Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) driver
   4 *
   5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 * Author: Gary R Hook <gary.hook@amd.com>
 
 
 
   9 */
  10
  11#include <linux/dma-mapping.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
 
  14#include <linux/interrupt.h>
  15#include <crypto/scatterwalk.h>
  16#include <crypto/des.h>
  17#include <linux/ccp.h>
  18
  19#include "ccp-dev.h"
  20
  21/* SHA initial context values */
  22static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  23	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  24	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  25	cpu_to_be32(SHA1_H4),
  26};
  27
  28static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  29	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  30	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  31	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  32	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  33};
  34
  35static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  36	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  37	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  38	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  39	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  40};
  41
  42static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  43	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  44	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  45	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  46	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  47};
  48
  49static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  50	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  51	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  52	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  53	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  54};
 
 
 
 
 
 
 
  55
  56#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  57					ccp_gen_jobid(ccp) : 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59static u32 ccp_gen_jobid(struct ccp_device *ccp)
  60{
  61	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  62}
  63
  64static void ccp_sg_free(struct ccp_sg_workarea *wa)
  65{
  66	if (wa->dma_count)
  67		dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
  68
  69	wa->dma_count = 0;
  70}
  71
  72static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  73				struct scatterlist *sg, u64 len,
  74				enum dma_data_direction dma_dir)
  75{
  76	memset(wa, 0, sizeof(*wa));
  77
  78	wa->sg = sg;
  79	if (!sg)
  80		return 0;
  81
  82	wa->nents = sg_nents_for_len(sg, len);
  83	if (wa->nents < 0)
  84		return wa->nents;
  85
  86	wa->bytes_left = len;
  87	wa->sg_used = 0;
  88
  89	if (len == 0)
  90		return 0;
  91
  92	if (dma_dir == DMA_NONE)
  93		return 0;
  94
  95	wa->dma_sg = sg;
  96	wa->dma_sg_head = sg;
  97	wa->dma_dev = dev;
  98	wa->dma_dir = dma_dir;
  99	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 100	if (!wa->dma_count)
 101		return -ENOMEM;
 102
 103	return 0;
 104}
 105
 106static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 107{
 108	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 109	unsigned int sg_combined_len = 0;
 110
 111	if (!wa->sg)
 112		return;
 113
 114	wa->sg_used += nbytes;
 115	wa->bytes_left -= nbytes;
 116	if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
 117		/* Advance to the next DMA scatterlist entry */
 118		wa->dma_sg = sg_next(wa->dma_sg);
 119
 120		/* In the case that the DMA mapped scatterlist has entries
 121		 * that have been merged, the non-DMA mapped scatterlist
 122		 * must be advanced multiple times for each merged entry.
 123		 * This ensures that the current non-DMA mapped entry
 124		 * corresponds to the current DMA mapped entry.
 125		 */
 126		do {
 127			sg_combined_len += wa->sg->length;
 128			wa->sg = sg_next(wa->sg);
 129		} while (wa->sg_used > sg_combined_len);
 130
 131		wa->sg_used = 0;
 132	}
 133}
 134
 135static void ccp_dm_free(struct ccp_dm_workarea *wa)
 136{
 137	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 138		if (wa->address)
 139			dma_pool_free(wa->dma_pool, wa->address,
 140				      wa->dma.address);
 141	} else {
 142		if (wa->dma.address)
 143			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 144					 wa->dma.dir);
 145		kfree(wa->address);
 146	}
 147
 148	wa->address = NULL;
 149	wa->dma.address = 0;
 150}
 151
 152static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 153				struct ccp_cmd_queue *cmd_q,
 154				unsigned int len,
 155				enum dma_data_direction dir)
 156{
 157	memset(wa, 0, sizeof(*wa));
 158
 159	if (!len)
 160		return 0;
 161
 162	wa->dev = cmd_q->ccp->dev;
 163	wa->length = len;
 164
 165	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 166		wa->dma_pool = cmd_q->dma_pool;
 167
 168		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
 169					     &wa->dma.address);
 170		if (!wa->address)
 171			return -ENOMEM;
 172
 173		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 174
 
 175	} else {
 176		wa->address = kzalloc(len, GFP_KERNEL);
 177		if (!wa->address)
 178			return -ENOMEM;
 179
 180		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 181						 dir);
 182		if (dma_mapping_error(wa->dev, wa->dma.address)) {
 183			kfree(wa->address);
 184			wa->address = NULL;
 185			return -ENOMEM;
 186		}
 187
 188		wa->dma.length = len;
 189	}
 190	wa->dma.dir = dir;
 191
 192	return 0;
 193}
 194
 195static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 196			   struct scatterlist *sg, unsigned int sg_offset,
 197			   unsigned int len)
 198{
 199	WARN_ON(!wa->address);
 200
 201	if (len > (wa->length - wa_offset))
 202		return -EINVAL;
 203
 204	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 205				 0);
 206	return 0;
 207}
 208
 209static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 210			    struct scatterlist *sg, unsigned int sg_offset,
 211			    unsigned int len)
 212{
 213	WARN_ON(!wa->address);
 214
 215	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 216				 1);
 217}
 218
 219static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 220				   unsigned int wa_offset,
 221				   struct scatterlist *sg,
 222				   unsigned int sg_offset,
 223				   unsigned int len)
 224{
 225	u8 *p, *q;
 226	int	rc;
 227
 228	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 229	if (rc)
 230		return rc;
 231
 232	p = wa->address + wa_offset;
 233	q = p + len - 1;
 234	while (p < q) {
 235		*p = *p ^ *q;
 236		*q = *p ^ *q;
 237		*p = *p ^ *q;
 238		p++;
 239		q--;
 
 
 
 
 
 
 
 
 
 
 
 240	}
 
 241	return 0;
 242}
 243
 244static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 245				    unsigned int wa_offset,
 246				    struct scatterlist *sg,
 247				    unsigned int sg_offset,
 248				    unsigned int len)
 249{
 250	u8 *p, *q;
 
 251
 252	p = wa->address + wa_offset;
 253	q = p + len - 1;
 254	while (p < q) {
 255		*p = *p ^ *q;
 256		*q = *p ^ *q;
 257		*p = *p ^ *q;
 258		p++;
 259		q--;
 260	}
 
 261
 262	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 
 
 263}
 264
 265static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 266{
 267	ccp_dm_free(&data->dm_wa);
 268	ccp_sg_free(&data->sg_wa);
 269}
 270
 271static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 272			 struct scatterlist *sg, u64 sg_len,
 273			 unsigned int dm_len,
 274			 enum dma_data_direction dir)
 275{
 276	int ret;
 277
 278	memset(data, 0, sizeof(*data));
 279
 280	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 281				   dir);
 282	if (ret)
 283		goto e_err;
 284
 285	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 286	if (ret)
 287		goto e_err;
 288
 289	return 0;
 290
 291e_err:
 292	ccp_free_data(data, cmd_q);
 293
 294	return ret;
 295}
 296
 297static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 298{
 299	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 300	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 301	unsigned int buf_count, nbytes;
 302
 303	/* Clear the buffer if setting it */
 304	if (!from)
 305		memset(dm_wa->address, 0, dm_wa->length);
 306
 307	if (!sg_wa->sg)
 308		return 0;
 309
 310	/* Perform the copy operation
 311	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 312	 *   an unsigned int
 313	 */
 314	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 315	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 316				 nbytes, from);
 317
 318	/* Update the structures and generate the count */
 319	buf_count = 0;
 320	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 321		nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
 322			     dm_wa->length - buf_count);
 323		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 324
 325		buf_count += nbytes;
 326		ccp_update_sg_workarea(sg_wa, nbytes);
 327	}
 328
 329	return buf_count;
 330}
 331
 332static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 333{
 334	return ccp_queue_buf(data, 0);
 335}
 336
 337static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 338{
 339	return ccp_queue_buf(data, 1);
 340}
 341
 342static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 343			     struct ccp_op *op, unsigned int block_size,
 344			     bool blocksize_op)
 345{
 346	unsigned int sg_src_len, sg_dst_len, op_len;
 347
 348	/* The CCP can only DMA from/to one address each per operation. This
 349	 * requires that we find the smallest DMA area between the source
 350	 * and destination. The resulting len values will always be <= UINT_MAX
 351	 * because the dma length is an unsigned int.
 352	 */
 353	sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
 354	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 355
 356	if (dst) {
 357		sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
 358		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 359		op_len = min(sg_src_len, sg_dst_len);
 360	} else {
 361		op_len = sg_src_len;
 362	}
 363
 364	/* The data operation length will be at least block_size in length
 365	 * or the smaller of available sg room remaining for the source or
 366	 * the destination
 367	 */
 368	op_len = max(op_len, block_size);
 369
 370	/* Unless we have to buffer data, there's no reason to wait */
 371	op->soc = 0;
 372
 373	if (sg_src_len < block_size) {
 374		/* Not enough data in the sg element, so it
 375		 * needs to be buffered into a blocksize chunk
 376		 */
 377		int cp_len = ccp_fill_queue_buf(src);
 378
 379		op->soc = 1;
 380		op->src.u.dma.address = src->dm_wa.dma.address;
 381		op->src.u.dma.offset = 0;
 382		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 383	} else {
 384		/* Enough data in the sg element, but we need to
 385		 * adjust for any previously copied data
 386		 */
 387		op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
 388		op->src.u.dma.offset = src->sg_wa.sg_used;
 389		op->src.u.dma.length = op_len & ~(block_size - 1);
 390
 391		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 392	}
 393
 394	if (dst) {
 395		if (sg_dst_len < block_size) {
 396			/* Not enough room in the sg element or we're on the
 397			 * last piece of data (when using padding), so the
 398			 * output needs to be buffered into a blocksize chunk
 399			 */
 400			op->soc = 1;
 401			op->dst.u.dma.address = dst->dm_wa.dma.address;
 402			op->dst.u.dma.offset = 0;
 403			op->dst.u.dma.length = op->src.u.dma.length;
 404		} else {
 405			/* Enough room in the sg element, but we need to
 406			 * adjust for any previously used area
 407			 */
 408			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
 409			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 410			op->dst.u.dma.length = op->src.u.dma.length;
 411		}
 412	}
 413}
 414
 415static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 416			     struct ccp_op *op)
 417{
 418	op->init = 0;
 419
 420	if (dst) {
 421		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 422			ccp_empty_queue_buf(dst);
 423		else
 424			ccp_update_sg_workarea(&dst->sg_wa,
 425					       op->dst.u.dma.length);
 426	}
 427}
 428
 429static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 430			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 431			       u32 byte_swap, bool from)
 432{
 433	struct ccp_op op;
 434
 435	memset(&op, 0, sizeof(op));
 436
 437	op.cmd_q = cmd_q;
 438	op.jobid = jobid;
 439	op.eom = 1;
 440
 441	if (from) {
 442		op.soc = 1;
 443		op.src.type = CCP_MEMTYPE_SB;
 444		op.src.u.sb = sb;
 445		op.dst.type = CCP_MEMTYPE_SYSTEM;
 446		op.dst.u.dma.address = wa->dma.address;
 447		op.dst.u.dma.length = wa->length;
 448	} else {
 449		op.src.type = CCP_MEMTYPE_SYSTEM;
 450		op.src.u.dma.address = wa->dma.address;
 451		op.src.u.dma.length = wa->length;
 452		op.dst.type = CCP_MEMTYPE_SB;
 453		op.dst.u.sb = sb;
 454	}
 455
 456	op.u.passthru.byte_swap = byte_swap;
 457
 458	return cmd_q->ccp->vdata->perform->passthru(&op);
 459}
 460
 461static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 462			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 463			  u32 byte_swap)
 464{
 465	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 466}
