device_id *id_entry =
 500				platform_get_device_id(fep->pdev);
 501	int i;
 502	u32 val;
 503	u32 temp_mac[2];
 504	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 505	u32 ecntl = 0x2; /* ETHEREN */
 506
 507	if (netif_running(ndev)) {
 508		netif_device_detach(ndev);
 509		napi_disable(&fep->napi);
 510		netif_stop_queue(ndev);
 511		netif_tx_lock_bh(ndev);
 
 
 
 
 
 512	}
 513
 514	/* Whack a reset.  We should wait for this. */
 515	writel(1, fep->hwp + FEC_ECNTRL);
 516	udelay(10);
 517
 518	/*
 519	 * enet-mac reset will reset mac address registers too,
 520	 * so need to reconfigure it.
 521	 */
 522	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 523		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 524		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
 525		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
 526	}
 527
 528	/* Clear any outstanding interrupt. */
 529	writel(0xffc00000, fep->hwp + FEC_IEVENT);
 530
 531	/* Set maximum receive buffer size. */
 532	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
 533
 534	fec_enet_bd_init(ndev);
 535
 536	/* Set receive and transmit descriptor base. */
 537	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
 538	if (fep->bufdesc_ex)
 539		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
 540			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
 541	else
 542		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
 543			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
 544
 545
 546	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
 547		if (fep->tx_skbuff[i]) {
 548			dev_kfree_skb_any(fep->tx_skbuff[i]);
 549			fep->tx_skbuff[i] = NULL;
 550		}
 551	}
 552
 553	/* Enable MII mode */
 554	if (duplex) {
 555		/* FD enable */
 556		writel(0x04, fep->hwp + FEC_X_CNTRL);
 557	} else {
 558		/* No Rcv on Xmit */
 559		rcntl |= 0x02;
 560		writel(0x0, fep->hwp + FEC_X_CNTRL);
 561	}
 562
 563	fep->full_duplex = duplex;
 564
 565	/* Set MII speed */
 566	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 567
 568#if !defined(CONFIG_M5272)
 569	/* set RX checksum */
 570	val = readl(fep->hwp + FEC_RACC);
 571	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
 572		val |= FEC_RACC_OPTIONS;
 573	else
 574		val &= ~FEC_RACC_OPTIONS;
 575	writel(val, fep->hwp + FEC_RACC);
 
 
 
 
 
 
 576#endif
 577
 578	/*
 579	 * The phy interface and speed need to get configured
 580	 * differently on enet-mac.
 581	 */
 582	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 583		/* Enable flow control and length check */
 584		rcntl |= 0x40000000 | 0x00000020;
 585
 586		/* RGMII, RMII or MII */
 587		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
 
 
 
 588			rcntl |= (1 << 6);
 589		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 590			rcntl |= (1 << 8);
 591		else
 592			rcntl &= ~(1 << 8);
 593
 594		/* 1G, 100M or 10M */
 595		if (fep->phy_dev) {
 596			if (fep->phy_dev->speed == SPEED_1000)
 597				ecntl |= (1 << 5);
 598			else if (fep->phy_dev->speed == SPEED_100)
 599				rcntl &= ~(1 << 9);
 600			else
 601				rcntl |= (1 << 9);
 602		}
 603	} else {
 604#ifdef FEC_MIIGSK_ENR
 605		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
 606			u32 cfgr;
 607			/* disable the gasket and wait */
 608			writel(0, fep->hwp + FEC_MIIGSK_ENR);
 609			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
 610				udelay(1);
 611
 612			/*
 613			 * configure the gasket:
 614			 *   RMII, 50 MHz, no loopback, no echo
 615			 *   MII, 25 MHz, no loopback, no echo
 616			 */
 617			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
 618				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
 619			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
 620				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
 621			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
 622
 623			/* re-enable the gasket */
 624			writel(2, fep->hwp + FEC_MIIGSK_ENR);
 625		}
 626#endif
 627	}
 628
 629#if !defined(CONFIG_M5272)
 630	/* enable pause frame*/
 631	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
 632	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
 633	     fep->phy_dev && fep->phy_dev->pause)) {
 634		rcntl |= FEC_ENET_FCE;
 635
 636		/* set FIFO threshold parameter to reduce overrun */
 637		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
 638		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
 639		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
 640		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
 641
 642		/* OPD */
 643		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
 644	} else {
 645		rcntl &= ~FEC_ENET_FCE;
 646	}
 647#endif /* !defined(CONFIG_M5272) */
 648
 649	writel(rcntl, fep->hwp + FEC_R_CNTRL);
 650
 651	/* Setup multicast filter. */
 652	set_multicast_list(ndev);
 653#ifndef CONFIG_M5272
 654	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
 655	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
 656#endif
 657
 658	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 659		/* enable ENET endian swap */
 660		ecntl |= (1 << 8);
 661		/* enable ENET store and forward mode */
 662		writel(1 << 8, fep->hwp + FEC_X_WMRK);
 663	}
 664
 665	if (fep->bufdesc_ex)
 666		ecntl |= (1 << 4);
 667
 
 
 
 
 
 
 
 668#ifndef CONFIG_M5272
 669	/* Enable the MIB statistic event counters */
 670	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
 671#endif
 672
 673	/* And last, enable the transmit and receive processing */
 674	writel(ecntl, fep->hwp + FEC_ECNTRL);
 675	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
 676
 677	if (fep->bufdesc_ex)
 678		fec_ptp_start_cyclecounter(ndev);
 679
 680	/* Enable interrupts we wish to service */
 681	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682
 683	if (netif_running(ndev)) {
 684		netif_tx_unlock_bh(ndev);
 685		netif_wake_queue(ndev);
 686		napi_enable(&fep->napi);
 687		netif_device_attach(ndev);
 
 
 
 
 
 
 
 688	}
 689}
 690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691static void
 692fec_stop(struct net_device *ndev)
 693{
 694	struct fec_enet_private *fep = netdev_priv(ndev);
 695	const struct platform_device_id *id_entry =
 696				platform_get_device_id(fep->pdev);
 697	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
 
 698
 699	/* We cannot expect a graceful transmit stop without link !!! */
 700	if (fep->link) {
 701		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
 702		udelay(10);
 703		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
 704			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
 705	}
 706
 707	/* Whack a reset.  We should wait for this. */
 708	writel(1, fep->hwp + FEC_ECNTRL);
 709	udelay(10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 711	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
 712
 713	/* We have to keep ENET enabled to have MII interrupt stay working */
 714	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
 
 715		writel(2, fep->hwp + FEC_ECNTRL);
 716		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
 717	}
 718}
 719
 720
 721static void
 722fec_timeout(struct net_device *ndev)
 723{
 724	struct fec_enet_private *fep = netdev_priv(ndev);
 725
 
 
 726	ndev->stats.tx_errors++;
 727
 728	fep->delay_work.timeout = true;
 729	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
 730}
 731
 732static void fec_enet_work(struct work_struct *work)
 733{
 734	struct fec_enet_private *fep =
 735		container_of(work,
 736			     struct fec_enet_private,
 737			     delay_work.delay_work.work);
 738
 739	if (fep->delay_work.timeout) {
 740		fep->delay_work.timeout = false;
 741		fec_restart(fep->netdev, fep->full_duplex);
 742		netif_wake_queue(fep->netdev);
 
 
 
 743	}
 
 
 
 
 
 
 
 
 
 744
 745	if (fep->delay_work.trig_tx) {
 746		fep->delay_work.trig_tx = false;
 747		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
 748	}
 
 
 749}
 750
 751static void
 752fec_enet_tx(struct net_device *ndev)
 753{
 754	struct	fec_enet_private *fep;
 
 755	struct bufdesc *bdp;
 756	unsigned short status;
 757	struct	sk_buff	*skb;
 
