Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Cryptographic Coprocessor (CCP) driver
4 *
5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
10
11#include <linux/dma-mapping.h>
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/interrupt.h>
15#include <crypto/scatterwalk.h>
16#include <crypto/des.h>
17#include <linux/ccp.h>
18
19#include "ccp-dev.h"
20
21/* SHA initial context values */
22static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
23 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
24 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
25 cpu_to_be32(SHA1_H4),
26};
27
28static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
29 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
30 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
31 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
32 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
33};
34
35static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
36 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
37 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
38 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
39 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
40};
41
42static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
43 cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
44 cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
45 cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
46 cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
47};
48
49static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
50 cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
51 cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
52 cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
53 cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
54};
55
56#define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
57 ccp_gen_jobid(ccp) : 0)
58
59static u32 ccp_gen_jobid(struct ccp_device *ccp)
60{
61 return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
62}
63
64static void ccp_sg_free(struct ccp_sg_workarea *wa)
65{
66 if (wa->dma_count)
67 dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
68
69 wa->dma_count = 0;
70}
71
72static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
73 struct scatterlist *sg, u64 len,
74 enum dma_data_direction dma_dir)
75{
76 memset(wa, 0, sizeof(*wa));
77
78 wa->sg = sg;
79 if (!sg)
80 return 0;
81
82 wa->nents = sg_nents_for_len(sg, len);
83 if (wa->nents < 0)
84 return wa->nents;
85
86 wa->bytes_left = len;
87 wa->sg_used = 0;
88
89 if (len == 0)
90 return 0;
91
92 if (dma_dir == DMA_NONE)
93 return 0;
94
95 wa->dma_sg = sg;
96 wa->dma_sg_head = sg;
97 wa->dma_dev = dev;
98 wa->dma_dir = dma_dir;
99 wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
100 if (!wa->dma_count)
101 return -ENOMEM;
102
103 return 0;
104}
105
106static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
107{
108 unsigned int nbytes = min_t(u64, len, wa->bytes_left);
109 unsigned int sg_combined_len = 0;
110
111 if (!wa->sg)
112 return;
113
114 wa->sg_used += nbytes;
115 wa->bytes_left -= nbytes;
116 if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
117 /* Advance to the next DMA scatterlist entry */
118 wa->dma_sg = sg_next(wa->dma_sg);
119
120 /* In the case that the DMA mapped scatterlist has entries
121 * that have been merged, the non-DMA mapped scatterlist
122 * must be advanced multiple times for each merged entry.
123 * This ensures that the current non-DMA mapped entry
124 * corresponds to the current DMA mapped entry.
125 */
126 do {
127 sg_combined_len += wa->sg->length;
128 wa->sg = sg_next(wa->sg);
129 } while (wa->sg_used > sg_combined_len);
130
131 wa->sg_used = 0;
132 }
133}
134
135static void ccp_dm_free(struct ccp_dm_workarea *wa)
136{
137 if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
138 if (wa->address)
139 dma_pool_free(wa->dma_pool, wa->address,
140 wa->dma.address);
141 } else {
142 if (wa->dma.address)
143 dma_unmap_single(wa->dev, wa->dma.address, wa->length,
144 wa->dma.dir);
145 kfree(wa->address);
146 }
147
148 wa->address = NULL;
149 wa->dma.address = 0;
150}
151
152static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
153 struct ccp_cmd_queue *cmd_q,
154 unsigned int len,
155 enum dma_data_direction dir)
156{
157 memset(wa, 0, sizeof(*wa));
158
159 if (!len)
160 return 0;
161
162 wa->dev = cmd_q->ccp->dev;
163 wa->length = len;
164
165 if (len <= CCP_DMAPOOL_MAX_SIZE) {
166 wa->dma_pool = cmd_q->dma_pool;
167
168 wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
169 &wa->dma.address);
170 if (!wa->address)
171 return -ENOMEM;
172
173 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
174
175 } else {
176 wa->address = kzalloc(len, GFP_KERNEL);
177 if (!wa->address)
178 return -ENOMEM;
179
180 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
181 dir);
182 if (dma_mapping_error(wa->dev, wa->dma.address)) {
183 kfree(wa->address);
184 wa->address = NULL;
185 return -ENOMEM;
186 }
187
188 wa->dma.length = len;
189 }
190 wa->dma.dir = dir;
191
192 return 0;
193}
194
195static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
196 struct scatterlist *sg, unsigned int sg_offset,
197 unsigned int len)
198{
199 WARN_ON(!wa->address);
200
201 if (len > (wa->length - wa_offset))
202 return -EINVAL;
203
204 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
205 0);
206 return 0;
207}
208
209static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
210 struct scatterlist *sg, unsigned int sg_offset,
211 unsigned int len)
212{
213 WARN_ON(!wa->address);
214
215 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
216 1);
217}
218
219static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
220 unsigned int wa_offset,
221 struct scatterlist *sg,
222 unsigned int sg_offset,
223 unsigned int len)
224{
225 u8 *p, *q;
226 int rc;
227
228 rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
229 if (rc)
230 return rc;
231
232 p = wa->address + wa_offset;
233 q = p + len - 1;
234 while (p < q) {
235 *p = *p ^ *q;
236 *q = *p ^ *q;
237 *p = *p ^ *q;
238 p++;
239 q--;
240 }
241 return 0;
242}
243
244static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
245 unsigned int wa_offset,
246 struct scatterlist *sg,
247 unsigned int sg_offset,
248 unsigned int len)
249{
250 u8 *p, *q;
251
252 p = wa->address + wa_offset;
253 q = p + len - 1;
254 while (p < q) {
255 *p = *p ^ *q;
256 *q = *p ^ *q;
257 *p = *p ^ *q;
258 p++;
259 q--;
260 }
261
262 ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
263}
264
265static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
266{
267 ccp_dm_free(&data->dm_wa);
268 ccp_sg_free(&data->sg_wa);
269}
270
271static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
272 struct scatterlist *sg, u64 sg_len,
273 unsigned int dm_len,
274 enum dma_data_direction dir)
275{
276 int ret;
277
278 memset(data, 0, sizeof(*data));
279
280 ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
281 dir);
282 if (ret)
283 goto e_err;
284
285 ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
286 if (ret)
287 goto e_err;
288
289 return 0;
290
291e_err:
292 ccp_free_data(data, cmd_q);
293
294 return ret;
295}
296
297static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
298{
299 struct ccp_sg_workarea *sg_wa = &data->sg_wa;
300 struct ccp_dm_workarea *dm_wa = &data->dm_wa;
301 unsigned int buf_count, nbytes;
302
303 /* Clear the buffer if setting it */
304 if (!from)
305 memset(dm_wa->address, 0, dm_wa->length);
306
307 if (!sg_wa->sg)
308 return 0;
309
310 /* Perform the copy operation
311 * nbytes will always be <= UINT_MAX because dm_wa->length is
312 * an unsigned int
313 */
314 nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
315 scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
316 nbytes, from);
317
318 /* Update the structures and generate the count */
319 buf_count = 0;
320 while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
321 nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
322 dm_wa->length - buf_count);
323 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
324
325 buf_count += nbytes;
326 ccp_update_sg_workarea(sg_wa, nbytes);
327 }
328
329 return buf_count;
330}
331
332static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
333{
334 return ccp_queue_buf(data, 0);
335}
336
337static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
338{
339 return ccp_queue_buf(data, 1);
340}
341
342static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
343 struct ccp_op *op, unsigned int block_size,
344 bool blocksize_op)
345{
346 unsigned int sg_src_len, sg_dst_len, op_len;
347
348 /* The CCP can only DMA from/to one address each per operation. This
349 * requires that we find the smallest DMA area between the source
350 * and destination. The resulting len values will always be <= UINT_MAX
351 * because the dma length is an unsigned int.
352 */
353 sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
354 sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
355
356 if (dst) {
357 sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
358 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
359 op_len = min(sg_src_len, sg_dst_len);
360 } else {
361 op_len = sg_src_len;
362 }
363
364 /* The data operation length will be at least block_size in length
365 * or the smaller of available sg room remaining for the source or
366 * the destination
367 */
368 op_len = max(op_len, block_size);
369
370 /* Unless we have to buffer data, there's no reason to wait */
371 op->soc = 0;
372
373 if (sg_src_len < block_size) {
374 /* Not enough data in the sg element, so it
375 * needs to be buffered into a blocksize chunk
376 */
377 int cp_len = ccp_fill_queue_buf(src);
378
379 op->soc = 1;
380 op->src.u.dma.address = src->dm_wa.dma.address;
381 op->src.u.dma.offset = 0;
382 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
383 } else {
384 /* Enough data in the sg element, but we need to
385 * adjust for any previously copied data
386 */
387 op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
388 op->src.u.dma.offset = src->sg_wa.sg_used;
389 op->src.u.dma.length = op_len & ~(block_size - 1);
390
391 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
392 }
393
394 if (dst) {
395 if (sg_dst_len < block_size) {
396 /* Not enough room in the sg element or we're on the
397 * last piece of data (when using padding), so the
398 * output needs to be buffered into a blocksize chunk
399 */
400 op->soc = 1;
401 op->dst.u.dma.address = dst->dm_wa.dma.address;
402 op->dst.u.dma.offset = 0;
403 op->dst.u.dma.length = op->src.u.dma.length;
404 } else {
405 /* Enough room in the sg element, but we need to
406 * adjust for any previously used area
407 */
408 op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
409 op->dst.u.dma.offset = dst->sg_wa.sg_used;
410 op->dst.u.dma.length = op->src.u.dma.length;
411 }
412 }
413}
414
415static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
416 struct ccp_op *op)
417{
418 op->init = 0;
419
420 if (dst) {
421 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
422 ccp_empty_queue_buf(dst);
423 else
424 ccp_update_sg_workarea(&dst->sg_wa,
425 op->dst.u.dma.length);
426 }
427}
428
429static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
430 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
431 u32 byte_swap, bool from)
432{
433 struct ccp_op op;
434
435 memset(&op, 0, sizeof(op));
436
437 op.cmd_q = cmd_q;
438 op.jobid = jobid;
439 op.eom = 1;
440
441 if (from) {
442 op.soc = 1;
443 op.src.type = CCP_MEMTYPE_SB;
444 op.src.u.sb = sb;
445 op.dst.type = CCP_MEMTYPE_SYSTEM;
446 op.dst.u.dma.address = wa->dma.address;
447 op.dst.u.dma.length = wa->length;
448 } else {
449 op.src.type = CCP_MEMTYPE_SYSTEM;
450 op.src.u.dma.address = wa->dma.address;
451 op.src.u.dma.length = wa->length;
452 op.dst.type = CCP_MEMTYPE_SB;
453 op.dst.u.sb = sb;
454 }
455
456 op.u.passthru.byte_swap = byte_swap;
457
458 return cmd_q->ccp->vdata->perform->passthru(&op);
459}
460
461static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
462 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
463 u32 byte_swap)
464{
465 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
466}
467
468static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
469 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
470 u32 byte_swap)
471{
472 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
473}
474
475static noinline_for_stack int
476ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
477{
478 struct ccp_aes_engine *aes = &cmd->u.aes;
479 struct ccp_dm_workarea key, ctx;
480 struct ccp_data src;
481 struct ccp_op op;
482 unsigned int dm_offset;
483 int ret;
484
485 if (!((aes->key_len == AES_KEYSIZE_128) ||
486 (aes->key_len == AES_KEYSIZE_192) ||
487 (aes->key_len == AES_KEYSIZE_256)))
488 return -EINVAL;
489
490 if (aes->src_len & (AES_BLOCK_SIZE - 1))
491 return -EINVAL;
492
493 if (aes->iv_len != AES_BLOCK_SIZE)
494 return -EINVAL;
495
496 if (!aes->key || !aes->iv || !aes->src)
497 return -EINVAL;
498
499 if (aes->cmac_final) {
500 if (aes->cmac_key_len != AES_BLOCK_SIZE)
501 return -EINVAL;
502
503 if (!aes->cmac_key)
504 return -EINVAL;
505 }
506
507 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
508 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
509
510 ret = -EIO;
511 memset(&op, 0, sizeof(op));
512 op.cmd_q = cmd_q;
513 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
514 op.sb_key = cmd_q->sb_key;
515 op.sb_ctx = cmd_q->sb_ctx;
516 op.init = 1;
517 op.u.aes.type = aes->type;
518 op.u.aes.mode = aes->mode;
519 op.u.aes.action = aes->action;
520
521 /* All supported key sizes fit in a single (32-byte) SB entry
522 * and must be in little endian format. Use the 256-bit byte
523 * swap passthru option to convert from big endian to little
524 * endian.
525 */
526 ret = ccp_init_dm_workarea(&key, cmd_q,
527 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
528 DMA_TO_DEVICE);
529 if (ret)
530 return ret;
531
532 dm_offset = CCP_SB_BYTES - aes->key_len;
533 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
534 if (ret)
535 goto e_key;
536 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
537 CCP_PASSTHRU_BYTESWAP_256BIT);
538 if (ret) {
539 cmd->engine_error = cmd_q->cmd_error;
540 goto e_key;
541 }
542
543 /* The AES context fits in a single (32-byte) SB entry and
544 * must be in little endian format. Use the 256-bit byte swap
545 * passthru option to convert from big endian to little endian.
546 */
547 ret = ccp_init_dm_workarea(&ctx, cmd_q,
548 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
549 DMA_BIDIRECTIONAL);
550 if (ret)
551 goto e_key;
552
553 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
554 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
555 if (ret)
556 goto e_ctx;
557 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
558 CCP_PASSTHRU_BYTESWAP_256BIT);
559 if (ret) {
560 cmd->engine_error = cmd_q->cmd_error;
561 goto e_ctx;
562 }
563
564 /* Send data to the CCP AES engine */
565 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
566 AES_BLOCK_SIZE, DMA_TO_DEVICE);
567 if (ret)
568 goto e_ctx;
569
570 while (src.sg_wa.bytes_left) {
571 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
572 if (aes->cmac_final && !src.sg_wa.bytes_left) {
573 op.eom = 1;
574
575 /* Push the K1/K2 key to the CCP now */
576 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
577 op.sb_ctx,
578 CCP_PASSTHRU_BYTESWAP_256BIT);
579 if (ret) {
580 cmd->engine_error = cmd_q->cmd_error;
581 goto e_src;
582 }
583
584 ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
585 aes->cmac_key_len);
586 if (ret)
587 goto e_src;
588 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
589 CCP_PASSTHRU_BYTESWAP_256BIT);
590 if (ret) {
591 cmd->engine_error = cmd_q->cmd_error;
592 goto e_src;
593 }
594 }
595
596 ret = cmd_q->ccp->vdata->perform->aes(&op);
597 if (ret) {
598 cmd->engine_error = cmd_q->cmd_error;
599 goto e_src;
600 }
601
602 ccp_process_data(&src, NULL, &op);
603 }
604
605 /* Retrieve the AES context - convert from LE to BE using
606 * 32-byte (256-bit) byteswapping
607 */
608 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
609 CCP_PASSTHRU_BYTESWAP_256BIT);
610 if (ret) {
611 cmd->engine_error = cmd_q->cmd_error;
612 goto e_src;
613 }
614
615 /* ...but we only need AES_BLOCK_SIZE bytes */
616 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
617 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
618
619e_src:
620 ccp_free_data(&src, cmd_q);
621
622e_ctx:
623 ccp_dm_free(&ctx);
624
625e_key:
626 ccp_dm_free(&key);
627
628 return ret;
629}
630
631static noinline_for_stack int
632ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
633{
634 struct ccp_aes_engine *aes = &cmd->u.aes;
635 struct ccp_dm_workarea key, ctx, final_wa, tag;
636 struct ccp_data src, dst;
637 struct ccp_data aad;
638 struct ccp_op op;
639 unsigned int dm_offset;
640 unsigned int authsize;
641 unsigned int jobid;
642 unsigned int ilen;
643 bool in_place = true; /* Default value */
644 __be64 *final;
645 int ret;
646
647 struct scatterlist *p_inp, sg_inp[2];
648 struct scatterlist *p_tag, sg_tag[2];
649 struct scatterlist *p_outp, sg_outp[2];
650 struct scatterlist *p_aad;
651
652 if (!aes->iv)
653 return -EINVAL;
654
655 if (!((aes->key_len == AES_KEYSIZE_128) ||
656 (aes->key_len == AES_KEYSIZE_192) ||
657 (aes->key_len == AES_KEYSIZE_256)))
658 return -EINVAL;
659
660 if (!aes->key) /* Gotta have a key SGL */
661 return -EINVAL;
662
663 /* Zero defaults to 16 bytes, the maximum size */
664 authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
665 switch (authsize) {
666 case 16:
667 case 15:
668 case 14:
669 case 13:
670 case 12:
671 case 8:
672 case 4:
673 break;
674 default:
675 return -EINVAL;
676 }
677
678 /* First, decompose the source buffer into AAD & PT,
679 * and the destination buffer into AAD, CT & tag, or
680 * the input into CT & tag.
681 * It is expected that the input and output SGs will
682 * be valid, even if the AAD and input lengths are 0.
683 */
684 p_aad = aes->src;
685 p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
686 p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
687 if (aes->action == CCP_AES_ACTION_ENCRYPT) {
688 ilen = aes->src_len;
689 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
690 } else {
691 /* Input length for decryption includes tag */
692 ilen = aes->src_len - authsize;
693 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
694 }
695
696 jobid = CCP_NEW_JOBID(cmd_q->ccp);
697
698 memset(&op, 0, sizeof(op));
699 op.cmd_q = cmd_q;
700 op.jobid = jobid;
701 op.sb_key = cmd_q->sb_key; /* Pre-allocated */
702 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
703 op.init = 1;
704 op.u.aes.type = aes->type;
705
706 /* Copy the key to the LSB */
707 ret = ccp_init_dm_workarea(&key, cmd_q,
708 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
709 DMA_TO_DEVICE);
710 if (ret)
711 return ret;
712
713 dm_offset = CCP_SB_BYTES - aes->key_len;
714 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
715 if (ret)
716 goto e_key;
717 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
718 CCP_PASSTHRU_BYTESWAP_256BIT);
719 if (ret) {
720 cmd->engine_error = cmd_q->cmd_error;
721 goto e_key;
722 }
723
724 /* Copy the context (IV) to the LSB.
