Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) driver
   4 *
   5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 * Author: Gary R Hook <gary.hook@amd.com>
   9 */
  10
  11#include <linux/dma-mapping.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/interrupt.h>
  15#include <crypto/scatterwalk.h>
  16#include <crypto/des.h>
  17#include <linux/ccp.h>
  18
  19#include "ccp-dev.h"
  20
  21/* SHA initial context values */
  22static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  23	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  24	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  25	cpu_to_be32(SHA1_H4),
  26};
  27
  28static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  29	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  30	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  31	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  32	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  33};
  34
  35static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  36	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  37	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  38	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  39	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  40};
  41
  42static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  43	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  44	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  45	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  46	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  47};
  48
  49static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  50	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  51	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  52	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  53	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  54};
  55
  56#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  57					ccp_gen_jobid(ccp) : 0)
  58
  59static u32 ccp_gen_jobid(struct ccp_device *ccp)
  60{
  61	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  62}
  63
  64static void ccp_sg_free(struct ccp_sg_workarea *wa)
  65{
  66	if (wa->dma_count)
  67		dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
  68
  69	wa->dma_count = 0;
  70}
  71
  72static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  73				struct scatterlist *sg, u64 len,
  74				enum dma_data_direction dma_dir)
  75{
  76	memset(wa, 0, sizeof(*wa));
  77
  78	wa->sg = sg;
  79	if (!sg)
  80		return 0;
  81
  82	wa->nents = sg_nents_for_len(sg, len);
  83	if (wa->nents < 0)
  84		return wa->nents;
  85
  86	wa->bytes_left = len;
  87	wa->sg_used = 0;
  88
  89	if (len == 0)
  90		return 0;
  91
  92	if (dma_dir == DMA_NONE)
  93		return 0;
  94
  95	wa->dma_sg = sg;
  96	wa->dma_sg_head = sg;
  97	wa->dma_dev = dev;
  98	wa->dma_dir = dma_dir;
  99	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 100	if (!wa->dma_count)
 101		return -ENOMEM;
 102
 103	return 0;
 104}
 105
 106static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 107{
 108	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 109	unsigned int sg_combined_len = 0;
 110
 111	if (!wa->sg)
 112		return;
 113
 114	wa->sg_used += nbytes;
 115	wa->bytes_left -= nbytes;
 116	if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
 117		/* Advance to the next DMA scatterlist entry */
 118		wa->dma_sg = sg_next(wa->dma_sg);
 119
 120		/* In the case that the DMA mapped scatterlist has entries
 121		 * that have been merged, the non-DMA mapped scatterlist
 122		 * must be advanced multiple times for each merged entry.
 123		 * This ensures that the current non-DMA mapped entry
 124		 * corresponds to the current DMA mapped entry.
 125		 */
 126		do {
 127			sg_combined_len += wa->sg->length;
 128			wa->sg = sg_next(wa->sg);
 129		} while (wa->sg_used > sg_combined_len);
 130
 131		wa->sg_used = 0;
 132	}
 133}
 134
 135static void ccp_dm_free(struct ccp_dm_workarea *wa)
 136{
 137	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 138		if (wa->address)
 139			dma_pool_free(wa->dma_pool, wa->address,
 140				      wa->dma.address);
 141	} else {
 142		if (wa->dma.address)
 143			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 144					 wa->dma.dir);
 145		kfree(wa->address);
 146	}
 147
 148	wa->address = NULL;
 149	wa->dma.address = 0;
 150}
 151
 152static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 153				struct ccp_cmd_queue *cmd_q,
 154				unsigned int len,
 155				enum dma_data_direction dir)
 156{
 157	memset(wa, 0, sizeof(*wa));
 158
 159	if (!len)
 160		return 0;
 161
 162	wa->dev = cmd_q->ccp->dev;
 163	wa->length = len;
 164
 165	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 166		wa->dma_pool = cmd_q->dma_pool;
 167
 168		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
 169					     &wa->dma.address);
 170		if (!wa->address)
 171			return -ENOMEM;
 172
 173		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 174
 175	} else {
 176		wa->address = kzalloc(len, GFP_KERNEL);
 177		if (!wa->address)
 178			return -ENOMEM;
 179
 180		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 181						 dir);
 182		if (dma_mapping_error(wa->dev, wa->dma.address)) {
 183			kfree(wa->address);
 184			wa->address = NULL;
 185			return -ENOMEM;
 186		}
 187
 188		wa->dma.length = len;
 189	}
 190	wa->dma.dir = dir;
 191
 192	return 0;
 193}
 194
 195static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 196			   struct scatterlist *sg, unsigned int sg_offset,
 197			   unsigned int len)
 198{
 199	WARN_ON(!wa->address);
 200
 201	if (len > (wa->length - wa_offset))
 202		return -EINVAL;
 203
 204	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 205				 0);
 206	return 0;
 207}
 208
 209static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 210			    struct scatterlist *sg, unsigned int sg_offset,
 211			    unsigned int len)
 212{
 213	WARN_ON(!wa->address);
 214
 215	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 216				 1);
 217}
 218
 219static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 220				   unsigned int wa_offset,
 221				   struct scatterlist *sg,
 222				   unsigned int sg_offset,
 223				   unsigned int len)
 224{
 225	u8 *p, *q;
 226	int	rc;
 227
 228	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 229	if (rc)
 230		return rc;
 231
 232	p = wa->address + wa_offset;
 233	q = p + len - 1;
 234	while (p < q) {
 235		*p = *p ^ *q;
 236		*q = *p ^ *q;
 237		*p = *p ^ *q;
 238		p++;
 239		q--;
 240	}
 241	return 0;
 242}
 243
 244static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 245				    unsigned int wa_offset,
 246				    struct scatterlist *sg,
 247				    unsigned int sg_offset,
 248				    unsigned int len)
 249{
 250	u8 *p, *q;
 251
 252	p = wa->address + wa_offset;
 253	q = p + len - 1;
 254	while (p < q) {
 255		*p = *p ^ *q;
 256		*q = *p ^ *q;
 257		*p = *p ^ *q;
 258		p++;
 259		q--;
 260	}
 261
 262	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 263}
 264
 265static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 266{
 267	ccp_dm_free(&data->dm_wa);
 268	ccp_sg_free(&data->sg_wa);
 269}
 270
 271static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 272			 struct scatterlist *sg, u64 sg_len,
 273			 unsigned int dm_len,
 274			 enum dma_data_direction dir)
 275{
 276	int ret;
 277
 278	memset(data, 0, sizeof(*data));
 279
 280	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 281				   dir);
 282	if (ret)
 283		goto e_err;
 284
 285	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 286	if (ret)
 287		goto e_err;
 288
 289	return 0;
 290
 291e_err:
 292	ccp_free_data(data, cmd_q);
 293
 294	return ret;
 295}
 296
 297static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 298{
 299	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 300	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 301	unsigned int buf_count, nbytes;
 302
 303	/* Clear the buffer if setting it */
 304	if (!from)
 305		memset(dm_wa->address, 0, dm_wa->length);
 306
 307	if (!sg_wa->sg)
 308		return 0;
 309
 310	/* Perform the copy operation
 311	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 312	 *   an unsigned int
 313	 */
 314	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 315	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 316				 nbytes, from);
 317
 318	/* Update the structures and generate the count */
 319	buf_count = 0;
 320	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 321		nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
 322			     dm_wa->length - buf_count);
 323		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 324
 325		buf_count += nbytes;
 326		ccp_update_sg_workarea(sg_wa, nbytes);
 327	}
 328
 329	return buf_count;
 330}
 331
 332static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 333{
 334	return ccp_queue_buf(data, 0);
 335}
 336
 337static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 338{
 339	return ccp_queue_buf(data, 1);
 340}
 341
 342static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 343			     struct ccp_op *op, unsigned int block_size,
 344			     bool blocksize_op)
 345{
 346	unsigned int sg_src_len, sg_dst_len, op_len;
 347
 348	/* The CCP can only DMA from/to one address each per operation. This
 349	 * requires that we find the smallest DMA area between the source
 350	 * and destination. The resulting len values will always be <= UINT_MAX
 351	 * because the dma length is an unsigned int.
 352	 */
 353	sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
 354	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 355
 356	if (dst) {
 357		sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
 358		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 359		op_len = min(sg_src_len, sg_dst_len);
 360	} else {
 361		op_len = sg_src_len;
 362	}
 363
 364	/* The data operation length will be at least block_size in length
 365	 * or the smaller of available sg room remaining for the source or
 366	 * the destination
 367	 */
 368	op_len = max(op_len, block_size);
 369
 370	/* Unless we have to buffer data, there's no reason to wait */
 371	op->soc = 0;
 372
 373	if (sg_src_len < block_size) {
 374		/* Not enough data in the sg element, so it
 375		 * needs to be buffered into a blocksize chunk
 376		 */
 377		int cp_len = ccp_fill_queue_buf(src);
 378
 379		op->soc = 1;
 380		op->src.u.dma.address = src->dm_wa.dma.address;
 381		op->src.u.dma.offset = 0;
 382		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 383	} else {
 384		/* Enough data in the sg element, but we need to
 385		 * adjust for any previously copied data
 386		 */
 387		op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
 388		op->src.u.dma.offset = src->sg_wa.sg_used;
 389		op->src.u.dma.length = op_len & ~(block_size - 1);
 390
 391		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 392	}
 393
 394	if (dst) {
 395		if (sg_dst_len < block_size) {
 396			/* Not enough room in the sg element or we're on the
 397			 * last piece of data (when using padding), so the
 398			 * output needs to be buffered into a blocksize chunk
 399			 */
 400			op->soc = 1;
 401			op->dst.u.dma.address = dst->dm_wa.dma.address;
 402			op->dst.u.dma.offset = 0;
 403			op->dst.u.dma.length = op->src.u.dma.length;
 404		} else {
 405			/* Enough room in the sg element, but we need to
 406			 * adjust for any previously used area
 407			 */
 408			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
 409			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 410			op->dst.u.dma.length = op->src.u.dma.length;
 411		}
 412	}
 413}
 414
 415static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 416			     struct ccp_op *op)
 417{
 418	op->init = 0;
 419
 420	if (dst) {
 421		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 422			ccp_empty_queue_buf(dst);
 423		else
 424			ccp_update_sg_workarea(&dst->sg_wa,
 425					       op->dst.u.dma.length);
 426	}
 427}
 428
 429static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 430			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 431			       u32 byte_swap, bool from)
 432{
 433	struct ccp_op op;
 434
 435	memset(&op, 0, sizeof(op));
 436
 437	op.cmd_q = cmd_q;
 438	op.jobid = jobid;
 439	op.eom = 1;
 440
 441	if (from) {
 442		op.soc = 1;
 443		op.src.type = CCP_MEMTYPE_SB;
 444		op.src.u.sb = sb;
 445		op.dst.type = CCP_MEMTYPE_SYSTEM;
 446		op.dst.u.dma.address = wa->dma.address;
 447		op.dst.u.dma.length = wa->length;
 448	} else {
 449		op.src.type = CCP_MEMTYPE_SYSTEM;
 450		op.src.u.dma.address = wa->dma.address;
 451		op.src.u.dma.length = wa->length;
 452		op.dst.type = CCP_MEMTYPE_SB;
 453		op.dst.u.sb = sb;
 454	}
 455
 456	op.u.passthru.byte_swap = byte_swap;
 457
 458	return cmd_q->ccp->vdata->perform->passthru(&op);
 459}
 460
 461static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 462			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 463			  u32 byte_swap)
 464{
 465	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 466}
 467
 468static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 469			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 470			    u32 byte_swap)
 471{
 472	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 473}
 474
 475static noinline_for_stack int
 476ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 477{
 478	struct ccp_aes_engine *aes = &cmd->u.aes;
 479	struct ccp_dm_workarea key, ctx;
 480	struct ccp_data src;
 481	struct ccp_op op;
 482	unsigned int dm_offset;
 483	int ret;
 484
 485	if (!((aes->key_len == AES_KEYSIZE_128) ||
 486	      (aes->key_len == AES_KEYSIZE_192) ||
 487	      (aes->key_len == AES_KEYSIZE_256)))
 488		return -EINVAL;
 489
 490	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 491		return -EINVAL;
 492
 493	if (aes->iv_len != AES_BLOCK_SIZE)
 494		return -EINVAL;
 495
 496	if (!aes->key || !aes->iv || !aes->src)
 497		return -EINVAL;
 498
 499	if (aes->cmac_final) {
 500		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 501			return -EINVAL;
 502
 503		if (!aes->cmac_key)
 504			return -EINVAL;
 505	}
 506
 507	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 508	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 509
 510	ret = -EIO;
 511	memset(&op, 0, sizeof(op));
 512	op.cmd_q = cmd_q;
 513	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 514	op.sb_key = cmd_q->sb_key;
 515	op.sb_ctx = cmd_q->sb_ctx;
 516	op.init = 1;
 517	op.u.aes.type = aes->type;
 518	op.u.aes.mode = aes->mode;
 519	op.u.aes.action = aes->action;
 520
 521	/* All supported key sizes fit in a single (32-byte) SB entry
 522	 * and must be in little endian format. Use the 256-bit byte
 523	 * swap passthru option to convert from big endian to little
 524	 * endian.
 525	 */
 526	ret = ccp_init_dm_workarea(&key, cmd_q,
 527				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 528				   DMA_TO_DEVICE);
 529	if (ret)
 530		return ret;
 531
 532	dm_offset = CCP_SB_BYTES - aes->key_len;
 533	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 534	if (ret)
 535		goto e_key;
 536	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 537			     CCP_PASSTHRU_BYTESWAP_256BIT);
 538	if (ret) {
 539		cmd->engine_error = cmd_q->cmd_error;
 540		goto e_key;
 541	}
 542
 543	/* The AES context fits in a single (32-byte) SB entry and
 544	 * must be in little endian format. Use the 256-bit byte swap
 545	 * passthru option to convert from big endian to little endian.
 546	 */
 547	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 548				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 549				   DMA_BIDIRECTIONAL);
 550	if (ret)
 551		goto e_key;
 552
 553	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 554	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 555	if (ret)
 556		goto e_ctx;
 557	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 558			     CCP_PASSTHRU_BYTESWAP_256BIT);
 559	if (ret) {
 560		cmd->engine_error = cmd_q->cmd_error;
 561		goto e_ctx;
 562	}
 563
 564	/* Send data to the CCP AES engine */
 565	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 566			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 567	if (ret)
 568		goto e_ctx;
 569
 570	while (src.sg_wa.bytes_left) {
 571		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 572		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 573			op.eom = 1;
 574
 575			/* Push the K1/K2 key to the CCP now */
 576			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 577					       op.sb_ctx,
 578					       CCP_PASSTHRU_BYTESWAP_256BIT);
 579			if (ret) {
 580				cmd->engine_error = cmd_q->cmd_error;
 581				goto e_src;
 582			}
 583
 584			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 585					      aes->cmac_key_len);
 586			if (ret)
 587				goto e_src;
 588			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 589					     CCP_PASSTHRU_BYTESWAP_256BIT);
 590			if (ret) {
 591				cmd->engine_error = cmd_q->cmd_error;
 592				goto e_src;
 593			}
 594		}
 595
 596		ret = cmd_q->ccp->vdata->perform->aes(&op);
 597		if (ret) {
 598			cmd->engine_error = cmd_q->cmd_error;
 599			goto e_src;
 600		}
 601
 602		ccp_process_data(&src, NULL, &op);
 603	}
 604
 605	/* Retrieve the AES context - convert from LE to BE using
 606	 * 32-byte (256-bit) byteswapping
 607	 */
 608	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 609			       CCP_PASSTHRU_BYTESWAP_256BIT);
 610	if (ret) {
 611		cmd->engine_error = cmd_q->cmd_error;
 612		goto e_src;
 613	}
 614
 615	/* ...but we only need AES_BLOCK_SIZE bytes */
 616	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 617	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 618
 619e_src:
 620	ccp_free_data(&src, cmd_q);
 621
 622e_ctx:
 623	ccp_dm_free(&ctx);
 624
 625e_key:
 626	ccp_dm_free(&key);
 627
 628	return ret;
 629}
 630
 631static noinline_for_stack int
 632ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 633{
 634	struct ccp_aes_engine *aes = &cmd->u.aes;
 635	struct ccp_dm_workarea key, ctx, final_wa, tag;
 636	struct ccp_data src, dst;
 637	struct ccp_data aad;
 638	struct ccp_op op;
 
 
 639	unsigned int dm_offset;
 640	unsigned int authsize;
 641	unsigned int jobid;
 642	unsigned int ilen;
 643	bool in_place = true; /* Default value */
 644	__be64 *final;
 645	int ret;
 646
 647	struct scatterlist *p_inp, sg_inp[2];
 648	struct scatterlist *p_tag, sg_tag[2];
 649	struct scatterlist *p_outp, sg_outp[2];
 650	struct scatterlist *p_aad;
 651
 652	if (!aes->iv)
 653		return -EINVAL;
 654
 655	if (!((aes->key_len == AES_KEYSIZE_128) ||
 656		(aes->key_len == AES_KEYSIZE_192) ||
 657		(aes->key_len == AES_KEYSIZE_256)))
 658		return -EINVAL;
 659
 660	if (!aes->key) /* Gotta have a key SGL */
 661		return -EINVAL;
 662
 663	/* Zero defaults to 16 bytes, the maximum size */
 664	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
 665	switch (authsize) {
 666	case 16:
 667	case 15:
 668	case 14:
 669	case 13:
 670	case 12:
 671	case 8:
 672	case 4:
 673		break;
 674	default:
 675		return -EINVAL;
 676	}
 677
 678	/* First, decompose the source buffer into AAD & PT,
 679	 * and the destination buffer into AAD, CT & tag, or
 680	 * the input into CT & tag.
 681	 * It is expected that the input and output SGs will
 682	 * be valid, even if the AAD and input lengths are 0.
