Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
  41#include <net/page_pool/helpers.h>
  42#include <net/selftests.h>
  43#include <net/tso.h>
  44#include <linux/tcp.h>
  45#include <linux/udp.h>
  46#include <linux/icmp.h>
  47#include <linux/spinlock.h>
  48#include <linux/workqueue.h>
  49#include <linux/bitops.h>
  50#include <linux/io.h>
  51#include <linux/irq.h>
  52#include <linux/clk.h>
  53#include <linux/crc32.h>
  54#include <linux/platform_device.h>
  55#include <linux/property.h>
  56#include <linux/mdio.h>
  57#include <linux/phy.h>
  58#include <linux/fec.h>
  59#include <linux/of.h>
 
 
  60#include <linux/of_mdio.h>
  61#include <linux/of_net.h>
  62#include <linux/regulator/consumer.h>
  63#include <linux/if_vlan.h>
  64#include <linux/pinctrl/consumer.h>
  65#include <linux/gpio/consumer.h>
  66#include <linux/prefetch.h>
  67#include <linux/mfd/syscon.h>
  68#include <linux/regmap.h>
  69#include <soc/imx/cpuidle.h>
  70#include <linux/filter.h>
  71#include <linux/bpf.h>
  72#include <linux/bpf_trace.h>
  73
  74#include <asm/cacheflush.h>
  75
  76#include "fec.h"
  77
  78static void set_multicast_list(struct net_device *ndev);
  79static void fec_enet_itr_coal_set(struct net_device *ndev);
  80static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
  81				int cpu, struct xdp_buff *xdp,
  82				u32 dma_sync_len);
  83
  84#define DRIVER_NAME	"fec"
  85
  86static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
  87
  88/* Pause frame feild and FIFO threshold */
  89#define FEC_ENET_FCE	(1 << 5)
  90#define FEC_ENET_RSEM_V	0x84
  91#define FEC_ENET_RSFL_V	16
  92#define FEC_ENET_RAEM_V	0x8
  93#define FEC_ENET_RAFL_V	0x8
  94#define FEC_ENET_OPD_V	0xFFF0
  95#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  96
  97#define FEC_ENET_XDP_PASS          0
  98#define FEC_ENET_XDP_CONSUMED      BIT(0)
  99#define FEC_ENET_XDP_TX            BIT(1)
 100#define FEC_ENET_XDP_REDIR         BIT(2)
 101
 102struct fec_devinfo {
 103	u32 quirks;
 104};
 105
 106static const struct fec_devinfo fec_imx25_info = {
 107	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
 108		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
 109};
 110
 111static const struct fec_devinfo fec_imx27_info = {
 112	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
 113		  FEC_QUIRK_HAS_MDIO_C45,
 114};
 115
 116static const struct fec_devinfo fec_imx28_info = {
 117	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 118		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 119		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
 120		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
 121};
 122
 123static const struct fec_devinfo fec_imx6q_info = {
 124	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 125		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 126		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 127		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
 128		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
 129};
 130
 131static const struct fec_devinfo fec_mvf600_info = {
 132	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
 133		  FEC_QUIRK_HAS_MDIO_C45,
 134};
 135
 136static const struct fec_devinfo fec_imx6x_info = {
 137	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 138		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 139		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 140		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 141		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 142		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 143		  FEC_QUIRK_HAS_MDIO_C45,
 144};
 145
 146static const struct fec_devinfo fec_imx6ul_info = {
 147	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 148		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 149		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 150		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 151		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
 152		  FEC_QUIRK_HAS_MDIO_C45,
 153};
 154
 155static const struct fec_devinfo fec_imx8mq_info = {
 156	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 157		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 158		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 159		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 160		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 161		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 162		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
 163		  FEC_QUIRK_HAS_MDIO_C45,
 164};
 165
 166static const struct fec_devinfo fec_imx8qm_info = {
 167	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 168		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 169		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 170		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 171		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
 172		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
 173		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
 174};
 175
 176static const struct fec_devinfo fec_s32v234_info = {
 177	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 178		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 179		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 180		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 181		  FEC_QUIRK_HAS_MDIO_C45,
 182};
 183
 184static struct platform_device_id fec_devtype[] = {
 185	{
 186		/* keep it for coldfire */
 187		.name = DRIVER_NAME,
 188		.driver_data = 0,
 189	}, {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190		/* sentinel */
 191	}
 192};
 193MODULE_DEVICE_TABLE(platform, fec_devtype);
 194
 
 
 
 
 
 
 
 
 
 
 195static const struct of_device_id fec_dt_ids[] = {
 196	{ .compatible = "fsl,imx25-fec", .data = &fec_imx25_info, },
 197	{ .compatible = "fsl,imx27-fec", .data = &fec_imx27_info, },
 198	{ .compatible = "fsl,imx28-fec", .data = &fec_imx28_info, },
 199	{ .compatible = "fsl,imx6q-fec", .data = &fec_imx6q_info, },
 200	{ .compatible = "fsl,mvf600-fec", .data = &fec_mvf600_info, },
 201	{ .compatible = "fsl,imx6sx-fec", .data = &fec_imx6x_info, },
 202	{ .compatible = "fsl,imx6ul-fec", .data = &fec_imx6ul_info, },
 203	{ .compatible = "fsl,imx8mq-fec", .data = &fec_imx8mq_info, },
 204	{ .compatible = "fsl,imx8qm-fec", .data = &fec_imx8qm_info, },
 205	{ .compatible = "fsl,s32v234-fec", .data = &fec_s32v234_info, },
 206	{ /* sentinel */ }
 207};
 208MODULE_DEVICE_TABLE(of, fec_dt_ids);
 209
 210static unsigned char macaddr[ETH_ALEN];
 211module_param_array(macaddr, byte, NULL, 0);
 212MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 213
 214#if defined(CONFIG_M5272)
 215/*
 216 * Some hardware gets it MAC address out of local flash memory.
 217 * if this is non-zero then assume it is the address to get MAC from.
 218 */
 219#if defined(CONFIG_NETtel)
 220#define	FEC_FLASHMAC	0xf0006006
 221#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 222#define	FEC_FLASHMAC	0xf0006000
 223#elif defined(CONFIG_CANCam)
 224#define	FEC_FLASHMAC	0xf0020000
 225#elif defined (CONFIG_M5272C3)
 226#define	FEC_FLASHMAC	(0xffe04000 + 4)
 227#elif defined(CONFIG_MOD5272)
 228#define FEC_FLASHMAC	0xffc0406b
 229#else
 230#define	FEC_FLASHMAC	0
 231#endif
 232#endif /* CONFIG_M5272 */
 233
 234/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 235 *
 236 * 2048 byte skbufs are allocated. However, alignment requirements
 237 * varies between FEC variants. Worst case is 64, so round down by 64.
 238 */
 239#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 240#define PKT_MINBUF_SIZE		64
 241
 242/* FEC receive acceleration */
 243#define FEC_RACC_IPDIS		(1 << 1)
 244#define FEC_RACC_PRODIS		(1 << 2)
 245#define FEC_RACC_SHIFT16	BIT(7)
 246#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 247
 248/* MIB Control Register */
 249#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 250
 251/*
 252 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 253 * size bits. Other FEC hardware does not, so we need to take that into
 254 * account when setting it.
 255 */
 256#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 257    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 258    defined(CONFIG_ARM64)
 259#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 260#else
 261#define	OPT_FRAME_SIZE	0
 262#endif
 263
 264/* FEC MII MMFR bits definition */
 265#define FEC_MMFR_ST		(1 << 30)
 266#define FEC_MMFR_ST_C45		(0)
 267#define FEC_MMFR_OP_READ	(2 << 28)
 268#define FEC_MMFR_OP_READ_C45	(3 << 28)
 269#define FEC_MMFR_OP_WRITE	(1 << 28)
 270#define FEC_MMFR_OP_ADDR_WRITE	(0)
 271#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 272#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 273#define FEC_MMFR_TA		(2 << 16)
 274#define FEC_MMFR_DATA(v)	(v & 0xffff)
 275/* FEC ECR bits definition */
 276#define FEC_ECR_MAGICEN		(1 << 2)
 277#define FEC_ECR_SLEEP		(1 << 3)
 278
 279#define FEC_MII_TIMEOUT		30000 /* us */
 280
 281/* Transmitter timeout */
 282#define TX_TIMEOUT (2 * HZ)
 283
 284#define FEC_PAUSE_FLAG_AUTONEG	0x1
 285#define FEC_PAUSE_FLAG_ENABLE	0x2
 286#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 287#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 288#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 289
 
 
 290/* Max number of allowed TCP segments for software TSO */
 291#define FEC_MAX_TSO_SEGS	100
 292#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 293
 294#define IS_TSO_HEADER(txq, addr) \
 295	((addr >= txq->tso_hdrs_dma) && \
 296	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 297
 298static int mii_cnt;
 299
 300static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 301					     struct bufdesc_prop *bd)
 302{
 303	return (bdp >= bd->last) ? bd->base
 304			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 305}
 306
 307static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 308					     struct bufdesc_prop *bd)
 309{
 310	return (bdp <= bd->base) ? bd->last
 311			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 312}
 313
 314static int fec_enet_get_bd_index(struct bufdesc *bdp,
 315				 struct bufdesc_prop *bd)
 316{
 317	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 318}
 319
 320static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 321{
 322	int entries;
 323
 324	entries = (((const char *)txq->dirty_tx -
 325			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 326
 327	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 328}
 329
 330static void swap_buffer(void *bufaddr, int len)
 331{
 332	int i;
 333	unsigned int *buf = bufaddr;
 334
 335	for (i = 0; i < len; i += 4, buf++)
 336		swab32s(buf);
 337}
 338
 
 
 
 
 
 
 
 
 
 
 339static void fec_dump(struct net_device *ndev)
 340{
 341	struct fec_enet_private *fep = netdev_priv(ndev);
 342	struct bufdesc *bdp;
 343	struct fec_enet_priv_tx_q *txq;
 344	int index = 0;
 345
 346	netdev_info(ndev, "TX ring dump\n");
 347	pr_info("Nr     SC     addr       len  SKB\n");
 348
 349	txq = fep->tx_queue[0];
 350	bdp = txq->bd.base;
 351
 352	do {
 353		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 354			index,
 355			bdp == txq->bd.cur ? 'S' : ' ',
 356			bdp == txq->dirty_tx ? 'H' : ' ',
 357			fec16_to_cpu(bdp->cbd_sc),
 358			fec32_to_cpu(bdp->cbd_bufaddr),
 359			fec16_to_cpu(bdp->cbd_datlen),
 360			txq->tx_buf[index].buf_p);
 361		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 362		index++;
 363	} while (bdp != txq->bd.base);
 364}
 365
 366/*
 367 * Coldfire does not support DMA coherent allocations, and has historically used
 368 * a band-aid with a manual flush in fec_enet_rx_queue.
 369 */
 370#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
 371static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 372		gfp_t gfp)
 373{
 374	return dma_alloc_noncoherent(dev, size, handle, DMA_BIDIRECTIONAL, gfp);
 375}
 376
 377static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 378		dma_addr_t handle)
 379{
 380	dma_free_noncoherent(dev, size, cpu_addr, handle, DMA_BIDIRECTIONAL);
 381}
 382#else /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 383static void *fec_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 384		gfp_t gfp)
 385{
 386	return dma_alloc_coherent(dev, size, handle, gfp);
 387}
 388
 389static void fec_dma_free(struct device *dev, size_t size, void *cpu_addr,
 390		dma_addr_t handle)
 391{
 392	dma_free_coherent(dev, size, cpu_addr, handle);
 393}
 394#endif /* !CONFIG_COLDFIRE || CONFIG_COLDFIRE_COHERENT_DMA */
 395
 396struct fec_dma_devres {
 397	size_t		size;
 398	void		*vaddr;
 399	dma_addr_t	dma_handle;
 400};
 401
 402static void fec_dmam_release(struct device *dev, void *res)
 403{
 404	struct fec_dma_devres *this = res;
 405
 406	fec_dma_free(dev, this->size, this->vaddr, this->dma_handle);
 407}
 408
 409static void *fec_dmam_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 410		gfp_t gfp)
 411{
 412	struct fec_dma_devres *dr;
 413	void *vaddr;
 414
 415	dr = devres_alloc(fec_dmam_release, sizeof(*dr), gfp);
 416	if (!dr)
 417		return NULL;
 418	vaddr = fec_dma_alloc(dev, size, handle, gfp);
 419	if (!vaddr) {
 420		devres_free(dr);
 421		return NULL;
 422	}
 423	dr->vaddr = vaddr;
 424	dr->dma_handle = *handle;
 425	dr->size = size;
 426	devres_add(dev, dr);
 427	return vaddr;
 428}
 429
 430static inline bool is_ipv4_pkt(struct sk_buff *skb)
 431{
 432	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 433}
 434
 435static int
 436fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 437{
 438	/* Only run for packets requiring a checksum. */
 439	if (skb->ip_summed != CHECKSUM_PARTIAL)
 440		return 0;
 441
 442	if (unlikely(skb_cow_head(skb, 0)))
 443		return -1;
 444
 445	if (is_ipv4_pkt(skb))
 446		ip_hdr(skb)->check = 0;
 447	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 448
 449	return 0;
 450}
 451
 452static int
 453fec_enet_create_page_pool(struct fec_enet_private *fep,
 454			  struct fec_enet_priv_rx_q *rxq, int size)
 455{
 456	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
 457	struct page_pool_params pp_params = {
 458		.order = 0,
 459		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
 460		.pool_size = size,
 461		.nid = dev_to_node(&fep->pdev->dev),
 462		.dev = &fep->pdev->dev,
 463		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
 464		.offset = FEC_ENET_XDP_HEADROOM,
 465		.max_len = FEC_ENET_RX_FRSIZE,
 466	};
 467	int err;
 468
 469	rxq->page_pool = page_pool_create(&pp_params);
 470	if (IS_ERR(rxq->page_pool)) {
 471		err = PTR_ERR(rxq->page_pool);
 472		rxq->page_pool = NULL;
 473		return err;
 474	}
 475
 476	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
 477	if (err < 0)
 478		goto err_free_pp;
 479
 480	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
 481					 rxq->page_pool);
 482	if (err)
 483		goto err_unregister_rxq;
 484
 485	return 0;
 486
 487err_unregister_rxq:
 488	xdp_rxq_info_unreg(&rxq->xdp_rxq);
 489err_free_pp:
 490	page_pool_destroy(rxq->page_pool);
 491	rxq->page_pool = NULL;
 492	return err;
 493}
 494
 495static struct bufdesc *
 496fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 497			     struct sk_buff *skb,
 498			     struct net_device *ndev)
 499{
 500	struct fec_enet_private *fep = netdev_priv(ndev);
 501	struct bufdesc *bdp = txq->bd.cur;
 502	struct bufdesc_ex *ebdp;
 503	int nr_frags = skb_shinfo(skb)->nr_frags;
 504	int frag, frag_len;
 505	unsigned short status;
 506	unsigned int estatus = 0;
 507	skb_frag_t *this_frag;
 508	unsigned int index;
 509	void *bufaddr;
 510	dma_addr_t addr;
 511	int i;
 512
 513	for (frag = 0; frag < nr_frags; frag++) {
 514		this_frag = &skb_shinfo(skb)->frags[frag];
 515		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 516		ebdp = (struct bufdesc_ex *)bdp;
 517
 518		status = fec16_to_cpu(bdp->cbd_sc);
 519		status &= ~BD_ENET_TX_STATS;
 520		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 521		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 522
 523		/* Handle the last BD specially */
 524		if (frag == nr_frags - 1) {
 525			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 526			if (fep->bufdesc_ex) {
 527				estatus |= BD_ENET_TX_INT;
 528				if (unlikely(skb_shinfo(skb)->tx_flags &
 529					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 530					estatus |= BD_ENET_TX_TS;
 531			}
 532		}
 533
 534		if (fep->bufdesc_ex) {
 535			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 536				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 537			if (skb->ip_summed == CHECKSUM_PARTIAL)
 538				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 539
 540			ebdp->cbd_bdu = 0;
 541			ebdp->cbd_esc = cpu_to_fec32(estatus);
 542		}
 543
 544		bufaddr = skb_frag_address(this_frag);
 545
 546		index = fec_enet_get_bd_index(bdp, &txq->bd);
 547		if (((unsigned long) bufaddr) & fep->tx_align ||
 548			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 549			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 550			bufaddr = txq->tx_bounce[index];
 551
 552			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 553				swap_buffer(bufaddr, frag_len);
 554		}
 555
 556		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 557				      DMA_TO_DEVICE);
 558		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 559			if (net_ratelimit())
 560				netdev_err(ndev, "Tx DMA memory map failed\n");
 561			goto dma_mapping_error;
 562		}
 563
 564		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 565		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 566		/* Make sure the updates to rest of the descriptor are
 567		 * performed before transferring ownership.
 568		 */
 569		wmb();
 570		bdp->cbd_sc = cpu_to_fec16(status);
 571	}
 572
 573	return bdp;
 574dma_mapping_error:
 575	bdp = txq->bd.cur;
 576	for (i = 0; i < frag; i++) {
 577		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 578		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 579				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 580	}
 581	return ERR_PTR(-ENOMEM);
 582}
 583
 584static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 585				   struct sk_buff *skb, struct net_device *ndev)
 586{
 587	struct fec_enet_private *fep = netdev_priv(ndev);
 588	int nr_frags = skb_shinfo(skb)->nr_frags;
 589	struct bufdesc *bdp, *last_bdp;
 590	void *bufaddr;
 591	dma_addr_t addr;
 592	unsigned short status;
 593	unsigned short buflen;
 594	unsigned int estatus = 0;
 595	unsigned int index;
 596	int entries_free;
 597
 598	entries_free = fec_enet_get_free_txdesc_num(txq);
 599	if (entries_free < MAX_SKB_FRAGS + 1) {
 600		dev_kfree_skb_any(skb);
 601		if (net_ratelimit())
 602			netdev_err(ndev, "NOT enough BD for SG!\n");
 603		return NETDEV_TX_OK;
 604	}
 605
 606	/* Protocol checksum off-load for TCP and UDP. */
 607	if (fec_enet_clear_csum(skb, ndev)) {
 608		dev_kfree_skb_any(skb);
 609		return NETDEV_TX_OK;
 610	}
 611
 612	/* Fill in a Tx ring entry */
 613	bdp = txq->bd.cur;
 614	last_bdp = bdp;
 615	status = fec16_to_cpu(bdp->cbd_sc);
 616	status &= ~BD_ENET_TX_STATS;
 617
 618	/* Set buffer length and buffer pointer */
 619	bufaddr = skb->data;
 620	buflen = skb_headlen(skb);
 621
 622	index = fec_enet_get_bd_index(bdp, &txq->bd);
 623	if (((unsigned long) bufaddr) & fep->tx_align ||
 624		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 625		memcpy(txq->tx_bounce[index], skb->data, buflen);
 626		bufaddr = txq->tx_bounce[index];
 627
 628		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 629			swap_buffer(bufaddr, buflen);
 630	}
 631
 632	/* Push the data cache so the CPM does not get stale memory data. */
 633	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 634	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 635		dev_kfree_skb_any(skb);
 636		if (net_ratelimit())
 637			netdev_err(ndev, "Tx DMA memory map failed\n");
 638		return NETDEV_TX_OK;
 639	}
 640
 641	if (nr_frags) {
 642		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 643		if (IS_ERR(last_bdp)) {
 644			dma_unmap_single(&fep->pdev->dev, addr,
 645					 buflen, DMA_TO_DEVICE);
 646			dev_kfree_skb_any(skb);
 647			return NETDEV_TX_OK;
 648		}
 649	} else {
 650		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 651		if (fep->bufdesc_ex) {
 652			estatus = BD_ENET_TX_INT;
 653			if (unlikely(skb_shinfo(skb)->tx_flags &
 654				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 655				estatus |= BD_ENET_TX_TS;
 656		}
 657	}
 658	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 659	bdp->cbd_datlen = cpu_to_fec16(buflen);
 660
 661	if (fep->bufdesc_ex) {
 662
 663		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 664
 665		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 666			fep->hwts_tx_en))
 667			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 668
 669		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 670			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 671
 672		if (skb->ip_summed == CHECKSUM_PARTIAL)
 673			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 674
 675		ebdp->cbd_bdu = 0;
 676		ebdp->cbd_esc = cpu_to_fec32(estatus);
 677	}
 678
 679	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 680	/* Save skb pointer */
 681	txq->tx_buf[index].buf_p = skb;
 682
 683	/* Make sure the updates to rest of the descriptor are performed before
 684	 * transferring ownership.
 685	 */
 686	wmb();
 687
 688	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 689	 * it's the last BD of the frame, and to put the CRC on the end.
 690	 */
 691	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 692	bdp->cbd_sc = cpu_to_fec16(status);
 693
 694	/* If this was the last BD in the ring, start at the beginning again. */
 695	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 696
 697	skb_tx_timestamp(skb);
 698
 699	/* Make sure the update to bdp is performed before txq->bd.cur. */
 
 
 700	wmb();
 701	txq->bd.cur = bdp;
 702
 703	/* Trigger transmission start */
 704	writel(0, txq->bd.reg_desc_active);
 705
 706	return 0;
 707}
 708
 709static int
 710fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 711			  struct net_device *ndev,
 712			  struct bufdesc *bdp, int index, char *data,
 713			  int size, bool last_tcp, bool is_last)
 714{
 715	struct fec_enet_private *fep = netdev_priv(ndev);
 716	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 717	unsigned short status;
 718	unsigned int estatus = 0;
 719	dma_addr_t addr;
 720
 721	status = fec16_to_cpu(bdp->cbd_sc);
 722	status &= ~BD_ENET_TX_STATS;
 723
 724	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 725
 726	if (((unsigned long) data) & fep->tx_align ||
 727		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 728		memcpy(txq->tx_bounce[index], data, size);
 729		data = txq->tx_bounce[index];
 730
 731		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 732			swap_buffer(data, size);
 733	}
 734
 735	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 736	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 737		dev_kfree_skb_any(skb);
 738		if (net_ratelimit())
 739			netdev_err(ndev, "Tx DMA memory map failed\n");
 740		return NETDEV_TX_OK;
 741	}
 742
 743	bdp->cbd_datlen = cpu_to_fec16(size);
 744	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 745
 746	if (fep->bufdesc_ex) {
 747		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 748			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 749		if (skb->ip_summed == CHECKSUM_PARTIAL)
 750			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 751		ebdp->cbd_bdu = 0;
 752		ebdp->cbd_esc = cpu_to_fec32(estatus);
 753	}
 754
 755	/* Handle the last BD specially */
 756	if (last_tcp)
 757		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 758	if (is_last) {
 759		status |= BD_ENET_TX_INTR;
 760		if (fep->bufdesc_ex)
 761			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 762	}
 763
 764	bdp->cbd_sc = cpu_to_fec16(status);
 765
 766	return 0;
 767}
 768
 769static int
 770fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 771			 struct sk_buff *skb, struct net_device *ndev,
 772			 struct bufdesc *bdp, int index)
 773{
 774	struct fec_enet_private *fep = netdev_priv(ndev);
 775	int hdr_len = skb_tcp_all_headers(skb);
 776	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 777	void *bufaddr;
 778	unsigned long dmabuf;
 779	unsigned short status;
 780	unsigned int estatus = 0;
 781
 782	status = fec16_to_cpu(bdp->cbd_sc);
 783	status &= ~BD_ENET_TX_STATS;
 784	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 785
 786	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 787	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 788	if (((unsigned long)bufaddr) & fep->tx_align ||
 789		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 790		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 791		bufaddr = txq->tx_bounce[index];
 792
 793		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 794			swap_buffer(bufaddr, hdr_len);
 795
 796		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 797					hdr_len, DMA_TO_DEVICE);
 798		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 799			dev_kfree_skb_any(skb);
 800			if (net_ratelimit())
 801				netdev_err(ndev, "Tx DMA memory map failed\n");
 802			return NETDEV_TX_OK;
 803		}
 804	}
 805
 806	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 807	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 808
 809	if (fep->bufdesc_ex) {
 810		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 811			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 812		if (skb->ip_summed == CHECKSUM_PARTIAL)
 813			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 814		ebdp->cbd_bdu = 0;
 815		ebdp->cbd_esc = cpu_to_fec32(estatus);
 816	}
 817
 818	bdp->cbd_sc = cpu_to_fec16(status);
 819
 820	return 0;
 821}
 822
 823static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 824				   struct sk_buff *skb,
 825				   struct net_device *ndev)
 826{
 827	struct fec_enet_private *fep = netdev_priv(ndev);
 828	int hdr_len, total_len, data_left;
 829	struct bufdesc *bdp = txq->bd.cur;
 830	struct tso_t tso;
 831	unsigned int index = 0;
 832	int ret;
 833
 834	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 835		dev_kfree_skb_any(skb);
 836		if (net_ratelimit())
 837			netdev_err(ndev, "NOT enough BD for TSO!\n");
 838		return NETDEV_TX_OK;
 839	}
 840
 841	/* Protocol checksum off-load for TCP and UDP. */
 842	if (fec_enet_clear_csum(skb, ndev)) {
 843		dev_kfree_skb_any(skb);
 844		return NETDEV_TX_OK;
 845	}
 846
 847	/* Initialize the TSO handler, and prepare the first payload */
 848	hdr_len = tso_start(skb, &tso);
 849
 850	total_len = skb->len - hdr_len;
 851	while (total_len > 0) {
 852		char *hdr;
 853
 854		index = fec_enet_get_bd_index(bdp, &txq->bd);
 855		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 856		total_len -= data_left;
 857
 858		/* prepare packet headers: MAC + IP + TCP */
 859		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 860		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 861		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 862		if (ret)
 863			goto err_release;
 864
 865		while (data_left > 0) {
 866			int size;
 867
 868			size = min_t(int, tso.size, data_left);
 869			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 870			index = fec_enet_get_bd_index(bdp, &txq->bd);
 871			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 872							bdp, index,
 873							tso.data, size,
 874							size == data_left,
 875							total_len == 0);
 876			if (ret)
 877				goto err_release;
 878
 879			data_left -= size;
 880			tso_build_data(skb, &tso, size);
 881		}
 882
 883		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 884	}
 885
 886	/* Save skb pointer */
 887	txq->tx_buf[index].buf_p = skb;
 888
 889	skb_tx_timestamp(skb);
 890	txq->bd.cur = bdp;
 891
 892	/* Trigger transmission start */
 893	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 894	    !readl(txq->bd.reg_desc_active) ||
 895	    !readl(txq->bd.reg_desc_active) ||
 896	    !readl(txq->bd.reg_desc_active) ||
 897	    !readl(txq->bd.reg_desc_active))
 898		writel(0, txq->bd.reg_desc_active);
 899
 900	return 0;
 901
 902err_release:
 903	/* TODO: Release all used data descriptors for TSO */
 904	return ret;
 905}
 906
 907static netdev_tx_t
 908fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 909{
 910	struct fec_enet_private *fep = netdev_priv(ndev);
 911	int entries_free;
 912	unsigned short queue;
 913	struct fec_enet_priv_tx_q *txq;
 914	struct netdev_queue *nq;
 915	int ret;
 916
 917	queue = skb_get_queue_mapping(skb);
 918	txq = fep->tx_queue[queue];
 919	nq = netdev_get_tx_queue(ndev, queue);
 920
 921	if (skb_is_gso(skb))
 922		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 923	else
 924		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 925	if (ret)
 926		return ret;
 927
 928	entries_free = fec_enet_get_free_txdesc_num(txq);
 929	if (entries_free <= txq->tx_stop_threshold)
 930		netif_tx_stop_queue(nq);
 931
 932	return NETDEV_TX_OK;
 933}
 934
 935/* Init RX & TX buffer descriptors
 936 */
 937static void fec_enet_bd_init(struct net_device *dev)
 938{
 939	struct fec_enet_private *fep = netdev_priv(dev);
 940	struct fec_enet_priv_tx_q *txq;
 941	struct fec_enet_priv_rx_q *rxq;
 942	struct bufdesc *bdp;
 943	unsigned int i;
 944	unsigned int q;
 945
 946	for (q = 0; q < fep->num_rx_queues; q++) {
 947		/* Initialize the receive buffer descriptors. */
 948		rxq = fep->rx_queue[q];
 949		bdp = rxq->bd.base;
 950
 951		for (i = 0; i < rxq->bd.ring_size; i++) {
 952
 953			/* Initialize the BD for every fragment in the page. */
 954			if (bdp->cbd_bufaddr)
 955				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 956			else
 957				bdp->cbd_sc = cpu_to_fec16(0);
 958			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 959		}
 960
 961		/* Set the last buffer to wrap */
 962		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 963		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 964
 965		rxq->bd.cur = rxq->bd.base;
 966	}
 967
 968	for (q = 0; q < fep->num_tx_queues; q++) {
 969		/* ...and the same for transmit */
 970		txq = fep->tx_queue[q];
 971		bdp = txq->bd.base;
 972		txq->bd.cur = bdp;
 973
 974		for (i = 0; i < txq->bd.ring_size; i++) {
 975			/* Initialize the BD for every fragment in the page. */
 976			bdp->cbd_sc = cpu_to_fec16(0);
 977			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
 978				if (bdp->cbd_bufaddr &&
 979				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 980					dma_unmap_single(&fep->pdev->dev,
 981							 fec32_to_cpu(bdp->cbd_bufaddr),
 982							 fec16_to_cpu(bdp->cbd_datlen),
 983							 DMA_TO_DEVICE);
 984				if (txq->tx_buf[i].buf_p)
 985					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
 986			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
 987				if (bdp->cbd_bufaddr)
 988					dma_unmap_single(&fep->pdev->dev,
 989							 fec32_to_cpu(bdp->cbd_bufaddr),
 990							 fec16_to_cpu(bdp->cbd_datlen),
 991							 DMA_TO_DEVICE);
 992
 993				if (txq->tx_buf[i].buf_p)
 994					xdp_return_frame(txq->tx_buf[i].buf_p);
 995			} else {
 996				struct page *page = txq->tx_buf[i].buf_p;
 997
 998				if (page)
 999					page_pool_put_page(page->pp, page, 0, false);
1000			}
1001
1002			txq->tx_buf[i].buf_p = NULL;
1003			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1004			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
1005			bdp->cbd_bufaddr = cpu_to_fec32(0);
1006			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1007		}
1008
1009		/* Set the last buffer to wrap */
1010		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1011		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1012		txq->dirty_tx = bdp;
1013	}
1014}
1015
1016static void fec_enet_active_rxring(struct net_device *ndev)
1017{
1018	struct fec_enet_private *fep = netdev_priv(ndev);
1019	int i;
1020
1021	for (i = 0; i < fep->num_rx_queues; i++)
1022		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1023}
1024
1025static void fec_enet_enable_ring(struct net_device *ndev)
1026{
1027	struct fec_enet_private *fep = netdev_priv(ndev);
1028	struct fec_enet_priv_tx_q *txq;
1029	struct fec_enet_priv_rx_q *rxq;
1030	int i;
1031
1032	for (i = 0; i < fep->num_rx_queues; i++) {
1033		rxq = fep->rx_queue[i];
1034		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1035		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1036
1037		/* enable DMA1/2 */
1038		if (i)
1039			writel(RCMR_MATCHEN | RCMR_CMP(i),
1040			       fep->hwp + FEC_RCMR(i));
1041	}
1042
1043	for (i = 0; i < fep->num_tx_queues; i++) {
1044		txq = fep->tx_queue[i];
1045		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1046
1047		/* enable DMA1/2 */
1048		if (i)
1049			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1050			       fep->hwp + FEC_DMA_CFG(i));
1051	}
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054/*
1055 * This function is called to start or restart the FEC during a link
1056 * change, transmit timeout, or to reconfigure the FEC.  The network
1057 * packet processing for this device must be stopped before this call.
1058 */
1059static void
1060fec_restart(struct net_device *ndev)
1061{
1062	struct fec_enet_private *fep = netdev_priv(ndev);
 
1063	u32 temp_mac[2];
1064	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1065	u32 ecntl = 0x2; /* ETHEREN */
1066
1067	/* Whack a reset.  We should wait for this.
1068	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1069	 * instead of reset MAC itself.
1070	 */
1071	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1072	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1073		writel(0, fep->hwp + FEC_ECNTRL);
1074	} else {
1075		writel(1, fep->hwp + FEC_ECNTRL);
1076		udelay(10);
1077	}
1078
1079	/*
1080	 * enet-mac reset will reset mac address registers too,
1081	 * so need to reconfigure it.
1082	 */
1083	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1084	writel((__force u32)cpu_to_be32(temp_mac[0]),
1085	       fep->hwp + FEC_ADDR_LOW);
1086	writel((__force u32)cpu_to_be32(temp_mac[1]),
1087	       fep->hwp + FEC_ADDR_HIGH);
1088
1089	/* Clear any outstanding interrupt, except MDIO. */
1090	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1091
1092	fec_enet_bd_init(ndev);
1093
1094	fec_enet_enable_ring(ndev);
1095
 