725 * There is an assumption here that the IV is 96 bits in length, plus
726 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
727 */
728 ret = ccp_init_dm_workarea(&ctx, cmd_q,
729 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
730 DMA_BIDIRECTIONAL);
731 if (ret)
732 goto e_key;
733
734 dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
735 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
736 if (ret)
737 goto e_ctx;
738
739 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
740 CCP_PASSTHRU_BYTESWAP_256BIT);
741 if (ret) {
742 cmd->engine_error = cmd_q->cmd_error;
743 goto e_ctx;
744 }
745
746 op.init = 1;
747 if (aes->aad_len > 0) {
748 /* Step 1: Run a GHASH over the Additional Authenticated Data */
749 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
750 AES_BLOCK_SIZE,
751 DMA_TO_DEVICE);
752 if (ret)
753 goto e_ctx;
754
755 op.u.aes.mode = CCP_AES_MODE_GHASH;
756 op.u.aes.action = CCP_AES_GHASHAAD;
757
758 while (aad.sg_wa.bytes_left) {
759 ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
760
761 ret = cmd_q->ccp->vdata->perform->aes(&op);
762 if (ret) {
763 cmd->engine_error = cmd_q->cmd_error;
764 goto e_aad;
765 }
766
767 ccp_process_data(&aad, NULL, &op);
768 op.init = 0;
769 }
770 }
771
772 op.u.aes.mode = CCP_AES_MODE_GCTR;
773 op.u.aes.action = aes->action;
774
775 if (ilen > 0) {
776 /* Step 2: Run a GCTR over the plaintext */
777 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
778
779 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
780 AES_BLOCK_SIZE,
781 in_place ? DMA_BIDIRECTIONAL
782 : DMA_TO_DEVICE);
783 if (ret)
784 goto e_aad;
785
786 if (in_place) {
787 dst = src;
788 } else {
789 ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
790 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
791 if (ret)
792 goto e_src;
793 }
794
795 op.soc = 0;
796 op.eom = 0;
797 op.init = 1;
798 while (src.sg_wa.bytes_left) {
799 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
800 if (!src.sg_wa.bytes_left) {
801 unsigned int nbytes = ilen % AES_BLOCK_SIZE;
802
803 if (nbytes) {
804 op.eom = 1;
805 op.u.aes.size = (nbytes * 8) - 1;
806 }
807 }
808
809 ret = cmd_q->ccp->vdata->perform->aes(&op);
810 if (ret) {
811 cmd->engine_error = cmd_q->cmd_error;
812 goto e_dst;
813 }
814
815 ccp_process_data(&src, &dst, &op);
816 op.init = 0;
817 }
818 }
819
820 /* Step 3: Update the IV portion of the context with the original IV */
821 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
822 CCP_PASSTHRU_BYTESWAP_256BIT);
823 if (ret) {
824 cmd->engine_error = cmd_q->cmd_error;
825 goto e_dst;
826 }
827
828 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
829 if (ret)
830 goto e_dst;
831
832 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
833 CCP_PASSTHRU_BYTESWAP_256BIT);
834 if (ret) {
835 cmd->engine_error = cmd_q->cmd_error;
836 goto e_dst;
837 }
838
839 /* Step 4: Concatenate the lengths of the AAD and source, and
840 * hash that 16 byte buffer.
841 */
842 ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
843 DMA_BIDIRECTIONAL);
844 if (ret)
845 goto e_dst;
846 final = (__be64 *)final_wa.address;
847 final[0] = cpu_to_be64(aes->aad_len * 8);
848 final[1] = cpu_to_be64(ilen * 8);
849
850 memset(&op, 0, sizeof(op));
851 op.cmd_q = cmd_q;
852 op.jobid = jobid;
853 op.sb_key = cmd_q->sb_key; /* Pre-allocated */
854 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
855 op.init = 1;
856 op.u.aes.type = aes->type;
857 op.u.aes.mode = CCP_AES_MODE_GHASH;
858 op.u.aes.action = CCP_AES_GHASHFINAL;
859 op.src.type = CCP_MEMTYPE_SYSTEM;
860 op.src.u.dma.address = final_wa.dma.address;
861 op.src.u.dma.length = AES_BLOCK_SIZE;
862 op.dst.type = CCP_MEMTYPE_SYSTEM;
863 op.dst.u.dma.address = final_wa.dma.address;
864 op.dst.u.dma.length = AES_BLOCK_SIZE;
865 op.eom = 1;
866 op.u.aes.size = 0;
867 ret = cmd_q->ccp->vdata->perform->aes(&op);
868 if (ret)
869 goto e_final_wa;
870
871 if (aes->action == CCP_AES_ACTION_ENCRYPT) {
872 /* Put the ciphered tag after the ciphertext. */
873 ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
874 } else {
875 /* Does this ciphered tag match the input? */
876 ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
877 DMA_BIDIRECTIONAL);
878 if (ret)
879 goto e_final_wa;
880 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
881 if (ret) {
882 ccp_dm_free(&tag);
883 goto e_final_wa;
884 }
885
886 ret = crypto_memneq(tag.address, final_wa.address,
887 authsize) ? -EBADMSG : 0;
888 ccp_dm_free(&tag);
889 }
890
891e_final_wa:
892 ccp_dm_free(&final_wa);
893
894e_dst:
895 if (ilen > 0 && !in_place)
896 ccp_free_data(&dst, cmd_q);
897
898e_src:
899 if (ilen > 0)
900 ccp_free_data(&src, cmd_q);
901
902e_aad:
903 if (aes->aad_len)
904 ccp_free_data(&aad, cmd_q);
905
906e_ctx:
907 ccp_dm_free(&ctx);
908
909e_key:
910 ccp_dm_free(&key);
911
912 return ret;
913}
914
915static noinline_for_stack int
916ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
917{
918 struct ccp_aes_engine *aes = &cmd->u.aes;
919 struct ccp_dm_workarea key, ctx;
920 struct ccp_data src, dst;
921 struct ccp_op op;
922 unsigned int dm_offset;
923 bool in_place = false;
924 int ret;
925
926 if (!((aes->key_len == AES_KEYSIZE_128) ||
927 (aes->key_len == AES_KEYSIZE_192) ||
928 (aes->key_len == AES_KEYSIZE_256)))
929 return -EINVAL;
930
931 if (((aes->mode == CCP_AES_MODE_ECB) ||
932 (aes->mode == CCP_AES_MODE_CBC)) &&
933 (aes->src_len & (AES_BLOCK_SIZE - 1)))
934 return -EINVAL;
935
936 if (!aes->key || !aes->src || !aes->dst)
937 return -EINVAL;
938
939 if (aes->mode != CCP_AES_MODE_ECB) {
940 if (aes->iv_len != AES_BLOCK_SIZE)
941 return -EINVAL;
942
943 if (!aes->iv)
944 return -EINVAL;
945 }
946
947 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
948 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
949
950 ret = -EIO;
951 memset(&op, 0, sizeof(op));
952 op.cmd_q = cmd_q;
953 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
954 op.sb_key = cmd_q->sb_key;
955 op.sb_ctx = cmd_q->sb_ctx;
956 op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
957 op.u.aes.type = aes->type;
958 op.u.aes.mode = aes->mode;
959 op.u.aes.action = aes->action;
960
961 /* All supported key sizes fit in a single (32-byte) SB entry
962 * and must be in little endian format. Use the 256-bit byte
963 * swap passthru option to convert from big endian to little
964 * endian.
965 */
966 ret = ccp_init_dm_workarea(&key, cmd_q,
967 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
968 DMA_TO_DEVICE);
969 if (ret)
970 return ret;
971
972 dm_offset = CCP_SB_BYTES - aes->key_len;
973 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
974 if (ret)
975 goto e_key;
976 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
977 CCP_PASSTHRU_BYTESWAP_256BIT);
978 if (ret) {
979 cmd->engine_error = cmd_q->cmd_error;
980 goto e_key;
981 }
982
983 /* The AES context fits in a single (32-byte) SB entry and
984 * must be in little endian format. Use the 256-bit byte swap
985 * passthru option to convert from big endian to little endian.
986 */
987 ret = ccp_init_dm_workarea(&ctx, cmd_q,
988 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
989 DMA_BIDIRECTIONAL);
990 if (ret)
991 goto e_key;
992
993 if (aes->mode != CCP_AES_MODE_ECB) {
994 /* Load the AES context - convert to LE */
995 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
996 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
997 if (ret)
998 goto e_ctx;
999 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1000 CCP_PASSTHRU_BYTESWAP_256BIT);
1001 if (ret) {
1002 cmd->engine_error = cmd_q->cmd_error;
1003 goto e_ctx;
1004 }
1005 }
1006 switch (aes->mode) {
1007 case CCP_AES_MODE_CFB: /* CFB128 only */
1008 case CCP_AES_MODE_CTR:
1009 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
1010 break;
1011 default:
1012 op.u.aes.size = 0;
1013 }
1014
1015 /* Prepare the input and output data workareas. For in-place
1016 * operations we need to set the dma direction to BIDIRECTIONAL
1017 * and copy the src workarea to the dst workarea.
1018 */
1019 if (sg_virt(aes->src) == sg_virt(aes->dst))
1020 in_place = true;
1021
1022 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1023 AES_BLOCK_SIZE,
1024 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1025 if (ret)
1026 goto e_ctx;
1027
1028 if (in_place) {
1029 dst = src;
1030 } else {
1031 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1032 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1033 if (ret)
1034 goto e_src;
1035 }
1036
1037 /* Send data to the CCP AES engine */
1038 while (src.sg_wa.bytes_left) {
1039 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1040 if (!src.sg_wa.bytes_left) {
1041 op.eom = 1;
1042
1043 /* Since we don't retrieve the AES context in ECB
1044 * mode we have to wait for the operation to complete
1045 * on the last piece of data
1046 */
1047 if (aes->mode == CCP_AES_MODE_ECB)
1048 op.soc = 1;
1049 }
1050
1051 ret = cmd_q->ccp->vdata->perform->aes(&op);
1052 if (ret) {
1053 cmd->engine_error = cmd_q->cmd_error;
1054 goto e_dst;
1055 }
1056
1057 ccp_process_data(&src, &dst, &op);
1058 }
1059
1060 if (aes->mode != CCP_AES_MODE_ECB) {
1061 /* Retrieve the AES context - convert from LE to BE using
1062 * 32-byte (256-bit) byteswapping
1063 */
1064 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1065 CCP_PASSTHRU_BYTESWAP_256BIT);
1066 if (ret) {
1067 cmd->engine_error = cmd_q->cmd_error;
1068 goto e_dst;
1069 }
1070
1071 /* ...but we only need AES_BLOCK_SIZE bytes */
1072 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1073 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1074 }
1075
1076e_dst:
1077 if (!in_place)
1078 ccp_free_data(&dst, cmd_q);
1079
1080e_src:
1081 ccp_free_data(&src, cmd_q);
1082
1083e_ctx:
1084 ccp_dm_free(&ctx);
1085
1086e_key:
1087 ccp_dm_free(&key);
1088
1089 return ret;
1090}
1091
1092static noinline_for_stack int
1093ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1094{
1095 struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1096 struct ccp_dm_workarea key, ctx;
1097 struct ccp_data src, dst;
1098 struct ccp_op op;
1099 unsigned int unit_size, dm_offset;
1100 bool in_place = false;
1101 unsigned int sb_count;
1102 enum ccp_aes_type aestype;
1103 int ret;
1104
1105 switch (xts->unit_size) {
1106 case CCP_XTS_AES_UNIT_SIZE_16:
1107 unit_size = 16;
1108 break;
1109 case CCP_XTS_AES_UNIT_SIZE_512:
1110 unit_size = 512;
1111 break;
1112 case CCP_XTS_AES_UNIT_SIZE_1024:
1113 unit_size = 1024;
1114 break;
1115 case CCP_XTS_AES_UNIT_SIZE_2048:
1116 unit_size = 2048;
1117 break;
1118 case CCP_XTS_AES_UNIT_SIZE_4096:
1119 unit_size = 4096;
1120 break;
1121
1122 default:
1123 return -EINVAL;
1124 }
1125
1126 if (xts->key_len == AES_KEYSIZE_128)
1127 aestype = CCP_AES_TYPE_128;
1128 else if (xts->key_len == AES_KEYSIZE_256)
1129 aestype = CCP_AES_TYPE_256;
1130 else
1131 return -EINVAL;
1132
1133 if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1134 return -EINVAL;
1135
1136 if (xts->iv_len != AES_BLOCK_SIZE)
1137 return -EINVAL;
1138
1139 if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1140 return -EINVAL;
1141
1142 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1143 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1144
1145 ret = -EIO;
1146 memset(&op, 0, sizeof(op));
1147 op.cmd_q = cmd_q;
1148 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1149 op.sb_key = cmd_q->sb_key;
1150 op.sb_ctx = cmd_q->sb_ctx;
1151 op.init = 1;
1152 op.u.xts.type = aestype;
1153 op.u.xts.action = xts->action;
1154 op.u.xts.unit_size = xts->unit_size;
1155
1156 /* A version 3 device only supports 128-bit keys, which fits into a
1157 * single SB entry. A version 5 device uses a 512-bit vector, so two
1158 * SB entries.
1159 */
1160 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1161 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1162 else
1163 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1164 ret = ccp_init_dm_workarea(&key, cmd_q,
1165 sb_count * CCP_SB_BYTES,
1166 DMA_TO_DEVICE);
1167 if (ret)
1168 return ret;
1169
1170 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1171 /* All supported key sizes must be in little endian format.
1172 * Use the 256-bit byte swap passthru option to convert from
1173 * big endian to little endian.
1174 */
1175 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1176 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1177 if (ret)
1178 goto e_key;
1179 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1180 if (ret)
1181 goto e_key;
1182 } else {
1183 /* Version 5 CCPs use a 512-bit space for the key: each portion
1184 * occupies 256 bits, or one entire slot, and is zero-padded.
1185 */
1186 unsigned int pad;
1187
1188 dm_offset = CCP_SB_BYTES;
1189 pad = dm_offset - xts->key_len;
1190 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1191 if (ret)
1192 goto e_key;
1193 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1194 xts->key_len, xts->key_len);
1195 if (ret)
1196 goto e_key;
1197 }
1198 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1199 CCP_PASSTHRU_BYTESWAP_256BIT);
1200 if (ret) {
1201 cmd->engine_error = cmd_q->cmd_error;
1202 goto e_key;
1203 }
1204
1205 /* The AES context fits in a single (32-byte) SB entry and
1206 * for XTS is already in little endian format so no byte swapping
1207 * is needed.
1208 */
1209 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1210 CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1211 DMA_BIDIRECTIONAL);
1212 if (ret)
1213 goto e_key;
1214
1215 ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1216 if (ret)
1217 goto e_ctx;
1218 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1219 CCP_PASSTHRU_BYTESWAP_NOOP);
1220 if (ret) {
1221 cmd->engine_error = cmd_q->cmd_error;
1222 goto e_ctx;
1223 }
1224
1225 /* Prepare the input and output data workareas. For in-place
1226 * operations we need to set the dma direction to BIDIRECTIONAL
1227 * and copy the src workarea to the dst workarea.
1228 */
1229 if (sg_virt(xts->src) == sg_virt(xts->dst))
1230 in_place = true;
1231
1232 ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1233 unit_size,
1234 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1235 if (ret)
1236 goto e_ctx;
1237
1238 if (in_place) {
1239 dst = src;
1240 } else {
1241 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1242 unit_size, DMA_FROM_DEVICE);
1243 if (ret)
1244 goto e_src;
1245 }
1246
1247 /* Send data to the CCP AES engine */
1248 while (src.sg_wa.bytes_left) {
1249 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1250 if (!src.sg_wa.bytes_left)
1251 op.eom = 1;
1252
1253 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1254 if (ret) {
1255 cmd->engine_error = cmd_q->cmd_error;
1256 goto e_dst;
1257 }
1258
1259 ccp_process_data(&src, &dst, &op);
1260 }
1261
1262 /* Retrieve the AES context - convert from LE to BE using
1263 * 32-byte (256-bit) byteswapping
1264 */
1265 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1266 CCP_PASSTHRU_BYTESWAP_256BIT);
1267 if (ret) {
1268 cmd->engine_error = cmd_q->cmd_error;
1269 goto e_dst;
1270 }
1271
1272 /* ...but we only need AES_BLOCK_SIZE bytes */
1273 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1274 ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1275
1276e_dst:
1277 if (!in_place)
1278 ccp_free_data(&dst, cmd_q);
1279
1280e_src:
1281 ccp_free_data(&src, cmd_q);
1282
1283e_ctx:
1284 ccp_dm_free(&ctx);
1285
1286e_key:
1287 ccp_dm_free(&key);
1288
1289 return ret;
1290}
1291
1292static noinline_for_stack int
1293ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1294{
1295 struct ccp_des3_engine *des3 = &cmd->u.des3;
1296
1297 struct ccp_dm_workarea key, ctx;
1298 struct ccp_data src, dst;
1299 struct ccp_op op;
1300 unsigned int dm_offset;
1301 unsigned int len_singlekey;
1302 bool in_place = false;
1303 int ret;
1304
1305 /* Error checks */
1306 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1307 return -EINVAL;
1308
1309 if (!cmd_q->ccp->vdata->perform->des3)
1310 return -EINVAL;
1311
1312 if (des3->key_len != DES3_EDE_KEY_SIZE)
1313 return -EINVAL;
1314
1315 if (((des3->mode == CCP_DES3_MODE_ECB) ||
1316 (des3->mode == CCP_DES3_MODE_CBC)) &&
1317 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1318 return -EINVAL;
1319
1320 if (!des3->key || !des3->src || !des3->dst)
1321 return -EINVAL;
1322
1323 if (des3->mode != CCP_DES3_MODE_ECB) {
1324 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1325 return -EINVAL;
1326
1327 if (!des3->iv)
1328 return -EINVAL;
1329 }
1330
1331 /* Zero out all the fields of the command desc */
1332 memset(&op, 0, sizeof(op));
1333
1334 /* Set up the Function field */
1335 op.cmd_q = cmd_q;
1336 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1337 op.sb_key = cmd_q->sb_key;
1338
1339 op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1340 op.u.des3.type = des3->type;
1341 op.u.des3.mode = des3->mode;
1342 op.u.des3.action = des3->action;
1343
1344 /*
1345 * All supported key sizes fit in a single (32-byte) KSB entry and
1346 * (like AES) must be in little endian format. Use the 256-bit byte
1347 * swap passthru option to convert from big endian to little endian.