 467
 468static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 469			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 470			    u32 byte_swap)
 471{
 472	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 473}
 474
 475static noinline_for_stack int
 476ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 477{
 478	struct ccp_aes_engine *aes = &cmd->u.aes;
 479	struct ccp_dm_workarea key, ctx;
 480	struct ccp_data src;
 481	struct ccp_op op;
 482	unsigned int dm_offset;
 483	int ret;
 484
 485	if (!((aes->key_len == AES_KEYSIZE_128) ||
 486	      (aes->key_len == AES_KEYSIZE_192) ||
 487	      (aes->key_len == AES_KEYSIZE_256)))
 488		return -EINVAL;
 489
 490	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 491		return -EINVAL;
 492
 493	if (aes->iv_len != AES_BLOCK_SIZE)
 494		return -EINVAL;
 495
 496	if (!aes->key || !aes->iv || !aes->src)
 497		return -EINVAL;
 498
 499	if (aes->cmac_final) {
 500		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 501			return -EINVAL;
 502
 503		if (!aes->cmac_key)
 504			return -EINVAL;
 505	}
 506
 507	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 508	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 509
 510	ret = -EIO;
 511	memset(&op, 0, sizeof(op));
 512	op.cmd_q = cmd_q;
 513	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 514	op.sb_key = cmd_q->sb_key;
 515	op.sb_ctx = cmd_q->sb_ctx;
 516	op.init = 1;
 517	op.u.aes.type = aes->type;
 518	op.u.aes.mode = aes->mode;
 519	op.u.aes.action = aes->action;
 520
 521	/* All supported key sizes fit in a single (32-byte) SB entry
 522	 * and must be in little endian format. Use the 256-bit byte
 523	 * swap passthru option to convert from big endian to little
 524	 * endian.
 525	 */
 526	ret = ccp_init_dm_workarea(&key, cmd_q,
 527				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 528				   DMA_TO_DEVICE);
 529	if (ret)
 530		return ret;
 531
 532	dm_offset = CCP_SB_BYTES - aes->key_len;
 533	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 534	if (ret)
 535		goto e_key;
 536	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 537			     CCP_PASSTHRU_BYTESWAP_256BIT);
 538	if (ret) {
 539		cmd->engine_error = cmd_q->cmd_error;
 540		goto e_key;
 541	}
 542
 543	/* The AES context fits in a single (32-byte) SB entry and
 544	 * must be in little endian format. Use the 256-bit byte swap
 545	 * passthru option to convert from big endian to little endian.
 546	 */
 547	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 548				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 549				   DMA_BIDIRECTIONAL);
 550	if (ret)
 551		goto e_key;
 552
 553	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 554	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 555	if (ret)
 556		goto e_ctx;
 557	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 558			     CCP_PASSTHRU_BYTESWAP_256BIT);
 559	if (ret) {
 560		cmd->engine_error = cmd_q->cmd_error;
 561		goto e_ctx;
 562	}
 563
 564	/* Send data to the CCP AES engine */
 565	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 566			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 567	if (ret)
 568		goto e_ctx;
 569
 570	while (src.sg_wa.bytes_left) {
 571		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 572		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 573			op.eom = 1;
 574
 575			/* Push the K1/K2 key to the CCP now */
 576			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 577					       op.sb_ctx,
 578					       CCP_PASSTHRU_BYTESWAP_256BIT);
 579			if (ret) {
 580				cmd->engine_error = cmd_q->cmd_error;
 581				goto e_src;
 582			}
 583
 584			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 585					      aes->cmac_key_len);
 586			if (ret)
 587				goto e_src;
 588			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 589					     CCP_PASSTHRU_BYTESWAP_256BIT);
 590			if (ret) {
 591				cmd->engine_error = cmd_q->cmd_error;
 592				goto e_src;
 593			}
 594		}
 595
 596		ret = cmd_q->ccp->vdata->perform->aes(&op);
 597		if (ret) {
 598			cmd->engine_error = cmd_q->cmd_error;
 599			goto e_src;
 600		}
 601
 602		ccp_process_data(&src, NULL, &op);
 603	}
 604
 605	/* Retrieve the AES context - convert from LE to BE using
 606	 * 32-byte (256-bit) byteswapping
 607	 */
 608	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 609			       CCP_PASSTHRU_BYTESWAP_256BIT);
 610	if (ret) {
 611		cmd->engine_error = cmd_q->cmd_error;
 612		goto e_src;
 613	}
 614
 615	/* ...but we only need AES_BLOCK_SIZE bytes */
 616	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 617	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 618
 619e_src:
 620	ccp_free_data(&src, cmd_q);
 621
 622e_ctx:
 623	ccp_dm_free(&ctx);
 624
 625e_key:
 626	ccp_dm_free(&key);
 627
 628	return ret;
 629}
 630
 631static noinline_for_stack int
 632ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 633{
 634	struct ccp_aes_engine *aes = &cmd->u.aes;
 635	struct ccp_dm_workarea key, ctx, final_wa, tag;
 636	struct ccp_data src, dst;
 637	struct ccp_data aad;
 638	struct ccp_op op;
 639	unsigned int dm_offset;
 640	unsigned int authsize;
 641	unsigned int jobid;
 642	unsigned int ilen;
 643	bool in_place = true; /* Default value */
 644	__be64 *final;
 645	int ret;
 646
 647	struct scatterlist *p_inp, sg_inp[2];
 648	struct scatterlist *p_tag, sg_tag[2];
 649	struct scatterlist *p_outp, sg_outp[2];
 650	struct scatterlist *p_aad;
 651
 652	if (!aes->iv)
 653		return -EINVAL;
 654
 655	if (!((aes->key_len == AES_KEYSIZE_128) ||
 656		(aes->key_len == AES_KEYSIZE_192) ||
 657		(aes->key_len == AES_KEYSIZE_256)))
 658		return -EINVAL;
 659
 660	if (!aes->key) /* Gotta have a key SGL */
 661		return -EINVAL;
 662
 663	/* Zero defaults to 16 bytes, the maximum size */
 664	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
 665	switch (authsize) {
 666	case 16:
 667	case 15:
 668	case 14:
 669	case 13:
 670	case 12:
 671	case 8:
 672	case 4:
 673		break;
 674	default:
 675		return -EINVAL;
 676	}
 677
 678	/* First, decompose the source buffer into AAD & PT,
 679	 * and the destination buffer into AAD, CT & tag, or
 680	 * the input into CT & tag.
 681	 * It is expected that the input and output SGs will
 682	 * be valid, even if the AAD and input lengths are 0.
 683	 */
 684	p_aad = aes->src;
 685	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 686	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 687	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 688		ilen = aes->src_len;
 689		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 690	} else {
 691		/* Input length for decryption includes tag */
 692		ilen = aes->src_len - authsize;
 693		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 694	}
 695
 696	jobid = CCP_NEW_JOBID(cmd_q->ccp);
 697
 698	memset(&op, 0, sizeof(op));
 699	op.cmd_q = cmd_q;
 700	op.jobid = jobid;
 701	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 702	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 703	op.init = 1;
 704	op.u.aes.type = aes->type;
 705
 706	/* Copy the key to the LSB */
 707	ret = ccp_init_dm_workarea(&key, cmd_q,
 708				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 709				   DMA_TO_DEVICE);
 710	if (ret)
 711		return ret;
 712
 713	dm_offset = CCP_SB_BYTES - aes->key_len;
 714	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 715	if (ret)
 716		goto e_key;
 717	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 718			     CCP_PASSTHRU_BYTESWAP_256BIT);
 719	if (ret) {
 720		cmd->engine_error = cmd_q->cmd_error;
 721		goto e_key;
 722	}
 723
 724	/* Copy the context (IV) to the LSB.
 725	 * There is an assumption here that the IV is 96 bits in length, plus
 726	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 727	 */
 728	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 729				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 730				   DMA_BIDIRECTIONAL);
 731	if (ret)
 732		goto e_key;
 733
 734	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 735	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 736	if (ret)
 737		goto e_ctx;
 738
 739	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 740			     CCP_PASSTHRU_BYTESWAP_256BIT);
 741	if (ret) {
 742		cmd->engine_error = cmd_q->cmd_error;
 743		goto e_ctx;
 744	}
 745
 746	op.init = 1;
 747	if (aes->aad_len > 0) {
 748		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 749		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 750				    AES_BLOCK_SIZE,
 751				    DMA_TO_DEVICE);
 752		if (ret)
 753			goto e_ctx;
 754
 755		op.u.aes.mode = CCP_AES_MODE_GHASH;
 756		op.u.aes.action = CCP_AES_GHASHAAD;
 757
 758		while (aad.sg_wa.bytes_left) {
 759			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 760
 761			ret = cmd_q->ccp->vdata->perform->aes(&op);
 762			if (ret) {
 763				cmd->engine_error = cmd_q->cmd_error;
 764				goto e_aad;
 765			}
 766
 767			ccp_process_data(&aad, NULL, &op);
 768			op.init = 0;
 769		}
 770	}
 771
 772	op.u.aes.mode = CCP_AES_MODE_GCTR;
 773	op.u.aes.action = aes->action;
 774
 775	if (ilen > 0) {
 776		/* Step 2: Run a GCTR over the plaintext */
 777		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 778
 779		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 780				    AES_BLOCK_SIZE,
 781				    in_place ? DMA_BIDIRECTIONAL
 782					     : DMA_TO_DEVICE);
 783		if (ret)
 784			goto e_aad;
 785
 786		if (in_place) {
 787			dst = src;
 788		} else {
 789			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 790					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 791			if (ret)
 792				goto e_src;
 793		}
 794
 795		op.soc = 0;
 796		op.eom = 0;
 797		op.init = 1;
 798		while (src.sg_wa.bytes_left) {
 799			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 800			if (!src.sg_wa.bytes_left) {
 801				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
 802
 803				if (nbytes) {
 804					op.eom = 1;
 805					op.u.aes.size = (nbytes * 8) - 1;
 806				}
 807			}
 808
 809			ret = cmd_q->ccp->vdata->perform->aes(&op);
 810			if (ret) {
 811				cmd->engine_error = cmd_q->cmd_error;
 812				goto e_dst;
 813			}
 814
 815			ccp_process_data(&src, &dst, &op);
 816			op.init = 0;
 817		}
 818	}
 819
 820	/* Step 3: Update the IV portion of the context with the original IV */
 821	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 822			       CCP_PASSTHRU_BYTESWAP_256BIT);
 823	if (ret) {
 824		cmd->engine_error = cmd_q->cmd_error;
 825		goto e_dst;
 826	}
 827
 828	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 829	if (ret)
 830		goto e_dst;
 831
 832	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 833			     CCP_PASSTHRU_BYTESWAP_256BIT);
 834	if (ret) {
 835		cmd->engine_error = cmd_q->cmd_error;
 836		goto e_dst;
 837	}
 838
 839	/* Step 4: Concatenate the lengths of the AAD and source, and
 840	 * hash that 16 byte buffer.
 841	 */
 842	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 843				   DMA_BIDIRECTIONAL);
 844	if (ret)
 845		goto e_dst;
 846	final = (__be64 *)final_wa.address;
 847	final[0] = cpu_to_be64(aes->aad_len * 8);
 848	final[1] = cpu_to_be64(ilen * 8);
 849
 850	memset(&op, 0, sizeof(op));
 851	op.cmd_q = cmd_q;
 852	op.jobid = jobid;
 853	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 854	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 855	op.init = 1;
 856	op.u.aes.type = aes->type;
 857	op.u.aes.mode = CCP_AES_MODE_GHASH;
 858	op.u.aes.action = CCP_AES_GHASHFINAL;
 859	op.src.type = CCP_MEMTYPE_SYSTEM;
 860	op.src.u.dma.address = final_wa.dma.address;
 861	op.src.u.dma.length = AES_BLOCK_SIZE;
 862	op.dst.type = CCP_MEMTYPE_SYSTEM;
 863	op.dst.u.dma.address = final_wa.dma.address;
 864	op.dst.u.dma.length = AES_BLOCK_SIZE;
 865	op.eom = 1;
 866	op.u.aes.size = 0;
 867	ret = cmd_q->ccp->vdata->perform->aes(&op);
 868	if (ret)
 869		goto e_final_wa;
 870
 871	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 872		/* Put the ciphered tag after the ciphertext. */
 873		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
 874	} else {
 875		/* Does this ciphered tag match the input? */
 876		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
 877					   DMA_BIDIRECTIONAL);
 878		if (ret)
 879			goto e_final_wa;
 880		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
 881		if (ret) {
 882			ccp_dm_free(&tag);
 883			goto e_final_wa;
 884		}
 885
 886		ret = crypto_memneq(tag.address, final_wa.address,
 887				    authsize) ? -EBADMSG : 0;
 888		ccp_dm_free(&tag);
 889	}
 890
 891e_final_wa:
 892	ccp_dm_free(&final_wa);
 893
 894e_dst:
 895	if (ilen > 0 && !in_place)
 896		ccp_free_data(&dst, cmd_q);
 897
 898e_src:
 899	if (ilen > 0)
 900		ccp_free_data(&src, cmd_q);
 901
 902e_aad:
 903	if (aes->aad_len)
 904		ccp_free_data(&aad, cmd_q);
 905
 906e_ctx:
 907	ccp_dm_free(&ctx);
 908
 909e_key:
 910	ccp_dm_free(&key);
 911
 912	return ret;
 913}
 914
 915static noinline_for_stack int
 916ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 917{
 918	struct ccp_aes_engine *aes = &cmd->u.aes;
 919	struct ccp_dm_workarea key, ctx;
 920	struct ccp_data src, dst;
 921	struct ccp_op op;
 922	unsigned int dm_offset;
 923	bool in_place = false;
 924	int ret;
 925
 