 
 758	int	index = 0;
 
 
 
 759
 760	fep = netdev_priv(ndev);
 761	bdp = fep->dirty_tx;
 762
 
 763	/* get next bdp of dirty_tx */
 764	bdp = fec_enet_get_nextdesc(bdp, fep);
 
 765
 766	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
 
 767
 768		/* current queue is empty */
 769		if (bdp == fep->cur_tx)
 
 
 
 770			break;
 771
 772		if (fep->bufdesc_ex)
 773			index = (struct bufdesc_ex *)bdp -
 774				(struct bufdesc_ex *)fep->tx_bd_base;
 775		else
 776			index = bdp - fep->tx_bd_base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777
 778		skb = fep->tx_skbuff[index];
 779		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
 780				DMA_TO_DEVICE);
 781		bdp->cbd_bufaddr = 0;
 782
 783		/* Check for errors. */
 784		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
 785				   BD_ENET_TX_RL | BD_ENET_TX_UN |
 786				   BD_ENET_TX_CSL)) {
 787			ndev->stats.tx_errors++;
 788			if (status & BD_ENET_TX_HB)  /* No heartbeat */
 789				ndev->stats.tx_heartbeat_errors++;
 790			if (status & BD_ENET_TX_LC)  /* Late collision */
 791				ndev->stats.tx_window_errors++;
 792			if (status & BD_ENET_TX_RL)  /* Retrans limit */
 793				ndev->stats.tx_aborted_errors++;
 794			if (status & BD_ENET_TX_UN)  /* Underrun */
 795				ndev->stats.tx_fifo_errors++;
 796			if (status & BD_ENET_TX_CSL) /* Carrier lost */
 797				ndev->stats.tx_carrier_errors++;
 798		} else {
 799			ndev->stats.tx_packets++;
 800			ndev->stats.tx_bytes += bdp->cbd_datlen;
 801		}
 802
 803		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
 804			fep->bufdesc_ex) {
 805			struct skb_shared_hwtstamps shhwtstamps;
 806			unsigned long flags;
 807			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 808
 809			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 810			spin_lock_irqsave(&fep->tmreg_lock, flags);
 811			shhwtstamps.hwtstamp = ns_to_ktime(
 812				timecounter_cyc2time(&fep->tc, ebdp->ts));
 813			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 814			skb_tstamp_tx(skb, &shhwtstamps);
 815		}
 816
 817		if (status & BD_ENET_TX_READY)
 818			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
 819
 820		/* Deferred means some collisions occurred during transmit,
 821		 * but we eventually sent the packet OK.
 822		 */
 823		if (status & BD_ENET_TX_DEF)
 824			ndev->stats.collisions++;
 825
 826		/* Free the sk buffer associated with this last transmit */
 827		dev_kfree_skb_any(skb);
 828		fep->tx_skbuff[index] = NULL;
 
 
 
 
 
 
 
 
 
 
 829
 830		fep->dirty_tx = bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832		/* Update pointer to next buffer descriptor to be transmitted */
 833		bdp = fec_enet_get_nextdesc(bdp, fep);
 834
 835		/* Since we have freed up a buffer, the ring is no longer full
 836		 */
 837		if (fep->dirty_tx != fep->cur_tx) {
 838			if (netif_queue_stopped(ndev))
 839				netif_wake_queue(ndev);
 
 840		}
 841	}
 842	return;
 
 
 
 
 843}
 844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845
 846/* During a receive, the cur_rx points to the current incoming buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847 * When we update through the ring, if the next incoming buffer has
 848 * not been given to the system, we just set the empty indicator,
 849 * effectively tossing the packet.
 850 */
 851static int
 852fec_enet_rx(struct net_device *ndev, int budget)
 853{
 854	struct fec_enet_private *fep = netdev_priv(ndev);
 855	const struct platform_device_id *id_entry =
 856				platform_get_device_id(fep->pdev);
 857	struct bufdesc *bdp;
 858	unsigned short status;
 859	struct	sk_buff	*skb;
 860	ushort	pkt_len;
 861	__u8 *data;
 862	int	pkt_received = 0;
 863	struct	bufdesc_ex *ebdp = NULL;
 864	bool	vlan_packet_rcvd = false;
 865	u16	vlan_tag;
 866	int	index = 0;
 
 
 
 
 
 
 
 
 867
 868#ifdef CONFIG_M532x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869	flush_cache_all();
 870#endif
 
 871
 872	/* First, grab all of the stats for the incoming packet.
 873	 * These get messed up if we get called due to a busy condition.
 874	 */
 875	bdp = fep->cur_rx;
 
 876
 877	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
 878
 879		if (pkt_received >= budget)
 880			break;
 881		pkt_received++;
 882
 883		/* Since we have allocated space to hold a complete frame,
 884		 * the last indicator should be set.
 885		 */
 886		if ((status & BD_ENET_RX_LAST) == 0)
 887			netdev_err(ndev, "rcv is not +last\n");
 888
 889		if (!fep->opened)
 890			goto rx_processing_done;
 891
 892		/* Check for errors. */
 
 893		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
 894			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
 
 895			ndev->stats.rx_errors++;
 896			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
 
 
 
 
 
 
 897				/* Frame too long or too short. */
 898				ndev->stats.rx_length_errors++;
 
 
 899			}
 900			if (status & BD_ENET_RX_NO)	/* Frame alignment */
 901				ndev->stats.rx_frame_errors++;
 902			if (status & BD_ENET_RX_CR)	/* CRC Error */
 903				ndev->stats.rx_crc_errors++;
 904			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
 905				ndev->stats.rx_fifo_errors++;
 906		}
 907
 908		/* Report late collisions as a frame error.
 909		 * On this error, the BD is closed, but we don't know what we
 910		 * have in the buffer.  So, just drop this frame on the floor.
 911		 */
 912		if (status & BD_ENET_RX_CL) {
 913			ndev->stats.rx_errors++;
 914			ndev->stats.rx_frame_errors++;
 915			goto rx_processing_done;
 916		}
 917
 918		/* Process the incoming frame. */
 919		ndev->stats.rx_packets++;
 920		pkt_len = bdp->cbd_datlen;
 921		ndev->stats.rx_bytes += pkt_len;
 922
 923		if (fep->bufdesc_ex)
 924			index = (struct bufdesc_ex *)bdp -
 925				(struct bufdesc_ex *)fep->rx_bd_base;
 926		else
 927			index = bdp - fep->rx_bd_base;
 928		data = fep->rx_skbuff[index]->data;
 929		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
 930					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931
 932		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
 
 933			swap_buffer(data, pkt_len);
 
 
 934
 935		/* Extract the enhanced buffer descriptor */
 936		ebdp = NULL;
 937		if (fep->bufdesc_ex)
 938			ebdp = (struct bufdesc_ex *)bdp;
 939
 940		/* If this is a VLAN packet remove the VLAN Tag */
 941		vlan_packet_rcvd = false;
 942		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 943		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
 
 944			/* Push and remove the vlan tag */
 945			struct vlan_hdr *vlan_header =
 946					(struct vlan_hdr *) (data + ETH_HLEN);
 947			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
 948			pkt_len -= VLAN_HLEN;
 949
 950			vlan_packet_rcvd = true;
 
 
 