1348 */
1349 ret = ccp_init_dm_workarea(&key, cmd_q,
1350 CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1351 DMA_TO_DEVICE);
1352 if (ret)
1353 return ret;
1354
1355 /*
1356 * The contents of the key triplet are in the reverse order of what
1357 * is required by the engine. Copy the 3 pieces individually to put
1358 * them where they belong.
1359 */
1360 dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1361
1362 len_singlekey = des3->key_len / 3;
1363 ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1364 des3->key, 0, len_singlekey);
1365 if (ret)
1366 goto e_key;
1367 ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1368 des3->key, len_singlekey, len_singlekey);
1369 if (ret)
1370 goto e_key;
1371 ret = ccp_set_dm_area(&key, dm_offset,
1372 des3->key, 2 * len_singlekey, len_singlekey);
1373 if (ret)
1374 goto e_key;
1375
1376 /* Copy the key to the SB */
1377 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1378 CCP_PASSTHRU_BYTESWAP_256BIT);
1379 if (ret) {
1380 cmd->engine_error = cmd_q->cmd_error;
1381 goto e_key;
1382 }
1383
1384 /*
1385 * The DES3 context fits in a single (32-byte) KSB entry and
1386 * must be in little endian format. Use the 256-bit byte swap
1387 * passthru option to convert from big endian to little endian.
1388 */
1389 if (des3->mode != CCP_DES3_MODE_ECB) {
1390 op.sb_ctx = cmd_q->sb_ctx;
1391
1392 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1393 CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1394 DMA_BIDIRECTIONAL);
1395 if (ret)
1396 goto e_key;
1397
1398 /* Load the context into the LSB */
1399 dm_offset = CCP_SB_BYTES - des3->iv_len;
1400 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1401 des3->iv_len);
1402 if (ret)
1403 goto e_ctx;
1404
1405 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1406 CCP_PASSTHRU_BYTESWAP_256BIT);
1407 if (ret) {
1408 cmd->engine_error = cmd_q->cmd_error;
1409 goto e_ctx;
1410 }
1411 }
1412
1413 /*
1414 * Prepare the input and output data workareas. For in-place
1415 * operations we need to set the dma direction to BIDIRECTIONAL
1416 * and copy the src workarea to the dst workarea.
1417 */
1418 if (sg_virt(des3->src) == sg_virt(des3->dst))
1419 in_place = true;
1420
1421 ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1422 DES3_EDE_BLOCK_SIZE,
1423 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1424 if (ret)
1425 goto e_ctx;
1426
1427 if (in_place)
1428 dst = src;
1429 else {
1430 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1431 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1432 if (ret)
1433 goto e_src;
1434 }
1435
1436 /* Send data to the CCP DES3 engine */
1437 while (src.sg_wa.bytes_left) {
1438 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1439 if (!src.sg_wa.bytes_left) {
1440 op.eom = 1;
1441
1442 /* Since we don't retrieve the context in ECB mode
1443 * we have to wait for the operation to complete
1444 * on the last piece of data
1445 */
1446 op.soc = 0;
1447 }
1448
1449 ret = cmd_q->ccp->vdata->perform->des3(&op);
1450 if (ret) {
1451 cmd->engine_error = cmd_q->cmd_error;
1452 goto e_dst;
1453 }
1454
1455 ccp_process_data(&src, &dst, &op);
1456 }
1457
1458 if (des3->mode != CCP_DES3_MODE_ECB) {
1459 /* Retrieve the context and make BE */
1460 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1461 CCP_PASSTHRU_BYTESWAP_256BIT);
1462 if (ret) {
1463 cmd->engine_error = cmd_q->cmd_error;
1464 goto e_dst;
1465 }
1466
1467 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1468 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1469 DES3_EDE_BLOCK_SIZE);
1470 }
1471e_dst:
1472 if (!in_place)
1473 ccp_free_data(&dst, cmd_q);
1474
1475e_src:
1476 ccp_free_data(&src, cmd_q);
1477
1478e_ctx:
1479 if (des3->mode != CCP_DES3_MODE_ECB)
1480 ccp_dm_free(&ctx);
1481
1482e_key:
1483 ccp_dm_free(&key);
1484
1485 return ret;
1486}
1487
1488static noinline_for_stack int
1489ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1490{
1491 struct ccp_sha_engine *sha = &cmd->u.sha;
1492 struct ccp_dm_workarea ctx;
1493 struct ccp_data src;
1494 struct ccp_op op;
1495 unsigned int ioffset, ooffset;
1496 unsigned int digest_size;
1497 int sb_count;
1498 const void *init;
1499 u64 block_size;
1500 int ctx_size;
1501 int ret;
1502
1503 switch (sha->type) {
1504 case CCP_SHA_TYPE_1:
1505 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1506 return -EINVAL;
1507 block_size = SHA1_BLOCK_SIZE;
1508 break;
1509 case CCP_SHA_TYPE_224:
1510 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1511 return -EINVAL;
1512 block_size = SHA224_BLOCK_SIZE;
1513 break;
1514 case CCP_SHA_TYPE_256:
1515 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1516 return -EINVAL;
1517 block_size = SHA256_BLOCK_SIZE;
1518 break;
1519 case CCP_SHA_TYPE_384:
1520 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1521 || sha->ctx_len < SHA384_DIGEST_SIZE)
1522 return -EINVAL;
1523 block_size = SHA384_BLOCK_SIZE;
1524 break;
1525 case CCP_SHA_TYPE_512:
1526 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1527 || sha->ctx_len < SHA512_DIGEST_SIZE)
1528 return -EINVAL;
1529 block_size = SHA512_BLOCK_SIZE;
1530 break;
1531 default:
1532 return -EINVAL;
1533 }
1534
1535 if (!sha->ctx)
1536 return -EINVAL;
1537
1538 if (!sha->final && (sha->src_len & (block_size - 1)))
1539 return -EINVAL;
1540
1541 /* The version 3 device can't handle zero-length input */
1542 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1543
1544 if (!sha->src_len) {
1545 unsigned int digest_len;
1546 const u8 *sha_zero;
1547
1548 /* Not final, just return */
1549 if (!sha->final)
1550 return 0;
1551
1552 /* CCP can't do a zero length sha operation so the
1553 * caller must buffer the data.
1554 */
1555 if (sha->msg_bits)
1556 return -EINVAL;
1557
1558 /* The CCP cannot perform zero-length sha operations
1559 * so the caller is required to buffer data for the
1560 * final operation. However, a sha operation for a
1561 * message with a total length of zero is valid so
1562 * known values are required to supply the result.
1563 */
1564 switch (sha->type) {
1565 case CCP_SHA_TYPE_1:
1566 sha_zero = sha1_zero_message_hash;
1567 digest_len = SHA1_DIGEST_SIZE;
1568 break;
1569 case CCP_SHA_TYPE_224:
1570 sha_zero = sha224_zero_message_hash;
1571 digest_len = SHA224_DIGEST_SIZE;
1572 break;
1573 case CCP_SHA_TYPE_256:
1574 sha_zero = sha256_zero_message_hash;
1575 digest_len = SHA256_DIGEST_SIZE;
1576 break;
1577 default:
1578 return -EINVAL;
1579 }
1580
1581 scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1582 digest_len, 1);
1583
1584 return 0;
1585 }
1586 }
1587
1588 /* Set variables used throughout */
1589 switch (sha->type) {
1590 case CCP_SHA_TYPE_1:
1591 digest_size = SHA1_DIGEST_SIZE;
1592 init = (void *) ccp_sha1_init;
1593 ctx_size = SHA1_DIGEST_SIZE;
1594 sb_count = 1;
1595 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1596 ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1597 else
1598 ooffset = ioffset = 0;
1599 break;
1600 case CCP_SHA_TYPE_224:
1601 digest_size = SHA224_DIGEST_SIZE;
1602 init = (void *) ccp_sha224_init;
1603 ctx_size = SHA256_DIGEST_SIZE;
1604 sb_count = 1;
1605 ioffset = 0;
1606 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1607 ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1608 else
1609 ooffset = 0;
1610 break;
1611 case CCP_SHA_TYPE_256:
1612 digest_size = SHA256_DIGEST_SIZE;
1613 init = (void *) ccp_sha256_init;
1614 ctx_size = SHA256_DIGEST_SIZE;
1615 sb_count = 1;
1616 ooffset = ioffset = 0;
1617 break;
1618 case CCP_SHA_TYPE_384:
1619 digest_size = SHA384_DIGEST_SIZE;
1620 init = (void *) ccp_sha384_init;
1621 ctx_size = SHA512_DIGEST_SIZE;
1622 sb_count = 2;
1623 ioffset = 0;
1624 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1625 break;
1626 case CCP_SHA_TYPE_512:
1627 digest_size = SHA512_DIGEST_SIZE;
1628 init = (void *) ccp_sha512_init;
1629 ctx_size = SHA512_DIGEST_SIZE;
1630 sb_count = 2;
1631 ooffset = ioffset = 0;
1632 break;
1633 default:
1634 ret = -EINVAL;
1635 goto e_data;
1636 }
1637
1638 /* For zero-length plaintext the src pointer is ignored;
1639 * otherwise both parts must be valid
1640 */
1641 if (sha->src_len && !sha->src)
1642 return -EINVAL;
1643
1644 memset(&op, 0, sizeof(op));
1645 op.cmd_q = cmd_q;
1646 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1647 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1648 op.u.sha.type = sha->type;
1649 op.u.sha.msg_bits = sha->msg_bits;
1650
1651 /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1652 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1653 * first slot, and the left half in the second. Each portion must then
1654 * be in little endian format: use the 256-bit byte swap option.
1655 */
1656 ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1657 DMA_BIDIRECTIONAL);
1658 if (ret)
1659 return ret;
1660 if (sha->first) {
1661 switch (sha->type) {
1662 case CCP_SHA_TYPE_1:
1663 case CCP_SHA_TYPE_224:
1664 case CCP_SHA_TYPE_256:
1665 memcpy(ctx.address + ioffset, init, ctx_size);
1666 break;
1667 case CCP_SHA_TYPE_384:
1668 case CCP_SHA_TYPE_512:
1669 memcpy(ctx.address + ctx_size / 2, init,
1670 ctx_size / 2);
1671 memcpy(ctx.address, init + ctx_size / 2,
1672 ctx_size / 2);
1673 break;
1674 default:
1675 ret = -EINVAL;
1676 goto e_ctx;
1677 }
1678 } else {
1679 /* Restore the context */
1680 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1681 sb_count * CCP_SB_BYTES);
1682 if (ret)
1683 goto e_ctx;
1684 }
1685
1686 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1687 CCP_PASSTHRU_BYTESWAP_256BIT);
1688 if (ret) {
1689 cmd->engine_error = cmd_q->cmd_error;
1690 goto e_ctx;
1691 }
1692
1693 if (sha->src) {
1694 /* Send data to the CCP SHA engine; block_size is set above */
1695 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1696 block_size, DMA_TO_DEVICE);
1697 if (ret)
1698 goto e_ctx;
1699
1700 while (src.sg_wa.bytes_left) {
1701 ccp_prepare_data(&src, NULL, &op, block_size, false);
1702 if (sha->final && !src.sg_wa.bytes_left)
1703 op.eom = 1;
1704
1705 ret = cmd_q->ccp->vdata->perform->sha(&op);
1706 if (ret) {
1707 cmd->engine_error = cmd_q->cmd_error;
1708 goto e_data;
1709 }
1710
1711 ccp_process_data(&src, NULL, &op);
1712 }
1713 } else {
1714 op.eom = 1;
1715 ret = cmd_q->ccp->vdata->perform->sha(&op);
1716 if (ret) {
1717 cmd->engine_error = cmd_q->cmd_error;
1718 goto e_data;
1719 }
1720 }
1721
1722 /* Retrieve the SHA context - convert from LE to BE using
1723 * 32-byte (256-bit) byteswapping to BE
1724 */
1725 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1726 CCP_PASSTHRU_BYTESWAP_256BIT);
1727 if (ret) {
1728 cmd->engine_error = cmd_q->cmd_error;
1729 goto e_data;
1730 }
1731
1732 if (sha->final) {
1733 /* Finishing up, so get the digest */
1734 switch (sha->type) {
1735 case CCP_SHA_TYPE_1:
1736 case CCP_SHA_TYPE_224:
1737 case CCP_SHA_TYPE_256:
1738 ccp_get_dm_area(&ctx, ooffset,
1739 sha->ctx, 0,
1740 digest_size);
1741 break;
1742 case CCP_SHA_TYPE_384:
1743 case CCP_SHA_TYPE_512:
1744 ccp_get_dm_area(&ctx, 0,
1745 sha->ctx, LSB_ITEM_SIZE - ooffset,
1746 LSB_ITEM_SIZE);
1747 ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1748 sha->ctx, 0,
1749 LSB_ITEM_SIZE - ooffset);
1750 break;
1751 default:
1752 ret = -EINVAL;
1753 goto e_data;
1754 }
1755 } else {
1756 /* Stash the context */
1757 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1758 sb_count * CCP_SB_BYTES);
1759 }
1760
1761 if (sha->final && sha->opad) {
1762 /* HMAC operation, recursively perform final SHA */
1763 struct ccp_cmd hmac_cmd;
1764 struct scatterlist sg;
1765 u8 *hmac_buf;
1766
1767 if (sha->opad_len != block_size) {
1768 ret = -EINVAL;
1769 goto e_data;
1770 }
1771
1772 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1773 if (!hmac_buf) {
1774 ret = -ENOMEM;
1775 goto e_data;
1776 }
1777 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1778
1779 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1780 switch (sha->type) {
1781 case CCP_SHA_TYPE_1:
1782 case CCP_SHA_TYPE_224:
1783 case CCP_SHA_TYPE_256:
1784 memcpy(hmac_buf + block_size,
1785 ctx.address + ooffset,
1786 digest_size);
1787 break;
1788 case CCP_SHA_TYPE_384:
1789 case CCP_SHA_TYPE_512:
1790 memcpy(hmac_buf + block_size,
1791 ctx.address + LSB_ITEM_SIZE + ooffset,
1792 LSB_ITEM_SIZE);
1793 memcpy(hmac_buf + block_size +
1794 (LSB_ITEM_SIZE - ooffset),
1795 ctx.address,
1796 LSB_ITEM_SIZE);
1797 break;
1798 default:
1799 kfree(hmac_buf);
1800 ret = -EINVAL;
1801 goto e_data;
1802 }
1803
1804 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1805 hmac_cmd.engine = CCP_ENGINE_SHA;
1806 hmac_cmd.u.sha.type = sha->type;
1807 hmac_cmd.u.sha.ctx = sha->ctx;
1808 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1809 hmac_cmd.u.sha.src = &sg;
1810 hmac_cmd.u.sha.src_len = block_size + digest_size;
1811 hmac_cmd.u.sha.opad = NULL;
1812 hmac_cmd.u.sha.opad_len = 0;
1813 hmac_cmd.u.sha.first = 1;
1814 hmac_cmd.u.sha.final = 1;
1815 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1816
1817 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1818 if (ret)
1819 cmd->engine_error = hmac_cmd.engine_error;
1820
1821 kfree(hmac_buf);
1822 }
1823
1824e_data:
1825 if (sha->src)
1826 ccp_free_data(&src, cmd_q);
1827
1828e_ctx:
1829 ccp_dm_free(&ctx);
1830
1831 return ret;
1832}
1833
1834static noinline_for_stack int
1835ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1836{
1837 struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1838 struct ccp_dm_workarea exp, src, dst;
1839 struct ccp_op op;
1840 unsigned int sb_count, i_len, o_len;
1841 int ret;
1842
1843 /* Check against the maximum allowable size, in bits */
1844 if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1845 return -EINVAL;
1846
1847 if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1848 return -EINVAL;
1849
1850 memset(&op, 0, sizeof(op));
1851 op.cmd_q = cmd_q;
1852 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1853
1854 /* The RSA modulus must precede the message being acted upon, so
1855 * it must be copied to a DMA area where the message and the
1856 * modulus can be concatenated. Therefore the input buffer
1857 * length required is twice the output buffer length (which
1858 * must be a multiple of 256-bits). Compute o_len, i_len in bytes.
1859 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1860 * required.
1861 */
1862 o_len = 32 * ((rsa->key_size + 255) / 256);
1863 i_len = o_len * 2;
1864
1865 sb_count = 0;
1866 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1867 /* sb_count is the number of storage block slots required
1868 * for the modulus.