 
 
1096	/* Enable MII mode */
1097	if (fep->full_duplex == DUPLEX_FULL) {
1098		/* FD enable */
1099		writel(0x04, fep->hwp + FEC_X_CNTRL);
1100	} else {
1101		/* No Rcv on Xmit */
1102		rcntl |= 0x02;
1103		writel(0x0, fep->hwp + FEC_X_CNTRL);
1104	}
1105
1106	/* Set MII speed */
1107	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1108
1109#if !defined(CONFIG_M5272)
1110	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1111		u32 val = readl(fep->hwp + FEC_RACC);
1112
1113		/* align IP header */
1114		val |= FEC_RACC_SHIFT16;
1115		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1116			/* set RX checksum */
1117			val |= FEC_RACC_OPTIONS;
1118		else
1119			val &= ~FEC_RACC_OPTIONS;
1120		writel(val, fep->hwp + FEC_RACC);
1121		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1122	}
1123#endif
1124
1125	/*
1126	 * The phy interface and speed need to get configured
1127	 * differently on enet-mac.
1128	 */
1129	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1130		/* Enable flow control and length check */
1131		rcntl |= 0x40000000 | 0x00000020;
1132
1133		/* RGMII, RMII or MII */
1134		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1135		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1136		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1137		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1138			rcntl |= (1 << 6);
1139		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1140			rcntl |= (1 << 8);
1141		else
1142			rcntl &= ~(1 << 8);
1143
1144		/* 1G, 100M or 10M */
1145		if (ndev->phydev) {
1146			if (ndev->phydev->speed == SPEED_1000)
1147				ecntl |= (1 << 5);
1148			else if (ndev->phydev->speed == SPEED_100)
1149				rcntl &= ~(1 << 9);
1150			else
1151				rcntl |= (1 << 9);
1152		}
1153	} else {
1154#ifdef FEC_MIIGSK_ENR
1155		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1156			u32 cfgr;
1157			/* disable the gasket and wait */
1158			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1159			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1160				udelay(1);
1161
1162			/*
1163			 * configure the gasket:
1164			 *   RMII, 50 MHz, no loopback, no echo
1165			 *   MII, 25 MHz, no loopback, no echo
1166			 */
1167			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1168				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1169			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1170				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1171			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1172
1173			/* re-enable the gasket */
1174			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1175		}
1176#endif
1177	}
1178
1179#if !defined(CONFIG_M5272)
1180	/* enable pause frame*/
1181	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1182	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1183	     ndev->phydev && ndev->phydev->pause)) {
1184		rcntl |= FEC_ENET_FCE;
1185
1186		/* set FIFO threshold parameter to reduce overrun */
1187		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1188		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1189		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1190		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1191
1192		/* OPD */
1193		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1194	} else {
1195		rcntl &= ~FEC_ENET_FCE;
1196	}
1197#endif /* !defined(CONFIG_M5272) */
1198
1199	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1200
1201	/* Setup multicast filter. */
1202	set_multicast_list(ndev);
1203#ifndef CONFIG_M5272
1204	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1205	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1206#endif
1207
1208	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1209		/* enable ENET endian swap */
1210		ecntl |= (1 << 8);
1211		/* enable ENET store and forward mode */
1212		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1213	}
1214
1215	if (fep->bufdesc_ex)
1216		ecntl |= (1 << 4);
1217
1218	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219	    fep->rgmii_txc_dly)
1220		ecntl |= FEC_ENET_TXC_DLY;
1221	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1222	    fep->rgmii_rxc_dly)
1223		ecntl |= FEC_ENET_RXC_DLY;
1224
1225#ifndef CONFIG_M5272
1226	/* Enable the MIB statistic event counters */
1227	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1228#endif
1229
1230	/* And last, enable the transmit and receive processing */
1231	writel(ecntl, fep->hwp + FEC_ECNTRL);
1232	fec_enet_active_rxring(ndev);
1233
1234	if (fep->bufdesc_ex)
1235		fec_ptp_start_cyclecounter(ndev);
1236
1237	/* Enable interrupts we wish to service */
1238	if (fep->link)
1239		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1240	else
1241		writel(0, fep->hwp + FEC_IMASK);
1242
1243	/* Init the interrupt coalescing */
1244	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1245		fec_enet_itr_coal_set(ndev);
1246}
1247
1248static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1249{
1250	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1251	      of_machine_is_compatible("fsl,imx8qxp") ||
1252	      of_machine_is_compatible("fsl,imx8dxl")))
1253		return 0;
1254
1255	return imx_scu_get_handle(&fep->ipc_handle);
1256}
1257
1258static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1259{
1260	struct device_node *np = fep->pdev->dev.of_node;
1261	u32 rsrc_id, val;
1262	int idx;
1263
1264	if (!np || !fep->ipc_handle)
1265		return;
1266
1267	idx = of_alias_get_id(np, "ethernet");
1268	if (idx < 0)
1269		idx = 0;
1270	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1271
1272	val = enabled ? 1 : 0;
1273	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1274}
1275
1276static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1277{
1278	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1279	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1280
1281	if (stop_gpr->gpr) {
1282		if (enabled)
1283			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1284					   BIT(stop_gpr->bit),
1285					   BIT(stop_gpr->bit));
1286		else
1287			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1288					   BIT(stop_gpr->bit), 0);
1289	} else if (pdata && pdata->sleep_mode_enable) {
1290		pdata->sleep_mode_enable(enabled);
1291	} else {
1292		fec_enet_ipg_stop_set(fep, enabled);
1293	}
1294}
1295
1296static void fec_irqs_disable(struct net_device *ndev)
1297{
1298	struct fec_enet_private *fep = netdev_priv(ndev);
1299
1300	writel(0, fep->hwp + FEC_IMASK);
1301}
1302
1303static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1304{
1305	struct fec_enet_private *fep = netdev_priv(ndev);
1306
1307	writel(0, fep->hwp + FEC_IMASK);
1308	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1309}
1310
1311static void
1312fec_stop(struct net_device *ndev)
1313{
1314	struct fec_enet_private *fep = netdev_priv(ndev);
1315	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1316	u32 val;
1317
1318	/* We cannot expect a graceful transmit stop without link !!! */
1319	if (fep->link) {
1320		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1321		udelay(10);
1322		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1323			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1324	}
1325
1326	/* Whack a reset.  We should wait for this.
1327	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1328	 * instead of reset MAC itself.
1329	 */
1330	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1331		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1332			writel(0, fep->hwp + FEC_ECNTRL);
1333		} else {
1334			writel(1, fep->hwp + FEC_ECNTRL);
1335			udelay(10);
1336		}
 
1337	} else {
 
1338		val = readl(fep->hwp + FEC_ECNTRL);
1339		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1340		writel(val, fep->hwp + FEC_ECNTRL);
 
1341	}
1342	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1343	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1344
1345	/* We have to keep ENET enabled to have MII interrupt stay working */
1346	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1347		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1348		writel(2, fep->hwp + FEC_ECNTRL);
1349		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1350	}
1351}
1352
1353
1354static void
1355fec_timeout(struct net_device *ndev, unsigned int txqueue)
1356{
1357	struct fec_enet_private *fep = netdev_priv(ndev);
1358
1359	fec_dump(ndev);
1360
1361	ndev->stats.tx_errors++;
1362
1363	schedule_work(&fep->tx_timeout_work);
1364}
1365
1366static void fec_enet_timeout_work(struct work_struct *work)
1367{
1368	struct fec_enet_private *fep =
1369		container_of(work, struct fec_enet_private, tx_timeout_work);
1370	struct net_device *ndev = fep->netdev;
1371
1372	rtnl_lock();
1373	if (netif_device_present(ndev) || netif_running(ndev)) {
1374		napi_disable(&fep->napi);
1375		netif_tx_lock_bh(ndev);
1376		fec_restart(ndev);
1377		netif_tx_wake_all_queues(ndev);
1378		netif_tx_unlock_bh(ndev);
1379		napi_enable(&fep->napi);
1380	}
1381	rtnl_unlock();
1382}
1383
1384static void
1385fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1386	struct skb_shared_hwtstamps *hwtstamps)
1387{
1388	unsigned long flags;
1389	u64 ns;
1390
1391	spin_lock_irqsave(&fep->tmreg_lock, flags);
1392	ns = timecounter_cyc2time(&fep->tc, ts);
1393	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1394
1395	memset(hwtstamps, 0, sizeof(*hwtstamps));
1396	hwtstamps->hwtstamp = ns_to_ktime(ns);
1397}
1398
1399static void
1400fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1401{
1402	struct	fec_enet_private *fep;
1403	struct xdp_frame *xdpf;
1404	struct bufdesc *bdp;
1405	unsigned short status;
1406	struct	sk_buff	*skb;
1407	struct fec_enet_priv_tx_q *txq;
1408	struct netdev_queue *nq;
1409	int	index = 0;
1410	int	entries_free;
1411	struct page *page;
1412	int frame_len;
1413
1414	fep = netdev_priv(ndev);
1415
1416	txq = fep->tx_queue[queue_id];
1417	/* get next bdp of dirty_tx */
1418	nq = netdev_get_tx_queue(ndev, queue_id);
1419	bdp = txq->dirty_tx;
1420
1421	/* get next bdp of dirty_tx */
1422	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1423
1424	while (bdp != READ_ONCE(txq->bd.cur)) {
1425		/* Order the load of bd.cur and cbd_sc */
1426		rmb();
1427		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1428		if (status & BD_ENET_TX_READY)
1429			break;
1430
1431		index = fec_enet_get_bd_index(bdp, &txq->bd);
1432
1433		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1434			skb = txq->tx_buf[index].buf_p;
1435			if (bdp->cbd_bufaddr &&
1436			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1437				dma_unmap_single(&fep->pdev->dev,
1438						 fec32_to_cpu(bdp->cbd_bufaddr),
1439						 fec16_to_cpu(bdp->cbd_datlen),
1440						 DMA_TO_DEVICE);
1441			bdp->cbd_bufaddr = cpu_to_fec32(0);
1442			if (!skb)
1443				goto tx_buf_done;
1444		} else {
1445			/* Tx processing cannot call any XDP (or page pool) APIs if
1446			 * the "budget" is 0. Because NAPI is called with budget of
1447			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1448			 * however, we can't use the page pool from IRQ context.
1449			 */
1450			if (unlikely(!budget))
1451				break;
1452
1453			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1454				xdpf = txq->tx_buf[index].buf_p;
1455				if (bdp->cbd_bufaddr)
1456					dma_unmap_single(&fep->pdev->dev,
1457							 fec32_to_cpu(bdp->cbd_bufaddr),
1458							 fec16_to_cpu(bdp->cbd_datlen),
1459							 DMA_TO_DEVICE);
1460			} else {
1461				page = txq->tx_buf[index].buf_p;
1462			}
1463
1464			bdp->cbd_bufaddr = cpu_to_fec32(0);
1465			if (unlikely(!txq->tx_buf[index].buf_p)) {
1466				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1467				goto tx_buf_done;
1468			}
1469
1470			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1471		}
1472
1473		/* Check for errors. */
1474		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1475				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1476				   BD_ENET_TX_CSL)) {
1477			ndev->stats.tx_errors++;
1478			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1479				ndev->stats.tx_heartbeat_errors++;
1480			if (status & BD_ENET_TX_LC)  /* Late collision */
1481				ndev->stats.tx_window_errors++;
1482			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1483				ndev->stats.tx_aborted_errors++;
1484			if (status & BD_ENET_TX_UN)  /* Underrun */
1485				ndev->stats.tx_fifo_errors++;
1486			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1487				ndev->stats.tx_carrier_errors++;
1488		} else {
1489			ndev->stats.tx_packets++;
 
 
1490
1491			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1492				ndev->stats.tx_bytes += skb->len;
1493			else
1494				ndev->stats.tx_bytes += frame_len;
 
 
 
 
 
 
 
 
1495		}
1496
1497		/* Deferred means some collisions occurred during transmit,
1498		 * but we eventually sent the packet OK.
1499		 */
1500		if (status & BD_ENET_TX_DEF)
1501			ndev->stats.collisions++;
1502
1503		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1504			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1505			 * are to time stamp the packet, so we still need to check time
1506			 * stamping enabled flag.
1507			 */
1508			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1509				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1510				struct skb_shared_hwtstamps shhwtstamps;
1511				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1512
1513				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1514				skb_tstamp_tx(skb, &shhwtstamps);
1515			}
1516
1517			/* Free the sk buffer associated with this last transmit */
1518			napi_consume_skb(skb, budget);
1519		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1520			xdp_return_frame_rx_napi(xdpf);
1521		} else { /* recycle pages of XDP_TX frames */
1522			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1523			page_pool_put_page(page->pp, page, 0, true);
1524		}
1525
1526		txq->tx_buf[index].buf_p = NULL;
1527		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1528		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1529
1530tx_buf_done:
1531		/* Make sure the update to bdp and tx_buf are performed
1532		 * before dirty_tx
1533		 */
1534		wmb();
1535		txq->dirty_tx = bdp;
1536
1537		/* Update pointer to next buffer descriptor to be transmitted */
1538		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1539
1540		/* Since we have freed up a buffer, the ring is no longer full
1541		 */
1542		if (netif_tx_queue_stopped(nq)) {
1543			entries_free = fec_enet_get_free_txdesc_num(txq);
1544			if (entries_free >= txq->tx_wake_threshold)
1545				netif_tx_wake_queue(nq);
1546		}
1547	}
1548
1549	/* ERR006358: Keep the transmitter going */
1550	if (bdp != txq->bd.cur &&
1551	    readl(txq->bd.reg_desc_active) == 0)
1552		writel(0, txq->bd.reg_desc_active);
1553}
1554
1555static void fec_enet_tx(struct net_device *ndev, int budget)
1556{
1557	struct fec_enet_private *fep = netdev_priv(ndev);
1558	int i;
1559
1560	/* Make sure that AVB queues are processed first. */
1561	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1562		fec_enet_tx_queue(ndev, i, budget);
1563}
1564
1565static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1566				struct bufdesc *bdp, int index)
1567{
1568	struct page *new_page;
1569	dma_addr_t phys_addr;
1570
1571	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1572	WARN_ON(!new_page);
1573	rxq->rx_skb_info[index].page = new_page;
1574
1575	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1576	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1577	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
 
 
 
 
 
1578}
1579
1580static u32
1581fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1582		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1583{
1584	unsigned int sync, len = xdp->data_end - xdp->data;
1585	u32 ret = FEC_ENET_XDP_PASS;
1586	struct page *page;
1587	int err;
1588	u32 act;
1589
1590	act = bpf_prog_run_xdp(prog, xdp);
1591
1592	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1593	 * max len CPU touch
1594	 */
1595	sync = xdp->data_end - xdp->data;
1596	sync = max(sync, len);
1597
1598	switch (act) {
1599	case XDP_PASS:
1600		rxq->stats[RX_XDP_PASS]++;
1601		ret = FEC_ENET_XDP_PASS;
1602		break;
1603
1604	case XDP_REDIRECT:
1605		rxq->stats[RX_XDP_REDIRECT]++;
1606		err = xdp_do_redirect(fep->netdev, xdp, prog);
1607		if (unlikely(err))
1608			goto xdp_err;
1609
1610		ret = FEC_ENET_XDP_REDIR;
1611		break;
1612
1613	case XDP_TX:
1614		rxq->stats[RX_XDP_TX]++;
1615		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1616		if (unlikely(err)) {
1617			rxq->stats[RX_XDP_TX_ERRORS]++;
1618			goto xdp_err;
1619		}
1620
1621		ret = FEC_ENET_XDP_TX;
1622		break;
1623
1624	default:
1625		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1626		fallthrough;
1627
1628	case XDP_ABORTED:
1629		fallthrough;    /* handle aborts by dropping packet */
1630
1631	case XDP_DROP:
1632		rxq->stats[RX_XDP_DROP]++;
1633xdp_err:
1634		ret = FEC_ENET_XDP_CONSUMED;
1635		page = virt_to_head_page(xdp->data);
1636		page_pool_put_page(rxq->page_pool, page, sync, true);
1637		if (act != XDP_DROP)
1638			trace_xdp_exception(fep->netdev, prog, act);
1639		break;
1640	}
1641
1642	return ret;
1643}
1644
1645/* During a receive, the bd_rx.cur points to the current incoming buffer.
1646 * When we update through the ring, if the next incoming buffer has
1647 * not been given to the system, we just set the empty indicator,
1648 * effectively tossing the packet.
1649 */
1650static int
1651fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1652{
1653	struct fec_enet_private *fep = netdev_priv(ndev);
1654	struct fec_enet_priv_rx_q *rxq;
1655	struct bufdesc *bdp;
1656	unsigned short status;
 
1657	struct  sk_buff *skb;
1658	ushort	pkt_len;
1659	__u8 *data;
1660	int	pkt_received = 0;
1661	struct	bufdesc_ex *ebdp = NULL;
1662	bool	vlan_packet_rcvd = false;
1663	u16	vlan_tag;
1664	int	index = 0;
 
1665	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1666	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1667	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1668	u32 data_start = FEC_ENET_XDP_HEADROOM;
1669	int cpu = smp_processor_id();
1670	struct xdp_buff xdp;
1671	struct page *page;
1672	u32 sub_len = 4;
1673
1674#if !defined(CONFIG_M5272)
1675	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1676	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1677	 */
1678	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1679		data_start += 2;
1680		sub_len += 2;
1681	}
1682#endif
1683
1684#if defined(CONFIG_COLDFIRE) && !defined(CONFIG_COLDFIRE_COHERENT_DMA)
1685	/*
1686	 * Hacky flush of all caches instead of using the DMA API for the TSO
1687	 * headers.
1688	 */
1689	flush_cache_all();
1690#endif
1691	rxq = fep->rx_queue[queue_id];
1692
1693	/* First, grab all of the stats for the incoming packet.
1694	 * These get messed up if we get called due to a busy condition.
1695	 */
1696	bdp = rxq->bd.cur;
1697	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1698
1699	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1700
1701		if (pkt_received >= budget)
1702			break;
1703		pkt_received++;
1704
1705		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1706
1707		/* Check for errors. */
1708		status ^= BD_ENET_RX_LAST;
1709		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1710			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1711			   BD_ENET_RX_CL)) {
1712			ndev->stats.rx_errors++;
1713			if (status & BD_ENET_RX_OV) {
1714				/* FIFO overrun */
1715				ndev->stats.rx_fifo_errors++;
1716				goto rx_processing_done;
1717			}
1718			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1719						| BD_ENET_RX_LAST)) {
1720				/* Frame too long or too short. */
1721				ndev->stats.rx_length_errors++;
1722				if (status & BD_ENET_RX_LAST)
1723					netdev_err(ndev, "rcv is not +last\n");
1724			}
1725			if (status & BD_ENET_RX_CR)	/* CRC Error */
1726				ndev->stats.rx_crc_errors++;
1727			/* Report late collisions as a frame error. */
1728			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1729				ndev->stats.rx_frame_errors++;
1730			goto rx_processing_done;
1731		}
1732
1733		/* Process the incoming frame. */
1734		ndev->stats.rx_packets++;
1735		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1736		ndev->stats.rx_bytes += pkt_len;
1737
1738		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1739		page = rxq->rx_skb_info[index].page;
1740		dma_sync_single_for_cpu(&fep->pdev->dev,
1741					fec32_to_cpu(bdp->cbd_bufaddr),
1742					pkt_len,
1743					DMA_FROM_DEVICE);
1744		prefetch(page_address(page));
1745		fec_enet_update_cbd(rxq, bdp, index);
1746
1747		if (xdp_prog) {
1748			xdp_buff_clear_frags_flag(&xdp);
1749			/* subtract 16bit shift and FCS */
1750			xdp_prepare_buff(&xdp, page_address(page),
1751					 data_start, pkt_len - sub_len, false);
1752			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1753			xdp_result |= ret;
1754			if (ret != FEC_ENET_XDP_PASS)
1755				goto rx_processing_done;
1756		}
1757
1758		/* The packet length includes FCS, but we don't want to
1759		 * include that when passing upstream as it messes up
1760		 * bridging applications.
1761		 */
1762		skb = build_skb(page_address(page), PAGE_SIZE);
1763		if (unlikely(!skb)) {
1764			page_pool_recycle_direct(rxq->page_pool, page);
1765			ndev->stats.rx_dropped++;
1766
1767			netdev_err_once(ndev, "build_skb failed!\n");
1768			goto rx_processing_done;
 
 
 
 
 
1769		}
1770
1771		skb_reserve(skb, data_start);
1772		skb_put(skb, pkt_len - sub_len);
1773		skb_mark_for_recycle(skb);
1774
1775		if (unlikely(need_swap)) {
1776			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1777			swap_buffer(data, pkt_len);
1778		}
1779		data = skb->data;
 
 
 
1780
1781		/* Extract the enhanced buffer descriptor */
1782		ebdp = NULL;
1783		if (fep->bufdesc_ex)
1784			ebdp = (struct bufdesc_ex *)bdp;
1785
1786		/* If this is a VLAN packet remove the VLAN Tag */
1787		vlan_packet_rcvd = false;
1788		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1789		    fep->bufdesc_ex &&
1790		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1791			/* Push and remove the vlan tag */
1792			struct vlan_hdr *vlan_header =
1793					(struct vlan_hdr *) (data + ETH_HLEN);
1794			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1795
1796			vlan_packet_rcvd = true;
1797
1798			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1799			skb_pull(skb, VLAN_HLEN);
1800		}
1801
1802		skb->protocol = eth_type_trans(skb, ndev);
1803
1804		/* Get receive timestamp from the skb */
1805		if (fep->hwts_rx_en && fep->bufdesc_ex)
1806			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1807					  skb_hwtstamps(skb));
1808
1809		if (fep->bufdesc_ex &&
1810		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1811			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1812				/* don't check it */
1813				skb->ip_summed = CHECKSUM_UNNECESSARY;
1814			} else {
1815				skb_checksum_none_assert(skb);
1816			}
1817		}
1818
1819		/* Handle received VLAN packets */
1820		if (vlan_packet_rcvd)
1821			__vlan_hwaccel_put_tag(skb,
1822					       htons(ETH_P_8021Q),
1823					       vlan_tag);
1824
1825		skb_record_rx_queue(skb, queue_id);
1826		napi_gro_receive(&fep->napi, skb);
1827
 
 
 
 
 
 
 
 
 
 
1828rx_processing_done:
1829		/* Clear the status flags for this buffer */
1830		status &= ~BD_ENET_RX_STATS;
1831
1832		/* Mark the buffer empty */
1833		status |= BD_ENET_RX_EMPTY;
1834
1835		if (fep->bufdesc_ex) {
1836			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1837
1838			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1839			ebdp->cbd_prot = 0;
1840			ebdp->cbd_bdu = 0;
1841		}
1842		/* Make sure the updates to rest of the descriptor are
1843		 * performed before transferring ownership.
1844		 */
1845		wmb();
1846		bdp->cbd_sc = cpu_to_fec16(status);
1847
1848		/* Update BD pointer to next entry */
1849		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1850
1851		/* Doing this here will keep the FEC running while we process
1852		 * incoming frames.  On a heavily loaded network, we should be
1853		 * able to keep up at the expense of system resources.
1854		 */
1855		writel(0, rxq->bd.reg_desc_active);
1856	}
1857	rxq->bd.cur = bdp;
1858
1859	if (xdp_result & FEC_ENET_XDP_REDIR)
1860		xdp_do_flush();
1861
1862	return pkt_received;
1863}
1864
1865static int fec_enet_rx(struct net_device *ndev, int budget)
1866{
1867	struct fec_enet_private *fep = netdev_priv(ndev);
1868	int i, done = 0;
1869
1870	/* Make sure that AVB queues are processed first. */
1871	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1872		done += fec_enet_rx_queue(ndev, budget - done, i);
1873
1874	return done;
1875}
1876
1877static bool fec_enet_collect_events(struct fec_enet_private *fep)
1878{
1879	uint int_events;
1880
1881	int_events = readl(fep->hwp + FEC_IEVENT);
1882
1883	/* Don't clear MDIO events, we poll for those */
1884	int_events &= ~FEC_ENET_MII;
1885
1886	writel(int_events, fep->hwp + FEC_IEVENT);
1887
1888	return int_events != 0;
1889}
1890
1891static irqreturn_t
1892fec_enet_interrupt(int irq, void *dev_id)
1893{
1894	struct net_device *ndev = dev_id;
1895	struct fec_enet_private *fep = netdev_priv(ndev);
1896	irqreturn_t ret = IRQ_NONE;
1897
1898	if (fec_enet_collect_events(fep) && fep->link) {
1899		ret = IRQ_HANDLED;
1900
1901		if (napi_schedule_prep(&fep->napi)) {
1902			/* Disable interrupts */
1903			writel(0, fep->hwp + FEC_IMASK);
1904			__napi_schedule(&fep->napi);
1905		}
1906	}
1907
1908	return ret;
1909}
1910
1911static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1912{
1913	struct net_device *ndev = napi->dev;
1914	struct fec_enet_private *fep = netdev_priv(ndev);
1915	int done = 0;
1916
1917	do {
1918		done += fec_enet_rx(ndev, budget - done);
1919		fec_enet_tx(ndev, budget);
1920	} while ((done < budget) && fec_enet_collect_events(fep));
1921
1922	if (done < budget) {
1923		napi_complete_done(napi, done);
1924		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1925	}
1926
1927	return done;
1928}
1929
1930/* ------------------------------------------------------------------------- */
1931static int fec_get_mac(struct net_device *ndev)
1932{
1933	struct fec_enet_private *fep = netdev_priv(ndev);
 
1934	unsigned char *iap, tmpaddr[ETH_ALEN];
1935	int ret;
1936
1937	/*
1938	 * try to get mac address in following order:
1939	 *
1940	 * 1) module parameter via kernel command line in form
1941	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1942	 */
1943	iap = macaddr;
1944
1945	/*
1946	 * 2) from device tree data
1947	 */
1948	if (!is_valid_ether_addr(iap)) {
1949		struct device_node *np = fep->pdev->dev.of_node;
1950		if (np) {
1951			ret = of_get_mac_address(np, tmpaddr);
1952			if (!ret)
1953				iap = tmpaddr;
1954			else if (ret == -EPROBE_DEFER)
1955				return ret;
1956		}
1957	}
1958
1959	/*
1960	 * 3) from flash or fuse (via platform data)
1961	 */
1962	if (!is_valid_ether_addr(iap)) {
1963#ifdef CONFIG_M5272
1964		if (FEC_FLASHMAC)
1965			iap = (unsigned char *)FEC_FLASHMAC;
1966#else
1967		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1968
1969		if (pdata)
1970			iap = (unsigned char *)&pdata->mac;
1971#endif
1972	}
1973
1974	/*
1975	 * 4) FEC mac registers set by bootloader
1976	 */
1977	if (!is_valid_ether_addr(iap)) {
1978		*((__be32 *) &tmpaddr[0]) =
1979			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1980		*((__be16 *) &tmpaddr[4]) =
1981			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1982		iap = &tmpaddr[0];
1983	}
1984
1985	/*
1986	 * 5) random mac address
1987	 */
1988	if (!is_valid_ether_addr(iap)) {
1989		/* Report it and use a random ethernet address instead */
1990		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1991		eth_hw_addr_random(ndev);
1992		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1993			 ndev->dev_addr);
1994		return 0;
1995	}
1996
1997	/* Adjust MAC if using macaddr */
1998	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1999
2000	return 0;
 
 
2001}
2002
2003/* ------------------------------------------------------------------------- */
2004
2005/*
2006 * Phy section
2007 */
2008static void fec_enet_adjust_link(struct net_device *ndev)
2009{
2010	struct fec_enet_private *fep = netdev_priv(ndev);
2011	struct phy_device *phy_dev = ndev->phydev;
2012	int status_change = 0;
2013
2014	/*
2015	 * If the netdev is down, or is going down, we're not interested
2016	 * in link state events, so just mark our idea of the link as down
2017	 * and ignore the event.
2018	 */
2019	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2020		fep->link = 0;
2021	} else if (phy_dev->link) {
2022		if (!fep->link) {
2023			fep->link = phy_dev->link;
2024			status_change = 1;
2025		}
2026
2027		if (fep->full_duplex != phy_dev->duplex) {
2028			fep->full_duplex = phy_dev->duplex;
2029			status_change = 1;
2030		}
2031
2032		if (phy_dev->speed != fep->speed) {
2033			fep->speed = phy_dev->speed;
2034			status_change = 1;
2035		}
2036
2037		/* if any of the above changed restart the FEC */
2038		if (status_change) {
2039			netif_stop_queue(ndev);
2040			napi_disable(&fep->napi);
2041			netif_tx_lock_bh(ndev);
2042			fec_restart(ndev);
2043			netif_tx_wake_all_queues(ndev);
2044			netif_tx_unlock_bh(ndev);
2045			napi_enable(&fep->napi);
2046		}
2047	} else {
2048		if (fep->link) {
2049			netif_stop_queue(ndev);
2050			napi_disable(&fep->napi);
2051			netif_tx_lock_bh(ndev);
2052			fec_stop(ndev);
2053			netif_tx_unlock_bh(ndev);
2054			napi_enable(&fep->napi);
2055			fep->link = phy_dev->link;
2056			status_change = 1;
2057		}
2058	}
2059
2060	if (status_change)
2061		phy_print_status(phy_dev);
2062}
2063
2064static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2065{
2066	uint ievent;
2067	int ret;
2068
2069	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2070					ievent & FEC_ENET_MII, 2, 30000);
2071
2072	if (!ret)
2073		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2074
2075	return ret;
2076}
2077
2078static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2079{
2080	struct fec_enet_private *fep = bus->priv;
2081	struct device *dev = &fep->pdev->dev;
2082	int ret = 0, frame_start, frame_addr, frame_op;
 
2083
2084	ret = pm_runtime_resume_and_get(dev);
2085	if (ret < 0)
2086		return ret;
2087
2088	/* C22 read */
2089	frame_op = FEC_MMFR_OP_READ;
2090	frame_start = FEC_MMFR_ST;
2091	frame_addr = regnum;
2092
2093	/* start a read op */
2094	writel(frame_start | frame_op |
2095	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2096	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2097
2098	/* wait for end of transfer */
2099	ret = fec_enet_mdio_wait(fep);
2100	if (ret) {
2101		netdev_err(fep->netdev, "MDIO read timeout\n");
2102		goto out;
2103	}
2104
2105	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2106
2107out:
2108	pm_runtime_mark_last_busy(dev);
2109	pm_runtime_put_autosuspend(dev);
2110
2111	return ret;
2112}
2113
2114static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2115				  int devad, int regnum)
2116{
2117	struct fec_enet_private *fep = bus->priv;
2118	struct device *dev = &fep->pdev->dev;
2119	int ret = 0, frame_start, frame_op;
2120
2121	ret = pm_runtime_resume_and_get(dev);
2122	if (ret < 0)
2123		return ret;
2124
2125	frame_start = FEC_MMFR_ST_C45;
 
 
 
 
 
2126
2127	/* write address */
2128	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2129	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2130	       FEC_MMFR_TA | (regnum & 0xFFFF),
2131	       fep->hwp + FEC_MII_DATA);
2132
2133	/* wait for end of transfer */
2134	ret = fec_enet_mdio_wait(fep);
2135	if (ret) {
2136		netdev_err(fep->netdev, "MDIO address write timeout\n");
2137		goto out;
2138	}
2139
2140	frame_op = FEC_MMFR_OP_READ_C45;
2141
2142	/* start a read op */
2143	writel(frame_start | frame_op |
2144	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2145	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2146
2147	/* wait for end of transfer */
2148	ret = fec_enet_mdio_wait(fep);
2149	if (ret) {
2150		netdev_err(fep->netdev, "MDIO read timeout\n");
2151		goto out;
2152	}
2153
2154	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2155
2156out:
2157	pm_runtime_mark_last_busy(dev);
2158	pm_runtime_put_autosuspend(dev);
2159
2160	return ret;
2161}
2162
2163static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2164				   u16 value)
2165{
2166	struct fec_enet_private *fep = bus->priv;
2167	struct device *dev = &fep->pdev->dev;
2168	int ret, frame_start, frame_addr;
 