 951		}
 952
 953		/* This does 16 byte alignment, exactly what we need.
 954		 * The packet length includes FCS, but we don't want to
 955		 * include that when passing upstream as it messes up
 956		 * bridging applications.
 957		 */
 958		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
 959
 960		if (unlikely(!skb)) {
 961			ndev->stats.rx_dropped++;
 962		} else {
 963			int payload_offset = (2 * ETH_ALEN);
 964			skb_reserve(skb, NET_IP_ALIGN);
 965			skb_put(skb, pkt_len - 4);	/* Make room */
 966
 967			/* Extract the frame data without the VLAN header. */
 968			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
 969			if (vlan_packet_rcvd)
 970				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
 971			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
 972						       data + payload_offset,
 973						       pkt_len - 4 - (2 * ETH_ALEN));
 974
 975			skb->protocol = eth_type_trans(skb, ndev);
 976
 977			/* Get receive timestamp from the skb */
 978			if (fep->hwts_rx_en && fep->bufdesc_ex) {
 979				struct skb_shared_hwtstamps *shhwtstamps =
 980							    skb_hwtstamps(skb);
 981				unsigned long flags;
 982
 983				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 984
 985				spin_lock_irqsave(&fep->tmreg_lock, flags);
 986				shhwtstamps->hwtstamp = ns_to_ktime(
 987				    timecounter_cyc2time(&fep->tc, ebdp->ts));
 988				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 989			}
 990
 991			if (fep->bufdesc_ex &&
 992			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
 993				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
 994					/* don't check it */
 995					skb->ip_summed = CHECKSUM_UNNECESSARY;
 996				} else {
 997					skb_checksum_none_assert(skb);
 998				}
 999			}
 
1000
1001			/* Handle received VLAN packets */
1002			if (vlan_packet_rcvd)
1003				__vlan_hwaccel_put_tag(skb,
1004						       htons(ETH_P_8021Q),
1005						       vlan_tag);
1006
1007			napi_gro_receive(&fep->napi, skb);
1008		}
1009
1010		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012rx_processing_done:
1013		/* Clear the status flags for this buffer */
1014		status &= ~BD_ENET_RX_STATS;
1015
1016		/* Mark the buffer empty */
1017		status |= BD_ENET_RX_EMPTY;
1018		bdp->cbd_sc = status;
1019
1020		if (fep->bufdesc_ex) {
1021			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022
1023			ebdp->cbd_esc = BD_ENET_RX_INT;
1024			ebdp->cbd_prot = 0;
1025			ebdp->cbd_bdu = 0;
1026		}
 
 
 
 
 
1027
1028		/* Update BD pointer to next entry */
1029		bdp = fec_enet_get_nextdesc(bdp, fep);
1030
1031		/* Doing this here will keep the FEC running while we process
1032		 * incoming frames.  On a heavily loaded network, we should be
1033		 * able to keep up at the expense of system resources.
1034		 */
1035		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036	}
1037	fep->cur_rx = bdp;
 
 
 
1038
1039	return pkt_received;
1040}
1041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042static irqreturn_t
1043fec_enet_interrupt(int irq, void *dev_id)
1044{
1045	struct net_device *ndev = dev_id;
1046	struct fec_enet_private *fep = netdev_priv(ndev);
1047	uint int_events;
1048	irqreturn_t ret = IRQ_NONE;
1049
1050	do {
1051		int_events = readl(fep->hwp + FEC_IEVENT);
1052		writel(int_events, fep->hwp + FEC_IEVENT);
1053
1054		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055			ret = IRQ_HANDLED;
1056
1057			/* Disable the RX interrupt */
1058			if (napi_schedule_prep(&fep->napi)) {
1059				writel(FEC_RX_DISABLED_IMASK,
1060					fep->hwp + FEC_IMASK);
1061				__napi_schedule(&fep->napi);
1062			}
1063		}
1064
1065		if (int_events & FEC_ENET_MII) {
1066			ret = IRQ_HANDLED;
1067			complete(&fep->mdio_done);
1068		}
1069	} while (int_events);
1070
1071	return ret;
1072}
1073
1074static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075{
1076	struct net_device *ndev = napi->dev;
1077	int pkts = fec_enet_rx(ndev, budget);
1078	struct fec_enet_private *fep = netdev_priv(ndev);
 
1079
1080	fec_enet_tx(ndev);
 
 
 
1081
1082	if (pkts < budget) {
1083		napi_complete(napi);
1084		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085	}
1086	return pkts;
 
1087}
1088
1089/* ------------------------------------------------------------------------- */
1090static void fec_get_mac(struct net_device *ndev)
1091{
1092	struct fec_enet_private *fep = netdev_priv(ndev);
1093	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094	unsigned char *iap, tmpaddr[ETH_ALEN];
 
1095
1096	/*
1097	 * try to get mac address in following order:
1098	 *
1099	 * 1) module parameter via kernel command line in form
1100	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101	 */
1102	iap = macaddr;
1103
1104	/*
1105	 * 2) from device tree data
1106	 */
1107	if (!is_valid_ether_addr(iap)) {
1108		struct device_node *np = fep->pdev->dev.of_node;
1109		if (np) {
1110			const char *mac = of_get_mac_address(np);
1111			if (mac)
1112				iap = (unsigned char *) mac;
 
 
1113		}
1114	}
1115
1116	/*
1117	 * 3) from flash or fuse (via platform data)
1118	 */
1119	if (!is_valid_ether_addr(iap)) {
1120#ifdef CONFIG_M5272
1121		if (FEC_FLASHMAC)
1122			iap = (unsigned char *)FEC_FLASHMAC;
1123#else
 
 
1124		if (pdata)
1125			iap = (unsigned char *)&pdata->mac;
1126#endif
1127	}
1128
1129	/*
1130	 * 4) FEC mac registers set by bootloader
1131	 */
1132	if (!is_valid_ether_addr(iap)) {
1133		*((__be32 *) &tmpaddr[0]) =
1134			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135		*((__be16 *) &tmpaddr[4]) =
1136			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137		iap = &tmpaddr[0];
1138	}
1139
1140	/*
1141	 * 5) random mac address
1142	 */
1143	if (!is_valid_ether_addr(iap)) {
1144		/* Report it and use a random ethernet address instead */
1145		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146		eth_hw_addr_random(ndev);
1147		netdev_info(ndev, "Using random MAC address: %pM\n",
1148			    ndev->dev_addr);
1149		return;
1150	}
1151
1152	memcpy(ndev->dev_addr, iap, ETH_ALEN);
 
1153
1154	/* Adjust MAC if using macaddr */
1155	if (iap == macaddr)
1156		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157}
1158
1159/* ------------------------------------------------------------------------- */
1160
1161/*
1162 * Phy section
1163 */
1164static void fec_enet_adjust_link(struct net_device *ndev)
1165{
1166	struct fec_enet_private *fep = netdev_priv(ndev);
1167	struct phy_device *phy_dev = fep->phy_dev;
1168	int status_change = 0;
1169
1170	/* Prevent a state halted on mii error */
1171	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172		phy_dev->state = PHY_RESUMING;
1173		return;
1174	}
1175
1176	if (phy_dev->link) {
 
1177		if (!fep->link) {
1178			fep->link = phy_dev->link;
1179			status_change = 1;
1180		}
1181
1182		if (fep->full_duplex != phy_dev->duplex)
 
1183			status_change = 1;
 
1184
1185		if (phy_dev->speed != fep->speed) {
1186			fep->speed = phy_dev->speed;
1187			status_change = 1;
1188		}
1189
1190		/* if any of the above changed restart the FEC */
1191		if (status_change)
1192			fec_restart(ndev, phy_dev->duplex);
 
 
 
 
 
 
 
1193	} else {
1194		if (fep->link) {
 
 
 
1195			fec_stop(ndev);
 
 
1196			fep->link = phy_dev->link;
1197			status_change = 1;
1198		}
1199	}
1200
1201	if (status_change)
1202		phy_print_status(phy_dev);
1203}
1204
1205static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206{
1207	struct fec_enet_private *fep = bus->priv;
1208	unsigned long time_left;
 
 
 
 
 