 683	 */
 684	p_aad = aes->src;
 685	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 686	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 687	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 688		ilen = aes->src_len;
 689		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 690	} else {
 691		/* Input length for decryption includes tag */
 692		ilen = aes->src_len - authsize;
 693		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 694	}
 695
 696	jobid = CCP_NEW_JOBID(cmd_q->ccp);
 697
 698	memset(&op, 0, sizeof(op));
 699	op.cmd_q = cmd_q;
 700	op.jobid = jobid;
 701	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 702	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 703	op.init = 1;
 704	op.u.aes.type = aes->type;
 705
 706	/* Copy the key to the LSB */
 707	ret = ccp_init_dm_workarea(&key, cmd_q,
 708				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 709				   DMA_TO_DEVICE);
 710	if (ret)
 711		return ret;
 712
 713	dm_offset = CCP_SB_BYTES - aes->key_len;
 714	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 715	if (ret)
 716		goto e_key;
 717	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 718			     CCP_PASSTHRU_BYTESWAP_256BIT);
 719	if (ret) {
 720		cmd->engine_error = cmd_q->cmd_error;
 721		goto e_key;
 722	}
 723
 724	/* Copy the context (IV) to the LSB.
 725	 * There is an assumption here that the IV is 96 bits in length, plus
 726	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 727	 */
 728	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 729				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 730				   DMA_BIDIRECTIONAL);
 731	if (ret)
 732		goto e_key;
 733
 734	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 735	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 736	if (ret)
 737		goto e_ctx;
 738
 739	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 740			     CCP_PASSTHRU_BYTESWAP_256BIT);
 741	if (ret) {
 742		cmd->engine_error = cmd_q->cmd_error;
 743		goto e_ctx;
 744	}
 745
 746	op.init = 1;
 747	if (aes->aad_len > 0) {
 748		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 749		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 750				    AES_BLOCK_SIZE,
 751				    DMA_TO_DEVICE);
 752		if (ret)
 753			goto e_ctx;
 754
 755		op.u.aes.mode = CCP_AES_MODE_GHASH;
 756		op.u.aes.action = CCP_AES_GHASHAAD;
 757
 758		while (aad.sg_wa.bytes_left) {
 759			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 760
 761			ret = cmd_q->ccp->vdata->perform->aes(&op);
 762			if (ret) {
 763				cmd->engine_error = cmd_q->cmd_error;
 764				goto e_aad;
 765			}
 766
 767			ccp_process_data(&aad, NULL, &op);
 768			op.init = 0;
 769		}
 770	}
 771
 772	op.u.aes.mode = CCP_AES_MODE_GCTR;
 773	op.u.aes.action = aes->action;
 774
 775	if (ilen > 0) {
 776		/* Step 2: Run a GCTR over the plaintext */
 777		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 778
 779		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 780				    AES_BLOCK_SIZE,
 781				    in_place ? DMA_BIDIRECTIONAL
 782					     : DMA_TO_DEVICE);
 783		if (ret)
 784			goto e_aad;
 785
 786		if (in_place) {
 787			dst = src;
 788		} else {
 789			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 790					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 791			if (ret)
 792				goto e_src;
 793		}
 794
 795		op.soc = 0;
 796		op.eom = 0;
 797		op.init = 1;
 798		while (src.sg_wa.bytes_left) {
 799			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 800			if (!src.sg_wa.bytes_left) {
 801				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
 802
 803				if (nbytes) {
 804					op.eom = 1;
 805					op.u.aes.size = (nbytes * 8) - 1;
 806				}
 807			}
 808
 809			ret = cmd_q->ccp->vdata->perform->aes(&op);
 810			if (ret) {
 811				cmd->engine_error = cmd_q->cmd_error;
 812				goto e_dst;
 813			}
 814
 815			ccp_process_data(&src, &dst, &op);
 816			op.init = 0;
 817		}
 818	}
 819
 820	/* Step 3: Update the IV portion of the context with the original IV */
 821	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 822			       CCP_PASSTHRU_BYTESWAP_256BIT);
 823	if (ret) {
 824		cmd->engine_error = cmd_q->cmd_error;
 825		goto e_dst;
 826	}
 827
 828	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 829	if (ret)
 830		goto e_dst;
 831
 832	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 833			     CCP_PASSTHRU_BYTESWAP_256BIT);
 834	if (ret) {
 835		cmd->engine_error = cmd_q->cmd_error;
 836		goto e_dst;
 837	}
 838
 839	/* Step 4: Concatenate the lengths of the AAD and source, and
 840	 * hash that 16 byte buffer.
 841	 */
 842	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 843				   DMA_BIDIRECTIONAL);
 844	if (ret)
 845		goto e_dst;
 846	final = (__be64 *)final_wa.address;
 847	final[0] = cpu_to_be64(aes->aad_len * 8);
 848	final[1] = cpu_to_be64(ilen * 8);
 849
 850	memset(&op, 0, sizeof(op));
 851	op.cmd_q = cmd_q;
 852	op.jobid = jobid;
 853	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 854	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 855	op.init = 1;
 856	op.u.aes.type = aes->type;
 857	op.u.aes.mode = CCP_AES_MODE_GHASH;
 858	op.u.aes.action = CCP_AES_GHASHFINAL;
 859	op.src.type = CCP_MEMTYPE_SYSTEM;
 860	op.src.u.dma.address = final_wa.dma.address;
 861	op.src.u.dma.length = AES_BLOCK_SIZE;
 862	op.dst.type = CCP_MEMTYPE_SYSTEM;
 863	op.dst.u.dma.address = final_wa.dma.address;
 864	op.dst.u.dma.length = AES_BLOCK_SIZE;
 865	op.eom = 1;
 866	op.u.aes.size = 0;
 867	ret = cmd_q->ccp->vdata->perform->aes(&op);
 868	if (ret)
 869		goto e_final_wa;
 870
 871	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 872		/* Put the ciphered tag after the ciphertext. */
 873		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
 874	} else {
 875		/* Does this ciphered tag match the input? */
 876		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
 877					   DMA_BIDIRECTIONAL);
 878		if (ret)
 879			goto e_final_wa;
 880		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
 881		if (ret) {
 882			ccp_dm_free(&tag);
 883			goto e_final_wa;
 884		}
 885
 886		ret = crypto_memneq(tag.address, final_wa.address,
 887				    authsize) ? -EBADMSG : 0;
 888		ccp_dm_free(&tag);
 889	}
 890
 891e_final_wa:
 892	ccp_dm_free(&final_wa);
 893
 894e_dst:
 895	if (ilen > 0 && !in_place)
 896		ccp_free_data(&dst, cmd_q);
 897
 898e_src:
 899	if (ilen > 0)
 900		ccp_free_data(&src, cmd_q);
 901
 902e_aad:
 903	if (aes->aad_len)
 904		ccp_free_data(&aad, cmd_q);
 905
 906e_ctx:
 907	ccp_dm_free(&ctx);
 908
 909e_key:
 910	ccp_dm_free(&key);
 911
 912	return ret;
 913}
 914
 915static noinline_for_stack int
 916ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 917{
 918	struct ccp_aes_engine *aes = &cmd->u.aes;
 919	struct ccp_dm_workarea key, ctx;
 920	struct ccp_data src, dst;
 921	struct ccp_op op;
 922	unsigned int dm_offset;
 923	bool in_place = false;
 924	int ret;
 925
 926	if (!((aes->key_len == AES_KEYSIZE_128) ||
 927	      (aes->key_len == AES_KEYSIZE_192) ||
 928	      (aes->key_len == AES_KEYSIZE_256)))
 929		return -EINVAL;
 930
 931	if (((aes->mode == CCP_AES_MODE_ECB) ||
 932	     (aes->mode == CCP_AES_MODE_CBC)) &&
 933	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 934		return -EINVAL;
 935
 936	if (!aes->key || !aes->src || !aes->dst)
 937		return -EINVAL;
 938
 939	if (aes->mode != CCP_AES_MODE_ECB) {
 940		if (aes->iv_len != AES_BLOCK_SIZE)
 941			return -EINVAL;
 942
 943		if (!aes->iv)
 944			return -EINVAL;
 945	}
 946
 947	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 948	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 949
 950	ret = -EIO;
 951	memset(&op, 0, sizeof(op));
 952	op.cmd_q = cmd_q;
 953	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 954	op.sb_key = cmd_q->sb_key;
 955	op.sb_ctx = cmd_q->sb_ctx;
 956	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 957	op.u.aes.type = aes->type;
 958	op.u.aes.mode = aes->mode;
 959	op.u.aes.action = aes->action;
 960
 961	/* All supported key sizes fit in a single (32-byte) SB entry
 962	 * and must be in little endian format. Use the 256-bit byte
 963	 * swap passthru option to convert from big endian to little
 964	 * endian.
 965	 */
 966	ret = ccp_init_dm_workarea(&key, cmd_q,
 967				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 968				   DMA_TO_DEVICE);
 969	if (ret)
 970		return ret;
 971
 972	dm_offset = CCP_SB_BYTES - aes->key_len;
 973	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 974	if (ret)
 975		goto e_key;
 976	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 977			     CCP_PASSTHRU_BYTESWAP_256BIT);
 978	if (ret) {
 979		cmd->engine_error = cmd_q->cmd_error;
 980		goto e_key;
 981	}
 982
 983	/* The AES context fits in a single (32-byte) SB entry and
 984	 * must be in little endian format. Use the 256-bit byte swap
 985	 * passthru option to convert from big endian to little endian.
 986	 */
 987	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 988				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 989				   DMA_BIDIRECTIONAL);
 990	if (ret)
 991		goto e_key;
 992
 993	if (aes->mode != CCP_AES_MODE_ECB) {
 994		/* Load the AES context - convert to LE */
 995		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 996		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 997		if (ret)
 998			goto e_ctx;
 999		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1000				     CCP_PASSTHRU_BYTESWAP_256BIT);
1001		if (ret) {
1002			cmd->engine_error = cmd_q->cmd_error;
1003			goto e_ctx;
1004		}
1005	}
1006	switch (aes->mode) {
1007	case CCP_AES_MODE_CFB: /* CFB128 only */
1008	case CCP_AES_MODE_CTR:
1009		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
1010		break;
1011	default:
1012		op.u.aes.size = 0;
1013	}
1014
1015	/* Prepare the input and output data workareas. For in-place
1016	 * operations we need to set the dma direction to BIDIRECTIONAL
1017	 * and copy the src workarea to the dst workarea.
1018	 */
1019	if (sg_virt(aes->src) == sg_virt(aes->dst))
1020		in_place = true;
1021
1022	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1023			    AES_BLOCK_SIZE,
1024			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1025	if (ret)
1026		goto e_ctx;
1027
1028	if (in_place) {
1029		dst = src;
1030	} else {
1031		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1032				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1033		if (ret)
1034			goto e_src;
1035	}
1036
1037	/* Send data to the CCP AES engine */
1038	while (src.sg_wa.bytes_left) {
1039		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1040		if (!src.sg_wa.bytes_left) {
1041			op.eom = 1;
1042
1043			/* Since we don't retrieve the AES context in ECB
1044			 * mode we have to wait for the operation to complete
1045			 * on the last piece of data
1046			 */
1047			if (aes->mode == CCP_AES_MODE_ECB)
1048				op.soc = 1;
1049		}
1050
1051		ret = cmd_q->ccp->vdata->perform->aes(&op);
1052		if (ret) {
1053			cmd->engine_error = cmd_q->cmd_error;
1054			goto e_dst;
1055		}
1056
1057		ccp_process_data(&src, &dst, &op);
1058	}
1059
1060	if (aes->mode != CCP_AES_MODE_ECB) {
1061		/* Retrieve the AES context - convert from LE to BE using
1062		 * 32-byte (256-bit) byteswapping
1063		 */
1064		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1065				       CCP_PASSTHRU_BYTESWAP_256BIT);
1066		if (ret) {
1067			cmd->engine_error = cmd_q->cmd_error;
1068			goto e_dst;
1069		}
1070
1071		/* ...but we only need AES_BLOCK_SIZE bytes */
1072		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1073		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1074	}
1075
1076e_dst:
1077	if (!in_place)
1078		ccp_free_data(&dst, cmd_q);
1079
1080e_src:
1081	ccp_free_data(&src, cmd_q);
1082
1083e_ctx:
1084	ccp_dm_free(&ctx);
1085
1086e_key:
1087	ccp_dm_free(&key);
1088
1089	return ret;
1090}
1091
1092static noinline_for_stack int
1093ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1094{
1095	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1096	struct ccp_dm_workarea key, ctx;
1097	struct ccp_data src, dst;
1098	struct ccp_op op;
1099	unsigned int unit_size, dm_offset;
1100	bool in_place = false;
1101	unsigned int sb_count;
1102	enum ccp_aes_type aestype;
1103	int ret;
1104
1105	switch (xts->unit_size) {
1106	case CCP_XTS_AES_UNIT_SIZE_16:
1107		unit_size = 16;
1108		break;
1109	case CCP_XTS_AES_UNIT_SIZE_512:
1110		unit_size = 512;
1111		break;
1112	case CCP_XTS_AES_UNIT_SIZE_1024:
1113		unit_size = 1024;
1114		break;
1115	case CCP_XTS_AES_UNIT_SIZE_2048:
1116		unit_size = 2048;
1117		break;
1118	case CCP_XTS_AES_UNIT_SIZE_4096:
1119		unit_size = 4096;
1120		break;
1121
1122	default:
1123		return -EINVAL;
1124	}
1125
1126	if (xts->key_len == AES_KEYSIZE_128)
1127		aestype = CCP_AES_TYPE_128;
1128	else if (xts->key_len == AES_KEYSIZE_256)
1129		aestype = CCP_AES_TYPE_256;
1130	else
1131		return -EINVAL;
1132
1133	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1134		return -EINVAL;
1135
1136	if (xts->iv_len != AES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1140		return -EINVAL;
1141
1142	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1143	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1144
1145	ret = -EIO;
1146	memset(&op, 0, sizeof(op));
1147	op.cmd_q = cmd_q;
1148	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1149	op.sb_key = cmd_q->sb_key;
1150	op.sb_ctx = cmd_q->sb_ctx;
1151	op.init = 1;
1152	op.u.xts.type = aestype;
1153	op.u.xts.action = xts->action;
1154	op.u.xts.unit_size = xts->unit_size;
1155
1156	/* A version 3 device only supports 128-bit keys, which fits into a
1157	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1158	 * SB entries.
1159	 */
1160	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1161		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1162	else
1163		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1164	ret = ccp_init_dm_workarea(&key, cmd_q,
1165				   sb_count * CCP_SB_BYTES,
1166				   DMA_TO_DEVICE);
1167	if (ret)
1168		return ret;
1169
1170	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1171		/* All supported key sizes must be in little endian format.
1172		 * Use the 256-bit byte swap passthru option to convert from
1173		 * big endian to little endian.
1174		 */
1175		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1176		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1177		if (ret)
1178			goto e_key;
1179		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1180		if (ret)
1181			goto e_key;
1182	} else {
1183		/* Version 5 CCPs use a 512-bit space for the key: each portion
1184		 * occupies 256 bits, or one entire slot, and is zero-padded.
1185		 */
1186		unsigned int pad;
1187
1188		dm_offset = CCP_SB_BYTES;
1189		pad = dm_offset - xts->key_len;
1190		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1191		if (ret)
1192			goto e_key;
1193		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1194				      xts->key_len, xts->key_len);
1195		if (ret)
1196			goto e_key;
1197	}
1198	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1199			     CCP_PASSTHRU_BYTESWAP_256BIT);
1200	if (ret) {
1201		cmd->engine_error = cmd_q->cmd_error;
1202		goto e_key;
1203	}
1204
1205	/* The AES context fits in a single (32-byte) SB entry and
1206	 * for XTS is already in little endian format so no byte swapping
1207	 * is needed.
1208	 */
1209	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1210				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1211				   DMA_BIDIRECTIONAL);
1212	if (ret)
1213		goto e_key;
1214
1215	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1216	if (ret)
1217		goto e_ctx;
1218	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1219			     CCP_PASSTHRU_BYTESWAP_NOOP);
1220	if (ret) {
1221		cmd->engine_error = cmd_q->cmd_error;
1222		goto e_ctx;
1223	}
1224
1225	/* Prepare the input and output data workareas. For in-place
1226	 * operations we need to set the dma direction to BIDIRECTIONAL
1227	 * and copy the src workarea to the dst workarea.