2169
2170	ret = pm_runtime_resume_and_get(dev);
2171	if (ret < 0)
2172		return ret;
2173
2174	/* C22 write */
2175	frame_start = FEC_MMFR_ST;
2176	frame_addr = regnum;
2177
2178	/* start a write op */
2179	writel(frame_start | FEC_MMFR_OP_WRITE |
2180	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2181	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2182	       fep->hwp + FEC_MII_DATA);
2183
2184	/* wait for end of transfer */
2185	ret = fec_enet_mdio_wait(fep);
2186	if (ret)
2187		netdev_err(fep->netdev, "MDIO write timeout\n");
2188
2189	pm_runtime_mark_last_busy(dev);
2190	pm_runtime_put_autosuspend(dev);
2191
2192	return ret;
2193}
2194
2195static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2196				   int devad, int regnum, u16 value)
2197{
2198	struct fec_enet_private *fep = bus->priv;
2199	struct device *dev = &fep->pdev->dev;
2200	int ret, frame_start;
2201
2202	ret = pm_runtime_resume_and_get(dev);
2203	if (ret < 0)
2204		return ret;
 
 
2205
2206	frame_start = FEC_MMFR_ST_C45;
 
2207
2208	/* write address */
2209	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2210	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2211	       FEC_MMFR_TA | (regnum & 0xFFFF),
2212	       fep->hwp + FEC_MII_DATA);
 
2213
2214	/* wait for end of transfer */
2215	ret = fec_enet_mdio_wait(fep);
2216	if (ret) {
2217		netdev_err(fep->netdev, "MDIO address write timeout\n");
2218		goto out;
 
 
 
 
 
2219	}
2220
2221	/* start a write op */
2222	writel(frame_start | FEC_MMFR_OP_WRITE |
2223	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2224	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2225	       fep->hwp + FEC_MII_DATA);
2226
2227	/* wait for end of transfer */
2228	ret = fec_enet_mdio_wait(fep);
2229	if (ret)
2230		netdev_err(fep->netdev, "MDIO write timeout\n");
2231
2232out:
2233	pm_runtime_mark_last_busy(dev);
2234	pm_runtime_put_autosuspend(dev);
2235
2236	return ret;
2237}
2238
2239static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2240{
2241	struct fec_enet_private *fep = netdev_priv(ndev);
2242	struct phy_device *phy_dev = ndev->phydev;
2243
2244	if (phy_dev) {
2245		phy_reset_after_clk_enable(phy_dev);
2246	} else if (fep->phy_node) {
2247		/*
2248		 * If the PHY still is not bound to the MAC, but there is
2249		 * OF PHY node and a matching PHY device instance already,
2250		 * use the OF PHY node to obtain the PHY device instance,
2251		 * and then use that PHY device instance when triggering
2252		 * the PHY reset.
2253		 */
2254		phy_dev = of_phy_find_device(fep->phy_node);
2255		phy_reset_after_clk_enable(phy_dev);
2256		put_device(&phy_dev->mdio.dev);
2257	}
2258}
2259
2260static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2261{
2262	struct fec_enet_private *fep = netdev_priv(ndev);
2263	int ret;
2264
2265	if (enable) {
2266		ret = clk_prepare_enable(fep->clk_enet_out);
2267		if (ret)
2268			return ret;
2269
2270		if (fep->clk_ptp) {
2271			mutex_lock(&fep->ptp_clk_mutex);
2272			ret = clk_prepare_enable(fep->clk_ptp);
2273			if (ret) {
2274				mutex_unlock(&fep->ptp_clk_mutex);
2275				goto failed_clk_ptp;
2276			} else {
2277				fep->ptp_clk_on = true;
2278			}
2279			mutex_unlock(&fep->ptp_clk_mutex);
2280		}
2281
2282		ret = clk_prepare_enable(fep->clk_ref);
2283		if (ret)
2284			goto failed_clk_ref;
2285
2286		ret = clk_prepare_enable(fep->clk_2x_txclk);
2287		if (ret)
2288			goto failed_clk_2x_txclk;
2289
2290		fec_enet_phy_reset_after_clk_enable(ndev);
2291	} else {
2292		clk_disable_unprepare(fep->clk_enet_out);
2293		if (fep->clk_ptp) {
2294			mutex_lock(&fep->ptp_clk_mutex);
2295			clk_disable_unprepare(fep->clk_ptp);
2296			fep->ptp_clk_on = false;
2297			mutex_unlock(&fep->ptp_clk_mutex);
2298		}
2299		clk_disable_unprepare(fep->clk_ref);
2300		clk_disable_unprepare(fep->clk_2x_txclk);
2301	}
2302
2303	return 0;
2304
2305failed_clk_2x_txclk:
2306	if (fep->clk_ref)
2307		clk_disable_unprepare(fep->clk_ref);
2308failed_clk_ref:
2309	if (fep->clk_ptp) {
2310		mutex_lock(&fep->ptp_clk_mutex);
2311		clk_disable_unprepare(fep->clk_ptp);
2312		fep->ptp_clk_on = false;
2313		mutex_unlock(&fep->ptp_clk_mutex);
2314	}
2315failed_clk_ptp:
2316	clk_disable_unprepare(fep->clk_enet_out);
 
2317
2318	return ret;
2319}
2320
2321static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2322				      struct device_node *np)
2323{
2324	u32 rgmii_tx_delay, rgmii_rx_delay;
2325
2326	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2327	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2328		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2329			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2330			return -EINVAL;
2331		} else if (rgmii_tx_delay == 2000) {
2332			fep->rgmii_txc_dly = true;
2333		}
2334	}
2335
2336	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2337	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2338		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2339			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2340			return -EINVAL;
2341		} else if (rgmii_rx_delay == 2000) {
2342			fep->rgmii_rxc_dly = true;
2343		}
2344	}
2345
2346	return 0;
2347}
2348
2349static int fec_enet_mii_probe(struct net_device *ndev)
2350{
2351	struct fec_enet_private *fep = netdev_priv(ndev);
2352	struct phy_device *phy_dev = NULL;
2353	char mdio_bus_id[MII_BUS_ID_SIZE];
2354	char phy_name[MII_BUS_ID_SIZE + 3];
2355	int phy_id;
2356	int dev_id = fep->dev_id;
2357
2358	if (fep->phy_node) {
2359		phy_dev = of_phy_connect(ndev, fep->phy_node,
2360					 &fec_enet_adjust_link, 0,
2361					 fep->phy_interface);
2362		if (!phy_dev) {
2363			netdev_err(ndev, "Unable to connect to phy\n");
2364			return -ENODEV;
2365		}
2366	} else {
2367		/* check for attached phy */
2368		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2369			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2370				continue;
2371			if (dev_id--)
2372				continue;
2373			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2374			break;
2375		}
2376
2377		if (phy_id >= PHY_MAX_ADDR) {
2378			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2379			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2380			phy_id = 0;
2381		}
2382
2383		snprintf(phy_name, sizeof(phy_name),
2384			 PHY_ID_FMT, mdio_bus_id, phy_id);
2385		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2386				      fep->phy_interface);
2387	}
2388
2389	if (IS_ERR(phy_dev)) {
2390		netdev_err(ndev, "could not attach to PHY\n");
2391		return PTR_ERR(phy_dev);
2392	}
2393
2394	/* mask with MAC supported features */
2395	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2396		phy_set_max_speed(phy_dev, 1000);
2397		phy_remove_link_mode(phy_dev,
2398				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2399#if !defined(CONFIG_M5272)
2400		phy_support_sym_pause(phy_dev);
2401#endif
2402	}
2403	else
2404		phy_set_max_speed(phy_dev, 100);
2405
2406	fep->link = 0;
2407	fep->full_duplex = 0;
2408
2409	phy_dev->mac_managed_pm = true;
2410
2411	phy_attached_info(phy_dev);
2412
2413	return 0;
2414}
2415
2416static int fec_enet_mii_init(struct platform_device *pdev)
2417{
2418	static struct mii_bus *fec0_mii_bus;
2419	struct net_device *ndev = platform_get_drvdata(pdev);
2420	struct fec_enet_private *fep = netdev_priv(ndev);
2421	bool suppress_preamble = false;
2422	struct device_node *node;
2423	int err = -ENXIO;
2424	u32 mii_speed, holdtime;
2425	u32 bus_freq;
2426
2427	/*
2428	 * The i.MX28 dual fec interfaces are not equal.
2429	 * Here are the differences:
2430	 *
2431	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2432	 *  - fec0 acts as the 1588 time master while fec1 is slave
2433	 *  - external phys can only be configured by fec0
2434	 *
2435	 * That is to say fec1 can not work independently. It only works
2436	 * when fec0 is working. The reason behind this design is that the
2437	 * second interface is added primarily for Switch mode.
2438	 *
2439	 * Because of the last point above, both phys are attached on fec0
2440	 * mdio interface in board design, and need to be configured by
2441	 * fec0 mii_bus.
2442	 */
2443	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2444		/* fec1 uses fec0 mii_bus */
2445		if (mii_cnt && fec0_mii_bus) {
2446			fep->mii_bus = fec0_mii_bus;
2447			mii_cnt++;
2448			return 0;
2449		}
2450		return -ENOENT;
2451	}
2452
2453	bus_freq = 2500000; /* 2.5MHz by default */
2454	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2455	if (node) {
2456		of_property_read_u32(node, "clock-frequency", &bus_freq);
2457		suppress_preamble = of_property_read_bool(node,
2458							  "suppress-preamble");
2459	}
2460
2461	/*
2462	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2463	 *
2464	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2465	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2466	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2467	 * document.
2468	 */
2469	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2470	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2471		mii_speed--;
2472	if (mii_speed > 63) {
2473		dev_err(&pdev->dev,
2474			"fec clock (%lu) too fast to get right mii speed\n",
2475			clk_get_rate(fep->clk_ipg));
2476		err = -EINVAL;
2477		goto err_out;
2478	}
2479
2480	/*
2481	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2482	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2483	 * versions are RAZ there, so just ignore the difference and write the
2484	 * register always.
2485	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2486	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2487	 * output.
2488	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2489	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2490	 * holdtime cannot result in a value greater than 3.
2491	 */
2492	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2493
2494	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2495
2496	if (suppress_preamble)
2497		fep->phy_speed |= BIT(7);
2498
2499	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2500		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2501		 * MII event generation condition:
2502		 * - writing MSCR:
2503		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2504		 *	  mscr_reg_data_in[7:0] != 0
2505		 * - writing MMFR:
2506		 *	- mscr[7:0]_not_zero
2507		 */
2508		writel(0, fep->hwp + FEC_MII_DATA);
2509	}
2510
2511	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2512
2513	/* Clear any pending transaction complete indication */
2514	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2515
2516	fep->mii_bus = mdiobus_alloc();
2517	if (fep->mii_bus == NULL) {
2518		err = -ENOMEM;
2519		goto err_out;
2520	}
2521
2522	fep->mii_bus->name = "fec_enet_mii_bus";
2523	fep->mii_bus->read = fec_enet_mdio_read_c22;
2524	fep->mii_bus->write = fec_enet_mdio_write_c22;
2525	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2526		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2527		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2528	}
2529	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2530		pdev->name, fep->dev_id + 1);
2531	fep->mii_bus->priv = fep;
2532	fep->mii_bus->parent = &pdev->dev;
2533
2534	err = of_mdiobus_register(fep->mii_bus, node);
 
2535	if (err)
2536		goto err_out_free_mdiobus;
2537	of_node_put(node);
2538
2539	mii_cnt++;
2540
2541	/* save fec0 mii_bus */
2542	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2543		fec0_mii_bus = fep->mii_bus;
2544
2545	return 0;
2546
2547err_out_free_mdiobus:
2548	mdiobus_free(fep->mii_bus);
2549err_out:
2550	of_node_put(node);
2551	return err;
2552}
2553
2554static void fec_enet_mii_remove(struct fec_enet_private *fep)
2555{
2556	if (--mii_cnt == 0) {
2557		mdiobus_unregister(fep->mii_bus);
2558		mdiobus_free(fep->mii_bus);
2559	}
2560}
2561
2562static void fec_enet_get_drvinfo(struct net_device *ndev,
2563				 struct ethtool_drvinfo *info)
2564{
2565	struct fec_enet_private *fep = netdev_priv(ndev);
2566
2567	strscpy(info->driver, fep->pdev->dev.driver->name,
2568		sizeof(info->driver));
2569	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2570}
2571
2572static int fec_enet_get_regs_len(struct net_device *ndev)
2573{
2574	struct fec_enet_private *fep = netdev_priv(ndev);
2575	struct resource *r;
2576	int s = 0;
2577
2578	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2579	if (r)
2580		s = resource_size(r);
2581
2582	return s;
2583}
2584
2585/* List of registers that can be safety be read to dump them with ethtool */
2586#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2587	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2588	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2589static __u32 fec_enet_register_version = 2;
2590static u32 fec_enet_register_offset[] = {
2591	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2592	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2593	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2594	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2595	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2596	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2597	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2598	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2599	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2600	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2601	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2602	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2603	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2604	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2605	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2606	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2607	RMON_T_P_GTE2048, RMON_T_OCTETS,
2608	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2609	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2610	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2611	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2612	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2613	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2614	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2615	RMON_R_P_GTE2048, RMON_R_OCTETS,
2616	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2617	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2618};
2619/* for i.MX6ul */
2620static u32 fec_enet_register_offset_6ul[] = {
2621	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2622	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2623	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2624	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2625	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2626	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2627	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2628	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2629	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2630	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2631	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2632	RMON_T_P_GTE2048, RMON_T_OCTETS,
2633	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2634	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2635	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2636	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2637	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2638	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2639	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2640	RMON_R_P_GTE2048, RMON_R_OCTETS,
2641	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2642	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2643};
2644#else
2645static __u32 fec_enet_register_version = 1;
2646static u32 fec_enet_register_offset[] = {
2647	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2648	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2649	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2650	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2651	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2652	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2653	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2654	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2655	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2656};
2657#endif
2658
2659static void fec_enet_get_regs(struct net_device *ndev,
2660			      struct ethtool_regs *regs, void *regbuf)
2661{
2662	struct fec_enet_private *fep = netdev_priv(ndev);
2663	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2664	struct device *dev = &fep->pdev->dev;
2665	u32 *buf = (u32 *)regbuf;
2666	u32 i, off;
2667	int ret;
2668#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2669	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2670	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2671	u32 *reg_list;
2672	u32 reg_cnt;
2673
2674	if (!of_machine_is_compatible("fsl,imx6ul")) {
2675		reg_list = fec_enet_register_offset;
2676		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2677	} else {
2678		reg_list = fec_enet_register_offset_6ul;
2679		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2680	}
2681#else
2682	/* coldfire */
2683	static u32 *reg_list = fec_enet_register_offset;
2684	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2685#endif
2686	ret = pm_runtime_resume_and_get(dev);
2687	if (ret < 0)
2688		return;
2689
2690	regs->version = fec_enet_register_version;
2691
2692	memset(buf, 0, regs->len);
2693
2694	for (i = 0; i < reg_cnt; i++) {
2695		off = reg_list[i];
2696
2697		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2698		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2699			continue;
2700
2701		off >>= 2;
2702		buf[off] = readl(&theregs[off]);
2703	}
2704
2705	pm_runtime_mark_last_busy(dev);
2706	pm_runtime_put_autosuspend(dev);
2707}
2708
2709static int fec_enet_get_ts_info(struct net_device *ndev,
2710				struct ethtool_ts_info *info)
2711{
2712	struct fec_enet_private *fep = netdev_priv(ndev);
2713
2714	if (fep->bufdesc_ex) {
2715
2716		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2717					SOF_TIMESTAMPING_RX_SOFTWARE |
2718					SOF_TIMESTAMPING_SOFTWARE |
2719					SOF_TIMESTAMPING_TX_HARDWARE |
2720					SOF_TIMESTAMPING_RX_HARDWARE |
2721					SOF_TIMESTAMPING_RAW_HARDWARE;
2722		if (fep->ptp_clock)
2723			info->phc_index = ptp_clock_index(fep->ptp_clock);
2724		else
2725			info->phc_index = -1;
2726
2727		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2728				 (1 << HWTSTAMP_TX_ON);
2729
2730		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2731				   (1 << HWTSTAMP_FILTER_ALL);
2732		return 0;
2733	} else {
2734		return ethtool_op_get_ts_info(ndev, info);
2735	}
2736}
2737
2738#if !defined(CONFIG_M5272)
2739
2740static void fec_enet_get_pauseparam(struct net_device *ndev,
2741				    struct ethtool_pauseparam *pause)
2742{
2743	struct fec_enet_private *fep = netdev_priv(ndev);
2744
2745	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2746	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2747	pause->rx_pause = pause->tx_pause;
2748}
2749
2750static int fec_enet_set_pauseparam(struct net_device *ndev,
2751				   struct ethtool_pauseparam *pause)
2752{
2753	struct fec_enet_private *fep = netdev_priv(ndev);
2754
2755	if (!ndev->phydev)
2756		return -ENODEV;
2757
2758	if (pause->tx_pause != pause->rx_pause) {
2759		netdev_info(ndev,
2760			"hardware only support enable/disable both tx and rx");
2761		return -EINVAL;
2762	}
2763
2764	fep->pause_flag = 0;
2765
2766	/* tx pause must be same as rx pause */
2767	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2768	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2769
2770	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2771			  pause->autoneg);
2772
2773	if (pause->autoneg) {
2774		if (netif_running(ndev))
2775			fec_stop(ndev);
2776		phy_start_aneg(ndev->phydev);
2777	}
2778	if (netif_running(ndev)) {
2779		napi_disable(&fep->napi);
2780		netif_tx_lock_bh(ndev);
2781		fec_restart(ndev);
2782		netif_tx_wake_all_queues(ndev);
2783		netif_tx_unlock_bh(ndev);
2784		napi_enable(&fep->napi);
2785	}
2786
2787	return 0;
2788}
2789
2790static const struct fec_stat {
2791	char name[ETH_GSTRING_LEN];
2792	u16 offset;
2793} fec_stats[] = {
2794	/* RMON TX */
2795	{ "tx_dropped", RMON_T_DROP },
2796	{ "tx_packets", RMON_T_PACKETS },
2797	{ "tx_broadcast", RMON_T_BC_PKT },
2798	{ "tx_multicast", RMON_T_MC_PKT },
2799	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2800	{ "tx_undersize", RMON_T_UNDERSIZE },
2801	{ "tx_oversize", RMON_T_OVERSIZE },
2802	{ "tx_fragment", RMON_T_FRAG },
2803	{ "tx_jabber", RMON_T_JAB },
2804	{ "tx_collision", RMON_T_COL },
2805	{ "tx_64byte", RMON_T_P64 },
2806	{ "tx_65to127byte", RMON_T_P65TO127 },
2807	{ "tx_128to255byte", RMON_T_P128TO255 },
2808	{ "tx_256to511byte", RMON_T_P256TO511 },
2809	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2810	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2811	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2812	{ "tx_octets", RMON_T_OCTETS },
2813
2814	/* IEEE TX */
2815	{ "IEEE_tx_drop", IEEE_T_DROP },
2816	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2817	{ "IEEE_tx_1col", IEEE_T_1COL },
2818	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2819	{ "IEEE_tx_def", IEEE_T_DEF },
2820	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2821	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2822	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2823	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2824	{ "IEEE_tx_sqe", IEEE_T_SQE },
2825	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2826	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2827
2828	/* RMON RX */
2829	{ "rx_packets", RMON_R_PACKETS },
2830	{ "rx_broadcast", RMON_R_BC_PKT },
2831	{ "rx_multicast", RMON_R_MC_PKT },
2832	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2833	{ "rx_undersize", RMON_R_UNDERSIZE },
2834	{ "rx_oversize", RMON_R_OVERSIZE },
2835	{ "rx_fragment", RMON_R_FRAG },
2836	{ "rx_jabber", RMON_R_JAB },
2837	{ "rx_64byte", RMON_R_P64 },
2838	{ "rx_65to127byte", RMON_R_P65TO127 },
2839	{ "rx_128to255byte", RMON_R_P128TO255 },
2840	{ "rx_256to511byte", RMON_R_P256TO511 },
2841	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2842	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2843	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2844	{ "rx_octets", RMON_R_OCTETS },
2845
2846	/* IEEE RX */
2847	{ "IEEE_rx_drop", IEEE_R_DROP },
2848	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2849	{ "IEEE_rx_crc", IEEE_R_CRC },
2850	{ "IEEE_rx_align", IEEE_R_ALIGN },
2851	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2852	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2853	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2854};
2855
2856#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2857
2858static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2859	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2860	"rx_xdp_pass",               /* RX_XDP_PASS, */
2861	"rx_xdp_drop",               /* RX_XDP_DROP, */
2862	"rx_xdp_tx",                 /* RX_XDP_TX, */
2863	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2864	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2865	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2866};
2867
2868static void fec_enet_update_ethtool_stats(struct net_device *dev)
2869{
2870	struct fec_enet_private *fep = netdev_priv(dev);
2871	int i;
2872
2873	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2874		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2875}
2876
2877static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2878{
2879	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2880	struct fec_enet_priv_rx_q *rxq;
2881	int i, j;
2882
2883	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2884		rxq = fep->rx_queue[i];
2885
2886		for (j = 0; j < XDP_STATS_TOTAL; j++)
2887			xdp_stats[j] += rxq->stats[j];
2888	}
2889
2890	memcpy(data, xdp_stats, sizeof(xdp_stats));
2891}
2892
2893static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2894{
2895#ifdef CONFIG_PAGE_POOL_STATS
2896	struct page_pool_stats stats = {};
2897	struct fec_enet_priv_rx_q *rxq;
2898	int i;
2899
2900	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2901		rxq = fep->rx_queue[i];
2902
2903		if (!rxq->page_pool)
2904			continue;
2905
2906		page_pool_get_stats(rxq->page_pool, &stats);
2907	}
2908
2909	page_pool_ethtool_stats_get(data, &stats);
2910#endif
2911}
2912
2913static void fec_enet_get_ethtool_stats(struct net_device *dev,
2914				       struct ethtool_stats *stats, u64 *data)
2915{
2916	struct fec_enet_private *fep = netdev_priv(dev);
2917
2918	if (netif_running(dev))
2919		fec_enet_update_ethtool_stats(dev);
2920
2921	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2922	data += FEC_STATS_SIZE / sizeof(u64);
2923
2924	fec_enet_get_xdp_stats(fep, data);
2925	data += XDP_STATS_TOTAL;
2926
2927	fec_enet_page_pool_stats(fep, data);
2928}
2929
2930static void fec_enet_get_strings(struct net_device *netdev,
2931	u32 stringset, u8 *data)
2932{
2933	int i;
2934	switch (stringset) {
2935	case ETH_SS_STATS:
2936		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2937			ethtool_puts(&data, fec_stats[i].name);
2938		}
2939		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2940			ethtool_puts(&data, fec_xdp_stat_strs[i]);
2941		}
2942		page_pool_ethtool_stats_get_strings(data);
2943
2944		break;
2945	case ETH_SS_TEST:
2946		net_selftest_get_strings(data);
2947		break;
2948	}
2949}
2950
2951static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2952{
2953	int count;
2954
2955	switch (sset) {
2956	case ETH_SS_STATS:
2957		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2958		count += page_pool_ethtool_stats_get_count();
2959		return count;
2960
2961	case ETH_SS_TEST:
2962		return net_selftest_get_count();
2963	default:
2964		return -EOPNOTSUPP;
2965	}
2966}
2967
2968static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2969{
2970	struct fec_enet_private *fep = netdev_priv(dev);
2971	struct fec_enet_priv_rx_q *rxq;
2972	int i, j;
2973
2974	/* Disable MIB statistics counters */
2975	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2976
2977	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2978		writel(0, fep->hwp + fec_stats[i].offset);
2979
2980	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2981		rxq = fep->rx_queue[i];
2982		for (j = 0; j < XDP_STATS_TOTAL; j++)
2983			rxq->stats[j] = 0;
2984	}
2985
2986	/* Don't disable MIB statistics counters */
2987	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2988}
2989
2990#else	/* !defined(CONFIG_M5272) */
2991#define FEC_STATS_SIZE	0
2992static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2993{
2994}
2995
2996static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2997{
2998}
2999#endif /* !defined(CONFIG_M5272) */
3000
3001/* ITR clock source is enet system clock (clk_ahb).
3002 * TCTT unit is cycle_ns * 64 cycle
3003 * So, the ICTT value = X us / (cycle_ns * 64)
3004 */
3005static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3006{
3007	struct fec_enet_private *fep = netdev_priv(ndev);
3008
3009	return us * (fep->itr_clk_rate / 64000) / 1000;
3010}
3011
3012/* Set threshold for interrupt coalescing */
3013static void fec_enet_itr_coal_set(struct net_device *ndev)
3014{
3015	struct fec_enet_private *fep = netdev_priv(ndev);
3016	int rx_itr, tx_itr;
3017
3018	/* Must be greater than zero to avoid unpredictable behavior */
3019	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3020	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3021		return;
3022
3023	/* Select enet system clock as Interrupt Coalescing
3024	 * timer Clock Source
3025	 */
3026	rx_itr = FEC_ITR_CLK_SEL;
3027	tx_itr = FEC_ITR_CLK_SEL;
3028
3029	/* set ICFT and ICTT */
3030	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3031	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3032	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3033	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3034
3035	rx_itr |= FEC_ITR_EN;
3036	tx_itr |= FEC_ITR_EN;
3037
3038	writel(tx_itr, fep->hwp + FEC_TXIC0);
3039	writel(rx_itr, fep->hwp + FEC_RXIC0);
3040	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3041		writel(tx_itr, fep->hwp + FEC_TXIC1);
3042		writel(rx_itr, fep->hwp + FEC_RXIC1);
3043		writel(tx_itr, fep->hwp + FEC_TXIC2);
3044		writel(rx_itr, fep->hwp + FEC_RXIC2);
3045	}
3046}
3047
3048static int fec_enet_get_coalesce(struct net_device *ndev,
3049				 struct ethtool_coalesce *ec,
3050				 struct kernel_ethtool_coalesce *kernel_coal,
3051				 struct netlink_ext_ack *extack)
3052{
3053	struct fec_enet_private *fep = netdev_priv(ndev);
3054
3055	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3056		return -EOPNOTSUPP;
3057
3058	ec->rx_coalesce_usecs = fep->rx_time_itr;
3059	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3060
3061	ec->tx_coalesce_usecs = fep->tx_time_itr;
3062	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3063
3064	return 0;
3065}
3066
3067static int fec_enet_set_coalesce(struct net_device *ndev,
3068				 struct ethtool_coalesce *ec,
3069				 struct kernel_ethtool_coalesce *kernel_coal,
3070				 struct netlink_ext_ack *extack)
3071{
3072	struct fec_enet_private *fep = netdev_priv(ndev);
3073	struct device *dev = &fep->pdev->dev;
3074	unsigned int cycle;
3075
3076	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3077		return -EOPNOTSUPP;
3078
3079	if (ec->rx_max_coalesced_frames > 255) {
3080		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3081		return -EINVAL;
3082	}
3083
3084	if (ec->tx_max_coalesced_frames > 255) {
3085		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3086		return -EINVAL;
3087	}
3088
3089	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3090	if (cycle > 0xFFFF) {
3091		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3092		return -EINVAL;
3093	}
3094
3095	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3096	if (cycle > 0xFFFF) {
3097		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3098		return -EINVAL;
3099	}
3100
3101	fep->rx_time_itr = ec->rx_coalesce_usecs;
3102	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3103
3104	fep->tx_time_itr = ec->tx_coalesce_usecs;
3105	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3106
3107	fec_enet_itr_coal_set(ndev);
3108
3109	return 0;
3110}
3111
3112/* LPI Sleep Ts count base on tx clk (clk_ref).
3113 * The lpi sleep cnt value = X us / (cycle_ns).
3114 */
3115static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3116{
3117	struct fec_enet_private *fep = netdev_priv(ndev);
3118
3119	return us * (fep->clk_ref_rate / 1000) / 1000;
3120}
3121
3122static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3123{
3124	struct fec_enet_private *fep = netdev_priv(ndev);
3125	struct ethtool_eee *p = &fep->eee;
3126	unsigned int sleep_cycle, wake_cycle;
3127	int ret = 0;
3128
3129	if (enable) {
3130		ret = phy_init_eee(ndev->phydev, false);
3131		if (ret)
3132			return ret;
3133
3134		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3135		wake_cycle = sleep_cycle;
3136	} else {
3137		sleep_cycle = 0;
3138		wake_cycle = 0;
3139	}
3140
3141	p->tx_lpi_enabled = enable;
3142	p->eee_enabled = enable;
3143	p->eee_active = enable;
3144
3145	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3146	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3147
3148	return 0;
3149}
3150
3151static int
3152fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
 
3153{
3154	struct fec_enet_private *fep = netdev_priv(ndev);
3155	struct ethtool_eee *p = &fep->eee;
3156
3157	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3158		return -EOPNOTSUPP;
3159
3160	if (!netif_running(ndev))
3161		return -ENETDOWN;
3162
3163	edata->eee_enabled = p->eee_enabled;
3164	edata->eee_active = p->eee_active;
3165	edata->tx_lpi_timer = p->tx_lpi_timer;
3166	edata->tx_lpi_enabled = p->tx_lpi_enabled;
 
 
 
 
3167
3168	return phy_ethtool_get_eee(ndev->phydev, edata);
3169}
3170
3171static int
3172fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
 
3173{
3174	struct fec_enet_private *fep = netdev_priv(ndev);
3175	struct ethtool_eee *p = &fep->eee;
3176	int ret = 0;
3177
3178	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3179		return -EOPNOTSUPP;
3180
3181	if (!netif_running(ndev))
3182		return -ENETDOWN;
3183
3184	p->tx_lpi_timer = edata->tx_lpi_timer;
3185
3186	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3187	    !edata->tx_lpi_timer)
3188		ret = fec_enet_eee_mode_set(ndev, false);
3189	else
3190		ret = fec_enet_eee_mode_set(ndev, true);
3191
3192	if (ret)
3193		return ret;
3194
3195	return phy_ethtool_set_eee(ndev->phydev, edata);
3196}
3197
3198static void
3199fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3200{
3201	struct fec_enet_private *fep = netdev_priv(ndev);
3202
3203	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3204		wol->supported = WAKE_MAGIC;
3205		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3206	} else {
3207		wol->supported = wol->wolopts = 0;
3208	}
3209}
3210
3211static int
3212fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3213{
3214	struct fec_enet_private *fep = netdev_priv(ndev);
3215
3216	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3217		return -EINVAL;
3218
3219	if (wol->wolopts & ~WAKE_MAGIC)
3220		return -EINVAL;
3221
3222	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3223	if (device_may_wakeup(&ndev->dev))
3224		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3225	else
 
 
3226		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
 
 
 
3227
3228	return 0;
3229}
3230
3231static const struct ethtool_ops fec_enet_ethtool_ops = {
3232	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3233				     ETHTOOL_COALESCE_MAX_FRAMES,
3234	.get_drvinfo		= fec_enet_get_drvinfo,
3235	.get_regs_len		= fec_enet_get_regs_len,
3236	.get_regs		= fec_enet_get_regs,
3237	.nway_reset		= phy_ethtool_nway_reset,
3238	.get_link		= ethtool_op_get_link,
3239	.get_coalesce		= fec_enet_get_coalesce,
3240	.set_coalesce		= fec_enet_set_coalesce,
3241#ifndef CONFIG_M5272
3242	.get_pauseparam		= fec_enet_get_pauseparam,
3243	.set_pauseparam		= fec_enet_set_pauseparam,
3244	.get_strings		= fec_enet_get_strings,
3245	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3246	.get_sset_count		= fec_enet_get_sset_count,
3247#endif
3248	.get_ts_info		= fec_enet_get_ts_info,
 
 
3249	.get_wol		= fec_enet_get_wol,
3250	.set_wol		= fec_enet_set_wol,
3251	.get_eee		= fec_enet_get_eee,
3252	.set_eee		= fec_enet_set_eee,
3253	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3254	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3255	.self_test		= net_selftest,
3256};
3257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3258static void fec_enet_free_buffers(struct net_device *ndev)
3259{
3260	struct fec_enet_private *fep = netdev_priv(ndev);
3261	unsigned int i;
 
 
3262	struct fec_enet_priv_tx_q *txq;
3263	struct fec_enet_priv_rx_q *rxq;
3264	unsigned int q;
3265
3266	for (q = 0; q < fep->num_rx_queues; q++) {
3267		rxq = fep->rx_queue[q];
3268		for (i = 0; i < rxq->bd.ring_size; i++)
3269			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3270
3271		for (i = 0; i < XDP_STATS_TOTAL; i++)
3272			rxq->stats[i] = 0;
3273
3274		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3275			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3276		page_pool_destroy(rxq->page_pool);
3277		rxq->page_pool = NULL;
 
 
 