1209
1210	fep->mii_timeout = 0;
1211	init_completion(&fep->mdio_done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213	/* start a read op */
1214	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217
1218	/* wait for end of transfer */
1219	time_left = wait_for_completion_timeout(&fep->mdio_done,
1220			usecs_to_jiffies(FEC_MII_TIMEOUT));
1221	if (time_left == 0) {
1222		fep->mii_timeout = 1;
1223		netdev_err(fep->netdev, "MDIO read timeout\n");
1224		return -ETIMEDOUT;
1225	}
1226
1227	/* return value */
1228	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1229}
1230
1231static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232			   u16 value)
1233{
1234	struct fec_enet_private *fep = bus->priv;
1235	unsigned long time_left;
 
1236
1237	fep->mii_timeout = 0;
1238	init_completion(&fep->mdio_done);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239
1240	/* start a write op */
1241	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244		fep->hwp + FEC_MII_DATA);
1245
1246	/* wait for end of transfer */
1247	time_left = wait_for_completion_timeout(&fep->mdio_done,
1248			usecs_to_jiffies(FEC_MII_TIMEOUT));
1249	if (time_left == 0) {
1250		fep->mii_timeout = 1;
1251		netdev_err(fep->netdev, "MDIO write timeout\n");
1252		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253	}
1254
1255	return 0;
1256}
1257
1258static int fec_enet_mii_probe(struct net_device *ndev)
1259{
1260	struct fec_enet_private *fep = netdev_priv(ndev);
1261	const struct platform_device_id *id_entry =
1262				platform_get_device_id(fep->pdev);
1263	struct phy_device *phy_dev = NULL;
1264	char mdio_bus_id[MII_BUS_ID_SIZE];
1265	char phy_name[MII_BUS_ID_SIZE + 3];
1266	int phy_id;
1267	int dev_id = fep->dev_id;
1268
1269	fep->phy_dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270
1271	/* check for attached phy */
1272	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1273		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1274			continue;
1275		if (fep->mii_bus->phy_map[phy_id] == NULL)
1276			continue;
1277		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1278			continue;
1279		if (dev_id--)
1280			continue;
1281		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1282		break;
1283	}
1284
1285	if (phy_id >= PHY_MAX_ADDR) {
1286		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1287		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1288		phy_id = 0;
1289	}
1290
1291	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1292	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1293			      fep->phy_interface);
1294	if (IS_ERR(phy_dev)) {
1295		netdev_err(ndev, "could not attach to PHY\n");
1296		return PTR_ERR(phy_dev);
1297	}
1298
1299	/* mask with MAC supported features */
1300	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1301		phy_dev->supported &= PHY_GBIT_FEATURES;
 
 
1302#if !defined(CONFIG_M5272)
1303		phy_dev->supported |= SUPPORTED_Pause;
1304#endif
1305	}
1306	else
1307		phy_dev->supported &= PHY_BASIC_FEATURES;
1308
1309	phy_dev->advertising = phy_dev->supported;
1310
1311	fep->phy_dev = phy_dev;
1312	fep->link = 0;
1313	fep->full_duplex = 0;
1314
1315	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1316		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1317		    fep->phy_dev->irq);
1318
1319	return 0;
1320}
1321
1322static int fec_enet_mii_init(struct platform_device *pdev)
1323{
1324	static struct mii_bus *fec0_mii_bus;
1325	struct net_device *ndev = platform_get_drvdata(pdev);
1326	struct fec_enet_private *fep = netdev_priv(ndev);
1327	const struct platform_device_id *id_entry =
1328				platform_get_device_id(fep->pdev);
1329	int err = -ENXIO, i;
 
 
1330
1331	/*
1332	 * The dual fec interfaces are not equivalent with enet-mac.
1333	 * Here are the differences:
1334	 *
1335	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1336	 *  - fec0 acts as the 1588 time master while fec1 is slave
1337	 *  - external phys can only be configured by fec0
1338	 *
1339	 * That is to say fec1 can not work independently. It only works
1340	 * when fec0 is working. The reason behind this design is that the
1341	 * second interface is added primarily for Switch mode.
1342	 *
1343	 * Because of the last point above, both phys are attached on fec0
1344	 * mdio interface in board design, and need to be configured by
1345	 * fec0 mii_bus.
1346	 */
1347	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1348		/* fec1 uses fec0 mii_bus */
1349		if (mii_cnt && fec0_mii_bus) {
1350			fep->mii_bus = fec0_mii_bus;
1351			mii_cnt++;
1352			return 0;
1353		}
1354		return -ENOENT;
1355	}
1356
1357	fep->mii_timeout = 0;
 
 
 
 
 
 
1358
1359	/*
1360	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1361	 *
1362	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1363	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1364	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1365	 * document.
1366	 */
1367	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1368	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1369		fep->phy_speed--;
1370	fep->phy_speed <<= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1372
 
 
 
1373	fep->mii_bus = mdiobus_alloc();
1374	if (fep->mii_bus == NULL) {
1375		err = -ENOMEM;
1376		goto err_out;
1377	}
1378
1379	fep->mii_bus->name = "fec_enet_mii_bus";
1380	fep->mii_bus->read = fec_enet_mdio_read;
1381	fep->mii_bus->write = fec_enet_mdio_write;
 
 
 
 
1382	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1383		pdev->name, fep->dev_id + 1);
1384	fep->mii_bus->priv = fep;
1385	fep->mii_bus->parent = &pdev->dev;
1386
1387	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1388	if (!fep->mii_bus->irq) {
1389		err = -ENOMEM;
1390		goto err_out_free_mdiobus;
1391	}
1392
1393	for (i = 0; i < PHY_MAX_ADDR; i++)
1394		fep->mii_bus->irq[i] = PHY_POLL;
1395
1396	if (mdiobus_register(fep->mii_bus))
1397		goto err_out_free_mdio_irq;
1398
1399	mii_cnt++;
1400
1401	/* save fec0 mii_bus */
1402	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1403		fec0_mii_bus = fep->mii_bus;
1404
1405	return 0;
1406
1407err_out_free_mdio_irq:
1408	kfree(fep->mii_bus->irq);
1409err_out_free_mdiobus:
1410	mdiobus_free(fep->mii_bus);
1411err_out:
 
1412	return err;
1413}
1414
1415static void fec_enet_mii_remove(struct fec_enet_private *fep)
1416{
1417	if (--mii_cnt == 0) {
1418		mdiobus_unregister(fep->mii_bus);
1419		kfree(fep->mii_bus->irq);
1420		mdiobus_free(fep->mii_bus);
1421	}
1422}
1423
1424static int fec_enet_get_settings(struct net_device *ndev,
1425				  struct ethtool_cmd *cmd)
1426{
1427	struct fec_enet_private *fep = netdev_priv(ndev);
1428	struct phy_device *phydev = fep->phy_dev;
1429
1430	if (!phydev)
1431		return -ENODEV;
1432
1433	return phy_ethtool_gset(phydev, cmd);
1434}
1435
1436static int fec_enet_set_settings(struct net_device *ndev,
1437				 struct ethtool_cmd *cmd)
1438{
1439	struct fec_enet_private *fep = netdev_priv(ndev);
1440	struct phy_device *phydev = fep->phy_dev;
 
1441
1442	if (!phydev)
1443		return -ENODEV;
 
1444
1445	return phy_ethtool_sset(phydev, cmd);
1446}
1447
1448static void fec_enet_get_drvinfo(struct net_device *ndev,
1449				 struct ethtool_drvinfo *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450{
1451	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452
1453	strlcpy(info->driver, fep->pdev->dev.driver->name,
1454		sizeof(info->driver));
1455	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1456	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
 