1869 */
1870 sb_count = o_len / CCP_SB_BYTES;
1871 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1872 sb_count);
1873 if (!op.sb_key)
1874 return -EIO;
1875 } else {
1876 /* A version 5 device allows a modulus size that will not fit
1877 * in the LSB, so the command will transfer it from memory.
1878 * Set the sb key to the default, even though it's not used.
1879 */
1880 op.sb_key = cmd_q->sb_key;
1881 }
1882
1883 /* The RSA exponent must be in little endian format. Reverse its
1884 * byte order.
1885 */
1886 ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1887 if (ret)
1888 goto e_sb;
1889
1890 ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1891 if (ret)
1892 goto e_exp;
1893
1894 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1895 /* Copy the exponent to the local storage block, using
1896 * as many 32-byte blocks as were allocated above. It's
1897 * already little endian, so no further change is required.
1898 */
1899 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1900 CCP_PASSTHRU_BYTESWAP_NOOP);
1901 if (ret) {
1902 cmd->engine_error = cmd_q->cmd_error;
1903 goto e_exp;
1904 }
1905 } else {
1906 /* The exponent can be retrieved from memory via DMA. */
1907 op.exp.u.dma.address = exp.dma.address;
1908 op.exp.u.dma.offset = 0;
1909 }
1910
1911 /* Concatenate the modulus and the message. Both the modulus and
1912 * the operands must be in little endian format. Since the input
1913 * is in big endian format it must be converted.
1914 */
1915 ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1916 if (ret)
1917 goto e_exp;
1918
1919 ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1920 if (ret)
1921 goto e_src;
1922 ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1923 if (ret)
1924 goto e_src;
1925
1926 /* Prepare the output area for the operation */
1927 ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1928 if (ret)
1929 goto e_src;
1930
1931 op.soc = 1;
1932 op.src.u.dma.address = src.dma.address;
1933 op.src.u.dma.offset = 0;
1934 op.src.u.dma.length = i_len;
1935 op.dst.u.dma.address = dst.dma.address;
1936 op.dst.u.dma.offset = 0;
1937 op.dst.u.dma.length = o_len;
1938
1939 op.u.rsa.mod_size = rsa->key_size;
1940 op.u.rsa.input_len = i_len;
1941
1942 ret = cmd_q->ccp->vdata->perform->rsa(&op);
1943 if (ret) {
1944 cmd->engine_error = cmd_q->cmd_error;
1945 goto e_dst;
1946 }
1947
1948 ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1949
1950e_dst:
1951 ccp_dm_free(&dst);
1952
1953e_src:
1954 ccp_dm_free(&src);
1955
1956e_exp:
1957 ccp_dm_free(&exp);
1958
1959e_sb:
1960 if (sb_count)
1961 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1962
1963 return ret;
1964}
1965
1966static noinline_for_stack int
1967ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1968{
1969 struct ccp_passthru_engine *pt = &cmd->u.passthru;
1970 struct ccp_dm_workarea mask;
1971 struct ccp_data src, dst;
1972 struct ccp_op op;
1973 bool in_place = false;
1974 unsigned int i;
1975 int ret = 0;
1976
1977 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1978 return -EINVAL;
1979
1980 if (!pt->src || !pt->dst)
1981 return -EINVAL;
1982
1983 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1984 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1985 return -EINVAL;
1986 if (!pt->mask)
1987 return -EINVAL;
1988 }
1989
1990 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1991
1992 memset(&op, 0, sizeof(op));
1993 op.cmd_q = cmd_q;
1994 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1995
1996 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1997 /* Load the mask */
1998 op.sb_key = cmd_q->sb_key;
1999
2000 ret = ccp_init_dm_workarea(&mask, cmd_q,
2001 CCP_PASSTHRU_SB_COUNT *
2002 CCP_SB_BYTES,
2003 DMA_TO_DEVICE);
2004 if (ret)
2005 return ret;
2006
2007 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
2008 if (ret)
2009 goto e_mask;
2010 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2011 CCP_PASSTHRU_BYTESWAP_NOOP);
2012 if (ret) {
2013 cmd->engine_error = cmd_q->cmd_error;
2014 goto e_mask;
2015 }
2016 }
2017
2018 /* Prepare the input and output data workareas. For in-place
2019 * operations we need to set the dma direction to BIDIRECTIONAL
2020 * and copy the src workarea to the dst workarea.
2021 */
2022 if (sg_virt(pt->src) == sg_virt(pt->dst))
2023 in_place = true;
2024
2025 ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2026 CCP_PASSTHRU_MASKSIZE,
2027 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2028 if (ret)
2029 goto e_mask;
2030
2031 if (in_place) {
2032 dst = src;
2033 } else {
2034 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2035 CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2036 if (ret)
2037 goto e_src;
2038 }
2039
2040 /* Send data to the CCP Passthru engine
2041 * Because the CCP engine works on a single source and destination
2042 * dma address at a time, each entry in the source scatterlist
2043 * (after the dma_map_sg call) must be less than or equal to the
2044 * (remaining) length in the destination scatterlist entry and the
2045 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2046 */
2047 dst.sg_wa.sg_used = 0;
2048 for (i = 1; i <= src.sg_wa.dma_count; i++) {
2049 if (!dst.sg_wa.sg ||
2050 (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
2051 ret = -EINVAL;
2052 goto e_dst;
2053 }
2054
2055 if (i == src.sg_wa.dma_count) {
2056 op.eom = 1;
2057 op.soc = 1;
2058 }
2059
2060 op.src.type = CCP_MEMTYPE_SYSTEM;
2061 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2062 op.src.u.dma.offset = 0;
2063 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2064
2065 op.dst.type = CCP_MEMTYPE_SYSTEM;
2066 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2067 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2068 op.dst.u.dma.length = op.src.u.dma.length;
2069
2070 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2071 if (ret) {
2072 cmd->engine_error = cmd_q->cmd_error;
2073 goto e_dst;
2074 }
2075
2076 dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
2077 if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
2078 dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2079 dst.sg_wa.sg_used = 0;
2080 }
2081 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2082 }
2083
2084e_dst:
2085 if (!in_place)
2086 ccp_free_data(&dst, cmd_q);
2087
2088e_src:
2089 ccp_free_data(&src, cmd_q);
2090
2091e_mask:
2092 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2093 ccp_dm_free(&mask);
2094
2095 return ret;
2096}
2097
2098static noinline_for_stack int
2099ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2100 struct ccp_cmd *cmd)
2101{
2102 struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2103 struct ccp_dm_workarea mask;
2104 struct ccp_op op;
2105 int ret;
2106
2107 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2108 return -EINVAL;
2109
2110 if (!pt->src_dma || !pt->dst_dma)
2111 return -EINVAL;
2112
2113 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2114 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2115 return -EINVAL;
2116 if (!pt->mask)
2117 return -EINVAL;
2118 }
2119
2120 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2121
2122 memset(&op, 0, sizeof(op));
2123 op.cmd_q = cmd_q;
2124 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2125
2126 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2127 /* Load the mask */
2128 op.sb_key = cmd_q->sb_key;
2129
2130 mask.length = pt->mask_len;
2131 mask.dma.address = pt->mask;
2132 mask.dma.length = pt->mask_len;
2133
2134 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2135 CCP_PASSTHRU_BYTESWAP_NOOP);
2136 if (ret) {
2137 cmd->engine_error = cmd_q->cmd_error;
2138 return ret;
2139 }
2140 }
2141
2142 /* Send data to the CCP Passthru engine */
2143 op.eom = 1;
2144 op.soc = 1;
2145
2146 op.src.type = CCP_MEMTYPE_SYSTEM;
2147 op.src.u.dma.address = pt->src_dma;
2148 op.src.u.dma.offset = 0;
2149 op.src.u.dma.length = pt->src_len;
2150
2151 op.dst.type = CCP_MEMTYPE_SYSTEM;
2152 op.dst.u.dma.address = pt->dst_dma;
2153 op.dst.u.dma.offset = 0;
2154 op.dst.u.dma.length = pt->src_len;
2155
2156 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2157 if (ret)
2158 cmd->engine_error = cmd_q->cmd_error;
2159
2160 return ret;
2161}
2162
2163static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2164{
2165 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2166 struct ccp_dm_workarea src, dst;
2167 struct ccp_op op;
2168 int ret;
2169 u8 *save;
2170
2171 if (!ecc->u.mm.operand_1 ||
2172 (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2173 return -EINVAL;
2174
2175 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2176 if (!ecc->u.mm.operand_2 ||
2177 (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2178 return -EINVAL;
2179
2180 if (!ecc->u.mm.result ||
2181 (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2182 return -EINVAL;
2183
2184 memset(&op, 0, sizeof(op));
2185 op.cmd_q = cmd_q;
2186 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2187
2188 /* Concatenate the modulus and the operands. Both the modulus and
2189 * the operands must be in little endian format. Since the input
2190 * is in big endian format it must be converted and placed in a
2191 * fixed length buffer.
2192 */
2193 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2194 DMA_TO_DEVICE);
2195 if (ret)
2196 return ret;
2197
2198 /* Save the workarea address since it is updated in order to perform
2199 * the concatenation
2200 */
2201 save = src.address;
2202
2203 /* Copy the ECC modulus */
2204 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2205 if (ret)
2206 goto e_src;
2207 src.address += CCP_ECC_OPERAND_SIZE;
2208
2209 /* Copy the first operand */
2210 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2211 ecc->u.mm.operand_1_len);
2212 if (ret)
2213 goto e_src;
2214 src.address += CCP_ECC_OPERAND_SIZE;
2215
2216 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2217 /* Copy the second operand */
2218 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2219 ecc->u.mm.operand_2_len);
2220 if (ret)
2221 goto e_src;
2222 src.address += CCP_ECC_OPERAND_SIZE;
2223 }
2224
2225 /* Restore the workarea address */
2226 src.address = save;
2227
2228 /* Prepare the output area for the operation */
2229 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2230 DMA_FROM_DEVICE);
2231 if (ret)
2232 goto e_src;
2233
2234 op.soc = 1;
2235 op.src.u.dma.address = src.dma.address;
2236 op.src.u.dma.offset = 0;
2237 op.src.u.dma.length = src.length;
2238 op.dst.u.dma.address = dst.dma.address;
2239 op.dst.u.dma.offset = 0;
2240 op.dst.u.dma.length = dst.length;
2241
2242 op.u.ecc.function = cmd->u.ecc.function;
2243
2244 ret = cmd_q->ccp->vdata->perform->ecc(&op);
2245 if (ret) {
2246 cmd->engine_error = cmd_q->cmd_error;
2247 goto e_dst;
2248 }
2249
2250 ecc->ecc_result = le16_to_cpup(
2251 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2252 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2253 ret = -EIO;
2254 goto e_dst;
2255 }
2256
2257 /* Save the ECC result */
2258 ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2259 CCP_ECC_MODULUS_BYTES);
2260
2261e_dst:
2262 ccp_dm_free(&dst);
2263
2264e_src:
2265 ccp_dm_free(&src);
2266
2267 return ret;
2268}
2269
2270static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2271{
2272 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2273 struct ccp_dm_workarea src, dst;
2274 struct ccp_op op;
2275 int ret;
2276 u8 *save;
2277
2278 if (!ecc->u.pm.point_1.x ||
2279 (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2280 !ecc->u.pm.point_1.y ||
2281 (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2282 return -EINVAL;
2283
2284 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2285 if (!ecc->u.pm.point_2.x ||
2286 (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2287 !ecc->u.pm.point_2.y ||
2288 (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2289 return -EINVAL;
2290 } else {
2291 if (!ecc->u.pm.domain_a ||
2292 (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2293 return -EINVAL;
2294
2295 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2296 if (!ecc->u.pm.scalar ||
2297 (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2298 return -EINVAL;
2299 }
2300
2301 if (!ecc->u.pm.result.x ||
2302 (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2303 !ecc->u.pm.result.y ||
2304 (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2305 return -EINVAL;
2306
2307 memset(&op, 0, sizeof(op));
2308 op.cmd_q = cmd_q;
2309 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2310
2311 /* Concatenate the modulus and the operands. Both the modulus and
2312 * the operands must be in little endian format. Since the input
2313 * is in big endian format it must be converted and placed in a
2314 * fixed length buffer.
2315 */
2316 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2317 DMA_TO_DEVICE);
2318 if (ret)
2319 return ret;
2320
2321 /* Save the workarea address since it is updated in order to perform
2322 * the concatenation
2323 */
2324 save = src.address;
2325
2326 /* Copy the ECC modulus */
2327 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2328 if (ret)
2329 goto e_src;
2330 src.address += CCP_ECC_OPERAND_SIZE;
2331
2332 /* Copy the first point X and Y coordinate */
2333 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2334 ecc->u.pm.point_1.x_len);
2335 if (ret)
2336 goto e_src;
2337 src.address += CCP_ECC_OPERAND_SIZE;
2338 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2339 ecc->u.pm.point_1.y_len);
2340 if (ret)
2341 goto e_src;
2342 src.address += CCP_ECC_OPERAND_SIZE;
2343
2344 /* Set the first point Z coordinate to 1 */
2345 *src.address = 0x01;
2346 src.address += CCP_ECC_OPERAND_SIZE;
2347
2348 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2349 /* Copy the second point X and Y coordinate */
2350 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2351 ecc->u.pm.point_2.x_len);
2352 if (ret)
2353 goto e_src;
2354 src.address += CCP_ECC_OPERAND_SIZE;
2355 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2356 ecc->u.pm.point_2.y_len);
2357 if (ret)
2358 goto e_src;
2359 src.address += CCP_ECC_OPERAND_SIZE;
2360
2361 /* Set the second point Z coordinate to 1 */
2362 *src.address = 0x01;
2363 src.address += CCP_ECC_OPERAND_SIZE;
2364 } else {
2365 /* Copy the Domain "a" parameter */
2366 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2367 ecc->u.pm.domain_a_len);
2368 if (ret)
2369 goto e_src;
2370 src.address += CCP_ECC_OPERAND_SIZE;
2371
2372 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2373 /* Copy the scalar value */
2374 ret = ccp_reverse_set_dm_area(&src, 0,
2375 ecc->u.pm.scalar, 0,
2376 ecc->u.pm.scalar_len);
2377 if (ret)
2378 goto e_src;
2379 src.address += CCP_ECC_OPERAND_SIZE;
2380 }
2381 }
2382
2383 /* Restore the workarea address */
2384 src.address = save;
2385
2386 /* Prepare the output area for the operation */
2387 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2388 DMA_FROM_DEVICE);
2389 if (ret)
2390 goto e_src;
2391
2392 op.soc = 1;
2393 op.src.u.dma.address = src.dma.address;
2394 op.src.u.dma.offset = 0;
2395 op.src.u.dma.length = src.length;
2396 op.dst.u.dma.address = dst.dma.address;
2397 op.dst.u.dma.offset = 0;
2398 op.dst.u.dma.length = dst.length;
2399
2400 op.u.ecc.function = cmd->u.ecc.function;
2401
2402 ret = cmd_q->ccp->vdata->perform->ecc(&op);
2403 if (ret) {
2404 cmd->engine_error = cmd_q->cmd_error;
2405 goto e_dst;
2406 }
2407
2408 ecc->ecc_result = le16_to_cpup(
2409 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2410 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2411 ret = -EIO;
2412 goto e_dst;
2413 }
2414
2415 /* Save the workarea address since it is updated as we walk through
2416 * to copy the point math result
2417 */
2418 save = dst.address;
2419
2420 /* Save the ECC result X and Y coordinates */
2421 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2422 CCP_ECC_MODULUS_BYTES);
2423 dst.address += CCP_ECC_OUTPUT_SIZE;
2424 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2425 CCP_ECC_MODULUS_BYTES);
2426
2427 /* Restore the workarea address */
2428 dst.address = save;
2429
2430e_dst:
2431 ccp_dm_free(&dst);
2432
2433e_src:
2434 ccp_dm_free(&src);
2435
2436 return ret;
2437}
2438
2439static noinline_for_stack int
2440ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2441{
2442 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2443
2444 ecc->ecc_result = 0;
2445
2446 if (!ecc->mod ||
2447 (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2448 return -EINVAL;
2449
2450 switch (ecc->function) {
2451 case CCP_ECC_FUNCTION_MMUL_384BIT:
2452 case CCP_ECC_FUNCTION_MADD_384BIT:
2453 case CCP_ECC_FUNCTION_MINV_384BIT:
2454 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2455
2456 case CCP_ECC_FUNCTION_PADD_384BIT:
2457 case CCP_ECC_FUNCTION_PMUL_384BIT:
2458 case CCP_ECC_FUNCTION_PDBL_384BIT:
2459 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2460
2461 default:
2462 return -EINVAL;
2463 }
2464}
2465
2466int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2467{
2468 int ret;
2469
2470 cmd->engine_error = 0;
2471 cmd_q->cmd_error = 0;
2472 cmd_q->int_rcvd = 0;
2473 cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2474
2475 switch (cmd->engine) {
2476 case CCP_ENGINE_AES:
2477 switch (cmd->u.aes.mode) {
2478 case CCP_AES_MODE_CMAC:
2479 ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2480 break;
2481 case CCP_AES_MODE_GCM:
2482 ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2483 break;
2484 default:
2485 ret = ccp_run_aes_cmd(cmd_q, cmd);
2486 break;
2487 }
2488 break;
2489 case CCP_ENGINE_XTS_AES_128:
2490 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2491 break;
2492 case CCP_ENGINE_DES3:
2493 ret = ccp_run_des3_cmd(cmd_q, cmd);
2494 break;
2495 case CCP_ENGINE_SHA:
2496 ret = ccp_run_sha_cmd(cmd_q, cmd);
2497 break;
2498 case CCP_ENGINE_RSA:
2499 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2500 break;
2501 case CCP_ENGINE_PASSTHRU:
2502 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2503 ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2504 else
2505 ret = ccp_run_passthru_cmd(cmd_q, cmd);
2506 break;
2507 case CCP_ENGINE_ECC:
2508 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2509 break;
2510 default:
2511 ret = -EINVAL;
2512 }
2513
2514 return ret;
2515}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Cryptographic Coprocessor (CCP) driver
4 *
5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
10