3278	}
3279
3280	for (q = 0; q < fep->num_tx_queues; q++) {
3281		txq = fep->tx_queue[q];
3282		for (i = 0; i < txq->bd.ring_size; i++) {
3283			kfree(txq->tx_bounce[i]);
3284			txq->tx_bounce[i] = NULL;
3285
3286			if (!txq->tx_buf[i].buf_p) {
3287				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3288				continue;
3289			}
3290
3291			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3292				dev_kfree_skb(txq->tx_buf[i].buf_p);
3293			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3294				xdp_return_frame(txq->tx_buf[i].buf_p);
3295			} else {
3296				struct page *page = txq->tx_buf[i].buf_p;
3297
3298				page_pool_put_page(page->pp, page, 0, false);
3299			}
3300
3301			txq->tx_buf[i].buf_p = NULL;
3302			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3303		}
3304	}
3305}
3306
3307static void fec_enet_free_queue(struct net_device *ndev)
3308{
3309	struct fec_enet_private *fep = netdev_priv(ndev);
3310	int i;
3311	struct fec_enet_priv_tx_q *txq;
3312
3313	for (i = 0; i < fep->num_tx_queues; i++)
3314		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3315			txq = fep->tx_queue[i];
3316			fec_dma_free(&fep->pdev->dev,
3317				     txq->bd.ring_size * TSO_HEADER_SIZE,
3318				     txq->tso_hdrs, txq->tso_hdrs_dma);
 
3319		}
3320
3321	for (i = 0; i < fep->num_rx_queues; i++)
3322		kfree(fep->rx_queue[i]);
3323	for (i = 0; i < fep->num_tx_queues; i++)
3324		kfree(fep->tx_queue[i]);
3325}
3326
3327static int fec_enet_alloc_queue(struct net_device *ndev)
3328{
3329	struct fec_enet_private *fep = netdev_priv(ndev);
3330	int i;
3331	int ret = 0;
3332	struct fec_enet_priv_tx_q *txq;
3333
3334	for (i = 0; i < fep->num_tx_queues; i++) {
3335		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3336		if (!txq) {
3337			ret = -ENOMEM;
3338			goto alloc_failed;
3339		}
3340
3341		fep->tx_queue[i] = txq;
3342		txq->bd.ring_size = TX_RING_SIZE;
3343		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3344
3345		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3346		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
 
3347
3348		txq->tso_hdrs = fec_dma_alloc(&fep->pdev->dev,
3349					txq->bd.ring_size * TSO_HEADER_SIZE,
3350					&txq->tso_hdrs_dma, GFP_KERNEL);
 
3351		if (!txq->tso_hdrs) {
3352			ret = -ENOMEM;
3353			goto alloc_failed;
3354		}
3355	}
3356
3357	for (i = 0; i < fep->num_rx_queues; i++) {
3358		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3359					   GFP_KERNEL);
3360		if (!fep->rx_queue[i]) {
3361			ret = -ENOMEM;
3362			goto alloc_failed;
3363		}
3364
3365		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3366		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3367	}
3368	return ret;
3369
3370alloc_failed:
3371	fec_enet_free_queue(ndev);
3372	return ret;
3373}
3374
3375static int
3376fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3377{
3378	struct fec_enet_private *fep = netdev_priv(ndev);
3379	struct fec_enet_priv_rx_q *rxq;
3380	dma_addr_t phys_addr;
3381	struct bufdesc	*bdp;
3382	struct page *page;
3383	int i, err;
3384
3385	rxq = fep->rx_queue[queue];
3386	bdp = rxq->bd.base;
3387
3388	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3389	if (err < 0) {
3390		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3391		return err;
3392	}
3393
3394	for (i = 0; i < rxq->bd.ring_size; i++) {
3395		page = page_pool_dev_alloc_pages(rxq->page_pool);
3396		if (!page)
3397			goto err_alloc;
3398
3399		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3400		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
 
 
3401
3402		rxq->rx_skb_info[i].page = page;
3403		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3404		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3405
3406		if (fep->bufdesc_ex) {
3407			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3408			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3409		}
3410
3411		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3412	}
3413
3414	/* Set the last buffer to wrap. */
3415	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3416	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3417	return 0;
3418
3419 err_alloc:
3420	fec_enet_free_buffers(ndev);
3421	return -ENOMEM;
3422}
3423
3424static int
3425fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3426{
3427	struct fec_enet_private *fep = netdev_priv(ndev);
3428	unsigned int i;
3429	struct bufdesc  *bdp;
3430	struct fec_enet_priv_tx_q *txq;
3431
3432	txq = fep->tx_queue[queue];
3433	bdp = txq->bd.base;
3434	for (i = 0; i < txq->bd.ring_size; i++) {
3435		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3436		if (!txq->tx_bounce[i])
3437			goto err_alloc;
3438
3439		bdp->cbd_sc = cpu_to_fec16(0);
3440		bdp->cbd_bufaddr = cpu_to_fec32(0);
3441
3442		if (fep->bufdesc_ex) {
3443			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3444			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3445		}
3446
3447		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3448	}
3449
3450	/* Set the last buffer to wrap. */
3451	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3452	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3453
3454	return 0;
3455
3456 err_alloc:
3457	fec_enet_free_buffers(ndev);
3458	return -ENOMEM;
3459}
3460
3461static int fec_enet_alloc_buffers(struct net_device *ndev)
3462{
3463	struct fec_enet_private *fep = netdev_priv(ndev);
3464	unsigned int i;
3465
3466	for (i = 0; i < fep->num_rx_queues; i++)
3467		if (fec_enet_alloc_rxq_buffers(ndev, i))
3468			return -ENOMEM;
3469
3470	for (i = 0; i < fep->num_tx_queues; i++)
3471		if (fec_enet_alloc_txq_buffers(ndev, i))
3472			return -ENOMEM;
3473	return 0;
3474}
3475
3476static int
3477fec_enet_open(struct net_device *ndev)
3478{
3479	struct fec_enet_private *fep = netdev_priv(ndev);
3480	int ret;
3481	bool reset_again;
3482
3483	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3484	if (ret < 0)
3485		return ret;
3486
3487	pinctrl_pm_select_default_state(&fep->pdev->dev);
3488	ret = fec_enet_clk_enable(ndev, true);
3489	if (ret)
3490		goto clk_enable;
3491
3492	/* During the first fec_enet_open call the PHY isn't probed at this
3493	 * point. Therefore the phy_reset_after_clk_enable() call within
3494	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3495	 * sure the PHY is working correctly we check if we need to reset again
3496	 * later when the PHY is probed
3497	 */
3498	if (ndev->phydev && ndev->phydev->drv)
3499		reset_again = false;
3500	else
3501		reset_again = true;
3502
3503	/* I should reset the ring buffers here, but I don't yet know
3504	 * a simple way to do that.
3505	 */
3506
3507	ret = fec_enet_alloc_buffers(ndev);
3508	if (ret)
3509		goto err_enet_alloc;
3510
3511	/* Init MAC prior to mii bus probe */
3512	fec_restart(ndev);
3513
3514	/* Call phy_reset_after_clk_enable() again if it failed during
3515	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3516	 */
3517	if (reset_again)
3518		fec_enet_phy_reset_after_clk_enable(ndev);
3519
3520	/* Probe and connect to PHY when open the interface */
3521	ret = fec_enet_mii_probe(ndev);
3522	if (ret)
3523		goto err_enet_mii_probe;
3524
 
 
 
 
 
 
3525	if (fep->quirks & FEC_QUIRK_ERR006687)
3526		imx6q_cpuidle_fec_irqs_used();
3527
3528	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3529		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3530
3531	napi_enable(&fep->napi);
3532	phy_start(ndev->phydev);
3533	netif_tx_start_all_queues(ndev);
3534
3535	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3536				 FEC_WOL_FLAG_ENABLE);
3537
3538	return 0;
3539
3540err_enet_mii_probe:
3541	fec_enet_free_buffers(ndev);
3542err_enet_alloc:
3543	fec_enet_clk_enable(ndev, false);
3544clk_enable:
3545	pm_runtime_mark_last_busy(&fep->pdev->dev);
3546	pm_runtime_put_autosuspend(&fep->pdev->dev);
3547	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3548	return ret;
3549}
3550
3551static int
3552fec_enet_close(struct net_device *ndev)
3553{
3554	struct fec_enet_private *fep = netdev_priv(ndev);
3555
3556	phy_stop(ndev->phydev);
3557
3558	if (netif_device_present(ndev)) {
3559		napi_disable(&fep->napi);
3560		netif_tx_disable(ndev);
3561		fec_stop(ndev);
3562	}
3563
3564	phy_disconnect(ndev->phydev);
3565
3566	if (fep->quirks & FEC_QUIRK_ERR006687)
3567		imx6q_cpuidle_fec_irqs_unused();
3568
3569	fec_enet_update_ethtool_stats(ndev);
3570
3571	fec_enet_clk_enable(ndev, false);
3572	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3573		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3574
3575	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3576	pm_runtime_mark_last_busy(&fep->pdev->dev);
3577	pm_runtime_put_autosuspend(&fep->pdev->dev);
3578
3579	fec_enet_free_buffers(ndev);
3580
3581	return 0;
3582}
3583
3584/* Set or clear the multicast filter for this adaptor.
3585 * Skeleton taken from sunlance driver.
3586 * The CPM Ethernet implementation allows Multicast as well as individual
3587 * MAC address filtering.  Some of the drivers check to make sure it is
3588 * a group multicast address, and discard those that are not.  I guess I
3589 * will do the same for now, but just remove the test if you want
3590 * individual filtering as well (do the upper net layers want or support
3591 * this kind of feature?).
3592 */
3593
3594#define FEC_HASH_BITS	6		/* #bits in hash */
3595
3596static void set_multicast_list(struct net_device *ndev)
3597{
3598	struct fec_enet_private *fep = netdev_priv(ndev);
3599	struct netdev_hw_addr *ha;
3600	unsigned int crc, tmp;
3601	unsigned char hash;
3602	unsigned int hash_high = 0, hash_low = 0;
3603
3604	if (ndev->flags & IFF_PROMISC) {
3605		tmp = readl(fep->hwp + FEC_R_CNTRL);
3606		tmp |= 0x8;
3607		writel(tmp, fep->hwp + FEC_R_CNTRL);
3608		return;
3609	}
3610
3611	tmp = readl(fep->hwp + FEC_R_CNTRL);
3612	tmp &= ~0x8;
3613	writel(tmp, fep->hwp + FEC_R_CNTRL);
3614
3615	if (ndev->flags & IFF_ALLMULTI) {
3616		/* Catch all multicast addresses, so set the
3617		 * filter to all 1's
3618		 */
3619		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3620		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3621
3622		return;
3623	}
3624
3625	/* Add the addresses in hash register */
3626	netdev_for_each_mc_addr(ha, ndev) {
3627		/* calculate crc32 value of mac address */
3628		crc = ether_crc_le(ndev->addr_len, ha->addr);
3629
3630		/* only upper 6 bits (FEC_HASH_BITS) are used
3631		 * which point to specific bit in the hash registers
3632		 */
3633		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3634
3635		if (hash > 31)
3636			hash_high |= 1 << (hash - 32);
3637		else
3638			hash_low |= 1 << hash;
3639	}
3640
3641	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3642	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3643}
3644
3645/* Set a MAC change in hardware. */
3646static int
3647fec_set_mac_address(struct net_device *ndev, void *p)
3648{
3649	struct fec_enet_private *fep = netdev_priv(ndev);
3650	struct sockaddr *addr = p;
3651
3652	if (addr) {
3653		if (!is_valid_ether_addr(addr->sa_data))
3654			return -EADDRNOTAVAIL;
3655		eth_hw_addr_set(ndev, addr->sa_data);
3656	}
3657
3658	/* Add netif status check here to avoid system hang in below case:
3659	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3660	 * After ethx down, fec all clocks are gated off and then register
3661	 * access causes system hang.
3662	 */
3663	if (!netif_running(ndev))
3664		return 0;
3665
3666	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3667		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3668		fep->hwp + FEC_ADDR_LOW);
3669	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3670		fep->hwp + FEC_ADDR_HIGH);
3671	return 0;
3672}
3673
3674#ifdef CONFIG_NET_POLL_CONTROLLER
3675/**
3676 * fec_poll_controller - FEC Poll controller function
3677 * @dev: The FEC network adapter
3678 *
3679 * Polled functionality used by netconsole and others in non interrupt mode
3680 *
3681 */
3682static void fec_poll_controller(struct net_device *dev)
3683{
3684	int i;
3685	struct fec_enet_private *fep = netdev_priv(dev);
3686
3687	for (i = 0; i < FEC_IRQ_NUM; i++) {
3688		if (fep->irq[i] > 0) {
3689			disable_irq(fep->irq[i]);
3690			fec_enet_interrupt(fep->irq[i], dev);
3691			enable_irq(fep->irq[i]);
3692		}
3693	}
3694}
3695#endif
3696
3697static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3698	netdev_features_t features)
3699{
3700	struct fec_enet_private *fep = netdev_priv(netdev);
3701	netdev_features_t changed = features ^ netdev->features;
3702
3703	netdev->features = features;
3704
3705	/* Receive checksum has been changed */
3706	if (changed & NETIF_F_RXCSUM) {
3707		if (features & NETIF_F_RXCSUM)
3708			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3709		else
3710			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3711	}
3712}
3713
3714static int fec_set_features(struct net_device *netdev,
3715	netdev_features_t features)
3716{
3717	struct fec_enet_private *fep = netdev_priv(netdev);
3718	netdev_features_t changed = features ^ netdev->features;
3719
3720	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3721		napi_disable(&fep->napi);
3722		netif_tx_lock_bh(netdev);
3723		fec_stop(netdev);
3724		fec_enet_set_netdev_features(netdev, features);
3725		fec_restart(netdev);
3726		netif_tx_wake_all_queues(netdev);
3727		netif_tx_unlock_bh(netdev);
3728		napi_enable(&fep->napi);
3729	} else {
3730		fec_enet_set_netdev_features(netdev, features);
3731	}
3732
3733	return 0;
3734}
3735
3736static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3737				 struct net_device *sb_dev)
3738{
3739	struct fec_enet_private *fep = netdev_priv(ndev);
3740	u16 vlan_tag = 0;
3741
3742	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3743		return netdev_pick_tx(ndev, skb, NULL);
3744
3745	/* VLAN is present in the payload.*/
3746	if (eth_type_vlan(skb->protocol)) {
3747		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3748
3749		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3750	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3751	} else if (skb_vlan_tag_present(skb)) {
3752		vlan_tag = skb->vlan_tci;
3753	} else {
3754		return vlan_tag;
3755	}
3756
3757	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3758}
3759
3760static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3761{
3762	struct fec_enet_private *fep = netdev_priv(dev);
3763	bool is_run = netif_running(dev);
3764	struct bpf_prog *old_prog;
3765
3766	switch (bpf->command) {
3767	case XDP_SETUP_PROG:
3768		/* No need to support the SoCs that require to
3769		 * do the frame swap because the performance wouldn't be
3770		 * better than the skb mode.
3771		 */
3772		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3773			return -EOPNOTSUPP;
3774
3775		if (!bpf->prog)
3776			xdp_features_clear_redirect_target(dev);
3777
3778		if (is_run) {
3779			napi_disable(&fep->napi);
3780			netif_tx_disable(dev);
3781		}
3782
3783		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3784		if (old_prog)
3785			bpf_prog_put(old_prog);
3786
3787		fec_restart(dev);
3788
3789		if (is_run) {
3790			napi_enable(&fep->napi);
3791			netif_tx_start_all_queues(dev);
3792		}
3793
3794		if (bpf->prog)
3795			xdp_features_set_redirect_target(dev, false);
3796
3797		return 0;
3798
3799	case XDP_SETUP_XSK_POOL:
3800		return -EOPNOTSUPP;
3801
3802	default:
3803		return -EOPNOTSUPP;
3804	}
3805}
3806
3807static int
3808fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3809{
3810	if (unlikely(index < 0))
3811		return 0;
3812
3813	return (index % fep->num_tx_queues);
3814}
3815
3816static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3817				   struct fec_enet_priv_tx_q *txq,
3818				   void *frame, u32 dma_sync_len,
3819				   bool ndo_xmit)
3820{
3821	unsigned int index, status, estatus;
3822	struct bufdesc *bdp;
3823	dma_addr_t dma_addr;
3824	int entries_free;
3825	u16 frame_len;
3826
3827	entries_free = fec_enet_get_free_txdesc_num(txq);
3828	if (entries_free < MAX_SKB_FRAGS + 1) {
3829		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3830		return -EBUSY;
3831	}
3832
3833	/* Fill in a Tx ring entry */
3834	bdp = txq->bd.cur;
3835	status = fec16_to_cpu(bdp->cbd_sc);
3836	status &= ~BD_ENET_TX_STATS;
3837
3838	index = fec_enet_get_bd_index(bdp, &txq->bd);
3839
3840	if (ndo_xmit) {
3841		struct xdp_frame *xdpf = frame;
3842
3843		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3844					  xdpf->len, DMA_TO_DEVICE);
3845		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3846			return -ENOMEM;
3847
3848		frame_len = xdpf->len;
3849		txq->tx_buf[index].buf_p = xdpf;
3850		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3851	} else {
3852		struct xdp_buff *xdpb = frame;
3853		struct page *page;
3854
3855		page = virt_to_page(xdpb->data);
3856		dma_addr = page_pool_get_dma_addr(page) +
3857			   (xdpb->data - xdpb->data_hard_start);
3858		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3859					   dma_sync_len, DMA_BIDIRECTIONAL);
3860		frame_len = xdpb->data_end - xdpb->data;
3861		txq->tx_buf[index].buf_p = page;
3862		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3863	}
3864
3865	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3866	if (fep->bufdesc_ex)
3867		estatus = BD_ENET_TX_INT;
3868
3869	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3870	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3871
3872	if (fep->bufdesc_ex) {
3873		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3874
3875		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3876			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3877
3878		ebdp->cbd_bdu = 0;
3879		ebdp->cbd_esc = cpu_to_fec32(estatus);
3880	}
3881
3882	/* Make sure the updates to rest of the descriptor are performed before
3883	 * transferring ownership.
3884	 */
3885	dma_wmb();
3886
3887	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3888	 * it's the last BD of the frame, and to put the CRC on the end.
3889	 */
3890	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3891	bdp->cbd_sc = cpu_to_fec16(status);
3892
3893	/* If this was the last BD in the ring, start at the beginning again. */
3894	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3895
3896	/* Make sure the update to bdp are performed before txq->bd.cur. */
3897	dma_wmb();
3898
3899	txq->bd.cur = bdp;
3900
3901	/* Trigger transmission start */
3902	writel(0, txq->bd.reg_desc_active);
3903
3904	return 0;
3905}
3906
3907static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3908				int cpu, struct xdp_buff *xdp,
3909				u32 dma_sync_len)
3910{
3911	struct fec_enet_priv_tx_q *txq;
3912	struct netdev_queue *nq;
3913	int queue, ret;
3914
3915	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3916	txq = fep->tx_queue[queue];
3917	nq = netdev_get_tx_queue(fep->netdev, queue);
3918
3919	__netif_tx_lock(nq, cpu);
3920
3921	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3922	txq_trans_cond_update(nq);
3923	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3924
3925	__netif_tx_unlock(nq);
3926
3927	return ret;
3928}
3929
3930static int fec_enet_xdp_xmit(struct net_device *dev,
3931			     int num_frames,
3932			     struct xdp_frame **frames,
3933			     u32 flags)
3934{
3935	struct fec_enet_private *fep = netdev_priv(dev);
3936	struct fec_enet_priv_tx_q *txq;
3937	int cpu = smp_processor_id();
3938	unsigned int sent_frames = 0;
3939	struct netdev_queue *nq;
3940	unsigned int queue;
3941	int i;
3942
3943	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3944	txq = fep->tx_queue[queue];
3945	nq = netdev_get_tx_queue(fep->netdev, queue);
3946
3947	__netif_tx_lock(nq, cpu);
3948
3949	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3950	txq_trans_cond_update(nq);
3951	for (i = 0; i < num_frames; i++) {
3952		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3953			break;
3954		sent_frames++;
3955	}
3956
3957	__netif_tx_unlock(nq);
3958
3959	return sent_frames;
3960}
3961
3962static int fec_hwtstamp_get(struct net_device *ndev,
3963			    struct kernel_hwtstamp_config *config)
3964{
3965	struct fec_enet_private *fep = netdev_priv(ndev);
3966
3967	if (!netif_running(ndev))
3968		return -EINVAL;
3969
3970	if (!fep->bufdesc_ex)
3971		return -EOPNOTSUPP;
3972
3973	fec_ptp_get(ndev, config);
3974
3975	return 0;
3976}
3977
3978static int fec_hwtstamp_set(struct net_device *ndev,
3979			    struct kernel_hwtstamp_config *config,
3980			    struct netlink_ext_ack *extack)
3981{
3982	struct fec_enet_private *fep = netdev_priv(ndev);
3983
3984	if (!netif_running(ndev))
3985		return -EINVAL;
3986
3987	if (!fep->bufdesc_ex)
3988		return -EOPNOTSUPP;
3989
3990	return fec_ptp_set(ndev, config, extack);
3991}
3992
3993static const struct net_device_ops fec_netdev_ops = {
3994	.ndo_open		= fec_enet_open,
3995	.ndo_stop		= fec_enet_close,
3996	.ndo_start_xmit		= fec_enet_start_xmit,
3997	.ndo_select_queue       = fec_enet_select_queue,
3998	.ndo_set_rx_mode	= set_multicast_list,
3999	.ndo_validate_addr	= eth_validate_addr,
4000	.ndo_tx_timeout		= fec_timeout,
4001	.ndo_set_mac_address	= fec_set_mac_address,
4002	.ndo_eth_ioctl		= phy_do_ioctl_running,
4003#ifdef CONFIG_NET_POLL_CONTROLLER
4004	.ndo_poll_controller	= fec_poll_controller,
4005#endif
4006	.ndo_set_features	= fec_set_features,
4007	.ndo_bpf		= fec_enet_bpf,
4008	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4009	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4010	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4011};
4012
4013static const unsigned short offset_des_active_rxq[] = {
4014	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4015};
4016
4017static const unsigned short offset_des_active_txq[] = {
4018	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4019};
4020
4021 /*
4022  * XXX:  We need to clean up on failure exits here.
4023  *
4024  */
4025static int fec_enet_init(struct net_device *ndev)
4026{
4027	struct fec_enet_private *fep = netdev_priv(ndev);
4028	struct bufdesc *cbd_base;
4029	dma_addr_t bd_dma;
4030	int bd_size;
4031	unsigned int i;
4032	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4033			sizeof(struct bufdesc);
4034	unsigned dsize_log2 = __fls(dsize);
4035	int ret;
4036
4037	WARN_ON(dsize != (1 << dsize_log2));
4038#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4039	fep->rx_align = 0xf;
4040	fep->tx_align = 0xf;
4041#else
4042	fep->rx_align = 0x3;
4043	fep->tx_align = 0x3;
4044#endif
4045	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4046	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4047	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4048	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4049
4050	/* Check mask of the streaming and coherent API */
4051	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4052	if (ret < 0) {
4053		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4054		return ret;
4055	}
4056
4057	ret = fec_enet_alloc_queue(ndev);
4058	if (ret)
4059		return ret;
4060
4061	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4062
4063	/* Allocate memory for buffer descriptors. */
4064	cbd_base = fec_dmam_alloc(&fep->pdev->dev, bd_size, &bd_dma,
4065				  GFP_KERNEL);
4066	if (!cbd_base) {
4067		ret = -ENOMEM;
4068		goto free_queue_mem;
4069	}
4070
4071	/* Get the Ethernet address */
4072	ret = fec_get_mac(ndev);
4073	if (ret)
4074		goto free_queue_mem;
4075
4076	/* Set receive and transmit descriptor base. */
4077	for (i = 0; i < fep->num_rx_queues; i++) {
4078		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4079		unsigned size = dsize * rxq->bd.ring_size;
4080
4081		rxq->bd.qid = i;
4082		rxq->bd.base = cbd_base;
4083		rxq->bd.cur = cbd_base;
4084		rxq->bd.dma = bd_dma;
4085		rxq->bd.dsize = dsize;
4086		rxq->bd.dsize_log2 = dsize_log2;
4087		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4088		bd_dma += size;
4089		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4090		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4091	}
4092
4093	for (i = 0; i < fep->num_tx_queues; i++) {
4094		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4095		unsigned size = dsize * txq->bd.ring_size;
4096
4097		txq->bd.qid = i;
4098		txq->bd.base = cbd_base;
4099		txq->bd.cur = cbd_base;
4100		txq->bd.dma = bd_dma;
4101		txq->bd.dsize = dsize;
4102		txq->bd.dsize_log2 = dsize_log2;
4103		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4104		bd_dma += size;
4105		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4106		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4107	}
4108
4109
4110	/* The FEC Ethernet specific entries in the device structure */
4111	ndev->watchdog_timeo = TX_TIMEOUT;
4112	ndev->netdev_ops = &fec_netdev_ops;
4113	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4114
4115	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4116	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4117
4118	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4119		/* enable hw VLAN support */
4120		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4121
4122	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4123		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4124
4125		/* enable hw accelerator */
4126		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4127				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4128		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4129	}
4130
4131	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4132		fep->tx_align = 0;
4133		fep->rx_align = 0x3f;
4134	}
4135
4136	ndev->hw_features = ndev->features;
4137
4138	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4139		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4140				     NETDEV_XDP_ACT_REDIRECT;
4141
4142	fec_restart(ndev);
4143
4144	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4145		fec_enet_clear_ethtool_stats(ndev);
4146	else
4147		fec_enet_update_ethtool_stats(ndev);
4148
4149	return 0;
4150
4151free_queue_mem:
4152	fec_enet_free_queue(ndev);
4153	return ret;
4154}
4155
4156#ifdef CONFIG_OF
4157static int fec_reset_phy(struct platform_device *pdev)
4158{
4159	struct gpio_desc *phy_reset;
 
4160	int msec = 1, phy_post_delay = 0;
4161	struct device_node *np = pdev->dev.of_node;
4162	int err;
4163
4164	if (!np)
4165		return 0;
4166
4167	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4168	/* A sane reset duration should not be longer than 1s */
4169	if (!err && msec > 1000)
4170		msec = 1;
4171
 
 
 
 
 
 
4172	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4173	/* valid reset duration should be less than 1s */
4174	if (!err && phy_post_delay > 1000)
4175		return -EINVAL;
4176
4177	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4178					    GPIOD_OUT_HIGH);
4179	if (IS_ERR(phy_reset))
4180		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4181				     "failed to get phy-reset-gpios\n");
4182
4183	if (!phy_reset)
4184		return 0;
 
 
 
 
 
4185
4186	if (msec > 20)
4187		msleep(msec);
4188	else
4189		usleep_range(msec * 1000, msec * 1000 + 1000);
4190
4191	gpiod_set_value_cansleep(phy_reset, 0);
4192
4193	if (!phy_post_delay)
4194		return 0;
4195
4196	if (phy_post_delay > 20)
4197		msleep(phy_post_delay);
4198	else
4199		usleep_range(phy_post_delay * 1000,
4200			     phy_post_delay * 1000 + 1000);
4201
4202	return 0;
4203}
4204#else /* CONFIG_OF */
4205static int fec_reset_phy(struct platform_device *pdev)
4206{
4207	/*
4208	 * In case of platform probe, the reset has been done
4209	 * by machine code.
4210	 */
4211	return 0;
4212}
4213#endif /* CONFIG_OF */
4214
4215static void
4216fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4217{
4218	struct device_node *np = pdev->dev.of_node;
4219
4220	*num_tx = *num_rx = 1;
4221
4222	if (!np || !of_device_is_available(np))
4223		return;
4224
4225	/* parse the num of tx and rx queues */
4226	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4227
4228	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4229
4230	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4231		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4232			 *num_tx);
4233		*num_tx = 1;
4234		return;
4235	}
4236
4237	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4238		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4239			 *num_rx);
4240		*num_rx = 1;
4241		return;
4242	}
4243
4244}
4245
4246static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4247{
4248	int irq_cnt = platform_irq_count(pdev);
4249
4250	if (irq_cnt > FEC_IRQ_NUM)
4251		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4252	else if (irq_cnt == 2)
4253		irq_cnt = 1;	/* last for pps */
4254	else if (irq_cnt <= 0)
4255		irq_cnt = 1;	/* At least 1 irq is needed */
4256	return irq_cnt;
4257}
4258
4259static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4260{
4261	struct net_device *ndev = platform_get_drvdata(pdev);
4262	struct fec_enet_private *fep = netdev_priv(ndev);
4263
4264	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4265		fep->wake_irq = fep->irq[2];
4266	else
4267		fep->wake_irq = fep->irq[0];
4268}
4269
4270static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4271				   struct device_node *np)
4272{
4273	struct device_node *gpr_np;
4274	u32 out_val[3];
4275	int ret = 0;
4276
4277	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4278	if (!gpr_np)
4279		return 0;
4280
4281	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4282					 ARRAY_SIZE(out_val));
4283	if (ret) {
4284		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4285		goto out;
4286	}
4287
4288	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4289	if (IS_ERR(fep->stop_gpr.gpr)) {
4290		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4291		ret = PTR_ERR(fep->stop_gpr.gpr);
4292		fep->stop_gpr.gpr = NULL;
4293		goto out;
4294	}
4295
4296	fep->stop_gpr.reg = out_val[1];
4297	fep->stop_gpr.bit = out_val[2];
4298
4299out:
4300	of_node_put(gpr_np);
4301
4302	return ret;
4303}
4304
4305static int
4306fec_probe(struct platform_device *pdev)
4307{
4308	struct fec_enet_private *fep;
4309	struct fec_platform_data *pdata;
4310	phy_interface_t interface;
4311	struct net_device *ndev;
4312	int i, irq, ret = 0;
 
4313	static int dev_id;
4314	struct device_node *np = pdev->dev.of_node, *phy_node;
4315	int num_tx_qs;
4316	int num_rx_qs;
4317	char irq_name[8];
4318	int irq_cnt;
4319	const struct fec_devinfo *dev_info;
4320
4321	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4322
4323	/* Init network device */
4324	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4325				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4326	if (!ndev)
4327		return -ENOMEM;
4328
4329	SET_NETDEV_DEV(ndev, &pdev->dev);
4330
4331	/* setup board info structure */
4332	fep = netdev_priv(ndev);
4333
4334	dev_info = device_get_match_data(&pdev->dev);
4335	if (!dev_info)
4336		dev_info = (const struct fec_devinfo *)pdev->id_entry->driver_data;
 