 
 
 926	if (!((aes->key_len == AES_KEYSIZE_128) ||
 927	      (aes->key_len == AES_KEYSIZE_192) ||
 928	      (aes->key_len == AES_KEYSIZE_256)))
 929		return -EINVAL;
 930
 931	if (((aes->mode == CCP_AES_MODE_ECB) ||
 932	     (aes->mode == CCP_AES_MODE_CBC)) &&
 
 933	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 934		return -EINVAL;
 935
 936	if (!aes->key || !aes->src || !aes->dst)
 937		return -EINVAL;
 938
 939	if (aes->mode != CCP_AES_MODE_ECB) {
 940		if (aes->iv_len != AES_BLOCK_SIZE)
 941			return -EINVAL;
 942
 943		if (!aes->iv)
 944			return -EINVAL;
 945	}
 946
 947	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 948	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 949
 950	ret = -EIO;
 951	memset(&op, 0, sizeof(op));
 952	op.cmd_q = cmd_q;
 953	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 954	op.sb_key = cmd_q->sb_key;
 955	op.sb_ctx = cmd_q->sb_ctx;
 956	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 957	op.u.aes.type = aes->type;
 958	op.u.aes.mode = aes->mode;
 959	op.u.aes.action = aes->action;
 960
 961	/* All supported key sizes fit in a single (32-byte) SB entry
 962	 * and must be in little endian format. Use the 256-bit byte
 963	 * swap passthru option to convert from big endian to little
 964	 * endian.
 965	 */
 966	ret = ccp_init_dm_workarea(&key, cmd_q,
 967				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 968				   DMA_TO_DEVICE);
 969	if (ret)
 970		return ret;
 971
 972	dm_offset = CCP_SB_BYTES - aes->key_len;
 973	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 974	if (ret)
 975		goto e_key;
 976	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 977			     CCP_PASSTHRU_BYTESWAP_256BIT);
 978	if (ret) {
 979		cmd->engine_error = cmd_q->cmd_error;
 980		goto e_key;
 981	}
 982
 983	/* The AES context fits in a single (32-byte) SB entry and
 984	 * must be in little endian format. Use the 256-bit byte swap
 985	 * passthru option to convert from big endian to little endian.
 986	 */
 987	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 988				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 989				   DMA_BIDIRECTIONAL);
 990	if (ret)
 991		goto e_key;
 992
 993	if (aes->mode != CCP_AES_MODE_ECB) {
 994		/* Load the AES context - convert to LE */
 995		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 996		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 997		if (ret)
 998			goto e_ctx;
 999		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1000				     CCP_PASSTHRU_BYTESWAP_256BIT);
1001		if (ret) {
1002			cmd->engine_error = cmd_q->cmd_error;
1003			goto e_ctx;
1004		}
1005	}
1006	switch (aes->mode) {
1007	case CCP_AES_MODE_CFB: /* CFB128 only */
1008	case CCP_AES_MODE_CTR:
1009		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
1010		break;
1011	default:
1012		op.u.aes.size = 0;
1013	}
1014
1015	/* Prepare the input and output data workareas. For in-place
1016	 * operations we need to set the dma direction to BIDIRECTIONAL
1017	 * and copy the src workarea to the dst workarea.
1018	 */
1019	if (sg_virt(aes->src) == sg_virt(aes->dst))
1020		in_place = true;
1021
1022	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1023			    AES_BLOCK_SIZE,
1024			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1025	if (ret)
1026		goto e_ctx;
1027
1028	if (in_place) {
1029		dst = src;
1030	} else {
1031		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1032				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1033		if (ret)
1034			goto e_src;
1035	}
1036
1037	/* Send data to the CCP AES engine */
1038	while (src.sg_wa.bytes_left) {
1039		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1040		if (!src.sg_wa.bytes_left) {
1041			op.eom = 1;
1042
1043			/* Since we don't retrieve the AES context in ECB
1044			 * mode we have to wait for the operation to complete
1045			 * on the last piece of data
1046			 */
1047			if (aes->mode == CCP_AES_MODE_ECB)
1048				op.soc = 1;
1049		}
1050
1051		ret = cmd_q->ccp->vdata->perform->aes(&op);
1052		if (ret) {
1053			cmd->engine_error = cmd_q->cmd_error;
1054			goto e_dst;
1055		}
1056
1057		ccp_process_data(&src, &dst, &op);
1058	}
1059
1060	if (aes->mode != CCP_AES_MODE_ECB) {
1061		/* Retrieve the AES context - convert from LE to BE using
1062		 * 32-byte (256-bit) byteswapping
1063		 */
1064		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1065				       CCP_PASSTHRU_BYTESWAP_256BIT);
1066		if (ret) {
1067			cmd->engine_error = cmd_q->cmd_error;
1068			goto e_dst;
1069		}
1070
1071		/* ...but we only need AES_BLOCK_SIZE bytes */
1072		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1073		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1074	}
1075
1076e_dst:
1077	if (!in_place)
1078		ccp_free_data(&dst, cmd_q);
1079
1080e_src:
1081	ccp_free_data(&src, cmd_q);
1082
1083e_ctx:
1084	ccp_dm_free(&ctx);
1085
1086e_key:
1087	ccp_dm_free(&key);
1088
1089	return ret;
1090}
1091
1092static noinline_for_stack int
1093ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1094{
1095	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1096	struct ccp_dm_workarea key, ctx;
1097	struct ccp_data src, dst;
1098	struct ccp_op op;
1099	unsigned int unit_size, dm_offset;
1100	bool in_place = false;
1101	unsigned int sb_count;
1102	enum ccp_aes_type aestype;
1103	int ret;
1104
1105	switch (xts->unit_size) {
1106	case CCP_XTS_AES_UNIT_SIZE_16:
1107		unit_size = 16;
1108		break;
1109	case CCP_XTS_AES_UNIT_SIZE_512:
1110		unit_size = 512;
1111		break;
1112	case CCP_XTS_AES_UNIT_SIZE_1024:
1113		unit_size = 1024;
1114		break;
1115	case CCP_XTS_AES_UNIT_SIZE_2048:
1116		unit_size = 2048;
1117		break;
1118	case CCP_XTS_AES_UNIT_SIZE_4096:
1119		unit_size = 4096;
1120		break;
1121
1122	default:
1123		return -EINVAL;
1124	}
1125
1126	if (xts->key_len == AES_KEYSIZE_128)
1127		aestype = CCP_AES_TYPE_128;
1128	else if (xts->key_len == AES_KEYSIZE_256)
1129		aestype = CCP_AES_TYPE_256;
1130	else
1131		return -EINVAL;
1132
1133	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1134		return -EINVAL;
1135
1136	if (xts->iv_len != AES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1140		return -EINVAL;
1141
1142	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1143	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1144
1145	ret = -EIO;
1146	memset(&op, 0, sizeof(op));
1147	op.cmd_q = cmd_q;
1148	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1149	op.sb_key = cmd_q->sb_key;
1150	op.sb_ctx = cmd_q->sb_ctx;
1151	op.init = 1;
1152	op.u.xts.type = aestype;
1153	op.u.xts.action = xts->action;
1154	op.u.xts.unit_size = xts->unit_size;
1155
1156	/* A version 3 device only supports 128-bit keys, which fits into a
1157	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1158	 * SB entries.
1159	 */
1160	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1161		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1162	else
1163		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1164	ret = ccp_init_dm_workarea(&key, cmd_q,
1165				   sb_count * CCP_SB_BYTES,
1166				   DMA_TO_DEVICE);
1167	if (ret)
1168		return ret;
1169
1170	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1171		/* All supported key sizes must be in little endian format.
1172		 * Use the 256-bit byte swap passthru option to convert from
1173		 * big endian to little endian.
1174		 */
1175		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1176		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1177		if (ret)
1178			goto e_key;
1179		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1180		if (ret)
1181			goto e_key;
1182	} else {
1183		/* Version 5 CCPs use a 512-bit space for the key: each portion
1184		 * occupies 256 bits, or one entire slot, and is zero-padded.
1185		 */
1186		unsigned int pad;
1187
1188		dm_offset = CCP_SB_BYTES;
1189		pad = dm_offset - xts->key_len;
1190		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1191		if (ret)
1192			goto e_key;
1193		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1194				      xts->key_len, xts->key_len);
1195		if (ret)
1196			goto e_key;
1197	}
1198	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1199			     CCP_PASSTHRU_BYTESWAP_256BIT);
1200	if (ret) {
1201		cmd->engine_error = cmd_q->cmd_error;
1202		goto e_key;
1203	}
1204
1205	/* The AES context fits in a single (32-byte) SB entry and
1206	 * for XTS is already in little endian format so no byte swapping
1207	 * is needed.
1208	 */
1209	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1210				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1211				   DMA_BIDIRECTIONAL);
1212	if (ret)
1213		goto e_key;
1214
1215	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1216	if (ret)
1217		goto e_ctx;
1218	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1219			     CCP_PASSTHRU_BYTESWAP_NOOP);
1220	if (ret) {
1221		cmd->engine_error = cmd_q->cmd_error;
1222		goto e_ctx;
1223	}
1224
1225	/* Prepare the input and output data workareas. For in-place
1226	 * operations we need to set the dma direction to BIDIRECTIONAL
1227	 * and copy the src workarea to the dst workarea.
1228	 */
1229	if (sg_virt(xts->src) == sg_virt(xts->dst))
1230		in_place = true;
1231
1232	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1233			    unit_size,
1234			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1235	if (ret)
1236		goto e_ctx;
1237
1238	if (in_place) {
1239		dst = src;
1240	} else {
1241		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1242				    unit_size, DMA_FROM_DEVICE);
1243		if (ret)
1244			goto e_src;
1245	}
1246
1247	/* Send data to the CCP AES engine */
1248	while (src.sg_wa.bytes_left) {
1249		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1250		if (!src.sg_wa.bytes_left)
1251			op.eom = 1;
1252
1253		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1254		if (ret) {
1255			cmd->engine_error = cmd_q->cmd_error;
1256			goto e_dst;
1257		}
1258
1259		ccp_process_data(&src, &dst, &op);
1260	}
1261
1262	/* Retrieve the AES context - convert from LE to BE using
1263	 * 32-byte (256-bit) byteswapping
1264	 */
1265	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1266			       CCP_PASSTHRU_BYTESWAP_256BIT);
1267	if (ret) {
1268		cmd->engine_error = cmd_q->cmd_error;
1269		goto e_dst;
1270	}
1271
1272	/* ...but we only need AES_BLOCK_SIZE bytes */
1273	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1274	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1275
1276e_dst:
1277	if (!in_place)
1278		ccp_free_data(&dst, cmd_q);
1279
1280e_src:
1281	ccp_free_data(&src, cmd_q);
1282
1283e_ctx:
1284	ccp_dm_free(&ctx);
1285
1286e_key:
1287	ccp_dm_free(&key);
1288
1289	return ret;
1290}
1291
1292static noinline_for_stack int
1293ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1294{
1295	struct ccp_des3_engine *des3 = &cmd->u.des3;
1296
1297	struct ccp_dm_workarea key, ctx;
1298	struct ccp_data src, dst;
1299	struct ccp_op op;
1300	unsigned int dm_offset;
1301	unsigned int len_singlekey;
1302	bool in_place = false;
1303	int ret;
1304
1305	/* Error checks */
1306	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1307		return -EINVAL;
1308
1309	if (!cmd_q->ccp->vdata->perform->des3)
1310		return -EINVAL;
1311
1312	if (des3->key_len != DES3_EDE_KEY_SIZE)
1313		return -EINVAL;
1314
1315	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1316		(des3->mode == CCP_DES3_MODE_CBC)) &&
1317		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1318		return -EINVAL;
1319
1320	if (!des3->key || !des3->src || !des3->dst)
1321		return -EINVAL;
1322
1323	if (des3->mode != CCP_DES3_MODE_ECB) {
1324		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1325			return -EINVAL;
1326
1327		if (!des3->iv)
1328			return -EINVAL;
1329	}
1330
1331	/* Zero out all the fields of the command desc */
1332	memset(&op, 0, sizeof(op));
1333
1334	/* Set up the Function field */
1335	op.cmd_q = cmd_q;
1336	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1337	op.sb_key = cmd_q->sb_key;
1338
1339	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1340	op.u.des3.type = des3->type;
1341	op.u.des3.mode = des3->mode;
1342	op.u.des3.action = des3->action;
1343
1344	/*
1345	 * All supported key sizes fit in a single (32-byte) KSB entry and
1346	 * (like AES) must be in little endian format. Use the 256-bit byte
1347	 * swap passthru option to convert from big endian to little endian.
1348	 */
1349	ret = ccp_init_dm_workarea(&key, cmd_q,
1350				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1351				   DMA_TO_DEVICE);
1352	if (ret)
1353		return ret;
1354
1355	/*
1356	 * The contents of the key triplet are in the reverse order of what
1357	 * is required by the engine. Copy the 3 pieces individually to put
1358	 * them where they belong.
1359	 */
1360	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1361
1362	len_singlekey = des3->key_len / 3;
1363	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1364			      des3->key, 0, len_singlekey);
1365	if (ret)
1366		goto e_key;
1367	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1368			      des3->key, len_singlekey, len_singlekey);
1369	if (ret)
1370		goto e_key;
1371	ret = ccp_set_dm_area(&key, dm_offset,
1372			      des3->key, 2 * len_singlekey, len_singlekey);
1373	if (ret)
1374		goto e_key;
1375
1376	/* Copy the key to the SB */
1377	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1378			     CCP_PASSTHRU_BYTESWAP_256BIT);
1379	if (ret) {
1380		cmd->engine_error = cmd_q->cmd_error;
1381		goto e_key;
1382	}
1383
1384	/*
1385	 * The DES3 context fits in a single (32-byte) KSB entry and
1386	 * must be in little endian format. Use the 256-bit byte swap
1387	 * passthru option to convert from big endian to little endian.
1388	 */
1389	if (des3->mode != CCP_DES3_MODE_ECB) {
1390		op.sb_ctx = cmd_q->sb_ctx;
1391
1392		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1393					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1394					   DMA_BIDIRECTIONAL);
1395		if (ret)
1396			goto e_key;
1397
1398		/* Load the context into the LSB */
1399		dm_offset = CCP_SB_BYTES - des3->iv_len;
1400		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1401				      des3->iv_len);
1402		if (ret)
1403			goto e_ctx;
1404
1405		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1406				     CCP_PASSTHRU_BYTESWAP_256BIT);
1407		if (ret) {
1408			cmd->engine_error = cmd_q->cmd_error;
1409			goto e_ctx;
1410		}
1411	}
1412
1413	/*
1414	 * Prepare the input and output data workareas. For in-place
1415	 * operations we need to set the dma direction to BIDIRECTIONAL
1416	 * and copy the src workarea to the dst workarea.
1417	 */
1418	if (sg_virt(des3->src) == sg_virt(des3->dst))
1419		in_place = true;
1420
1421	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1422			DES3_EDE_BLOCK_SIZE,
1423			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1424	if (ret)
1425		goto e_ctx;
1426
1427	if (in_place)
1428		dst = src;
1429	else {
1430		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1431				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1432		if (ret)
1433			goto e_src;
1434	}
1435
1436	/* Send data to the CCP DES3 engine */
1437	while (src.sg_wa.bytes_left) {
1438		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1439		if (!src.sg_wa.bytes_left) {
1440			op.eom = 1;
1441
1442			/* Since we don't retrieve the context in ECB mode
1443			 * we have to wait for the operation to complete
1444			 * on the last piece of data
1445			 */
1446			op.soc = 0;
1447		}
1448
1449		ret = cmd_q->ccp->vdata->perform->des3(&op);
1450		if (ret) {
1451			cmd->engine_error = cmd_q->cmd_error;
1452			goto e_dst;
1453		}
1454
1455		ccp_process_data(&src, &dst, &op);
1456	}
1457
1458	if (des3->mode != CCP_DES3_MODE_ECB) {
1459		/* Retrieve the context and make BE */
1460		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1461				       CCP_PASSTHRU_BYTESWAP_256BIT);
1462		if (ret) {
1463			cmd->engine_error = cmd_q->cmd_error;
1464			goto e_dst;
1465		}
1466
1467		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1468		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1469				DES3_EDE_BLOCK_SIZE);
1470	}
1471e_dst:
1472	if (!in_place)
1473		ccp_free_data(&dst, cmd_q);
1474
1475e_src:
1476	ccp_free_data(&src, cmd_q);
1477
1478e_ctx:
1479	if (des3->mode != CCP_DES3_MODE_ECB)
1480		ccp_dm_free(&ctx);
1481
1482e_key:
1483	ccp_dm_free(&key);
1484
1485	return ret;
1486}
1487
1488static noinline_for_stack int
1489ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1490{
1491	struct ccp_sha_engine *sha = &cmd->u.sha;
1492	struct ccp_dm_workarea ctx;
1493	struct ccp_data src;
1494	struct ccp_op op;
1495	unsigned int ioffset, ooffset;
1496	unsigned int digest_size;
1497	int sb_count;
1498	const void *init;
1499	u64 block_size;
1500	int ctx_size;
1501	int ret;
1502
1503	switch (sha->type) {
1504	case CCP_SHA_TYPE_1:
1505		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1506			return -EINVAL;
1507		block_size = SHA1_BLOCK_SIZE;
1508		break;
1509	case CCP_SHA_TYPE_224:
1510		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1511			return -EINVAL;
1512		block_size = SHA224_BLOCK_SIZE;
1513		break;
1514	case CCP_SHA_TYPE_256:
1515		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1516			return -EINVAL;
1517		block_size = SHA256_BLOCK_SIZE;
1518		break;
1519	case CCP_SHA_TYPE_384:
1520		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1521		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1522			return -EINVAL;
1523		block_size = SHA384_BLOCK_SIZE;
1524		break;
1525	case CCP_SHA_TYPE_512:
1526		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1527		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1528			return -EINVAL;
1529		block_size = SHA512_BLOCK_SIZE;
1530		break;
1531	default:
1532		return -EINVAL;
1533	}
1534
1535	if (!sha->ctx)
1536		return -EINVAL;
1537
1538	if (!sha->final && (sha->src_len & (block_size - 1)))
1539		return -EINVAL;
1540
1541	/* The version 3 device can't handle zero-length input */
1542	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1543
1544		if (!sha->src_len) {
1545			unsigned int digest_len;
1546			const u8 *sha_zero;
1547
1548			/* Not final, just return */
1549			if (!sha->final)
1550				return 0;
1551
1552			/* CCP can't do a zero length sha operation so the
1553			 * caller must buffer the data.
1554			 */
1555			if (sha->msg_bits)
1556				return -EINVAL;
1557
1558			/* The CCP cannot perform zero-length sha operations
1559			 * so the caller is required to buffer data for the
1560			 * final operation. However, a sha operation for a
1561			 * message with a total length of zero is valid so
1562			 * known values are required to supply the result.
1563			 */
1564			switch (sha->type) {
1565			case CCP_SHA_TYPE_1:
1566				sha_zero = sha1_zero_message_hash;
1567				digest_len = SHA1_DIGEST_SIZE;
1568				break;
1569			case CCP_SHA_TYPE_224:
1570				sha_zero = sha224_zero_message_hash;
1571				digest_len = SHA224_DIGEST_SIZE;
1572				break;
1573			case CCP_SHA_TYPE_256:
1574				sha_zero = sha256_zero_message_hash;
1575				digest_len = SHA256_DIGEST_SIZE;
1576				break;
1577			default:
1578				return -EINVAL;
1579			}
1580
1581			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1582						 digest_len, 1);
 
 
 
1583
1584			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585		}
1586	}
1587
1588	/* Set variables used throughout */
1589	switch (sha->type) {
1590	case CCP_SHA_TYPE_1:
1591		digest_size = SHA1_DIGEST_SIZE;
1592		init = (void *) ccp_sha1_init;
1593		ctx_size = SHA1_DIGEST_SIZE;
1594		sb_count = 1;
1595		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1596			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1597		else
1598			ooffset = ioffset = 0;
1599		break;
1600	case CCP_SHA_TYPE_224:
1601		digest_size = SHA224_DIGEST_SIZE;
1602		init = (void *) ccp_sha224_init;
1603		ctx_size = SHA256_DIGEST_SIZE;
1604		sb_count = 1;
1605		ioffset = 0;
1606		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1607			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1608		else
1609			ooffset = 0;
1610		break;
1611	case CCP_SHA_TYPE_256:
1612		digest_size = SHA256_DIGEST_SIZE;
1613		init = (void *) ccp_sha256_init;
1614		ctx_size = SHA256_DIGEST_SIZE;
1615		sb_count = 1;
1616		ooffset = ioffset = 0;
1617		break;
1618	case CCP_SHA_TYPE_384:
1619		digest_size = SHA384_DIGEST_SIZE;
1620		init = (void *) ccp_sha384_init;
1621		ctx_size = SHA512_DIGEST_SIZE;
1622		sb_count = 2;
1623		ioffset = 0;
1624		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1625		break;
1626	case CCP_SHA_TYPE_512:
1627		digest_size = SHA512_DIGEST_SIZE;
1628		init = (void *) ccp_sha512_init;
1629		ctx_size = SHA512_DIGEST_SIZE;
1630		sb_count = 2;
1631		ooffset = ioffset = 0;
1632		break;
1633	default:
1634		ret = -EINVAL;
1635		goto e_data;
1636	}
1637
1638	/* For zero-length plaintext the src pointer is ignored;
1639	 * otherwise both parts must be valid
1640	 */
1641	if (sha->src_len && !sha->src)
1642		return -EINVAL;
1643
 
 
1644	memset(&op, 0, sizeof(op));
1645	op.cmd_q = cmd_q;
1646	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1647	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1648	op.u.sha.type = sha->type;
1649	op.u.sha.msg_bits = sha->msg_bits;
1650
1651	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1652	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1653	 * first slot, and the left half in the second. Each portion must then
1654	 * be in little endian format: use the 256-bit byte swap option.
1655	 */
1656	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
 
1657				   DMA_BIDIRECTIONAL);
1658	if (ret)
1659		return ret;
 
1660	if (sha->first) {
 
 
1661		switch (sha->type) {
1662		case CCP_SHA_TYPE_1:
 
 
1663		case CCP_SHA_TYPE_224:
1664		case CCP_SHA_TYPE_256:
1665			memcpy(ctx.address + ioffset, init, ctx_size);
1666			break;
1667		case CCP_SHA_TYPE_384:
1668		case CCP_SHA_TYPE_512:
1669			memcpy(ctx.address + ctx_size / 2, init,
1670			       ctx_size / 2);
1671			memcpy(ctx.address, init + ctx_size / 2,
1672			       ctx_size / 2);
1673			break;
1674		default:
1675			ret = -EINVAL;
1676			goto e_ctx;
1677		}
 