1228	 */
1229	if (sg_virt(xts->src) == sg_virt(xts->dst))
1230		in_place = true;
1231
1232	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1233			    unit_size,
1234			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1235	if (ret)
1236		goto e_ctx;
1237
1238	if (in_place) {
1239		dst = src;
1240	} else {
1241		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1242				    unit_size, DMA_FROM_DEVICE);
1243		if (ret)
1244			goto e_src;
1245	}
1246
1247	/* Send data to the CCP AES engine */
1248	while (src.sg_wa.bytes_left) {
1249		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1250		if (!src.sg_wa.bytes_left)
1251			op.eom = 1;
1252
1253		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1254		if (ret) {
1255			cmd->engine_error = cmd_q->cmd_error;
1256			goto e_dst;
1257		}
1258
1259		ccp_process_data(&src, &dst, &op);
1260	}
1261
1262	/* Retrieve the AES context - convert from LE to BE using
1263	 * 32-byte (256-bit) byteswapping
1264	 */
1265	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1266			       CCP_PASSTHRU_BYTESWAP_256BIT);
1267	if (ret) {
1268		cmd->engine_error = cmd_q->cmd_error;
1269		goto e_dst;
1270	}
1271
1272	/* ...but we only need AES_BLOCK_SIZE bytes */
1273	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1274	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1275
1276e_dst:
1277	if (!in_place)
1278		ccp_free_data(&dst, cmd_q);
1279
1280e_src:
1281	ccp_free_data(&src, cmd_q);
1282
1283e_ctx:
1284	ccp_dm_free(&ctx);
1285
1286e_key:
1287	ccp_dm_free(&key);
1288
1289	return ret;
1290}
1291
1292static noinline_for_stack int
1293ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1294{
1295	struct ccp_des3_engine *des3 = &cmd->u.des3;
1296
1297	struct ccp_dm_workarea key, ctx;
1298	struct ccp_data src, dst;
1299	struct ccp_op op;
1300	unsigned int dm_offset;
1301	unsigned int len_singlekey;
1302	bool in_place = false;
1303	int ret;
1304
1305	/* Error checks */
1306	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1307		return -EINVAL;
1308
1309	if (!cmd_q->ccp->vdata->perform->des3)
1310		return -EINVAL;
1311
1312	if (des3->key_len != DES3_EDE_KEY_SIZE)
1313		return -EINVAL;
1314
1315	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1316		(des3->mode == CCP_DES3_MODE_CBC)) &&
1317		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1318		return -EINVAL;
1319
1320	if (!des3->key || !des3->src || !des3->dst)
1321		return -EINVAL;
1322
1323	if (des3->mode != CCP_DES3_MODE_ECB) {
1324		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1325			return -EINVAL;
1326
1327		if (!des3->iv)
1328			return -EINVAL;
1329	}
1330
 
1331	/* Zero out all the fields of the command desc */
1332	memset(&op, 0, sizeof(op));
1333
1334	/* Set up the Function field */
1335	op.cmd_q = cmd_q;
1336	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1337	op.sb_key = cmd_q->sb_key;
1338
1339	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1340	op.u.des3.type = des3->type;
1341	op.u.des3.mode = des3->mode;
1342	op.u.des3.action = des3->action;
1343
1344	/*
1345	 * All supported key sizes fit in a single (32-byte) KSB entry and
1346	 * (like AES) must be in little endian format. Use the 256-bit byte
1347	 * swap passthru option to convert from big endian to little endian.
1348	 */
1349	ret = ccp_init_dm_workarea(&key, cmd_q,
1350				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1351				   DMA_TO_DEVICE);
1352	if (ret)
1353		return ret;
1354
1355	/*
1356	 * The contents of the key triplet are in the reverse order of what
1357	 * is required by the engine. Copy the 3 pieces individually to put
1358	 * them where they belong.
1359	 */
1360	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1361
1362	len_singlekey = des3->key_len / 3;
1363	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1364			      des3->key, 0, len_singlekey);
1365	if (ret)
1366		goto e_key;
1367	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1368			      des3->key, len_singlekey, len_singlekey);
1369	if (ret)
1370		goto e_key;
1371	ret = ccp_set_dm_area(&key, dm_offset,
1372			      des3->key, 2 * len_singlekey, len_singlekey);
1373	if (ret)
1374		goto e_key;
1375
1376	/* Copy the key to the SB */
1377	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1378			     CCP_PASSTHRU_BYTESWAP_256BIT);
1379	if (ret) {
1380		cmd->engine_error = cmd_q->cmd_error;
1381		goto e_key;
1382	}
1383
1384	/*
1385	 * The DES3 context fits in a single (32-byte) KSB entry and
1386	 * must be in little endian format. Use the 256-bit byte swap
1387	 * passthru option to convert from big endian to little endian.
1388	 */
1389	if (des3->mode != CCP_DES3_MODE_ECB) {
1390		op.sb_ctx = cmd_q->sb_ctx;
1391
1392		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1393					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1394					   DMA_BIDIRECTIONAL);
1395		if (ret)
1396			goto e_key;
1397
1398		/* Load the context into the LSB */
1399		dm_offset = CCP_SB_BYTES - des3->iv_len;
1400		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1401				      des3->iv_len);
1402		if (ret)
1403			goto e_ctx;
1404
1405		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1406				     CCP_PASSTHRU_BYTESWAP_256BIT);
1407		if (ret) {
1408			cmd->engine_error = cmd_q->cmd_error;
1409			goto e_ctx;
1410		}
1411	}
1412
1413	/*
1414	 * Prepare the input and output data workareas. For in-place
1415	 * operations we need to set the dma direction to BIDIRECTIONAL
1416	 * and copy the src workarea to the dst workarea.
1417	 */
1418	if (sg_virt(des3->src) == sg_virt(des3->dst))
1419		in_place = true;
1420
1421	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1422			DES3_EDE_BLOCK_SIZE,
1423			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1424	if (ret)
1425		goto e_ctx;
1426
1427	if (in_place)
1428		dst = src;
1429	else {
1430		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1431				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1432		if (ret)
1433			goto e_src;
1434	}
1435
1436	/* Send data to the CCP DES3 engine */
1437	while (src.sg_wa.bytes_left) {
1438		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1439		if (!src.sg_wa.bytes_left) {
1440			op.eom = 1;
1441
1442			/* Since we don't retrieve the context in ECB mode
1443			 * we have to wait for the operation to complete
1444			 * on the last piece of data
1445			 */
1446			op.soc = 0;
1447		}
1448
1449		ret = cmd_q->ccp->vdata->perform->des3(&op);
1450		if (ret) {
1451			cmd->engine_error = cmd_q->cmd_error;
1452			goto e_dst;
1453		}
1454
1455		ccp_process_data(&src, &dst, &op);
1456	}
1457
1458	if (des3->mode != CCP_DES3_MODE_ECB) {
1459		/* Retrieve the context and make BE */
1460		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1461				       CCP_PASSTHRU_BYTESWAP_256BIT);
1462		if (ret) {
1463			cmd->engine_error = cmd_q->cmd_error;
1464			goto e_dst;
1465		}
1466
1467		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1468		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1469				DES3_EDE_BLOCK_SIZE);
1470	}
1471e_dst:
1472	if (!in_place)
1473		ccp_free_data(&dst, cmd_q);
1474
1475e_src:
1476	ccp_free_data(&src, cmd_q);
1477
1478e_ctx:
1479	if (des3->mode != CCP_DES3_MODE_ECB)
1480		ccp_dm_free(&ctx);
1481
1482e_key:
1483	ccp_dm_free(&key);
1484
1485	return ret;
1486}
1487
1488static noinline_for_stack int
1489ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1490{
1491	struct ccp_sha_engine *sha = &cmd->u.sha;
1492	struct ccp_dm_workarea ctx;
1493	struct ccp_data src;
1494	struct ccp_op op;
1495	unsigned int ioffset, ooffset;
1496	unsigned int digest_size;
1497	int sb_count;
1498	const void *init;
1499	u64 block_size;
1500	int ctx_size;
1501	int ret;
1502
1503	switch (sha->type) {
1504	case CCP_SHA_TYPE_1:
1505		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1506			return -EINVAL;
1507		block_size = SHA1_BLOCK_SIZE;
1508		break;
1509	case CCP_SHA_TYPE_224:
1510		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1511			return -EINVAL;
1512		block_size = SHA224_BLOCK_SIZE;
1513		break;
1514	case CCP_SHA_TYPE_256:
1515		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1516			return -EINVAL;
1517		block_size = SHA256_BLOCK_SIZE;
1518		break;
1519	case CCP_SHA_TYPE_384:
1520		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1521		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1522			return -EINVAL;
1523		block_size = SHA384_BLOCK_SIZE;
1524		break;
1525	case CCP_SHA_TYPE_512:
1526		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1527		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1528			return -EINVAL;
1529		block_size = SHA512_BLOCK_SIZE;
1530		break;
1531	default:
1532		return -EINVAL;
1533	}
1534
1535	if (!sha->ctx)
1536		return -EINVAL;
1537
1538	if (!sha->final && (sha->src_len & (block_size - 1)))
1539		return -EINVAL;
1540
1541	/* The version 3 device can't handle zero-length input */
1542	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1543
1544		if (!sha->src_len) {
1545			unsigned int digest_len;
1546			const u8 *sha_zero;
1547
1548			/* Not final, just return */
1549			if (!sha->final)
1550				return 0;
1551
1552			/* CCP can't do a zero length sha operation so the
1553			 * caller must buffer the data.
1554			 */
1555			if (sha->msg_bits)
1556				return -EINVAL;
1557
1558			/* The CCP cannot perform zero-length sha operations
1559			 * so the caller is required to buffer data for the
1560			 * final operation. However, a sha operation for a
1561			 * message with a total length of zero is valid so
1562			 * known values are required to supply the result.
1563			 */
1564			switch (sha->type) {
1565			case CCP_SHA_TYPE_1:
1566				sha_zero = sha1_zero_message_hash;
1567				digest_len = SHA1_DIGEST_SIZE;
1568				break;
1569			case CCP_SHA_TYPE_224:
1570				sha_zero = sha224_zero_message_hash;
1571				digest_len = SHA224_DIGEST_SIZE;
1572				break;
1573			case CCP_SHA_TYPE_256:
1574				sha_zero = sha256_zero_message_hash;
1575				digest_len = SHA256_DIGEST_SIZE;
1576				break;
1577			default:
1578				return -EINVAL;
1579			}
1580
1581			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1582						 digest_len, 1);
1583
1584			return 0;
1585		}
1586	}
1587
1588	/* Set variables used throughout */
1589	switch (sha->type) {
1590	case CCP_SHA_TYPE_1:
1591		digest_size = SHA1_DIGEST_SIZE;
1592		init = (void *) ccp_sha1_init;
1593		ctx_size = SHA1_DIGEST_SIZE;
1594		sb_count = 1;
1595		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1596			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1597		else
1598			ooffset = ioffset = 0;
1599		break;
1600	case CCP_SHA_TYPE_224:
1601		digest_size = SHA224_DIGEST_SIZE;
1602		init = (void *) ccp_sha224_init;
1603		ctx_size = SHA256_DIGEST_SIZE;
1604		sb_count = 1;
1605		ioffset = 0;
1606		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1607			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1608		else
1609			ooffset = 0;
1610		break;
1611	case CCP_SHA_TYPE_256:
1612		digest_size = SHA256_DIGEST_SIZE;
1613		init = (void *) ccp_sha256_init;
1614		ctx_size = SHA256_DIGEST_SIZE;
1615		sb_count = 1;
1616		ooffset = ioffset = 0;
1617		break;
1618	case CCP_SHA_TYPE_384:
1619		digest_size = SHA384_DIGEST_SIZE;
1620		init = (void *) ccp_sha384_init;
1621		ctx_size = SHA512_DIGEST_SIZE;
1622		sb_count = 2;
1623		ioffset = 0;
1624		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1625		break;
1626	case CCP_SHA_TYPE_512:
1627		digest_size = SHA512_DIGEST_SIZE;
1628		init = (void *) ccp_sha512_init;
1629		ctx_size = SHA512_DIGEST_SIZE;
1630		sb_count = 2;
1631		ooffset = ioffset = 0;
1632		break;
1633	default:
1634		ret = -EINVAL;
1635		goto e_data;
1636	}
1637
1638	/* For zero-length plaintext the src pointer is ignored;
1639	 * otherwise both parts must be valid
1640	 */
1641	if (sha->src_len && !sha->src)
1642		return -EINVAL;
1643
1644	memset(&op, 0, sizeof(op));
1645	op.cmd_q = cmd_q;
1646	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1647	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1648	op.u.sha.type = sha->type;
1649	op.u.sha.msg_bits = sha->msg_bits;
1650
1651	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1652	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1653	 * first slot, and the left half in the second. Each portion must then
1654	 * be in little endian format: use the 256-bit byte swap option.
1655	 */
1656	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1657				   DMA_BIDIRECTIONAL);
1658	if (ret)
1659		return ret;
1660	if (sha->first) {
1661		switch (sha->type) {
1662		case CCP_SHA_TYPE_1:
1663		case CCP_SHA_TYPE_224:
1664		case CCP_SHA_TYPE_256:
1665			memcpy(ctx.address + ioffset, init, ctx_size);
1666			break;
1667		case CCP_SHA_TYPE_384:
1668		case CCP_SHA_TYPE_512:
1669			memcpy(ctx.address + ctx_size / 2, init,
1670			       ctx_size / 2);
1671			memcpy(ctx.address, init + ctx_size / 2,
1672			       ctx_size / 2);
1673			break;
1674		default:
1675			ret = -EINVAL;
1676			goto e_ctx;
1677		}
1678	} else {
1679		/* Restore the context */
1680		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1681				      sb_count * CCP_SB_BYTES);
1682		if (ret)
1683			goto e_ctx;
1684	}
1685
1686	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1687			     CCP_PASSTHRU_BYTESWAP_256BIT);
1688	if (ret) {
1689		cmd->engine_error = cmd_q->cmd_error;
1690		goto e_ctx;
1691	}
1692
1693	if (sha->src) {
1694		/* Send data to the CCP SHA engine; block_size is set above */
1695		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1696				    block_size, DMA_TO_DEVICE);
1697		if (ret)
1698			goto e_ctx;
1699
1700		while (src.sg_wa.bytes_left) {
1701			ccp_prepare_data(&src, NULL, &op, block_size, false);
1702			if (sha->final && !src.sg_wa.bytes_left)
1703				op.eom = 1;
1704
1705			ret = cmd_q->ccp->vdata->perform->sha(&op);
1706			if (ret) {
1707				cmd->engine_error = cmd_q->cmd_error;
1708				goto e_data;
1709			}
1710
1711			ccp_process_data(&src, NULL, &op);
1712		}
1713	} else {
1714		op.eom = 1;
1715		ret = cmd_q->ccp->vdata->perform->sha(&op);
1716		if (ret) {
1717			cmd->engine_error = cmd_q->cmd_error;
1718			goto e_data;
1719		}
1720	}
1721
1722	/* Retrieve the SHA context - convert from LE to BE using
1723	 * 32-byte (256-bit) byteswapping to BE
1724	 */
1725	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1726			       CCP_PASSTHRU_BYTESWAP_256BIT);
1727	if (ret) {
1728		cmd->engine_error = cmd_q->cmd_error;
1729		goto e_data;
1730	}
1731
1732	if (sha->final) {
1733		/* Finishing up, so get the digest */
1734		switch (sha->type) {
1735		case CCP_SHA_TYPE_1:
1736		case CCP_SHA_TYPE_224:
1737		case CCP_SHA_TYPE_256:
1738			ccp_get_dm_area(&ctx, ooffset,
1739					sha->ctx, 0,
1740					digest_size);
1741			break;
1742		case CCP_SHA_TYPE_384:
1743		case CCP_SHA_TYPE_512:
1744			ccp_get_dm_area(&ctx, 0,
1745					sha->ctx, LSB_ITEM_SIZE - ooffset,
1746					LSB_ITEM_SIZE);
1747			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1748					sha->ctx, 0,
1749					LSB_ITEM_SIZE - ooffset);
1750			break;
1751		default:
1752			ret = -EINVAL;
1753			goto e_data;
1754		}
1755	} else {
1756		/* Stash the context */
1757		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1758				sb_count * CCP_SB_BYTES);
1759	}
1760
1761	if (sha->final && sha->opad) {
1762		/* HMAC operation, recursively perform final SHA */
1763		struct ccp_cmd hmac_cmd;
1764		struct scatterlist sg;
1765		u8 *hmac_buf;
1766
1767		if (sha->opad_len != block_size) {
1768			ret = -EINVAL;
1769			goto e_data;
1770		}
1771
1772		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1773		if (!hmac_buf) {
1774			ret = -ENOMEM;
1775			goto e_data;
1776		}
1777		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1778
1779		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1780		switch (sha->type) {
1781		case CCP_SHA_TYPE_1:
1782		case CCP_SHA_TYPE_224:
1783		case CCP_SHA_TYPE_256:
1784			memcpy(hmac_buf + block_size,
1785			       ctx.address + ooffset,
1786			       digest_size);
1787			break;
1788		case CCP_SHA_TYPE_384:
1789		case CCP_SHA_TYPE_512:
1790			memcpy(hmac_buf + block_size,
1791			       ctx.address + LSB_ITEM_SIZE + ooffset,
1792			       LSB_ITEM_SIZE);
1793			memcpy(hmac_buf + block_size +
1794			       (LSB_ITEM_SIZE - ooffset),
1795			       ctx.address,
1796			       LSB_ITEM_SIZE);
1797			break;
1798		default:
1799			kfree(hmac_buf);
1800			ret = -EINVAL;
1801			goto e_data;
1802		}
1803
1804		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1805		hmac_cmd.engine = CCP_ENGINE_SHA;
1806		hmac_cmd.u.sha.type = sha->type;
1807		hmac_cmd.u.sha.ctx = sha->ctx;
1808		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1809		hmac_cmd.u.sha.src = &sg;
1810		hmac_cmd.u.sha.src_len = block_size + digest_size;
1811		hmac_cmd.u.sha.opad = NULL;
1812		hmac_cmd.u.sha.opad_len = 0;
1813		hmac_cmd.u.sha.first = 1;
1814		hmac_cmd.u.sha.final = 1;
1815		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1816
1817		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1818		if (ret)
1819			cmd->engine_error = hmac_cmd.engine_error;
1820
1821		kfree(hmac_buf);
1822	}
1823
1824e_data:
1825	if (sha->src)
1826		ccp_free_data(&src, cmd_q);
1827
1828e_ctx:
1829	ccp_dm_free(&ctx);
1830
1831	return ret;
1832}
1833
1834static noinline_for_stack int
1835ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1836{
1837	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1838	struct ccp_dm_workarea exp, src, dst;
1839	struct ccp_op op;
1840	unsigned int sb_count, i_len, o_len;
1841	int ret;
1842
1843	/* Check against the maximum allowable size, in bits */
1844	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1845		return -EINVAL;
1846
1847	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1848		return -EINVAL;
1849
1850	memset(&op, 0, sizeof(op));
1851	op.cmd_q = cmd_q;
1852	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1853
1854	/* The RSA modulus must precede the message being acted upon, so
1855	 * it must be copied to a DMA area where the message and the
1856	 * modulus can be concatenated.  Therefore the input buffer
1857	 * length required is twice the output buffer length (which
1858	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1859	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1860	 * required.