4337	if (dev_info)
4338		fep->quirks = dev_info->quirks;
4339
4340	fep->netdev = ndev;
4341	fep->num_rx_queues = num_rx_qs;
4342	fep->num_tx_queues = num_tx_qs;
4343
4344#if !defined(CONFIG_M5272)
4345	/* default enable pause frame auto negotiation */
4346	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4347		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4348#endif
4349
4350	/* Select default pin state */
4351	pinctrl_pm_select_default_state(&pdev->dev);
4352
4353	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4354	if (IS_ERR(fep->hwp)) {
4355		ret = PTR_ERR(fep->hwp);
4356		goto failed_ioremap;
4357	}
4358
4359	fep->pdev = pdev;
4360	fep->dev_id = dev_id++;
4361
4362	platform_set_drvdata(pdev, ndev);
4363
4364	if ((of_machine_is_compatible("fsl,imx6q") ||
4365	     of_machine_is_compatible("fsl,imx6dl")) &&
4366	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4367		fep->quirks |= FEC_QUIRK_ERR006687;
4368
4369	ret = fec_enet_ipc_handle_init(fep);
4370	if (ret)
4371		goto failed_ipc_init;
4372
4373	if (of_property_read_bool(np, "fsl,magic-packet"))
4374		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4375
4376	ret = fec_enet_init_stop_mode(fep, np);
4377	if (ret)
4378		goto failed_stop_mode;
4379
4380	phy_node = of_parse_phandle(np, "phy-handle", 0);
4381	if (!phy_node && of_phy_is_fixed_link(np)) {
4382		ret = of_phy_register_fixed_link(np);
4383		if (ret < 0) {
4384			dev_err(&pdev->dev,
4385				"broken fixed-link specification\n");
4386			goto failed_phy;
4387		}
4388		phy_node = of_node_get(np);
4389	}
4390	fep->phy_node = phy_node;
4391
4392	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4393	if (ret) {
4394		pdata = dev_get_platdata(&pdev->dev);
4395		if (pdata)
4396			fep->phy_interface = pdata->phy;
4397		else
4398			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4399	} else {
4400		fep->phy_interface = interface;
4401	}
4402
4403	ret = fec_enet_parse_rgmii_delay(fep, np);
4404	if (ret)
4405		goto failed_rgmii_delay;
4406
4407	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4408	if (IS_ERR(fep->clk_ipg)) {
4409		ret = PTR_ERR(fep->clk_ipg);
4410		goto failed_clk;
4411	}
4412
4413	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4414	if (IS_ERR(fep->clk_ahb)) {
4415		ret = PTR_ERR(fep->clk_ahb);
4416		goto failed_clk;
4417	}
4418
4419	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4420
4421	/* enet_out is optional, depends on board */
4422	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4423	if (IS_ERR(fep->clk_enet_out)) {
4424		ret = PTR_ERR(fep->clk_enet_out);
4425		goto failed_clk;
4426	}
4427
4428	fep->ptp_clk_on = false;
4429	mutex_init(&fep->ptp_clk_mutex);
4430
4431	/* clk_ref is optional, depends on board */
4432	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4433	if (IS_ERR(fep->clk_ref)) {
4434		ret = PTR_ERR(fep->clk_ref);
4435		goto failed_clk;
4436	}
4437	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4438
4439	/* clk_2x_txclk is optional, depends on board */
4440	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4441		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4442		if (IS_ERR(fep->clk_2x_txclk))
4443			fep->clk_2x_txclk = NULL;
4444	}
4445
4446	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4447	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4448	if (IS_ERR(fep->clk_ptp)) {
4449		fep->clk_ptp = NULL;
4450		fep->bufdesc_ex = false;
4451	}
4452
4453	ret = fec_enet_clk_enable(ndev, true);
4454	if (ret)
4455		goto failed_clk;
4456
4457	ret = clk_prepare_enable(fep->clk_ipg);
4458	if (ret)
4459		goto failed_clk_ipg;
4460	ret = clk_prepare_enable(fep->clk_ahb);
4461	if (ret)
4462		goto failed_clk_ahb;
4463
4464	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4465	if (!IS_ERR(fep->reg_phy)) {
4466		ret = regulator_enable(fep->reg_phy);
4467		if (ret) {
4468			dev_err(&pdev->dev,
4469				"Failed to enable phy regulator: %d\n", ret);
4470			goto failed_regulator;
4471		}
4472	} else {
4473		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4474			ret = -EPROBE_DEFER;
4475			goto failed_regulator;
4476		}
4477		fep->reg_phy = NULL;
4478	}
4479
4480	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4481	pm_runtime_use_autosuspend(&pdev->dev);
4482	pm_runtime_get_noresume(&pdev->dev);
4483	pm_runtime_set_active(&pdev->dev);
4484	pm_runtime_enable(&pdev->dev);
4485
4486	ret = fec_reset_phy(pdev);
4487	if (ret)
4488		goto failed_reset;
4489
4490	irq_cnt = fec_enet_get_irq_cnt(pdev);
4491	if (fep->bufdesc_ex)
4492		fec_ptp_init(pdev, irq_cnt);
4493
4494	ret = fec_enet_init(ndev);
4495	if (ret)
4496		goto failed_init;
4497
4498	for (i = 0; i < irq_cnt; i++) {
4499		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4500		irq = platform_get_irq_byname_optional(pdev, irq_name);
4501		if (irq < 0)
4502			irq = platform_get_irq(pdev, i);
4503		if (irq < 0) {
4504			ret = irq;
4505			goto failed_irq;
4506		}
4507		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4508				       0, pdev->name, ndev);
4509		if (ret)
4510			goto failed_irq;
4511
4512		fep->irq[i] = irq;
4513	}
4514
4515	/* Decide which interrupt line is wakeup capable */
4516	fec_enet_get_wakeup_irq(pdev);
4517
4518	ret = fec_enet_mii_init(pdev);
4519	if (ret)
4520		goto failed_mii_init;
4521
4522	/* Carrier starts down, phylib will bring it up */
4523	netif_carrier_off(ndev);
4524	fec_enet_clk_enable(ndev, false);
4525	pinctrl_pm_select_sleep_state(&pdev->dev);
4526
4527	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4528
4529	ret = register_netdev(ndev);
4530	if (ret)
4531		goto failed_register;
4532
4533	device_init_wakeup(&ndev->dev, fep->wol_flag &
4534			   FEC_WOL_HAS_MAGIC_PACKET);
4535
4536	if (fep->bufdesc_ex && fep->ptp_clock)
4537		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4538
 
4539	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4540
4541	pm_runtime_mark_last_busy(&pdev->dev);
4542	pm_runtime_put_autosuspend(&pdev->dev);
4543
4544	return 0;
4545
4546failed_register:
4547	fec_enet_mii_remove(fep);
4548failed_mii_init:
4549failed_irq:
4550failed_init:
4551	fec_ptp_stop(pdev);
4552failed_reset:
4553	pm_runtime_put_noidle(&pdev->dev);
4554	pm_runtime_disable(&pdev->dev);
4555	if (fep->reg_phy)
4556		regulator_disable(fep->reg_phy);
4557failed_regulator:
4558	clk_disable_unprepare(fep->clk_ahb);
4559failed_clk_ahb:
4560	clk_disable_unprepare(fep->clk_ipg);
4561failed_clk_ipg:
4562	fec_enet_clk_enable(ndev, false);
4563failed_clk:
4564failed_rgmii_delay:
4565	if (of_phy_is_fixed_link(np))
4566		of_phy_deregister_fixed_link(np);
4567	of_node_put(phy_node);
4568failed_stop_mode:
4569failed_ipc_init:
4570failed_phy:
4571	dev_id--;
4572failed_ioremap:
4573	free_netdev(ndev);
4574
4575	return ret;
4576}
4577
4578static void
4579fec_drv_remove(struct platform_device *pdev)
4580{
4581	struct net_device *ndev = platform_get_drvdata(pdev);
4582	struct fec_enet_private *fep = netdev_priv(ndev);
4583	struct device_node *np = pdev->dev.of_node;
4584	int ret;
4585
4586	ret = pm_runtime_get_sync(&pdev->dev);
4587	if (ret < 0)
4588		dev_err(&pdev->dev,
4589			"Failed to resume device in remove callback (%pe)\n",
4590			ERR_PTR(ret));
4591
4592	cancel_work_sync(&fep->tx_timeout_work);
4593	fec_ptp_stop(pdev);
4594	unregister_netdev(ndev);
4595	fec_enet_mii_remove(fep);
4596	if (fep->reg_phy)
4597		regulator_disable(fep->reg_phy);
4598
4599	if (of_phy_is_fixed_link(np))
4600		of_phy_deregister_fixed_link(np);
4601	of_node_put(fep->phy_node);
 
4602
4603	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4604	 * disabling them again.
4605	 */
4606	if (ret >= 0) {
4607		clk_disable_unprepare(fep->clk_ahb);
4608		clk_disable_unprepare(fep->clk_ipg);
4609	}
4610	pm_runtime_put_noidle(&pdev->dev);
4611	pm_runtime_disable(&pdev->dev);
4612
4613	free_netdev(ndev);
4614}
4615
4616static int __maybe_unused fec_suspend(struct device *dev)
4617{
4618	struct net_device *ndev = dev_get_drvdata(dev);
4619	struct fec_enet_private *fep = netdev_priv(ndev);
4620	int ret;
4621
4622	rtnl_lock();
4623	if (netif_running(ndev)) {
4624		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4625			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4626		phy_stop(ndev->phydev);
4627		napi_disable(&fep->napi);
4628		netif_tx_lock_bh(ndev);
4629		netif_device_detach(ndev);
4630		netif_tx_unlock_bh(ndev);
4631		fec_stop(ndev);
4632		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4633			fec_irqs_disable(ndev);
4634			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4635		} else {
4636			fec_irqs_disable_except_wakeup(ndev);
4637			if (fep->wake_irq > 0) {
4638				disable_irq(fep->wake_irq);
4639				enable_irq_wake(fep->wake_irq);
4640			}
4641			fec_enet_stop_mode(fep, true);
4642		}
4643		/* It's safe to disable clocks since interrupts are masked */
4644		fec_enet_clk_enable(ndev, false);
4645
4646		fep->rpm_active = !pm_runtime_status_suspended(dev);
4647		if (fep->rpm_active) {
4648			ret = pm_runtime_force_suspend(dev);
4649			if (ret < 0) {
4650				rtnl_unlock();
4651				return ret;
4652			}
4653		}
4654	}
4655	rtnl_unlock();
4656
4657	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4658		regulator_disable(fep->reg_phy);
4659
4660	/* SOC supply clock to phy, when clock is disabled, phy link down
4661	 * SOC control phy regulator, when regulator is disabled, phy link down
4662	 */
4663	if (fep->clk_enet_out || fep->reg_phy)
4664		fep->link = 0;
4665
4666	return 0;
4667}
4668
4669static int __maybe_unused fec_resume(struct device *dev)
4670{
4671	struct net_device *ndev = dev_get_drvdata(dev);
4672	struct fec_enet_private *fep = netdev_priv(ndev);
4673	int ret;
4674	int val;
4675
4676	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4677		ret = regulator_enable(fep->reg_phy);
4678		if (ret)
4679			return ret;
4680	}
4681
4682	rtnl_lock();
4683	if (netif_running(ndev)) {
4684		if (fep->rpm_active)
4685			pm_runtime_force_resume(dev);
4686
4687		ret = fec_enet_clk_enable(ndev, true);
4688		if (ret) {
4689			rtnl_unlock();
4690			goto failed_clk;
4691		}
4692		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4693			fec_enet_stop_mode(fep, false);
4694			if (fep->wake_irq) {
4695				disable_irq_wake(fep->wake_irq);
4696				enable_irq(fep->wake_irq);
4697			}
4698
4699			val = readl(fep->hwp + FEC_ECNTRL);
4700			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4701			writel(val, fep->hwp + FEC_ECNTRL);
4702			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4703		} else {
4704			pinctrl_pm_select_default_state(&fep->pdev->dev);
4705		}
4706		fec_restart(ndev);
4707		netif_tx_lock_bh(ndev);
4708		netif_device_attach(ndev);
4709		netif_tx_unlock_bh(ndev);
4710		napi_enable(&fep->napi);
4711		phy_init_hw(ndev->phydev);
4712		phy_start(ndev->phydev);
4713	}
4714	rtnl_unlock();
4715
4716	return 0;
4717
4718failed_clk:
4719	if (fep->reg_phy)
4720		regulator_disable(fep->reg_phy);
4721	return ret;
4722}
4723
4724static int __maybe_unused fec_runtime_suspend(struct device *dev)
4725{
4726	struct net_device *ndev = dev_get_drvdata(dev);
4727	struct fec_enet_private *fep = netdev_priv(ndev);
4728
4729	clk_disable_unprepare(fep->clk_ahb);
4730	clk_disable_unprepare(fep->clk_ipg);
4731
4732	return 0;
4733}
4734
4735static int __maybe_unused fec_runtime_resume(struct device *dev)
4736{
4737	struct net_device *ndev = dev_get_drvdata(dev);
4738	struct fec_enet_private *fep = netdev_priv(ndev);
4739	int ret;
4740
4741	ret = clk_prepare_enable(fep->clk_ahb);
4742	if (ret)
4743		return ret;
4744	ret = clk_prepare_enable(fep->clk_ipg);
4745	if (ret)
4746		goto failed_clk_ipg;
4747
4748	return 0;
4749
4750failed_clk_ipg:
4751	clk_disable_unprepare(fep->clk_ahb);
4752	return ret;
4753}
4754
4755static const struct dev_pm_ops fec_pm_ops = {
4756	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4757	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4758};
4759
4760static struct platform_driver fec_driver = {
4761	.driver	= {
4762		.name	= DRIVER_NAME,
4763		.pm	= &fec_pm_ops,
4764		.of_match_table = fec_dt_ids,
4765		.suppress_bind_attrs = true,
4766	},
4767	.id_table = fec_devtype,
4768	.probe	= fec_probe,
4769	.remove_new = fec_drv_remove,
4770};
4771
4772module_platform_driver(fec_driver);
4773
4774MODULE_DESCRIPTION("NXP Fast Ethernet Controller (FEC) driver");
4775MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
   4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
   5 *
   6 * Right now, I am very wasteful with the buffers.  I allocate memory
   7 * pages and then divide them into 2K frame buffers.  This way I know I
   8 * have buffers large enough to hold one frame within one buffer descriptor.
   9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  10 * will be much more memory efficient and will easily handle lots of
  11 * small packets.
  12 *
  13 * Much better multiple PHY support by Magnus Damm.
  14 * Copyright (c) 2000 Ericsson Radio Systems AB.
  15 *
  16 * Support for FEC controller of ColdFire processors.
  17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  18 *
  19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  20 * Copyright (c) 2004-2006 Macq Electronique SA.
  21 *
  22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/string.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/ptrace.h>
  30#include <linux/errno.h>
  31#include <linux/ioport.h>
  32#include <linux/slab.h>
  33#include <linux/interrupt.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/etherdevice.h>
  37#include <linux/skbuff.h>
  38#include <linux/in.h>
  39#include <linux/ip.h>
  40#include <net/ip.h>
 
 
  41#include <net/tso.h>
  42#include <linux/tcp.h>
  43#include <linux/udp.h>
  44#include <linux/icmp.h>
  45#include <linux/spinlock.h>
  46#include <linux/workqueue.h>
  47#include <linux/bitops.h>
  48#include <linux/io.h>
  49#include <linux/irq.h>
  50#include <linux/clk.h>
  51#include <linux/crc32.h>
  52#include <linux/platform_device.h>
 
  53#include <linux/mdio.h>
  54#include <linux/phy.h>
  55#include <linux/fec.h>
  56#include <linux/of.h>
  57#include <linux/of_device.h>
  58#include <linux/of_gpio.h>
  59#include <linux/of_mdio.h>
  60#include <linux/of_net.h>
  61#include <linux/regulator/consumer.h>
  62#include <linux/if_vlan.h>
  63#include <linux/pinctrl/consumer.h>
 
  64#include <linux/prefetch.h>
  65#include <linux/mfd/syscon.h>
  66#include <linux/regmap.h>
  67#include <soc/imx/cpuidle.h>
 
 
 
  68
  69#include <asm/cacheflush.h>
  70
  71#include "fec.h"
  72
  73static void set_multicast_list(struct net_device *ndev);
  74static void fec_enet_itr_coal_init(struct net_device *ndev);
 
 
 
  75
  76#define DRIVER_NAME	"fec"
  77
 
 
  78/* Pause frame feild and FIFO threshold */
  79#define FEC_ENET_FCE	(1 << 5)
  80#define FEC_ENET_RSEM_V	0x84
  81#define FEC_ENET_RSFL_V	16
  82#define FEC_ENET_RAEM_V	0x8
  83#define FEC_ENET_RAFL_V	0x8
  84#define FEC_ENET_OPD_V	0xFFF0
  85#define FEC_MDIO_PM_TIMEOUT  100 /* ms */
  86
 
 
 
 
 
  87struct fec_devinfo {
  88	u32 quirks;
  89};
  90
  91static const struct fec_devinfo fec_imx25_info = {
  92	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
  93		  FEC_QUIRK_HAS_FRREG,
  94};
  95
  96static const struct fec_devinfo fec_imx27_info = {
  97	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
 
  98};
  99
 100static const struct fec_devinfo fec_imx28_info = {
 101	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
 102		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
 103		  FEC_QUIRK_HAS_FRREG,
 
 104};
 105
 106static const struct fec_devinfo fec_imx6q_info = {
 107	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 108		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 109		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
 110		  FEC_QUIRK_HAS_RACC,
 
 111};
 112
 113static const struct fec_devinfo fec_mvf600_info = {
 114	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
 
 115};
 116
 117static const struct fec_devinfo fec_imx6x_info = {
 118	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 119		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 120		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
 121		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
 122		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
 
 
 123};
 124
 125static const struct fec_devinfo fec_imx6ul_info = {
 126	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 127		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 128		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
 129		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
 130		  FEC_QUIRK_HAS_COALESCE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131};
 132
 133static struct platform_device_id fec_devtype[] = {
 134	{
 135		/* keep it for coldfire */
 136		.name = DRIVER_NAME,
 137		.driver_data = 0,
 138	}, {
 139		.name = "imx25-fec",
 140		.driver_data = (kernel_ulong_t)&fec_imx25_info,
 141	}, {
 142		.name = "imx27-fec",
 143		.driver_data = (kernel_ulong_t)&fec_imx27_info,
 144	}, {
 145		.name = "imx28-fec",
 146		.driver_data = (kernel_ulong_t)&fec_imx28_info,
 147	}, {
 148		.name = "imx6q-fec",
 149		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
 150	}, {
 151		.name = "mvf600-fec",
 152		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
 153	}, {
 154		.name = "imx6sx-fec",
 155		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
 156	}, {
 157		.name = "imx6ul-fec",
 158		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
 159	}, {
 160		/* sentinel */
 161	}
 162};
 163MODULE_DEVICE_TABLE(platform, fec_devtype);
 164
 165enum imx_fec_type {
 166	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
 167	IMX27_FEC,	/* runs on i.mx27/35/51 */
 168	IMX28_FEC,
 169	IMX6Q_FEC,
 170	MVF600_FEC,
 171	IMX6SX_FEC,
 172	IMX6UL_FEC,
 173};
 174
 175static const struct of_device_id fec_dt_ids[] = {
 176	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
 177	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
 178	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
 179	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
 180	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
 181	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
 182	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
 
 
 
 183	{ /* sentinel */ }
 184};
 185MODULE_DEVICE_TABLE(of, fec_dt_ids);
 186
 187static unsigned char macaddr[ETH_ALEN];
 188module_param_array(macaddr, byte, NULL, 0);
 189MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
 190
 191#if defined(CONFIG_M5272)
 192/*
 193 * Some hardware gets it MAC address out of local flash memory.
 194 * if this is non-zero then assume it is the address to get MAC from.
 195 */
 196#if defined(CONFIG_NETtel)
 197#define	FEC_FLASHMAC	0xf0006006
 198#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
 199#define	FEC_FLASHMAC	0xf0006000
 200#elif defined(CONFIG_CANCam)
 201#define	FEC_FLASHMAC	0xf0020000
 202#elif defined (CONFIG_M5272C3)
 203#define	FEC_FLASHMAC	(0xffe04000 + 4)
 204#elif defined(CONFIG_MOD5272)
 205#define FEC_FLASHMAC	0xffc0406b
 206#else
 207#define	FEC_FLASHMAC	0
 208#endif
 209#endif /* CONFIG_M5272 */
 210
 211/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
 212 *
 213 * 2048 byte skbufs are allocated. However, alignment requirements
 214 * varies between FEC variants. Worst case is 64, so round down by 64.
 215 */
 216#define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
 217#define PKT_MINBUF_SIZE		64
 218
 219/* FEC receive acceleration */
 220#define FEC_RACC_IPDIS		(1 << 1)
 221#define FEC_RACC_PRODIS		(1 << 2)
 222#define FEC_RACC_SHIFT16	BIT(7)
 223#define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
 224
 225/* MIB Control Register */
 226#define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
 227
 228/*
 229 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
 230 * size bits. Other FEC hardware does not, so we need to take that into
 231 * account when setting it.
 232 */
 233#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
 234    defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
 235    defined(CONFIG_ARM64)
 236#define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
 237#else
 238#define	OPT_FRAME_SIZE	0
 239#endif
 240
 241/* FEC MII MMFR bits definition */
 242#define FEC_MMFR_ST		(1 << 30)
 243#define FEC_MMFR_ST_C45		(0)
 244#define FEC_MMFR_OP_READ	(2 << 28)
 245#define FEC_MMFR_OP_READ_C45	(3 << 28)
 246#define FEC_MMFR_OP_WRITE	(1 << 28)
 247#define FEC_MMFR_OP_ADDR_WRITE	(0)
 248#define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
 249#define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
 250#define FEC_MMFR_TA		(2 << 16)
 251#define FEC_MMFR_DATA(v)	(v & 0xffff)
 252/* FEC ECR bits definition */
 253#define FEC_ECR_MAGICEN		(1 << 2)
 254#define FEC_ECR_SLEEP		(1 << 3)
 255
 256#define FEC_MII_TIMEOUT		30000 /* us */
 257
 258/* Transmitter timeout */
 259#define TX_TIMEOUT (2 * HZ)
 260
 261#define FEC_PAUSE_FLAG_AUTONEG	0x1
 262#define FEC_PAUSE_FLAG_ENABLE	0x2
 263#define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
 264#define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
 265#define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
 266
 267#define COPYBREAK_DEFAULT	256
 268
 269/* Max number of allowed TCP segments for software TSO */
 270#define FEC_MAX_TSO_SEGS	100
 271#define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 272
 273#define IS_TSO_HEADER(txq, addr) \
 274	((addr >= txq->tso_hdrs_dma) && \
 275	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
 276
 277static int mii_cnt;
 278
 279static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
 280					     struct bufdesc_prop *bd)
 281{
 282	return (bdp >= bd->last) ? bd->base
 283			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
 284}
 285
 286static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
 287					     struct bufdesc_prop *bd)
 288{
 289	return (bdp <= bd->base) ? bd->last
 290			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
 291}
 292
 293static int fec_enet_get_bd_index(struct bufdesc *bdp,
 294				 struct bufdesc_prop *bd)
 295{
 296	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
 297}
 298
 299static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
 300{
 301	int entries;
 302
 303	entries = (((const char *)txq->dirty_tx -
 304			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
 305
 306	return entries >= 0 ? entries : entries + txq->bd.ring_size;
 307}
 308
 309static void swap_buffer(void *bufaddr, int len)
 310{
 311	int i;
 312	unsigned int *buf = bufaddr;
 313
 314	for (i = 0; i < len; i += 4, buf++)
 315		swab32s(buf);
 316}
 317
 318static void swap_buffer2(void *dst_buf, void *src_buf, int len)
 319{
 320	int i;
 321	unsigned int *src = src_buf;
 322	unsigned int *dst = dst_buf;
 323
 324	for (i = 0; i < len; i += 4, src++, dst++)
 325		*dst = swab32p(src);
 326}
 327
 328static void fec_dump(struct net_device *ndev)
 329{
 330	struct fec_enet_private *fep = netdev_priv(ndev);
 331	struct bufdesc *bdp;
 332	struct fec_enet_priv_tx_q *txq;
 333	int index = 0;
 334
 335	netdev_info(ndev, "TX ring dump\n");
 336	pr_info("Nr     SC     addr       len  SKB\n");
 337
 338	txq = fep->tx_queue[0];
 339	bdp = txq->bd.base;
 340
 341	do {
 342		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
 343			index,
 344			bdp == txq->bd.cur ? 'S' : ' ',
 345			bdp == txq->dirty_tx ? 'H' : ' ',
 346			fec16_to_cpu(bdp->cbd_sc),
 347			fec32_to_cpu(bdp->cbd_bufaddr),
 348			fec16_to_cpu(bdp->cbd_datlen),
 349			txq->tx_skbuff[index]);
 350		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 351		index++;
 352	} while (bdp != txq->bd.base);
 353}
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355static inline bool is_ipv4_pkt(struct sk_buff *skb)
 356{
 357	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
 358}
 359
 360static int
 361fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
 362{
 363	/* Only run for packets requiring a checksum. */
 364	if (skb->ip_summed != CHECKSUM_PARTIAL)
 365		return 0;
 366
 367	if (unlikely(skb_cow_head(skb, 0)))
 368		return -1;
 369
 370	if (is_ipv4_pkt(skb))
 371		ip_hdr(skb)->check = 0;
 372	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
 373
 374	return 0;
 375}
 376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377static struct bufdesc *
 378fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
 379			     struct sk_buff *skb,
 380			     struct net_device *ndev)
 381{
 382	struct fec_enet_private *fep = netdev_priv(ndev);
 383	struct bufdesc *bdp = txq->bd.cur;
 384	struct bufdesc_ex *ebdp;
 385	int nr_frags = skb_shinfo(skb)->nr_frags;
 386	int frag, frag_len;
 387	unsigned short status;
 388	unsigned int estatus = 0;
 389	skb_frag_t *this_frag;
 390	unsigned int index;
 391	void *bufaddr;
 392	dma_addr_t addr;
 393	int i;
 394
 395	for (frag = 0; frag < nr_frags; frag++) {
 396		this_frag = &skb_shinfo(skb)->frags[frag];
 397		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 398		ebdp = (struct bufdesc_ex *)bdp;
 399
 400		status = fec16_to_cpu(bdp->cbd_sc);
 401		status &= ~BD_ENET_TX_STATS;
 402		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 403		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
 404
 405		/* Handle the last BD specially */
 406		if (frag == nr_frags - 1) {
 407			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 408			if (fep->bufdesc_ex) {
 409				estatus |= BD_ENET_TX_INT;
 410				if (unlikely(skb_shinfo(skb)->tx_flags &
 411					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 412					estatus |= BD_ENET_TX_TS;
 413			}
 414		}
 415
 416		if (fep->bufdesc_ex) {
 417			if (fep->quirks & FEC_QUIRK_HAS_AVB)
 418				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 419			if (skb->ip_summed == CHECKSUM_PARTIAL)
 420				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 
 421			ebdp->cbd_bdu = 0;
 422			ebdp->cbd_esc = cpu_to_fec32(estatus);
 423		}
 424
 425		bufaddr = skb_frag_address(this_frag);
 426
 427		index = fec_enet_get_bd_index(bdp, &txq->bd);
 428		if (((unsigned long) bufaddr) & fep->tx_align ||
 429			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 430			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
 431			bufaddr = txq->tx_bounce[index];
 432
 433			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 434				swap_buffer(bufaddr, frag_len);
 435		}
 436
 437		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
 438				      DMA_TO_DEVICE);
 439		if (dma_mapping_error(&fep->pdev->dev, addr)) {
 440			if (net_ratelimit())
 441				netdev_err(ndev, "Tx DMA memory map failed\n");
 442			goto dma_mapping_error;
 443		}
 444
 445		bdp->cbd_bufaddr = cpu_to_fec32(addr);
 446		bdp->cbd_datlen = cpu_to_fec16(frag_len);
 447		/* Make sure the updates to rest of the descriptor are
 448		 * performed before transferring ownership.
 449		 */
 450		wmb();
 451		bdp->cbd_sc = cpu_to_fec16(status);
 452	}
 453
 454	return bdp;
 455dma_mapping_error:
 456	bdp = txq->bd.cur;
 457	for (i = 0; i < frag; i++) {
 458		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 459		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
 460				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
 461	}
 462	return ERR_PTR(-ENOMEM);
 463}
 464
 465static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
 466				   struct sk_buff *skb, struct net_device *ndev)
 467{
 468	struct fec_enet_private *fep = netdev_priv(ndev);
 469	int nr_frags = skb_shinfo(skb)->nr_frags;
 470	struct bufdesc *bdp, *last_bdp;
 471	void *bufaddr;
 472	dma_addr_t addr;
 473	unsigned short status;
 474	unsigned short buflen;
 475	unsigned int estatus = 0;
 476	unsigned int index;
 477	int entries_free;
 478
 479	entries_free = fec_enet_get_free_txdesc_num(txq);
 480	if (entries_free < MAX_SKB_FRAGS + 1) {
 481		dev_kfree_skb_any(skb);
 482		if (net_ratelimit())
 483			netdev_err(ndev, "NOT enough BD for SG!\n");
 484		return NETDEV_TX_OK;
 485	}
 486
 487	/* Protocol checksum off-load for TCP and UDP. */
 488	if (fec_enet_clear_csum(skb, ndev)) {
 489		dev_kfree_skb_any(skb);
 490		return NETDEV_TX_OK;
 491	}
 492
 493	/* Fill in a Tx ring entry */
 494	bdp = txq->bd.cur;
 495	last_bdp = bdp;
 496	status = fec16_to_cpu(bdp->cbd_sc);
 497	status &= ~BD_ENET_TX_STATS;
 498
 499	/* Set buffer length and buffer pointer */
 500	bufaddr = skb->data;
 501	buflen = skb_headlen(skb);
 502
 503	index = fec_enet_get_bd_index(bdp, &txq->bd);
 504	if (((unsigned long) bufaddr) & fep->tx_align ||
 505		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 506		memcpy(txq->tx_bounce[index], skb->data, buflen);
 507		bufaddr = txq->tx_bounce[index];
 508
 509		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 510			swap_buffer(bufaddr, buflen);
 511	}
 512
 513	/* Push the data cache so the CPM does not get stale memory data. */
 514	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
 515	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 516		dev_kfree_skb_any(skb);
 517		if (net_ratelimit())
 518			netdev_err(ndev, "Tx DMA memory map failed\n");
 519		return NETDEV_TX_OK;
 520	}
 521
 522	if (nr_frags) {
 523		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
 524		if (IS_ERR(last_bdp)) {
 525			dma_unmap_single(&fep->pdev->dev, addr,
 526					 buflen, DMA_TO_DEVICE);
 527			dev_kfree_skb_any(skb);
 528			return NETDEV_TX_OK;
 529		}
 530	} else {
 531		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
 532		if (fep->bufdesc_ex) {
 533			estatus = BD_ENET_TX_INT;
 534			if (unlikely(skb_shinfo(skb)->tx_flags &
 535				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
 536				estatus |= BD_ENET_TX_TS;
 537		}
 538	}
 539	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 540	bdp->cbd_datlen = cpu_to_fec16(buflen);
 541
 542	if (fep->bufdesc_ex) {
 543
 544		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
 545
 546		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
 547			fep->hwts_tx_en))
 548			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 549
 550		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 551			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 552
 553		if (skb->ip_summed == CHECKSUM_PARTIAL)
 554			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 555
 556		ebdp->cbd_bdu = 0;
 557		ebdp->cbd_esc = cpu_to_fec32(estatus);
 558	}
 559
 560	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
 561	/* Save skb pointer */
 562	txq->tx_skbuff[index] = skb;
 563
 564	/* Make sure the updates to rest of the descriptor are performed before
 565	 * transferring ownership.
 566	 */
 567	wmb();
 568
 569	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
 570	 * it's the last BD of the frame, and to put the CRC on the end.
 571	 */
 572	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
 573	bdp->cbd_sc = cpu_to_fec16(status);
 574
 575	/* If this was the last BD in the ring, start at the beginning again. */
 576	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
 577
 578	skb_tx_timestamp(skb);
 579
 580	/* Make sure the update to bdp and tx_skbuff are performed before
 581	 * txq->bd.cur.
 582	 */
 583	wmb();
 584	txq->bd.cur = bdp;
 585
 586	/* Trigger transmission start */
 587	writel(0, txq->bd.reg_desc_active);
 588
 589	return 0;
 590}
 591
 592static int
 593fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
 594			  struct net_device *ndev,
 595			  struct bufdesc *bdp, int index, char *data,
 596			  int size, bool last_tcp, bool is_last)
 597{
 598	struct fec_enet_private *fep = netdev_priv(ndev);
 599	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 600	unsigned short status;
 601	unsigned int estatus = 0;
 602	dma_addr_t addr;
 603
 604	status = fec16_to_cpu(bdp->cbd_sc);
 605	status &= ~BD_ENET_TX_STATS;
 606
 607	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 608
 609	if (((unsigned long) data) & fep->tx_align ||
 610		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 611		memcpy(txq->tx_bounce[index], data, size);
 612		data = txq->tx_bounce[index];
 613
 614		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 615			swap_buffer(data, size);
 616	}
 617
 618	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
 619	if (dma_mapping_error(&fep->pdev->dev, addr)) {
 620		dev_kfree_skb_any(skb);
 621		if (net_ratelimit())
 622			netdev_err(ndev, "Tx DMA memory map failed\n");
 623		return NETDEV_TX_BUSY;
 624	}
 625
 626	bdp->cbd_datlen = cpu_to_fec16(size);
 627	bdp->cbd_bufaddr = cpu_to_fec32(addr);
 628
 629	if (fep->bufdesc_ex) {
 630		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 631			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 632		if (skb->ip_summed == CHECKSUM_PARTIAL)
 633			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 634		ebdp->cbd_bdu = 0;
 635		ebdp->cbd_esc = cpu_to_fec32(estatus);
 636	}
 637
 638	/* Handle the last BD specially */
 639	if (last_tcp)
 640		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
 641	if (is_last) {
 642		status |= BD_ENET_TX_INTR;
 643		if (fep->bufdesc_ex)
 644			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
 645	}
 646
 647	bdp->cbd_sc = cpu_to_fec16(status);
 648
 649	return 0;
 650}
 651
 652static int
 653fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
 654			 struct sk_buff *skb, struct net_device *ndev,
 655			 struct bufdesc *bdp, int index)
 656{
 657	struct fec_enet_private *fep = netdev_priv(ndev);
 658	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
 659	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
 660	void *bufaddr;
 661	unsigned long dmabuf;
 662	unsigned short status;
 663	unsigned int estatus = 0;
 664
 665	status = fec16_to_cpu(bdp->cbd_sc);
 666	status &= ~BD_ENET_TX_STATS;
 667	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
 668
 669	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 670	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
 671	if (((unsigned long)bufaddr) & fep->tx_align ||
 672		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
 673		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
 674		bufaddr = txq->tx_bounce[index];
 675
 676		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
 677			swap_buffer(bufaddr, hdr_len);
 678
 679		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
 680					hdr_len, DMA_TO_DEVICE);
 681		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
 682			dev_kfree_skb_any(skb);
 683			if (net_ratelimit())
 684				netdev_err(ndev, "Tx DMA memory map failed\n");
 685			return NETDEV_TX_BUSY;
 686		}
 687	}
 688
 689	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
 690	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
 691
 692	if (fep->bufdesc_ex) {
 693		if (fep->quirks & FEC_QUIRK_HAS_AVB)
 694			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
 695		if (skb->ip_summed == CHECKSUM_PARTIAL)
 696			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
 697		ebdp->cbd_bdu = 0;
 698		ebdp->cbd_esc = cpu_to_fec32(estatus);
 699	}
 700
 701	bdp->cbd_sc = cpu_to_fec16(status);
 702
 703	return 0;
 704}
 705
 706static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
 707				   struct sk_buff *skb,
 708				   struct net_device *ndev)
 709{
 710	struct fec_enet_private *fep = netdev_priv(ndev);
 711	int hdr_len, total_len, data_left;
 712	struct bufdesc *bdp = txq->bd.cur;
 713	struct tso_t tso;
 714	unsigned int index = 0;
 715	int ret;
 716
 717	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
 718		dev_kfree_skb_any(skb);
 719		if (net_ratelimit())
 720			netdev_err(ndev, "NOT enough BD for TSO!\n");
 721		return NETDEV_TX_OK;
 722	}
 723
 724	/* Protocol checksum off-load for TCP and UDP. */
 725	if (fec_enet_clear_csum(skb, ndev)) {
 726		dev_kfree_skb_any(skb);
 727		return NETDEV_TX_OK;
 728	}
 729
 730	/* Initialize the TSO handler, and prepare the first payload */
 731	hdr_len = tso_start(skb, &tso);
 732
 733	total_len = skb->len - hdr_len;
 734	while (total_len > 0) {
 735		char *hdr;
 736
 737		index = fec_enet_get_bd_index(bdp, &txq->bd);
 738		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
 739		total_len -= data_left;
 740
 741		/* prepare packet headers: MAC + IP + TCP */
 742		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
 743		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
 744		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
 745		if (ret)
 746			goto err_release;
 747
 748		while (data_left > 0) {
 749			int size;
 750
 751			size = min_t(int, tso.size, data_left);
 752			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 753			index = fec_enet_get_bd_index(bdp, &txq->bd);
 754			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
 755							bdp, index,
 756							tso.data, size,
 757							size == data_left,
 758							total_len == 0);
 759			if (ret)
 760				goto err_release;
 761
 762			data_left -= size;
 763			tso_build_data(skb, &tso, size);
 764		}
 765
 766		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 767	}
 768
 769	/* Save skb pointer */
 770	txq->tx_skbuff[index] = skb;
 771
 772	skb_tx_timestamp(skb);
 773	txq->bd.cur = bdp;
 774
 775	/* Trigger transmission start */
 776	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
 777	    !readl(txq->bd.reg_desc_active) ||
 778	    !readl(txq->bd.reg_desc_active) ||
 779	    !readl(txq->bd.reg_desc_active) ||
 780	    !readl(txq->bd.reg_desc_active))
 781		writel(0, txq->bd.reg_desc_active);
 782
 783	return 0;
 784
 785err_release:
 786	/* TODO: Release all used data descriptors for TSO */
 787	return ret;
 788}
 789
 790static netdev_tx_t
 791fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 792{
 793	struct fec_enet_private *fep = netdev_priv(ndev);
 794	int entries_free;
 795	unsigned short queue;
 796	struct fec_enet_priv_tx_q *txq;
 797	struct netdev_queue *nq;
 798	int ret;
 799
 800	queue = skb_get_queue_mapping(skb);
 801	txq = fep->tx_queue[queue];
 802	nq = netdev_get_tx_queue(ndev, queue);
 803
 804	if (skb_is_gso(skb))
 805		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
 806	else
 807		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
 808	if (ret)
 809		return ret;
 810
 811	entries_free = fec_enet_get_free_txdesc_num(txq);
 812	if (entries_free <= txq->tx_stop_threshold)
 813		netif_tx_stop_queue(nq);
 814
 815	return NETDEV_TX_OK;
 816}
 817
 818/* Init RX & TX buffer descriptors
 819 */
 820static void fec_enet_bd_init(struct net_device *dev)
 821{
 822	struct fec_enet_private *fep = netdev_priv(dev);
 823	struct fec_enet_priv_tx_q *txq;
 824	struct fec_enet_priv_rx_q *rxq;
 825	struct bufdesc *bdp;
 826	unsigned int i;
 827	unsigned int q;
 828
 829	for (q = 0; q < fep->num_rx_queues; q++) {
 830		/* Initialize the receive buffer descriptors. */
 831		rxq = fep->rx_queue[q];
 832		bdp = rxq->bd.base;
 833
 834		for (i = 0; i < rxq->bd.ring_size; i++) {
 835
 836			/* Initialize the BD for every fragment in the page. */
 837			if (bdp->cbd_bufaddr)
 838				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
 839			else
 840				bdp->cbd_sc = cpu_to_fec16(0);
 841			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
 842		}
 843
 844		/* Set the last buffer to wrap */
 845		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
 846		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 847
 848		rxq->bd.cur = rxq->bd.base;
 849	}
 850
 851	for (q = 0; q < fep->num_tx_queues; q++) {
 852		/* ...and the same for transmit */
 853		txq = fep->tx_queue[q];
 854		bdp = txq->bd.base;
 855		txq->bd.cur = bdp;
 856
 857		for (i = 0; i < txq->bd.ring_size; i++) {
 858			/* Initialize the BD for every fragment in the page. */
 859			bdp->cbd_sc = cpu_to_fec16(0);
 860			if (bdp->cbd_bufaddr &&
 861			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
 862				dma_unmap_single(&fep->pdev->dev,
 863						 fec32_to_cpu(bdp->cbd_bufaddr),
 864						 fec16_to_cpu(bdp->cbd_datlen),
 865						 DMA_TO_DEVICE);
 866			if (txq->tx_skbuff[i]) {
 867				dev_kfree_skb_any(txq->tx_skbuff[i]);
 868				txq->tx_skbuff[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869			}
 