1678	} else {
1679		/* Restore the context */
1680		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1681				      sb_count * CCP_SB_BYTES);
1682		if (ret)
1683			goto e_ctx;
1684	}
1685
1686	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1687			     CCP_PASSTHRU_BYTESWAP_256BIT);
1688	if (ret) {
1689		cmd->engine_error = cmd_q->cmd_error;
1690		goto e_ctx;
1691	}
1692
1693	if (sha->src) {
1694		/* Send data to the CCP SHA engine; block_size is set above */
1695		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1696				    block_size, DMA_TO_DEVICE);
1697		if (ret)
1698			goto e_ctx;
1699
1700		while (src.sg_wa.bytes_left) {
1701			ccp_prepare_data(&src, NULL, &op, block_size, false);
1702			if (sha->final && !src.sg_wa.bytes_left)
1703				op.eom = 1;
1704
1705			ret = cmd_q->ccp->vdata->perform->sha(&op);
1706			if (ret) {
1707				cmd->engine_error = cmd_q->cmd_error;
1708				goto e_data;
1709			}
1710
1711			ccp_process_data(&src, NULL, &op);
1712		}
1713	} else {
1714		op.eom = 1;
1715		ret = cmd_q->ccp->vdata->perform->sha(&op);
1716		if (ret) {
1717			cmd->engine_error = cmd_q->cmd_error;
1718			goto e_data;
1719		}
 
 
1720	}
1721
1722	/* Retrieve the SHA context - convert from LE to BE using
1723	 * 32-byte (256-bit) byteswapping to BE
1724	 */
1725	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1726			       CCP_PASSTHRU_BYTESWAP_256BIT);
1727	if (ret) {
1728		cmd->engine_error = cmd_q->cmd_error;
1729		goto e_data;
1730	}
1731
1732	if (sha->final) {
1733		/* Finishing up, so get the digest */
 
 
 
 
 
 
 
1734		switch (sha->type) {
1735		case CCP_SHA_TYPE_1:
 
 
 
1736		case CCP_SHA_TYPE_224:
1737		case CCP_SHA_TYPE_256:
1738			ccp_get_dm_area(&ctx, ooffset,
1739					sha->ctx, 0,
1740					digest_size);
1741			break;
1742		case CCP_SHA_TYPE_384:
1743		case CCP_SHA_TYPE_512:
1744			ccp_get_dm_area(&ctx, 0,
1745					sha->ctx, LSB_ITEM_SIZE - ooffset,
1746					LSB_ITEM_SIZE);
1747			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1748					sha->ctx, 0,
1749					LSB_ITEM_SIZE - ooffset);
1750			break;
1751		default:
1752			ret = -EINVAL;
1753			goto e_data;
1754		}
1755	} else {
1756		/* Stash the context */
1757		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1758				sb_count * CCP_SB_BYTES);
1759	}
1760
1761	if (sha->final && sha->opad) {
1762		/* HMAC operation, recursively perform final SHA */
1763		struct ccp_cmd hmac_cmd;
1764		struct scatterlist sg;
1765		u8 *hmac_buf;
1766
1767		if (sha->opad_len != block_size) {
1768			ret = -EINVAL;
1769			goto e_data;
1770		}
1771
1772		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1773		if (!hmac_buf) {
1774			ret = -ENOMEM;
1775			goto e_data;
1776		}
1777		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1778
1779		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1780		switch (sha->type) {
1781		case CCP_SHA_TYPE_1:
1782		case CCP_SHA_TYPE_224:
1783		case CCP_SHA_TYPE_256:
1784			memcpy(hmac_buf + block_size,
1785			       ctx.address + ooffset,
1786			       digest_size);
1787			break;
1788		case CCP_SHA_TYPE_384:
1789		case CCP_SHA_TYPE_512:
1790			memcpy(hmac_buf + block_size,
1791			       ctx.address + LSB_ITEM_SIZE + ooffset,
1792			       LSB_ITEM_SIZE);
1793			memcpy(hmac_buf + block_size +
1794			       (LSB_ITEM_SIZE - ooffset),
1795			       ctx.address,
1796			       LSB_ITEM_SIZE);
1797			break;
1798		default:
1799			kfree(hmac_buf);
1800			ret = -EINVAL;
1801			goto e_data;
1802		}
1803
1804		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1805		hmac_cmd.engine = CCP_ENGINE_SHA;
1806		hmac_cmd.u.sha.type = sha->type;
1807		hmac_cmd.u.sha.ctx = sha->ctx;
1808		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1809		hmac_cmd.u.sha.src = &sg;
1810		hmac_cmd.u.sha.src_len = block_size + digest_size;
1811		hmac_cmd.u.sha.opad = NULL;
1812		hmac_cmd.u.sha.opad_len = 0;
1813		hmac_cmd.u.sha.first = 1;
1814		hmac_cmd.u.sha.final = 1;
1815		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1816
1817		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1818		if (ret)
1819			cmd->engine_error = hmac_cmd.engine_error;
1820
1821		kfree(hmac_buf);
1822	}
1823
1824e_data:
1825	if (sha->src)
1826		ccp_free_data(&src, cmd_q);
1827
1828e_ctx:
1829	ccp_dm_free(&ctx);
1830
1831	return ret;
1832}
1833
1834static noinline_for_stack int
1835ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1836{
1837	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1838	struct ccp_dm_workarea exp, src, dst;
 
1839	struct ccp_op op;
1840	unsigned int sb_count, i_len, o_len;
1841	int ret;
1842
1843	/* Check against the maximum allowable size, in bits */
1844	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1845		return -EINVAL;
1846
1847	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1848		return -EINVAL;
1849
1850	memset(&op, 0, sizeof(op));
1851	op.cmd_q = cmd_q;
1852	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1853
1854	/* The RSA modulus must precede the message being acted upon, so
1855	 * it must be copied to a DMA area where the message and the
1856	 * modulus can be concatenated.  Therefore the input buffer
1857	 * length required is twice the output buffer length (which
1858	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1859	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1860	 * required.
1861	 */
1862	o_len = 32 * ((rsa->key_size + 255) / 256);
1863	i_len = o_len * 2;
1864
1865	sb_count = 0;
1866	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1867		/* sb_count is the number of storage block slots required
1868		 * for the modulus.
1869		 */
1870		sb_count = o_len / CCP_SB_BYTES;
1871		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1872								sb_count);
1873		if (!op.sb_key)
1874			return -EIO;
1875	} else {
1876		/* A version 5 device allows a modulus size that will not fit
1877		 * in the LSB, so the command will transfer it from memory.
1878		 * Set the sb key to the default, even though it's not used.
1879		 */
1880		op.sb_key = cmd_q->sb_key;
1881	}
1882
1883	/* The RSA exponent must be in little endian format. Reverse its
1884	 * byte order.
 
 
 
 
 
 
 
 
 
 
1885	 */
1886	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1887	if (ret)
1888		goto e_sb;
1889
1890	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
 
1891	if (ret)
1892		goto e_exp;
1893
1894	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1895		/* Copy the exponent to the local storage block, using
1896		 * as many 32-byte blocks as were allocated above. It's
1897		 * already little endian, so no further change is required.
1898		 */
1899		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1900				     CCP_PASSTHRU_BYTESWAP_NOOP);
1901		if (ret) {
1902			cmd->engine_error = cmd_q->cmd_error;
1903			goto e_exp;
1904		}
1905	} else {
1906		/* The exponent can be retrieved from memory via DMA. */
1907		op.exp.u.dma.address = exp.dma.address;
1908		op.exp.u.dma.offset = 0;
1909	}
1910
1911	/* Concatenate the modulus and the message. Both the modulus and
1912	 * the operands must be in little endian format.  Since the input
1913	 * is in big endian format it must be converted.
1914	 */
1915	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1916	if (ret)
1917		goto e_exp;
1918
1919	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
 
1920	if (ret)
1921		goto e_src;
1922	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
 
 
1923	if (ret)
1924		goto e_src;
 
1925
1926	/* Prepare the output area for the operation */
1927	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
 
1928	if (ret)
1929		goto e_src;
1930
1931	op.soc = 1;
1932	op.src.u.dma.address = src.dma.address;
1933	op.src.u.dma.offset = 0;
1934	op.src.u.dma.length = i_len;
1935	op.dst.u.dma.address = dst.dma.address;
1936	op.dst.u.dma.offset = 0;
1937	op.dst.u.dma.length = o_len;
1938
1939	op.u.rsa.mod_size = rsa->key_size;
1940	op.u.rsa.input_len = i_len;
1941
1942	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1943	if (ret) {
1944		cmd->engine_error = cmd_q->cmd_error;
1945		goto e_dst;
1946	}
1947
1948	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1949
1950e_dst:
1951	ccp_dm_free(&dst);
1952
1953e_src:
1954	ccp_dm_free(&src);
1955
1956e_exp:
1957	ccp_dm_free(&exp);
1958
1959e_sb:
1960	if (sb_count)
1961		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1962
1963	return ret;
1964}
1965
1966static noinline_for_stack int
1967ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1968{
1969	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1970	struct ccp_dm_workarea mask;
1971	struct ccp_data src, dst;
1972	struct ccp_op op;
1973	bool in_place = false;
1974	unsigned int i;
1975	int ret = 0;
1976
1977	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1978		return -EINVAL;
1979
1980	if (!pt->src || !pt->dst)
1981		return -EINVAL;
1982
1983	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1984		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1985			return -EINVAL;
1986		if (!pt->mask)
1987			return -EINVAL;
1988	}
1989
1990	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1991
1992	memset(&op, 0, sizeof(op));
1993	op.cmd_q = cmd_q;
1994	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1995
1996	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1997		/* Load the mask */
1998		op.sb_key = cmd_q->sb_key;
1999
2000		ret = ccp_init_dm_workarea(&mask, cmd_q,
2001					   CCP_PASSTHRU_SB_COUNT *
2002					   CCP_SB_BYTES,
2003					   DMA_TO_DEVICE);
2004		if (ret)
2005			return ret;
2006
2007		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
2008		if (ret)
2009			goto e_mask;
2010		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2011				     CCP_PASSTHRU_BYTESWAP_NOOP);
2012		if (ret) {
2013			cmd->engine_error = cmd_q->cmd_error;
2014			goto e_mask;
2015		}
2016	}
2017
2018	/* Prepare the input and output data workareas. For in-place
2019	 * operations we need to set the dma direction to BIDIRECTIONAL
2020	 * and copy the src workarea to the dst workarea.
2021	 */
2022	if (sg_virt(pt->src) == sg_virt(pt->dst))
2023		in_place = true;
2024
2025	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2026			    CCP_PASSTHRU_MASKSIZE,
2027			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2028	if (ret)
2029		goto e_mask;
2030
2031	if (in_place) {
2032		dst = src;
2033	} else {
2034		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2035				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2036		if (ret)
2037			goto e_src;
2038	}
2039
2040	/* Send data to the CCP Passthru engine
2041	 *   Because the CCP engine works on a single source and destination
2042	 *   dma address at a time, each entry in the source scatterlist
2043	 *   (after the dma_map_sg call) must be less than or equal to the
2044	 *   (remaining) length in the destination scatterlist entry and the
2045	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2046	 */
2047	dst.sg_wa.sg_used = 0;
2048	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2049		if (!dst.sg_wa.sg ||
2050		    (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
2051			ret = -EINVAL;
2052			goto e_dst;
2053		}
2054
2055		if (i == src.sg_wa.dma_count) {
2056			op.eom = 1;
2057			op.soc = 1;
2058		}
2059
2060		op.src.type = CCP_MEMTYPE_SYSTEM;
2061		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2062		op.src.u.dma.offset = 0;
2063		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2064
2065		op.dst.type = CCP_MEMTYPE_SYSTEM;
2066		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2067		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2068		op.dst.u.dma.length = op.src.u.dma.length;
2069
2070		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2071		if (ret) {
2072			cmd->engine_error = cmd_q->cmd_error;
2073			goto e_dst;
2074		}
2075
2076		dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
2077		if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
2078			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2079			dst.sg_wa.sg_used = 0;
2080		}
2081		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2082	}
2083
2084e_dst:
2085	if (!in_place)
2086		ccp_free_data(&dst, cmd_q);
2087
2088e_src:
2089	ccp_free_data(&src, cmd_q);
2090
2091e_mask:
2092	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2093		ccp_dm_free(&mask);
2094
2095	return ret;
2096}
2097
2098static noinline_for_stack int
2099ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2100				      struct ccp_cmd *cmd)
2101{
2102	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2103	struct ccp_dm_workarea mask;
2104	struct ccp_op op;
2105	int ret;
2106
2107	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2108		return -EINVAL;
2109
2110	if (!pt->src_dma || !pt->dst_dma)
2111		return -EINVAL;
2112
2113	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2114		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2115			return -EINVAL;
2116		if (!pt->mask)
2117			return -EINVAL;
2118	}
2119
2120	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2121
2122	memset(&op, 0, sizeof(op));
2123	op.cmd_q = cmd_q;
2124	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2125
2126	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2127		/* Load the mask */
2128		op.sb_key = cmd_q->sb_key;
2129
2130		mask.length = pt->mask_len;
2131		mask.dma.address = pt->mask;
2132		mask.dma.length = pt->mask_len;
2133
2134		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2135				     CCP_PASSTHRU_BYTESWAP_NOOP);
2136		if (ret) {
2137			cmd->engine_error = cmd_q->cmd_error;
2138			return ret;
2139		}
2140	}
2141
2142	/* Send data to the CCP Passthru engine */
2143	op.eom = 1;
2144	op.soc = 1;
2145
2146	op.src.type = CCP_MEMTYPE_SYSTEM;
2147	op.src.u.dma.address = pt->src_dma;
2148	op.src.u.dma.offset = 0;
2149	op.src.u.dma.length = pt->src_len;
2150
2151	op.dst.type = CCP_MEMTYPE_SYSTEM;
2152	op.dst.u.dma.address = pt->dst_dma;
2153	op.dst.u.dma.offset = 0;
2154	op.dst.u.dma.length = pt->src_len;
2155
2156	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2157	if (ret)
2158		cmd->engine_error = cmd_q->cmd_error;
2159
2160	return ret;
2161}
2162
2163static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2164{
2165	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2166	struct ccp_dm_workarea src, dst;
2167	struct ccp_op op;
2168	int ret;
2169	u8 *save;
2170
2171	if (!ecc->u.mm.operand_1 ||
2172	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2173		return -EINVAL;
2174
2175	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2176		if (!ecc->u.mm.operand_2 ||
2177		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2178			return -EINVAL;
2179
2180	if (!ecc->u.mm.result ||
2181	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2182		return -EINVAL;
2183
2184	memset(&op, 0, sizeof(op));
2185	op.cmd_q = cmd_q;
2186	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2187
2188	/* Concatenate the modulus and the operands. Both the modulus and
2189	 * the operands must be in little endian format.  Since the input
2190	 * is in big endian format it must be converted and placed in a
2191	 * fixed length buffer.
2192	 */
2193	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2194				   DMA_TO_DEVICE);
2195	if (ret)
2196		return ret;
2197
2198	/* Save the workarea address since it is updated in order to perform
2199	 * the concatenation
2200	 */
2201	save = src.address;
2202
2203	/* Copy the ECC modulus */
2204	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
 
2205	if (ret)
2206		goto e_src;
2207	src.address += CCP_ECC_OPERAND_SIZE;
2208
2209	/* Copy the first operand */
2210	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2211				      ecc->u.mm.operand_1_len);
 
2212	if (ret)
2213		goto e_src;
2214	src.address += CCP_ECC_OPERAND_SIZE;
2215
2216	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2217		/* Copy the second operand */
2218		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2219					      ecc->u.mm.operand_2_len);
 