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/interrupt.h>
14#include <crypto/scatterwalk.h>
15#include <crypto/des.h>
16#include <linux/ccp.h>
17
18#include "ccp-dev.h"
19
20/* SHA initial context values */
21static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
22 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
23 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
24 cpu_to_be32(SHA1_H4),
25};
26
27static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
28 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
29 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
30 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
31 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
32};
33
34static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
35 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
36 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
37 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
38 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
39};
40
41static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
42 cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
43 cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
44 cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
45 cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
46};
47
48static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
49 cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
50 cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
51 cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
52 cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
53};
54
55#define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
56 ccp_gen_jobid(ccp) : 0)
57
58static u32 ccp_gen_jobid(struct ccp_device *ccp)
59{
60 return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
61}
62
63static void ccp_sg_free(struct ccp_sg_workarea *wa)
64{
65 if (wa->dma_count)
66 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
67
68 wa->dma_count = 0;
69}
70
71static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
72 struct scatterlist *sg, u64 len,
73 enum dma_data_direction dma_dir)
74{
75 memset(wa, 0, sizeof(*wa));
76
77 wa->sg = sg;
78 if (!sg)
79 return 0;
80
81 wa->nents = sg_nents_for_len(sg, len);
82 if (wa->nents < 0)
83 return wa->nents;
84
85 wa->bytes_left = len;
86 wa->sg_used = 0;
87
88 if (len == 0)
89 return 0;
90
91 if (dma_dir == DMA_NONE)
92 return 0;
93
94 wa->dma_sg = sg;
95 wa->dma_dev = dev;
96 wa->dma_dir = dma_dir;
97 wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
98 if (!wa->dma_count)
99 return -ENOMEM;
100
101 return 0;
102}
103
104static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
105{
106 unsigned int nbytes = min_t(u64, len, wa->bytes_left);
107
108 if (!wa->sg)
109 return;
110
111 wa->sg_used += nbytes;
112 wa->bytes_left -= nbytes;
113 if (wa->sg_used == wa->sg->length) {
114 wa->sg = sg_next(wa->sg);
115 wa->sg_used = 0;
116 }
117}
118
119static void ccp_dm_free(struct ccp_dm_workarea *wa)
120{
121 if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
122 if (wa->address)
123 dma_pool_free(wa->dma_pool, wa->address,
124 wa->dma.address);
125 } else {
126 if (wa->dma.address)
127 dma_unmap_single(wa->dev, wa->dma.address, wa->length,
128 wa->dma.dir);
129 kfree(wa->address);
130 }
131
132 wa->address = NULL;
133 wa->dma.address = 0;
134}
135
136static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
137 struct ccp_cmd_queue *cmd_q,
138 unsigned int len,
139 enum dma_data_direction dir)
140{
141 memset(wa, 0, sizeof(*wa));
142
143 if (!len)
144 return 0;
145
146 wa->dev = cmd_q->ccp->dev;
147 wa->length = len;
148
149 if (len <= CCP_DMAPOOL_MAX_SIZE) {
150 wa->dma_pool = cmd_q->dma_pool;
151
152 wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
153 &wa->dma.address);
154 if (!wa->address)
155 return -ENOMEM;
156
157 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
158
159 } else {
160 wa->address = kzalloc(len, GFP_KERNEL);
161 if (!wa->address)
162 return -ENOMEM;
163
164 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
165 dir);
166 if (dma_mapping_error(wa->dev, wa->dma.address))
167 return -ENOMEM;
168
169 wa->dma.length = len;
170 }
171 wa->dma.dir = dir;
172
173 return 0;
174}
175
176static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
177 struct scatterlist *sg, unsigned int sg_offset,
178 unsigned int len)
179{
180 WARN_ON(!wa->address);
181
182 if (len > (wa->length - wa_offset))
183 return -EINVAL;
184
185 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
186 0);
187 return 0;
188}
189
190static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
191 struct scatterlist *sg, unsigned int sg_offset,
192 unsigned int len)
193{
194 WARN_ON(!wa->address);
195
196 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
197 1);
198}
199
200static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
201 unsigned int wa_offset,
202 struct scatterlist *sg,
203 unsigned int sg_offset,
204 unsigned int len)
205{
206 u8 *p, *q;
207 int rc;
208
209 rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
210 if (rc)
211 return rc;
212
213 p = wa->address + wa_offset;
214 q = p + len - 1;
215 while (p < q) {
216 *p = *p ^ *q;
217 *q = *p ^ *q;
218 *p = *p ^ *q;
219 p++;
220 q--;
221 }
222 return 0;
223}
224
225static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
226 unsigned int wa_offset,
227 struct scatterlist *sg,
228 unsigned int sg_offset,
229 unsigned int len)
230{
231 u8 *p, *q;
232
233 p = wa->address + wa_offset;
234 q = p + len - 1;
235 while (p < q) {
236 *p = *p ^ *q;
237 *q = *p ^ *q;
238 *p = *p ^ *q;
239 p++;
240 q--;
241 }
242
243 ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
244}
245
246static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
247{
248 ccp_dm_free(&data->dm_wa);
249 ccp_sg_free(&data->sg_wa);
250}
251
252static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
253 struct scatterlist *sg, u64 sg_len,
254 unsigned int dm_len,
255 enum dma_data_direction dir)
256{
257 int ret;
258
259 memset(data, 0, sizeof(*data));
260
261 ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
262 dir);
263 if (ret)
264 goto e_err;
265
266 ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
267 if (ret)
268 goto e_err;
269
270 return 0;
271
272e_err:
273 ccp_free_data(data, cmd_q);
274
275 return ret;
276}
277
278static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
279{
280 struct ccp_sg_workarea *sg_wa = &data->sg_wa;
281 struct ccp_dm_workarea *dm_wa = &data->dm_wa;
282 unsigned int buf_count, nbytes;
283
284 /* Clear the buffer if setting it */
285 if (!from)
286 memset(dm_wa->address, 0, dm_wa->length);
287
288 if (!sg_wa->sg)
289 return 0;
290
291 /* Perform the copy operation
292 * nbytes will always be <= UINT_MAX because dm_wa->length is
293 * an unsigned int
294 */
295 nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
296 scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
297 nbytes, from);
298
299 /* Update the structures and generate the count */
300 buf_count = 0;
301 while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
302 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
303 dm_wa->length - buf_count);
304 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
305
306 buf_count += nbytes;
307 ccp_update_sg_workarea(sg_wa, nbytes);
308 }
309
310 return buf_count;
311}
312
313static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
314{
315 return ccp_queue_buf(data, 0);
316}
317
318static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
319{
320 return ccp_queue_buf(data, 1);
321}
322
323static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
324 struct ccp_op *op, unsigned int block_size,
325 bool blocksize_op)
326{
327 unsigned int sg_src_len, sg_dst_len, op_len;
328
329 /* The CCP can only DMA from/to one address each per operation. This
330 * requires that we find the smallest DMA area between the source
331 * and destination. The resulting len values will always be <= UINT_MAX
332 * because the dma length is an unsigned int.
333 */
334 sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
335 sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
336
337 if (dst) {
338 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
339 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
340 op_len = min(sg_src_len, sg_dst_len);
341 } else {
342 op_len = sg_src_len;
343 }
344
345 /* The data operation length will be at least block_size in length
346 * or the smaller of available sg room remaining for the source or
347 * the destination
348 */
349 op_len = max(op_len, block_size);
350
351 /* Unless we have to buffer data, there's no reason to wait */
352 op->soc = 0;
353
354 if (sg_src_len < block_size) {
355 /* Not enough data in the sg element, so it
356 * needs to be buffered into a blocksize chunk
357 */
358 int cp_len = ccp_fill_queue_buf(src);
359
360 op->soc = 1;
361 op->src.u.dma.address = src->dm_wa.dma.address;
362 op->src.u.dma.offset = 0;
363 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
364 } else {
365 /* Enough data in the sg element, but we need to
366 * adjust for any previously copied data
367 */
368 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
369 op->src.u.dma.offset = src->sg_wa.sg_used;
370 op->src.u.dma.length = op_len & ~(block_size - 1);
371
372 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
373 }
374
375 if (dst) {
376 if (sg_dst_len < block_size) {
377 /* Not enough room in the sg element or we're on the
378 * last piece of data (when using padding), so the
379 * output needs to be buffered into a blocksize chunk
380 */
381 op->soc = 1;
382 op->dst.u.dma.address = dst->dm_wa.dma.address;
383 op->dst.u.dma.offset = 0;
384 op->dst.u.dma.length = op->src.u.dma.length;
385 } else {
386 /* Enough room in the sg element, but we need to
387 * adjust for any previously used area
388 */
389 op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
390 op->dst.u.dma.offset = dst->sg_wa.sg_used;
391 op->dst.u.dma.length = op->src.u.dma.length;
392 }
393 }
394}
395
396static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
397 struct ccp_op *op)
398{
399 op->init = 0;
400
401 if (dst) {
402 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
403 ccp_empty_queue_buf(dst);
404 else
405 ccp_update_sg_workarea(&dst->sg_wa,
406 op->dst.u.dma.length);
407 }
408}
409
410static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
411 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
412 u32 byte_swap, bool from)
413{
414 struct ccp_op op;
415
416 memset(&op, 0, sizeof(op));
417
418 op.cmd_q = cmd_q;
419 op.jobid = jobid;
420 op.eom = 1;
421
422 if (from) {
423 op.soc = 1;
424 op.src.type = CCP_MEMTYPE_SB;
425 op.src.u.sb = sb;
426 op.dst.type = CCP_MEMTYPE_SYSTEM;
427 op.dst.u.dma.address = wa->dma.address;
428 op.dst.u.dma.length = wa->length;
429 } else {
430 op.src.type = CCP_MEMTYPE_SYSTEM;
431 op.src.u.dma.address = wa->dma.address;
432 op.src.u.dma.length = wa->length;
433 op.dst.type = CCP_MEMTYPE_SB;
434 op.dst.u.sb = sb;
435 }
436
437 op.u.passthru.byte_swap = byte_swap;
438
439 return cmd_q->ccp->vdata->perform->passthru(&op);
440}
441
442static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
443 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
444 u32 byte_swap)
445{
446 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
447}
448
449static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
450 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
451 u32 byte_swap)
452{
453 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
454}
455
456static noinline_for_stack int
457ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
458{
459 struct ccp_aes_engine *aes = &cmd->u.aes;
460 struct ccp_dm_workarea key, ctx;
461 struct ccp_data src;
462 struct ccp_op op;
463 unsigned int dm_offset;
464 int ret;
465
466 if (!((aes->key_len == AES_KEYSIZE_128) ||
467 (aes->key_len == AES_KEYSIZE_192) ||
468 (aes->key_len == AES_KEYSIZE_256)))
469 return -EINVAL;
470
471 if (aes->src_len & (AES_BLOCK_SIZE - 1))
472 return -EINVAL;
473
474 if (aes->iv_len != AES_BLOCK_SIZE)
475 return -EINVAL;
476
477 if (!aes->key || !aes->iv || !aes->src)
478 return -EINVAL;
479
480 if (aes->cmac_final) {
481 if (aes->cmac_key_len != AES_BLOCK_SIZE)
482 return -EINVAL;
483
484 if (!aes->cmac_key)
485 return -EINVAL;
486 }
487
488 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
489 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
490
491 ret = -EIO;
492 memset(&op, 0, sizeof(op));
493 op.cmd_q = cmd_q;
494 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
495 op.sb_key = cmd_q->sb_key;
496 op.sb_ctx = cmd_q->sb_ctx;
497 op.init = 1;
498 op.u.aes.type = aes->type;
499 op.u.aes.mode = aes->mode;
500 op.u.aes.action = aes->action;
501
502 /* All supported key sizes fit in a single (32-byte) SB entry
503 * and must be in little endian format. Use the 256-bit byte
504 * swap passthru option to convert from big endian to little
505 * endian.
506 */
507 ret = ccp_init_dm_workarea(&key, cmd_q,
508 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
509 DMA_TO_DEVICE);
510 if (ret)
511 return ret;
512
513 dm_offset = CCP_SB_BYTES - aes->key_len;
514 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
515 if (ret)
516 goto e_key;
517 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
518 CCP_PASSTHRU_BYTESWAP_256BIT);
519 if (ret) {
520 cmd->engine_error = cmd_q->cmd_error;
521 goto e_key;
522 }
523
524 /* The AES context fits in a single (32-byte) SB entry and
525 * must be in little endian format. Use the 256-bit byte swap
526 * passthru option to convert from big endian to little endian.
527 */
528 ret = ccp_init_dm_workarea(&ctx, cmd_q,
529 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
530 DMA_BIDIRECTIONAL);
531 if (ret)
532 goto e_key;
533
534 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
535 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
536 if (ret)
537 goto e_ctx;
538 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
539 CCP_PASSTHRU_BYTESWAP_256BIT);
540 if (ret) {
541 cmd->engine_error = cmd_q->cmd_error;
542 goto e_ctx;
543 }
544
545 /* Send data to the CCP AES engine */
546 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
547 AES_BLOCK_SIZE, DMA_TO_DEVICE);
548 if (ret)
549 goto e_ctx;
550
551 while (src.sg_wa.bytes_left) {
552 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
553 if (aes->cmac_final && !src.sg_wa.bytes_left) {
554 op.eom = 1;
555
556 /* Push the K1/K2 key to the CCP now */
557 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
558 op.sb_ctx,
559 CCP_PASSTHRU_BYTESWAP_256BIT);
560 if (ret) {
561 cmd->engine_error = cmd_q->cmd_error;
562 goto e_src;
563 }
564
565 ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
566 aes->cmac_key_len);
567 if (ret)
568 goto e_src;
569 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
570 CCP_PASSTHRU_BYTESWAP_256BIT);
571 if (ret) {
572 cmd->engine_error = cmd_q->cmd_error;
573 goto e_src;
574 }
575 }
576
577 ret = cmd_q->ccp->vdata->perform->aes(&op);
578 if (ret) {
579 cmd->engine_error = cmd_q->cmd_error;
580 goto e_src;
581 }
582
583 ccp_process_data(&src, NULL, &op);
584 }
585
586 /* Retrieve the AES context - convert from LE to BE using
587 * 32-byte (256-bit) byteswapping
588 */
589 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
590 CCP_PASSTHRU_BYTESWAP_256BIT);
591 if (ret) {
592 cmd->engine_error = cmd_q->cmd_error;
593 goto e_src;
594 }
595
596 /* ...but we only need AES_BLOCK_SIZE bytes */
597 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
598 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
599
600e_src:
601 ccp_free_data(&src, cmd_q);
602
603e_ctx:
604 ccp_dm_free(&ctx);
605
606e_key:
607 ccp_dm_free(&key);
608
609 return ret;
610}
611
612static noinline_for_stack int
613ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
614{
615 struct ccp_aes_engine *aes = &cmd->u.aes;
616 struct ccp_dm_workarea key, ctx, final_wa, tag;
617 struct ccp_data src, dst;
618 struct ccp_data aad;
619 struct ccp_op op;
620
621 unsigned long long *final;
622 unsigned int dm_offset;
623 unsigned int authsize;
624 unsigned int jobid;
625 unsigned int ilen;
626 bool in_place = true; /* Default value */
627 int ret;
628
629 struct scatterlist *p_inp, sg_inp[2];
630 struct scatterlist *p_tag, sg_tag[2];
631 struct scatterlist *p_outp, sg_outp[2];
632 struct scatterlist *p_aad;
633
634 if (!aes->iv)
635 return -EINVAL;
636
637 if (!((aes->key_len == AES_KEYSIZE_128) ||
638 (aes->key_len == AES_KEYSIZE_192) ||
639 (aes->key_len == AES_KEYSIZE_256)))
640 return -EINVAL;
641
642 if (!aes->key) /* Gotta have a key SGL */
643 return -EINVAL;
644
645 /* Zero defaults to 16 bytes, the maximum size */
646 authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
647 switch (authsize) {
648 case 16:
649 case 15:
650 case 14:
651 case 13:
652 case 12:
653 case 8:
654 case 4:
655 break;
656 default:
657 return -EINVAL;
658 }
659
660 /* First, decompose the source buffer into AAD & PT,
661 * and the destination buffer into AAD, CT & tag, or
662 * the input into CT & tag.
663 * It is expected that the input and output SGs will
664 * be valid, even if the AAD and input lengths are 0.
665 */
666 p_aad = aes->src;
667 p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
668 p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
669 if (aes->action == CCP_AES_ACTION_ENCRYPT) {
670 ilen = aes->src_len;
671 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
672 } else {
673 /* Input length for decryption includes tag */
674 ilen = aes->src_len - authsize;
675 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
676 }
677
678 jobid = CCP_NEW_JOBID(cmd_q->ccp);
679
680 memset(&op, 0, sizeof(op));
681 op.cmd_q = cmd_q;
682 op.jobid = jobid;
683 op.sb_key = cmd_q->sb_key; /* Pre-allocated */
684 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
685 op.init = 1;
686 op.u.aes.type = aes->type;
687
688 /* Copy the key to the LSB */
689 ret = ccp_init_dm_workarea(&key, cmd_q,
690 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
691 DMA_TO_DEVICE);
692 if (ret)
693 return ret;
694
695 dm_offset = CCP_SB_BYTES - aes->key_len;
696 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
697 if (ret)
698 goto e_key;
699 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
700 CCP_PASSTHRU_BYTESWAP_256BIT);
701 if (ret) {
702 cmd->engine_error = cmd_q->cmd_error;
703 goto e_key;
704 }
705
706 /* Copy the context (IV) to the LSB.
