Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Cryptographic Coprocessor (CCP) driver
   4 *
   5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 * Author: Gary R Hook <gary.hook@amd.com>
 
 
 
 
   9 */
  10
  11#include <linux/dma-mapping.h>
  12#include <linux/module.h>
  13#include <linux/kernel.h>
 
  14#include <linux/interrupt.h>
  15#include <crypto/scatterwalk.h>
  16#include <crypto/des.h>
  17#include <linux/ccp.h>
  18
  19#include "ccp-dev.h"
  20
  21/* SHA initial context values */
  22static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  23	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  24	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  25	cpu_to_be32(SHA1_H4),
  26};
  27
  28static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  29	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  30	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  31	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  32	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  33};
  34
  35static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  36	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  37	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  38	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  39	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  40};
  41
  42static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  43	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  44	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  45	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  46	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  47};
  48
  49static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  50	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  51	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  52	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  53	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  54};
  55
  56#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  57					ccp_gen_jobid(ccp) : 0)
  58
  59static u32 ccp_gen_jobid(struct ccp_device *ccp)
  60{
  61	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  62}
  63
  64static void ccp_sg_free(struct ccp_sg_workarea *wa)
  65{
  66	if (wa->dma_count)
  67		dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir);
  68
  69	wa->dma_count = 0;
  70}
  71
  72static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  73				struct scatterlist *sg, u64 len,
  74				enum dma_data_direction dma_dir)
  75{
  76	memset(wa, 0, sizeof(*wa));
  77
  78	wa->sg = sg;
  79	if (!sg)
  80		return 0;
  81
  82	wa->nents = sg_nents_for_len(sg, len);
  83	if (wa->nents < 0)
  84		return wa->nents;
  85
  86	wa->bytes_left = len;
  87	wa->sg_used = 0;
  88
  89	if (len == 0)
  90		return 0;
  91
  92	if (dma_dir == DMA_NONE)
  93		return 0;
  94
  95	wa->dma_sg = sg;
  96	wa->dma_sg_head = sg;
  97	wa->dma_dev = dev;
  98	wa->dma_dir = dma_dir;
  99	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 100	if (!wa->dma_count)
 101		return -ENOMEM;
 102
 103	return 0;
 104}
 105
 106static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 107{
 108	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 109	unsigned int sg_combined_len = 0;
 110
 111	if (!wa->sg)
 112		return;
 113
 114	wa->sg_used += nbytes;
 115	wa->bytes_left -= nbytes;
 116	if (wa->sg_used == sg_dma_len(wa->dma_sg)) {
 117		/* Advance to the next DMA scatterlist entry */
 118		wa->dma_sg = sg_next(wa->dma_sg);
 119
 120		/* In the case that the DMA mapped scatterlist has entries
 121		 * that have been merged, the non-DMA mapped scatterlist
 122		 * must be advanced multiple times for each merged entry.
 123		 * This ensures that the current non-DMA mapped entry
 124		 * corresponds to the current DMA mapped entry.
 125		 */
 126		do {
 127			sg_combined_len += wa->sg->length;
 128			wa->sg = sg_next(wa->sg);
 129		} while (wa->sg_used > sg_combined_len);
 130
 131		wa->sg_used = 0;
 132	}
 133}
 134
 135static void ccp_dm_free(struct ccp_dm_workarea *wa)
 136{
 137	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 138		if (wa->address)
 139			dma_pool_free(wa->dma_pool, wa->address,
 140				      wa->dma.address);
 141	} else {
 142		if (wa->dma.address)
 143			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 144					 wa->dma.dir);
 145		kfree(wa->address);
 146	}
 147
 148	wa->address = NULL;
 149	wa->dma.address = 0;
 150}
 151
 152static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 153				struct ccp_cmd_queue *cmd_q,
 154				unsigned int len,
 155				enum dma_data_direction dir)
 156{
 157	memset(wa, 0, sizeof(*wa));
 158
 159	if (!len)
 160		return 0;
 161
 162	wa->dev = cmd_q->ccp->dev;
 163	wa->length = len;
 164
 165	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 166		wa->dma_pool = cmd_q->dma_pool;
 167
 168		wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
 169					     &wa->dma.address);
 170		if (!wa->address)
 171			return -ENOMEM;
 172
 173		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 174
 