2220		if (ret)
2221			goto e_src;
2222		src.address += CCP_ECC_OPERAND_SIZE;
2223	}
2224
2225	/* Restore the workarea address */
2226	src.address = save;
2227
2228	/* Prepare the output area for the operation */
2229	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2230				   DMA_FROM_DEVICE);
2231	if (ret)
2232		goto e_src;
2233
2234	op.soc = 1;
2235	op.src.u.dma.address = src.dma.address;
2236	op.src.u.dma.offset = 0;
2237	op.src.u.dma.length = src.length;
2238	op.dst.u.dma.address = dst.dma.address;
2239	op.dst.u.dma.offset = 0;
2240	op.dst.u.dma.length = dst.length;
2241
2242	op.u.ecc.function = cmd->u.ecc.function;
2243
2244	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2245	if (ret) {
2246		cmd->engine_error = cmd_q->cmd_error;
2247		goto e_dst;
2248	}
2249
2250	ecc->ecc_result = le16_to_cpup(
2251		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2252	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2253		ret = -EIO;
2254		goto e_dst;
2255	}
2256
2257	/* Save the ECC result */
2258	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2259				CCP_ECC_MODULUS_BYTES);
2260
2261e_dst:
2262	ccp_dm_free(&dst);
2263
2264e_src:
2265	ccp_dm_free(&src);
2266
2267	return ret;
2268}
2269
2270static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2271{
2272	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2273	struct ccp_dm_workarea src, dst;
2274	struct ccp_op op;
2275	int ret;
2276	u8 *save;
2277
2278	if (!ecc->u.pm.point_1.x ||
2279	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2280	    !ecc->u.pm.point_1.y ||
2281	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2282		return -EINVAL;
2283
2284	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2285		if (!ecc->u.pm.point_2.x ||
2286		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2287		    !ecc->u.pm.point_2.y ||
2288		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2289			return -EINVAL;
2290	} else {
2291		if (!ecc->u.pm.domain_a ||
2292		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2293			return -EINVAL;
2294
2295		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2296			if (!ecc->u.pm.scalar ||
2297			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2298				return -EINVAL;
2299	}
2300
2301	if (!ecc->u.pm.result.x ||
2302	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2303	    !ecc->u.pm.result.y ||
2304	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2305		return -EINVAL;
2306
2307	memset(&op, 0, sizeof(op));
2308	op.cmd_q = cmd_q;
2309	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2310
2311	/* Concatenate the modulus and the operands. Both the modulus and
2312	 * the operands must be in little endian format.  Since the input
2313	 * is in big endian format it must be converted and placed in a
2314	 * fixed length buffer.
2315	 */
2316	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2317				   DMA_TO_DEVICE);
2318	if (ret)
2319		return ret;
2320
2321	/* Save the workarea address since it is updated in order to perform
2322	 * the concatenation
2323	 */
2324	save = src.address;
2325
2326	/* Copy the ECC modulus */
2327	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
 
2328	if (ret)
2329		goto e_src;
2330	src.address += CCP_ECC_OPERAND_SIZE;
2331
2332	/* Copy the first point X and Y coordinate */
2333	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2334				      ecc->u.pm.point_1.x_len);
 
2335	if (ret)
2336		goto e_src;
2337	src.address += CCP_ECC_OPERAND_SIZE;
2338	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2339				      ecc->u.pm.point_1.y_len);
 
2340	if (ret)
2341		goto e_src;
2342	src.address += CCP_ECC_OPERAND_SIZE;
2343
2344	/* Set the first point Z coordinate to 1 */
2345	*src.address = 0x01;
2346	src.address += CCP_ECC_OPERAND_SIZE;
2347
2348	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2349		/* Copy the second point X and Y coordinate */
2350		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2351					      ecc->u.pm.point_2.x_len);
 
2352		if (ret)
2353			goto e_src;
2354		src.address += CCP_ECC_OPERAND_SIZE;
2355		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2356					      ecc->u.pm.point_2.y_len);
 
2357		if (ret)
2358			goto e_src;
2359		src.address += CCP_ECC_OPERAND_SIZE;
2360
2361		/* Set the second point Z coordinate to 1 */
2362		*src.address = 0x01;
2363		src.address += CCP_ECC_OPERAND_SIZE;
2364	} else {
2365		/* Copy the Domain "a" parameter */
2366		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2367					      ecc->u.pm.domain_a_len);
 
2368		if (ret)
2369			goto e_src;
2370		src.address += CCP_ECC_OPERAND_SIZE;
2371
2372		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2373			/* Copy the scalar value */
2374			ret = ccp_reverse_set_dm_area(&src, 0,
2375						      ecc->u.pm.scalar, 0,
2376						      ecc->u.pm.scalar_len);
 
2377			if (ret)
2378				goto e_src;
2379			src.address += CCP_ECC_OPERAND_SIZE;
2380		}
2381	}
2382
2383	/* Restore the workarea address */
2384	src.address = save;
2385
2386	/* Prepare the output area for the operation */
2387	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2388				   DMA_FROM_DEVICE);
2389	if (ret)
2390		goto e_src;
2391
2392	op.soc = 1;
2393	op.src.u.dma.address = src.dma.address;
2394	op.src.u.dma.offset = 0;
2395	op.src.u.dma.length = src.length;
2396	op.dst.u.dma.address = dst.dma.address;
2397	op.dst.u.dma.offset = 0;
2398	op.dst.u.dma.length = dst.length;
2399
2400	op.u.ecc.function = cmd->u.ecc.function;
2401
2402	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2403	if (ret) {
2404		cmd->engine_error = cmd_q->cmd_error;
2405		goto e_dst;
2406	}
2407
2408	ecc->ecc_result = le16_to_cpup(
2409		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2410	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2411		ret = -EIO;
2412		goto e_dst;
2413	}
2414
2415	/* Save the workarea address since it is updated as we walk through
2416	 * to copy the point math result
2417	 */
2418	save = dst.address;
2419
2420	/* Save the ECC result X and Y coordinates */
2421	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2422				CCP_ECC_MODULUS_BYTES);
2423	dst.address += CCP_ECC_OUTPUT_SIZE;
2424	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2425				CCP_ECC_MODULUS_BYTES);
 
2426
2427	/* Restore the workarea address */
2428	dst.address = save;
2429
2430e_dst:
2431	ccp_dm_free(&dst);
2432
2433e_src:
2434	ccp_dm_free(&src);
2435
2436	return ret;
2437}
2438
2439static noinline_for_stack int
2440ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2441{
2442	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2443
2444	ecc->ecc_result = 0;
2445
2446	if (!ecc->mod ||
2447	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2448		return -EINVAL;
2449
2450	switch (ecc->function) {
2451	case CCP_ECC_FUNCTION_MMUL_384BIT:
2452	case CCP_ECC_FUNCTION_MADD_384BIT:
2453	case CCP_ECC_FUNCTION_MINV_384BIT:
2454		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2455
2456	case CCP_ECC_FUNCTION_PADD_384BIT:
2457	case CCP_ECC_FUNCTION_PMUL_384BIT:
2458	case CCP_ECC_FUNCTION_PDBL_384BIT:
2459		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2460
2461	default:
2462		return -EINVAL;
2463	}
2464}
2465
2466int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2467{
2468	int ret;
2469
2470	cmd->engine_error = 0;
2471	cmd_q->cmd_error = 0;
2472	cmd_q->int_rcvd = 0;
2473	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2474
2475	switch (cmd->engine) {
2476	case CCP_ENGINE_AES:
2477		switch (cmd->u.aes.mode) {
2478		case CCP_AES_MODE_CMAC:
2479			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2480			break;
2481		case CCP_AES_MODE_GCM:
2482			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2483			break;
2484		default:
2485			ret = ccp_run_aes_cmd(cmd_q, cmd);
2486			break;
2487		}
2488		break;
2489	case CCP_ENGINE_XTS_AES_128:
2490		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2491		break;
2492	case CCP_ENGINE_DES3:
2493		ret = ccp_run_des3_cmd(cmd_q, cmd);
2494		break;
2495	case CCP_ENGINE_SHA:
2496		ret = ccp_run_sha_cmd(cmd_q, cmd);
2497		break;
2498	case CCP_ENGINE_RSA:
2499		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2500		break;
2501	case CCP_ENGINE_PASSTHRU:
2502		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2503			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2504		else
2505			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2506		break;
2507	case CCP_ENGINE_ECC:
2508		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2509		break;
2510	default:
2511		ret = -EINVAL;
2512	}
2513
2514	return ret;
2515}
v4.6
 
   1/*
   2 * AMD Cryptographic Coprocessor (CCP) driver
   3 *
   4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
   5 *
   6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
 
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/pci.h>
  16#include <linux/interrupt.h>
  17#include <crypto/scatterwalk.h>
 
  18#include <linux/ccp.h>
  19
  20#include "ccp-dev.h"
  21
  22/* SHA initial context values */
  23static const __be32 ccp_sha1_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
  24	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  25	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  26	cpu_to_be32(SHA1_H4), 0, 0, 0,
  27};
  28
  29static const __be32 ccp_sha224_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
  30	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  31	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  32	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  33	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  34};
  35
  36static const __be32 ccp_sha256_init[CCP_SHA_CTXSIZE / sizeof(__be32)] = {
  37	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  38	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  39	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  40	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  41};
  42
  43static u32 ccp_alloc_ksb(struct ccp_device *ccp, unsigned int count)
  44{
  45	int start;
 
 
 
  46
  47	for (;;) {
  48		mutex_lock(&ccp->ksb_mutex);
  49
  50		start = (u32)bitmap_find_next_zero_area(ccp->ksb,
  51							ccp->ksb_count,
  52							ccp->ksb_start,
  53							count, 0);
  54		if (start <= ccp->ksb_count) {
  55			bitmap_set(ccp->ksb, start, count);
  56
  57			mutex_unlock(&ccp->ksb_mutex);
  58			break;
  59		}
  60
  61		ccp->ksb_avail = 0;
  62
  63		mutex_unlock(&ccp->ksb_mutex);
  64
  65		/* Wait for KSB entries to become available */
  66		if (wait_event_interruptible(ccp->ksb_queue, ccp->ksb_avail))
  67			return 0;
  68	}
  69
  70	return KSB_START + start;
  71}
  72
  73static void ccp_free_ksb(struct ccp_device *ccp, unsigned int start,
  74			 unsigned int count)
  75{
  76	if (!start)
  77		return;
  78
  79	mutex_lock(&ccp->ksb_mutex);
  80
  81	bitmap_clear(ccp->ksb, start - KSB_START, count);
  82
  83	ccp->ksb_avail = 1;
  84
  85	mutex_unlock(&ccp->ksb_mutex);
  86
  87	wake_up_interruptible_all(&ccp->ksb_queue);
  88}
  89
  90static u32 ccp_gen_jobid(struct ccp_device *ccp)
  91{
  92	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  93}
  94
  95static void ccp_sg_free(struct ccp_sg_workarea *wa)
  96{
  97	if (wa->dma_count)
  98		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
  99
 100	wa->dma_count = 0;
 101}
 102
 103static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
 104				struct scatterlist *sg, u64 len,
 105				enum dma_data_direction dma_dir)
 106{
 107	memset(wa, 0, sizeof(*wa));
 108
 109	wa->sg = sg;
 110	if (!sg)
 111		return 0;
 112
 113	wa->nents = sg_nents_for_len(sg, len);
 114	if (wa->nents < 0)
 115		return wa->nents;
 116
 117	wa->bytes_left = len;
 118	wa->sg_used = 0;
 119
 120	if (len == 0)
 121		return 0;
 122
 123	if (dma_dir == DMA_NONE)
 124		return 0;
 125
 126	wa->dma_sg = sg;
 
 127	wa->dma_dev = dev;
 128	wa->dma_dir = dma_dir;
 129	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 130	if (!wa->dma_count)
 131		return -ENOMEM;
 132
 133	return 0;
 134}
 135
 136static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 137{
 138	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 
 139
 140	if (!wa->sg)
 141		return;
 142
 143	wa->sg_used += nbytes;
 144	wa->bytes_left -= nbytes;
 145	if (wa->sg_used == wa->sg->length) {
 146		wa->sg = sg_next(wa->sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 147		wa->sg_used = 0;
 148	}
 149}
 150
 151static void ccp_dm_free(struct ccp_dm_workarea *wa)
 152{
 153	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 154		if (wa->address)
 155			dma_pool_free(wa->dma_pool, wa->address,
 156				      wa->dma.address);
 157	} else {
 158		if (wa->dma.address)
 159			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 160					 wa->dma.dir);
 161		kfree(wa->address);
 162	}
 163
 164	wa->address = NULL;
 165	wa->dma.address = 0;
 166}
 167
 168static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 169				struct ccp_cmd_queue *cmd_q,
 170				unsigned int len,
 171				enum dma_data_direction dir)
 172{
 173	memset(wa, 0, sizeof(*wa));
 174
 175	if (!len)
 176		return 0;
 177
 178	wa->dev = cmd_q->ccp->dev;
 179	wa->length = len;
 180
 181	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 182		wa->dma_pool = cmd_q->dma_pool;
 183
 184		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
 185					     &wa->dma.address);
 186		if (!wa->address)
 187			return -ENOMEM;
 188
 189		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 190
 191		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
 192	} else {
 193		wa->address = kzalloc(len, GFP_KERNEL);
 194		if (!wa->address)
 195			return -ENOMEM;
 196
 197		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 198						 dir);
 199		if (!wa->dma.address)
 
 
 200			return -ENOMEM;
 
 201
 202		wa->dma.length = len;
 203	}
 204	wa->dma.dir = dir;
 205
 206	return 0;
 207}
 208
 209static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 210			    struct scatterlist *sg, unsigned int sg_offset,
 211			    unsigned int len)
 212{
 213	WARN_ON(!wa->address);
 214
 
 
 
 215	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 216				 0);
 
 217}
 218
 219static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 220			    struct scatterlist *sg, unsigned int sg_offset,
 221			    unsigned int len)
 222{
 223	WARN_ON(!wa->address);
 224
 225	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 226				 1);
 227}
 228
 229static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 
 230				   struct scatterlist *sg,
 231				   unsigned int len, unsigned int se_len,
 232				   bool sign_extend)
 233{
 234	unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
 235	u8 buffer[CCP_REVERSE_BUF_SIZE];
 236
 237	if (WARN_ON(se_len > sizeof(buffer)))
 238		return -EINVAL;
 239
 240	sg_offset = len;
 241	dm_offset = 0;
 242	nbytes = len;
 243	while (nbytes) {
 244		ksb_len = min_t(unsigned int, nbytes, se_len);
 245		sg_offset -= ksb_len;
 246
 247		scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 0);
 248		for (i = 0; i < ksb_len; i++)
 249			wa->address[dm_offset + i] = buffer[ksb_len - i - 1];
 250
 251		dm_offset += ksb_len;
 252		nbytes -= ksb_len;
 253
 254		if ((ksb_len != se_len) && sign_extend) {
 255			/* Must sign-extend to nearest sign-extend length */
 256			if (wa->address[dm_offset - 1] & 0x80)
 257				memset(wa->address + dm_offset, 0xff,
 258				       se_len - ksb_len);
 259		}
 260	}
 261
 262	return 0;
 263}
 264
 265static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 
 266				    struct scatterlist *sg,
 