1861	 */
1862	o_len = 32 * ((rsa->key_size + 255) / 256);
1863	i_len = o_len * 2;
1864
1865	sb_count = 0;
1866	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1867		/* sb_count is the number of storage block slots required
1868		 * for the modulus.
1869		 */
1870		sb_count = o_len / CCP_SB_BYTES;
1871		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1872								sb_count);
1873		if (!op.sb_key)
1874			return -EIO;
1875	} else {
1876		/* A version 5 device allows a modulus size that will not fit
1877		 * in the LSB, so the command will transfer it from memory.
1878		 * Set the sb key to the default, even though it's not used.
1879		 */
1880		op.sb_key = cmd_q->sb_key;
1881	}
1882
1883	/* The RSA exponent must be in little endian format. Reverse its
1884	 * byte order.
1885	 */
1886	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1887	if (ret)
1888		goto e_sb;
1889
1890	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1891	if (ret)
1892		goto e_exp;
1893
1894	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1895		/* Copy the exponent to the local storage block, using
1896		 * as many 32-byte blocks as were allocated above. It's
1897		 * already little endian, so no further change is required.
1898		 */
1899		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1900				     CCP_PASSTHRU_BYTESWAP_NOOP);
1901		if (ret) {
1902			cmd->engine_error = cmd_q->cmd_error;
1903			goto e_exp;
1904		}
1905	} else {
1906		/* The exponent can be retrieved from memory via DMA. */
1907		op.exp.u.dma.address = exp.dma.address;
1908		op.exp.u.dma.offset = 0;
1909	}
1910
1911	/* Concatenate the modulus and the message. Both the modulus and
1912	 * the operands must be in little endian format.  Since the input
1913	 * is in big endian format it must be converted.
1914	 */
1915	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1916	if (ret)
1917		goto e_exp;
1918
1919	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1920	if (ret)
1921		goto e_src;
1922	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1923	if (ret)
1924		goto e_src;
1925
1926	/* Prepare the output area for the operation */
1927	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1928	if (ret)
1929		goto e_src;
1930
1931	op.soc = 1;
1932	op.src.u.dma.address = src.dma.address;
1933	op.src.u.dma.offset = 0;
1934	op.src.u.dma.length = i_len;
1935	op.dst.u.dma.address = dst.dma.address;
1936	op.dst.u.dma.offset = 0;
1937	op.dst.u.dma.length = o_len;
1938
1939	op.u.rsa.mod_size = rsa->key_size;
1940	op.u.rsa.input_len = i_len;
1941
1942	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1943	if (ret) {
1944		cmd->engine_error = cmd_q->cmd_error;
1945		goto e_dst;
1946	}
1947
1948	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1949
1950e_dst:
1951	ccp_dm_free(&dst);
1952
1953e_src:
1954	ccp_dm_free(&src);
1955
1956e_exp:
1957	ccp_dm_free(&exp);
1958
1959e_sb:
1960	if (sb_count)
1961		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1962
1963	return ret;
1964}
1965
1966static noinline_for_stack int
1967ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1968{
1969	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1970	struct ccp_dm_workarea mask;
1971	struct ccp_data src, dst;
1972	struct ccp_op op;
1973	bool in_place = false;
1974	unsigned int i;
1975	int ret = 0;
1976
1977	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1978		return -EINVAL;
1979
1980	if (!pt->src || !pt->dst)
1981		return -EINVAL;
1982
1983	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1984		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1985			return -EINVAL;
1986		if (!pt->mask)
1987			return -EINVAL;
1988	}
1989
1990	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1991
1992	memset(&op, 0, sizeof(op));
1993	op.cmd_q = cmd_q;
1994	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1995
1996	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1997		/* Load the mask */
1998		op.sb_key = cmd_q->sb_key;
1999
2000		ret = ccp_init_dm_workarea(&mask, cmd_q,
2001					   CCP_PASSTHRU_SB_COUNT *
2002					   CCP_SB_BYTES,
2003					   DMA_TO_DEVICE);
2004		if (ret)
2005			return ret;
2006
2007		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
2008		if (ret)
2009			goto e_mask;
2010		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2011				     CCP_PASSTHRU_BYTESWAP_NOOP);
2012		if (ret) {
2013			cmd->engine_error = cmd_q->cmd_error;
2014			goto e_mask;
2015		}
2016	}
2017
2018	/* Prepare the input and output data workareas. For in-place
2019	 * operations we need to set the dma direction to BIDIRECTIONAL
2020	 * and copy the src workarea to the dst workarea.
2021	 */
2022	if (sg_virt(pt->src) == sg_virt(pt->dst))
2023		in_place = true;
2024
2025	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2026			    CCP_PASSTHRU_MASKSIZE,
2027			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2028	if (ret)
2029		goto e_mask;
2030
2031	if (in_place) {
2032		dst = src;
2033	} else {
2034		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2035				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2036		if (ret)
2037			goto e_src;
2038	}
2039
2040	/* Send data to the CCP Passthru engine
2041	 *   Because the CCP engine works on a single source and destination
2042	 *   dma address at a time, each entry in the source scatterlist
2043	 *   (after the dma_map_sg call) must be less than or equal to the
2044	 *   (remaining) length in the destination scatterlist entry and the
2045	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2046	 */
2047	dst.sg_wa.sg_used = 0;
2048	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2049		if (!dst.sg_wa.sg ||
2050		    (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
2051			ret = -EINVAL;
2052			goto e_dst;
2053		}
2054
2055		if (i == src.sg_wa.dma_count) {
2056			op.eom = 1;
2057			op.soc = 1;
2058		}
2059
2060		op.src.type = CCP_MEMTYPE_SYSTEM;
2061		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2062		op.src.u.dma.offset = 0;
2063		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2064
2065		op.dst.type = CCP_MEMTYPE_SYSTEM;
2066		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2067		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2068		op.dst.u.dma.length = op.src.u.dma.length;
2069
2070		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2071		if (ret) {
2072			cmd->engine_error = cmd_q->cmd_error;
2073			goto e_dst;
2074		}
2075
2076		dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
2077		if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
2078			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2079			dst.sg_wa.sg_used = 0;
2080		}
2081		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2082	}
2083
2084e_dst:
2085	if (!in_place)
2086		ccp_free_data(&dst, cmd_q);
2087
2088e_src:
2089	ccp_free_data(&src, cmd_q);
2090
2091e_mask:
2092	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2093		ccp_dm_free(&mask);
2094
2095	return ret;
2096}
2097
2098static noinline_for_stack int
2099ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2100				      struct ccp_cmd *cmd)
2101{
2102	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2103	struct ccp_dm_workarea mask;
2104	struct ccp_op op;
2105	int ret;
2106
2107	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2108		return -EINVAL;
2109
2110	if (!pt->src_dma || !pt->dst_dma)
2111		return -EINVAL;
2112
2113	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2114		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2115			return -EINVAL;
2116		if (!pt->mask)
2117			return -EINVAL;
2118	}
2119
2120	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2121
2122	memset(&op, 0, sizeof(op));
2123	op.cmd_q = cmd_q;
2124	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2125
2126	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2127		/* Load the mask */
2128		op.sb_key = cmd_q->sb_key;
2129
2130		mask.length = pt->mask_len;
2131		mask.dma.address = pt->mask;
2132		mask.dma.length = pt->mask_len;
2133
2134		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2135				     CCP_PASSTHRU_BYTESWAP_NOOP);
2136		if (ret) {
2137			cmd->engine_error = cmd_q->cmd_error;
2138			return ret;
2139		}
2140	}
2141
2142	/* Send data to the CCP Passthru engine */
2143	op.eom = 1;
2144	op.soc = 1;
2145
2146	op.src.type = CCP_MEMTYPE_SYSTEM;
2147	op.src.u.dma.address = pt->src_dma;
2148	op.src.u.dma.offset = 0;
2149	op.src.u.dma.length = pt->src_len;
2150
2151	op.dst.type = CCP_MEMTYPE_SYSTEM;
2152	op.dst.u.dma.address = pt->dst_dma;
2153	op.dst.u.dma.offset = 0;
2154	op.dst.u.dma.length = pt->src_len;
2155
2156	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2157	if (ret)
2158		cmd->engine_error = cmd_q->cmd_error;
2159
2160	return ret;
2161}
2162
2163static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2164{
2165	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2166	struct ccp_dm_workarea src, dst;
2167	struct ccp_op op;
2168	int ret;
2169	u8 *save;
2170
2171	if (!ecc->u.mm.operand_1 ||
2172	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2173		return -EINVAL;
2174
2175	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2176		if (!ecc->u.mm.operand_2 ||
2177		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2178			return -EINVAL;
2179
2180	if (!ecc->u.mm.result ||
2181	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2182		return -EINVAL;
2183
2184	memset(&op, 0, sizeof(op));
2185	op.cmd_q = cmd_q;
2186	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2187
2188	/* Concatenate the modulus and the operands. Both the modulus and
2189	 * the operands must be in little endian format.  Since the input
2190	 * is in big endian format it must be converted and placed in a
2191	 * fixed length buffer.
2192	 */
2193	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2194				   DMA_TO_DEVICE);
2195	if (ret)
2196		return ret;
2197
2198	/* Save the workarea address since it is updated in order to perform
2199	 * the concatenation
2200	 */
2201	save = src.address;
2202
2203	/* Copy the ECC modulus */
2204	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2205	if (ret)
2206		goto e_src;
2207	src.address += CCP_ECC_OPERAND_SIZE;
2208
2209	/* Copy the first operand */
2210	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2211				      ecc->u.mm.operand_1_len);
2212	if (ret)
2213		goto e_src;
2214	src.address += CCP_ECC_OPERAND_SIZE;
2215
2216	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2217		/* Copy the second operand */
2218		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2219					      ecc->u.mm.operand_2_len);
2220		if (ret)
2221			goto e_src;
2222		src.address += CCP_ECC_OPERAND_SIZE;
2223	}
2224
2225	/* Restore the workarea address */
2226	src.address = save;
2227
2228	/* Prepare the output area for the operation */
2229	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2230				   DMA_FROM_DEVICE);
2231	if (ret)
2232		goto e_src;
2233
2234	op.soc = 1;
2235	op.src.u.dma.address = src.dma.address;
2236	op.src.u.dma.offset = 0;
2237	op.src.u.dma.length = src.length;
2238	op.dst.u.dma.address = dst.dma.address;
2239	op.dst.u.dma.offset = 0;
2240	op.dst.u.dma.length = dst.length;
2241
2242	op.u.ecc.function = cmd->u.ecc.function;
2243
2244	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2245	if (ret) {
2246		cmd->engine_error = cmd_q->cmd_error;
2247		goto e_dst;
2248	}
2249
2250	ecc->ecc_result = le16_to_cpup(
2251		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2252	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2253		ret = -EIO;
2254		goto e_dst;
2255	}
2256
2257	/* Save the ECC result */
2258	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2259				CCP_ECC_MODULUS_BYTES);
2260
2261e_dst:
2262	ccp_dm_free(&dst);
2263
2264e_src:
2265	ccp_dm_free(&src);
2266
2267	return ret;
2268}
2269
2270static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2271{
2272	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2273	struct ccp_dm_workarea src, dst;
2274	struct ccp_op op;
2275	int ret;
2276	u8 *save;
2277
2278	if (!ecc->u.pm.point_1.x ||
2279	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2280	    !ecc->u.pm.point_1.y ||
2281	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2282		return -EINVAL;
2283
2284	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2285		if (!ecc->u.pm.point_2.x ||
2286		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2287		    !ecc->u.pm.point_2.y ||
2288		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2289			return -EINVAL;
2290	} else {
2291		if (!ecc->u.pm.domain_a ||
2292		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2293			return -EINVAL;
2294
2295		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2296			if (!ecc->u.pm.scalar ||
2297			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2298				return -EINVAL;
2299	}
2300
2301	if (!ecc->u.pm.result.x ||
2302	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2303	    !ecc->u.pm.result.y ||
2304	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2305		return -EINVAL;
2306
2307	memset(&op, 0, sizeof(op));
2308	op.cmd_q = cmd_q;
2309	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2310
2311	/* Concatenate the modulus and the operands. Both the modulus and
2312	 * the operands must be in little endian format.  Since the input
2313	 * is in big endian format it must be converted and placed in a
2314	 * fixed length buffer.
2315	 */
2316	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2317				   DMA_TO_DEVICE);
2318	if (ret)
2319		return ret;
2320
2321	/* Save the workarea address since it is updated in order to perform
2322	 * the concatenation
2323	 */
2324	save = src.address;
2325
2326	/* Copy the ECC modulus */
2327	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2328	if (ret)
2329		goto e_src;
2330	src.address += CCP_ECC_OPERAND_SIZE;
2331
2332	/* Copy the first point X and Y coordinate */
2333	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2334				      ecc->u.pm.point_1.x_len);
2335	if (ret)
2336		goto e_src;
2337	src.address += CCP_ECC_OPERAND_SIZE;
2338	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2339				      ecc->u.pm.point_1.y_len);
2340	if (ret)
2341		goto e_src;
2342	src.address += CCP_ECC_OPERAND_SIZE;
2343
2344	/* Set the first point Z coordinate to 1 */
2345	*src.address = 0x01;
2346	src.address += CCP_ECC_OPERAND_SIZE;
2347
2348	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2349		/* Copy the second point X and Y coordinate */
2350		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2351					      ecc->u.pm.point_2.x_len);
2352		if (ret)
2353			goto e_src;
2354		src.address += CCP_ECC_OPERAND_SIZE;
2355		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2356					      ecc->u.pm.point_2.y_len);
2357		if (ret)
2358			goto e_src;
2359		src.address += CCP_ECC_OPERAND_SIZE;
2360
2361		/* Set the second point Z coordinate to 1 */
2362		*src.address = 0x01;
2363		src.address += CCP_ECC_OPERAND_SIZE;
2364	} else {
2365		/* Copy the Domain "a" parameter */
2366		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2367					      ecc->u.pm.domain_a_len);
2368		if (ret)
2369			goto e_src;
2370		src.address += CCP_ECC_OPERAND_SIZE;
2371
2372		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2373			/* Copy the scalar value */
2374			ret = ccp_reverse_set_dm_area(&src, 0,
2375						      ecc->u.pm.scalar, 0,
2376						      ecc->u.pm.scalar_len);
2377			if (ret)
2378				goto e_src;
2379			src.address += CCP_ECC_OPERAND_SIZE;
2380		}
2381	}
2382
2383	/* Restore the workarea address */
2384	src.address = save;
2385
2386	/* Prepare the output area for the operation */
2387	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2388				   DMA_FROM_DEVICE);
2389	if (ret)
2390		goto e_src;
2391
2392	op.soc = 1;
2393	op.src.u.dma.address = src.dma.address;
2394	op.src.u.dma.offset = 0;
2395	op.src.u.dma.length = src.length;
2396	op.dst.u.dma.address = dst.dma.address;
2397	op.dst.u.dma.offset = 0;
2398	op.dst.u.dma.length = dst.length;
2399
2400	op.u.ecc.function = cmd->u.ecc.function;
2401
2402	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2403	if (ret) {
2404		cmd->engine_error = cmd_q->cmd_error;
2405		goto e_dst;
2406	}
2407
2408	ecc->ecc_result = le16_to_cpup(
2409		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2410	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2411		ret = -EIO;
2412		goto e_dst;
2413	}
2414
2415	/* Save the workarea address since it is updated as we walk through
2416	 * to copy the point math result
2417	 */
2418	save = dst.address;
2419
2420	/* Save the ECC result X and Y coordinates */
2421	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2422				CCP_ECC_MODULUS_BYTES);
2423	dst.address += CCP_ECC_OUTPUT_SIZE;
2424	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2425				CCP_ECC_MODULUS_BYTES);
 
2426
2427	/* Restore the workarea address */
2428	dst.address = save;
2429
2430e_dst:
2431	ccp_dm_free(&dst);
2432
2433e_src:
2434	ccp_dm_free(&src);
2435
2436	return ret;
2437}
2438
2439static noinline_for_stack int
2440ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2441{
2442	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2443
2444	ecc->ecc_result = 0;
2445
2446	if (!ecc->mod ||
2447	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2448		return -EINVAL;
2449
2450	switch (ecc->function) {
2451	case CCP_ECC_FUNCTION_MMUL_384BIT:
2452	case CCP_ECC_FUNCTION_MADD_384BIT:
2453	case CCP_ECC_FUNCTION_MINV_384BIT:
2454		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2455
2456	case CCP_ECC_FUNCTION_PADD_384BIT:
2457	case CCP_ECC_FUNCTION_PMUL_384BIT:
2458	case CCP_ECC_FUNCTION_PDBL_384BIT:
2459		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2460
2461	default:
2462		return -EINVAL;
2463	}
2464}
2465
2466int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2467{
2468	int ret;
2469
2470	cmd->engine_error = 0;
2471	cmd_q->cmd_error = 0;
2472	cmd_q->int_rcvd = 0;
2473	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2474
2475	switch (cmd->engine) {
2476	case CCP_ENGINE_AES:
2477		switch (cmd->u.aes.mode) {
2478		case CCP_AES_MODE_CMAC:
2479			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2480			break;
2481		case CCP_AES_MODE_GCM:
2482			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2483			break;
2484		default:
2485			ret = ccp_run_aes_cmd(cmd_q, cmd);
2486			break;
2487		}
2488		break;
2489	case CCP_ENGINE_XTS_AES_128:
2490		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2491		break;
2492	case CCP_ENGINE_DES3:
2493		ret = ccp_run_des3_cmd(cmd_q, cmd);
2494		break;
2495	case CCP_ENGINE_SHA:
2496		ret = ccp_run_sha_cmd(cmd_q, cmd);
2497		break;
2498	case CCP_ENGINE_RSA:
2499		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2500		break;
2501	case CCP_ENGINE_PASSTHRU:
2502		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2503			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2504		else
2505			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2506		break;