 
 
 
 870			bdp->cbd_bufaddr = cpu_to_fec32(0);
 871			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
 872		}
 873
 874		/* Set the last buffer to wrap */
 875		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
 876		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
 877		txq->dirty_tx = bdp;
 878	}
 879}
 880
 881static void fec_enet_active_rxring(struct net_device *ndev)
 882{
 883	struct fec_enet_private *fep = netdev_priv(ndev);
 884	int i;
 885
 886	for (i = 0; i < fep->num_rx_queues; i++)
 887		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
 888}
 889
 890static void fec_enet_enable_ring(struct net_device *ndev)
 891{
 892	struct fec_enet_private *fep = netdev_priv(ndev);
 893	struct fec_enet_priv_tx_q *txq;
 894	struct fec_enet_priv_rx_q *rxq;
 895	int i;
 896
 897	for (i = 0; i < fep->num_rx_queues; i++) {
 898		rxq = fep->rx_queue[i];
 899		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
 900		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
 901
 902		/* enable DMA1/2 */
 903		if (i)
 904			writel(RCMR_MATCHEN | RCMR_CMP(i),
 905			       fep->hwp + FEC_RCMR(i));
 906	}
 907
 908	for (i = 0; i < fep->num_tx_queues; i++) {
 909		txq = fep->tx_queue[i];
 910		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
 911
 912		/* enable DMA1/2 */
 913		if (i)
 914			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
 915			       fep->hwp + FEC_DMA_CFG(i));
 916	}
 917}
 918
 919static void fec_enet_reset_skb(struct net_device *ndev)
 920{
 921	struct fec_enet_private *fep = netdev_priv(ndev);
 922	struct fec_enet_priv_tx_q *txq;
 923	int i, j;
 924
 925	for (i = 0; i < fep->num_tx_queues; i++) {
 926		txq = fep->tx_queue[i];
 927
 928		for (j = 0; j < txq->bd.ring_size; j++) {
 929			if (txq->tx_skbuff[j]) {
 930				dev_kfree_skb_any(txq->tx_skbuff[j]);
 931				txq->tx_skbuff[j] = NULL;
 932			}
 933		}
 934	}
 935}
 936
 937/*
 938 * This function is called to start or restart the FEC during a link
 939 * change, transmit timeout, or to reconfigure the FEC.  The network
 940 * packet processing for this device must be stopped before this call.
 941 */
 942static void
 943fec_restart(struct net_device *ndev)
 944{
 945	struct fec_enet_private *fep = netdev_priv(ndev);
 946	u32 val;
 947	u32 temp_mac[2];
 948	u32 rcntl = OPT_FRAME_SIZE | 0x04;
 949	u32 ecntl = 0x2; /* ETHEREN */
 950
 951	/* Whack a reset.  We should wait for this.
 952	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
 953	 * instead of reset MAC itself.
 954	 */
 955	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
 
 956		writel(0, fep->hwp + FEC_ECNTRL);
 957	} else {
 958		writel(1, fep->hwp + FEC_ECNTRL);
 959		udelay(10);
 960	}
 961
 962	/*
 963	 * enet-mac reset will reset mac address registers too,
 964	 * so need to reconfigure it.
 965	 */
 966	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
 967	writel((__force u32)cpu_to_be32(temp_mac[0]),
 968	       fep->hwp + FEC_ADDR_LOW);
 969	writel((__force u32)cpu_to_be32(temp_mac[1]),
 970	       fep->hwp + FEC_ADDR_HIGH);
 971
 972	/* Clear any outstanding interrupt, except MDIO. */
 973	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
 974
 975	fec_enet_bd_init(ndev);
 976
 977	fec_enet_enable_ring(ndev);
 978
 979	/* Reset tx SKB buffers. */
 980	fec_enet_reset_skb(ndev);
 981
 982	/* Enable MII mode */
 983	if (fep->full_duplex == DUPLEX_FULL) {
 984		/* FD enable */
 985		writel(0x04, fep->hwp + FEC_X_CNTRL);
 986	} else {
 987		/* No Rcv on Xmit */
 988		rcntl |= 0x02;
 989		writel(0x0, fep->hwp + FEC_X_CNTRL);
 990	}
 991
 992	/* Set MII speed */
 993	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 994
 995#if !defined(CONFIG_M5272)
 996	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
 997		val = readl(fep->hwp + FEC_RACC);
 
 998		/* align IP header */
 999		val |= FEC_RACC_SHIFT16;
1000		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1001			/* set RX checksum */
1002			val |= FEC_RACC_OPTIONS;
1003		else
1004			val &= ~FEC_RACC_OPTIONS;
1005		writel(val, fep->hwp + FEC_RACC);
1006		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1007	}
1008#endif
1009
1010	/*
1011	 * The phy interface and speed need to get configured
1012	 * differently on enet-mac.
1013	 */
1014	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1015		/* Enable flow control and length check */
1016		rcntl |= 0x40000000 | 0x00000020;
1017
1018		/* RGMII, RMII or MII */
1019		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1020		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1021		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1022		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1023			rcntl |= (1 << 6);
1024		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025			rcntl |= (1 << 8);
1026		else
1027			rcntl &= ~(1 << 8);
1028
1029		/* 1G, 100M or 10M */
1030		if (ndev->phydev) {
1031			if (ndev->phydev->speed == SPEED_1000)
1032				ecntl |= (1 << 5);
1033			else if (ndev->phydev->speed == SPEED_100)
1034				rcntl &= ~(1 << 9);
1035			else
1036				rcntl |= (1 << 9);
1037		}
1038	} else {
1039#ifdef FEC_MIIGSK_ENR
1040		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1041			u32 cfgr;
1042			/* disable the gasket and wait */
1043			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1044			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1045				udelay(1);
1046
1047			/*
1048			 * configure the gasket:
1049			 *   RMII, 50 MHz, no loopback, no echo
1050			 *   MII, 25 MHz, no loopback, no echo
1051			 */
1052			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1053				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1054			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1055				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1056			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1057
1058			/* re-enable the gasket */
1059			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1060		}
1061#endif
1062	}
1063
1064#if !defined(CONFIG_M5272)
1065	/* enable pause frame*/
1066	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1067	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1068	     ndev->phydev && ndev->phydev->pause)) {
1069		rcntl |= FEC_ENET_FCE;
1070
1071		/* set FIFO threshold parameter to reduce overrun */
1072		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1073		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1074		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1075		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1076
1077		/* OPD */
1078		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1079	} else {
1080		rcntl &= ~FEC_ENET_FCE;
1081	}
1082#endif /* !defined(CONFIG_M5272) */
1083
1084	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1085
1086	/* Setup multicast filter. */
1087	set_multicast_list(ndev);
1088#ifndef CONFIG_M5272
1089	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1090	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1091#endif
1092
1093	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1094		/* enable ENET endian swap */
1095		ecntl |= (1 << 8);
1096		/* enable ENET store and forward mode */
1097		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1098	}
1099
1100	if (fep->bufdesc_ex)
1101		ecntl |= (1 << 4);
1102
 
 
 
 
 
 
 
1103#ifndef CONFIG_M5272
1104	/* Enable the MIB statistic event counters */
1105	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1106#endif
1107
1108	/* And last, enable the transmit and receive processing */
1109	writel(ecntl, fep->hwp + FEC_ECNTRL);
1110	fec_enet_active_rxring(ndev);
1111
1112	if (fep->bufdesc_ex)
1113		fec_ptp_start_cyclecounter(ndev);
1114
1115	/* Enable interrupts we wish to service */
1116	if (fep->link)
1117		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1118	else
1119		writel(0, fep->hwp + FEC_IMASK);
1120
1121	/* Init the interrupt coalescing */
1122	fec_enet_itr_coal_init(ndev);
 
 
 
 
 
 
 
 
 
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125
1126static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1127{
1128	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1129	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1130
1131	if (stop_gpr->gpr) {
1132		if (enabled)
1133			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1134					   BIT(stop_gpr->bit),
1135					   BIT(stop_gpr->bit));
1136		else
1137			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1138					   BIT(stop_gpr->bit), 0);
1139	} else if (pdata && pdata->sleep_mode_enable) {
1140		pdata->sleep_mode_enable(enabled);
 
 
1141	}
1142}
1143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144static void
1145fec_stop(struct net_device *ndev)
1146{
1147	struct fec_enet_private *fep = netdev_priv(ndev);
1148	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1149	u32 val;
1150
1151	/* We cannot expect a graceful transmit stop without link !!! */
1152	if (fep->link) {
1153		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1154		udelay(10);
1155		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1156			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1157	}
1158
1159	/* Whack a reset.  We should wait for this.
1160	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1161	 * instead of reset MAC itself.
1162	 */
1163	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1164		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1165			writel(0, fep->hwp + FEC_ECNTRL);
1166		} else {
1167			writel(1, fep->hwp + FEC_ECNTRL);
1168			udelay(10);
1169		}
1170		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1171	} else {
1172		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1173		val = readl(fep->hwp + FEC_ECNTRL);
1174		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1175		writel(val, fep->hwp + FEC_ECNTRL);
1176		fec_enet_stop_mode(fep, true);
1177	}
1178	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
 
1179
1180	/* We have to keep ENET enabled to have MII interrupt stay working */
1181	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1182		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1183		writel(2, fep->hwp + FEC_ECNTRL);
1184		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1185	}
1186}
1187
1188
1189static void
1190fec_timeout(struct net_device *ndev, unsigned int txqueue)
1191{
1192	struct fec_enet_private *fep = netdev_priv(ndev);
1193
1194	fec_dump(ndev);
1195
1196	ndev->stats.tx_errors++;
1197
1198	schedule_work(&fep->tx_timeout_work);
1199}
1200
1201static void fec_enet_timeout_work(struct work_struct *work)
1202{
1203	struct fec_enet_private *fep =
1204		container_of(work, struct fec_enet_private, tx_timeout_work);
1205	struct net_device *ndev = fep->netdev;
1206
1207	rtnl_lock();
1208	if (netif_device_present(ndev) || netif_running(ndev)) {
1209		napi_disable(&fep->napi);
1210		netif_tx_lock_bh(ndev);
1211		fec_restart(ndev);
1212		netif_tx_wake_all_queues(ndev);
1213		netif_tx_unlock_bh(ndev);
1214		napi_enable(&fep->napi);
1215	}
1216	rtnl_unlock();
1217}
1218
1219static void
1220fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1221	struct skb_shared_hwtstamps *hwtstamps)
1222{
1223	unsigned long flags;
1224	u64 ns;
1225
1226	spin_lock_irqsave(&fep->tmreg_lock, flags);
1227	ns = timecounter_cyc2time(&fep->tc, ts);
1228	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1229
1230	memset(hwtstamps, 0, sizeof(*hwtstamps));
1231	hwtstamps->hwtstamp = ns_to_ktime(ns);
1232}
1233
1234static void
1235fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1236{
1237	struct	fec_enet_private *fep;
 
1238	struct bufdesc *bdp;
1239	unsigned short status;
1240	struct	sk_buff	*skb;
1241	struct fec_enet_priv_tx_q *txq;
1242	struct netdev_queue *nq;
1243	int	index = 0;
1244	int	entries_free;
 
 
1245
1246	fep = netdev_priv(ndev);
1247
1248	txq = fep->tx_queue[queue_id];
1249	/* get next bdp of dirty_tx */
1250	nq = netdev_get_tx_queue(ndev, queue_id);
1251	bdp = txq->dirty_tx;
1252
1253	/* get next bdp of dirty_tx */
1254	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1255
1256	while (bdp != READ_ONCE(txq->bd.cur)) {
1257		/* Order the load of bd.cur and cbd_sc */
1258		rmb();
1259		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1260		if (status & BD_ENET_TX_READY)
1261			break;
1262
1263		index = fec_enet_get_bd_index(bdp, &txq->bd);
1264
1265		skb = txq->tx_skbuff[index];
1266		txq->tx_skbuff[index] = NULL;
1267		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1268			dma_unmap_single(&fep->pdev->dev,
1269					 fec32_to_cpu(bdp->cbd_bufaddr),
1270					 fec16_to_cpu(bdp->cbd_datlen),
1271					 DMA_TO_DEVICE);
1272		bdp->cbd_bufaddr = cpu_to_fec32(0);
1273		if (!skb)
1274			goto skb_done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1275
1276		/* Check for errors. */
1277		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1278				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1279				   BD_ENET_TX_CSL)) {
1280			ndev->stats.tx_errors++;
1281			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1282				ndev->stats.tx_heartbeat_errors++;
1283			if (status & BD_ENET_TX_LC)  /* Late collision */
1284				ndev->stats.tx_window_errors++;
1285			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1286				ndev->stats.tx_aborted_errors++;
1287			if (status & BD_ENET_TX_UN)  /* Underrun */
1288				ndev->stats.tx_fifo_errors++;
1289			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1290				ndev->stats.tx_carrier_errors++;
1291		} else {
1292			ndev->stats.tx_packets++;
1293			ndev->stats.tx_bytes += skb->len;
1294		}
1295
1296		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1297		 * are to time stamp the packet, so we still need to check time
1298		 * stamping enabled flag.
1299		 */
1300		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1301			     fep->hwts_tx_en) &&
1302		    fep->bufdesc_ex) {
1303			struct skb_shared_hwtstamps shhwtstamps;
1304			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1305
1306			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1307			skb_tstamp_tx(skb, &shhwtstamps);
1308		}
1309
1310		/* Deferred means some collisions occurred during transmit,
1311		 * but we eventually sent the packet OK.
1312		 */
1313		if (status & BD_ENET_TX_DEF)
1314			ndev->stats.collisions++;
1315
1316		/* Free the sk buffer associated with this last transmit */
1317		dev_kfree_skb_any(skb);
1318skb_done:
1319		/* Make sure the update to bdp and tx_skbuff are performed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320		 * before dirty_tx
1321		 */
1322		wmb();
1323		txq->dirty_tx = bdp;
1324
1325		/* Update pointer to next buffer descriptor to be transmitted */
1326		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1327
1328		/* Since we have freed up a buffer, the ring is no longer full
1329		 */
1330		if (netif_tx_queue_stopped(nq)) {
1331			entries_free = fec_enet_get_free_txdesc_num(txq);
1332			if (entries_free >= txq->tx_wake_threshold)
1333				netif_tx_wake_queue(nq);
1334		}
1335	}
1336
1337	/* ERR006358: Keep the transmitter going */
1338	if (bdp != txq->bd.cur &&
1339	    readl(txq->bd.reg_desc_active) == 0)
1340		writel(0, txq->bd.reg_desc_active);
1341}
1342
1343static void fec_enet_tx(struct net_device *ndev)
1344{
1345	struct fec_enet_private *fep = netdev_priv(ndev);
1346	int i;
1347
1348	/* Make sure that AVB queues are processed first. */
1349	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1350		fec_enet_tx_queue(ndev, i);
1351}
1352
1353static int
1354fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1355{
1356	struct  fec_enet_private *fep = netdev_priv(ndev);
1357	int off;
1358
1359	off = ((unsigned long)skb->data) & fep->rx_align;
1360	if (off)
1361		skb_reserve(skb, fep->rx_align + 1 - off);
1362
1363	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1364	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1365		if (net_ratelimit())
1366			netdev_err(ndev, "Rx DMA memory map failed\n");
1367		return -ENOMEM;
1368	}
1369
1370	return 0;
1371}
1372
1373static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1374			       struct bufdesc *bdp, u32 length, bool swap)
 
1375{
1376	struct  fec_enet_private *fep = netdev_priv(ndev);
1377	struct sk_buff *new_skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
1379	if (length > fep->rx_copybreak)
1380		return false;
 
 
 
 
1381
1382	new_skb = netdev_alloc_skb(ndev, length);
1383	if (!new_skb)
1384		return false;
1385
1386	dma_sync_single_for_cpu(&fep->pdev->dev,
1387				fec32_to_cpu(bdp->cbd_bufaddr),
1388				FEC_ENET_RX_FRSIZE - fep->rx_align,
1389				DMA_FROM_DEVICE);
1390	if (!swap)
1391		memcpy(new_skb->data, (*skb)->data, length);
1392	else
1393		swap_buffer2(new_skb->data, (*skb)->data, length);
1394	*skb = new_skb;
1395
1396	return true;
1397}
1398
1399/* During a receive, the bd_rx.cur points to the current incoming buffer.
1400 * When we update through the ring, if the next incoming buffer has
1401 * not been given to the system, we just set the empty indicator,
1402 * effectively tossing the packet.
1403 */
1404static int
1405fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1406{
1407	struct fec_enet_private *fep = netdev_priv(ndev);
1408	struct fec_enet_priv_rx_q *rxq;
1409	struct bufdesc *bdp;
1410	unsigned short status;
1411	struct  sk_buff *skb_new = NULL;
1412	struct  sk_buff *skb;
1413	ushort	pkt_len;
1414	__u8 *data;
1415	int	pkt_received = 0;
1416	struct	bufdesc_ex *ebdp = NULL;
1417	bool	vlan_packet_rcvd = false;
1418	u16	vlan_tag;
1419	int	index = 0;
1420	bool	is_copybreak;
1421	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
 
 
 
 
 
 
 
1422
1423#ifdef CONFIG_M532x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424	flush_cache_all();
1425#endif
1426	rxq = fep->rx_queue[queue_id];
1427
1428	/* First, grab all of the stats for the incoming packet.
1429	 * These get messed up if we get called due to a busy condition.
1430	 */
1431	bdp = rxq->bd.cur;
 
1432
1433	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1434
1435		if (pkt_received >= budget)
1436			break;
1437		pkt_received++;
1438
1439		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1440
1441		/* Check for errors. */
1442		status ^= BD_ENET_RX_LAST;
1443		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1444			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1445			   BD_ENET_RX_CL)) {
1446			ndev->stats.rx_errors++;
1447			if (status & BD_ENET_RX_OV) {
1448				/* FIFO overrun */
1449				ndev->stats.rx_fifo_errors++;
1450				goto rx_processing_done;
1451			}
1452			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1453						| BD_ENET_RX_LAST)) {
1454				/* Frame too long or too short. */
1455				ndev->stats.rx_length_errors++;
1456				if (status & BD_ENET_RX_LAST)
1457					netdev_err(ndev, "rcv is not +last\n");
1458			}
1459			if (status & BD_ENET_RX_CR)	/* CRC Error */
1460				ndev->stats.rx_crc_errors++;
1461			/* Report late collisions as a frame error. */
1462			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1463				ndev->stats.rx_frame_errors++;
1464			goto rx_processing_done;
1465		}
1466
1467		/* Process the incoming frame. */
1468		ndev->stats.rx_packets++;
1469		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1470		ndev->stats.rx_bytes += pkt_len;
1471
1472		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1473		skb = rxq->rx_skbuff[index];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474
1475		/* The packet length includes FCS, but we don't want to
1476		 * include that when passing upstream as it messes up
1477		 * bridging applications.
1478		 */
1479		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1480						  need_swap);
1481		if (!is_copybreak) {
1482			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1483			if (unlikely(!skb_new)) {
1484				ndev->stats.rx_dropped++;
1485				goto rx_processing_done;
1486			}
1487			dma_unmap_single(&fep->pdev->dev,
1488					 fec32_to_cpu(bdp->cbd_bufaddr),
1489					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1490					 DMA_FROM_DEVICE);
1491		}
1492
1493		prefetch(skb->data - NET_IP_ALIGN);
1494		skb_put(skb, pkt_len - 4);
1495		data = skb->data;
1496
1497		if (!is_copybreak && need_swap)
 
1498			swap_buffer(data, pkt_len);
1499
1500#if !defined(CONFIG_M5272)
1501		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1502			data = skb_pull_inline(skb, 2);
1503#endif
1504
1505		/* Extract the enhanced buffer descriptor */
1506		ebdp = NULL;
1507		if (fep->bufdesc_ex)
1508			ebdp = (struct bufdesc_ex *)bdp;
1509
1510		/* If this is a VLAN packet remove the VLAN Tag */
1511		vlan_packet_rcvd = false;
1512		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1513		    fep->bufdesc_ex &&
1514		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1515			/* Push and remove the vlan tag */
1516			struct vlan_hdr *vlan_header =
1517					(struct vlan_hdr *) (data + ETH_HLEN);
1518			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1519
1520			vlan_packet_rcvd = true;
1521
1522			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1523			skb_pull(skb, VLAN_HLEN);
1524		}
1525
1526		skb->protocol = eth_type_trans(skb, ndev);
1527
1528		/* Get receive timestamp from the skb */
1529		if (fep->hwts_rx_en && fep->bufdesc_ex)
1530			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1531					  skb_hwtstamps(skb));
1532
1533		if (fep->bufdesc_ex &&
1534		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1535			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1536				/* don't check it */
1537				skb->ip_summed = CHECKSUM_UNNECESSARY;
1538			} else {
1539				skb_checksum_none_assert(skb);
1540			}
1541		}
1542
1543		/* Handle received VLAN packets */
1544		if (vlan_packet_rcvd)
1545			__vlan_hwaccel_put_tag(skb,
1546					       htons(ETH_P_8021Q),
1547					       vlan_tag);
1548
1549		skb_record_rx_queue(skb, queue_id);
1550		napi_gro_receive(&fep->napi, skb);
1551
1552		if (is_copybreak) {
1553			dma_sync_single_for_device(&fep->pdev->dev,
1554						   fec32_to_cpu(bdp->cbd_bufaddr),
1555						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1556						   DMA_FROM_DEVICE);
1557		} else {
1558			rxq->rx_skbuff[index] = skb_new;
1559			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1560		}
1561
1562rx_processing_done:
1563		/* Clear the status flags for this buffer */
1564		status &= ~BD_ENET_RX_STATS;
1565
1566		/* Mark the buffer empty */
1567		status |= BD_ENET_RX_EMPTY;
1568
1569		if (fep->bufdesc_ex) {
1570			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1571
1572			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1573			ebdp->cbd_prot = 0;
1574			ebdp->cbd_bdu = 0;
1575		}
1576		/* Make sure the updates to rest of the descriptor are
1577		 * performed before transferring ownership.
1578		 */
1579		wmb();
1580		bdp->cbd_sc = cpu_to_fec16(status);
1581
1582		/* Update BD pointer to next entry */
1583		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1584
1585		/* Doing this here will keep the FEC running while we process
1586		 * incoming frames.  On a heavily loaded network, we should be
1587		 * able to keep up at the expense of system resources.
1588		 */
1589		writel(0, rxq->bd.reg_desc_active);
1590	}
1591	rxq->bd.cur = bdp;
 
 
 
 
1592	return pkt_received;
1593}
1594
1595static int fec_enet_rx(struct net_device *ndev, int budget)
1596{
1597	struct fec_enet_private *fep = netdev_priv(ndev);
1598	int i, done = 0;
1599
1600	/* Make sure that AVB queues are processed first. */
1601	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1602		done += fec_enet_rx_queue(ndev, budget - done, i);
1603
1604	return done;
1605}
1606
1607static bool fec_enet_collect_events(struct fec_enet_private *fep)
1608{
1609	uint int_events;
1610
1611	int_events = readl(fep->hwp + FEC_IEVENT);
1612
1613	/* Don't clear MDIO events, we poll for those */
1614	int_events &= ~FEC_ENET_MII;
1615
1616	writel(int_events, fep->hwp + FEC_IEVENT);
1617
1618	return int_events != 0;
1619}
1620
1621static irqreturn_t
1622fec_enet_interrupt(int irq, void *dev_id)
1623{
1624	struct net_device *ndev = dev_id;
1625	struct fec_enet_private *fep = netdev_priv(ndev);
1626	irqreturn_t ret = IRQ_NONE;
1627
1628	if (fec_enet_collect_events(fep) && fep->link) {
1629		ret = IRQ_HANDLED;
1630
1631		if (napi_schedule_prep(&fep->napi)) {
1632			/* Disable interrupts */
1633			writel(0, fep->hwp + FEC_IMASK);
1634			__napi_schedule(&fep->napi);
1635		}
1636	}
1637
1638	return ret;
1639}
1640
1641static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1642{
1643	struct net_device *ndev = napi->dev;
1644	struct fec_enet_private *fep = netdev_priv(ndev);
1645	int done = 0;
1646
1647	do {
1648		done += fec_enet_rx(ndev, budget - done);
1649		fec_enet_tx(ndev);
1650	} while ((done < budget) && fec_enet_collect_events(fep));
1651
1652	if (done < budget) {
1653		napi_complete_done(napi, done);
1654		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1655	}
1656
1657	return done;
1658}
1659
1660/* ------------------------------------------------------------------------- */
1661static void fec_get_mac(struct net_device *ndev)
1662{
1663	struct fec_enet_private *fep = netdev_priv(ndev);
1664	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1665	unsigned char *iap, tmpaddr[ETH_ALEN];
 
1666
1667	/*
1668	 * try to get mac address in following order:
1669	 *
1670	 * 1) module parameter via kernel command line in form
1671	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1672	 */
1673	iap = macaddr;
1674
1675	/*
1676	 * 2) from device tree data
1677	 */
1678	if (!is_valid_ether_addr(iap)) {
1679		struct device_node *np = fep->pdev->dev.of_node;
1680		if (np) {
1681			const char *mac = of_get_mac_address(np);
1682			if (!IS_ERR(mac))
1683				iap = (unsigned char *) mac;
 
 
1684		}
1685	}
1686
1687	/*
1688	 * 3) from flash or fuse (via platform data)
1689	 */
1690	if (!is_valid_ether_addr(iap)) {
1691#ifdef CONFIG_M5272
1692		if (FEC_FLASHMAC)
1693			iap = (unsigned char *)FEC_FLASHMAC;
1694#else
 
 
1695		if (pdata)
1696			iap = (unsigned char *)&pdata->mac;
1697#endif
1698	}
1699
1700	/*
1701	 * 4) FEC mac registers set by bootloader
1702	 */
1703	if (!is_valid_ether_addr(iap)) {
1704		*((__be32 *) &tmpaddr[0]) =
1705			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1706		*((__be16 *) &tmpaddr[4]) =
1707			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1708		iap = &tmpaddr[0];
1709	}
1710
1711	/*
1712	 * 5) random mac address
1713	 */
1714	if (!is_valid_ether_addr(iap)) {
1715		/* Report it and use a random ethernet address instead */
1716		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1717		eth_hw_addr_random(ndev);
1718		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1719			 ndev->dev_addr);
1720		return;
1721	}
1722
1723	memcpy(ndev->dev_addr, iap, ETH_ALEN);
 