707 * There is an assumption here that the IV is 96 bits in length, plus
708 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
709 */
710 ret = ccp_init_dm_workarea(&ctx, cmd_q,
711 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
712 DMA_BIDIRECTIONAL);
713 if (ret)
714 goto e_key;
715
716 dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
717 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
718 if (ret)
719 goto e_ctx;
720
721 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
722 CCP_PASSTHRU_BYTESWAP_256BIT);
723 if (ret) {
724 cmd->engine_error = cmd_q->cmd_error;
725 goto e_ctx;
726 }
727
728 op.init = 1;
729 if (aes->aad_len > 0) {
730 /* Step 1: Run a GHASH over the Additional Authenticated Data */
731 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
732 AES_BLOCK_SIZE,
733 DMA_TO_DEVICE);
734 if (ret)
735 goto e_ctx;
736
737 op.u.aes.mode = CCP_AES_MODE_GHASH;
738 op.u.aes.action = CCP_AES_GHASHAAD;
739
740 while (aad.sg_wa.bytes_left) {
741 ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
742
743 ret = cmd_q->ccp->vdata->perform->aes(&op);
744 if (ret) {
745 cmd->engine_error = cmd_q->cmd_error;
746 goto e_aad;
747 }
748
749 ccp_process_data(&aad, NULL, &op);
750 op.init = 0;
751 }
752 }
753
754 op.u.aes.mode = CCP_AES_MODE_GCTR;
755 op.u.aes.action = aes->action;
756
757 if (ilen > 0) {
758 /* Step 2: Run a GCTR over the plaintext */
759 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
760
761 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
762 AES_BLOCK_SIZE,
763 in_place ? DMA_BIDIRECTIONAL
764 : DMA_TO_DEVICE);
765 if (ret)
766 goto e_ctx;
767
768 if (in_place) {
769 dst = src;
770 } else {
771 ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
772 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
773 if (ret)
774 goto e_src;
775 }
776
777 op.soc = 0;
778 op.eom = 0;
779 op.init = 1;
780 while (src.sg_wa.bytes_left) {
781 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
782 if (!src.sg_wa.bytes_left) {
783 unsigned int nbytes = ilen % AES_BLOCK_SIZE;
784
785 if (nbytes) {
786 op.eom = 1;
787 op.u.aes.size = (nbytes * 8) - 1;
788 }
789 }
790
791 ret = cmd_q->ccp->vdata->perform->aes(&op);
792 if (ret) {
793 cmd->engine_error = cmd_q->cmd_error;
794 goto e_dst;
795 }
796
797 ccp_process_data(&src, &dst, &op);
798 op.init = 0;
799 }
800 }
801
802 /* Step 3: Update the IV portion of the context with the original IV */
803 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
804 CCP_PASSTHRU_BYTESWAP_256BIT);
805 if (ret) {
806 cmd->engine_error = cmd_q->cmd_error;
807 goto e_dst;
808 }
809
810 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
811 if (ret)
812 goto e_dst;
813
814 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
815 CCP_PASSTHRU_BYTESWAP_256BIT);
816 if (ret) {
817 cmd->engine_error = cmd_q->cmd_error;
818 goto e_dst;
819 }
820
821 /* Step 4: Concatenate the lengths of the AAD and source, and
822 * hash that 16 byte buffer.
823 */
824 ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
825 DMA_BIDIRECTIONAL);
826 if (ret)
827 goto e_dst;
828 final = (unsigned long long *) final_wa.address;
829 final[0] = cpu_to_be64(aes->aad_len * 8);
830 final[1] = cpu_to_be64(ilen * 8);
831
832 memset(&op, 0, sizeof(op));
833 op.cmd_q = cmd_q;
834 op.jobid = jobid;
835 op.sb_key = cmd_q->sb_key; /* Pre-allocated */
836 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
837 op.init = 1;
838 op.u.aes.type = aes->type;
839 op.u.aes.mode = CCP_AES_MODE_GHASH;
840 op.u.aes.action = CCP_AES_GHASHFINAL;
841 op.src.type = CCP_MEMTYPE_SYSTEM;
842 op.src.u.dma.address = final_wa.dma.address;
843 op.src.u.dma.length = AES_BLOCK_SIZE;
844 op.dst.type = CCP_MEMTYPE_SYSTEM;
845 op.dst.u.dma.address = final_wa.dma.address;
846 op.dst.u.dma.length = AES_BLOCK_SIZE;
847 op.eom = 1;
848 op.u.aes.size = 0;
849 ret = cmd_q->ccp->vdata->perform->aes(&op);
850 if (ret)
851 goto e_dst;
852
853 if (aes->action == CCP_AES_ACTION_ENCRYPT) {
854 /* Put the ciphered tag after the ciphertext. */
855 ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
856 } else {
857 /* Does this ciphered tag match the input? */
858 ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
859 DMA_BIDIRECTIONAL);
860 if (ret)
861 goto e_tag;
862 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
863 if (ret)
864 goto e_tag;
865
866 ret = crypto_memneq(tag.address, final_wa.address,
867 authsize) ? -EBADMSG : 0;
868 ccp_dm_free(&tag);
869 }
870
871e_tag:
872 ccp_dm_free(&final_wa);
873
874e_dst:
875 if (ilen > 0 && !in_place)
876 ccp_free_data(&dst, cmd_q);
877
878e_src:
879 if (ilen > 0)
880 ccp_free_data(&src, cmd_q);
881
882e_aad:
883 if (aes->aad_len)
884 ccp_free_data(&aad, cmd_q);
885
886e_ctx:
887 ccp_dm_free(&ctx);
888
889e_key:
890 ccp_dm_free(&key);
891
892 return ret;
893}
894
895static noinline_for_stack int
896ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
897{
898 struct ccp_aes_engine *aes = &cmd->u.aes;
899 struct ccp_dm_workarea key, ctx;
900 struct ccp_data src, dst;
901 struct ccp_op op;
902 unsigned int dm_offset;
903 bool in_place = false;
904 int ret;
905
906 if (!((aes->key_len == AES_KEYSIZE_128) ||
907 (aes->key_len == AES_KEYSIZE_192) ||
908 (aes->key_len == AES_KEYSIZE_256)))
909 return -EINVAL;
910
911 if (((aes->mode == CCP_AES_MODE_ECB) ||
912 (aes->mode == CCP_AES_MODE_CBC)) &&
913 (aes->src_len & (AES_BLOCK_SIZE - 1)))
914 return -EINVAL;
915
916 if (!aes->key || !aes->src || !aes->dst)
917 return -EINVAL;
918
919 if (aes->mode != CCP_AES_MODE_ECB) {
920 if (aes->iv_len != AES_BLOCK_SIZE)
921 return -EINVAL;
922
923 if (!aes->iv)
924 return -EINVAL;
925 }
926
927 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
928 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
929
930 ret = -EIO;
931 memset(&op, 0, sizeof(op));
932 op.cmd_q = cmd_q;
933 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
934 op.sb_key = cmd_q->sb_key;
935 op.sb_ctx = cmd_q->sb_ctx;
936 op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
937 op.u.aes.type = aes->type;
938 op.u.aes.mode = aes->mode;
939 op.u.aes.action = aes->action;
940
941 /* All supported key sizes fit in a single (32-byte) SB entry
942 * and must be in little endian format. Use the 256-bit byte
943 * swap passthru option to convert from big endian to little
944 * endian.
945 */
946 ret = ccp_init_dm_workarea(&key, cmd_q,
947 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
948 DMA_TO_DEVICE);
949 if (ret)
950 return ret;
951
952 dm_offset = CCP_SB_BYTES - aes->key_len;
953 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
954 if (ret)
955 goto e_key;
956 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
957 CCP_PASSTHRU_BYTESWAP_256BIT);
958 if (ret) {
959 cmd->engine_error = cmd_q->cmd_error;
960 goto e_key;
961 }
962
963 /* The AES context fits in a single (32-byte) SB entry and
964 * must be in little endian format. Use the 256-bit byte swap
965 * passthru option to convert from big endian to little endian.
966 */
967 ret = ccp_init_dm_workarea(&ctx, cmd_q,
968 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
969 DMA_BIDIRECTIONAL);
970 if (ret)
971 goto e_key;
972
973 if (aes->mode != CCP_AES_MODE_ECB) {
974 /* Load the AES context - convert to LE */
975 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
976 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
977 if (ret)
978 goto e_ctx;
979 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
980 CCP_PASSTHRU_BYTESWAP_256BIT);
981 if (ret) {
982 cmd->engine_error = cmd_q->cmd_error;
983 goto e_ctx;
984 }
985 }
986 switch (aes->mode) {
987 case CCP_AES_MODE_CFB: /* CFB128 only */
988 case CCP_AES_MODE_CTR:
989 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
990 break;
991 default:
992 op.u.aes.size = 0;
993 }
994
995 /* Prepare the input and output data workareas. For in-place
996 * operations we need to set the dma direction to BIDIRECTIONAL
997 * and copy the src workarea to the dst workarea.
998 */
999 if (sg_virt(aes->src) == sg_virt(aes->dst))
1000 in_place = true;
1001
1002 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1003 AES_BLOCK_SIZE,
1004 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1005 if (ret)
1006 goto e_ctx;
1007
1008 if (in_place) {
1009 dst = src;
1010 } else {
1011 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1012 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1013 if (ret)
1014 goto e_src;
1015 }
1016
1017 /* Send data to the CCP AES engine */
1018 while (src.sg_wa.bytes_left) {
1019 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1020 if (!src.sg_wa.bytes_left) {
1021 op.eom = 1;
1022
1023 /* Since we don't retrieve the AES context in ECB
1024 * mode we have to wait for the operation to complete
1025 * on the last piece of data
1026 */
1027 if (aes->mode == CCP_AES_MODE_ECB)
1028 op.soc = 1;
1029 }
1030
1031 ret = cmd_q->ccp->vdata->perform->aes(&op);
1032 if (ret) {
1033 cmd->engine_error = cmd_q->cmd_error;
1034 goto e_dst;
1035 }
1036
1037 ccp_process_data(&src, &dst, &op);
1038 }
1039
1040 if (aes->mode != CCP_AES_MODE_ECB) {
1041 /* Retrieve the AES context - convert from LE to BE using
1042 * 32-byte (256-bit) byteswapping
1043 */
1044 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1045 CCP_PASSTHRU_BYTESWAP_256BIT);
1046 if (ret) {
1047 cmd->engine_error = cmd_q->cmd_error;
1048 goto e_dst;
1049 }
1050
1051 /* ...but we only need AES_BLOCK_SIZE bytes */
1052 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1053 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1054 }
1055
1056e_dst:
1057 if (!in_place)
1058 ccp_free_data(&dst, cmd_q);
1059
1060e_src:
1061 ccp_free_data(&src, cmd_q);
1062
1063e_ctx:
1064 ccp_dm_free(&ctx);
1065
1066e_key:
1067 ccp_dm_free(&key);
1068
1069 return ret;
1070}
1071
1072static noinline_for_stack int
1073ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1074{
1075 struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1076 struct ccp_dm_workarea key, ctx;
1077 struct ccp_data src, dst;
1078 struct ccp_op op;
1079 unsigned int unit_size, dm_offset;
1080 bool in_place = false;
1081 unsigned int sb_count;
1082 enum ccp_aes_type aestype;
1083 int ret;
1084
1085 switch (xts->unit_size) {
1086 case CCP_XTS_AES_UNIT_SIZE_16:
1087 unit_size = 16;
1088 break;
1089 case CCP_XTS_AES_UNIT_SIZE_512:
1090 unit_size = 512;
1091 break;
1092 case CCP_XTS_AES_UNIT_SIZE_1024:
1093 unit_size = 1024;
1094 break;
1095 case CCP_XTS_AES_UNIT_SIZE_2048:
1096 unit_size = 2048;
1097 break;
1098 case CCP_XTS_AES_UNIT_SIZE_4096:
1099 unit_size = 4096;
1100 break;
1101
1102 default:
1103 return -EINVAL;
1104 }
1105
1106 if (xts->key_len == AES_KEYSIZE_128)
1107 aestype = CCP_AES_TYPE_128;
1108 else if (xts->key_len == AES_KEYSIZE_256)
1109 aestype = CCP_AES_TYPE_256;
1110 else
1111 return -EINVAL;
1112
1113 if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1114 return -EINVAL;
1115
1116 if (xts->iv_len != AES_BLOCK_SIZE)
1117 return -EINVAL;
1118
1119 if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1120 return -EINVAL;
1121
1122 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1123 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1124
1125 ret = -EIO;
1126 memset(&op, 0, sizeof(op));
1127 op.cmd_q = cmd_q;
1128 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1129 op.sb_key = cmd_q->sb_key;
1130 op.sb_ctx = cmd_q->sb_ctx;
1131 op.init = 1;
1132 op.u.xts.type = aestype;
1133 op.u.xts.action = xts->action;
1134 op.u.xts.unit_size = xts->unit_size;
1135
1136 /* A version 3 device only supports 128-bit keys, which fits into a
1137 * single SB entry. A version 5 device uses a 512-bit vector, so two
1138 * SB entries.
1139 */
1140 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1141 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1142 else
1143 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1144 ret = ccp_init_dm_workarea(&key, cmd_q,
1145 sb_count * CCP_SB_BYTES,
1146 DMA_TO_DEVICE);
1147 if (ret)
1148 return ret;
1149
1150 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1151 /* All supported key sizes must be in little endian format.
1152 * Use the 256-bit byte swap passthru option to convert from
1153 * big endian to little endian.
1154 */
1155 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1156 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1157 if (ret)
1158 goto e_key;
1159 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1160 if (ret)
1161 goto e_key;
1162 } else {
1163 /* Version 5 CCPs use a 512-bit space for the key: each portion
1164 * occupies 256 bits, or one entire slot, and is zero-padded.
1165 */
1166 unsigned int pad;
1167
1168 dm_offset = CCP_SB_BYTES;
1169 pad = dm_offset - xts->key_len;
1170 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1171 if (ret)
1172 goto e_key;
1173 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1174 xts->key_len, xts->key_len);
1175 if (ret)
1176 goto e_key;
1177 }
1178 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1179 CCP_PASSTHRU_BYTESWAP_256BIT);
1180 if (ret) {
1181 cmd->engine_error = cmd_q->cmd_error;
1182 goto e_key;
1183 }
1184
1185 /* The AES context fits in a single (32-byte) SB entry and
1186 * for XTS is already in little endian format so no byte swapping
1187 * is needed.
1188 */
1189 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1190 CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1191 DMA_BIDIRECTIONAL);
1192 if (ret)
1193 goto e_key;
1194
1195 ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1196 if (ret)
1197 goto e_ctx;
1198 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1199 CCP_PASSTHRU_BYTESWAP_NOOP);
1200 if (ret) {
1201 cmd->engine_error = cmd_q->cmd_error;
1202 goto e_ctx;
1203 }
1204
1205 /* Prepare the input and output data workareas. For in-place
1206 * operations we need to set the dma direction to BIDIRECTIONAL
1207 * and copy the src workarea to the dst workarea.
1208 */
1209 if (sg_virt(xts->src) == sg_virt(xts->dst))
1210 in_place = true;
1211
1212 ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1213 unit_size,
1214 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1215 if (ret)
1216 goto e_ctx;
1217
1218 if (in_place) {
1219 dst = src;
1220 } else {
1221 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1222 unit_size, DMA_FROM_DEVICE);
1223 if (ret)
1224 goto e_src;
1225 }
1226
1227 /* Send data to the CCP AES engine */
1228 while (src.sg_wa.bytes_left) {
1229 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1230 if (!src.sg_wa.bytes_left)
1231 op.eom = 1;
1232
1233 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1234 if (ret) {
1235 cmd->engine_error = cmd_q->cmd_error;
1236 goto e_dst;
1237 }
1238
1239 ccp_process_data(&src, &dst, &op);
1240 }
1241
1242 /* Retrieve the AES context - convert from LE to BE using
1243 * 32-byte (256-bit) byteswapping
1244 */
1245 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1246 CCP_PASSTHRU_BYTESWAP_256BIT);
1247 if (ret) {
1248 cmd->engine_error = cmd_q->cmd_error;
1249 goto e_dst;
1250 }
1251
1252 /* ...but we only need AES_BLOCK_SIZE bytes */
1253 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1254 ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1255
1256e_dst:
1257 if (!in_place)
1258 ccp_free_data(&dst, cmd_q);
1259
1260e_src:
1261 ccp_free_data(&src, cmd_q);
1262
1263e_ctx:
1264 ccp_dm_free(&ctx);
1265
1266e_key:
1267 ccp_dm_free(&key);
1268
1269 return ret;
1270}
1271
1272static noinline_for_stack int
1273ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1274{
1275 struct ccp_des3_engine *des3 = &cmd->u.des3;
1276
1277 struct ccp_dm_workarea key, ctx;
1278 struct ccp_data src, dst;
1279 struct ccp_op op;
1280 unsigned int dm_offset;
1281 unsigned int len_singlekey;
1282 bool in_place = false;
1283 int ret;
1284
1285 /* Error checks */
1286 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1287 return -EINVAL;
1288
1289 if (!cmd_q->ccp->vdata->perform->des3)
1290 return -EINVAL;
1291
1292 if (des3->key_len != DES3_EDE_KEY_SIZE)
1293 return -EINVAL;
1294
1295 if (((des3->mode == CCP_DES3_MODE_ECB) ||
1296 (des3->mode == CCP_DES3_MODE_CBC)) &&
1297 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1298 return -EINVAL;
1299
1300 if (!des3->key || !des3->src || !des3->dst)
1301 return -EINVAL;
1302
1303 if (des3->mode != CCP_DES3_MODE_ECB) {
1304 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1305 return -EINVAL;
1306
1307 if (!des3->iv)
1308 return -EINVAL;
1309 }
1310
1311 ret = -EIO;
1312 /* Zero out all the fields of the command desc */
1313 memset(&op, 0, sizeof(op));
1314
1315 /* Set up the Function field */
1316 op.cmd_q = cmd_q;
1317 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1318 op.sb_key = cmd_q->sb_key;
1319
1320 op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1321 op.u.des3.type = des3->type;
1322 op.u.des3.mode = des3->mode;
1323 op.u.des3.action = des3->action;
1324
1325 /*
1326 * All supported key sizes fit in a single (32-byte) KSB entry and
1327 * (like AES) must be in little endian format. Use the 256-bit byte
1328 * swap passthru option to convert from big endian to little endian.