2507	case CCP_ENGINE_ECC:
2508		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2509		break;
2510	default:
2511		ret = -EINVAL;
2512	}
2513
2514	return ret;
2515}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) driver
   4 *
   5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 * Author: Gary R Hook <gary.hook@amd.com>
   9 */
  10
 
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/interrupt.h>
  14#include <crypto/scatterwalk.h>
  15#include <crypto/des.h>
  16#include <linux/ccp.h>
  17
  18#include "ccp-dev.h"
  19
  20/* SHA initial context values */
  21static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  22	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  23	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  24	cpu_to_be32(SHA1_H4),
  25};
  26
  27static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  28	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  29	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  30	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  31	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  32};
  33
  34static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  35	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  36	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  37	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  38	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  39};
  40
  41static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  42	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  43	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  44	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  45	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  46};
  47
  48static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  49	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  50	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  51	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  52	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  53};
  54
  55#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  56					ccp_gen_jobid(ccp) : 0)
  57
  58static u32 ccp_gen_jobid(struct ccp_device *ccp)
  59{
  60	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  61}
  62
  63static void ccp_sg_free(struct ccp_sg_workarea *wa)
  64{
  65	if (wa->dma_count)
  66		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
  67
  68	wa->dma_count = 0;
  69}
  70
  71static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  72				struct scatterlist *sg, u64 len,
  73				enum dma_data_direction dma_dir)
  74{
  75	memset(wa, 0, sizeof(*wa));
  76
  77	wa->sg = sg;
  78	if (!sg)
  79		return 0;
  80
  81	wa->nents = sg_nents_for_len(sg, len);
  82	if (wa->nents < 0)
  83		return wa->nents;
  84
  85	wa->bytes_left = len;
  86	wa->sg_used = 0;
  87
  88	if (len == 0)
  89		return 0;
  90
  91	if (dma_dir == DMA_NONE)
  92		return 0;
  93
  94	wa->dma_sg = sg;
 
  95	wa->dma_dev = dev;
  96	wa->dma_dir = dma_dir;
  97	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
  98	if (!wa->dma_count)
  99		return -ENOMEM;
 100
 101	return 0;
 102}
 103
 104static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 105{
 106	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 
 107
 108	if (!wa->sg)
 109		return;
 110
 111	wa->sg_used += nbytes;
 112	wa->bytes_left -= nbytes;
 113	if (wa->sg_used == wa->sg->length) {
 114		wa->sg = sg_next(wa->sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 115		wa->sg_used = 0;
 116	}
 117}
 118
 119static void ccp_dm_free(struct ccp_dm_workarea *wa)
 120{
 121	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 122		if (wa->address)
 123			dma_pool_free(wa->dma_pool, wa->address,
 124				      wa->dma.address);
 125	} else {
 126		if (wa->dma.address)
 127			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 128					 wa->dma.dir);
 129		kfree(wa->address);
 130	}
 131
 132	wa->address = NULL;
 133	wa->dma.address = 0;
 134}
 135
 136static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 137				struct ccp_cmd_queue *cmd_q,
 138				unsigned int len,
 139				enum dma_data_direction dir)
 140{
 141	memset(wa, 0, sizeof(*wa));
 142
 143	if (!len)
 144		return 0;
 145
 146	wa->dev = cmd_q->ccp->dev;
 147	wa->length = len;
 148
 149	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 150		wa->dma_pool = cmd_q->dma_pool;
 151
 152		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
 153					     &wa->dma.address);
 154		if (!wa->address)
 155			return -ENOMEM;
 156
 157		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 158
 159	} else {
 160		wa->address = kzalloc(len, GFP_KERNEL);
 161		if (!wa->address)
 162			return -ENOMEM;
 163
 164		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 165						 dir);
 166		if (dma_mapping_error(wa->dev, wa->dma.address))
 
 
 167			return -ENOMEM;
 
 168
 169		wa->dma.length = len;
 170	}
 171	wa->dma.dir = dir;
 172
 173	return 0;
 174}
 175
 176static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 177			   struct scatterlist *sg, unsigned int sg_offset,
 178			   unsigned int len)
 179{
 180	WARN_ON(!wa->address);
 181
 182	if (len > (wa->length - wa_offset))
 183		return -EINVAL;
 184
 185	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 186				 0);
 187	return 0;
 188}
 189
 190static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 191			    struct scatterlist *sg, unsigned int sg_offset,
 192			    unsigned int len)
 193{
 194	WARN_ON(!wa->address);
 195
 196	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 197				 1);
 198}
 199
 200static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 201				   unsigned int wa_offset,
 202				   struct scatterlist *sg,
 203				   unsigned int sg_offset,
 204				   unsigned int len)
 205{
 206	u8 *p, *q;
 207	int	rc;
 208
 209	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 210	if (rc)
 211		return rc;
 212
 213	p = wa->address + wa_offset;
 214	q = p + len - 1;
 215	while (p < q) {
 216		*p = *p ^ *q;
 217		*q = *p ^ *q;
 218		*p = *p ^ *q;
 219		p++;
 220		q--;
 221	}
 222	return 0;
 223}
 224
 225static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 226				    unsigned int wa_offset,
 227				    struct scatterlist *sg,
 228				    unsigned int sg_offset,
 229				    unsigned int len)
 230{
 231	u8 *p, *q;
 232
 233	p = wa->address + wa_offset;
 234	q = p + len - 1;
 235	while (p < q) {
 236		*p = *p ^ *q;
 237		*q = *p ^ *q;
 238		*p = *p ^ *q;
 239		p++;
 240		q--;
 241	}
 242
 243	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 244}
 245
 246static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 247{
 248	ccp_dm_free(&data->dm_wa);
 249	ccp_sg_free(&data->sg_wa);
 250}
 251
 252static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 253			 struct scatterlist *sg, u64 sg_len,
 254			 unsigned int dm_len,
 255			 enum dma_data_direction dir)
 256{
 257	int ret;
 258
 259	memset(data, 0, sizeof(*data));
 260
 261	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 262				   dir);
 263	if (ret)
 264		goto e_err;
 265
 266	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 267	if (ret)
 268		goto e_err;
 269
 270	return 0;
 271
 272e_err:
 273	ccp_free_data(data, cmd_q);
 274
 275	return ret;
 276}
 277
 278static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 279{
 280	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 281	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 282	unsigned int buf_count, nbytes;
 283
 284	/* Clear the buffer if setting it */
 285	if (!from)
 286		memset(dm_wa->address, 0, dm_wa->length);
 287
 288	if (!sg_wa->sg)
 289		return 0;
 290
 291	/* Perform the copy operation
 292	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 293	 *   an unsigned int
 294	 */
 295	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 296	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 297				 nbytes, from);
 298
 299	/* Update the structures and generate the count */
 300	buf_count = 0;
 301	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 302		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 303			     dm_wa->length - buf_count);
 304		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 305
 306		buf_count += nbytes;
 307		ccp_update_sg_workarea(sg_wa, nbytes);
 308	}
 309
 310	return buf_count;
 311}
 312
 313static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 314{
 315	return ccp_queue_buf(data, 0);
 316}
 317
 318static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 319{
 320	return ccp_queue_buf(data, 1);
 321}
 322
 323static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 324			     struct ccp_op *op, unsigned int block_size,
 325			     bool blocksize_op)
 326{
 327	unsigned int sg_src_len, sg_dst_len, op_len;
 328
 329	/* The CCP can only DMA from/to one address each per operation. This
 330	 * requires that we find the smallest DMA area between the source
 331	 * and destination. The resulting len values will always be <= UINT_MAX
 332	 * because the dma length is an unsigned int.
 333	 */
 334	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 335	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 336
 337	if (dst) {
 338		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 339		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 340		op_len = min(sg_src_len, sg_dst_len);
 341	} else {
 342		op_len = sg_src_len;
 343	}
 344
 345	/* The data operation length will be at least block_size in length
 346	 * or the smaller of available sg room remaining for the source or
 347	 * the destination
 348	 */
 349	op_len = max(op_len, block_size);
 350
 351	/* Unless we have to buffer data, there's no reason to wait */
 352	op->soc = 0;
 353
 354	if (sg_src_len < block_size) {
 355		/* Not enough data in the sg element, so it
 356		 * needs to be buffered into a blocksize chunk
 357		 */
 358		int cp_len = ccp_fill_queue_buf(src);
 359
 360		op->soc = 1;
 361		op->src.u.dma.address = src->dm_wa.dma.address;
 362		op->src.u.dma.offset = 0;
 363		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 364	} else {
 365		/* Enough data in the sg element, but we need to
 366		 * adjust for any previously copied data
 367		 */
 368		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 369		op->src.u.dma.offset = src->sg_wa.sg_used;
 370		op->src.u.dma.length = op_len & ~(block_size - 1);
 371
 372		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 373	}
 374
 375	if (dst) {
 376		if (sg_dst_len < block_size) {
 377			/* Not enough room in the sg element or we're on the
 378			 * last piece of data (when using padding), so the
 379			 * output needs to be buffered into a blocksize chunk
 380			 */
 381			op->soc = 1;
 382			op->dst.u.dma.address = dst->dm_wa.dma.address;
 383			op->dst.u.dma.offset = 0;
 384			op->dst.u.dma.length = op->src.u.dma.length;
 385		} else {
 386			/* Enough room in the sg element, but we need to
 387			 * adjust for any previously used area
 388			 */
 389			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 390			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 391			op->dst.u.dma.length = op->src.u.dma.length;
 392		}
 393	}
 394}
 395
 396static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 397			     struct ccp_op *op)
 398{
 399	op->init = 0;
 400
 401	if (dst) {
 402		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 403			ccp_empty_queue_buf(dst);
 404		else
 405			ccp_update_sg_workarea(&dst->sg_wa,
 406					       op->dst.u.dma.length);
 407	}
 408}
 409
 410static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 411			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 412			       u32 byte_swap, bool from)
 413{
 414	struct ccp_op op;
 415
 416	memset(&op, 0, sizeof(op));
 417
 418	op.cmd_q = cmd_q;
 419	op.jobid = jobid;
 420	op.eom = 1;
 421
 422	if (from) {
 423		op.soc = 1;
 424		op.src.type = CCP_MEMTYPE_SB;
 425		op.src.u.sb = sb;
 426		op.dst.type = CCP_MEMTYPE_SYSTEM;
 427		op.dst.u.dma.address = wa->dma.address;
 428		op.dst.u.dma.length = wa->length;
 429	} else {
 430		op.src.type = CCP_MEMTYPE_SYSTEM;
 431		op.src.u.dma.address = wa->dma.address;
 432		op.src.u.dma.length = wa->length;
 433		op.dst.type = CCP_MEMTYPE_SB;
 434		op.dst.u.sb = sb;
 435	}
 436
 437	op.u.passthru.byte_swap = byte_swap;
 438
 439	return cmd_q->ccp->vdata->perform->passthru(&op);
 440}
 441
 442static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 443			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 444			  u32 byte_swap)
 445{
 446	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 447}
 448
 449static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 450			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 451			    u32 byte_swap)
 452{
 453	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 454}
 455
 456static noinline_for_stack int
 457ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 458{
 459	struct ccp_aes_engine *aes = &cmd->u.aes;
 460	struct ccp_dm_workarea key, ctx;
 461	struct ccp_data src;
 462	struct ccp_op op;
 463	unsigned int dm_offset;
 464	int ret;
 465
 466	if (!((aes->key_len == AES_KEYSIZE_128) ||
 467	      (aes->key_len == AES_KEYSIZE_192) ||
 468	      (aes->key_len == AES_KEYSIZE_256)))
 469		return -EINVAL;
 470
 471	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 472		return -EINVAL;
 473
 474	if (aes->iv_len != AES_BLOCK_SIZE)
 475		return -EINVAL;
 476
 477	if (!aes->key || !aes->iv || !aes->src)
 478		return -EINVAL;
 479
 480	if (aes->cmac_final) {
 481		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 482			return -EINVAL;
 483
 484		if (!aes->cmac_key)
 485			return -EINVAL;
 486	}
 487
 488	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 489	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 490
 491	ret = -EIO;
 492	memset(&op, 0, sizeof(op));
 493	op.cmd_q = cmd_q;
 494	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 495	op.sb_key = cmd_q->sb_key;
 496	op.sb_ctx = cmd_q->sb_ctx;
 497	op.init = 1;
 498	op.u.aes.type = aes->type;
 499	op.u.aes.mode = aes->mode;
 500	op.u.aes.action = aes->action;
 501
 502	/* All supported key sizes fit in a single (32-byte) SB entry
 503	 * and must be in little endian format. Use the 256-bit byte
 504	 * swap passthru option to convert from big endian to little
 505	 * endian.
 506	 */
 507	ret = ccp_init_dm_workarea(&key, cmd_q,
 508				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 509				   DMA_TO_DEVICE);
 510	if (ret)
 511		return ret;
 512
 513	dm_offset = CCP_SB_BYTES - aes->key_len;
 514	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 515	if (ret)
 516		goto e_key;
 517	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 518			     CCP_PASSTHRU_BYTESWAP_256BIT);
 519	if (ret) {
 520		cmd->engine_error = cmd_q->cmd_error;
 521		goto e_key;
 522	}
 523
 524	/* The AES context fits in a single (32-byte) SB entry and
 525	 * must be in little endian format. Use the 256-bit byte swap
 526	 * passthru option to convert from big endian to little endian.
 527	 */
 528	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 529				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 530				   DMA_BIDIRECTIONAL);
 531	if (ret)
 532		goto e_key;
 533
 534	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 535	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 536	if (ret)
 537		goto e_ctx;
 538	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 539			     CCP_PASSTHRU_BYTESWAP_256BIT);
 540	if (ret) {
 541		cmd->engine_error = cmd_q->cmd_error;
 542		goto e_ctx;
 543	}
 544
 545	/* Send data to the CCP AES engine */
 546	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 547			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 548	if (ret)
 549		goto e_ctx;
 550
 551	while (src.sg_wa.bytes_left) {
 552		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 553		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 554			op.eom = 1;
 555
 556			/* Push the K1/K2 key to the CCP now */
 557			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 558					       op.sb_ctx,
 559					       CCP_PASSTHRU_BYTESWAP_256BIT);
 560			if (ret) {
 561				cmd->engine_error = cmd_q->cmd_error;
 562				goto e_src;
 563			}
 564
 565			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 566					      aes->cmac_key_len);
 567			if (ret)
 568				goto e_src;
 569			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 570					     CCP_PASSTHRU_BYTESWAP_256BIT);
 571			if (ret) {
 572				cmd->engine_error = cmd_q->cmd_error;
 573				goto e_src;
 574			}
 575		}
 576
 577		ret = cmd_q->ccp->vdata->perform->aes(&op);
 578		if (ret) {
 579			cmd->engine_error = cmd_q->cmd_error;
 580			goto e_src;
 581		}
 582
 583		ccp_process_data(&src, NULL, &op);
 584	}
 585
 586	/* Retrieve the AES context - convert from LE to BE using
 587	 * 32-byte (256-bit) byteswapping
 588	 */
 589	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 590			       CCP_PASSTHRU_BYTESWAP_256BIT);
 591	if (ret) {
 592		cmd->engine_error = cmd_q->cmd_error;
 593		goto e_src;
 594	}
 595
 596	/* ...but we only need AES_BLOCK_SIZE bytes */
 597	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 598	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 599
 600e_src:
 601	ccp_free_data(&src, cmd_q);
 602
 603e_ctx:
 604	ccp_dm_free(&ctx);
 605
 606e_key:
 607	ccp_dm_free(&key);
 608
 609	return ret;
 610}
 611
 612static noinline_for_stack int
 613ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 614{
 615	struct ccp_aes_engine *aes = &cmd->u.aes;
 616	struct ccp_dm_workarea key, ctx, final_wa, tag;
 617	struct ccp_data src, dst;
 618	struct ccp_data aad;
 619	struct ccp_op op;
 620
 621	unsigned long long *final;
 622	unsigned int dm_offset;
 623	unsigned int authsize;
 624	unsigned int jobid;
 625	unsigned int ilen;
 626	bool in_place = true; /* Default value */
 
 627	int ret;
 628
 629	struct scatterlist *p_inp, sg_inp[2];
 630	struct scatterlist *p_tag, sg_tag[2];
 631	struct scatterlist *p_outp, sg_outp[2];
 632	struct scatterlist *p_aad;
 633
 634	if (!aes->iv)
 635		return -EINVAL;
 636
 637	if (!((aes->key_len == AES_KEYSIZE_128) ||
 638		(aes->key_len == AES_KEYSIZE_192) ||
 639		(aes->key_len == AES_KEYSIZE_256)))
 640		return -EINVAL;
 641
 642	if (!aes->key) /* Gotta have a key SGL */
 643		return -EINVAL;
 644
 645	/* Zero defaults to 16 bytes, the maximum size */
 646	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
 647	switch (authsize) {
 648	case 16:
 649	case 15:
 650	case 14:
 651	case 13:
 652	case 12:
 653	case 8:
 654	case 4:
 655		break;
 656	default:
 657		return -EINVAL;
 658	}
 659
 660	/* First, decompose the source buffer into AAD & PT,
 661	 * and the destination buffer into AAD, CT & tag, or
 662	 * the input into CT & tag.
 663	 * It is expected that the input and output SGs will
 664	 * be valid, even if the AAD and input lengths are 0.