 175	} else {
 176		wa->address = kzalloc(len, GFP_KERNEL);
 177		if (!wa->address)
 178			return -ENOMEM;
 179
 180		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 181						 dir);
 182		if (dma_mapping_error(wa->dev, wa->dma.address)) {
 183			kfree(wa->address);
 184			wa->address = NULL;
 185			return -ENOMEM;
 186		}
 187
 188		wa->dma.length = len;
 189	}
 190	wa->dma.dir = dir;
 191
 192	return 0;
 193}
 194
 195static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 196			   struct scatterlist *sg, unsigned int sg_offset,
 197			   unsigned int len)
 198{
 199	WARN_ON(!wa->address);
 200
 201	if (len > (wa->length - wa_offset))
 202		return -EINVAL;
 203
 204	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 205				 0);
 206	return 0;
 207}
 208
 209static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 210			    struct scatterlist *sg, unsigned int sg_offset,
 211			    unsigned int len)
 212{
 213	WARN_ON(!wa->address);
 214
 215	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 216				 1);
 217}
 218
 219static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 220				   unsigned int wa_offset,
 221				   struct scatterlist *sg,
 222				   unsigned int sg_offset,
 223				   unsigned int len)
 224{
 225	u8 *p, *q;
 226	int	rc;
 227
 228	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 229	if (rc)
 230		return rc;
 231
 232	p = wa->address + wa_offset;
 233	q = p + len - 1;
 234	while (p < q) {
 235		*p = *p ^ *q;
 236		*q = *p ^ *q;
 237		*p = *p ^ *q;
 238		p++;
 239		q--;
 240	}
 241	return 0;
 242}
 243
 244static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 245				    unsigned int wa_offset,
 246				    struct scatterlist *sg,
 247				    unsigned int sg_offset,
 248				    unsigned int len)
 249{
 250	u8 *p, *q;
 251
 252	p = wa->address + wa_offset;
 253	q = p + len - 1;
 254	while (p < q) {
 255		*p = *p ^ *q;
 256		*q = *p ^ *q;
 257		*p = *p ^ *q;
 258		p++;
 259		q--;
 260	}
 261
 262	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 263}
 264
 265static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 266{
 267	ccp_dm_free(&data->dm_wa);
 268	ccp_sg_free(&data->sg_wa);
 269}
 270
 271static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 272			 struct scatterlist *sg, u64 sg_len,
 273			 unsigned int dm_len,
 274			 enum dma_data_direction dir)
 275{
 276	int ret;
 277
 278	memset(data, 0, sizeof(*data));
 279
 280	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 281				   dir);
 282	if (ret)
 283		goto e_err;
 284
 285	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 286	if (ret)
 287		goto e_err;
 288
 289	return 0;
 290
 291e_err:
 292	ccp_free_data(data, cmd_q);
 293
 294	return ret;
 295}
 296
 297static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 298{
 299	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 300	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 301	unsigned int buf_count, nbytes;
 302
 303	/* Clear the buffer if setting it */
 304	if (!from)
 305		memset(dm_wa->address, 0, dm_wa->length);
 306
 307	if (!sg_wa->sg)
 308		return 0;
 309
 310	/* Perform the copy operation
 311	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 312	 *   an unsigned int
 313	 */
 314	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 315	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 316				 nbytes, from);
 317
 318	/* Update the structures and generate the count */
 319	buf_count = 0;
 320	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 321		nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used,
 322			     dm_wa->length - buf_count);
 323		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 324
 325		buf_count += nbytes;
 326		ccp_update_sg_workarea(sg_wa, nbytes);
 327	}
 328
 329	return buf_count;
 330}
 331
 332static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 333{
 334	return ccp_queue_buf(data, 0);
 335}
 336
 337static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 338{
 339	return ccp_queue_buf(data, 1);
 340}
 341
 342static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 343			     struct ccp_op *op, unsigned int block_size,
 344			     bool blocksize_op)
 345{
 346	unsigned int sg_src_len, sg_dst_len, op_len;
 347
 348	/* The CCP can only DMA from/to one address each per operation. This
 349	 * requires that we find the smallest DMA area between the source
 350	 * and destination. The resulting len values will always be <= UINT_MAX
 351	 * because the dma length is an unsigned int.
 352	 */
 353	sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used;
 354	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 355
 356	if (dst) {
 357		sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used;
 358		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 359		op_len = min(sg_src_len, sg_dst_len);
 360	} else {
 361		op_len = sg_src_len;
 362	}
 363
 364	/* The data operation length will be at least block_size in length
 365	 * or the smaller of available sg room remaining for the source or
 366	 * the destination
 367	 */
 368	op_len = max(op_len, block_size);
 369
 370	/* Unless we have to buffer data, there's no reason to wait */
 371	op->soc = 0;
 372
 373	if (sg_src_len < block_size) {
 374		/* Not enough data in the sg element, so it
 375		 * needs to be buffered into a blocksize chunk
 376		 */
 377		int cp_len = ccp_fill_queue_buf(src);
 378
 379		op->soc = 1;
 380		op->src.u.dma.address = src->dm_wa.dma.address;
 381		op->src.u.dma.offset = 0;
 382		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 383	} else {
 384		/* Enough data in the sg element, but we need to
 385		 * adjust for any previously copied data
 386		 */
 387		op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg);
 388		op->src.u.dma.offset = src->sg_wa.sg_used;
 389		op->src.u.dma.length = op_len & ~(block_size - 1);
 390
 391		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 392	}
 393
 394	if (dst) {
 395		if (sg_dst_len < block_size) {
 396			/* Not enough room in the sg element or we're on the
 397			 * last piece of data (when using padding), so the
 398			 * output needs to be buffered into a blocksize chunk
 399			 */
 400			op->soc = 1;
 401			op->dst.u.dma.address = dst->dm_wa.dma.address;
 402			op->dst.u.dma.offset = 0;
 403			op->dst.u.dma.length = op->src.u.dma.length;
 404		} else {
 405			/* Enough room in the sg element, but we need to
 406			 * adjust for any previously used area
 407			 */
 408			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg);
 409			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 410			op->dst.u.dma.length = op->src.u.dma.length;
 411		}
 412	}
 413}
 414
 415static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 416			     struct ccp_op *op)
 417{
 418	op->init = 0;
 419
 420	if (dst) {
 421		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 422			ccp_empty_queue_buf(dst);
 423		else
 424			ccp_update_sg_workarea(&dst->sg_wa,
 425					       op->dst.u.dma.length);
 426	}
 427}
 428
 429static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 430			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 431			       u32 byte_swap, bool from)
 432{
 433	struct ccp_op op;
 434
 435	memset(&op, 0, sizeof(op));
 436
 437	op.cmd_q = cmd_q;
 438	op.jobid = jobid;
 439	op.eom = 1;
 440
 441	if (from) {
 442		op.soc = 1;
 443		op.src.type = CCP_MEMTYPE_SB;
 444		op.src.u.sb = sb;
 445		op.dst.type = CCP_MEMTYPE_SYSTEM;
 446		op.dst.u.dma.address = wa->dma.address;
 447		op.dst.u.dma.length = wa->length;
 448	} else {
 449		op.src.type = CCP_MEMTYPE_SYSTEM;
 450		op.src.u.dma.address = wa->dma.address;
 451		op.src.u.dma.length = wa->length;
 452		op.dst.type = CCP_MEMTYPE_SB;
 453		op.dst.u.sb = sb;
 454	}
 455
 456	op.u.passthru.byte_swap = byte_swap;
 457
 458	return cmd_q->ccp->vdata->perform->passthru(&op);
 459}
 460
 461static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 462			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 463			  u32 byte_swap)
 464{
 465	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 466}
 467
 468static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 469			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 470			    u32 byte_swap)
 471{
 472	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 473}
 474
 475static noinline_for_stack int
 476ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 477{
 478	struct ccp_aes_engine *aes = &cmd->u.aes;
 479	struct ccp_dm_workarea key, ctx;
 480	struct ccp_data src;
 481	struct ccp_op op;
 482	unsigned int dm_offset;
 483	int ret;
 484
 485	if (!((aes->key_len == AES_KEYSIZE_128) ||
 486	      (aes->key_len == AES_KEYSIZE_192) ||
 487	      (aes->key_len == AES_KEYSIZE_256)))
 488		return -EINVAL;
 489
 490	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 491		return -EINVAL;
 492
 493	if (aes->iv_len != AES_BLOCK_SIZE)
 494		return -EINVAL;
 495
 496	if (!aes->key || !aes->iv || !aes->src)
 497		return -EINVAL;
 498
 499	if (aes->cmac_final) {
 500		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 501			return -EINVAL;
 502
 503		if (!aes->cmac_key)
 504			return -EINVAL;
 505	}
 506
 507	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 508	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 509
 510	ret = -EIO;
 511	memset(&op, 0, sizeof(op));
 512	op.cmd_q = cmd_q;
 513	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 514	op.sb_key = cmd_q->sb_key;
 515	op.sb_ctx = cmd_q->sb_ctx;
 516	op.init = 1;
 517	op.u.aes.type = aes->type;
 518	op.u.aes.mode = aes->mode;
 519	op.u.aes.action = aes->action;
 520
 521	/* All supported key sizes fit in a single (32-byte) SB entry
 522	 * and must be in little endian format. Use the 256-bit byte
 523	 * swap passthru option to convert from big endian to little
 524	 * endian.
 525	 */
 526	ret = ccp_init_dm_workarea(&key, cmd_q,
 527				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 528				   DMA_TO_DEVICE);
 529	if (ret)
 530		return ret;
 531
 532	dm_offset = CCP_SB_BYTES - aes->key_len;
 533	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 534	if (ret)
 535		goto e_key;
 536	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 537			     CCP_PASSTHRU_BYTESWAP_256BIT);
 538	if (ret) {
 539		cmd->engine_error = cmd_q->cmd_error;
 540		goto e_key;
 541	}
 542
 543	/* The AES context fits in a single (32-byte) SB entry and
 544	 * must be in little endian format. Use the 256-bit byte swap
 545	 * passthru option to convert from big endian to little endian.
 546	 */
 547	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 548				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 549				   DMA_BIDIRECTIONAL);
 550	if (ret)
 551		goto e_key;
 552
 553	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 554	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 555	if (ret)
 556		goto e_ctx;
 557	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 558			     CCP_PASSTHRU_BYTESWAP_256BIT);
 559	if (ret) {
 560		cmd->engine_error = cmd_q->cmd_error;
 561		goto e_ctx;
 562	}
 563
 564	/* Send data to the CCP AES engine */
 565	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 566			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 567	if (ret)
 568		goto e_ctx;
 569
 570	while (src.sg_wa.bytes_left) {
 571		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 572		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 573			op.eom = 1;
 574
 575			/* Push the K1/K2 key to the CCP now */
 576			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 577					       op.sb_ctx,
 578					       CCP_PASSTHRU_BYTESWAP_256BIT);
 579			if (ret) {
 580				cmd->engine_error = cmd_q->cmd_error;
 581				goto e_src;
 582			}
 583
 584			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 585					      aes->cmac_key_len);
 586			if (ret)
 587				goto e_src;
 588			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 589					     CCP_PASSTHRU_BYTESWAP_256BIT);
 590			if (ret) {
 591				cmd->engine_error = cmd_q->cmd_error;
 592				goto e_src;
 593			}
 594		}
 595
 596		ret = cmd_q->ccp->vdata->perform->aes(&op);
 597		if (ret) {
 598			cmd->engine_error = cmd_q->cmd_error;
 599			goto e_src;
 600		}
 601
 602		ccp_process_data(&src, NULL, &op);
 603	}
 604
 605	/* Retrieve the AES context - convert from LE to BE using
 606	 * 32-byte (256-bit) byteswapping
 607	 */
 608	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 609			       CCP_PASSTHRU_BYTESWAP_256BIT);
 610	if (ret) {
 611		cmd->engine_error = cmd_q->cmd_error;
 612		goto e_src;
 613	}
 614
 615	/* ...but we only need AES_BLOCK_SIZE bytes */
 616	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 617	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 618
 619e_src:
 620	ccp_free_data(&src, cmd_q);
 621
 622e_ctx:
 623	ccp_dm_free(&ctx);
 624
 625e_key:
 626	ccp_dm_free(&key);
 627
 628	return ret;
 629}
 630
 631static noinline_for_stack int
 632ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 633{
 634	struct ccp_aes_engine *aes = &cmd->u.aes;
 635	struct ccp_dm_workarea key, ctx, final_wa, tag;
 636	struct ccp_data src, dst;
 637	struct ccp_data aad;
 638	struct ccp_op op;
 