1329 */
1330 ret = ccp_init_dm_workarea(&key, cmd_q,
1331 CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1332 DMA_TO_DEVICE);
1333 if (ret)
1334 return ret;
1335
1336 /*
1337 * The contents of the key triplet are in the reverse order of what
1338 * is required by the engine. Copy the 3 pieces individually to put
1339 * them where they belong.
1340 */
1341 dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1342
1343 len_singlekey = des3->key_len / 3;
1344 ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1345 des3->key, 0, len_singlekey);
1346 if (ret)
1347 goto e_key;
1348 ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1349 des3->key, len_singlekey, len_singlekey);
1350 if (ret)
1351 goto e_key;
1352 ret = ccp_set_dm_area(&key, dm_offset,
1353 des3->key, 2 * len_singlekey, len_singlekey);
1354 if (ret)
1355 goto e_key;
1356
1357 /* Copy the key to the SB */
1358 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1359 CCP_PASSTHRU_BYTESWAP_256BIT);
1360 if (ret) {
1361 cmd->engine_error = cmd_q->cmd_error;
1362 goto e_key;
1363 }
1364
1365 /*
1366 * The DES3 context fits in a single (32-byte) KSB entry and
1367 * must be in little endian format. Use the 256-bit byte swap
1368 * passthru option to convert from big endian to little endian.
1369 */
1370 if (des3->mode != CCP_DES3_MODE_ECB) {
1371 op.sb_ctx = cmd_q->sb_ctx;
1372
1373 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1374 CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1375 DMA_BIDIRECTIONAL);
1376 if (ret)
1377 goto e_key;
1378
1379 /* Load the context into the LSB */
1380 dm_offset = CCP_SB_BYTES - des3->iv_len;
1381 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1382 des3->iv_len);
1383 if (ret)
1384 goto e_ctx;
1385
1386 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1387 CCP_PASSTHRU_BYTESWAP_256BIT);
1388 if (ret) {
1389 cmd->engine_error = cmd_q->cmd_error;
1390 goto e_ctx;
1391 }
1392 }
1393
1394 /*
1395 * Prepare the input and output data workareas. For in-place
1396 * operations we need to set the dma direction to BIDIRECTIONAL
1397 * and copy the src workarea to the dst workarea.
1398 */
1399 if (sg_virt(des3->src) == sg_virt(des3->dst))
1400 in_place = true;
1401
1402 ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1403 DES3_EDE_BLOCK_SIZE,
1404 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1405 if (ret)
1406 goto e_ctx;
1407
1408 if (in_place)
1409 dst = src;
1410 else {
1411 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1412 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1413 if (ret)
1414 goto e_src;
1415 }
1416
1417 /* Send data to the CCP DES3 engine */
1418 while (src.sg_wa.bytes_left) {
1419 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1420 if (!src.sg_wa.bytes_left) {
1421 op.eom = 1;
1422
1423 /* Since we don't retrieve the context in ECB mode
1424 * we have to wait for the operation to complete
1425 * on the last piece of data
1426 */
1427 op.soc = 0;
1428 }
1429
1430 ret = cmd_q->ccp->vdata->perform->des3(&op);
1431 if (ret) {
1432 cmd->engine_error = cmd_q->cmd_error;
1433 goto e_dst;
1434 }
1435
1436 ccp_process_data(&src, &dst, &op);
1437 }
1438
1439 if (des3->mode != CCP_DES3_MODE_ECB) {
1440 /* Retrieve the context and make BE */
1441 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1442 CCP_PASSTHRU_BYTESWAP_256BIT);
1443 if (ret) {
1444 cmd->engine_error = cmd_q->cmd_error;
1445 goto e_dst;
1446 }
1447
1448 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1449 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1450 DES3_EDE_BLOCK_SIZE);
1451 }
1452e_dst:
1453 if (!in_place)
1454 ccp_free_data(&dst, cmd_q);
1455
1456e_src:
1457 ccp_free_data(&src, cmd_q);
1458
1459e_ctx:
1460 if (des3->mode != CCP_DES3_MODE_ECB)
1461 ccp_dm_free(&ctx);
1462
1463e_key:
1464 ccp_dm_free(&key);
1465
1466 return ret;
1467}
1468
1469static noinline_for_stack int
1470ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1471{
1472 struct ccp_sha_engine *sha = &cmd->u.sha;
1473 struct ccp_dm_workarea ctx;
1474 struct ccp_data src;
1475 struct ccp_op op;
1476 unsigned int ioffset, ooffset;
1477 unsigned int digest_size;
1478 int sb_count;
1479 const void *init;
1480 u64 block_size;
1481 int ctx_size;
1482 int ret;
1483
1484 switch (sha->type) {
1485 case CCP_SHA_TYPE_1:
1486 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1487 return -EINVAL;
1488 block_size = SHA1_BLOCK_SIZE;
1489 break;
1490 case CCP_SHA_TYPE_224:
1491 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1492 return -EINVAL;
1493 block_size = SHA224_BLOCK_SIZE;
1494 break;
1495 case CCP_SHA_TYPE_256:
1496 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1497 return -EINVAL;
1498 block_size = SHA256_BLOCK_SIZE;
1499 break;
1500 case CCP_SHA_TYPE_384:
1501 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1502 || sha->ctx_len < SHA384_DIGEST_SIZE)
1503 return -EINVAL;
1504 block_size = SHA384_BLOCK_SIZE;
1505 break;
1506 case CCP_SHA_TYPE_512:
1507 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1508 || sha->ctx_len < SHA512_DIGEST_SIZE)
1509 return -EINVAL;
1510 block_size = SHA512_BLOCK_SIZE;
1511 break;
1512 default:
1513 return -EINVAL;
1514 }
1515
1516 if (!sha->ctx)
1517 return -EINVAL;
1518
1519 if (!sha->final && (sha->src_len & (block_size - 1)))
1520 return -EINVAL;
1521
1522 /* The version 3 device can't handle zero-length input */
1523 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1524
1525 if (!sha->src_len) {
1526 unsigned int digest_len;
1527 const u8 *sha_zero;
1528
1529 /* Not final, just return */
1530 if (!sha->final)
1531 return 0;
1532
1533 /* CCP can't do a zero length sha operation so the
1534 * caller must buffer the data.
1535 */
1536 if (sha->msg_bits)
1537 return -EINVAL;
1538
1539 /* The CCP cannot perform zero-length sha operations
1540 * so the caller is required to buffer data for the
1541 * final operation. However, a sha operation for a
1542 * message with a total length of zero is valid so
1543 * known values are required to supply the result.
1544 */
1545 switch (sha->type) {
1546 case CCP_SHA_TYPE_1:
1547 sha_zero = sha1_zero_message_hash;
1548 digest_len = SHA1_DIGEST_SIZE;
1549 break;
1550 case CCP_SHA_TYPE_224:
1551 sha_zero = sha224_zero_message_hash;
1552 digest_len = SHA224_DIGEST_SIZE;
1553 break;
1554 case CCP_SHA_TYPE_256:
1555 sha_zero = sha256_zero_message_hash;
1556 digest_len = SHA256_DIGEST_SIZE;
1557 break;
1558 default:
1559 return -EINVAL;
1560 }
1561
1562 scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1563 digest_len, 1);
1564
1565 return 0;
1566 }
1567 }
1568
1569 /* Set variables used throughout */
1570 switch (sha->type) {
1571 case CCP_SHA_TYPE_1:
1572 digest_size = SHA1_DIGEST_SIZE;
1573 init = (void *) ccp_sha1_init;
1574 ctx_size = SHA1_DIGEST_SIZE;
1575 sb_count = 1;
1576 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1577 ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1578 else
1579 ooffset = ioffset = 0;
1580 break;
1581 case CCP_SHA_TYPE_224:
1582 digest_size = SHA224_DIGEST_SIZE;
1583 init = (void *) ccp_sha224_init;
1584 ctx_size = SHA256_DIGEST_SIZE;
1585 sb_count = 1;
1586 ioffset = 0;
1587 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1588 ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1589 else
1590 ooffset = 0;
1591 break;
1592 case CCP_SHA_TYPE_256:
1593 digest_size = SHA256_DIGEST_SIZE;
1594 init = (void *) ccp_sha256_init;
1595 ctx_size = SHA256_DIGEST_SIZE;
1596 sb_count = 1;
1597 ooffset = ioffset = 0;
1598 break;
1599 case CCP_SHA_TYPE_384:
1600 digest_size = SHA384_DIGEST_SIZE;
1601 init = (void *) ccp_sha384_init;
1602 ctx_size = SHA512_DIGEST_SIZE;
1603 sb_count = 2;
1604 ioffset = 0;
1605 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1606 break;
1607 case CCP_SHA_TYPE_512:
1608 digest_size = SHA512_DIGEST_SIZE;
1609 init = (void *) ccp_sha512_init;
1610 ctx_size = SHA512_DIGEST_SIZE;
1611 sb_count = 2;
1612 ooffset = ioffset = 0;
1613 break;
1614 default:
1615 ret = -EINVAL;
1616 goto e_data;
1617 }
1618
1619 /* For zero-length plaintext the src pointer is ignored;
1620 * otherwise both parts must be valid
1621 */
1622 if (sha->src_len && !sha->src)
1623 return -EINVAL;
1624
1625 memset(&op, 0, sizeof(op));
1626 op.cmd_q = cmd_q;
1627 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1628 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1629 op.u.sha.type = sha->type;
1630 op.u.sha.msg_bits = sha->msg_bits;
1631
1632 /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1633 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1634 * first slot, and the left half in the second. Each portion must then
1635 * be in little endian format: use the 256-bit byte swap option.
1636 */
1637 ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1638 DMA_BIDIRECTIONAL);
1639 if (ret)
1640 return ret;
1641 if (sha->first) {
1642 switch (sha->type) {
1643 case CCP_SHA_TYPE_1:
1644 case CCP_SHA_TYPE_224:
1645 case CCP_SHA_TYPE_256:
1646 memcpy(ctx.address + ioffset, init, ctx_size);
1647 break;
1648 case CCP_SHA_TYPE_384:
1649 case CCP_SHA_TYPE_512:
1650 memcpy(ctx.address + ctx_size / 2, init,
1651 ctx_size / 2);
1652 memcpy(ctx.address, init + ctx_size / 2,
1653 ctx_size / 2);
1654 break;
1655 default:
1656 ret = -EINVAL;
1657 goto e_ctx;
1658 }
1659 } else {
1660 /* Restore the context */
1661 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1662 sb_count * CCP_SB_BYTES);
1663 if (ret)
1664 goto e_ctx;
1665 }
1666
1667 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1668 CCP_PASSTHRU_BYTESWAP_256BIT);
1669 if (ret) {
1670 cmd->engine_error = cmd_q->cmd_error;
1671 goto e_ctx;
1672 }
1673
1674 if (sha->src) {
1675 /* Send data to the CCP SHA engine; block_size is set above */
1676 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1677 block_size, DMA_TO_DEVICE);
1678 if (ret)
1679 goto e_ctx;
1680
1681 while (src.sg_wa.bytes_left) {
1682 ccp_prepare_data(&src, NULL, &op, block_size, false);
1683 if (sha->final && !src.sg_wa.bytes_left)
1684 op.eom = 1;
1685
1686 ret = cmd_q->ccp->vdata->perform->sha(&op);
1687 if (ret) {
1688 cmd->engine_error = cmd_q->cmd_error;
1689 goto e_data;
1690 }
1691
1692 ccp_process_data(&src, NULL, &op);
1693 }
1694 } else {
1695 op.eom = 1;
1696 ret = cmd_q->ccp->vdata->perform->sha(&op);
1697 if (ret) {
1698 cmd->engine_error = cmd_q->cmd_error;
1699 goto e_data;
1700 }
1701 }
1702
1703 /* Retrieve the SHA context - convert from LE to BE using
1704 * 32-byte (256-bit) byteswapping to BE
1705 */
1706 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1707 CCP_PASSTHRU_BYTESWAP_256BIT);
1708 if (ret) {
1709 cmd->engine_error = cmd_q->cmd_error;
1710 goto e_data;
1711 }
1712
1713 if (sha->final) {
1714 /* Finishing up, so get the digest */
1715 switch (sha->type) {
1716 case CCP_SHA_TYPE_1:
1717 case CCP_SHA_TYPE_224:
1718 case CCP_SHA_TYPE_256:
1719 ccp_get_dm_area(&ctx, ooffset,
1720 sha->ctx, 0,
1721 digest_size);
1722 break;
1723 case CCP_SHA_TYPE_384:
1724 case CCP_SHA_TYPE_512:
1725 ccp_get_dm_area(&ctx, 0,
1726 sha->ctx, LSB_ITEM_SIZE - ooffset,
1727 LSB_ITEM_SIZE);
1728 ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1729 sha->ctx, 0,
1730 LSB_ITEM_SIZE - ooffset);
1731 break;
1732 default:
1733 ret = -EINVAL;
1734 goto e_ctx;
1735 }
1736 } else {
1737 /* Stash the context */
1738 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1739 sb_count * CCP_SB_BYTES);
1740 }
1741
1742 if (sha->final && sha->opad) {
1743 /* HMAC operation, recursively perform final SHA */
1744 struct ccp_cmd hmac_cmd;
1745 struct scatterlist sg;
1746 u8 *hmac_buf;
1747
1748 if (sha->opad_len != block_size) {
1749 ret = -EINVAL;
1750 goto e_data;
1751 }
1752
1753 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1754 if (!hmac_buf) {
1755 ret = -ENOMEM;
1756 goto e_data;
1757 }
1758 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1759
1760 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1761 switch (sha->type) {
1762 case CCP_SHA_TYPE_1:
1763 case CCP_SHA_TYPE_224:
1764 case CCP_SHA_TYPE_256:
1765 memcpy(hmac_buf + block_size,
1766 ctx.address + ooffset,
1767 digest_size);
1768 break;
1769 case CCP_SHA_TYPE_384:
1770 case CCP_SHA_TYPE_512:
1771 memcpy(hmac_buf + block_size,
1772 ctx.address + LSB_ITEM_SIZE + ooffset,
1773 LSB_ITEM_SIZE);
1774 memcpy(hmac_buf + block_size +
1775 (LSB_ITEM_SIZE - ooffset),
1776 ctx.address,
1777 LSB_ITEM_SIZE);
1778 break;
1779 default:
1780 ret = -EINVAL;
1781 goto e_ctx;
1782 }
1783
1784 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1785 hmac_cmd.engine = CCP_ENGINE_SHA;
1786 hmac_cmd.u.sha.type = sha->type;
1787 hmac_cmd.u.sha.ctx = sha->ctx;
1788 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1789 hmac_cmd.u.sha.src = &sg;
1790 hmac_cmd.u.sha.src_len = block_size + digest_size;
1791 hmac_cmd.u.sha.opad = NULL;
1792 hmac_cmd.u.sha.opad_len = 0;
1793 hmac_cmd.u.sha.first = 1;
1794 hmac_cmd.u.sha.final = 1;
1795 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1796
1797 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1798 if (ret)
1799 cmd->engine_error = hmac_cmd.engine_error;
1800
1801 kfree(hmac_buf);
1802 }
1803
1804e_data:
1805 if (sha->src)
1806 ccp_free_data(&src, cmd_q);
1807
1808e_ctx:
1809 ccp_dm_free(&ctx);
1810
1811 return ret;
1812}
1813
1814static noinline_for_stack int
1815ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1816{
1817 struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1818 struct ccp_dm_workarea exp, src, dst;
1819 struct ccp_op op;
1820 unsigned int sb_count, i_len, o_len;
1821 int ret;
1822
1823 /* Check against the maximum allowable size, in bits */
1824 if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1825 return -EINVAL;
1826
1827 if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1828 return -EINVAL;
1829
1830 memset(&op, 0, sizeof(op));
1831 op.cmd_q = cmd_q;
1832 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1833
1834 /* The RSA modulus must precede the message being acted upon, so
1835 * it must be copied to a DMA area where the message and the
1836 * modulus can be concatenated. Therefore the input buffer
1837 * length required is twice the output buffer length (which
1838 * must be a multiple of 256-bits). Compute o_len, i_len in bytes.
1839 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1840 * required.
1841 */
1842 o_len = 32 * ((rsa->key_size + 255) / 256);
1843 i_len = o_len * 2;
1844
1845 sb_count = 0;
1846 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1847 /* sb_count is the number of storage block slots required
1848 * for the modulus.
1849 */
1850 sb_count = o_len / CCP_SB_BYTES;
1851 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1852 sb_count);
1853 if (!op.sb_key)
1854 return -EIO;
1855 } else {
1856 /* A version 5 device allows a modulus size that will not fit
1857 * in the LSB, so the command will transfer it from memory.
1858 * Set the sb key to the default, even though it's not used.
1859 */
1860 op.sb_key = cmd_q->sb_key;
1861 }
1862
1863 /* The RSA exponent must be in little endian format. Reverse its
1864 * byte order.