 267				    unsigned int len)
 268{
 269	unsigned int nbytes, sg_offset, dm_offset, ksb_len, i;
 270	u8 buffer[CCP_REVERSE_BUF_SIZE];
 271
 272	sg_offset = 0;
 273	dm_offset = len;
 274	nbytes = len;
 275	while (nbytes) {
 276		ksb_len = min_t(unsigned int, nbytes, sizeof(buffer));
 277		dm_offset -= ksb_len;
 278
 279		for (i = 0; i < ksb_len; i++)
 280			buffer[ksb_len - i - 1] = wa->address[dm_offset + i];
 281		scatterwalk_map_and_copy(buffer, sg, sg_offset, ksb_len, 1);
 282
 283		sg_offset += ksb_len;
 284		nbytes -= ksb_len;
 285	}
 286}
 287
 288static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 289{
 290	ccp_dm_free(&data->dm_wa);
 291	ccp_sg_free(&data->sg_wa);
 292}
 293
 294static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 295			 struct scatterlist *sg, u64 sg_len,
 296			 unsigned int dm_len,
 297			 enum dma_data_direction dir)
 298{
 299	int ret;
 300
 301	memset(data, 0, sizeof(*data));
 302
 303	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 304				   dir);
 305	if (ret)
 306		goto e_err;
 307
 308	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 309	if (ret)
 310		goto e_err;
 311
 312	return 0;
 313
 314e_err:
 315	ccp_free_data(data, cmd_q);
 316
 317	return ret;
 318}
 319
 320static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 321{
 322	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 323	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 324	unsigned int buf_count, nbytes;
 325
 326	/* Clear the buffer if setting it */
 327	if (!from)
 328		memset(dm_wa->address, 0, dm_wa->length);
 329
 330	if (!sg_wa->sg)
 331		return 0;
 332
 333	/* Perform the copy operation
 334	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 335	 *   an unsigned int
 336	 */
 337	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 338	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 339				 nbytes, from);
 340
 341	/* Update the structures and generate the count */
 342	buf_count = 0;
 343	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 344		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 345			     dm_wa->length - buf_count);
 346		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 347
 348		buf_count += nbytes;
 349		ccp_update_sg_workarea(sg_wa, nbytes);
 350	}
 351
 352	return buf_count;
 353}
 354
 355static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 356{
 357	return ccp_queue_buf(data, 0);
 358}
 359
 360static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 361{
 362	return ccp_queue_buf(data, 1);
 363}
 364
 365static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 366			     struct ccp_op *op, unsigned int block_size,
 367			     bool blocksize_op)
 368{
 369	unsigned int sg_src_len, sg_dst_len, op_len;
 370
 371	/* The CCP can only DMA from/to one address each per operation. This
 372	 * requires that we find the smallest DMA area between the source
 373	 * and destination. The resulting len values will always be <= UINT_MAX
 374	 * because the dma length is an unsigned int.
 375	 */
 376	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 377	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 378
 379	if (dst) {
 380		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 381		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 382		op_len = min(sg_src_len, sg_dst_len);
 383	} else {
 384		op_len = sg_src_len;
 385	}
 386
 387	/* The data operation length will be at least block_size in length
 388	 * or the smaller of available sg room remaining for the source or
 389	 * the destination
 390	 */
 391	op_len = max(op_len, block_size);
 392
 393	/* Unless we have to buffer data, there's no reason to wait */
 394	op->soc = 0;
 395
 396	if (sg_src_len < block_size) {
 397		/* Not enough data in the sg element, so it
 398		 * needs to be buffered into a blocksize chunk
 399		 */
 400		int cp_len = ccp_fill_queue_buf(src);
 401
 402		op->soc = 1;
 403		op->src.u.dma.address = src->dm_wa.dma.address;
 404		op->src.u.dma.offset = 0;
 405		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 406	} else {
 407		/* Enough data in the sg element, but we need to
 408		 * adjust for any previously copied data
 409		 */
 410		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 411		op->src.u.dma.offset = src->sg_wa.sg_used;
 412		op->src.u.dma.length = op_len & ~(block_size - 1);
 413
 414		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 415	}
 416
 417	if (dst) {
 418		if (sg_dst_len < block_size) {
 419			/* Not enough room in the sg element or we're on the
 420			 * last piece of data (when using padding), so the
 421			 * output needs to be buffered into a blocksize chunk
 422			 */
 423			op->soc = 1;
 424			op->dst.u.dma.address = dst->dm_wa.dma.address;
 425			op->dst.u.dma.offset = 0;
 426			op->dst.u.dma.length = op->src.u.dma.length;
 427		} else {
 428			/* Enough room in the sg element, but we need to
 429			 * adjust for any previously used area
 430			 */
 431			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 432			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 433			op->dst.u.dma.length = op->src.u.dma.length;
 434		}
 435	}
 436}
 437
 438static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 439			     struct ccp_op *op)
 440{
 441	op->init = 0;
 442
 443	if (dst) {
 444		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 445			ccp_empty_queue_buf(dst);
 446		else
 447			ccp_update_sg_workarea(&dst->sg_wa,
 448					       op->dst.u.dma.length);
 449	}
 450}
 451
 452static int ccp_copy_to_from_ksb(struct ccp_cmd_queue *cmd_q,
 453				struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
 454				u32 byte_swap, bool from)
 455{
 456	struct ccp_op op;
 457
 458	memset(&op, 0, sizeof(op));
 459
 460	op.cmd_q = cmd_q;
 461	op.jobid = jobid;
 462	op.eom = 1;
 463
 464	if (from) {
 465		op.soc = 1;
 466		op.src.type = CCP_MEMTYPE_KSB;
 467		op.src.u.ksb = ksb;
 468		op.dst.type = CCP_MEMTYPE_SYSTEM;
 469		op.dst.u.dma.address = wa->dma.address;
 470		op.dst.u.dma.length = wa->length;
 471	} else {
 472		op.src.type = CCP_MEMTYPE_SYSTEM;
 473		op.src.u.dma.address = wa->dma.address;
 474		op.src.u.dma.length = wa->length;
 475		op.dst.type = CCP_MEMTYPE_KSB;
 476		op.dst.u.ksb = ksb;
 477	}
 478
 479	op.u.passthru.byte_swap = byte_swap;
 480
 481	return cmd_q->ccp->vdata->perform->perform_passthru(&op);
 482}
 483
 484static int ccp_copy_to_ksb(struct ccp_cmd_queue *cmd_q,
 485			   struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
 486			   u32 byte_swap)
 487{
 488	return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, false);
 489}
 490
 491static int ccp_copy_from_ksb(struct ccp_cmd_queue *cmd_q,
 492			     struct ccp_dm_workarea *wa, u32 jobid, u32 ksb,
 493			     u32 byte_swap)
 494{
 495	return ccp_copy_to_from_ksb(cmd_q, wa, jobid, ksb, byte_swap, true);
 496}
 497
 498static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
 499				struct ccp_cmd *cmd)
 500{
 501	struct ccp_aes_engine *aes = &cmd->u.aes;
 502	struct ccp_dm_workarea key, ctx;
 503	struct ccp_data src;
 504	struct ccp_op op;
 505	unsigned int dm_offset;
 506	int ret;
 507
 508	if (!((aes->key_len == AES_KEYSIZE_128) ||
 509	      (aes->key_len == AES_KEYSIZE_192) ||
 510	      (aes->key_len == AES_KEYSIZE_256)))
 511		return -EINVAL;
 512
 513	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 514		return -EINVAL;
 515
 516	if (aes->iv_len != AES_BLOCK_SIZE)
 517		return -EINVAL;
 518
 519	if (!aes->key || !aes->iv || !aes->src)
 520		return -EINVAL;
 521
 522	if (aes->cmac_final) {
 523		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 524			return -EINVAL;
 525
 526		if (!aes->cmac_key)
 527			return -EINVAL;
 528	}
 529
 530	BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
 531	BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
 532
 533	ret = -EIO;
 534	memset(&op, 0, sizeof(op));
 535	op.cmd_q = cmd_q;
 536	op.jobid = ccp_gen_jobid(cmd_q->ccp);
 537	op.ksb_key = cmd_q->ksb_key;
 538	op.ksb_ctx = cmd_q->ksb_ctx;
 539	op.init = 1;
 540	op.u.aes.type = aes->type;
 541	op.u.aes.mode = aes->mode;
 542	op.u.aes.action = aes->action;
 543
 544	/* All supported key sizes fit in a single (32-byte) KSB entry
 545	 * and must be in little endian format. Use the 256-bit byte
 546	 * swap passthru option to convert from big endian to little
 547	 * endian.
 548	 */
 549	ret = ccp_init_dm_workarea(&key, cmd_q,
 550				   CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
 551				   DMA_TO_DEVICE);
 552	if (ret)
 553		return ret;
 554
 555	dm_offset = CCP_KSB_BYTES - aes->key_len;
 556	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 557	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
 558			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 559	if (ret) {
 560		cmd->engine_error = cmd_q->cmd_error;
 561		goto e_key;
 562	}
 563
 564	/* The AES context fits in a single (32-byte) KSB entry and
 565	 * must be in little endian format. Use the 256-bit byte swap
 566	 * passthru option to convert from big endian to little endian.
 567	 */
 568	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 569				   CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
 570				   DMA_BIDIRECTIONAL);
 571	if (ret)
 572		goto e_key;
 573
 574	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 575	ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 576	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 577			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 578	if (ret) {
 579		cmd->engine_error = cmd_q->cmd_error;
 580		goto e_ctx;
 581	}
 582
 583	/* Send data to the CCP AES engine */
 584	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 585			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 586	if (ret)
 587		goto e_ctx;
 588
 589	while (src.sg_wa.bytes_left) {
 590		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 591		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 592			op.eom = 1;
 593
 594			/* Push the K1/K2 key to the CCP now */
 595			ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid,
 596						op.ksb_ctx,
 597						CCP_PASSTHRU_BYTESWAP_256BIT);
 598			if (ret) {
 599				cmd->engine_error = cmd_q->cmd_error;
 600				goto e_src;
 601			}
 602
 603			ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 604					aes->cmac_key_len);
 605			ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 606					      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 607			if (ret) {
 608				cmd->engine_error = cmd_q->cmd_error;
 609				goto e_src;
 610			}
 611		}
 612
 613		ret = cmd_q->ccp->vdata->perform->perform_aes(&op);
 614		if (ret) {
 615			cmd->engine_error = cmd_q->cmd_error;
 616			goto e_src;
 617		}
 618
 619		ccp_process_data(&src, NULL, &op);
 620	}
 621
 622	/* Retrieve the AES context - convert from LE to BE using
 623	 * 32-byte (256-bit) byteswapping
 624	 */
 625	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 626				CCP_PASSTHRU_BYTESWAP_256BIT);
 627	if (ret) {
 628		cmd->engine_error = cmd_q->cmd_error;
 629		goto e_src;
 630	}
 631
 632	/* ...but we only need AES_BLOCK_SIZE bytes */
 633	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 634	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 635
 636e_src:
 637	ccp_free_data(&src, cmd_q);
 638
 639e_ctx:
 640	ccp_dm_free(&ctx);
 641
 642e_key:
 643	ccp_dm_free(&key);
 644
 645	return ret;
 646}
 647
 648static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649{
 650	struct ccp_aes_engine *aes = &cmd->u.aes;
 651	struct ccp_dm_workarea key, ctx;
 652	struct ccp_data src, dst;
 653	struct ccp_op op;
 654	unsigned int dm_offset;
 655	bool in_place = false;
 656	int ret;
 657
 658	if (aes->mode == CCP_AES_MODE_CMAC)
 659		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
 660
 661	if (!((aes->key_len == AES_KEYSIZE_128) ||
 662	      (aes->key_len == AES_KEYSIZE_192) ||
 663	      (aes->key_len == AES_KEYSIZE_256)))
 664		return -EINVAL;
 665
 666	if (((aes->mode == CCP_AES_MODE_ECB) ||
 667	     (aes->mode == CCP_AES_MODE_CBC) ||
 668	     (aes->mode == CCP_AES_MODE_CFB)) &&
 669	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 670		return -EINVAL;
 671
 672	if (!aes->key || !aes->src || !aes->dst)
 673		return -EINVAL;
 674
 675	if (aes->mode != CCP_AES_MODE_ECB) {
 676		if (aes->iv_len != AES_BLOCK_SIZE)
 677			return -EINVAL;
 678
 679		if (!aes->iv)
 680			return -EINVAL;
 681	}
 682
 683	BUILD_BUG_ON(CCP_AES_KEY_KSB_COUNT != 1);
 684	BUILD_BUG_ON(CCP_AES_CTX_KSB_COUNT != 1);
 685
 686	ret = -EIO;
 687	memset(&op, 0, sizeof(op));
 688	op.cmd_q = cmd_q;
 689	op.jobid = ccp_gen_jobid(cmd_q->ccp);
 690	op.ksb_key = cmd_q->ksb_key;
 691	op.ksb_ctx = cmd_q->ksb_ctx;
 692	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 693	op.u.aes.type = aes->type;
 694	op.u.aes.mode = aes->mode;
 695	op.u.aes.action = aes->action;
 696
 697	/* All supported key sizes fit in a single (32-byte) KSB entry
 698	 * and must be in little endian format. Use the 256-bit byte
 699	 * swap passthru option to convert from big endian to little
 700	 * endian.
 701	 */
 702	ret = ccp_init_dm_workarea(&key, cmd_q,
 703				   CCP_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
 704				   DMA_TO_DEVICE);
 705	if (ret)
 706		return ret;
 707
 708	dm_offset = CCP_KSB_BYTES - aes->key_len;
 709	ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 710	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
 711			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 712	if (ret) {
 713		cmd->engine_error = cmd_q->cmd_error;
 714		goto e_key;
 715	}
 716
 717	/* The AES context fits in a single (32-byte) KSB entry and
 718	 * must be in little endian format. Use the 256-bit byte swap
 719	 * passthru option to convert from big endian to little endian.
 720	 */
 721	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 722				   CCP_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
 723				   DMA_BIDIRECTIONAL);
 724	if (ret)
 725		goto e_key;
 726
 727	if (aes->mode != CCP_AES_MODE_ECB) {
 728		/* Load the AES context - conver to LE */
 729		dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 730		ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 731		ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 732				      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 733		if (ret) {
 734			cmd->engine_error = cmd_q->cmd_error;
 735			goto e_ctx;
 736		}
 737	}
 
 
 
 
 
 
 
 
 738
 739	/* Prepare the input and output data workareas. For in-place
 740	 * operations we need to set the dma direction to BIDIRECTIONAL
 741	 * and copy the src workarea to the dst workarea.
 742	 */
 743	if (sg_virt(aes->src) == sg_virt(aes->dst))
 744		in_place = true;
 745
 746	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 747			    AES_BLOCK_SIZE,
 748			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 749	if (ret)
 750		goto e_ctx;
 751
 752	if (in_place) {
 753		dst = src;
 754	} else {
 755		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
 756				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 757		if (ret)
 758			goto e_src;
 759	}
 760
 761	/* Send data to the CCP AES engine */
 762	while (src.sg_wa.bytes_left) {
 763		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 764		if (!src.sg_wa.bytes_left) {
 765			op.eom = 1;
 766
 767			/* Since we don't retrieve the AES context in ECB
 768			 * mode we have to wait for the operation to complete
 769			 * on the last piece of data
 770			 */
 771			if (aes->mode == CCP_AES_MODE_ECB)
 772				op.soc = 1;
 773		}
 774
 775		ret = cmd_q->ccp->vdata->perform->perform_aes(&op);
 776		if (ret) {
 777			cmd->engine_error = cmd_q->cmd_error;
 778			goto e_dst;
 779		}
 780
 781		ccp_process_data(&src, &dst, &op);
 782	}
 783
 784	if (aes->mode != CCP_AES_MODE_ECB) {
 785		/* Retrieve the AES context - convert from LE to BE using
 786		 * 32-byte (256-bit) byteswapping
 787		 */
 788		ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 789					CCP_PASSTHRU_BYTESWAP_256BIT);
 790		if (ret) {
 791			cmd->engine_error = cmd_q->cmd_error;
 792			goto e_dst;
 793		}
 794
 795		/* ...but we only need AES_BLOCK_SIZE bytes */
 796		dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 797		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 798	}
 799
 800e_dst:
 801	if (!in_place)
 802		ccp_free_data(&dst, cmd_q);
 803
 804e_src:
 805	ccp_free_data(&src, cmd_q);
 806
 807e_ctx:
 808	ccp_dm_free(&ctx);
 809
 810e_key:
 811	ccp_dm_free(&key);
 812
 813	return ret;
 814}
 815
 816static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
 817			       struct ccp_cmd *cmd)
 818{
 819	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
 820	struct ccp_dm_workarea key, ctx;
 821	struct ccp_data src, dst;
 822	struct ccp_op op;
 823	unsigned int unit_size, dm_offset;
 824	bool in_place = false;
 