 
 639	unsigned int dm_offset;
 640	unsigned int authsize;
 641	unsigned int jobid;
 642	unsigned int ilen;
 643	bool in_place = true; /* Default value */
 644	__be64 *final;
 645	int ret;
 646
 647	struct scatterlist *p_inp, sg_inp[2];
 648	struct scatterlist *p_tag, sg_tag[2];
 649	struct scatterlist *p_outp, sg_outp[2];
 650	struct scatterlist *p_aad;
 651
 652	if (!aes->iv)
 653		return -EINVAL;
 654
 655	if (!((aes->key_len == AES_KEYSIZE_128) ||
 656		(aes->key_len == AES_KEYSIZE_192) ||
 657		(aes->key_len == AES_KEYSIZE_256)))
 658		return -EINVAL;
 659
 660	if (!aes->key) /* Gotta have a key SGL */
 661		return -EINVAL;
 662
 663	/* Zero defaults to 16 bytes, the maximum size */
 664	authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
 665	switch (authsize) {
 666	case 16:
 667	case 15:
 668	case 14:
 669	case 13:
 670	case 12:
 671	case 8:
 672	case 4:
 673		break;
 674	default:
 675		return -EINVAL;
 676	}
 677
 678	/* First, decompose the source buffer into AAD & PT,
 679	 * and the destination buffer into AAD, CT & tag, or
 680	 * the input into CT & tag.
 681	 * It is expected that the input and output SGs will
 682	 * be valid, even if the AAD and input lengths are 0.
 683	 */
 684	p_aad = aes->src;
 685	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 686	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 687	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 688		ilen = aes->src_len;
 689		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 690	} else {
 691		/* Input length for decryption includes tag */
 692		ilen = aes->src_len - authsize;
 693		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 694	}
 695
 696	jobid = CCP_NEW_JOBID(cmd_q->ccp);
 697
 698	memset(&op, 0, sizeof(op));
 699	op.cmd_q = cmd_q;
 700	op.jobid = jobid;
 701	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 702	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 703	op.init = 1;
 704	op.u.aes.type = aes->type;
 705
 706	/* Copy the key to the LSB */
 707	ret = ccp_init_dm_workarea(&key, cmd_q,
 708				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 709				   DMA_TO_DEVICE);
 710	if (ret)
 711		return ret;
 712
 713	dm_offset = CCP_SB_BYTES - aes->key_len;
 714	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 715	if (ret)
 716		goto e_key;
 717	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 718			     CCP_PASSTHRU_BYTESWAP_256BIT);
 719	if (ret) {
 720		cmd->engine_error = cmd_q->cmd_error;
 721		goto e_key;
 722	}
 723
 724	/* Copy the context (IV) to the LSB.
 725	 * There is an assumption here that the IV is 96 bits in length, plus
 726	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 727	 */
 728	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 729				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 730				   DMA_BIDIRECTIONAL);
 731	if (ret)
 732		goto e_key;
 733
 734	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 735	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 736	if (ret)
 737		goto e_ctx;
 738
 739	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 740			     CCP_PASSTHRU_BYTESWAP_256BIT);
 741	if (ret) {
 742		cmd->engine_error = cmd_q->cmd_error;
 743		goto e_ctx;
 744	}
 745
 746	op.init = 1;
 747	if (aes->aad_len > 0) {
 748		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 749		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 750				    AES_BLOCK_SIZE,
 751				    DMA_TO_DEVICE);
 752		if (ret)
 753			goto e_ctx;
 754
 755		op.u.aes.mode = CCP_AES_MODE_GHASH;
 756		op.u.aes.action = CCP_AES_GHASHAAD;
 757
 758		while (aad.sg_wa.bytes_left) {
 759			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 760
 761			ret = cmd_q->ccp->vdata->perform->aes(&op);
 762			if (ret) {
 763				cmd->engine_error = cmd_q->cmd_error;
 764				goto e_aad;
 765			}
 766
 767			ccp_process_data(&aad, NULL, &op);
 768			op.init = 0;
 769		}
 770	}
 771
 772	op.u.aes.mode = CCP_AES_MODE_GCTR;
 773	op.u.aes.action = aes->action;
 774
 775	if (ilen > 0) {
 776		/* Step 2: Run a GCTR over the plaintext */
 777		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 778
 779		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 780				    AES_BLOCK_SIZE,
 781				    in_place ? DMA_BIDIRECTIONAL
 782					     : DMA_TO_DEVICE);
 783		if (ret)
 784			goto e_aad;
 785
 786		if (in_place) {
 787			dst = src;
 788		} else {
 789			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 790					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 791			if (ret)
 792				goto e_src;
 793		}
 794
 795		op.soc = 0;
 796		op.eom = 0;
 797		op.init = 1;
 798		while (src.sg_wa.bytes_left) {
 799			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 800			if (!src.sg_wa.bytes_left) {
 801				unsigned int nbytes = ilen % AES_BLOCK_SIZE;
 