1865 */
1866 ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1867 if (ret)
1868 goto e_sb;
1869
1870 ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1871 if (ret)
1872 goto e_exp;
1873
1874 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1875 /* Copy the exponent to the local storage block, using
1876 * as many 32-byte blocks as were allocated above. It's
1877 * already little endian, so no further change is required.
1878 */
1879 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1880 CCP_PASSTHRU_BYTESWAP_NOOP);
1881 if (ret) {
1882 cmd->engine_error = cmd_q->cmd_error;
1883 goto e_exp;
1884 }
1885 } else {
1886 /* The exponent can be retrieved from memory via DMA. */
1887 op.exp.u.dma.address = exp.dma.address;
1888 op.exp.u.dma.offset = 0;
1889 }
1890
1891 /* Concatenate the modulus and the message. Both the modulus and
1892 * the operands must be in little endian format. Since the input
1893 * is in big endian format it must be converted.
1894 */
1895 ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1896 if (ret)
1897 goto e_exp;
1898
1899 ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1900 if (ret)
1901 goto e_src;
1902 ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1903 if (ret)
1904 goto e_src;
1905
1906 /* Prepare the output area for the operation */
1907 ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1908 if (ret)
1909 goto e_src;
1910
1911 op.soc = 1;
1912 op.src.u.dma.address = src.dma.address;
1913 op.src.u.dma.offset = 0;
1914 op.src.u.dma.length = i_len;
1915 op.dst.u.dma.address = dst.dma.address;
1916 op.dst.u.dma.offset = 0;
1917 op.dst.u.dma.length = o_len;
1918
1919 op.u.rsa.mod_size = rsa->key_size;
1920 op.u.rsa.input_len = i_len;
1921
1922 ret = cmd_q->ccp->vdata->perform->rsa(&op);
1923 if (ret) {
1924 cmd->engine_error = cmd_q->cmd_error;
1925 goto e_dst;
1926 }
1927
1928 ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1929
1930e_dst:
1931 ccp_dm_free(&dst);
1932
1933e_src:
1934 ccp_dm_free(&src);
1935
1936e_exp:
1937 ccp_dm_free(&exp);
1938
1939e_sb:
1940 if (sb_count)
1941 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1942
1943 return ret;
1944}
1945
1946static noinline_for_stack int
1947ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1948{
1949 struct ccp_passthru_engine *pt = &cmd->u.passthru;
1950 struct ccp_dm_workarea mask;
1951 struct ccp_data src, dst;
1952 struct ccp_op op;
1953 bool in_place = false;
1954 unsigned int i;
1955 int ret = 0;
1956
1957 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1958 return -EINVAL;
1959
1960 if (!pt->src || !pt->dst)
1961 return -EINVAL;
1962
1963 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1964 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1965 return -EINVAL;
1966 if (!pt->mask)
1967 return -EINVAL;
1968 }
1969
1970 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1971
1972 memset(&op, 0, sizeof(op));
1973 op.cmd_q = cmd_q;
1974 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1975
1976 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1977 /* Load the mask */
1978 op.sb_key = cmd_q->sb_key;
1979
1980 ret = ccp_init_dm_workarea(&mask, cmd_q,
1981 CCP_PASSTHRU_SB_COUNT *
1982 CCP_SB_BYTES,
1983 DMA_TO_DEVICE);
1984 if (ret)
1985 return ret;
1986
1987 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1988 if (ret)
1989 goto e_mask;
1990 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1991 CCP_PASSTHRU_BYTESWAP_NOOP);
1992 if (ret) {
1993 cmd->engine_error = cmd_q->cmd_error;
1994 goto e_mask;
1995 }
1996 }
1997
1998 /* Prepare the input and output data workareas. For in-place
1999 * operations we need to set the dma direction to BIDIRECTIONAL
2000 * and copy the src workarea to the dst workarea.
2001 */
2002 if (sg_virt(pt->src) == sg_virt(pt->dst))
2003 in_place = true;
2004
2005 ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2006 CCP_PASSTHRU_MASKSIZE,
2007 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2008 if (ret)
2009 goto e_mask;
2010
2011 if (in_place) {
2012 dst = src;
2013 } else {
2014 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2015 CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2016 if (ret)
2017 goto e_src;
2018 }
2019
2020 /* Send data to the CCP Passthru engine
2021 * Because the CCP engine works on a single source and destination
2022 * dma address at a time, each entry in the source scatterlist
2023 * (after the dma_map_sg call) must be less than or equal to the
2024 * (remaining) length in the destination scatterlist entry and the
2025 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2026 */
2027 dst.sg_wa.sg_used = 0;
2028 for (i = 1; i <= src.sg_wa.dma_count; i++) {
2029 if (!dst.sg_wa.sg ||
2030 (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2031 ret = -EINVAL;
2032 goto e_dst;
2033 }
2034
2035 if (i == src.sg_wa.dma_count) {
2036 op.eom = 1;
2037 op.soc = 1;
2038 }
2039
2040 op.src.type = CCP_MEMTYPE_SYSTEM;
2041 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2042 op.src.u.dma.offset = 0;
2043 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2044
2045 op.dst.type = CCP_MEMTYPE_SYSTEM;
2046 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2047 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2048 op.dst.u.dma.length = op.src.u.dma.length;
2049
2050 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2051 if (ret) {
2052 cmd->engine_error = cmd_q->cmd_error;
2053 goto e_dst;
2054 }
2055
2056 dst.sg_wa.sg_used += src.sg_wa.sg->length;
2057 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2058 dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2059 dst.sg_wa.sg_used = 0;
2060 }
2061 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2062 }
2063
2064e_dst:
2065 if (!in_place)
2066 ccp_free_data(&dst, cmd_q);
2067
2068e_src:
2069 ccp_free_data(&src, cmd_q);
2070
2071e_mask:
2072 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2073 ccp_dm_free(&mask);
2074
2075 return ret;
2076}
2077
2078static noinline_for_stack int
2079ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2080 struct ccp_cmd *cmd)
2081{
2082 struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2083 struct ccp_dm_workarea mask;
2084 struct ccp_op op;
2085 int ret;
2086
2087 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2088 return -EINVAL;
2089
2090 if (!pt->src_dma || !pt->dst_dma)
2091 return -EINVAL;
2092
2093 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2094 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2095 return -EINVAL;
2096 if (!pt->mask)
2097 return -EINVAL;
2098 }
2099
2100 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2101
2102 memset(&op, 0, sizeof(op));
2103 op.cmd_q = cmd_q;
2104 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2105
2106 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2107 /* Load the mask */
2108 op.sb_key = cmd_q->sb_key;
2109
2110 mask.length = pt->mask_len;
2111 mask.dma.address = pt->mask;
2112 mask.dma.length = pt->mask_len;
2113
2114 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2115 CCP_PASSTHRU_BYTESWAP_NOOP);
2116 if (ret) {
2117 cmd->engine_error = cmd_q->cmd_error;
2118 return ret;
2119 }
2120 }
2121
2122 /* Send data to the CCP Passthru engine */
2123 op.eom = 1;
2124 op.soc = 1;
2125
2126 op.src.type = CCP_MEMTYPE_SYSTEM;
2127 op.src.u.dma.address = pt->src_dma;
2128 op.src.u.dma.offset = 0;
2129 op.src.u.dma.length = pt->src_len;
2130
2131 op.dst.type = CCP_MEMTYPE_SYSTEM;
2132 op.dst.u.dma.address = pt->dst_dma;
2133 op.dst.u.dma.offset = 0;
2134 op.dst.u.dma.length = pt->src_len;
2135
2136 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2137 if (ret)
2138 cmd->engine_error = cmd_q->cmd_error;
2139
2140 return ret;
2141}
2142
2143static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2144{
2145 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2146 struct ccp_dm_workarea src, dst;
2147 struct ccp_op op;
2148 int ret;
2149 u8 *save;
2150
2151 if (!ecc->u.mm.operand_1 ||
2152 (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2153 return -EINVAL;
2154
2155 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2156 if (!ecc->u.mm.operand_2 ||
2157 (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2158 return -EINVAL;
2159
2160 if (!ecc->u.mm.result ||
2161 (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2162 return -EINVAL;
2163
2164 memset(&op, 0, sizeof(op));
2165 op.cmd_q = cmd_q;
2166 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2167
2168 /* Concatenate the modulus and the operands. Both the modulus and
2169 * the operands must be in little endian format. Since the input
2170 * is in big endian format it must be converted and placed in a
2171 * fixed length buffer.
2172 */
2173 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2174 DMA_TO_DEVICE);
2175 if (ret)
2176 return ret;
2177
2178 /* Save the workarea address since it is updated in order to perform
2179 * the concatenation
2180 */
2181 save = src.address;
2182
2183 /* Copy the ECC modulus */
2184 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2185 if (ret)
2186 goto e_src;
2187 src.address += CCP_ECC_OPERAND_SIZE;
2188
2189 /* Copy the first operand */
2190 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2191 ecc->u.mm.operand_1_len);
2192 if (ret)
2193 goto e_src;
2194 src.address += CCP_ECC_OPERAND_SIZE;
2195
2196 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2197 /* Copy the second operand */
2198 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2199 ecc->u.mm.operand_2_len);
2200 if (ret)
2201 goto e_src;
2202 src.address += CCP_ECC_OPERAND_SIZE;
2203 }
2204
2205 /* Restore the workarea address */
2206 src.address = save;
2207
2208 /* Prepare the output area for the operation */
2209 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2210 DMA_FROM_DEVICE);
2211 if (ret)
2212 goto e_src;
2213
2214 op.soc = 1;
2215 op.src.u.dma.address = src.dma.address;
2216 op.src.u.dma.offset = 0;
2217 op.src.u.dma.length = src.length;
2218 op.dst.u.dma.address = dst.dma.address;
2219 op.dst.u.dma.offset = 0;
2220 op.dst.u.dma.length = dst.length;
2221
2222 op.u.ecc.function = cmd->u.ecc.function;
2223
2224 ret = cmd_q->ccp->vdata->perform->ecc(&op);
2225 if (ret) {
2226 cmd->engine_error = cmd_q->cmd_error;
2227 goto e_dst;
2228 }
2229
2230 ecc->ecc_result = le16_to_cpup(
2231 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2232 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2233 ret = -EIO;
2234 goto e_dst;
2235 }
2236
2237 /* Save the ECC result */
2238 ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2239 CCP_ECC_MODULUS_BYTES);
2240
2241e_dst:
2242 ccp_dm_free(&dst);
2243
2244e_src:
2245 ccp_dm_free(&src);
2246
2247 return ret;
2248}
2249
2250static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2251{
2252 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2253 struct ccp_dm_workarea src, dst;
2254 struct ccp_op op;
2255 int ret;
2256 u8 *save;
2257
2258 if (!ecc->u.pm.point_1.x ||
2259 (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2260 !ecc->u.pm.point_1.y ||
2261 (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2262 return -EINVAL;
2263
2264 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2265 if (!ecc->u.pm.point_2.x ||
2266 (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2267 !ecc->u.pm.point_2.y ||
2268 (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2269 return -EINVAL;
2270 } else {
2271 if (!ecc->u.pm.domain_a ||
2272 (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2273 return -EINVAL;
2274
2275 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2276 if (!ecc->u.pm.scalar ||
2277 (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2278 return -EINVAL;
2279 }
2280
2281 if (!ecc->u.pm.result.x ||
2282 (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2283 !ecc->u.pm.result.y ||
2284 (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2285 return -EINVAL;
2286
2287 memset(&op, 0, sizeof(op));
2288 op.cmd_q = cmd_q;
2289 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2290
2291 /* Concatenate the modulus and the operands. Both the modulus and
2292 * the operands must be in little endian format. Since the input
2293 * is in big endian format it must be converted and placed in a
2294 * fixed length buffer.
2295 */
2296 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2297 DMA_TO_DEVICE);
2298 if (ret)
2299 return ret;
2300
2301 /* Save the workarea address since it is updated in order to perform
2302 * the concatenation
2303 */
2304 save = src.address;
2305
2306 /* Copy the ECC modulus */
2307 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2308 if (ret)
2309 goto e_src;
2310 src.address += CCP_ECC_OPERAND_SIZE;
2311
2312 /* Copy the first point X and Y coordinate */
2313 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2314 ecc->u.pm.point_1.x_len);
2315 if (ret)
2316 goto e_src;
2317 src.address += CCP_ECC_OPERAND_SIZE;
2318 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2319 ecc->u.pm.point_1.y_len);
2320 if (ret)
2321 goto e_src;
2322 src.address += CCP_ECC_OPERAND_SIZE;
2323
2324 /* Set the first point Z coordinate to 1 */
2325 *src.address = 0x01;
2326 src.address += CCP_ECC_OPERAND_SIZE;
2327
2328 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2329 /* Copy the second point X and Y coordinate */
2330 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2331 ecc->u.pm.point_2.x_len);
2332 if (ret)
2333 goto e_src;
2334 src.address += CCP_ECC_OPERAND_SIZE;
2335 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2336 ecc->u.pm.point_2.y_len);
2337 if (ret)
2338 goto e_src;
2339 src.address += CCP_ECC_OPERAND_SIZE;
2340
2341 /* Set the second point Z coordinate to 1 */
2342 *src.address = 0x01;
2343 src.address += CCP_ECC_OPERAND_SIZE;
2344 } else {
2345 /* Copy the Domain "a" parameter */
2346 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2347 ecc->u.pm.domain_a_len);
2348 if (ret)
2349 goto e_src;
2350 src.address += CCP_ECC_OPERAND_SIZE;
2351
2352 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2353 /* Copy the scalar value */
2354 ret = ccp_reverse_set_dm_area(&src, 0,
2355 ecc->u.pm.scalar, 0,
2356 ecc->u.pm.scalar_len);
2357 if (ret)
2358 goto e_src;
2359 src.address += CCP_ECC_OPERAND_SIZE;
2360 }
2361 }
2362
2363 /* Restore the workarea address */
2364 src.address = save;
2365
2366 /* Prepare the output area for the operation */
2367 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2368 DMA_FROM_DEVICE);
2369 if (ret)
2370 goto e_src;
2371
2372 op.soc = 1;
2373 op.src.u.dma.address = src.dma.address;
2374 op.src.u.dma.offset = 0;
2375 op.src.u.dma.length = src.length;
2376 op.dst.u.dma.address = dst.dma.address;
2377 op.dst.u.dma.offset = 0;
2378 op.dst.u.dma.length = dst.length;
2379
2380 op.u.ecc.function = cmd->u.ecc.function;
2381
2382 ret = cmd_q->ccp->vdata->perform->ecc(&op);
2383 if (ret) {
2384 cmd->engine_error = cmd_q->cmd_error;
2385 goto e_dst;
2386 }
2387
2388 ecc->ecc_result = le16_to_cpup(
2389 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2390 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2391 ret = -EIO;
2392 goto e_dst;
2393 }
2394
2395 /* Save the workarea address since it is updated as we walk through
2396 * to copy the point math result
2397 */
2398 save = dst.address;
2399
2400 /* Save the ECC result X and Y coordinates */
2401 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2402 CCP_ECC_MODULUS_BYTES);
2403 dst.address += CCP_ECC_OUTPUT_SIZE;
2404 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2405 CCP_ECC_MODULUS_BYTES);
2406 dst.address += CCP_ECC_OUTPUT_SIZE;
2407
2408 /* Restore the workarea address */
2409 dst.address = save;
2410
2411e_dst:
2412 ccp_dm_free(&dst);
2413
2414e_src:
2415 ccp_dm_free(&src);
2416
2417 return ret;
2418}
2419
2420static noinline_for_stack int
2421ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2422{
2423 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2424
2425 ecc->ecc_result = 0;
2426
2427 if (!ecc->mod ||
2428 (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2429 return -EINVAL;
2430
2431 switch (ecc->function) {
2432 case CCP_ECC_FUNCTION_MMUL_384BIT:
2433 case CCP_ECC_FUNCTION_MADD_384BIT:
2434 case CCP_ECC_FUNCTION_MINV_384BIT:
2435 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2436
2437 case CCP_ECC_FUNCTION_PADD_384BIT:
2438 case CCP_ECC_FUNCTION_PMUL_384BIT:
2439 case CCP_ECC_FUNCTION_PDBL_384BIT:
2440 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2441
2442 default:
2443 return -EINVAL;
2444 }
2445}
2446
2447int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2448{
2449 int ret;
2450
2451 cmd->engine_error = 0;
2452 cmd_q->cmd_error = 0;
2453 cmd_q->int_rcvd = 0;
2454 cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2455
2456 switch (cmd->engine) {
2457 case CCP_ENGINE_AES:
2458 switch (cmd->u.aes.mode) {
2459 case CCP_AES_MODE_CMAC:
2460 ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2461 break;
2462 case CCP_AES_MODE_GCM:
2463 ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2464 break;
2465 default:
2466 ret = ccp_run_aes_cmd(cmd_q, cmd);
2467 break;
2468 }
2469 break;
2470 case CCP_ENGINE_XTS_AES_128:
2471 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2472 break;
2473 case CCP_ENGINE_DES3:
2474 ret = ccp_run_des3_cmd(cmd_q, cmd);
2475 break;
2476 case CCP_ENGINE_SHA:
2477 ret = ccp_run_sha_cmd(cmd_q, cmd);
2478 break;
2479 case CCP_ENGINE_RSA:
2480 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2481 break;
2482 case CCP_ENGINE_PASSTHRU:
2483 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2484 ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2485 else
2486 ret = ccp_run_passthru_cmd(cmd_q, cmd);
2487 break;
2488 case CCP_ENGINE_ECC:
2489 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2490 break;
2491 default:
2492 ret = -EINVAL;
2493 }
2494
2495 return ret;
2496}