 
1457}
1458
1459static int fec_enet_get_ts_info(struct net_device *ndev,
1460				struct ethtool_ts_info *info)
1461{
1462	struct fec_enet_private *fep = netdev_priv(ndev);
1463
1464	if (fep->bufdesc_ex) {
1465
1466		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1467					SOF_TIMESTAMPING_RX_SOFTWARE |
1468					SOF_TIMESTAMPING_SOFTWARE |
1469					SOF_TIMESTAMPING_TX_HARDWARE |
1470					SOF_TIMESTAMPING_RX_HARDWARE |
1471					SOF_TIMESTAMPING_RAW_HARDWARE;
1472		if (fep->ptp_clock)
1473			info->phc_index = ptp_clock_index(fep->ptp_clock);
1474		else
1475			info->phc_index = -1;
1476
1477		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1478				 (1 << HWTSTAMP_TX_ON);
1479
1480		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1481				   (1 << HWTSTAMP_FILTER_ALL);
1482		return 0;
1483	} else {
1484		return ethtool_op_get_ts_info(ndev, info);
1485	}
1486}
1487
1488#if !defined(CONFIG_M5272)
1489
1490static void fec_enet_get_pauseparam(struct net_device *ndev,
1491				    struct ethtool_pauseparam *pause)
1492{
1493	struct fec_enet_private *fep = netdev_priv(ndev);
1494
1495	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1496	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1497	pause->rx_pause = pause->tx_pause;
1498}
1499
1500static int fec_enet_set_pauseparam(struct net_device *ndev,
1501				   struct ethtool_pauseparam *pause)
1502{
1503	struct fec_enet_private *fep = netdev_priv(ndev);
1504
 
 
 
1505	if (pause->tx_pause != pause->rx_pause) {
1506		netdev_info(ndev,
1507			"hardware only support enable/disable both tx and rx");
1508		return -EINVAL;
1509	}
1510
1511	fep->pause_flag = 0;
1512
1513	/* tx pause must be same as rx pause */
1514	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1515	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1516
1517	if (pause->rx_pause || pause->autoneg) {
1518		fep->phy_dev->supported |= ADVERTISED_Pause;
1519		fep->phy_dev->advertising |= ADVERTISED_Pause;
1520	} else {
1521		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1522		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1523	}
1524
1525	if (pause->autoneg) {
1526		if (netif_running(ndev))
1527			fec_stop(ndev);
1528		phy_start_aneg(fep->phy_dev);
 
 
 
 
 
 
 
 
1529	}
1530	if (netif_running(ndev))
1531		fec_restart(ndev, 0);
1532
1533	return 0;
1534}
1535
1536static const struct fec_stat {
1537	char name[ETH_GSTRING_LEN];
1538	u16 offset;
1539} fec_stats[] = {
1540	/* RMON TX */
1541	{ "tx_dropped", RMON_T_DROP },
1542	{ "tx_packets", RMON_T_PACKETS },
1543	{ "tx_broadcast", RMON_T_BC_PKT },
1544	{ "tx_multicast", RMON_T_MC_PKT },
1545	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1546	{ "tx_undersize", RMON_T_UNDERSIZE },
1547	{ "tx_oversize", RMON_T_OVERSIZE },
1548	{ "tx_fragment", RMON_T_FRAG },
1549	{ "tx_jabber", RMON_T_JAB },
1550	{ "tx_collision", RMON_T_COL },
1551	{ "tx_64byte", RMON_T_P64 },
1552	{ "tx_65to127byte", RMON_T_P65TO127 },
1553	{ "tx_128to255byte", RMON_T_P128TO255 },
1554	{ "tx_256to511byte", RMON_T_P256TO511 },
1555	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1556	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1557	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1558	{ "tx_octets", RMON_T_OCTETS },
1559
1560	/* IEEE TX */
1561	{ "IEEE_tx_drop", IEEE_T_DROP },
1562	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1563	{ "IEEE_tx_1col", IEEE_T_1COL },
1564	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1565	{ "IEEE_tx_def", IEEE_T_DEF },
1566	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1567	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1568	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1569	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1570	{ "IEEE_tx_sqe", IEEE_T_SQE },
1571	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1572	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1573
1574	/* RMON RX */
1575	{ "rx_packets", RMON_R_PACKETS },
1576	{ "rx_broadcast", RMON_R_BC_PKT },
1577	{ "rx_multicast", RMON_R_MC_PKT },
1578	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1579	{ "rx_undersize", RMON_R_UNDERSIZE },
1580	{ "rx_oversize", RMON_R_OVERSIZE },
1581	{ "rx_fragment", RMON_R_FRAG },
1582	{ "rx_jabber", RMON_R_JAB },
1583	{ "rx_64byte", RMON_R_P64 },
1584	{ "rx_65to127byte", RMON_R_P65TO127 },
1585	{ "rx_128to255byte", RMON_R_P128TO255 },
1586	{ "rx_256to511byte", RMON_R_P256TO511 },
1587	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1588	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1589	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1590	{ "rx_octets", RMON_R_OCTETS },
1591
1592	/* IEEE RX */
1593	{ "IEEE_rx_drop", IEEE_R_DROP },
1594	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1595	{ "IEEE_rx_crc", IEEE_R_CRC },
1596	{ "IEEE_rx_align", IEEE_R_ALIGN },
1597	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1598	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1599	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1600};
1601
1602static void fec_enet_get_ethtool_stats(struct net_device *dev,
1603	struct ethtool_stats *stats, u64 *data)
 
 
 
 
 
 
 
 
 
 
 
1604{
1605	struct fec_enet_private *fep = netdev_priv(dev);
1606	int i;
1607
1608	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1609		data[i] = readl(fep->hwp + fec_stats[i].offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610}
1611
1612static void fec_enet_get_strings(struct net_device *netdev,
1613	u32 stringset, u8 *data)
1614{
1615	int i;
1616	switch (stringset) {
1617	case ETH_SS_STATS:
1618		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1619			memcpy(data + i * ETH_GSTRING_LEN,
1620				fec_stats[i].name, ETH_GSTRING_LEN);
 
 
 
 
 
 
 
 
1621		break;
1622	}
1623}
1624
1625static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1626{
 
 
1627	switch (sset) {
1628	case ETH_SS_STATS:
1629		return ARRAY_SIZE(fec_stats);
 
 
 
 
 
1630	default:
1631		return -EOPNOTSUPP;
1632	}
1633}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1634#endif /* !defined(CONFIG_M5272) */
1635
1636static int fec_enet_nway_reset(struct net_device *dev)
 
 
 
 
1637{
1638	struct fec_enet_private *fep = netdev_priv(dev);
1639	struct phy_device *phydev = fep->phy_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640
1641	if (!phydev)
1642		return -ENODEV;
 
 
 
1643
1644	return genphy_restart_aneg(phydev);
1645}
1646
1647static const struct ethtool_ops fec_enet_ethtool_ops = {
1648#if !defined(CONFIG_M5272)
1649	.get_pauseparam		= fec_enet_get_pauseparam,
1650	.set_pauseparam		= fec_enet_set_pauseparam,
1651#endif
1652	.get_settings		= fec_enet_get_settings,
1653	.set_settings		= fec_enet_set_settings,
1654	.get_drvinfo		= fec_enet_get_drvinfo,
 
 
 
1655	.get_link		= ethtool_op_get_link,
1656	.get_ts_info		= fec_enet_get_ts_info,
1657	.nway_reset		= fec_enet_nway_reset,
1658#ifndef CONFIG_M5272
 
 
 
1659	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1660	.get_strings		= fec_enet_get_strings,
1661	.get_sset_count		= fec_enet_get_sset_count,
1662#endif
 
 
 
 
 
 
 
 
1663};
1664
1665static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1666{
1667	struct fec_enet_private *fep = netdev_priv(ndev);
1668	struct phy_device *phydev = fep->phy_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669
1670	if (!netif_running(ndev))
1671		return -EINVAL;
 
 
 
 
1672
1673	if (!phydev)
1674		return -ENODEV;
1675
1676	if (fep->bufdesc_ex) {
1677		if (cmd == SIOCSHWTSTAMP)
1678			return fec_ptp_set(ndev, rq);
1679		if (cmd == SIOCGHWTSTAMP)
1680			return fec_ptp_get(ndev, rq);
1681	}
 