 802
 803				if (nbytes) {
 804					op.eom = 1;
 805					op.u.aes.size = (nbytes * 8) - 1;
 806				}
 807			}
 808
 809			ret = cmd_q->ccp->vdata->perform->aes(&op);
 810			if (ret) {
 811				cmd->engine_error = cmd_q->cmd_error;
 812				goto e_dst;
 813			}
 814
 815			ccp_process_data(&src, &dst, &op);
 816			op.init = 0;
 817		}
 818	}
 819
 820	/* Step 3: Update the IV portion of the context with the original IV */
 821	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 822			       CCP_PASSTHRU_BYTESWAP_256BIT);
 823	if (ret) {
 824		cmd->engine_error = cmd_q->cmd_error;
 825		goto e_dst;
 826	}
 827
 828	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 829	if (ret)
 830		goto e_dst;
 831
 832	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 833			     CCP_PASSTHRU_BYTESWAP_256BIT);
 834	if (ret) {
 835		cmd->engine_error = cmd_q->cmd_error;
 836		goto e_dst;
 837	}
 838
 839	/* Step 4: Concatenate the lengths of the AAD and source, and
 840	 * hash that 16 byte buffer.
 841	 */
 842	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 843				   DMA_BIDIRECTIONAL);
 844	if (ret)
 845		goto e_dst;
 846	final = (__be64 *)final_wa.address;
 847	final[0] = cpu_to_be64(aes->aad_len * 8);
 848	final[1] = cpu_to_be64(ilen * 8);
 849
 850	memset(&op, 0, sizeof(op));
 851	op.cmd_q = cmd_q;
 852	op.jobid = jobid;
 853	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 854	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 855	op.init = 1;
 856	op.u.aes.type = aes->type;
 857	op.u.aes.mode = CCP_AES_MODE_GHASH;
 858	op.u.aes.action = CCP_AES_GHASHFINAL;
 859	op.src.type = CCP_MEMTYPE_SYSTEM;
 860	op.src.u.dma.address = final_wa.dma.address;
 861	op.src.u.dma.length = AES_BLOCK_SIZE;
 862	op.dst.type = CCP_MEMTYPE_SYSTEM;
 863	op.dst.u.dma.address = final_wa.dma.address;
 864	op.dst.u.dma.length = AES_BLOCK_SIZE;
 865	op.eom = 1;
 866	op.u.aes.size = 0;
 867	ret = cmd_q->ccp->vdata->perform->aes(&op);
 868	if (ret)
 869		goto e_final_wa;
 870
 871	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 872		/* Put the ciphered tag after the ciphertext. */
 873		ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
 874	} else {
 875		/* Does this ciphered tag match the input? */
 876		ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
 877					   DMA_BIDIRECTIONAL);
 878		if (ret)
 879			goto e_final_wa;
 880		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
 881		if (ret) {
 882			ccp_dm_free(&tag);
 883			goto e_final_wa;
 884		}
 885
 886		ret = crypto_memneq(tag.address, final_wa.address,
 887				    authsize) ? -EBADMSG : 0;
 888		ccp_dm_free(&tag);
 889	}
 890
 891e_final_wa:
 892	ccp_dm_free(&final_wa);
 893
 894e_dst:
 895	if (ilen > 0 && !in_place)
 896		ccp_free_data(&dst, cmd_q);
 897
 898e_src:
 899	if (ilen > 0)
 900		ccp_free_data(&src, cmd_q);
 901
 902e_aad:
 903	if (aes->aad_len)
 904		ccp_free_data(&aad, cmd_q);
 905
 906e_ctx:
 907	ccp_dm_free(&ctx);
 908
 909e_key:
 910	ccp_dm_free(&key);
 911
 912	return ret;
 913}
 914
 915static noinline_for_stack int
 916ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 917{
 918	struct ccp_aes_engine *aes = &cmd->u.aes;
 919	struct ccp_dm_workarea key, ctx;
 920	struct ccp_data src, dst;
 921	struct ccp_op op;
 922	unsigned int dm_offset;
 923	bool in_place = false;
 924	int ret;
 925
 
 
 
 
 
 
 926	if (!((aes->key_len == AES_KEYSIZE_128) ||
 927	      (aes->key_len == AES_KEYSIZE_192) ||
 928	      (aes->key_len == AES_KEYSIZE_256)))
 929		return -EINVAL;
 930
 931	if (((aes->mode == CCP_AES_MODE_ECB) ||
 932	     (aes->mode == CCP_AES_MODE_CBC)) &&
 