1724
1725	/* Adjust MAC if using macaddr */
1726	if (iap == macaddr)
1727		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1728}
1729
1730/* ------------------------------------------------------------------------- */
1731
1732/*
1733 * Phy section
1734 */
1735static void fec_enet_adjust_link(struct net_device *ndev)
1736{
1737	struct fec_enet_private *fep = netdev_priv(ndev);
1738	struct phy_device *phy_dev = ndev->phydev;
1739	int status_change = 0;
1740
1741	/*
1742	 * If the netdev is down, or is going down, we're not interested
1743	 * in link state events, so just mark our idea of the link as down
1744	 * and ignore the event.
1745	 */
1746	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1747		fep->link = 0;
1748	} else if (phy_dev->link) {
1749		if (!fep->link) {
1750			fep->link = phy_dev->link;
1751			status_change = 1;
1752		}
1753
1754		if (fep->full_duplex != phy_dev->duplex) {
1755			fep->full_duplex = phy_dev->duplex;
1756			status_change = 1;
1757		}
1758
1759		if (phy_dev->speed != fep->speed) {
1760			fep->speed = phy_dev->speed;
1761			status_change = 1;
1762		}
1763
1764		/* if any of the above changed restart the FEC */
1765		if (status_change) {
 
1766			napi_disable(&fep->napi);
1767			netif_tx_lock_bh(ndev);
1768			fec_restart(ndev);
1769			netif_tx_wake_all_queues(ndev);
1770			netif_tx_unlock_bh(ndev);
1771			napi_enable(&fep->napi);
1772		}
1773	} else {
1774		if (fep->link) {
 
1775			napi_disable(&fep->napi);
1776			netif_tx_lock_bh(ndev);
1777			fec_stop(ndev);
1778			netif_tx_unlock_bh(ndev);
1779			napi_enable(&fep->napi);
1780			fep->link = phy_dev->link;
1781			status_change = 1;
1782		}
1783	}
1784
1785	if (status_change)
1786		phy_print_status(phy_dev);
1787}
1788
1789static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1790{
1791	uint ievent;
1792	int ret;
1793
1794	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1795					ievent & FEC_ENET_MII, 2, 30000);
1796
1797	if (!ret)
1798		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1799
1800	return ret;
1801}
1802
1803static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1804{
1805	struct fec_enet_private *fep = bus->priv;
1806	struct device *dev = &fep->pdev->dev;
1807	int ret = 0, frame_start, frame_addr, frame_op;
1808	bool is_c45 = !!(regnum & MII_ADDR_C45);
1809
1810	ret = pm_runtime_get_sync(dev);
1811	if (ret < 0)
1812		return ret;
1813
1814	if (is_c45) {
1815		frame_start = FEC_MMFR_ST_C45;
 
 
1816
1817		/* write address */
1818		frame_addr = (regnum >> 16);
1819		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1820		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1821		       FEC_MMFR_TA | (regnum & 0xFFFF),
1822		       fep->hwp + FEC_MII_DATA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824		/* wait for end of transfer */
1825		ret = fec_enet_mdio_wait(fep);
1826		if (ret) {
1827			netdev_err(fep->netdev, "MDIO address write timeout\n");
1828			goto out;
1829		}
1830
1831		frame_op = FEC_MMFR_OP_READ_C45;
 
 
 
 
1832
1833	} else {
1834		/* C22 read */
1835		frame_op = FEC_MMFR_OP_READ;
1836		frame_start = FEC_MMFR_ST;
1837		frame_addr = regnum;
1838	}
1839
 
 
1840	/* start a read op */
1841	writel(frame_start | frame_op |
1842		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1843		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1844
1845	/* wait for end of transfer */
1846	ret = fec_enet_mdio_wait(fep);
1847	if (ret) {
1848		netdev_err(fep->netdev, "MDIO read timeout\n");
1849		goto out;
1850	}
1851
1852	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1853
1854out:
1855	pm_runtime_mark_last_busy(dev);
1856	pm_runtime_put_autosuspend(dev);
1857
1858	return ret;
1859}
1860
1861static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1862			   u16 value)
1863{
1864	struct fec_enet_private *fep = bus->priv;
1865	struct device *dev = &fep->pdev->dev;
1866	int ret, frame_start, frame_addr;
1867	bool is_c45 = !!(regnum & MII_ADDR_C45);
1868
1869	ret = pm_runtime_get_sync(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870	if (ret < 0)
1871		return ret;
1872	else
1873		ret = 0;
1874
1875	if (is_c45) {
1876		frame_start = FEC_MMFR_ST_C45;
1877
1878		/* write address */
1879		frame_addr = (regnum >> 16);
1880		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1881		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1882		       FEC_MMFR_TA | (regnum & 0xFFFF),
1883		       fep->hwp + FEC_MII_DATA);
1884
1885		/* wait for end of transfer */
1886		ret = fec_enet_mdio_wait(fep);
1887		if (ret) {
1888			netdev_err(fep->netdev, "MDIO address write timeout\n");
1889			goto out;
1890		}
1891	} else {
1892		/* C22 write */
1893		frame_start = FEC_MMFR_ST;
1894		frame_addr = regnum;
1895	}
1896
1897	/* start a write op */
1898	writel(frame_start | FEC_MMFR_OP_WRITE |
1899		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1900		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1901		fep->hwp + FEC_MII_DATA);
1902
1903	/* wait for end of transfer */
1904	ret = fec_enet_mdio_wait(fep);
1905	if (ret)
1906		netdev_err(fep->netdev, "MDIO write timeout\n");
1907
1908out:
1909	pm_runtime_mark_last_busy(dev);
1910	pm_runtime_put_autosuspend(dev);
1911
1912	return ret;
1913}
1914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1915static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1916{
1917	struct fec_enet_private *fep = netdev_priv(ndev);
1918	int ret;
1919
1920	if (enable) {
1921		ret = clk_prepare_enable(fep->clk_enet_out);
1922		if (ret)
1923			return ret;
1924
1925		if (fep->clk_ptp) {
1926			mutex_lock(&fep->ptp_clk_mutex);
1927			ret = clk_prepare_enable(fep->clk_ptp);
1928			if (ret) {
1929				mutex_unlock(&fep->ptp_clk_mutex);
1930				goto failed_clk_ptp;
1931			} else {
1932				fep->ptp_clk_on = true;
1933			}
1934			mutex_unlock(&fep->ptp_clk_mutex);
1935		}
1936
1937		ret = clk_prepare_enable(fep->clk_ref);
1938		if (ret)
1939			goto failed_clk_ref;
1940
1941		phy_reset_after_clk_enable(ndev->phydev);
 
 
 
 
1942	} else {
1943		clk_disable_unprepare(fep->clk_enet_out);
1944		if (fep->clk_ptp) {
1945			mutex_lock(&fep->ptp_clk_mutex);
1946			clk_disable_unprepare(fep->clk_ptp);
1947			fep->ptp_clk_on = false;
1948			mutex_unlock(&fep->ptp_clk_mutex);
1949		}
1950		clk_disable_unprepare(fep->clk_ref);
 
1951	}
1952
1953	return 0;
1954
 
 
 
1955failed_clk_ref:
1956	if (fep->clk_ptp) {
1957		mutex_lock(&fep->ptp_clk_mutex);
1958		clk_disable_unprepare(fep->clk_ptp);
1959		fep->ptp_clk_on = false;
1960		mutex_unlock(&fep->ptp_clk_mutex);
1961	}
1962failed_clk_ptp:
1963	if (fep->clk_enet_out)
1964		clk_disable_unprepare(fep->clk_enet_out);
1965
1966	return ret;
1967}
1968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969static int fec_enet_mii_probe(struct net_device *ndev)
1970{
1971	struct fec_enet_private *fep = netdev_priv(ndev);
1972	struct phy_device *phy_dev = NULL;
1973	char mdio_bus_id[MII_BUS_ID_SIZE];
1974	char phy_name[MII_BUS_ID_SIZE + 3];
1975	int phy_id;
1976	int dev_id = fep->dev_id;
1977
1978	if (fep->phy_node) {
1979		phy_dev = of_phy_connect(ndev, fep->phy_node,
1980					 &fec_enet_adjust_link, 0,
1981					 fep->phy_interface);
1982		if (!phy_dev) {
1983			netdev_err(ndev, "Unable to connect to phy\n");
1984			return -ENODEV;
1985		}
1986	} else {
1987		/* check for attached phy */
1988		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1989			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1990				continue;
1991			if (dev_id--)
1992				continue;
1993			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1994			break;
1995		}
1996
1997		if (phy_id >= PHY_MAX_ADDR) {
1998			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1999			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2000			phy_id = 0;
2001		}
2002
2003		snprintf(phy_name, sizeof(phy_name),
2004			 PHY_ID_FMT, mdio_bus_id, phy_id);
2005		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2006				      fep->phy_interface);
2007	}
2008
2009	if (IS_ERR(phy_dev)) {
2010		netdev_err(ndev, "could not attach to PHY\n");
2011		return PTR_ERR(phy_dev);
2012	}
2013
2014	/* mask with MAC supported features */
2015	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2016		phy_set_max_speed(phy_dev, 1000);
2017		phy_remove_link_mode(phy_dev,
2018				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2019#if !defined(CONFIG_M5272)
2020		phy_support_sym_pause(phy_dev);
2021#endif
2022	}
2023	else
2024		phy_set_max_speed(phy_dev, 100);
2025
2026	fep->link = 0;
2027	fep->full_duplex = 0;
2028
 
 
2029	phy_attached_info(phy_dev);
2030
2031	return 0;
2032}
2033
2034static int fec_enet_mii_init(struct platform_device *pdev)
2035{
2036	static struct mii_bus *fec0_mii_bus;
2037	struct net_device *ndev = platform_get_drvdata(pdev);
2038	struct fec_enet_private *fep = netdev_priv(ndev);
2039	bool suppress_preamble = false;
2040	struct device_node *node;
2041	int err = -ENXIO;
2042	u32 mii_speed, holdtime;
2043	u32 bus_freq;
2044
2045	/*
2046	 * The i.MX28 dual fec interfaces are not equal.
2047	 * Here are the differences:
2048	 *
2049	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2050	 *  - fec0 acts as the 1588 time master while fec1 is slave
2051	 *  - external phys can only be configured by fec0
2052	 *
2053	 * That is to say fec1 can not work independently. It only works
2054	 * when fec0 is working. The reason behind this design is that the
2055	 * second interface is added primarily for Switch mode.
2056	 *
2057	 * Because of the last point above, both phys are attached on fec0
2058	 * mdio interface in board design, and need to be configured by
2059	 * fec0 mii_bus.
2060	 */
2061	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2062		/* fec1 uses fec0 mii_bus */
2063		if (mii_cnt && fec0_mii_bus) {
2064			fep->mii_bus = fec0_mii_bus;
2065			mii_cnt++;
2066			return 0;
2067		}
2068		return -ENOENT;
2069	}
2070
2071	bus_freq = 2500000; /* 2.5MHz by default */
2072	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2073	if (node) {
2074		of_property_read_u32(node, "clock-frequency", &bus_freq);
2075		suppress_preamble = of_property_read_bool(node,
2076							  "suppress-preamble");
2077	}
2078
2079	/*
2080	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2081	 *
2082	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2083	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2084	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2085	 * document.
2086	 */
2087	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2088	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2089		mii_speed--;
2090	if (mii_speed > 63) {
2091		dev_err(&pdev->dev,
2092			"fec clock (%lu) too fast to get right mii speed\n",
2093			clk_get_rate(fep->clk_ipg));
2094		err = -EINVAL;
2095		goto err_out;
2096	}
2097
2098	/*
2099	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2100	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2101	 * versions are RAZ there, so just ignore the difference and write the
2102	 * register always.
2103	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2104	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2105	 * output.
2106	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2107	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2108	 * holdtime cannot result in a value greater than 3.
2109	 */
2110	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2111
2112	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2113
2114	if (suppress_preamble)
2115		fep->phy_speed |= BIT(7);
2116
2117	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2118	 * MII event generation condition:
2119	 * - writing MSCR:
2120	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2121	 *	  mscr_reg_data_in[7:0] != 0
2122	 * - writing MMFR:
2123	 *	- mscr[7:0]_not_zero
2124	 */
2125	writel(0, fep->hwp + FEC_MII_DATA);
 
 
2126
2127	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2128
2129	/* Clear any pending transaction complete indication */
2130	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2131
2132	fep->mii_bus = mdiobus_alloc();
2133	if (fep->mii_bus == NULL) {
2134		err = -ENOMEM;
2135		goto err_out;
2136	}
2137
2138	fep->mii_bus->name = "fec_enet_mii_bus";
2139	fep->mii_bus->read = fec_enet_mdio_read;
2140	fep->mii_bus->write = fec_enet_mdio_write;
 
 
 
 
2141	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2142		pdev->name, fep->dev_id + 1);
2143	fep->mii_bus->priv = fep;
2144	fep->mii_bus->parent = &pdev->dev;
2145
2146	err = of_mdiobus_register(fep->mii_bus, node);
2147	of_node_put(node);
2148	if (err)
2149		goto err_out_free_mdiobus;
 
2150
2151	mii_cnt++;
2152
2153	/* save fec0 mii_bus */
2154	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2155		fec0_mii_bus = fep->mii_bus;
2156
2157	return 0;
2158
2159err_out_free_mdiobus:
2160	mdiobus_free(fep->mii_bus);
2161err_out:
 
2162	return err;
2163}
2164
2165static void fec_enet_mii_remove(struct fec_enet_private *fep)
2166{
2167	if (--mii_cnt == 0) {
2168		mdiobus_unregister(fep->mii_bus);
2169		mdiobus_free(fep->mii_bus);
2170	}
2171}
2172
2173static void fec_enet_get_drvinfo(struct net_device *ndev,
2174				 struct ethtool_drvinfo *info)
2175{
2176	struct fec_enet_private *fep = netdev_priv(ndev);
2177
2178	strlcpy(info->driver, fep->pdev->dev.driver->name,
2179		sizeof(info->driver));
2180	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2181}
2182
2183static int fec_enet_get_regs_len(struct net_device *ndev)
2184{
2185	struct fec_enet_private *fep = netdev_priv(ndev);
2186	struct resource *r;
2187	int s = 0;
2188
2189	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2190	if (r)
2191		s = resource_size(r);
2192
2193	return s;
2194}
2195
2196/* List of registers that can be safety be read to dump them with ethtool */
2197#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2198	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2199	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2200static __u32 fec_enet_register_version = 2;
2201static u32 fec_enet_register_offset[] = {
2202	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2203	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2204	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2205	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2206	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2207	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2208	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2209	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2210	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2211	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2212	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2213	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2214	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2215	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2216	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2217	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2218	RMON_T_P_GTE2048, RMON_T_OCTETS,
2219	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2220	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2221	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2222	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2223	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2224	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2225	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2226	RMON_R_P_GTE2048, RMON_R_OCTETS,
2227	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2228	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2229};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230#else
2231static __u32 fec_enet_register_version = 1;
2232static u32 fec_enet_register_offset[] = {
2233	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2234	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2235	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2236	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2237	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2238	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2239	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2240	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2241	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2242};
2243#endif
2244
2245static void fec_enet_get_regs(struct net_device *ndev,
2246			      struct ethtool_regs *regs, void *regbuf)
2247{
2248	struct fec_enet_private *fep = netdev_priv(ndev);
2249	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2250	struct device *dev = &fep->pdev->dev;
2251	u32 *buf = (u32 *)regbuf;
2252	u32 i, off;
2253	int ret;
 
 
 
 
 
2254
2255	ret = pm_runtime_get_sync(dev);
 
 
 
 
 
 
 
 
 
 
 
 
2256	if (ret < 0)
2257		return;
2258
2259	regs->version = fec_enet_register_version;
2260
2261	memset(buf, 0, regs->len);
2262
2263	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2264		off = fec_enet_register_offset[i];
2265
2266		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2267		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2268			continue;
2269
2270		off >>= 2;
2271		buf[off] = readl(&theregs[off]);
2272	}
2273
2274	pm_runtime_mark_last_busy(dev);
2275	pm_runtime_put_autosuspend(dev);
2276}
2277
2278static int fec_enet_get_ts_info(struct net_device *ndev,
2279				struct ethtool_ts_info *info)
2280{
2281	struct fec_enet_private *fep = netdev_priv(ndev);
2282
2283	if (fep->bufdesc_ex) {
2284
2285		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2286					SOF_TIMESTAMPING_RX_SOFTWARE |
2287					SOF_TIMESTAMPING_SOFTWARE |
2288					SOF_TIMESTAMPING_TX_HARDWARE |
2289					SOF_TIMESTAMPING_RX_HARDWARE |
2290					SOF_TIMESTAMPING_RAW_HARDWARE;
2291		if (fep->ptp_clock)
2292			info->phc_index = ptp_clock_index(fep->ptp_clock);
2293		else
2294			info->phc_index = -1;
2295
2296		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2297				 (1 << HWTSTAMP_TX_ON);
2298
2299		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2300				   (1 << HWTSTAMP_FILTER_ALL);
2301		return 0;
2302	} else {
2303		return ethtool_op_get_ts_info(ndev, info);
2304	}
2305}
2306
2307#if !defined(CONFIG_M5272)
2308
2309static void fec_enet_get_pauseparam(struct net_device *ndev,
2310				    struct ethtool_pauseparam *pause)
2311{
2312	struct fec_enet_private *fep = netdev_priv(ndev);
2313
2314	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2315	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2316	pause->rx_pause = pause->tx_pause;
2317}
2318
2319static int fec_enet_set_pauseparam(struct net_device *ndev,
2320				   struct ethtool_pauseparam *pause)
2321{
2322	struct fec_enet_private *fep = netdev_priv(ndev);
2323
2324	if (!ndev->phydev)
2325		return -ENODEV;
2326
2327	if (pause->tx_pause != pause->rx_pause) {
2328		netdev_info(ndev,
2329			"hardware only support enable/disable both tx and rx");
2330		return -EINVAL;
2331	}
2332
2333	fep->pause_flag = 0;
2334
2335	/* tx pause must be same as rx pause */
2336	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2337	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2338
2339	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2340			  pause->autoneg);
2341
2342	if (pause->autoneg) {
2343		if (netif_running(ndev))
2344			fec_stop(ndev);
2345		phy_start_aneg(ndev->phydev);
2346	}
2347	if (netif_running(ndev)) {
2348		napi_disable(&fep->napi);
2349		netif_tx_lock_bh(ndev);
2350		fec_restart(ndev);
2351		netif_tx_wake_all_queues(ndev);
2352		netif_tx_unlock_bh(ndev);
2353		napi_enable(&fep->napi);
2354	}
2355
2356	return 0;
2357}
2358
2359static const struct fec_stat {
2360	char name[ETH_GSTRING_LEN];
2361	u16 offset;
2362} fec_stats[] = {
2363	/* RMON TX */
2364	{ "tx_dropped", RMON_T_DROP },
2365	{ "tx_packets", RMON_T_PACKETS },
2366	{ "tx_broadcast", RMON_T_BC_PKT },
2367	{ "tx_multicast", RMON_T_MC_PKT },
2368	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2369	{ "tx_undersize", RMON_T_UNDERSIZE },
2370	{ "tx_oversize", RMON_T_OVERSIZE },
2371	{ "tx_fragment", RMON_T_FRAG },
2372	{ "tx_jabber", RMON_T_JAB },
2373	{ "tx_collision", RMON_T_COL },
2374	{ "tx_64byte", RMON_T_P64 },
2375	{ "tx_65to127byte", RMON_T_P65TO127 },
2376	{ "tx_128to255byte", RMON_T_P128TO255 },
2377	{ "tx_256to511byte", RMON_T_P256TO511 },
2378	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2379	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2380	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2381	{ "tx_octets", RMON_T_OCTETS },
2382
2383	/* IEEE TX */
2384	{ "IEEE_tx_drop", IEEE_T_DROP },
2385	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2386	{ "IEEE_tx_1col", IEEE_T_1COL },
2387	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2388	{ "IEEE_tx_def", IEEE_T_DEF },
2389	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2390	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2391	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2392	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2393	{ "IEEE_tx_sqe", IEEE_T_SQE },
2394	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2395	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2396
2397	/* RMON RX */
2398	{ "rx_packets", RMON_R_PACKETS },
2399	{ "rx_broadcast", RMON_R_BC_PKT },
2400	{ "rx_multicast", RMON_R_MC_PKT },
2401	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2402	{ "rx_undersize", RMON_R_UNDERSIZE },
2403	{ "rx_oversize", RMON_R_OVERSIZE },
2404	{ "rx_fragment", RMON_R_FRAG },
2405	{ "rx_jabber", RMON_R_JAB },
2406	{ "rx_64byte", RMON_R_P64 },
2407	{ "rx_65to127byte", RMON_R_P65TO127 },
2408	{ "rx_128to255byte", RMON_R_P128TO255 },
2409	{ "rx_256to511byte", RMON_R_P256TO511 },
2410	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2411	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2412	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2413	{ "rx_octets", RMON_R_OCTETS },
2414
2415	/* IEEE RX */
2416	{ "IEEE_rx_drop", IEEE_R_DROP },
2417	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2418	{ "IEEE_rx_crc", IEEE_R_CRC },
2419	{ "IEEE_rx_align", IEEE_R_ALIGN },
2420	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2421	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2422	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2423};
2424
2425#define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2426
 
 
 
 
 
 
 
 
 
 
2427static void fec_enet_update_ethtool_stats(struct net_device *dev)
2428{
2429	struct fec_enet_private *fep = netdev_priv(dev);
2430	int i;
2431
2432	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2433		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2434}
2435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2436static void fec_enet_get_ethtool_stats(struct net_device *dev,
2437				       struct ethtool_stats *stats, u64 *data)
2438{
2439	struct fec_enet_private *fep = netdev_priv(dev);
2440
2441	if (netif_running(dev))
2442		fec_enet_update_ethtool_stats(dev);
2443
2444	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
 
 
 
 
 
 
2445}
2446
2447static void fec_enet_get_strings(struct net_device *netdev,
2448	u32 stringset, u8 *data)
2449{
2450	int i;
2451	switch (stringset) {
2452	case ETH_SS_STATS:
2453		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2454			memcpy(data + i * ETH_GSTRING_LEN,
2455				fec_stats[i].name, ETH_GSTRING_LEN);
 
 
 
 
 
 
 
 
2456		break;
2457	}
2458}
2459
2460static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2461{
 
 
2462	switch (sset) {
2463	case ETH_SS_STATS:
2464		return ARRAY_SIZE(fec_stats);
 
 
 
 
 
2465	default:
2466		return -EOPNOTSUPP;
2467	}
2468}
2469
2470static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2471{
2472	struct fec_enet_private *fep = netdev_priv(dev);
2473	int i;
 
2474
2475	/* Disable MIB statistics counters */
2476	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2477
2478	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2479		writel(0, fep->hwp + fec_stats[i].offset);
2480
 
 
 
 
 
 
2481	/* Don't disable MIB statistics counters */
2482	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2483}
2484
2485#else	/* !defined(CONFIG_M5272) */
2486#define FEC_STATS_SIZE	0
2487static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2488{
2489}
2490
2491static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2492{
2493}
2494#endif /* !defined(CONFIG_M5272) */
2495
2496/* ITR clock source is enet system clock (clk_ahb).
2497 * TCTT unit is cycle_ns * 64 cycle
2498 * So, the ICTT value = X us / (cycle_ns * 64)
2499 */
2500static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2501{
2502	struct fec_enet_private *fep = netdev_priv(ndev);
2503
2504	return us * (fep->itr_clk_rate / 64000) / 1000;
2505}
2506
2507/* Set threshold for interrupt coalescing */
2508static void fec_enet_itr_coal_set(struct net_device *ndev)
2509{
2510	struct fec_enet_private *fep = netdev_priv(ndev);
2511	int rx_itr, tx_itr;
2512
2513	/* Must be greater than zero to avoid unpredictable behavior */
2514	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2515	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2516		return;
2517
2518	/* Select enet system clock as Interrupt Coalescing
2519	 * timer Clock Source
2520	 */
2521	rx_itr = FEC_ITR_CLK_SEL;
2522	tx_itr = FEC_ITR_CLK_SEL;
2523
2524	/* set ICFT and ICTT */
2525	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2526	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2527	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2528	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2529
2530	rx_itr |= FEC_ITR_EN;
2531	tx_itr |= FEC_ITR_EN;
2532
2533	writel(tx_itr, fep->hwp + FEC_TXIC0);
2534	writel(rx_itr, fep->hwp + FEC_RXIC0);
2535	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2536		writel(tx_itr, fep->hwp + FEC_TXIC1);
2537		writel(rx_itr, fep->hwp + FEC_RXIC1);
2538		writel(tx_itr, fep->hwp + FEC_TXIC2);
2539		writel(rx_itr, fep->hwp + FEC_RXIC2);
2540	}
2541}
2542
2543static int
2544fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
 
 
2545{
2546	struct fec_enet_private *fep = netdev_priv(ndev);
2547
2548	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2549		return -EOPNOTSUPP;
2550
2551	ec->rx_coalesce_usecs = fep->rx_time_itr;
2552	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2553
2554	ec->tx_coalesce_usecs = fep->tx_time_itr;
2555	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2556
2557	return 0;
2558}
2559
2560static int
2561fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
 
 
2562{
2563	struct fec_enet_private *fep = netdev_priv(ndev);
2564	struct device *dev = &fep->pdev->dev;
2565	unsigned int cycle;
2566
2567	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2568		return -EOPNOTSUPP;
2569
2570	if (ec->rx_max_coalesced_frames > 255) {
2571		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2572		return -EINVAL;
2573	}
2574
2575	if (ec->tx_max_coalesced_frames > 255) {
2576		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2577		return -EINVAL;
2578	}
2579
2580	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2581	if (cycle > 0xFFFF) {
2582		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2583		return -EINVAL;
2584	}
2585
2586	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2587	if (cycle > 0xFFFF) {
2588		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2589		return -EINVAL;
2590	}
2591
2592	fep->rx_time_itr = ec->rx_coalesce_usecs;
2593	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2594
2595	fep->tx_time_itr = ec->tx_coalesce_usecs;
2596	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2597
2598	fec_enet_itr_coal_set(ndev);
2599
2600	return 0;
2601}
2602
2603static void fec_enet_itr_coal_init(struct net_device *ndev)
 
 
 
2604{
2605	struct ethtool_coalesce ec;
2606
2607	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2608	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2609
2610	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2611	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
 
 
 
 
2612
2613	fec_enet_set_coalesce(ndev, &ec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614}
2615
2616static int fec_enet_get_tunable(struct net_device *netdev,
2617				const struct ethtool_tunable *tuna,
2618				void *data)
2619{
2620	struct fec_enet_private *fep = netdev_priv(netdev);
2621	int ret = 0;
 
 
 
 
 
 
2622
2623	switch (tuna->id) {
2624	case ETHTOOL_RX_COPYBREAK:
2625		*(u32 *)data = fep->rx_copybreak;
2626		break;
2627	default:
2628		ret = -EINVAL;
2629		break;
2630	}
2631
2632	return ret;
2633}
2634
2635static int fec_enet_set_tunable(struct net_device *netdev,
2636				const struct ethtool_tunable *tuna,
2637				const void *data)
2638{
2639	struct fec_enet_private *fep = netdev_priv(netdev);
 
2640	int ret = 0;
2641
2642	switch (tuna->id) {
2643	case ETHTOOL_RX_COPYBREAK:
2644		fep->rx_copybreak = *(u32 *)data;
2645		break;
2646	default:
2647		ret = -EINVAL;
2648		break;
2649	}
 
 
 
 
 
 
 
 
2650
2651	return ret;
2652}
2653
2654static void
2655fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2656{
2657	struct fec_enet_private *fep = netdev_priv(ndev);
2658
2659	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2660		wol->supported = WAKE_MAGIC;
2661		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2662	} else {
2663		wol->supported = wol->wolopts = 0;
2664	}
2665}
2666
2667static int
2668fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2669{
2670	struct fec_enet_private *fep = netdev_priv(ndev);
2671
2672	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2673		return -EINVAL;
2674
2675	if (wol->wolopts & ~WAKE_MAGIC)
2676		return -EINVAL;
2677
2678	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2679	if (device_may_wakeup(&ndev->dev)) {
2680		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2681		if (fep->irq[0] > 0)
2682			enable_irq_wake(fep->irq[0]);
2683	} else {
2684		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2685		if (fep->irq[0] > 0)
2686			disable_irq_wake(fep->irq[0]);
2687	}
2688
2689	return 0;
2690}
2691
2692static const struct ethtool_ops fec_enet_ethtool_ops = {
2693	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2694				     ETHTOOL_COALESCE_MAX_FRAMES,
2695	.get_drvinfo		= fec_enet_get_drvinfo,
2696	.get_regs_len		= fec_enet_get_regs_len,
2697	.get_regs		= fec_enet_get_regs,
2698	.nway_reset		= phy_ethtool_nway_reset,
2699	.get_link		= ethtool_op_get_link,
2700	.get_coalesce		= fec_enet_get_coalesce,
2701	.set_coalesce		= fec_enet_set_coalesce,
2702#ifndef CONFIG_M5272
2703	.get_pauseparam		= fec_enet_get_pauseparam,
2704	.set_pauseparam		= fec_enet_set_pauseparam,
2705	.get_strings		= fec_enet_get_strings,
2706	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2707	.get_sset_count		= fec_enet_get_sset_count,
2708#endif
2709	.get_ts_info		= fec_enet_get_ts_info,
2710	.get_tunable		= fec_enet_get_tunable,
2711	.set_tunable		= fec_enet_set_tunable,
2712	.get_wol		= fec_enet_get_wol,
2713	.set_wol		= fec_enet_set_wol,
 
 
2714	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2715	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
 
2716};
2717
2718static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2719{
2720	struct fec_enet_private *fep = netdev_priv(ndev);
2721	struct phy_device *phydev = ndev->phydev;
2722
2723	if (!netif_running(ndev))
2724		return -EINVAL;
2725
2726	if (!phydev)
2727		return -ENODEV;
2728
2729	if (fep->bufdesc_ex) {
2730		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2731
2732		if (cmd == SIOCSHWTSTAMP) {
2733			if (use_fec_hwts)
2734				return fec_ptp_set(ndev, rq);
2735			fec_ptp_disable_hwts(ndev);
2736		} else if (cmd == SIOCGHWTSTAMP) {
2737			if (use_fec_hwts)
2738				return fec_ptp_get(ndev, rq);
2739		}
2740	}
2741
2742	return phy_mii_ioctl(phydev, rq, cmd);
2743}
2744
2745static void fec_enet_free_buffers(struct net_device *ndev)
2746{
2747	struct fec_enet_private *fep = netdev_priv(ndev);
2748	unsigned int i;
2749	struct sk_buff *skb;
2750	struct bufdesc	*bdp;
2751	struct fec_enet_priv_tx_q *txq;
2752	struct fec_enet_priv_rx_q *rxq;
2753	unsigned int q;
2754
2755	for (q = 0; q < fep->num_rx_queues; q++) {
2756		rxq = fep->rx_queue[q];
2757		bdp = rxq->bd.base;
2758		for (i = 0; i < rxq->bd.ring_size; i++) {
2759			skb = rxq->rx_skbuff[i];
2760			rxq->rx_skbuff[i] = NULL;
2761			if (skb) {
2762				dma_unmap_single(&fep->pdev->dev,
2763						 fec32_to_cpu(bdp->cbd_bufaddr),
2764						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2765						 DMA_FROM_DEVICE);
2766				dev_kfree_skb(skb);
2767			}
2768			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2769		}
2770	}
2771
2772	for (q = 0; q < fep->num_tx_queues; q++) {
2773		txq = fep->tx_queue[q];
2774		for (i = 0; i < txq->bd.ring_size; i++) {
2775			kfree(txq->tx_bounce[i]);
2776			txq->tx_bounce[i] = NULL;
2777			skb = txq->tx_skbuff[i];
2778			txq->tx_skbuff[i] = NULL;
2779			dev_kfree_skb(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780		}
2781	}
2782}
2783
2784static void fec_enet_free_queue(struct net_device *ndev)
2785{
2786	struct fec_enet_private *fep = netdev_priv(ndev);
2787	int i;
2788	struct fec_enet_priv_tx_q *txq;
2789
2790	for (i = 0; i < fep->num_tx_queues; i++)
2791		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2792			txq = fep->tx_queue[i];
2793			dma_free_coherent(&fep->pdev->dev,
2794					  txq->bd.ring_size * TSO_HEADER_SIZE,
2795					  txq->tso_hdrs,
2796					  txq->tso_hdrs_dma);
2797		}
2798
2799	for (i = 0; i < fep->num_rx_queues; i++)
2800		kfree(fep->rx_queue[i]);
2801	for (i = 0; i < fep->num_tx_queues; i++)
2802		kfree(fep->tx_queue[i]);
2803}
2804
2805static int fec_enet_alloc_queue(struct net_device *ndev)
2806{
2807	struct fec_enet_private *fep = netdev_priv(ndev);
2808	int i;
2809	int ret = 0;
2810	struct fec_enet_priv_tx_q *txq;
2811
2812	for (i = 0; i < fep->num_tx_queues; i++) {
2813		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2814		if (!txq) {
2815			ret = -ENOMEM;
2816			goto alloc_failed;
2817		}
2818
2819		fep->tx_queue[i] = txq;
2820		txq->bd.ring_size = TX_RING_SIZE;
2821		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2822
2823		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2824		txq->tx_wake_threshold =
2825			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2826
2827		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2828					txq->bd.ring_size * TSO_HEADER_SIZE,
2829					&txq->tso_hdrs_dma,
2830					GFP_KERNEL);
2831		if (!txq->tso_hdrs) {
2832			ret = -ENOMEM;
2833			goto alloc_failed;
2834		}
2835	}
2836
2837	for (i = 0; i < fep->num_rx_queues; i++) {
2838		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2839					   GFP_KERNEL);
2840		if (!fep->rx_queue[i]) {
2841			ret = -ENOMEM;
2842			goto alloc_failed;
2843		}
2844
2845		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2846		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2847	}
2848	return ret;
2849
2850alloc_failed:
2851	fec_enet_free_queue(ndev);
2852	return ret;
2853}
2854
2855static int
2856fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2857{
2858	struct fec_enet_private *fep = netdev_priv(ndev);
2859	unsigned int i;
2860	struct sk_buff *skb;
2861	struct bufdesc	*bdp;
2862	struct fec_enet_priv_rx_q *rxq;
 