1682
1683	return phy_mii_ioctl(phydev, rq, cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684}
1685
1686static void fec_enet_free_buffers(struct net_device *ndev)
1687{
1688	struct fec_enet_private *fep = netdev_priv(ndev);
1689	unsigned int i;
1690	struct sk_buff *skb;
1691	struct bufdesc	*bdp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693	bdp = fep->rx_bd_base;
1694	for (i = 0; i < fep->rx_ring_size; i++) {
1695		skb = fep->rx_skbuff[i];
1696
1697		if (bdp->cbd_bufaddr)
1698			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1699					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1700		if (skb)
1701			dev_kfree_skb(skb);
1702		bdp = fec_enet_get_nextdesc(bdp, fep);
1703	}
 
1704
1705	bdp = fep->tx_bd_base;
1706	for (i = 0; i < fep->tx_ring_size; i++)
1707		kfree(fep->tx_bounce[i]);
1708}
1709
1710static int fec_enet_alloc_buffers(struct net_device *ndev)
 
1711{
1712	struct fec_enet_private *fep = netdev_priv(ndev);
1713	unsigned int i;
1714	struct sk_buff *skb;
1715	struct bufdesc	*bdp;
 
 
1716
1717	bdp = fep->rx_bd_base;
1718	for (i = 0; i < fep->rx_ring_size; i++) {
1719		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1720		if (!skb) {
1721			fec_enet_free_buffers(ndev);
1722			return -ENOMEM;
1723		}
1724		fep->rx_skbuff[i] = skb;
 
 
 
 
 
 
 
 
1725
1726		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1727				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1728		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1729			fec_enet_free_buffers(ndev);
1730			if (net_ratelimit())
1731				netdev_err(ndev, "Rx DMA memory map failed\n");
1732			return -ENOMEM;
1733		}
1734		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1735
1736		if (fep->bufdesc_ex) {
1737			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1738			ebdp->cbd_esc = BD_ENET_RX_INT;
1739		}
1740
1741		bdp = fec_enet_get_nextdesc(bdp, fep);
1742	}
1743
1744	/* Set the last buffer to wrap. */
1745	bdp = fec_enet_get_prevdesc(bdp, fep);
1746	bdp->cbd_sc |= BD_SC_WRAP;
 
1747
1748	bdp = fep->tx_bd_base;
1749	for (i = 0; i < fep->tx_ring_size; i++) {
1750		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
 
1751
1752		bdp->cbd_sc = 0;
1753		bdp->cbd_bufaddr = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1754
1755		if (fep->bufdesc_ex) {
1756			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1757			ebdp->cbd_esc = BD_ENET_TX_INT;
1758		}
1759
1760		bdp = fec_enet_get_nextdesc(bdp, fep);
1761	}
1762
1763	/* Set the last buffer to wrap. */
1764	bdp = fec_enet_get_prevdesc(bdp, fep);
1765	bdp->cbd_sc |= BD_SC_WRAP;
1766
1767	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768}
1769
1770static int
1771fec_enet_open(struct net_device *ndev)
1772{
1773	struct fec_enet_private *fep = netdev_priv(ndev);
1774	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775
1776	/* I should reset the ring buffers here, but I don't yet know
1777	 * a simple way to do that.
1778	 */
1779
1780	ret = fec_enet_alloc_buffers(ndev);
1781	if (ret)
1782		return ret;
 
 
 
 
 
 
 
 
 
1783
1784	/* Probe and connect to PHY when open the interface */
1785	ret = fec_enet_mii_probe(ndev);
1786	if (ret) {
1787		fec_enet_free_buffers(ndev);
1788		return ret;
1789	}
 
 
 
 
1790
1791	napi_enable(&fep->napi);
1792	phy_start(fep->phy_dev);
1793	netif_start_queue(ndev);
1794	fep->opened = 1;
 
 
 
1795	return 0;
 
 
 
 
 
 
 
 
 
 
1796}
1797
1798static int
1799fec_enet_close(struct net_device *ndev)
1800{
1801	struct fec_enet_private *fep = netdev_priv(ndev);
1802
1803	/* Don't know what to do yet. */
1804	napi_disable(&fep->napi);
1805	fep->opened = 0;
1806	netif_stop_queue(ndev);
1807	fec_stop(ndev);
1808
1809	if (fep->phy_dev) {
1810		phy_stop(fep->phy_dev);
1811		phy_disconnect(fep->phy_dev);
1812	}
1813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814	fec_enet_free_buffers(ndev);
1815
1816	return 0;
1817}
1818
1819/* Set or clear the multicast filter for this adaptor.
1820 * Skeleton taken from sunlance driver.
1821 * The CPM Ethernet implementation allows Multicast as well as individual
1822 * MAC address filtering.  Some of the drivers check to make sure it is
1823 * a group multicast address, and discard those that are not.  I guess I
1824 * will do the same for now, but just remove the test if you want
1825 * individual filtering as well (do the upper net layers want or support
1826 * this kind of feature?).
1827 */
1828
1829#define HASH_BITS	6		/* #bits in hash */
1830#define CRC32_POLY	0xEDB88320
1831
1832static void set_multicast_list(struct net_device *ndev)
1833{
1834	struct fec_enet_private *fep = netdev_priv(ndev);
1835	struct netdev_hw_addr *ha;
1836	unsigned int i, bit, data, crc, tmp;
1837	unsigned char hash;
 
1838
1839	if (ndev->flags & IFF_PROMISC) {
1840		tmp = readl(fep->hwp + FEC_R_CNTRL);
1841		tmp |= 0x8;
1842		writel(tmp, fep->hwp + FEC_R_CNTRL);
1843		return;
1844	}
1845
1846	tmp = readl(fep->hwp + FEC_R_CNTRL);
1847	tmp &= ~0x8;
1848	writel(tmp, fep->hwp + FEC_R_CNTRL);
1849
1850	if (ndev->flags & IFF_ALLMULTI) {
1851		/* Catch all multicast addresses, so set the
1852		 * filter to all 1's
1853		 */
1854		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1855		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1856
1857		return;
1858	}
1859
1860	/* Clear filter and add the addresses in hash register
1861	 */
1862	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1863	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1864
1865	netdev_for_each_mc_addr(ha, ndev) {
1866		/* calculate crc32 value of mac address */
1867		crc = 0xffffffff;
1868
1869		for (i = 0; i < ndev->addr_len; i++) {
1870			data = ha->addr[i];
1871			for (bit = 0; bit < 8; bit++, data >>= 1) {
1872				crc = (crc >> 1) ^
1873				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1874			}
1875		}
1876
1877		/* only upper 6 bits (HASH_BITS) are used
1878		 * which point to specific bit in he hash registers
1879		 */
1880		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1881
1882		if (hash > 31) {
1883			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1884			tmp |= 1 << (hash - 32);
1885			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886		} else {
1887			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1888			tmp |= 1 << hash;
1889			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890		}
1891	}
 
 
 
1892}
1893
1894/* Set a MAC change in hardware. */
1895static int
1896fec_set_mac_address(struct net_device *ndev, void *p)
1897{
1898	struct fec_enet_private *fep = netdev_priv(ndev);
1899	struct sockaddr *addr = p;
1900
1901	if (addr) {
1902		if (!is_valid_ether_addr(addr->sa_data))
1903			return -EADDRNOTAVAIL;
1904		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1905	}
1906
 
 
 
 
 
 
 