 933	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 934		return -EINVAL;
 935
 936	if (!aes->key || !aes->src || !aes->dst)
 937		return -EINVAL;
 938
 939	if (aes->mode != CCP_AES_MODE_ECB) {
 940		if (aes->iv_len != AES_BLOCK_SIZE)
 941			return -EINVAL;
 942
 943		if (!aes->iv)
 944			return -EINVAL;
 945	}
 946
 947	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 948	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 949
 950	ret = -EIO;
 951	memset(&op, 0, sizeof(op));
 952	op.cmd_q = cmd_q;
 953	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 954	op.sb_key = cmd_q->sb_key;
 955	op.sb_ctx = cmd_q->sb_ctx;
 956	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 957	op.u.aes.type = aes->type;
 958	op.u.aes.mode = aes->mode;
 959	op.u.aes.action = aes->action;
 960
 961	/* All supported key sizes fit in a single (32-byte) SB entry
 962	 * and must be in little endian format. Use the 256-bit byte
 963	 * swap passthru option to convert from big endian to little
 964	 * endian.
 965	 */
 966	ret = ccp_init_dm_workarea(&key, cmd_q,
 967				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 968				   DMA_TO_DEVICE);
 969	if (ret)
 970		return ret;
 971
 972	dm_offset = CCP_SB_BYTES - aes->key_len;
 973	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 974	if (ret)
 975		goto e_key;
 976	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 977			     CCP_PASSTHRU_BYTESWAP_256BIT);
 978	if (ret) {
 979		cmd->engine_error = cmd_q->cmd_error;
 980		goto e_key;
 981	}
 982
 983	/* The AES context fits in a single (32-byte) SB entry and
 984	 * must be in little endian format. Use the 256-bit byte swap
 985	 * passthru option to convert from big endian to little endian.
 986	 */
 987	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 988				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 989				   DMA_BIDIRECTIONAL);
 990	if (ret)
 991		goto e_key;
 992
 993	if (aes->mode != CCP_AES_MODE_ECB) {
 994		/* Load the AES context - convert to LE */
 995		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 996		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 997		if (ret)
 998			goto e_ctx;
 999		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1000				     CCP_PASSTHRU_BYTESWAP_256BIT);
1001		if (ret) {
1002			cmd->engine_error = cmd_q->cmd_error;
1003			goto e_ctx;
1004		}
1005	}
1006	switch (aes->mode) {
1007	case CCP_AES_MODE_CFB: /* CFB128 only */
1008	case CCP_AES_MODE_CTR:
1009		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
1010		break;
1011	default:
1012		op.u.aes.size = 0;
1013	}
1014
1015	/* Prepare the input and output data workareas. For in-place
1016	 * operations we need to set the dma direction to BIDIRECTIONAL
1017	 * and copy the src workarea to the dst workarea.
1018	 */
1019	if (sg_virt(aes->src) == sg_virt(aes->dst))
1020		in_place = true;
1021
1022	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1023			    AES_BLOCK_SIZE,
1024			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1025	if (ret)
1026		goto e_ctx;
1027
1028	if (in_place) {
1029		dst = src;
1030	} else {
1031		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1032				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1033		if (ret)
1034			goto e_src;
1035	}
1036
1037	/* Send data to the CCP AES engine */
1038	while (src.sg_wa.bytes_left) {
1039		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1040		if (!src.sg_wa.bytes_left) {
1041			op.eom = 1;
1042
1043			/* Since we don't retrieve the AES context in ECB
1044			 * mode we have to wait for the operation to complete
1045			 * on the last piece of data
1046			 */
1047			if (aes->mode == CCP_AES_MODE_ECB)
1048				op.soc = 1;
1049		}
1050
1051		ret = cmd_q->ccp->vdata->perform->aes(&op);
1052		if (ret) {
1053			cmd->engine_error = cmd_q->cmd_error;
1054			goto e_dst;
1055		}
1056
1057		ccp_process_data(&src, &dst, &op);
1058	}
1059
1060	if (aes->mode != CCP_AES_MODE_ECB) {
1061		/* Retrieve the AES context - convert from LE to BE using
1062		 * 32-byte (256-bit) byteswapping
1063		 */
1064		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1065				       CCP_PASSTHRU_BYTESWAP_256BIT);
1066		if (ret) {
1067			cmd->engine_error = cmd_q->cmd_error;
1068			goto e_dst;
1069		}
1070
1071		/* ...but we only need AES_BLOCK_SIZE bytes */
1072		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1073		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1074	}
1075
1076e_dst:
1077	if (!in_place)
1078		ccp_free_data(&dst, cmd_q);
1079
1080e_src:
1081	ccp_free_data(&src, cmd_q);
1082
1083e_ctx:
1084	ccp_dm_free(&ctx);
1085
1086e_key:
1087	ccp_dm_free(&key);
1088
1089	return ret;
1090}
1091
1092static noinline_for_stack int
1093ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1094{
1095	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1096	struct ccp_dm_workarea key, ctx;
1097	struct ccp_data src, dst;
1098	struct ccp_op op;
1099	unsigned int unit_size, dm_offset;
1100	bool in_place = false;
1101	unsigned int sb_count;
1102	enum ccp_aes_type aestype;
1103	int ret;
1104
1105	switch (xts->unit_size) {
1106	case CCP_XTS_AES_UNIT_SIZE_16:
1107		unit_size = 16;
1108		break;
1109	case CCP_XTS_AES_UNIT_SIZE_512:
1110		unit_size = 512;
1111		break;
1112	case CCP_XTS_AES_UNIT_SIZE_1024:
1113		unit_size = 1024;
1114		break;
1115	case CCP_XTS_AES_UNIT_SIZE_2048:
1116		unit_size = 2048;
1117		break;
1118	case CCP_XTS_AES_UNIT_SIZE_4096:
1119		unit_size = 4096;
1120		break;
1121
1122	default:
1123		return -EINVAL;
1124	}
1125
1126	if (xts->key_len == AES_KEYSIZE_128)
1127		aestype = CCP_AES_TYPE_128;
1128	else if (xts->key_len == AES_KEYSIZE_256)
1129		aestype = CCP_AES_TYPE_256;
1130	else
1131		return -EINVAL;
1132
1133	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1134		return -EINVAL;
1135
1136	if (xts->iv_len != AES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1140		return -EINVAL;
1141
1142	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1143	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1144
1145	ret = -EIO;
1146	memset(&op, 0, sizeof(op));
1147	op.cmd_q = cmd_q;
1148	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1149	op.sb_key = cmd_q->sb_key;
1150	op.sb_ctx = cmd_q->sb_ctx;
1151	op.init = 1;
1152	op.u.xts.type = aestype;
1153	op.u.xts.action = xts->action;
1154	op.u.xts.unit_size = xts->unit_size;
1155
1156	/* A version 3 device only supports 128-bit keys, which fits into a
1157	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1158	 * SB entries.
1159	 */
1160	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1161		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1162	else
1163		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1164	ret = ccp_init_dm_workarea(&key, cmd_q,
1165				   sb_count * CCP_SB_BYTES,
1166				   DMA_TO_DEVICE);
1167	if (ret)
1168		return ret;
1169
1170	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1171		/* All supported key sizes must be in little endian format.
1172		 * Use the 256-bit byte swap passthru option to convert from
1173		 * big endian to little endian.
1174		 */
1175		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1176		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1177		if (ret)
1178			goto e_key;
1179		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1180		if (ret)
1181			goto e_key;
1182	} else {
1183		/* Version 5 CCPs use a 512-bit space for the key: each portion
1184		 * occupies 256 bits, or one entire slot, and is zero-padded.
1185		 */
1186		unsigned int pad;
1187
1188		dm_offset = CCP_SB_BYTES;
1189		pad = dm_offset - xts->key_len;
1190		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1191		if (ret)
1192			goto e_key;
1193		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1194				      xts->key_len, xts->key_len);
1195		if (ret)
1196			goto e_key;
1197	}
1198	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1199			     CCP_PASSTHRU_BYTESWAP_256BIT);
1200	if (ret) {
1201		cmd->engine_error = cmd_q->cmd_error;
1202		goto e_key;
1203	}
1204
1205	/* The AES context fits in a single (32-byte) SB entry and
1206	 * for XTS is already in little endian format so no byte swapping
1207	 * is needed.
1208	 */
1209	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1210				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1211				   DMA_BIDIRECTIONAL);
1212	if (ret)
1213		goto e_key;
1214
1215	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1216	if (ret)
1217		goto e_ctx;
1218	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1219			     CCP_PASSTHRU_BYTESWAP_NOOP);
1220	if (ret) {
1221		cmd->engine_error = cmd_q->cmd_error;
1222		goto e_ctx;
1223	}
1224
1225	/* Prepare the input and output data workareas. For in-place
1226	 * operations we need to set the dma direction to BIDIRECTIONAL
1227	 * and copy the src workarea to the dst workarea.
1228	 */
1229	if (sg_virt(xts->src) == sg_virt(xts->dst))
1230		in_place = true;
1231
1232	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1233			    unit_size,
1234			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1235	if (ret)
1236		goto e_ctx;
1237
1238	if (in_place) {
1239		dst = src;
1240	} else {
1241		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1242				    unit_size, DMA_FROM_DEVICE);
1243		if (ret)
1244			goto e_src;
1245	}
1246
1247	/* Send data to the CCP AES engine */
1248	while (src.sg_wa.bytes_left) {
1249		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1250		if (!src.sg_wa.bytes_left)
1251			op.eom = 1;
1252
1253		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1254		if (ret) {
1255			cmd->engine_error = cmd_q->cmd_error;
1256			goto e_dst;
1257		}
1258
1259		ccp_process_data(&src, &dst, &op);
1260	}
1261
1262	/* Retrieve the AES context - convert from LE to BE using
1263	 * 32-byte (256-bit) byteswapping
1264	 */
1265	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1266			       CCP_PASSTHRU_BYTESWAP_256BIT);
1267	if (ret) {
1268		cmd->engine_error = cmd_q->cmd_error;
1269		goto e_dst;
1270	}
1271
1272	/* ...but we only need AES_BLOCK_SIZE bytes */
1273	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1274	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1275
1276e_dst:
1277	if (!in_place)
1278		ccp_free_data(&dst, cmd_q);
1279
1280e_src:
1281	ccp_free_data(&src, cmd_q);
1282
1283e_ctx:
1284	ccp_dm_free(&ctx);
1285
1286e_key:
1287	ccp_dm_free(&key);
1288
1289	return ret;
1290}
1291
1292static noinline_for_stack int
1293ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1294{
1295	struct ccp_des3_engine *des3 = &cmd->u.des3;
1296
1297	struct ccp_dm_workarea key, ctx;
1298	struct ccp_data src, dst;
1299	struct ccp_op op;
1300	unsigned int dm_offset;
1301	unsigned int len_singlekey;
1302	bool in_place = false;
1303	int ret;
1304
1305	/* Error checks */
1306	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1307		return -EINVAL;
1308
1309	if (!cmd_q->ccp->vdata->perform->des3)
1310		return -EINVAL;
1311
1312	if (des3->key_len != DES3_EDE_KEY_SIZE)
1313		return -EINVAL;
1314
1315	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1316		(des3->mode == CCP_DES3_MODE_CBC)) &&
1317		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1318		return -EINVAL;
1319
1320	if (!des3->key || !des3->src || !des3->dst)
1321		return -EINVAL;
1322
1323	if (des3->mode != CCP_DES3_MODE_ECB) {
1324		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1325			return -EINVAL;
1326
1327		if (!des3->iv)
1328			return -EINVAL;
1329	}
1330
 