 665	 */
 666	p_aad = aes->src;
 667	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 668	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 669	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 670		ilen = aes->src_len;
 671		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 672	} else {
 673		/* Input length for decryption includes tag */
 674		ilen = aes->src_len - authsize;
 675		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 676	}
 677
 678	jobid = CCP_NEW_JOBID(cmd_q->ccp);
 679
 680	memset(&op, 0, sizeof(op));
 681	op.cmd_q = cmd_q;
 682	op.jobid = jobid;
 683	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 684	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 685	op.init = 1;
 686	op.u.aes.type = aes->type;
 687
 688	/* Copy the key to the LSB */
 689	ret = ccp_init_dm_workarea(&key, cmd_q,
 690				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 691				   DMA_TO_DEVICE);
 692	if (ret)
 693		return ret;
 694
 695	dm_offset = CCP_SB_BYTES - aes->key_len;
 696	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 697	if (ret)
 698		goto e_key;
 699	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 700			     CCP_PASSTHRU_BYTESWAP_256BIT);
 701	if (ret) {
 702		cmd->engine_error = cmd_q->cmd_error;
 703		goto e_key;
 704	}
 705
 706	/* Copy the context (IV) to the LSB.
 707	 * There is an assumption here that the IV is 96 bits in length, plus
 708	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 709	 */
 710	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 711				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 712				   DMA_BIDIRECTIONAL);
 713	if (ret)
 714		goto e_key;
 715
 716	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 717	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 718	if (ret)
 719		goto e_ctx;
 720
 721	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 722			     CCP_PASSTHRU_BYTESWAP_256BIT);
 723	if (ret) {
 724		cmd->engine_error = cmd_q->cmd_error;
 725		goto e_ctx;
 726	}
 727
 728	op.init = 1;
 729	if (aes->aad_len > 0) {
 730		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 731		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 732				    AES_BLOCK_SIZE,
 733				    DMA_TO_DEVICE);
 734		if (ret)
 735			goto e_ctx;
 736
 737		op.u.aes.mode = CCP_AES_MODE_GHASH;
 738		op.u.aes.action = CCP_AES_GHASHAAD;
 739
 740		while (aad.sg_wa.bytes_left) {
 741			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 742
 743			ret = cmd_q->ccp->vdata->perform->aes(&op);
 744			if (ret) {
 745				cmd->engine_error = cmd_q->cmd_error;
 746				goto e_aad;
 747			}
 748
 749			ccp_process_data(&aad, NULL, &op);
 750			op.init = 0;
 751		}
 752	}
 753
 754	op.u.aes.mode = CCP_AES_MODE_GCTR;
 755	op.u.aes.action = aes->action;
 756
 757	if (ilen > 0) {
 758		/* Step 2: Run a GCTR over the plaintext */
 759		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 760
 761		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 762				    AES_BLOCK_SIZE,
 763				    in_place ? DMA_BIDIRECTIONAL
 764					     : DMA_TO_DEVICE);
 765		if (ret)
 766			goto e_ctx;
 767
 768		if (in_place) {
 769			dst = src;
 770		} else {
 771			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 772					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 773			if (ret)
 774				goto e_src;
 775		}
 776
 777		op.soc = 0;
 778		op.eom = 0;
 779		op.init = 1;
 780		while (src.sg_wa.bytes_left) {
 781			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 782			if (!src.sg_wa.bytes_left) {
 783				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
 784
 785				if (nbytes) {
 786					op.eom = 1;
 787					op.u.aes.size = (nbytes * 8) - 1;
 788				}
 789			}
 790
 791			ret = cmd_q->ccp->vdata->perform->aes(&op);
 792			if (ret) {
 793				cmd->engine_error = cmd_q->cmd_error;
 794				goto e_dst;
 795			}
 796
 797			ccp_process_data(&src, &dst, &op);
 798			op.init = 0;
 799		}
 800	}
 801
 802	/* Step 3: Update the IV portion of the context with the original IV */
 803	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 804			       CCP_PASSTHRU_BYTESWAP_256BIT);
 805	if (ret) {
 806		cmd->engine_error = cmd_q->cmd_error;
 807		goto e_dst;
 808	}
 809
 810	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 811	if (ret)
 812		goto e_dst;
 813
 814	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 815			     CCP_PASSTHRU_BYTESWAP_256BIT);
 816	if (ret) {
 817		cmd->engine_error = cmd_q->cmd_error;
 818		goto e_dst;
 819	}
 820
 821	/* Step 4: Concatenate the lengths of the AAD and source, and
 822	 * hash that 16 byte buffer.
 823	 */
 824	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 825				   DMA_BIDIRECTIONAL);
 826	if (ret)
 827		goto e_dst;
 828	final = (unsigned long long *) final_wa.address;
 829	final[0] = cpu_to_be64(aes->aad_len * 8);
 830	final[1] = cpu_to_be64(ilen * 8);
 831
 832	memset(&op, 0, sizeof(op));
 833	op.cmd_q = cmd_q;
 834	op.jobid = jobid;
 835	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 836	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 837	op.init = 1;
 838	op.u.aes.type = aes->type;
 839	op.u.aes.mode = CCP_AES_MODE_GHASH;
 840	op.u.aes.action = CCP_AES_GHASHFINAL;
 841	op.src.type = CCP_MEMTYPE_SYSTEM;
 842	op.src.u.dma.address = final_wa.dma.address;
 843	op.src.u.dma.length = AES_BLOCK_SIZE;
 844	op.dst.type = CCP_MEMTYPE_SYSTEM;
 845	op.dst.u.dma.address = final_wa.dma.address;
 846	op.dst.u.dma.length = AES_BLOCK_SIZE;
 847	op.eom = 1;
 848	op.u.aes.size = 0;
 849	ret = cmd_q->ccp->vdata->perform->aes(&op);
 850	if (ret)
 851		goto e_dst;
 852
 853	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 854		/* Put the ciphered tag after the ciphertext. */
 855		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
 856	} else {
 857		/* Does this ciphered tag match the input? */
 858		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
 859					   DMA_BIDIRECTIONAL);
 860		if (ret)
 861			goto e_tag;
 862		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
 863		if (ret)
 864			goto e_tag;
 
 
 865
 866		ret = crypto_memneq(tag.address, final_wa.address,
 867				    authsize) ? -EBADMSG : 0;
 868		ccp_dm_free(&tag);
 869	}
 870
 871e_tag:
 872	ccp_dm_free(&final_wa);
 873
 874e_dst:
 875	if (ilen > 0 && !in_place)
 876		ccp_free_data(&dst, cmd_q);
 877
 878e_src:
 879	if (ilen > 0)
 880		ccp_free_data(&src, cmd_q);
 881
 882e_aad:
 883	if (aes->aad_len)
 884		ccp_free_data(&aad, cmd_q);
 885
 886e_ctx:
 887	ccp_dm_free(&ctx);
 888
 889e_key:
 890	ccp_dm_free(&key);
 891
 892	return ret;
 893}
 894
 895static noinline_for_stack int
 896ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 897{
 898	struct ccp_aes_engine *aes = &cmd->u.aes;
 899	struct ccp_dm_workarea key, ctx;
 900	struct ccp_data src, dst;
 901	struct ccp_op op;
 902	unsigned int dm_offset;
 903	bool in_place = false;
 904	int ret;
 905
 906	if (!((aes->key_len == AES_KEYSIZE_128) ||
 907	      (aes->key_len == AES_KEYSIZE_192) ||
 908	      (aes->key_len == AES_KEYSIZE_256)))
 909		return -EINVAL;
 910
 911	if (((aes->mode == CCP_AES_MODE_ECB) ||
 912	     (aes->mode == CCP_AES_MODE_CBC)) &&
 913	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 914		return -EINVAL;
 915
 916	if (!aes->key || !aes->src || !aes->dst)
 917		return -EINVAL;
 918
 919	if (aes->mode != CCP_AES_MODE_ECB) {
 920		if (aes->iv_len != AES_BLOCK_SIZE)
 921			return -EINVAL;
 922
 923		if (!aes->iv)
 924			return -EINVAL;
 925	}
 926
 927	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 928	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 929
 930	ret = -EIO;
 931	memset(&op, 0, sizeof(op));
 932	op.cmd_q = cmd_q;
 933	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 934	op.sb_key = cmd_q->sb_key;
 935	op.sb_ctx = cmd_q->sb_ctx;
 936	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 937	op.u.aes.type = aes->type;
 938	op.u.aes.mode = aes->mode;
 939	op.u.aes.action = aes->action;
 940
 941	/* All supported key sizes fit in a single (32-byte) SB entry
 942	 * and must be in little endian format. Use the 256-bit byte
 943	 * swap passthru option to convert from big endian to little
 944	 * endian.
 945	 */
 946	ret = ccp_init_dm_workarea(&key, cmd_q,
 947				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 948				   DMA_TO_DEVICE);
 949	if (ret)
 950		return ret;
 951
 952	dm_offset = CCP_SB_BYTES - aes->key_len;
 953	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 954	if (ret)
 955		goto e_key;
 956	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 957			     CCP_PASSTHRU_BYTESWAP_256BIT);
 958	if (ret) {
 959		cmd->engine_error = cmd_q->cmd_error;
 960		goto e_key;
 961	}
 962
 963	/* The AES context fits in a single (32-byte) SB entry and
 964	 * must be in little endian format. Use the 256-bit byte swap
 965	 * passthru option to convert from big endian to little endian.
 966	 */
 967	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 968				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 969				   DMA_BIDIRECTIONAL);
 970	if (ret)
 971		goto e_key;
 972
 973	if (aes->mode != CCP_AES_MODE_ECB) {
 974		/* Load the AES context - convert to LE */
 975		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 976		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 977		if (ret)
 978			goto e_ctx;
 979		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 980				     CCP_PASSTHRU_BYTESWAP_256BIT);
 981		if (ret) {
 982			cmd->engine_error = cmd_q->cmd_error;
 983			goto e_ctx;
 984		}
 985	}
 986	switch (aes->mode) {
 987	case CCP_AES_MODE_CFB: /* CFB128 only */
 988	case CCP_AES_MODE_CTR:
 989		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
 990		break;
 991	default:
 992		op.u.aes.size = 0;
 993	}
 994
 995	/* Prepare the input and output data workareas. For in-place
 996	 * operations we need to set the dma direction to BIDIRECTIONAL
 997	 * and copy the src workarea to the dst workarea.
 998	 */
 999	if (sg_virt(aes->src) == sg_virt(aes->dst))
1000		in_place = true;
1001
1002	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1003			    AES_BLOCK_SIZE,
1004			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1005	if (ret)
1006		goto e_ctx;
1007
1008	if (in_place) {
1009		dst = src;
1010	} else {
1011		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1012				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1013		if (ret)
1014			goto e_src;
1015	}
1016
1017	/* Send data to the CCP AES engine */
1018	while (src.sg_wa.bytes_left) {
1019		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1020		if (!src.sg_wa.bytes_left) {
1021			op.eom = 1;
1022
1023			/* Since we don't retrieve the AES context in ECB
1024			 * mode we have to wait for the operation to complete
1025			 * on the last piece of data
1026			 */
1027			if (aes->mode == CCP_AES_MODE_ECB)
1028				op.soc = 1;
1029		}
1030
1031		ret = cmd_q->ccp->vdata->perform->aes(&op);
1032		if (ret) {
1033			cmd->engine_error = cmd_q->cmd_error;
1034			goto e_dst;
1035		}
1036
1037		ccp_process_data(&src, &dst, &op);
1038	}
1039
1040	if (aes->mode != CCP_AES_MODE_ECB) {
1041		/* Retrieve the AES context - convert from LE to BE using
1042		 * 32-byte (256-bit) byteswapping
1043		 */
1044		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1045				       CCP_PASSTHRU_BYTESWAP_256BIT);
1046		if (ret) {
1047			cmd->engine_error = cmd_q->cmd_error;
1048			goto e_dst;
1049		}
1050
1051		/* ...but we only need AES_BLOCK_SIZE bytes */
1052		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1053		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1054	}
1055
1056e_dst:
1057	if (!in_place)
1058		ccp_free_data(&dst, cmd_q);
1059
1060e_src:
1061	ccp_free_data(&src, cmd_q);
1062
1063e_ctx:
1064	ccp_dm_free(&ctx);
1065
1066e_key:
1067	ccp_dm_free(&key);
1068
1069	return ret;
1070}
1071
1072static noinline_for_stack int
1073ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1074{
1075	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1076	struct ccp_dm_workarea key, ctx;
1077	struct ccp_data src, dst;
1078	struct ccp_op op;
1079	unsigned int unit_size, dm_offset;
1080	bool in_place = false;
1081	unsigned int sb_count;
1082	enum ccp_aes_type aestype;
1083	int ret;
1084
1085	switch (xts->unit_size) {
1086	case CCP_XTS_AES_UNIT_SIZE_16:
1087		unit_size = 16;
1088		break;
1089	case CCP_XTS_AES_UNIT_SIZE_512:
1090		unit_size = 512;
1091		break;
1092	case CCP_XTS_AES_UNIT_SIZE_1024:
1093		unit_size = 1024;
1094		break;
1095	case CCP_XTS_AES_UNIT_SIZE_2048:
1096		unit_size = 2048;
1097		break;
1098	case CCP_XTS_AES_UNIT_SIZE_4096:
1099		unit_size = 4096;
1100		break;
1101
1102	default:
1103		return -EINVAL;
1104	}
1105
1106	if (xts->key_len == AES_KEYSIZE_128)
1107		aestype = CCP_AES_TYPE_128;
1108	else if (xts->key_len == AES_KEYSIZE_256)
1109		aestype = CCP_AES_TYPE_256;
1110	else
1111		return -EINVAL;
1112
1113	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1114		return -EINVAL;
1115
1116	if (xts->iv_len != AES_BLOCK_SIZE)
1117		return -EINVAL;
1118
1119	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1120		return -EINVAL;
1121
1122	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1123	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1124
1125	ret = -EIO;
1126	memset(&op, 0, sizeof(op));
1127	op.cmd_q = cmd_q;
1128	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1129	op.sb_key = cmd_q->sb_key;
1130	op.sb_ctx = cmd_q->sb_ctx;
1131	op.init = 1;
1132	op.u.xts.type = aestype;
1133	op.u.xts.action = xts->action;
1134	op.u.xts.unit_size = xts->unit_size;
1135
1136	/* A version 3 device only supports 128-bit keys, which fits into a
1137	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1138	 * SB entries.
1139	 */
1140	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1141		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1142	else
1143		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1144	ret = ccp_init_dm_workarea(&key, cmd_q,
1145				   sb_count * CCP_SB_BYTES,
1146				   DMA_TO_DEVICE);
1147	if (ret)
1148		return ret;
1149
1150	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1151		/* All supported key sizes must be in little endian format.
1152		 * Use the 256-bit byte swap passthru option to convert from
1153		 * big endian to little endian.
1154		 */
1155		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1156		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1157		if (ret)
1158			goto e_key;
1159		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1160		if (ret)
1161			goto e_key;
1162	} else {
1163		/* Version 5 CCPs use a 512-bit space for the key: each portion
1164		 * occupies 256 bits, or one entire slot, and is zero-padded.
1165		 */
1166		unsigned int pad;
1167
1168		dm_offset = CCP_SB_BYTES;
1169		pad = dm_offset - xts->key_len;
1170		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1171		if (ret)
1172			goto e_key;
1173		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1174				      xts->key_len, xts->key_len);
1175		if (ret)
1176			goto e_key;
1177	}
1178	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1179			     CCP_PASSTHRU_BYTESWAP_256BIT);
1180	if (ret) {
1181		cmd->engine_error = cmd_q->cmd_error;
1182		goto e_key;
1183	}
1184
1185	/* The AES context fits in a single (32-byte) SB entry and
1186	 * for XTS is already in little endian format so no byte swapping
1187	 * is needed.
1188	 */
1189	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1190				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1191				   DMA_BIDIRECTIONAL);
1192	if (ret)
1193		goto e_key;
1194
1195	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1196	if (ret)
1197		goto e_ctx;
1198	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1199			     CCP_PASSTHRU_BYTESWAP_NOOP);
1200	if (ret) {
1201		cmd->engine_error = cmd_q->cmd_error;
1202		goto e_ctx;
1203	}
1204
1205	/* Prepare the input and output data workareas. For in-place
1206	 * operations we need to set the dma direction to BIDIRECTIONAL
1207	 * and copy the src workarea to the dst workarea.
1208	 */
1209	if (sg_virt(xts->src) == sg_virt(xts->dst))
1210		in_place = true;
1211
1212	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1213			    unit_size,
1214			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1215	if (ret)
1216		goto e_ctx;
1217
1218	if (in_place) {
1219		dst = src;
1220	} else {
1221		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1222				    unit_size, DMA_FROM_DEVICE);
1223		if (ret)
1224			goto e_src;
1225	}
1226
1227	/* Send data to the CCP AES engine */
1228	while (src.sg_wa.bytes_left) {
1229		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1230		if (!src.sg_wa.bytes_left)
1231			op.eom = 1;
1232
1233		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1234		if (ret) {
1235			cmd->engine_error = cmd_q->cmd_error;
1236			goto e_dst;
1237		}
1238
1239		ccp_process_data(&src, &dst, &op);
1240	}
1241
1242	/* Retrieve the AES context - convert from LE to BE using
1243	 * 32-byte (256-bit) byteswapping
1244	 */
1245	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1246			       CCP_PASSTHRU_BYTESWAP_256BIT);
1247	if (ret) {
1248		cmd->engine_error = cmd_q->cmd_error;
1249		goto e_dst;
1250	}
1251
1252	/* ...but we only need AES_BLOCK_SIZE bytes */
1253	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1254	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1255
1256e_dst:
1257	if (!in_place)
1258		ccp_free_data(&dst, cmd_q);
1259
1260e_src:
1261	ccp_free_data(&src, cmd_q);
1262
1263e_ctx:
1264	ccp_dm_free(&ctx);
1265
1266e_key:
1267	ccp_dm_free(&key);
1268
1269	return ret;
1270}
1271
1272static noinline_for_stack int
1273ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1274{
1275	struct ccp_des3_engine *des3 = &cmd->u.des3;
1276
1277	struct ccp_dm_workarea key, ctx;
1278	struct ccp_data src, dst;
1279	struct ccp_op op;
1280	unsigned int dm_offset;
1281	unsigned int len_singlekey;
1282	bool in_place = false;
1283	int ret;
1284
1285	/* Error checks */
1286	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1287		return -EINVAL;
1288
1289	if (!cmd_q->ccp->vdata->perform->des3)
1290		return -EINVAL;
1291
1292	if (des3->key_len != DES3_EDE_KEY_SIZE)
1293		return -EINVAL;
1294
1295	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1296		(des3->mode == CCP_DES3_MODE_CBC)) &&
1297		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1298		return -EINVAL;
1299
1300	if (!des3->key || !des3->src || !des3->dst)
1301		return -EINVAL;
1302
1303	if (des3->mode != CCP_DES3_MODE_ECB) {
1304		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1305			return -EINVAL;
1306
1307		if (!des3->iv)
1308			return -EINVAL;
1309	}
1310
1311	ret = -EIO;
1312	/* Zero out all the fields of the command desc */
1313	memset(&op, 0, sizeof(op));
1314
1315	/* Set up the Function field */
1316	op.cmd_q = cmd_q;
1317	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1318	op.sb_key = cmd_q->sb_key;
1319
1320	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1321	op.u.des3.type = des3->type;
1322	op.u.des3.mode = des3->mode;
1323	op.u.des3.action = des3->action;
1324
1325	/*
1326	 * All supported key sizes fit in a single (32-byte) KSB entry and
1327	 * (like AES) must be in little endian format. Use the 256-bit byte
1328	 * swap passthru option to convert from big endian to little endian.