 
1907	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1908		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1909		fep->hwp + FEC_ADDR_LOW);
1910	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1911		fep->hwp + FEC_ADDR_HIGH);
1912	return 0;
1913}
1914
1915#ifdef CONFIG_NET_POLL_CONTROLLER
1916/**
1917 * fec_poll_controller - FEC Poll controller function
1918 * @dev: The FEC network adapter
1919 *
1920 * Polled functionality used by netconsole and others in non interrupt mode
1921 *
1922 */
1923static void fec_poll_controller(struct net_device *dev)
1924{
1925	int i;
1926	struct fec_enet_private *fep = netdev_priv(dev);
1927
1928	for (i = 0; i < FEC_IRQ_NUM; i++) {
1929		if (fep->irq[i] > 0) {
1930			disable_irq(fep->irq[i]);
1931			fec_enet_interrupt(fep->irq[i], dev);
1932			enable_irq(fep->irq[i]);
1933		}
1934	}
1935}
1936#endif
1937
1938static int fec_set_features(struct net_device *netdev,
1939	netdev_features_t features)
1940{
1941	struct fec_enet_private *fep = netdev_priv(netdev);
1942	netdev_features_t changed = features ^ netdev->features;
1943
1944	netdev->features = features;
1945
1946	/* Receive checksum has been changed */
1947	if (changed & NETIF_F_RXCSUM) {
1948		if (features & NETIF_F_RXCSUM)
1949			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1950		else
1951			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952
1953		if (netif_running(netdev)) {
1954			fec_stop(netdev);
1955			fec_restart(netdev, fep->phy_dev->duplex);
1956			netif_wake_queue(netdev);
1957		} else {
1958			fec_restart(netdev, fep->phy_dev->duplex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1960	}
1961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962	return 0;
1963}
1964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965static const struct net_device_ops fec_netdev_ops = {
1966	.ndo_open		= fec_enet_open,
1967	.ndo_stop		= fec_enet_close,
1968	.ndo_start_xmit		= fec_enet_start_xmit,
 
1969	.ndo_set_rx_mode	= set_multicast_list,
1970	.ndo_change_mtu		= eth_change_mtu,
1971	.ndo_validate_addr	= eth_validate_addr,
1972	.ndo_tx_timeout		= fec_timeout,
1973	.ndo_set_mac_address	= fec_set_mac_address,
1974	.ndo_do_ioctl		= fec_enet_ioctl,
1975#ifdef CONFIG_NET_POLL_CONTROLLER
1976	.ndo_poll_controller	= fec_poll_controller,
1977#endif
1978	.ndo_set_features	= fec_set_features,
 
 
 
 
 
 
 
 
 
 
 
 
1979};
1980
1981 /*
1982  * XXX:  We need to clean up on failure exits here.
1983  *
1984  */
1985static int fec_enet_init(struct net_device *ndev)
1986{
1987	struct fec_enet_private *fep = netdev_priv(ndev);
1988	const struct platform_device_id *id_entry =
1989				platform_get_device_id(fep->pdev);
1990	struct bufdesc *cbd_base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991
1992	/* Allocate memory for buffer descriptors. */
1993	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1994				      GFP_KERNEL);
1995	if (!cbd_base)
1996		return -ENOMEM;
 
 
 
 
 
1997
1998	memset(cbd_base, 0, PAGE_SIZE);
1999
2000	fep->netdev = ndev;
 
 
 
 
 
 
2001
2002	/* Get the Ethernet address */
2003	fec_get_mac(ndev);
2004	/* make sure MAC we just acquired is programmed into the hw */
2005	fec_set_mac_address(ndev, NULL);
2006
2007	/* init the tx & rx ring size */
2008	fep->tx_ring_size = TX_RING_SIZE;
2009	fep->rx_ring_size = RX_RING_SIZE;
2010
2011	/* Set receive and transmit descriptor base. */
2012	fep->rx_bd_base = cbd_base;
2013	if (fep->bufdesc_ex)
2014		fep->tx_bd_base = (struct bufdesc *)
2015			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2016	else
2017		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018
2019	/* The FEC Ethernet specific entries in the device structure */
2020	ndev->watchdog_timeo = TX_TIMEOUT;
2021	ndev->netdev_ops = &fec_netdev_ops;
2022	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2023
2024	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2025	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2026
2027	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2028		/* enable hw VLAN support */
2029		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2030		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2031	}
2032
2033	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
 
 
2034		/* enable hw accelerator */
2035		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2036				| NETIF_F_RXCSUM);
2037		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2038				| NETIF_F_RXCSUM);
2039		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2040	}
2041
2042	fec_restart(ndev, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043
2044	return 0;
 
 
 
 
2045}
2046
2047#ifdef CONFIG_OF
2048static void fec_reset_phy(struct platform_device *pdev)
2049{
2050	int err, phy_reset;
2051	int msec = 1;
2052	struct device_node *np = pdev->dev.of_node;
 
2053
2054	if (!np)
2055		return;
2056
2057	of_property_read_u32(np, "phy-reset-duration", &msec);
2058	/* A sane reset duration should not be longer than 1s */
2059	if (msec > 1000)
2060		msec = 1;
2061
2062	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2063	if (!gpio_is_valid(phy_reset))
2064		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065
2066	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2067				    GPIOF_OUT_INIT_LOW, "phy-reset");
2068	if (err) {
2069		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2070		return;
2071	}
2072	msleep(msec);
2073	gpio_set_value(phy_reset, 1);
2074}
2075#else /* CONFIG_OF */
2076static void fec_reset_phy(struct platform_device *pdev)
2077{
2078	/*
2079	 * In case of platform probe, the reset has been done
2080	 * by machine code.
2081	 */
 
2082}
2083#endif /* CONFIG_OF */
2084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085static int
2086fec_probe(struct platform_device *pdev)
2087{
2088	struct fec_enet_private *fep;
2089	struct fec_platform_data *pdata;
 
2090	struct net_device *ndev;
2091	int i, irq, ret = 0;
2092	struct resource *r;
2093	const struct of_device_id *of_id;
2094	static int dev_id;
 
 
 
 
 
 
2095
2096	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2097	if (of_id)
2098		pdev->id_entry = of_id->data;
2099
2100	/* Init network device */
2101	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
 
2102	if (!ndev)
2103		return -ENOMEM;
2104
2105	SET_NETDEV_DEV(ndev, &pdev->dev);
2106
2107	/* setup board info structure */
2108	fep = netdev_priv(ndev);
2109
 
 
 
 
 
 
 
 
 
 
2110#if !defined(CONFIG_M5272)
2111	/* default enable pause frame auto negotiation */
2112	if (pdev->id_entry &&
2113	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2114		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2115#endif
2116
2117	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2118	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
 
 
2119	if (IS_ERR(fep->hwp)) {
2120		ret = PTR_ERR(fep->hwp);
2121		goto failed_ioremap;
2122	}
2123
2124	fep->pdev = pdev;
2125	fep->dev_id = dev_id++;
2126
2127	fep->bufdesc_ex = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2128
2129	platform_set_drvdata(pdev, ndev);
 
 
 
 
 
 
 
 
 
 
2130
2131	ret = of_get_phy_mode(pdev->dev.of_node);
2132	if (ret < 0) {
2133		pdata = dev_get_platdata(&pdev->dev);
2134		if (pdata)
2135			fep->phy_interface = pdata->phy;
2136		else
2137			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2138	} else {
2139		fep->phy_interface = ret;
2140	}
2141
 
 
 
 
2142	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2143	if (IS_ERR(fep->clk_ipg)) {
2144		ret = PTR_ERR(fep->clk_ipg);
2145		goto failed_clk;
2146	}
2147
2148	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2149	if (IS_ERR(fep->clk_ahb)) {
2150		ret = PTR_ERR(fep->clk_ahb);
2151		goto failed_clk;
2152	}
2153
 
 
2154	/* enet_out is optional, depends on board */
2155	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2156	if (IS_ERR(fep->clk_enet_out))
2157		fep->clk_enet_out = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2158
 