2863
2864	rxq = fep->rx_queue[queue];
2865	bdp = rxq->bd.base;
 
 
 
 
 
 
 
2866	for (i = 0; i < rxq->bd.ring_size; i++) {
2867		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2868		if (!skb)
2869			goto err_alloc;
2870
2871		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2872			dev_kfree_skb(skb);
2873			goto err_alloc;
2874		}
2875
2876		rxq->rx_skbuff[i] = skb;
 
2877		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2878
2879		if (fep->bufdesc_ex) {
2880			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2881			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2882		}
2883
2884		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2885	}
2886
2887	/* Set the last buffer to wrap. */
2888	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2889	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2890	return 0;
2891
2892 err_alloc:
2893	fec_enet_free_buffers(ndev);
2894	return -ENOMEM;
2895}
2896
2897static int
2898fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2899{
2900	struct fec_enet_private *fep = netdev_priv(ndev);
2901	unsigned int i;
2902	struct bufdesc  *bdp;
2903	struct fec_enet_priv_tx_q *txq;
2904
2905	txq = fep->tx_queue[queue];
2906	bdp = txq->bd.base;
2907	for (i = 0; i < txq->bd.ring_size; i++) {
2908		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2909		if (!txq->tx_bounce[i])
2910			goto err_alloc;
2911
2912		bdp->cbd_sc = cpu_to_fec16(0);
2913		bdp->cbd_bufaddr = cpu_to_fec32(0);
2914
2915		if (fep->bufdesc_ex) {
2916			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2917			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2918		}
2919
2920		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2921	}
2922
2923	/* Set the last buffer to wrap. */
2924	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2925	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2926
2927	return 0;
2928
2929 err_alloc:
2930	fec_enet_free_buffers(ndev);
2931	return -ENOMEM;
2932}
2933
2934static int fec_enet_alloc_buffers(struct net_device *ndev)
2935{
2936	struct fec_enet_private *fep = netdev_priv(ndev);
2937	unsigned int i;
2938
2939	for (i = 0; i < fep->num_rx_queues; i++)
2940		if (fec_enet_alloc_rxq_buffers(ndev, i))
2941			return -ENOMEM;
2942
2943	for (i = 0; i < fep->num_tx_queues; i++)
2944		if (fec_enet_alloc_txq_buffers(ndev, i))
2945			return -ENOMEM;
2946	return 0;
2947}
2948
2949static int
2950fec_enet_open(struct net_device *ndev)
2951{
2952	struct fec_enet_private *fep = netdev_priv(ndev);
2953	int ret;
2954	bool reset_again;
2955
2956	ret = pm_runtime_get_sync(&fep->pdev->dev);
2957	if (ret < 0)
2958		return ret;
2959
2960	pinctrl_pm_select_default_state(&fep->pdev->dev);
2961	ret = fec_enet_clk_enable(ndev, true);
2962	if (ret)
2963		goto clk_enable;
2964
2965	/* During the first fec_enet_open call the PHY isn't probed at this
2966	 * point. Therefore the phy_reset_after_clk_enable() call within
2967	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2968	 * sure the PHY is working correctly we check if we need to reset again
2969	 * later when the PHY is probed
2970	 */
2971	if (ndev->phydev && ndev->phydev->drv)
2972		reset_again = false;
2973	else
2974		reset_again = true;
2975
2976	/* I should reset the ring buffers here, but I don't yet know
2977	 * a simple way to do that.
2978	 */
2979
2980	ret = fec_enet_alloc_buffers(ndev);
2981	if (ret)
2982		goto err_enet_alloc;
2983
2984	/* Init MAC prior to mii bus probe */
2985	fec_restart(ndev);
2986
 
 
 
 
 
 
2987	/* Probe and connect to PHY when open the interface */
2988	ret = fec_enet_mii_probe(ndev);
2989	if (ret)
2990		goto err_enet_mii_probe;
2991
2992	/* Call phy_reset_after_clk_enable() again if it failed during
2993	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2994	 */
2995	if (reset_again)
2996		phy_reset_after_clk_enable(ndev->phydev);
2997
2998	if (fep->quirks & FEC_QUIRK_ERR006687)
2999		imx6q_cpuidle_fec_irqs_used();
3000
 
 
 
3001	napi_enable(&fep->napi);
3002	phy_start(ndev->phydev);
3003	netif_tx_start_all_queues(ndev);
3004
3005	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3006				 FEC_WOL_FLAG_ENABLE);
3007
3008	return 0;
3009
3010err_enet_mii_probe:
3011	fec_enet_free_buffers(ndev);
3012err_enet_alloc:
3013	fec_enet_clk_enable(ndev, false);
3014clk_enable:
3015	pm_runtime_mark_last_busy(&fep->pdev->dev);
3016	pm_runtime_put_autosuspend(&fep->pdev->dev);
3017	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3018	return ret;
3019}
3020
3021static int
3022fec_enet_close(struct net_device *ndev)
3023{
3024	struct fec_enet_private *fep = netdev_priv(ndev);
3025
3026	phy_stop(ndev->phydev);
3027
3028	if (netif_device_present(ndev)) {
3029		napi_disable(&fep->napi);
3030		netif_tx_disable(ndev);
3031		fec_stop(ndev);
3032	}
3033
3034	phy_disconnect(ndev->phydev);
3035
3036	if (fep->quirks & FEC_QUIRK_ERR006687)
3037		imx6q_cpuidle_fec_irqs_unused();
3038
3039	fec_enet_update_ethtool_stats(ndev);
3040
3041	fec_enet_clk_enable(ndev, false);
 
 
 
3042	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3043	pm_runtime_mark_last_busy(&fep->pdev->dev);
3044	pm_runtime_put_autosuspend(&fep->pdev->dev);
3045
3046	fec_enet_free_buffers(ndev);
3047
3048	return 0;
3049}
3050
3051/* Set or clear the multicast filter for this adaptor.
3052 * Skeleton taken from sunlance driver.
3053 * The CPM Ethernet implementation allows Multicast as well as individual
3054 * MAC address filtering.  Some of the drivers check to make sure it is
3055 * a group multicast address, and discard those that are not.  I guess I
3056 * will do the same for now, but just remove the test if you want
3057 * individual filtering as well (do the upper net layers want or support
3058 * this kind of feature?).
3059 */
3060
3061#define FEC_HASH_BITS	6		/* #bits in hash */
3062
3063static void set_multicast_list(struct net_device *ndev)
3064{
3065	struct fec_enet_private *fep = netdev_priv(ndev);
3066	struct netdev_hw_addr *ha;
3067	unsigned int crc, tmp;
3068	unsigned char hash;
3069	unsigned int hash_high = 0, hash_low = 0;
3070
3071	if (ndev->flags & IFF_PROMISC) {
3072		tmp = readl(fep->hwp + FEC_R_CNTRL);
3073		tmp |= 0x8;
3074		writel(tmp, fep->hwp + FEC_R_CNTRL);
3075		return;
3076	}
3077
3078	tmp = readl(fep->hwp + FEC_R_CNTRL);
3079	tmp &= ~0x8;
3080	writel(tmp, fep->hwp + FEC_R_CNTRL);
3081
3082	if (ndev->flags & IFF_ALLMULTI) {
3083		/* Catch all multicast addresses, so set the
3084		 * filter to all 1's
3085		 */
3086		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3087		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3088
3089		return;
3090	}
3091
3092	/* Add the addresses in hash register */
3093	netdev_for_each_mc_addr(ha, ndev) {
3094		/* calculate crc32 value of mac address */
3095		crc = ether_crc_le(ndev->addr_len, ha->addr);
3096
3097		/* only upper 6 bits (FEC_HASH_BITS) are used
3098		 * which point to specific bit in the hash registers
3099		 */
3100		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3101
3102		if (hash > 31)
3103			hash_high |= 1 << (hash - 32);
3104		else
3105			hash_low |= 1 << hash;
3106	}
3107
3108	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3109	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3110}
3111
3112/* Set a MAC change in hardware. */
3113static int
3114fec_set_mac_address(struct net_device *ndev, void *p)
3115{
3116	struct fec_enet_private *fep = netdev_priv(ndev);
3117	struct sockaddr *addr = p;
3118
3119	if (addr) {
3120		if (!is_valid_ether_addr(addr->sa_data))
3121			return -EADDRNOTAVAIL;
3122		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3123	}
3124
3125	/* Add netif status check here to avoid system hang in below case:
3126	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3127	 * After ethx down, fec all clocks are gated off and then register
3128	 * access causes system hang.
3129	 */
3130	if (!netif_running(ndev))
3131		return 0;
3132
3133	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3134		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3135		fep->hwp + FEC_ADDR_LOW);
3136	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3137		fep->hwp + FEC_ADDR_HIGH);
3138	return 0;
3139}
3140
3141#ifdef CONFIG_NET_POLL_CONTROLLER
3142/**
3143 * fec_poll_controller - FEC Poll controller function
3144 * @dev: The FEC network adapter
3145 *
3146 * Polled functionality used by netconsole and others in non interrupt mode
3147 *
3148 */
3149static void fec_poll_controller(struct net_device *dev)
3150{
3151	int i;
3152	struct fec_enet_private *fep = netdev_priv(dev);
3153
3154	for (i = 0; i < FEC_IRQ_NUM; i++) {
3155		if (fep->irq[i] > 0) {
3156			disable_irq(fep->irq[i]);
3157			fec_enet_interrupt(fep->irq[i], dev);
3158			enable_irq(fep->irq[i]);
3159		}
3160	}
3161}
3162#endif
3163
3164static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3165	netdev_features_t features)
3166{
3167	struct fec_enet_private *fep = netdev_priv(netdev);
3168	netdev_features_t changed = features ^ netdev->features;
3169
3170	netdev->features = features;
3171
3172	/* Receive checksum has been changed */
3173	if (changed & NETIF_F_RXCSUM) {
3174		if (features & NETIF_F_RXCSUM)
3175			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3176		else
3177			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3178	}
3179}
3180
3181static int fec_set_features(struct net_device *netdev,
3182	netdev_features_t features)
3183{
3184	struct fec_enet_private *fep = netdev_priv(netdev);
3185	netdev_features_t changed = features ^ netdev->features;
3186
3187	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3188		napi_disable(&fep->napi);
3189		netif_tx_lock_bh(netdev);
3190		fec_stop(netdev);
3191		fec_enet_set_netdev_features(netdev, features);
3192		fec_restart(netdev);
3193		netif_tx_wake_all_queues(netdev);
3194		netif_tx_unlock_bh(netdev);
3195		napi_enable(&fep->napi);
3196	} else {
3197		fec_enet_set_netdev_features(netdev, features);
3198	}
3199
3200	return 0;
3201}
3202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3203static const struct net_device_ops fec_netdev_ops = {
3204	.ndo_open		= fec_enet_open,
3205	.ndo_stop		= fec_enet_close,
3206	.ndo_start_xmit		= fec_enet_start_xmit,
 
3207	.ndo_set_rx_mode	= set_multicast_list,
3208	.ndo_validate_addr	= eth_validate_addr,
3209	.ndo_tx_timeout		= fec_timeout,
3210	.ndo_set_mac_address	= fec_set_mac_address,
3211	.ndo_do_ioctl		= fec_enet_ioctl,
3212#ifdef CONFIG_NET_POLL_CONTROLLER
3213	.ndo_poll_controller	= fec_poll_controller,
3214#endif
3215	.ndo_set_features	= fec_set_features,
 
 
 
 
3216};
3217
3218static const unsigned short offset_des_active_rxq[] = {
3219	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3220};
3221
3222static const unsigned short offset_des_active_txq[] = {
3223	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3224};
3225
3226 /*
3227  * XXX:  We need to clean up on failure exits here.
3228  *
3229  */
3230static int fec_enet_init(struct net_device *ndev)
3231{
3232	struct fec_enet_private *fep = netdev_priv(ndev);
3233	struct bufdesc *cbd_base;
3234	dma_addr_t bd_dma;
3235	int bd_size;
3236	unsigned int i;
3237	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3238			sizeof(struct bufdesc);
3239	unsigned dsize_log2 = __fls(dsize);
3240	int ret;
3241
3242	WARN_ON(dsize != (1 << dsize_log2));
3243#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3244	fep->rx_align = 0xf;
3245	fep->tx_align = 0xf;
3246#else
3247	fep->rx_align = 0x3;
3248	fep->tx_align = 0x3;
3249#endif
 
 
 
 
3250
3251	/* Check mask of the streaming and coherent API */
3252	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3253	if (ret < 0) {
3254		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3255		return ret;
3256	}
3257
3258	fec_enet_alloc_queue(ndev);
 
 
3259
3260	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3261
3262	/* Allocate memory for buffer descriptors. */
3263	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3264				       GFP_KERNEL);
3265	if (!cbd_base) {
3266		return -ENOMEM;
 
3267	}
3268
3269	/* Get the Ethernet address */
3270	fec_get_mac(ndev);
3271	/* make sure MAC we just acquired is programmed into the hw */
3272	fec_set_mac_address(ndev, NULL);
3273
3274	/* Set receive and transmit descriptor base. */
3275	for (i = 0; i < fep->num_rx_queues; i++) {
3276		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3277		unsigned size = dsize * rxq->bd.ring_size;
3278
3279		rxq->bd.qid = i;
3280		rxq->bd.base = cbd_base;
3281		rxq->bd.cur = cbd_base;
3282		rxq->bd.dma = bd_dma;
3283		rxq->bd.dsize = dsize;
3284		rxq->bd.dsize_log2 = dsize_log2;
3285		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3286		bd_dma += size;
3287		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3288		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3289	}
3290
3291	for (i = 0; i < fep->num_tx_queues; i++) {
3292		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3293		unsigned size = dsize * txq->bd.ring_size;
3294
3295		txq->bd.qid = i;
3296		txq->bd.base = cbd_base;
3297		txq->bd.cur = cbd_base;
3298		txq->bd.dma = bd_dma;
3299		txq->bd.dsize = dsize;
3300		txq->bd.dsize_log2 = dsize_log2;
3301		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3302		bd_dma += size;
3303		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3304		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3305	}
3306
3307
3308	/* The FEC Ethernet specific entries in the device structure */
3309	ndev->watchdog_timeo = TX_TIMEOUT;
3310	ndev->netdev_ops = &fec_netdev_ops;
3311	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3312
3313	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3314	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3315
3316	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3317		/* enable hw VLAN support */
3318		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3319
3320	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3321		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3322
3323		/* enable hw accelerator */
3324		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3325				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3326		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3327	}
3328
3329	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3330		fep->tx_align = 0;
3331		fep->rx_align = 0x3f;
3332	}
3333
3334	ndev->hw_features = ndev->features;
3335
 
 
 
 
3336	fec_restart(ndev);
3337
3338	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3339		fec_enet_clear_ethtool_stats(ndev);
3340	else
3341		fec_enet_update_ethtool_stats(ndev);
3342
3343	return 0;
 
 
 
 
3344}
3345
3346#ifdef CONFIG_OF
3347static int fec_reset_phy(struct platform_device *pdev)
3348{
3349	int err, phy_reset;
3350	bool active_high = false;
3351	int msec = 1, phy_post_delay = 0;
3352	struct device_node *np = pdev->dev.of_node;
 
3353
3354	if (!np)
3355		return 0;
3356
3357	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3358	/* A sane reset duration should not be longer than 1s */
3359	if (!err && msec > 1000)
3360		msec = 1;
3361
3362	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3363	if (phy_reset == -EPROBE_DEFER)
3364		return phy_reset;
3365	else if (!gpio_is_valid(phy_reset))
3366		return 0;
3367
3368	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3369	/* valid reset duration should be less than 1s */
3370	if (!err && phy_post_delay > 1000)
3371		return -EINVAL;
3372
3373	active_high = of_property_read_bool(np, "phy-reset-active-high");
 
 
 
 
3374
3375	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3376			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3377			"phy-reset");
3378	if (err) {
3379		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3380		return err;
3381	}
3382
3383	if (msec > 20)
3384		msleep(msec);
3385	else
3386		usleep_range(msec * 1000, msec * 1000 + 1000);
3387
3388	gpio_set_value_cansleep(phy_reset, !active_high);
3389
3390	if (!phy_post_delay)
3391		return 0;
3392
3393	if (phy_post_delay > 20)
3394		msleep(phy_post_delay);
3395	else
3396		usleep_range(phy_post_delay * 1000,
3397			     phy_post_delay * 1000 + 1000);
3398
3399	return 0;
3400}
3401#else /* CONFIG_OF */
3402static int fec_reset_phy(struct platform_device *pdev)
3403{
3404	/*
3405	 * In case of platform probe, the reset has been done
3406	 * by machine code.
3407	 */
3408	return 0;
3409}
3410#endif /* CONFIG_OF */
3411
3412static void
3413fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3414{
3415	struct device_node *np = pdev->dev.of_node;
3416
3417	*num_tx = *num_rx = 1;
3418
3419	if (!np || !of_device_is_available(np))
3420		return;
3421
3422	/* parse the num of tx and rx queues */
3423	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3424
3425	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3426
3427	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3428		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3429			 *num_tx);
3430		*num_tx = 1;
3431		return;
3432	}
3433
3434	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3435		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3436			 *num_rx);
3437		*num_rx = 1;
3438		return;
3439	}
3440
3441}
3442
3443static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3444{
3445	int irq_cnt = platform_irq_count(pdev);
3446
3447	if (irq_cnt > FEC_IRQ_NUM)
3448		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3449	else if (irq_cnt == 2)
3450		irq_cnt = 1;	/* last for pps */
3451	else if (irq_cnt <= 0)
3452		irq_cnt = 1;	/* At least 1 irq is needed */
3453	return irq_cnt;
3454}
3455
 
 
 
 
 
 
 
 
 
 
 
3456static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3457				   struct device_node *np)
3458{
3459	struct device_node *gpr_np;
3460	u32 out_val[3];
3461	int ret = 0;
3462
3463	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3464	if (!gpr_np)
3465		return 0;
3466
3467	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3468					 ARRAY_SIZE(out_val));
3469	if (ret) {
3470		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3471		return ret;
3472	}
3473
3474	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3475	if (IS_ERR(fep->stop_gpr.gpr)) {
3476		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3477		ret = PTR_ERR(fep->stop_gpr.gpr);
3478		fep->stop_gpr.gpr = NULL;
3479		goto out;
3480	}
3481
3482	fep->stop_gpr.reg = out_val[1];
3483	fep->stop_gpr.bit = out_val[2];
3484
3485out:
3486	of_node_put(gpr_np);
3487
3488	return ret;
3489}
3490
3491static int
3492fec_probe(struct platform_device *pdev)
3493{
3494	struct fec_enet_private *fep;
3495	struct fec_platform_data *pdata;
3496	phy_interface_t interface;
3497	struct net_device *ndev;
3498	int i, irq, ret = 0;
3499	const struct of_device_id *of_id;
3500	static int dev_id;
3501	struct device_node *np = pdev->dev.of_node, *phy_node;
3502	int num_tx_qs;
3503	int num_rx_qs;
3504	char irq_name[8];
3505	int irq_cnt;
3506	struct fec_devinfo *dev_info;
3507
3508	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3509
3510	/* Init network device */
3511	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3512				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3513	if (!ndev)
3514		return -ENOMEM;
3515
3516	SET_NETDEV_DEV(ndev, &pdev->dev);
3517
3518	/* setup board info structure */
3519	fep = netdev_priv(ndev);
3520
3521	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3522	if (of_id)
3523		pdev->id_entry = of_id->data;
3524	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3525	if (dev_info)
3526		fep->quirks = dev_info->quirks;
3527
3528	fep->netdev = ndev;
3529	fep->num_rx_queues = num_rx_qs;
3530	fep->num_tx_queues = num_tx_qs;
3531
3532#if !defined(CONFIG_M5272)
3533	/* default enable pause frame auto negotiation */
3534	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3535		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3536#endif
3537
3538	/* Select default pin state */
3539	pinctrl_pm_select_default_state(&pdev->dev);
3540
3541	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3542	if (IS_ERR(fep->hwp)) {
3543		ret = PTR_ERR(fep->hwp);
3544		goto failed_ioremap;
3545	}
3546
3547	fep->pdev = pdev;
3548	fep->dev_id = dev_id++;
3549
3550	platform_set_drvdata(pdev, ndev);
3551
3552	if ((of_machine_is_compatible("fsl,imx6q") ||
3553	     of_machine_is_compatible("fsl,imx6dl")) &&
3554	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3555		fep->quirks |= FEC_QUIRK_ERR006687;
3556
3557	if (of_get_property(np, "fsl,magic-packet", NULL))
 
 
 
 
3558		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3559
3560	ret = fec_enet_init_stop_mode(fep, np);
3561	if (ret)
3562		goto failed_stop_mode;
3563
3564	phy_node = of_parse_phandle(np, "phy-handle", 0);
3565	if (!phy_node && of_phy_is_fixed_link(np)) {
3566		ret = of_phy_register_fixed_link(np);
3567		if (ret < 0) {
3568			dev_err(&pdev->dev,
3569				"broken fixed-link specification\n");
3570			goto failed_phy;
3571		}
3572		phy_node = of_node_get(np);
3573	}
3574	fep->phy_node = phy_node;
3575
3576	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3577	if (ret) {
3578		pdata = dev_get_platdata(&pdev->dev);
3579		if (pdata)
3580			fep->phy_interface = pdata->phy;
3581		else
3582			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3583	} else {
3584		fep->phy_interface = interface;
3585	}
3586
 
 
 
 
3587	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3588	if (IS_ERR(fep->clk_ipg)) {
3589		ret = PTR_ERR(fep->clk_ipg);
3590		goto failed_clk;
3591	}
3592
3593	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3594	if (IS_ERR(fep->clk_ahb)) {
3595		ret = PTR_ERR(fep->clk_ahb);
3596		goto failed_clk;
3597	}
3598
3599	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3600
3601	/* enet_out is optional, depends on board */
3602	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3603	if (IS_ERR(fep->clk_enet_out))
3604		fep->clk_enet_out = NULL;
 
 
3605
3606	fep->ptp_clk_on = false;
3607	mutex_init(&fep->ptp_clk_mutex);
3608
3609	/* clk_ref is optional, depends on board */
3610	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3611	if (IS_ERR(fep->clk_ref))
3612		fep->clk_ref = NULL;
 
 
 
 
 
 
 
 
 
 
3613
3614	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3615	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3616	if (IS_ERR(fep->clk_ptp)) {
3617		fep->clk_ptp = NULL;
3618		fep->bufdesc_ex = false;
3619	}
3620
3621	ret = fec_enet_clk_enable(ndev, true);
3622	if (ret)
3623		goto failed_clk;
3624
3625	ret = clk_prepare_enable(fep->clk_ipg);
3626	if (ret)
3627		goto failed_clk_ipg;
3628	ret = clk_prepare_enable(fep->clk_ahb);
3629	if (ret)
3630		goto failed_clk_ahb;
3631
3632	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3633	if (!IS_ERR(fep->reg_phy)) {
3634		ret = regulator_enable(fep->reg_phy);
3635		if (ret) {
3636			dev_err(&pdev->dev,
3637				"Failed to enable phy regulator: %d\n", ret);
3638			goto failed_regulator;
3639		}
3640	} else {
3641		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3642			ret = -EPROBE_DEFER;
3643			goto failed_regulator;
3644		}
3645		fep->reg_phy = NULL;
3646	}
3647
3648	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3649	pm_runtime_use_autosuspend(&pdev->dev);
3650	pm_runtime_get_noresume(&pdev->dev);
3651	pm_runtime_set_active(&pdev->dev);
3652	pm_runtime_enable(&pdev->dev);
3653
3654	ret = fec_reset_phy(pdev);
3655	if (ret)
3656		goto failed_reset;
3657
3658	irq_cnt = fec_enet_get_irq_cnt(pdev);
3659	if (fep->bufdesc_ex)
3660		fec_ptp_init(pdev, irq_cnt);
3661
3662	ret = fec_enet_init(ndev);
3663	if (ret)
3664		goto failed_init;
3665
3666	for (i = 0; i < irq_cnt; i++) {
3667		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3668		irq = platform_get_irq_byname_optional(pdev, irq_name);
3669		if (irq < 0)
3670			irq = platform_get_irq(pdev, i);
3671		if (irq < 0) {
3672			ret = irq;
3673			goto failed_irq;
3674		}
3675		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3676				       0, pdev->name, ndev);
3677		if (ret)
3678			goto failed_irq;
3679
3680		fep->irq[i] = irq;
3681	}
3682
 
 
 
3683	ret = fec_enet_mii_init(pdev);
3684	if (ret)
3685		goto failed_mii_init;
3686
3687	/* Carrier starts down, phylib will bring it up */
3688	netif_carrier_off(ndev);
3689	fec_enet_clk_enable(ndev, false);
3690	pinctrl_pm_select_sleep_state(&pdev->dev);
3691
3692	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3693
3694	ret = register_netdev(ndev);
3695	if (ret)
3696		goto failed_register;
3697
3698	device_init_wakeup(&ndev->dev, fep->wol_flag &
3699			   FEC_WOL_HAS_MAGIC_PACKET);
3700
3701	if (fep->bufdesc_ex && fep->ptp_clock)
3702		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3703
3704	fep->rx_copybreak = COPYBREAK_DEFAULT;
3705	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3706
3707	pm_runtime_mark_last_busy(&pdev->dev);
3708	pm_runtime_put_autosuspend(&pdev->dev);
3709
3710	return 0;
3711
3712failed_register:
3713	fec_enet_mii_remove(fep);
3714failed_mii_init:
3715failed_irq:
3716failed_init:
3717	fec_ptp_stop(pdev);
3718failed_reset:
3719	pm_runtime_put_noidle(&pdev->dev);
3720	pm_runtime_disable(&pdev->dev);
3721	if (fep->reg_phy)
3722		regulator_disable(fep->reg_phy);
3723failed_regulator:
3724	clk_disable_unprepare(fep->clk_ahb);
3725failed_clk_ahb:
3726	clk_disable_unprepare(fep->clk_ipg);
3727failed_clk_ipg:
3728	fec_enet_clk_enable(ndev, false);
3729failed_clk:
 
3730	if (of_phy_is_fixed_link(np))
3731		of_phy_deregister_fixed_link(np);
3732	of_node_put(phy_node);
3733failed_stop_mode:
 
3734failed_phy:
3735	dev_id--;
3736failed_ioremap:
3737	free_netdev(ndev);
3738
3739	return ret;
3740}
3741
3742static int
3743fec_drv_remove(struct platform_device *pdev)
3744{
3745	struct net_device *ndev = platform_get_drvdata(pdev);
3746	struct fec_enet_private *fep = netdev_priv(ndev);
3747	struct device_node *np = pdev->dev.of_node;
3748	int ret;
3749
3750	ret = pm_runtime_get_sync(&pdev->dev);
3751	if (ret < 0)
3752		return ret;
 
 
3753
3754	cancel_work_sync(&fep->tx_timeout_work);
3755	fec_ptp_stop(pdev);
3756	unregister_netdev(ndev);
3757	fec_enet_mii_remove(fep);
3758	if (fep->reg_phy)
3759		regulator_disable(fep->reg_phy);
3760
3761	if (of_phy_is_fixed_link(np))
3762		of_phy_deregister_fixed_link(np);
3763	of_node_put(fep->phy_node);
3764	free_netdev(ndev);
3765
3766	clk_disable_unprepare(fep->clk_ahb);
3767	clk_disable_unprepare(fep->clk_ipg);
 
 
 
 
 
3768	pm_runtime_put_noidle(&pdev->dev);
3769	pm_runtime_disable(&pdev->dev);
3770
3771	return 0;
3772}
3773
3774static int __maybe_unused fec_suspend(struct device *dev)
3775{
3776	struct net_device *ndev = dev_get_drvdata(dev);
3777	struct fec_enet_private *fep = netdev_priv(ndev);
 
3778
3779	rtnl_lock();
3780	if (netif_running(ndev)) {
3781		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3782			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3783		phy_stop(ndev->phydev);
3784		napi_disable(&fep->napi);
3785		netif_tx_lock_bh(ndev);
3786		netif_device_detach(ndev);
3787		netif_tx_unlock_bh(ndev);
3788		fec_stop(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
3789		fec_enet_clk_enable(ndev, false);
3790		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3791			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
 
 
 
 
 
 
 
3792	}
3793	rtnl_unlock();
3794
3795	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3796		regulator_disable(fep->reg_phy);
3797
3798	/* SOC supply clock to phy, when clock is disabled, phy link down
3799	 * SOC control phy regulator, when regulator is disabled, phy link down
3800	 */
3801	if (fep->clk_enet_out || fep->reg_phy)
3802		fep->link = 0;
3803
3804	return 0;
3805}
3806
3807static int __maybe_unused fec_resume(struct device *dev)
3808{
3809	struct net_device *ndev = dev_get_drvdata(dev);
3810	struct fec_enet_private *fep = netdev_priv(ndev);
3811	int ret;
3812	int val;
3813
3814	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3815		ret = regulator_enable(fep->reg_phy);
3816		if (ret)
3817			return ret;
3818	}
3819
3820	rtnl_lock();
3821	if (netif_running(ndev)) {
 
 
 
3822		ret = fec_enet_clk_enable(ndev, true);
3823		if (ret) {
3824			rtnl_unlock();
3825			goto failed_clk;
3826		}
3827		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3828			fec_enet_stop_mode(fep, false);
 
 
 
 
3829
3830			val = readl(fep->hwp + FEC_ECNTRL);
3831			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3832			writel(val, fep->hwp + FEC_ECNTRL);
3833			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3834		} else {
3835			pinctrl_pm_select_default_state(&fep->pdev->dev);
3836		}
3837		fec_restart(ndev);
3838		netif_tx_lock_bh(ndev);
3839		netif_device_attach(ndev);
3840		netif_tx_unlock_bh(ndev);
3841		napi_enable(&fep->napi);
 
3842		phy_start(ndev->phydev);
3843	}
3844	rtnl_unlock();
3845
3846	return 0;
3847
3848failed_clk:
3849	if (fep->reg_phy)
3850		regulator_disable(fep->reg_phy);
3851	return ret;
3852}
3853
3854static int __maybe_unused fec_runtime_suspend(struct device *dev)
3855{
3856	struct net_device *ndev = dev_get_drvdata(dev);
3857	struct fec_enet_private *fep = netdev_priv(ndev);
3858
3859	clk_disable_unprepare(fep->clk_ahb);
3860	clk_disable_unprepare(fep->clk_ipg);
3861
3862	return 0;
3863}
3864
3865static int __maybe_unused fec_runtime_resume(struct device *dev)
3866{
3867	struct net_device *ndev = dev_get_drvdata(dev);
3868	struct fec_enet_private *fep = netdev_priv(ndev);
3869	int ret;
3870
3871	ret = clk_prepare_enable(fep->clk_ahb);
3872	if (ret)
3873		return ret;
3874	ret = clk_prepare_enable(fep->clk_ipg);
3875	if (ret)
3876		goto failed_clk_ipg;
3877
3878	return 0;
3879
3880failed_clk_ipg:
3881	clk_disable_unprepare(fep->clk_ahb);
3882	return ret;
3883}
3884
3885static const struct dev_pm_ops fec_pm_ops = {
3886	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3887	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3888};
3889
3890static struct platform_driver fec_driver = {
3891	.driver	= {
3892		.name	= DRIVER_NAME,
3893		.pm	= &fec_pm_ops,
3894		.of_match_table = fec_dt_ids,
3895		.suppress_bind_attrs = true,
3896	},
3897	.id_table = fec_devtype,
3898	.probe	= fec_probe,
3899	.remove	= fec_drv_remove,
3900};
3901
3902module_platform_driver(fec_driver);
3903
3904MODULE_ALIAS("platform:"DRIVER_NAME);
3905MODULE_LICENSE("GPL");