1331	/* Zero out all the fields of the command desc */
1332	memset(&op, 0, sizeof(op));
1333
1334	/* Set up the Function field */
1335	op.cmd_q = cmd_q;
1336	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1337	op.sb_key = cmd_q->sb_key;
1338
1339	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1340	op.u.des3.type = des3->type;
1341	op.u.des3.mode = des3->mode;
1342	op.u.des3.action = des3->action;
1343
1344	/*
1345	 * All supported key sizes fit in a single (32-byte) KSB entry and
1346	 * (like AES) must be in little endian format. Use the 256-bit byte
1347	 * swap passthru option to convert from big endian to little endian.
1348	 */
1349	ret = ccp_init_dm_workarea(&key, cmd_q,
1350				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1351				   DMA_TO_DEVICE);
1352	if (ret)
1353		return ret;
1354
1355	/*
1356	 * The contents of the key triplet are in the reverse order of what
1357	 * is required by the engine. Copy the 3 pieces individually to put
1358	 * them where they belong.
1359	 */
1360	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1361
1362	len_singlekey = des3->key_len / 3;
1363	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1364			      des3->key, 0, len_singlekey);
1365	if (ret)
1366		goto e_key;
1367	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1368			      des3->key, len_singlekey, len_singlekey);
1369	if (ret)
1370		goto e_key;
1371	ret = ccp_set_dm_area(&key, dm_offset,
1372			      des3->key, 2 * len_singlekey, len_singlekey);
1373	if (ret)
1374		goto e_key;
1375
1376	/* Copy the key to the SB */
1377	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1378			     CCP_PASSTHRU_BYTESWAP_256BIT);
1379	if (ret) {
1380		cmd->engine_error = cmd_q->cmd_error;
1381		goto e_key;
1382	}
1383
1384	/*
1385	 * The DES3 context fits in a single (32-byte) KSB entry and
1386	 * must be in little endian format. Use the 256-bit byte swap
1387	 * passthru option to convert from big endian to little endian.
1388	 */
1389	if (des3->mode != CCP_DES3_MODE_ECB) {
 
 
1390		op.sb_ctx = cmd_q->sb_ctx;
1391
1392		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1393					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1394					   DMA_BIDIRECTIONAL);
1395		if (ret)
1396			goto e_key;
1397
1398		/* Load the context into the LSB */
1399		dm_offset = CCP_SB_BYTES - des3->iv_len;
1400		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1401				      des3->iv_len);
1402		if (ret)
1403			goto e_ctx;
1404
 
 
 
 
1405		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1406				     CCP_PASSTHRU_BYTESWAP_256BIT);
1407		if (ret) {
1408			cmd->engine_error = cmd_q->cmd_error;
1409			goto e_ctx;
1410		}
1411	}
1412
1413	/*
1414	 * Prepare the input and output data workareas. For in-place
1415	 * operations we need to set the dma direction to BIDIRECTIONAL
1416	 * and copy the src workarea to the dst workarea.
1417	 */
1418	if (sg_virt(des3->src) == sg_virt(des3->dst))
1419		in_place = true;
1420
1421	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1422			DES3_EDE_BLOCK_SIZE,
1423			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1424	if (ret)
1425		goto e_ctx;
1426
1427	if (in_place)
1428		dst = src;
1429	else {
1430		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1431				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1432		if (ret)
1433			goto e_src;
1434	}
1435
1436	/* Send data to the CCP DES3 engine */
1437	while (src.sg_wa.bytes_left) {
1438		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1439		if (!src.sg_wa.bytes_left) {
1440			op.eom = 1;
1441
1442			/* Since we don't retrieve the context in ECB mode
1443			 * we have to wait for the operation to complete
1444			 * on the last piece of data
1445			 */
1446			op.soc = 0;
1447		}
1448
1449		ret = cmd_q->ccp->vdata->perform->des3(&op);
1450		if (ret) {
1451			cmd->engine_error = cmd_q->cmd_error;
1452			goto e_dst;
1453		}
1454
1455		ccp_process_data(&src, &dst, &op);
1456	}
1457
1458	if (des3->mode != CCP_DES3_MODE_ECB) {
1459		/* Retrieve the context and make BE */
1460		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1461				       CCP_PASSTHRU_BYTESWAP_256BIT);
1462		if (ret) {
1463			cmd->engine_error = cmd_q->cmd_error;
1464			goto e_dst;
1465		}
1466
1467		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
 