1329	 */
1330	ret = ccp_init_dm_workarea(&key, cmd_q,
1331				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1332				   DMA_TO_DEVICE);
1333	if (ret)
1334		return ret;
1335
1336	/*
1337	 * The contents of the key triplet are in the reverse order of what
1338	 * is required by the engine. Copy the 3 pieces individually to put
1339	 * them where they belong.
1340	 */
1341	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1342
1343	len_singlekey = des3->key_len / 3;
1344	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1345			      des3->key, 0, len_singlekey);
1346	if (ret)
1347		goto e_key;
1348	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1349			      des3->key, len_singlekey, len_singlekey);
1350	if (ret)
1351		goto e_key;
1352	ret = ccp_set_dm_area(&key, dm_offset,
1353			      des3->key, 2 * len_singlekey, len_singlekey);
1354	if (ret)
1355		goto e_key;
1356
1357	/* Copy the key to the SB */
1358	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1359			     CCP_PASSTHRU_BYTESWAP_256BIT);
1360	if (ret) {
1361		cmd->engine_error = cmd_q->cmd_error;
1362		goto e_key;
1363	}
1364
1365	/*
1366	 * The DES3 context fits in a single (32-byte) KSB entry and
1367	 * must be in little endian format. Use the 256-bit byte swap
1368	 * passthru option to convert from big endian to little endian.
1369	 */
1370	if (des3->mode != CCP_DES3_MODE_ECB) {
1371		op.sb_ctx = cmd_q->sb_ctx;
1372
1373		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1374					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1375					   DMA_BIDIRECTIONAL);
1376		if (ret)
1377			goto e_key;
1378
1379		/* Load the context into the LSB */
1380		dm_offset = CCP_SB_BYTES - des3->iv_len;
1381		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1382				      des3->iv_len);
1383		if (ret)
1384			goto e_ctx;
1385
1386		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1387				     CCP_PASSTHRU_BYTESWAP_256BIT);
1388		if (ret) {
1389			cmd->engine_error = cmd_q->cmd_error;
1390			goto e_ctx;
1391		}
1392	}
1393
1394	/*
1395	 * Prepare the input and output data workareas. For in-place
1396	 * operations we need to set the dma direction to BIDIRECTIONAL
1397	 * and copy the src workarea to the dst workarea.
1398	 */
1399	if (sg_virt(des3->src) == sg_virt(des3->dst))
1400		in_place = true;
1401
1402	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1403			DES3_EDE_BLOCK_SIZE,
1404			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1405	if (ret)
1406		goto e_ctx;
1407
1408	if (in_place)
1409		dst = src;
1410	else {
1411		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1412				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1413		if (ret)
1414			goto e_src;
1415	}
1416
1417	/* Send data to the CCP DES3 engine */
1418	while (src.sg_wa.bytes_left) {
1419		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1420		if (!src.sg_wa.bytes_left) {
1421			op.eom = 1;
1422
1423			/* Since we don't retrieve the context in ECB mode
1424			 * we have to wait for the operation to complete
1425			 * on the last piece of data
1426			 */
1427			op.soc = 0;
1428		}
1429
1430		ret = cmd_q->ccp->vdata->perform->des3(&op);
1431		if (ret) {
1432			cmd->engine_error = cmd_q->cmd_error;
1433			goto e_dst;
1434		}
1435
1436		ccp_process_data(&src, &dst, &op);
1437	}
1438
1439	if (des3->mode != CCP_DES3_MODE_ECB) {
1440		/* Retrieve the context and make BE */
1441		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1442				       CCP_PASSTHRU_BYTESWAP_256BIT);
1443		if (ret) {
1444			cmd->engine_error = cmd_q->cmd_error;
1445			goto e_dst;
1446		}
1447
1448		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1449		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1450				DES3_EDE_BLOCK_SIZE);
1451	}
1452e_dst:
1453	if (!in_place)
1454		ccp_free_data(&dst, cmd_q);
1455
1456e_src:
1457	ccp_free_data(&src, cmd_q);
1458
1459e_ctx:
1460	if (des3->mode != CCP_DES3_MODE_ECB)
1461		ccp_dm_free(&ctx);
1462
1463e_key:
1464	ccp_dm_free(&key);
1465
1466	return ret;
1467}
1468
1469static noinline_for_stack int
1470ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1471{
1472	struct ccp_sha_engine *sha = &cmd->u.sha;
1473	struct ccp_dm_workarea ctx;
1474	struct ccp_data src;
1475	struct ccp_op op;
1476	unsigned int ioffset, ooffset;
1477	unsigned int digest_size;
1478	int sb_count;
1479	const void *init;
1480	u64 block_size;
1481	int ctx_size;
1482	int ret;
1483
1484	switch (sha->type) {
1485	case CCP_SHA_TYPE_1:
1486		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1487			return -EINVAL;
1488		block_size = SHA1_BLOCK_SIZE;
1489		break;
1490	case CCP_SHA_TYPE_224:
1491		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1492			return -EINVAL;
1493		block_size = SHA224_BLOCK_SIZE;
1494		break;
1495	case CCP_SHA_TYPE_256:
1496		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1497			return -EINVAL;
1498		block_size = SHA256_BLOCK_SIZE;
1499		break;
1500	case CCP_SHA_TYPE_384:
1501		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1502		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1503			return -EINVAL;
1504		block_size = SHA384_BLOCK_SIZE;
1505		break;
1506	case CCP_SHA_TYPE_512:
1507		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1508		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1509			return -EINVAL;
1510		block_size = SHA512_BLOCK_SIZE;
1511		break;
1512	default:
1513		return -EINVAL;
1514	}
1515
1516	if (!sha->ctx)
1517		return -EINVAL;
1518
1519	if (!sha->final && (sha->src_len & (block_size - 1)))
1520		return -EINVAL;
1521
1522	/* The version 3 device can't handle zero-length input */
1523	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1524
1525		if (!sha->src_len) {
1526			unsigned int digest_len;
1527			const u8 *sha_zero;
1528
1529			/* Not final, just return */
1530			if (!sha->final)
1531				return 0;
1532
1533			/* CCP can't do a zero length sha operation so the
1534			 * caller must buffer the data.
1535			 */
1536			if (sha->msg_bits)
1537				return -EINVAL;
1538
1539			/* The CCP cannot perform zero-length sha operations
1540			 * so the caller is required to buffer data for the
1541			 * final operation. However, a sha operation for a
1542			 * message with a total length of zero is valid so
1543			 * known values are required to supply the result.
1544			 */
1545			switch (sha->type) {
1546			case CCP_SHA_TYPE_1:
1547				sha_zero = sha1_zero_message_hash;
1548				digest_len = SHA1_DIGEST_SIZE;
1549				break;
1550			case CCP_SHA_TYPE_224:
1551				sha_zero = sha224_zero_message_hash;
1552				digest_len = SHA224_DIGEST_SIZE;
1553				break;
1554			case CCP_SHA_TYPE_256:
1555				sha_zero = sha256_zero_message_hash;
1556				digest_len = SHA256_DIGEST_SIZE;
1557				break;
1558			default:
1559				return -EINVAL;
1560			}
1561
1562			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1563						 digest_len, 1);
1564
1565			return 0;
1566		}
1567	}
1568
1569	/* Set variables used throughout */
1570	switch (sha->type) {
1571	case CCP_SHA_TYPE_1:
1572		digest_size = SHA1_DIGEST_SIZE;
1573		init = (void *) ccp_sha1_init;
1574		ctx_size = SHA1_DIGEST_SIZE;
1575		sb_count = 1;
1576		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1577			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1578		else
1579			ooffset = ioffset = 0;
1580		break;
1581	case CCP_SHA_TYPE_224:
1582		digest_size = SHA224_DIGEST_SIZE;
1583		init = (void *) ccp_sha224_init;
1584		ctx_size = SHA256_DIGEST_SIZE;
1585		sb_count = 1;
1586		ioffset = 0;
1587		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1588			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1589		else
1590			ooffset = 0;
1591		break;
1592	case CCP_SHA_TYPE_256:
1593		digest_size = SHA256_DIGEST_SIZE;
1594		init = (void *) ccp_sha256_init;
1595		ctx_size = SHA256_DIGEST_SIZE;
1596		sb_count = 1;
1597		ooffset = ioffset = 0;
1598		break;
1599	case CCP_SHA_TYPE_384:
1600		digest_size = SHA384_DIGEST_SIZE;
1601		init = (void *) ccp_sha384_init;
1602		ctx_size = SHA512_DIGEST_SIZE;
1603		sb_count = 2;
1604		ioffset = 0;
1605		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1606		break;
1607	case CCP_SHA_TYPE_512:
1608		digest_size = SHA512_DIGEST_SIZE;
1609		init = (void *) ccp_sha512_init;
1610		ctx_size = SHA512_DIGEST_SIZE;
1611		sb_count = 2;
1612		ooffset = ioffset = 0;
1613		break;
1614	default:
1615		ret = -EINVAL;
1616		goto e_data;
1617	}
1618
1619	/* For zero-length plaintext the src pointer is ignored;
1620	 * otherwise both parts must be valid
1621	 */
1622	if (sha->src_len && !sha->src)
1623		return -EINVAL;
1624
1625	memset(&op, 0, sizeof(op));
1626	op.cmd_q = cmd_q;
1627	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1628	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1629	op.u.sha.type = sha->type;
1630	op.u.sha.msg_bits = sha->msg_bits;
1631
1632	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1633	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1634	 * first slot, and the left half in the second. Each portion must then
1635	 * be in little endian format: use the 256-bit byte swap option.
1636	 */
1637	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1638				   DMA_BIDIRECTIONAL);
1639	if (ret)
1640		return ret;
1641	if (sha->first) {
1642		switch (sha->type) {
1643		case CCP_SHA_TYPE_1:
1644		case CCP_SHA_TYPE_224:
1645		case CCP_SHA_TYPE_256:
1646			memcpy(ctx.address + ioffset, init, ctx_size);
1647			break;
1648		case CCP_SHA_TYPE_384:
1649		case CCP_SHA_TYPE_512:
1650			memcpy(ctx.address + ctx_size / 2, init,
1651			       ctx_size / 2);
1652			memcpy(ctx.address, init + ctx_size / 2,
1653			       ctx_size / 2);
1654			break;
1655		default:
1656			ret = -EINVAL;
1657			goto e_ctx;
1658		}
1659	} else {
1660		/* Restore the context */
1661		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1662				      sb_count * CCP_SB_BYTES);
1663		if (ret)
1664			goto e_ctx;
1665	}
1666
1667	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1668			     CCP_PASSTHRU_BYTESWAP_256BIT);
1669	if (ret) {
1670		cmd->engine_error = cmd_q->cmd_error;
1671		goto e_ctx;
1672	}
1673
1674	if (sha->src) {
1675		/* Send data to the CCP SHA engine; block_size is set above */
1676		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1677				    block_size, DMA_TO_DEVICE);
1678		if (ret)
1679			goto e_ctx;
1680
1681		while (src.sg_wa.bytes_left) {
1682			ccp_prepare_data(&src, NULL, &op, block_size, false);
1683			if (sha->final && !src.sg_wa.bytes_left)
1684				op.eom = 1;
1685
1686			ret = cmd_q->ccp->vdata->perform->sha(&op);
1687			if (ret) {
1688				cmd->engine_error = cmd_q->cmd_error;
1689				goto e_data;
1690			}
1691
1692			ccp_process_data(&src, NULL, &op);
1693		}
1694	} else {
1695		op.eom = 1;
1696		ret = cmd_q->ccp->vdata->perform->sha(&op);
1697		if (ret) {
1698			cmd->engine_error = cmd_q->cmd_error;
1699			goto e_data;
1700		}
1701	}
1702
1703	/* Retrieve the SHA context - convert from LE to BE using
1704	 * 32-byte (256-bit) byteswapping to BE
1705	 */
1706	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1707			       CCP_PASSTHRU_BYTESWAP_256BIT);
1708	if (ret) {
1709		cmd->engine_error = cmd_q->cmd_error;
1710		goto e_data;
1711	}
1712
1713	if (sha->final) {
1714		/* Finishing up, so get the digest */
1715		switch (sha->type) {
1716		case CCP_SHA_TYPE_1:
1717		case CCP_SHA_TYPE_224:
1718		case CCP_SHA_TYPE_256:
1719			ccp_get_dm_area(&ctx, ooffset,
1720					sha->ctx, 0,
1721					digest_size);
1722			break;
1723		case CCP_SHA_TYPE_384:
1724		case CCP_SHA_TYPE_512:
1725			ccp_get_dm_area(&ctx, 0,
1726					sha->ctx, LSB_ITEM_SIZE - ooffset,
1727					LSB_ITEM_SIZE);
1728			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1729					sha->ctx, 0,
1730					LSB_ITEM_SIZE - ooffset);
1731			break;
1732		default:
1733			ret = -EINVAL;
1734			goto e_ctx;
1735		}
1736	} else {
1737		/* Stash the context */
1738		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1739				sb_count * CCP_SB_BYTES);
1740	}
1741
1742	if (sha->final && sha->opad) {
1743		/* HMAC operation, recursively perform final SHA */
1744		struct ccp_cmd hmac_cmd;
1745		struct scatterlist sg;
1746		u8 *hmac_buf;
1747
1748		if (sha->opad_len != block_size) {
1749			ret = -EINVAL;
1750			goto e_data;
1751		}
1752
1753		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1754		if (!hmac_buf) {
1755			ret = -ENOMEM;
1756			goto e_data;
1757		}
1758		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1759
1760		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1761		switch (sha->type) {
1762		case CCP_SHA_TYPE_1:
1763		case CCP_SHA_TYPE_224:
1764		case CCP_SHA_TYPE_256:
1765			memcpy(hmac_buf + block_size,
1766			       ctx.address + ooffset,
1767			       digest_size);
1768			break;
1769		case CCP_SHA_TYPE_384:
1770		case CCP_SHA_TYPE_512:
1771			memcpy(hmac_buf + block_size,
1772			       ctx.address + LSB_ITEM_SIZE + ooffset,
1773			       LSB_ITEM_SIZE);
1774			memcpy(hmac_buf + block_size +
1775			       (LSB_ITEM_SIZE - ooffset),
1776			       ctx.address,
1777			       LSB_ITEM_SIZE);
1778			break;
1779		default:
 
1780			ret = -EINVAL;
1781			goto e_ctx;
1782		}
1783
1784		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1785		hmac_cmd.engine = CCP_ENGINE_SHA;
1786		hmac_cmd.u.sha.type = sha->type;
1787		hmac_cmd.u.sha.ctx = sha->ctx;
1788		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1789		hmac_cmd.u.sha.src = &sg;
1790		hmac_cmd.u.sha.src_len = block_size + digest_size;
1791		hmac_cmd.u.sha.opad = NULL;
1792		hmac_cmd.u.sha.opad_len = 0;
1793		hmac_cmd.u.sha.first = 1;
1794		hmac_cmd.u.sha.final = 1;
1795		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1796
1797		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1798		if (ret)
1799			cmd->engine_error = hmac_cmd.engine_error;
1800
1801		kfree(hmac_buf);
1802	}
1803
1804e_data:
1805	if (sha->src)
1806		ccp_free_data(&src, cmd_q);
1807
1808e_ctx:
1809	ccp_dm_free(&ctx);
1810
1811	return ret;
1812}
1813
1814static noinline_for_stack int
1815ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1816{
1817	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1818	struct ccp_dm_workarea exp, src, dst;
1819	struct ccp_op op;
1820	unsigned int sb_count, i_len, o_len;
1821	int ret;
1822
1823	/* Check against the maximum allowable size, in bits */
1824	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1825		return -EINVAL;
1826
1827	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1828		return -EINVAL;
1829
1830	memset(&op, 0, sizeof(op));
1831	op.cmd_q = cmd_q;
1832	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1833
1834	/* The RSA modulus must precede the message being acted upon, so
1835	 * it must be copied to a DMA area where the message and the
1836	 * modulus can be concatenated.  Therefore the input buffer
1837	 * length required is twice the output buffer length (which
1838	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1839	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1840	 * required.
1841	 */
1842	o_len = 32 * ((rsa->key_size + 255) / 256);
1843	i_len = o_len * 2;
1844
1845	sb_count = 0;
1846	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1847		/* sb_count is the number of storage block slots required
1848		 * for the modulus.