 
 825	int ret;
 826
 827	switch (xts->unit_size) {
 828	case CCP_XTS_AES_UNIT_SIZE_16:
 829		unit_size = 16;
 830		break;
 831	case CCP_XTS_AES_UNIT_SIZE_512:
 832		unit_size = 512;
 833		break;
 834	case CCP_XTS_AES_UNIT_SIZE_1024:
 835		unit_size = 1024;
 836		break;
 837	case CCP_XTS_AES_UNIT_SIZE_2048:
 838		unit_size = 2048;
 839		break;
 840	case CCP_XTS_AES_UNIT_SIZE_4096:
 841		unit_size = 4096;
 842		break;
 843
 844	default:
 845		return -EINVAL;
 846	}
 847
 848	if (xts->key_len != AES_KEYSIZE_128)
 
 
 
 
 849		return -EINVAL;
 850
 851	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
 852		return -EINVAL;
 853
 854	if (xts->iv_len != AES_BLOCK_SIZE)
 855		return -EINVAL;
 856
 857	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
 858		return -EINVAL;
 859
 860	BUILD_BUG_ON(CCP_XTS_AES_KEY_KSB_COUNT != 1);
 861	BUILD_BUG_ON(CCP_XTS_AES_CTX_KSB_COUNT != 1);
 862
 863	ret = -EIO;
 864	memset(&op, 0, sizeof(op));
 865	op.cmd_q = cmd_q;
 866	op.jobid = ccp_gen_jobid(cmd_q->ccp);
 867	op.ksb_key = cmd_q->ksb_key;
 868	op.ksb_ctx = cmd_q->ksb_ctx;
 869	op.init = 1;
 
 870	op.u.xts.action = xts->action;
 871	op.u.xts.unit_size = xts->unit_size;
 872
 873	/* All supported key sizes fit in a single (32-byte) KSB entry
 874	 * and must be in little endian format. Use the 256-bit byte
 875	 * swap passthru option to convert from big endian to little
 876	 * endian.
 877	 */
 
 
 
 878	ret = ccp_init_dm_workarea(&key, cmd_q,
 879				   CCP_XTS_AES_KEY_KSB_COUNT * CCP_KSB_BYTES,
 880				   DMA_TO_DEVICE);
 881	if (ret)
 882		return ret;
 883
 884	dm_offset = CCP_KSB_BYTES - AES_KEYSIZE_128;
 885	ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
 886	ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
 887	ret = ccp_copy_to_ksb(cmd_q, &key, op.jobid, op.ksb_key,
 888			      CCP_PASSTHRU_BYTESWAP_256BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889	if (ret) {
 890		cmd->engine_error = cmd_q->cmd_error;
 891		goto e_key;
 892	}
 893
 894	/* The AES context fits in a single (32-byte) KSB entry and
 895	 * for XTS is already in little endian format so no byte swapping
 896	 * is needed.
 897	 */
 898	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 899				   CCP_XTS_AES_CTX_KSB_COUNT * CCP_KSB_BYTES,
 900				   DMA_BIDIRECTIONAL);
 901	if (ret)
 902		goto e_key;
 903
 904	ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
 905	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 906			      CCP_PASSTHRU_BYTESWAP_NOOP);
 
 
 907	if (ret) {
 908		cmd->engine_error = cmd_q->cmd_error;
 909		goto e_ctx;
 910	}
 911
 912	/* Prepare the input and output data workareas. For in-place
 913	 * operations we need to set the dma direction to BIDIRECTIONAL
 914	 * and copy the src workarea to the dst workarea.
 915	 */
 916	if (sg_virt(xts->src) == sg_virt(xts->dst))
 917		in_place = true;
 918
 919	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
 920			    unit_size,
 921			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 922	if (ret)
 923		goto e_ctx;
 924
 925	if (in_place) {
 926		dst = src;
 927	} else {
 928		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
 929				    unit_size, DMA_FROM_DEVICE);
 930		if (ret)
 931			goto e_src;
 932	}
 933
 934	/* Send data to the CCP AES engine */
 935	while (src.sg_wa.bytes_left) {
 936		ccp_prepare_data(&src, &dst, &op, unit_size, true);
 937		if (!src.sg_wa.bytes_left)
 938			op.eom = 1;
 939
 940		ret = cmd_q->ccp->vdata->perform->perform_xts_aes(&op);
 941		if (ret) {
 942			cmd->engine_error = cmd_q->cmd_error;
 943			goto e_dst;
 944		}
 945
 946		ccp_process_data(&src, &dst, &op);
 947	}
 948
 949	/* Retrieve the AES context - convert from LE to BE using
 950	 * 32-byte (256-bit) byteswapping
 951	 */
 952	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
 953				CCP_PASSTHRU_BYTESWAP_256BIT);
 954	if (ret) {
 955		cmd->engine_error = cmd_q->cmd_error;
 956		goto e_dst;
 957	}
 958
 959	/* ...but we only need AES_BLOCK_SIZE bytes */
 960	dm_offset = CCP_KSB_BYTES - AES_BLOCK_SIZE;
 961	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
 962
 963e_dst:
 964	if (!in_place)
 965		ccp_free_data(&dst, cmd_q);
 966
 967e_src:
 968	ccp_free_data(&src, cmd_q);
 969
 970e_ctx:
 971	ccp_dm_free(&ctx);
 972
 973e_key:
 974	ccp_dm_free(&key);
 975
 976	return ret;
 977}
 978
 979static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980{
 981	struct ccp_sha_engine *sha = &cmd->u.sha;
 982	struct ccp_dm_workarea ctx;
 983	struct ccp_data src;
 984	struct ccp_op op;
 
 
 
 
 
 
 985	int ret;
 986
 987	if (sha->ctx_len != CCP_SHA_CTXSIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988		return -EINVAL;
 
 989
 990	if (!sha->ctx)
 991		return -EINVAL;
 992
 993	if (!sha->final && (sha->src_len & (CCP_SHA_BLOCKSIZE - 1)))
 994		return -EINVAL;
 995
 996	if (!sha->src_len) {
 997		const u8 *sha_zero;
 
 
 
 
 
 
 
 
 998
 999		/* Not final, just return */
1000		if (!sha->final)
1001			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002
1003		/* CCP can't do a zero length sha operation so the caller
1004		 * must buffer the data.
1005		 */
1006		if (sha->msg_bits)
1007			return -EINVAL;
1008
1009		/* The CCP cannot perform zero-length sha operations so the
1010		 * caller is required to buffer data for the final operation.
1011		 * However, a sha operation for a message with a total length
1012		 * of zero is valid so known values are required to supply
1013		 * the result.
1014		 */
1015		switch (sha->type) {
1016		case CCP_SHA_TYPE_1:
1017			sha_zero = sha1_zero_message_hash;
1018			break;
1019		case CCP_SHA_TYPE_224:
1020			sha_zero = sha224_zero_message_hash;
1021			break;
1022		case CCP_SHA_TYPE_256:
1023			sha_zero = sha256_zero_message_hash;
1024			break;
1025		default:
1026			return -EINVAL;
1027		}
 
1028
1029		scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1030					 sha->ctx_len, 1);
1031
1032		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	}
1034
1035	if (!sha->src)
 
 
 
1036		return -EINVAL;
1037
1038	BUILD_BUG_ON(CCP_SHA_KSB_COUNT != 1);
1039
1040	memset(&op, 0, sizeof(op));
1041	op.cmd_q = cmd_q;
1042	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1043	op.ksb_ctx = cmd_q->ksb_ctx;
1044	op.u.sha.type = sha->type;
1045	op.u.sha.msg_bits = sha->msg_bits;
1046
1047	/* The SHA context fits in a single (32-byte) KSB entry and
1048	 * must be in little endian format. Use the 256-bit byte swap
1049	 * passthru option to convert from big endian to little endian.
 
1050	 */
1051	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1052				   CCP_SHA_KSB_COUNT * CCP_KSB_BYTES,
1053				   DMA_BIDIRECTIONAL);
1054	if (ret)
1055		return ret;
1056
1057	if (sha->first) {
1058		const __be32 *init;
1059
1060		switch (sha->type) {
1061		case CCP_SHA_TYPE_1:
1062			init = ccp_sha1_init;
1063			break;
1064		case CCP_SHA_TYPE_224:
1065			init = ccp_sha224_init;
 
1066			break;
1067		case CCP_SHA_TYPE_256:
1068			init = ccp_sha256_init;
 
 
 
 
1069			break;
1070		default:
1071			ret = -EINVAL;
1072			goto e_ctx;
1073		}
1074		memcpy(ctx.address, init, CCP_SHA_CTXSIZE);
1075	} else {
1076		ccp_set_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
 
 
 
 
1077	}
1078
1079	ret = ccp_copy_to_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
1080			      CCP_PASSTHRU_BYTESWAP_256BIT);
1081	if (ret) {
1082		cmd->engine_error = cmd_q->cmd_error;
1083		goto e_ctx;
1084	}
1085
1086	/* Send data to the CCP SHA engine */
1087	ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1088			    CCP_SHA_BLOCKSIZE, DMA_TO_DEVICE);
1089	if (ret)
1090		goto e_ctx;
 
 
 
 
 
 
1091
1092	while (src.sg_wa.bytes_left) {
1093		ccp_prepare_data(&src, NULL, &op, CCP_SHA_BLOCKSIZE, false);
1094		if (sha->final && !src.sg_wa.bytes_left)
1095			op.eom = 1;
 
1096
1097		ret = cmd_q->ccp->vdata->perform->perform_sha(&op);
 
 
 
 
1098		if (ret) {
1099			cmd->engine_error = cmd_q->cmd_error;
1100			goto e_data;
1101		}
1102
1103		ccp_process_data(&src, NULL, &op);
1104	}
1105
1106	/* Retrieve the SHA context - convert from LE to BE using
1107	 * 32-byte (256-bit) byteswapping to BE
1108	 */
1109	ret = ccp_copy_from_ksb(cmd_q, &ctx, op.jobid, op.ksb_ctx,
1110				CCP_PASSTHRU_BYTESWAP_256BIT);
1111	if (ret) {
1112		cmd->engine_error = cmd_q->cmd_error;
1113		goto e_data;
1114	}
1115
1116	ccp_get_dm_area(&ctx, 0, sha->ctx, 0, sha->ctx_len);
1117
1118	if (sha->final && sha->opad) {
1119		/* HMAC operation, recursively perform final SHA */
1120		struct ccp_cmd hmac_cmd;
1121		struct scatterlist sg;
1122		u64 block_size, digest_size;
1123		u8 *hmac_buf;
1124
1125		switch (sha->type) {
1126		case CCP_SHA_TYPE_1:
1127			block_size = SHA1_BLOCK_SIZE;
1128			digest_size = SHA1_DIGEST_SIZE;
1129			break;
1130		case CCP_SHA_TYPE_224:
1131			block_size = SHA224_BLOCK_SIZE;
1132			digest_size = SHA224_DIGEST_SIZE;
 
 
1133			break;
1134		case CCP_SHA_TYPE_256:
1135			block_size = SHA256_BLOCK_SIZE;
1136			digest_size = SHA256_DIGEST_SIZE;
 
 
 
 
 
1137			break;
1138		default:
1139			ret = -EINVAL;
1140			goto e_data;
1141		}
 
 
 
 
 
 
 
 
 
 
 
1142
1143		if (sha->opad_len != block_size) {
1144			ret = -EINVAL;
1145			goto e_data;
1146		}
1147
1148		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1149		if (!hmac_buf) {
1150			ret = -ENOMEM;
1151			goto e_data;
1152		}
1153		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1154
1155		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1156		memcpy(hmac_buf + block_size, ctx.address, digest_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
1158		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1159		hmac_cmd.engine = CCP_ENGINE_SHA;
1160		hmac_cmd.u.sha.type = sha->type;
1161		hmac_cmd.u.sha.ctx = sha->ctx;
1162		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1163		hmac_cmd.u.sha.src = &sg;
1164		hmac_cmd.u.sha.src_len = block_size + digest_size;
1165		hmac_cmd.u.sha.opad = NULL;
1166		hmac_cmd.u.sha.opad_len = 0;
1167		hmac_cmd.u.sha.first = 1;
1168		hmac_cmd.u.sha.final = 1;
1169		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1170
1171		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1172		if (ret)
1173			cmd->engine_error = hmac_cmd.engine_error;
1174
1175		kfree(hmac_buf);
1176	}
1177
1178e_data:
1179	ccp_free_data(&src, cmd_q);
 
1180
1181e_ctx:
1182	ccp_dm_free(&ctx);
1183
1184	return ret;
1185}
1186
1187static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1188{
1189	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1190	struct ccp_dm_workarea exp, src;
1191	struct ccp_data dst;
1192	struct ccp_op op;
1193	unsigned int ksb_count, i_len, o_len;
1194	int ret;
1195
1196	if (rsa->key_size > CCP_RSA_MAX_WIDTH)
 
1197		return -EINVAL;
1198
1199	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1200		return -EINVAL;
1201
 
 
 
 
1202	/* The RSA modulus must precede the message being acted upon, so
1203	 * it must be copied to a DMA area where the message and the
1204	 * modulus can be concatenated.  Therefore the input buffer
1205	 * length required is twice the output buffer length (which
1206	 * must be a multiple of 256-bits).
 
 
1207	 */
1208	o_len = ((rsa->key_size + 255) / 256) * 32;
1209	i_len = o_len * 2;
1210
1211	ksb_count = o_len / CCP_KSB_BYTES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212
1213	memset(&op, 0, sizeof(op));
1214	op.cmd_q = cmd_q;
1215	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1216	op.ksb_key = ccp_alloc_ksb(cmd_q->ccp, ksb_count);
1217	if (!op.ksb_key)
1218		return -EIO;
1219
1220	/* The RSA exponent may span multiple (32-byte) KSB entries and must
1221	 * be in little endian format. Reverse copy each 32-byte chunk
1222	 * of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
1223	 * and each byte within that chunk and do not perform any byte swap
1224	 * operations on the passthru operation.
1225	 */
1226	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1227	if (ret)
1228		goto e_ksb;
1229
1230	ret = ccp_reverse_set_dm_area(&exp, rsa->exp, rsa->exp_len,
1231				      CCP_KSB_BYTES, false);
1232	if (ret)
1233		goto e_exp;
1234	ret = ccp_copy_to_ksb(cmd_q, &exp, op.jobid, op.ksb_key,
1235			      CCP_PASSTHRU_BYTESWAP_NOOP);
1236	if (ret) {
1237		cmd->engine_error = cmd_q->cmd_error;
1238		goto e_exp;
 
 
 
 
 
 
 
 
 
 
 
1239	}
1240
1241	/* Concatenate the modulus and the message. Both the modulus and
1242	 * the operands must be in little endian format.  Since the input
1243	 * is in big endian format it must be converted.
1244	 */
1245	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1246	if (ret)
1247		goto e_exp;
1248
1249	ret = ccp_reverse_set_dm_area(&src, rsa->mod, rsa->mod_len,
1250				      CCP_KSB_BYTES, false);
1251	if (ret)
1252		goto e_src;
1253	src.address += o_len;	/* Adjust the address for the copy operation */
1254	ret = ccp_reverse_set_dm_area(&src, rsa->src, rsa->src_len,
1255				      CCP_KSB_BYTES, false);
1256	if (ret)
1257		goto e_src;
1258	src.address -= o_len;	/* Reset the address to original value */
1259
1260	/* Prepare the output area for the operation */
1261	ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
1262			    o_len, DMA_FROM_DEVICE);
1263	if (ret)
1264		goto e_src;
1265
1266	op.soc = 1;
1267	op.src.u.dma.address = src.dma.address;
1268	op.src.u.dma.offset = 0;
1269	op.src.u.dma.length = i_len;
1270	op.dst.u.dma.address = dst.dm_wa.dma.address;
1271	op.dst.u.dma.offset = 0;
1272	op.dst.u.dma.length = o_len;
1273
1274	op.u.rsa.mod_size = rsa->key_size;
1275	op.u.rsa.input_len = i_len;
1276
1277	ret = cmd_q->ccp->vdata->perform->perform_rsa(&op);
1278	if (ret) {
1279		cmd->engine_error = cmd_q->cmd_error;
1280		goto e_dst;
1281	}
1282
1283	ccp_reverse_get_dm_area(&dst.dm_wa, rsa->dst, rsa->mod_len);
1284
1285e_dst:
1286	ccp_free_data(&dst, cmd_q);
1287
1288e_src:
1289	ccp_dm_free(&src);
1290
1291e_exp:
1292	ccp_dm_free(&exp);
1293
1294e_ksb:
1295	ccp_free_ksb(cmd_q->ccp, op.ksb_key, ksb_count);
 