2159	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2160	fep->bufdesc_ex =
2161		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2162	if (IS_ERR(fep->clk_ptp)) {
2163		fep->clk_ptp = NULL;
2164		fep->bufdesc_ex = 0;
2165	}
2166
2167	ret = clk_prepare_enable(fep->clk_ahb);
2168	if (ret)
2169		goto failed_clk;
2170
2171	ret = clk_prepare_enable(fep->clk_ipg);
2172	if (ret)
2173		goto failed_clk_ipg;
 
 
 
2174
2175	if (fep->clk_enet_out) {
2176		ret = clk_prepare_enable(fep->clk_enet_out);
2177		if (ret)
2178			goto failed_clk_enet_out;
2179	}
2180
2181	if (fep->clk_ptp) {
2182		ret = clk_prepare_enable(fep->clk_ptp);
2183		if (ret)
2184			goto failed_clk_ptp;
2185	}
2186
2187	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2188	if (!IS_ERR(fep->reg_phy)) {
2189		ret = regulator_enable(fep->reg_phy);
2190		if (ret) {
2191			dev_err(&pdev->dev,
2192				"Failed to enable phy regulator: %d\n", ret);
2193			goto failed_regulator;
2194		}
2195	} else {
 
 
 
 
2196		fep->reg_phy = NULL;
2197	}
2198
2199	fec_reset_phy(pdev);
 
 
 
 
 
 
 
 
2200
 
2201	if (fep->bufdesc_ex)
2202		fec_ptp_init(pdev);
2203
2204	ret = fec_enet_init(ndev);
2205	if (ret)
2206		goto failed_init;
2207
2208	for (i = 0; i < FEC_IRQ_NUM; i++) {
2209		irq = platform_get_irq(pdev, i);
 
 
 
2210		if (irq < 0) {
2211			if (i)
2212				break;
2213			ret = irq;
2214			goto failed_irq;
2215		}
2216		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2217				       0, pdev->name, ndev);
2218		if (ret)
2219			goto failed_irq;
 
 
2220	}
2221
 
 
 
2222	ret = fec_enet_mii_init(pdev);
2223	if (ret)
2224		goto failed_mii_init;
2225
2226	/* Carrier starts down, phylib will bring it up */
2227	netif_carrier_off(ndev);
 
 
 
 
2228
2229	ret = register_netdev(ndev);
2230	if (ret)
2231		goto failed_register;
2232
 
 
 
2233	if (fep->bufdesc_ex && fep->ptp_clock)
2234		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2235
2236	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
 
 
 
 
2237	return 0;
2238
2239failed_register:
2240	fec_enet_mii_remove(fep);
2241failed_mii_init:
2242failed_irq:
2243failed_init:
 
 
 
 
2244	if (fep->reg_phy)
2245		regulator_disable(fep->reg_phy);
2246failed_regulator:
2247	if (fep->clk_ptp)
2248		clk_disable_unprepare(fep->clk_ptp);
2249failed_clk_ptp:
2250	if (fep->clk_enet_out)
2251		clk_disable_unprepare(fep->clk_enet_out);
2252failed_clk_enet_out:
2253	clk_disable_unprepare(fep->clk_ipg);
2254failed_clk_ipg:
2255	clk_disable_unprepare(fep->clk_ahb);
2256failed_clk:
 
 
 
 
 
 
 
 
2257failed_ioremap:
2258	free_netdev(ndev);
2259
2260	return ret;
2261}
2262
2263static int
2264fec_drv_remove(struct platform_device *pdev)
2265{
2266	struct net_device *ndev = platform_get_drvdata(pdev);
2267	struct fec_enet_private *fep = netdev_priv(ndev);
 
 
 
 
 
 
 
 
2268
2269	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
 
2270	unregister_netdev(ndev);
2271	fec_enet_mii_remove(fep);
2272	del_timer_sync(&fep->time_keep);
2273	if (fep->reg_phy)
2274		regulator_disable(fep->reg_phy);
2275	if (fep->clk_ptp)
2276		clk_disable_unprepare(fep->clk_ptp);
2277	if (fep->ptp_clock)
2278		ptp_clock_unregister(fep->ptp_clock);
2279	if (fep->clk_enet_out)
2280		clk_disable_unprepare(fep->clk_enet_out);
2281	clk_disable_unprepare(fep->clk_ipg);
2282	clk_disable_unprepare(fep->clk_ahb);
 
 
 
 
 
 
 
2283	free_netdev(ndev);
2284
2285	return 0;
2286}
2287
2288#ifdef CONFIG_PM_SLEEP
2289static int
2290fec_suspend(struct device *dev)
2291{
2292	struct net_device *ndev = dev_get_drvdata(dev);
2293	struct fec_enet_private *fep = netdev_priv(ndev);
 
2294
 
2295	if (netif_running(ndev)) {
 
 
 
 
 
 
 
2296		fec_stop(ndev);
2297		netif_device_detach(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298	}
2299	if (fep->clk_ptp)
2300		clk_disable_unprepare(fep->clk_ptp);
2301	if (fep->clk_enet_out)
2302		clk_disable_unprepare(fep->clk_enet_out);
2303	clk_disable_unprepare(fep->clk_ipg);
2304	clk_disable_unprepare(fep->clk_ahb);
2305
2306	if (fep->reg_phy)
2307		regulator_disable(fep->reg_phy);
2308
 
 
 
 
 
 
2309	return 0;
2310}
2311
2312static int
2313fec_resume(struct device *dev)
2314{
2315	struct net_device *ndev = dev_get_drvdata(dev);
2316	struct fec_enet_private *fep = netdev_priv(ndev);
2317	int ret;
 
2318
2319	if (fep->reg_phy) {
2320		ret = regulator_enable(fep->reg_phy);
2321		if (ret)
2322			return ret;
2323	}
2324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325	ret = clk_prepare_enable(fep->clk_ahb);
2326	if (ret)
2327		goto failed_clk_ahb;
2328
2329	ret = clk_prepare_enable(fep->clk_ipg);
2330	if (ret)
2331		goto failed_clk_ipg;
2332
2333	if (fep->clk_enet_out) {
2334		ret = clk_prepare_enable(fep->clk_enet_out);
2335		if (ret)
2336			goto failed_clk_enet_out;
2337	}
2338
2339	if (fep->clk_ptp) {
2340		ret = clk_prepare_enable(fep->clk_ptp);
2341		if (ret)
2342			goto failed_clk_ptp;
2343	}
2344
2345	if (netif_running(ndev)) {
2346		fec_restart(ndev, fep->full_duplex);
2347		netif_device_attach(ndev);
2348	}
2349
2350	return 0;
2351
2352failed_clk_ptp:
2353	if (fep->clk_enet_out)
2354		clk_disable_unprepare(fep->clk_enet_out);
2355failed_clk_enet_out:
2356	clk_disable_unprepare(fep->clk_ipg);
2357failed_clk_ipg:
2358	clk_disable_unprepare(fep->clk_ahb);
2359failed_clk_ahb:
2360	if (fep->reg_phy)
2361		regulator_disable(fep->reg_phy);
2362	return ret;
2363}
2364#endif /* CONFIG_PM_SLEEP */
2365
2366static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
 
 
 
2367
2368static struct platform_driver fec_driver = {
2369	.driver	= {
2370		.name	= DRIVER_NAME,
2371		.owner	= THIS_MODULE,
2372		.pm	= &fec_pm_ops,
2373		.of_match_table = fec_dt_ids,
 
2374	},
2375	.id_table = fec_devtype,
2376	.probe	= fec_probe,
2377	.remove	= fec_drv_remove,
2378};
2379
2380module_platform_driver(fec_driver);
2381
2382MODULE_ALIAS("platform:"DRIVER_NAME);
2383MODULE_LICENSE("GPL");