1849		 */
1850		sb_count = o_len / CCP_SB_BYTES;
1851		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1852								sb_count);
1853		if (!op.sb_key)
1854			return -EIO;
1855	} else {
1856		/* A version 5 device allows a modulus size that will not fit
1857		 * in the LSB, so the command will transfer it from memory.
1858		 * Set the sb key to the default, even though it's not used.
1859		 */
1860		op.sb_key = cmd_q->sb_key;
1861	}
1862
1863	/* The RSA exponent must be in little endian format. Reverse its
1864	 * byte order.
1865	 */
1866	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1867	if (ret)
1868		goto e_sb;
1869
1870	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1871	if (ret)
1872		goto e_exp;
1873
1874	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1875		/* Copy the exponent to the local storage block, using
1876		 * as many 32-byte blocks as were allocated above. It's
1877		 * already little endian, so no further change is required.
1878		 */
1879		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1880				     CCP_PASSTHRU_BYTESWAP_NOOP);
1881		if (ret) {
1882			cmd->engine_error = cmd_q->cmd_error;
1883			goto e_exp;
1884		}
1885	} else {
1886		/* The exponent can be retrieved from memory via DMA. */
1887		op.exp.u.dma.address = exp.dma.address;
1888		op.exp.u.dma.offset = 0;
1889	}
1890
1891	/* Concatenate the modulus and the message. Both the modulus and
1892	 * the operands must be in little endian format.  Since the input
1893	 * is in big endian format it must be converted.
1894	 */
1895	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1896	if (ret)
1897		goto e_exp;
1898
1899	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1900	if (ret)
1901		goto e_src;
1902	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1903	if (ret)
1904		goto e_src;
1905
1906	/* Prepare the output area for the operation */
1907	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1908	if (ret)
1909		goto e_src;
1910
1911	op.soc = 1;
1912	op.src.u.dma.address = src.dma.address;
1913	op.src.u.dma.offset = 0;
1914	op.src.u.dma.length = i_len;
1915	op.dst.u.dma.address = dst.dma.address;
1916	op.dst.u.dma.offset = 0;
1917	op.dst.u.dma.length = o_len;
1918
1919	op.u.rsa.mod_size = rsa->key_size;
1920	op.u.rsa.input_len = i_len;
1921
1922	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1923	if (ret) {
1924		cmd->engine_error = cmd_q->cmd_error;
1925		goto e_dst;
1926	}
1927
1928	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1929
1930e_dst:
1931	ccp_dm_free(&dst);
1932
1933e_src:
1934	ccp_dm_free(&src);
1935
1936e_exp:
1937	ccp_dm_free(&exp);
1938
1939e_sb:
1940	if (sb_count)
1941		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1942
1943	return ret;
1944}
1945
1946static noinline_for_stack int
1947ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1948{
1949	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1950	struct ccp_dm_workarea mask;
1951	struct ccp_data src, dst;
1952	struct ccp_op op;
1953	bool in_place = false;
1954	unsigned int i;
1955	int ret = 0;
1956
1957	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1958		return -EINVAL;
1959
1960	if (!pt->src || !pt->dst)
1961		return -EINVAL;
1962
1963	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1964		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1965			return -EINVAL;
1966		if (!pt->mask)
1967			return -EINVAL;
1968	}
1969
1970	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1971
1972	memset(&op, 0, sizeof(op));
1973	op.cmd_q = cmd_q;
1974	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1975
1976	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1977		/* Load the mask */
1978		op.sb_key = cmd_q->sb_key;
1979
1980		ret = ccp_init_dm_workarea(&mask, cmd_q,
1981					   CCP_PASSTHRU_SB_COUNT *
1982					   CCP_SB_BYTES,
1983					   DMA_TO_DEVICE);
1984		if (ret)
1985			return ret;
1986
1987		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1988		if (ret)
1989			goto e_mask;
1990		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1991				     CCP_PASSTHRU_BYTESWAP_NOOP);
1992		if (ret) {
1993			cmd->engine_error = cmd_q->cmd_error;
1994			goto e_mask;
1995		}
1996	}
1997
1998	/* Prepare the input and output data workareas. For in-place
1999	 * operations we need to set the dma direction to BIDIRECTIONAL
2000	 * and copy the src workarea to the dst workarea.
2001	 */
2002	if (sg_virt(pt->src) == sg_virt(pt->dst))
2003		in_place = true;
2004
2005	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2006			    CCP_PASSTHRU_MASKSIZE,
2007			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2008	if (ret)
2009		goto e_mask;
2010
2011	if (in_place) {
2012		dst = src;
2013	} else {
2014		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2015				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2016		if (ret)
2017			goto e_src;
2018	}
2019
2020	/* Send data to the CCP Passthru engine
2021	 *   Because the CCP engine works on a single source and destination
2022	 *   dma address at a time, each entry in the source scatterlist
2023	 *   (after the dma_map_sg call) must be less than or equal to the
2024	 *   (remaining) length in the destination scatterlist entry and the
2025	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2026	 */
2027	dst.sg_wa.sg_used = 0;
2028	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2029		if (!dst.sg_wa.sg ||
2030		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2031			ret = -EINVAL;
2032			goto e_dst;
2033		}
2034
2035		if (i == src.sg_wa.dma_count) {
2036			op.eom = 1;
2037			op.soc = 1;
2038		}
2039
2040		op.src.type = CCP_MEMTYPE_SYSTEM;
2041		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2042		op.src.u.dma.offset = 0;
2043		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2044
2045		op.dst.type = CCP_MEMTYPE_SYSTEM;
2046		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2047		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2048		op.dst.u.dma.length = op.src.u.dma.length;
2049
2050		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2051		if (ret) {
2052			cmd->engine_error = cmd_q->cmd_error;
2053			goto e_dst;
2054		}
2055
2056		dst.sg_wa.sg_used += src.sg_wa.sg->length;
2057		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2058			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2059			dst.sg_wa.sg_used = 0;
2060		}
2061		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2062	}
2063
2064e_dst:
2065	if (!in_place)
2066		ccp_free_data(&dst, cmd_q);
2067
2068e_src:
2069	ccp_free_data(&src, cmd_q);
2070
2071e_mask:
2072	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2073		ccp_dm_free(&mask);
2074
2075	return ret;
2076}
2077
2078static noinline_for_stack int
2079ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2080				      struct ccp_cmd *cmd)
2081{
2082	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2083	struct ccp_dm_workarea mask;
2084	struct ccp_op op;
2085	int ret;
2086
2087	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2088		return -EINVAL;
2089
2090	if (!pt->src_dma || !pt->dst_dma)
2091		return -EINVAL;
2092
2093	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2094		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2095			return -EINVAL;
2096		if (!pt->mask)
2097			return -EINVAL;
2098	}
2099
2100	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2101
2102	memset(&op, 0, sizeof(op));
2103	op.cmd_q = cmd_q;
2104	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2105
2106	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2107		/* Load the mask */
2108		op.sb_key = cmd_q->sb_key;
2109
2110		mask.length = pt->mask_len;
2111		mask.dma.address = pt->mask;
2112		mask.dma.length = pt->mask_len;
2113
2114		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2115				     CCP_PASSTHRU_BYTESWAP_NOOP);
2116		if (ret) {
2117			cmd->engine_error = cmd_q->cmd_error;
2118			return ret;
2119		}
2120	}
2121
2122	/* Send data to the CCP Passthru engine */
2123	op.eom = 1;
2124	op.soc = 1;
2125
2126	op.src.type = CCP_MEMTYPE_SYSTEM;
2127	op.src.u.dma.address = pt->src_dma;
2128	op.src.u.dma.offset = 0;
2129	op.src.u.dma.length = pt->src_len;
2130
2131	op.dst.type = CCP_MEMTYPE_SYSTEM;
2132	op.dst.u.dma.address = pt->dst_dma;
2133	op.dst.u.dma.offset = 0;
2134	op.dst.u.dma.length = pt->src_len;
2135
2136	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2137	if (ret)
2138		cmd->engine_error = cmd_q->cmd_error;
2139
2140	return ret;
2141}
2142
2143static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2144{
2145	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2146	struct ccp_dm_workarea src, dst;
2147	struct ccp_op op;
2148	int ret;
2149	u8 *save;
2150
2151	if (!ecc->u.mm.operand_1 ||
2152	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2153		return -EINVAL;
2154
2155	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2156		if (!ecc->u.mm.operand_2 ||
2157		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2158			return -EINVAL;
2159
2160	if (!ecc->u.mm.result ||
2161	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2162		return -EINVAL;
2163
2164	memset(&op, 0, sizeof(op));
2165	op.cmd_q = cmd_q;
2166	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2167
2168	/* Concatenate the modulus and the operands. Both the modulus and
2169	 * the operands must be in little endian format.  Since the input
2170	 * is in big endian format it must be converted and placed in a
2171	 * fixed length buffer.
2172	 */
2173	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2174				   DMA_TO_DEVICE);
2175	if (ret)
2176		return ret;
2177
2178	/* Save the workarea address since it is updated in order to perform
2179	 * the concatenation
2180	 */
2181	save = src.address;
2182
2183	/* Copy the ECC modulus */
2184	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2185	if (ret)
2186		goto e_src;
2187	src.address += CCP_ECC_OPERAND_SIZE;
2188
2189	/* Copy the first operand */
2190	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2191				      ecc->u.mm.operand_1_len);
2192	if (ret)
2193		goto e_src;
2194	src.address += CCP_ECC_OPERAND_SIZE;
2195
2196	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2197		/* Copy the second operand */
2198		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2199					      ecc->u.mm.operand_2_len);
2200		if (ret)
2201			goto e_src;
2202		src.address += CCP_ECC_OPERAND_SIZE;
2203	}
2204
2205	/* Restore the workarea address */
2206	src.address = save;
2207
2208	/* Prepare the output area for the operation */
2209	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2210				   DMA_FROM_DEVICE);
2211	if (ret)
2212		goto e_src;
2213
2214	op.soc = 1;
2215	op.src.u.dma.address = src.dma.address;
2216	op.src.u.dma.offset = 0;
2217	op.src.u.dma.length = src.length;
2218	op.dst.u.dma.address = dst.dma.address;
2219	op.dst.u.dma.offset = 0;
2220	op.dst.u.dma.length = dst.length;
2221
2222	op.u.ecc.function = cmd->u.ecc.function;
2223
2224	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2225	if (ret) {
2226		cmd->engine_error = cmd_q->cmd_error;
2227		goto e_dst;
2228	}
2229
2230	ecc->ecc_result = le16_to_cpup(
2231		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2232	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2233		ret = -EIO;
2234		goto e_dst;
2235	}
2236
2237	/* Save the ECC result */
2238	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2239				CCP_ECC_MODULUS_BYTES);
2240
2241e_dst:
2242	ccp_dm_free(&dst);
2243
2244e_src:
2245	ccp_dm_free(&src);
2246
2247	return ret;
2248}
2249
2250static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2251{
2252	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2253	struct ccp_dm_workarea src, dst;
2254	struct ccp_op op;
2255	int ret;
2256	u8 *save;
2257
2258	if (!ecc->u.pm.point_1.x ||
2259	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2260	    !ecc->u.pm.point_1.y ||
2261	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2262		return -EINVAL;
2263
2264	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2265		if (!ecc->u.pm.point_2.x ||
2266		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2267		    !ecc->u.pm.point_2.y ||
2268		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2269			return -EINVAL;
2270	} else {
2271		if (!ecc->u.pm.domain_a ||
2272		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2273			return -EINVAL;
2274
2275		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2276			if (!ecc->u.pm.scalar ||
2277			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2278				return -EINVAL;
2279	}
2280
2281	if (!ecc->u.pm.result.x ||
2282	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2283	    !ecc->u.pm.result.y ||
2284	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2285		return -EINVAL;
2286
2287	memset(&op, 0, sizeof(op));
2288	op.cmd_q = cmd_q;
2289	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2290
2291	/* Concatenate the modulus and the operands. Both the modulus and
2292	 * the operands must be in little endian format.  Since the input
2293	 * is in big endian format it must be converted and placed in a
2294	 * fixed length buffer.
2295	 */
2296	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2297				   DMA_TO_DEVICE);
2298	if (ret)
2299		return ret;
2300
2301	/* Save the workarea address since it is updated in order to perform
2302	 * the concatenation
2303	 */
2304	save = src.address;
2305
2306	/* Copy the ECC modulus */
2307	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2308	if (ret)
2309		goto e_src;
2310	src.address += CCP_ECC_OPERAND_SIZE;
2311
2312	/* Copy the first point X and Y coordinate */
2313	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2314				      ecc->u.pm.point_1.x_len);
2315	if (ret)
2316		goto e_src;
2317	src.address += CCP_ECC_OPERAND_SIZE;
2318	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2319				      ecc->u.pm.point_1.y_len);
2320	if (ret)
2321		goto e_src;
2322	src.address += CCP_ECC_OPERAND_SIZE;
2323
2324	/* Set the first point Z coordinate to 1 */
2325	*src.address = 0x01;
2326	src.address += CCP_ECC_OPERAND_SIZE;
2327
2328	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2329		/* Copy the second point X and Y coordinate */
2330		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2331					      ecc->u.pm.point_2.x_len);
2332		if (ret)
2333			goto e_src;
2334		src.address += CCP_ECC_OPERAND_SIZE;
2335		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2336					      ecc->u.pm.point_2.y_len);
2337		if (ret)
2338			goto e_src;
2339		src.address += CCP_ECC_OPERAND_SIZE;
2340
2341		/* Set the second point Z coordinate to 1 */
2342		*src.address = 0x01;
2343		src.address += CCP_ECC_OPERAND_SIZE;
2344	} else {
2345		/* Copy the Domain "a" parameter */
2346		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2347					      ecc->u.pm.domain_a_len);
2348		if (ret)
2349			goto e_src;
2350		src.address += CCP_ECC_OPERAND_SIZE;
2351
2352		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2353			/* Copy the scalar value */
2354			ret = ccp_reverse_set_dm_area(&src, 0,
2355						      ecc->u.pm.scalar, 0,
2356						      ecc->u.pm.scalar_len);
2357			if (ret)
2358				goto e_src;
2359			src.address += CCP_ECC_OPERAND_SIZE;
2360		}
2361	}
2362
2363	/* Restore the workarea address */
2364	src.address = save;
2365
2366	/* Prepare the output area for the operation */
2367	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2368				   DMA_FROM_DEVICE);
2369	if (ret)
2370		goto e_src;
2371
2372	op.soc = 1;
2373	op.src.u.dma.address = src.dma.address;
2374	op.src.u.dma.offset = 0;
2375	op.src.u.dma.length = src.length;
2376	op.dst.u.dma.address = dst.dma.address;
2377	op.dst.u.dma.offset = 0;
2378	op.dst.u.dma.length = dst.length;
2379
2380	op.u.ecc.function = cmd->u.ecc.function;
2381
2382	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2383	if (ret) {
2384		cmd->engine_error = cmd_q->cmd_error;
2385		goto e_dst;
2386	}
2387
2388	ecc->ecc_result = le16_to_cpup(
2389		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2390	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2391		ret = -EIO;
2392		goto e_dst;
2393	}
2394
2395	/* Save the workarea address since it is updated as we walk through
2396	 * to copy the point math result
2397	 */
2398	save = dst.address;
2399
2400	/* Save the ECC result X and Y coordinates */
2401	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2402				CCP_ECC_MODULUS_BYTES);
2403	dst.address += CCP_ECC_OUTPUT_SIZE;
2404	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2405				CCP_ECC_MODULUS_BYTES);
2406	dst.address += CCP_ECC_OUTPUT_SIZE;
2407
2408	/* Restore the workarea address */
2409	dst.address = save;
2410
2411e_dst:
2412	ccp_dm_free(&dst);
2413
2414e_src:
2415	ccp_dm_free(&src);
2416
2417	return ret;
2418}
2419
2420static noinline_for_stack int
2421ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2422{
2423	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2424
2425	ecc->ecc_result = 0;
2426
2427	if (!ecc->mod ||
2428	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2429		return -EINVAL;
2430
2431	switch (ecc->function) {
2432	case CCP_ECC_FUNCTION_MMUL_384BIT:
2433	case CCP_ECC_FUNCTION_MADD_384BIT:
2434	case CCP_ECC_FUNCTION_MINV_384BIT:
2435		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2436
2437	case CCP_ECC_FUNCTION_PADD_384BIT:
2438	case CCP_ECC_FUNCTION_PMUL_384BIT:
2439	case CCP_ECC_FUNCTION_PDBL_384BIT:
2440		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2441
2442	default:
2443		return -EINVAL;
2444	}
2445}
2446
2447int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2448{
2449	int ret;
2450
2451	cmd->engine_error = 0;
2452	cmd_q->cmd_error = 0;
2453	cmd_q->int_rcvd = 0;
2454	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2455
2456	switch (cmd->engine) {
2457	case CCP_ENGINE_AES:
2458		switch (cmd->u.aes.mode) {
2459		case CCP_AES_MODE_CMAC:
2460			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2461			break;
2462		case CCP_AES_MODE_GCM:
2463			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2464			break;
2465		default:
2466			ret = ccp_run_aes_cmd(cmd_q, cmd);
2467			break;
2468		}
2469		break;
2470	case CCP_ENGINE_XTS_AES_128:
2471		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2472		break;
2473	case CCP_ENGINE_DES3:
2474		ret = ccp_run_des3_cmd(cmd_q, cmd);
2475		break;
2476	case CCP_ENGINE_SHA:
2477		ret = ccp_run_sha_cmd(cmd_q, cmd);
2478		break;
2479	case CCP_ENGINE_RSA:
2480		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2481		break;
2482	case CCP_ENGINE_PASSTHRU:
2483		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2484			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2485		else
2486			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2487		break;
2488	case CCP_ENGINE_ECC:
2489		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2490		break;
2491	default:
2492		ret = -EINVAL;
2493	}
2494
2495	return ret;
2496}