1296
1297	return ret;
1298}
1299
1300static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1301				struct ccp_cmd *cmd)
1302{
1303	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1304	struct ccp_dm_workarea mask;
1305	struct ccp_data src, dst;
1306	struct ccp_op op;
1307	bool in_place = false;
1308	unsigned int i;
1309	int ret;
1310
1311	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1312		return -EINVAL;
1313
1314	if (!pt->src || !pt->dst)
1315		return -EINVAL;
1316
1317	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1318		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1319			return -EINVAL;
1320		if (!pt->mask)
1321			return -EINVAL;
1322	}
1323
1324	BUILD_BUG_ON(CCP_PASSTHRU_KSB_COUNT != 1);
1325
1326	memset(&op, 0, sizeof(op));
1327	op.cmd_q = cmd_q;
1328	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1329
1330	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1331		/* Load the mask */
1332		op.ksb_key = cmd_q->ksb_key;
1333
1334		ret = ccp_init_dm_workarea(&mask, cmd_q,
1335					   CCP_PASSTHRU_KSB_COUNT *
1336					   CCP_KSB_BYTES,
1337					   DMA_TO_DEVICE);
1338		if (ret)
1339			return ret;
1340
1341		ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1342		ret = ccp_copy_to_ksb(cmd_q, &mask, op.jobid, op.ksb_key,
1343				      CCP_PASSTHRU_BYTESWAP_NOOP);
 
 
1344		if (ret) {
1345			cmd->engine_error = cmd_q->cmd_error;
1346			goto e_mask;
1347		}
1348	}
1349
1350	/* Prepare the input and output data workareas. For in-place
1351	 * operations we need to set the dma direction to BIDIRECTIONAL
1352	 * and copy the src workarea to the dst workarea.
1353	 */
1354	if (sg_virt(pt->src) == sg_virt(pt->dst))
1355		in_place = true;
1356
1357	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1358			    CCP_PASSTHRU_MASKSIZE,
1359			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1360	if (ret)
1361		goto e_mask;
1362
1363	if (in_place) {
1364		dst = src;
1365	} else {
1366		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
1367				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
1368		if (ret)
1369			goto e_src;
1370	}
1371
1372	/* Send data to the CCP Passthru engine
1373	 *   Because the CCP engine works on a single source and destination
1374	 *   dma address at a time, each entry in the source scatterlist
1375	 *   (after the dma_map_sg call) must be less than or equal to the
1376	 *   (remaining) length in the destination scatterlist entry and the
1377	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
1378	 */
1379	dst.sg_wa.sg_used = 0;
1380	for (i = 1; i <= src.sg_wa.dma_count; i++) {
1381		if (!dst.sg_wa.sg ||
1382		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
1383			ret = -EINVAL;
1384			goto e_dst;
1385		}
1386
1387		if (i == src.sg_wa.dma_count) {
1388			op.eom = 1;
1389			op.soc = 1;
1390		}
1391
1392		op.src.type = CCP_MEMTYPE_SYSTEM;
1393		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
1394		op.src.u.dma.offset = 0;
1395		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
1396
1397		op.dst.type = CCP_MEMTYPE_SYSTEM;
1398		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
1399		op.dst.u.dma.offset = dst.sg_wa.sg_used;
1400		op.dst.u.dma.length = op.src.u.dma.length;
1401
1402		ret = cmd_q->ccp->vdata->perform->perform_passthru(&op);
1403		if (ret) {
1404			cmd->engine_error = cmd_q->cmd_error;
1405			goto e_dst;
1406		}
1407
1408		dst.sg_wa.sg_used += src.sg_wa.sg->length;
1409		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
1410			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
1411			dst.sg_wa.sg_used = 0;
1412		}
1413		src.sg_wa.sg = sg_next(src.sg_wa.sg);
1414	}
1415
1416e_dst:
1417	if (!in_place)
1418		ccp_free_data(&dst, cmd_q);
1419
1420e_src:
1421	ccp_free_data(&src, cmd_q);
1422
1423e_mask:
1424	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
1425		ccp_dm_free(&mask);
1426
1427	return ret;
1428}
1429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1431{
1432	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1433	struct ccp_dm_workarea src, dst;
1434	struct ccp_op op;
1435	int ret;
1436	u8 *save;
1437
1438	if (!ecc->u.mm.operand_1 ||
1439	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
1440		return -EINVAL;
1441
1442	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
1443		if (!ecc->u.mm.operand_2 ||
1444		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
1445			return -EINVAL;
1446
1447	if (!ecc->u.mm.result ||
1448	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
1449		return -EINVAL;
1450
1451	memset(&op, 0, sizeof(op));
1452	op.cmd_q = cmd_q;
1453	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1454
1455	/* Concatenate the modulus and the operands. Both the modulus and
1456	 * the operands must be in little endian format.  Since the input
1457	 * is in big endian format it must be converted and placed in a
1458	 * fixed length buffer.
1459	 */
1460	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1461				   DMA_TO_DEVICE);
1462	if (ret)
1463		return ret;
1464
1465	/* Save the workarea address since it is updated in order to perform
1466	 * the concatenation
1467	 */
1468	save = src.address;
1469
1470	/* Copy the ECC modulus */
1471	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1472				      CCP_ECC_OPERAND_SIZE, false);
1473	if (ret)
1474		goto e_src;
1475	src.address += CCP_ECC_OPERAND_SIZE;
1476
1477	/* Copy the first operand */
1478	ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_1,
1479				      ecc->u.mm.operand_1_len,
1480				      CCP_ECC_OPERAND_SIZE, false);
1481	if (ret)
1482		goto e_src;
1483	src.address += CCP_ECC_OPERAND_SIZE;
1484
1485	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
1486		/* Copy the second operand */
1487		ret = ccp_reverse_set_dm_area(&src, ecc->u.mm.operand_2,
1488					      ecc->u.mm.operand_2_len,
1489					      CCP_ECC_OPERAND_SIZE, false);
1490		if (ret)
1491			goto e_src;
1492		src.address += CCP_ECC_OPERAND_SIZE;
1493	}
1494
1495	/* Restore the workarea address */
1496	src.address = save;
1497
1498	/* Prepare the output area for the operation */
1499	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1500				   DMA_FROM_DEVICE);
1501	if (ret)
1502		goto e_src;
1503
1504	op.soc = 1;
1505	op.src.u.dma.address = src.dma.address;
1506	op.src.u.dma.offset = 0;
1507	op.src.u.dma.length = src.length;
1508	op.dst.u.dma.address = dst.dma.address;
1509	op.dst.u.dma.offset = 0;
1510	op.dst.u.dma.length = dst.length;
1511
1512	op.u.ecc.function = cmd->u.ecc.function;
1513
1514	ret = cmd_q->ccp->vdata->perform->perform_ecc(&op);
1515	if (ret) {
1516		cmd->engine_error = cmd_q->cmd_error;
1517		goto e_dst;
1518	}
1519
1520	ecc->ecc_result = le16_to_cpup(
1521		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1522	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1523		ret = -EIO;
1524		goto e_dst;
1525	}
1526
1527	/* Save the ECC result */
1528	ccp_reverse_get_dm_area(&dst, ecc->u.mm.result, CCP_ECC_MODULUS_BYTES);
 
1529
1530e_dst:
1531	ccp_dm_free(&dst);
1532
1533e_src:
1534	ccp_dm_free(&src);
1535
1536	return ret;
1537}
1538
1539static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1540{
1541	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1542	struct ccp_dm_workarea src, dst;
1543	struct ccp_op op;
1544	int ret;
1545	u8 *save;
1546
1547	if (!ecc->u.pm.point_1.x ||
1548	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
1549	    !ecc->u.pm.point_1.y ||
1550	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
1551		return -EINVAL;
1552
1553	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1554		if (!ecc->u.pm.point_2.x ||
1555		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
1556		    !ecc->u.pm.point_2.y ||
1557		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
1558			return -EINVAL;
1559	} else {
1560		if (!ecc->u.pm.domain_a ||
1561		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
1562			return -EINVAL;
1563
1564		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
1565			if (!ecc->u.pm.scalar ||
1566			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
1567				return -EINVAL;
1568	}
1569
1570	if (!ecc->u.pm.result.x ||
1571	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
1572	    !ecc->u.pm.result.y ||
1573	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
1574		return -EINVAL;
1575
1576	memset(&op, 0, sizeof(op));
1577	op.cmd_q = cmd_q;
1578	op.jobid = ccp_gen_jobid(cmd_q->ccp);
1579
1580	/* Concatenate the modulus and the operands. Both the modulus and
1581	 * the operands must be in little endian format.  Since the input
1582	 * is in big endian format it must be converted and placed in a
1583	 * fixed length buffer.
1584	 */
1585	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
1586				   DMA_TO_DEVICE);
1587	if (ret)
1588		return ret;
1589
1590	/* Save the workarea address since it is updated in order to perform
1591	 * the concatenation
1592	 */
1593	save = src.address;
1594
1595	/* Copy the ECC modulus */
1596	ret = ccp_reverse_set_dm_area(&src, ecc->mod, ecc->mod_len,
1597				      CCP_ECC_OPERAND_SIZE, false);
1598	if (ret)
1599		goto e_src;
1600	src.address += CCP_ECC_OPERAND_SIZE;
1601
1602	/* Copy the first point X and Y coordinate */
1603	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.x,
1604				      ecc->u.pm.point_1.x_len,
1605				      CCP_ECC_OPERAND_SIZE, false);
1606	if (ret)
1607		goto e_src;
1608	src.address += CCP_ECC_OPERAND_SIZE;
1609	ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_1.y,
1610				      ecc->u.pm.point_1.y_len,
1611				      CCP_ECC_OPERAND_SIZE, false);
1612	if (ret)
1613		goto e_src;
1614	src.address += CCP_ECC_OPERAND_SIZE;
1615
1616	/* Set the first point Z coordianate to 1 */
1617	*src.address = 0x01;
1618	src.address += CCP_ECC_OPERAND_SIZE;
1619
1620	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
1621		/* Copy the second point X and Y coordinate */
1622		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.x,
1623					      ecc->u.pm.point_2.x_len,
1624					      CCP_ECC_OPERAND_SIZE, false);
1625		if (ret)
1626			goto e_src;
1627		src.address += CCP_ECC_OPERAND_SIZE;
1628		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.point_2.y,
1629					      ecc->u.pm.point_2.y_len,
1630					      CCP_ECC_OPERAND_SIZE, false);
1631		if (ret)
1632			goto e_src;
1633		src.address += CCP_ECC_OPERAND_SIZE;
1634
1635		/* Set the second point Z coordianate to 1 */
1636		*src.address = 0x01;
1637		src.address += CCP_ECC_OPERAND_SIZE;
1638	} else {
1639		/* Copy the Domain "a" parameter */
1640		ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.domain_a,
1641					      ecc->u.pm.domain_a_len,
1642					      CCP_ECC_OPERAND_SIZE, false);
1643		if (ret)
1644			goto e_src;
1645		src.address += CCP_ECC_OPERAND_SIZE;
1646
1647		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
1648			/* Copy the scalar value */
1649			ret = ccp_reverse_set_dm_area(&src, ecc->u.pm.scalar,
1650						      ecc->u.pm.scalar_len,
1651						      CCP_ECC_OPERAND_SIZE,
1652						      false);
1653			if (ret)
1654				goto e_src;
1655			src.address += CCP_ECC_OPERAND_SIZE;
1656		}
1657	}
1658
1659	/* Restore the workarea address */
1660	src.address = save;
1661
1662	/* Prepare the output area for the operation */
1663	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
1664				   DMA_FROM_DEVICE);
1665	if (ret)
1666		goto e_src;
1667
1668	op.soc = 1;
1669	op.src.u.dma.address = src.dma.address;
1670	op.src.u.dma.offset = 0;
1671	op.src.u.dma.length = src.length;
1672	op.dst.u.dma.address = dst.dma.address;
1673	op.dst.u.dma.offset = 0;
1674	op.dst.u.dma.length = dst.length;
1675
1676	op.u.ecc.function = cmd->u.ecc.function;
1677
1678	ret = cmd_q->ccp->vdata->perform->perform_ecc(&op);
1679	if (ret) {
1680		cmd->engine_error = cmd_q->cmd_error;
1681		goto e_dst;
1682	}
1683
1684	ecc->ecc_result = le16_to_cpup(
1685		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
1686	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
1687		ret = -EIO;
1688		goto e_dst;
1689	}
1690
1691	/* Save the workarea address since it is updated as we walk through
1692	 * to copy the point math result
1693	 */
1694	save = dst.address;
1695
1696	/* Save the ECC result X and Y coordinates */
1697	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.x,
1698				CCP_ECC_MODULUS_BYTES);
1699	dst.address += CCP_ECC_OUTPUT_SIZE;
1700	ccp_reverse_get_dm_area(&dst, ecc->u.pm.result.y,
1701				CCP_ECC_MODULUS_BYTES);
1702	dst.address += CCP_ECC_OUTPUT_SIZE;
1703
1704	/* Restore the workarea address */
1705	dst.address = save;
1706
1707e_dst:
1708	ccp_dm_free(&dst);
1709
1710e_src:
1711	ccp_dm_free(&src);
1712
1713	return ret;
1714}
1715
1716static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1717{
1718	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
1719
1720	ecc->ecc_result = 0;
1721
1722	if (!ecc->mod ||
1723	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
1724		return -EINVAL;
1725
1726	switch (ecc->function) {
1727	case CCP_ECC_FUNCTION_MMUL_384BIT:
1728	case CCP_ECC_FUNCTION_MADD_384BIT:
1729	case CCP_ECC_FUNCTION_MINV_384BIT:
1730		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
1731
1732	case CCP_ECC_FUNCTION_PADD_384BIT:
1733	case CCP_ECC_FUNCTION_PMUL_384BIT:
1734	case CCP_ECC_FUNCTION_PDBL_384BIT:
1735		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
1736
1737	default:
1738		return -EINVAL;
1739	}
1740}
1741
1742int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1743{
1744	int ret;
1745
1746	cmd->engine_error = 0;
1747	cmd_q->cmd_error = 0;
1748	cmd_q->int_rcvd = 0;
1749	cmd_q->free_slots = CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
1750
1751	switch (cmd->engine) {
1752	case CCP_ENGINE_AES:
1753		ret = ccp_run_aes_cmd(cmd_q, cmd);
 
 
 
 
 
 
 
 
 
 
1754		break;
1755	case CCP_ENGINE_XTS_AES_128:
1756		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
1757		break;
 
 
 
1758	case CCP_ENGINE_SHA:
1759		ret = ccp_run_sha_cmd(cmd_q, cmd);
1760		break;
1761	case CCP_ENGINE_RSA:
1762		ret = ccp_run_rsa_cmd(cmd_q, cmd);
1763		break;
1764	case CCP_ENGINE_PASSTHRU:
1765		ret = ccp_run_passthru_cmd(cmd_q, cmd);
 
 
 
1766		break;
1767	case CCP_ENGINE_ECC:
1768		ret = ccp_run_ecc_cmd(cmd_q, cmd);
1769		break;
1770	default:
1771		ret = -EINVAL;
1772	}
1773
1774	return ret;
1775}