 
 
 
1468		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1469				DES3_EDE_BLOCK_SIZE);
1470	}
1471e_dst:
1472	if (!in_place)
1473		ccp_free_data(&dst, cmd_q);
1474
1475e_src:
1476	ccp_free_data(&src, cmd_q);
1477
1478e_ctx:
1479	if (des3->mode != CCP_DES3_MODE_ECB)
1480		ccp_dm_free(&ctx);
1481
1482e_key:
1483	ccp_dm_free(&key);
1484
1485	return ret;
1486}
1487
1488static noinline_for_stack int
1489ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1490{
1491	struct ccp_sha_engine *sha = &cmd->u.sha;
1492	struct ccp_dm_workarea ctx;
1493	struct ccp_data src;
1494	struct ccp_op op;
1495	unsigned int ioffset, ooffset;
1496	unsigned int digest_size;
1497	int sb_count;
1498	const void *init;
1499	u64 block_size;
1500	int ctx_size;
1501	int ret;
1502
1503	switch (sha->type) {
1504	case CCP_SHA_TYPE_1:
1505		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1506			return -EINVAL;
1507		block_size = SHA1_BLOCK_SIZE;
1508		break;
1509	case CCP_SHA_TYPE_224:
1510		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1511			return -EINVAL;
1512		block_size = SHA224_BLOCK_SIZE;
1513		break;
1514	case CCP_SHA_TYPE_256:
1515		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1516			return -EINVAL;
1517		block_size = SHA256_BLOCK_SIZE;
1518		break;
1519	case CCP_SHA_TYPE_384:
1520		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1521		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1522			return -EINVAL;
1523		block_size = SHA384_BLOCK_SIZE;
1524		break;
1525	case CCP_SHA_TYPE_512:
1526		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1527		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1528			return -EINVAL;
1529		block_size = SHA512_BLOCK_SIZE;
1530		break;
1531	default:
1532		return -EINVAL;
1533	}
1534
1535	if (!sha->ctx)
1536		return -EINVAL;
1537
1538	if (!sha->final && (sha->src_len & (block_size - 1)))
1539		return -EINVAL;
1540
1541	/* The version 3 device can't handle zero-length input */
1542	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1543
1544		if (!sha->src_len) {
1545			unsigned int digest_len;
1546			const u8 *sha_zero;
1547
1548			/* Not final, just return */
1549			if (!sha->final)
1550				return 0;
1551
1552			/* CCP can't do a zero length sha operation so the
1553			 * caller must buffer the data.
1554			 */
1555			if (sha->msg_bits)
1556				return -EINVAL;
1557
1558			/* The CCP cannot perform zero-length sha operations
1559			 * so the caller is required to buffer data for the
1560			 * final operation. However, a sha operation for a
1561			 * message with a total length of zero is valid so
1562			 * known values are required to supply the result.
1563			 */
1564			switch (sha->type) {
1565			case CCP_SHA_TYPE_1:
1566				sha_zero = sha1_zero_message_hash;
1567				digest_len = SHA1_DIGEST_SIZE;
1568				break;
1569			case CCP_SHA_TYPE_224:
1570				sha_zero = sha224_zero_message_hash;
1571				digest_len = SHA224_DIGEST_SIZE;
1572				break;
1573			case CCP_SHA_TYPE_256:
1574				sha_zero = sha256_zero_message_hash;
1575				digest_len = SHA256_DIGEST_SIZE;
1576				break;
1577			default:
1578				return -EINVAL;
1579			}
1580
1581			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1582						 digest_len, 1);
1583
1584			return 0;
1585		}
1586	}
1587
1588	/* Set variables used throughout */
1589	switch (sha->type) {
1590	case CCP_SHA_TYPE_1:
1591		digest_size = SHA1_DIGEST_SIZE;
1592		init = (void *) ccp_sha1_init;
1593		ctx_size = SHA1_DIGEST_SIZE;
1594		sb_count = 1;
1595		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1596			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1597		else
1598			ooffset = ioffset = 0;
1599		break;
1600	case CCP_SHA_TYPE_224:
1601		digest_size = SHA224_DIGEST_SIZE;
1602		init = (void *) ccp_sha224_init;
1603		ctx_size = SHA256_DIGEST_SIZE;
1604		sb_count = 1;
1605		ioffset = 0;
1606		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1607			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1608		else
1609			ooffset = 0;
1610		break;
1611	case CCP_SHA_TYPE_256:
1612		digest_size = SHA256_DIGEST_SIZE;
1613		init = (void *) ccp_sha256_init;
1614		ctx_size = SHA256_DIGEST_SIZE;
1615		sb_count = 1;
1616		ooffset = ioffset = 0;
1617		break;
1618	case CCP_SHA_TYPE_384:
1619		digest_size = SHA384_DIGEST_SIZE;
1620		init = (void *) ccp_sha384_init;
1621		ctx_size = SHA512_DIGEST_SIZE;
1622		sb_count = 2;
1623		ioffset = 0;
1624		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1625		break;
1626	case CCP_SHA_TYPE_512:
1627		digest_size = SHA512_DIGEST_SIZE;
1628		init = (void *) ccp_sha512_init;
1629		ctx_size = SHA512_DIGEST_SIZE;
1630		sb_count = 2;
1631		ooffset = ioffset = 0;
1632		break;
1633	default:
1634		ret = -EINVAL;
1635		goto e_data;
1636	}
1637
1638	/* For zero-length plaintext the src pointer is ignored;
1639	 * otherwise both parts must be valid
1640	 */
1641	if (sha->src_len && !sha->src)
1642		return -EINVAL;
1643
1644	memset(&op, 0, sizeof(op));
1645	op.cmd_q = cmd_q;
1646	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1647	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1648	op.u.sha.type = sha->type;
1649	op.u.sha.msg_bits = sha->msg_bits;
1650
1651	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1652	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1653	 * first slot, and the left half in the second. Each portion must then
1654	 * be in little endian format: use the 256-bit byte swap option.
1655	 */
1656	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1657				   DMA_BIDIRECTIONAL);
1658	if (ret)
1659		return ret;
1660	if (sha->first) {
1661		switch (sha->type) {
1662		case CCP_SHA_TYPE_1:
1663		case CCP_SHA_TYPE_224:
1664		case CCP_SHA_TYPE_256:
1665			memcpy(ctx.address + ioffset, init, ctx_size);
1666			break;
1667		case CCP_SHA_TYPE_384:
1668		case CCP_SHA_TYPE_512:
1669			memcpy(ctx.address + ctx_size / 2, init,
1670			       ctx_size / 2);
1671			memcpy(ctx.address, init + ctx_size / 2,
1672			       ctx_size / 2);
1673			break;
1674		default:
1675			ret = -EINVAL;
1676			goto e_ctx;
1677		}
1678	} else {
1679		/* Restore the context */
1680		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1681				      sb_count * CCP_SB_BYTES);
1682		if (ret)
1683			goto e_ctx;
1684	}
1685
1686	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1687			     CCP_PASSTHRU_BYTESWAP_256BIT);
1688	if (ret) {
1689		cmd->engine_error = cmd_q->cmd_error;
1690		goto e_ctx;
1691	}
1692
1693	if (sha->src) {
1694		/* Send data to the CCP SHA engine; block_size is set above */
1695		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1696				    block_size, DMA_TO_DEVICE);
1697		if (ret)
1698			goto e_ctx;
1699
1700		while (src.sg_wa.bytes_left) {
1701			ccp_prepare_data(&src, NULL, &op, block_size, false);
1702			if (sha->final && !src.sg_wa.bytes_left)
1703				op.eom = 1;
1704
1705			ret = cmd_q->ccp->vdata->perform->sha(&op);
1706			if (ret) {
1707				cmd->engine_error = cmd_q->cmd_error;
1708				goto e_data;
1709			}
1710
1711			ccp_process_data(&src, NULL, &op);
1712		}
1713	} else {
1714		op.eom = 1;
1715		ret = cmd_q->ccp->vdata->perform->sha(&op);
1716		if (ret) {
1717			cmd->engine_error = cmd_q->cmd_error;
1718			goto e_data;
1719		}
1720	}
1721
1722	/* Retrieve the SHA context - convert from LE to BE using
1723	 * 32-byte (256-bit) byteswapping to BE
1724	 */
1725	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1726			       CCP_PASSTHRU_BYTESWAP_256BIT);
1727	if (ret) {
1728		cmd->engine_error = cmd_q->cmd_error;
1729		goto e_data;
1730	}
1731
1732	if (sha->final) {
1733		/* Finishing up, so get the digest */
1734		switch (sha->type) {
1735		case CCP_SHA_TYPE_1:
1736		case CCP_SHA_TYPE_224:
1737		case CCP_SHA_TYPE_256:
1738			ccp_get_dm_area(&ctx, ooffset,
1739					sha->ctx, 0,
1740					digest_size);
1741			break;
1742		case CCP_SHA_TYPE_384:
1743		case CCP_SHA_TYPE_512:
1744			ccp_get_dm_area(&ctx, 0,
1745					sha->ctx, LSB_ITEM_SIZE - ooffset,
1746					LSB_ITEM_SIZE);
1747			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1748					sha->ctx, 0,
1749					LSB_ITEM_SIZE - ooffset);
1750			break;
1751		default:
1752			ret = -EINVAL;
1753			goto e_data;
1754		}
1755	} else {
1756		/* Stash the context */
1757		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1758				sb_count * CCP_SB_BYTES);
1759	}
1760
1761	if (sha->final && sha->opad) {
1762		/* HMAC operation, recursively perform final SHA */
1763		struct ccp_cmd hmac_cmd;
1764		struct scatterlist sg;
1765		u8 *hmac_buf;
1766
1767		if (sha->opad_len != block_size) {
1768			ret = -EINVAL;
1769			goto e_data;
1770		}
1771
1772		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1773		if (!hmac_buf) {
1774			ret = -ENOMEM;
1775			goto e_data;
1776		}
1777		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1778
1779		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1780		switch (sha->type) {
1781		case CCP_SHA_TYPE_1:
1782		case CCP_SHA_TYPE_224:
1783		case CCP_SHA_TYPE_256:
1784			memcpy(hmac_buf + block_size,
1785			       ctx.address + ooffset,
1786			       digest_size);
1787			break;
1788		case CCP_SHA_TYPE_384:
1789		case CCP_SHA_TYPE_512:
1790			memcpy(hmac_buf + block_size,
1791			       ctx.address + LSB_ITEM_SIZE + ooffset,
1792			       LSB_ITEM_SIZE);
1793			memcpy(hmac_buf + block_size +
1794			       (LSB_ITEM_SIZE - ooffset),
1795			       ctx.address,
1796			       LSB_ITEM_SIZE);
1797			break;
1798		default:
1799			kfree(hmac_buf);
1800			ret = -EINVAL;
1801			goto e_data;
1802		}
1803
1804		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1805		hmac_cmd.engine = CCP_ENGINE_SHA;
1806		hmac_cmd.u.sha.type = sha->type;
1807		hmac_cmd.u.sha.ctx = sha->ctx;
1808		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1809		hmac_cmd.u.sha.src = &sg;
1810		hmac_cmd.u.sha.src_len = block_size + digest_size;
1811		hmac_cmd.u.sha.opad = NULL;
1812		hmac_cmd.u.sha.opad_len = 0;
1813		hmac_cmd.u.sha.first = 1;
1814		hmac_cmd.u.sha.final = 1;
1815		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1816
1817		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1818		if (ret)
1819			cmd->engine_error = hmac_cmd.engine_error;
1820
1821		kfree(hmac_buf);
1822	}
1823
1824e_data:
1825	if (sha->src)
1826		ccp_free_data(&src, cmd_q);
1827
1828e_ctx:
1829	ccp_dm_free(&ctx);
1830
1831	return ret;
1832}
1833
1834static noinline_for_stack int
1835ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1836{
1837	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1838	struct ccp_dm_workarea exp, src, dst;
1839	struct ccp_op op;
1840	unsigned int sb_count, i_len, o_len;
1841	int ret;
1842
1843	/* Check against the maximum allowable size, in bits */
1844	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1845		return -EINVAL;
1846
1847	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1848		return -EINVAL;
1849
1850	memset(&op, 0, sizeof(op));
1851	op.cmd_q = cmd_q;
1852	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1853
1854	/* The RSA modulus must precede the message being acted upon, so
1855	 * it must be copied to a DMA area where the message and the
1856	 * modulus can be concatenated.  Therefore the input buffer
1857	 * length required is twice the output buffer length (which
1858	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1859	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1860	 * required.
1861	 */
1862	o_len = 32 * ((rsa->key_size + 255) / 256);
1863	i_len = o_len * 2;
1864
1865	sb_count = 0;
1866	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1867		/* sb_count is the number of storage block slots required
1868		 * for the modulus.
1869		 */
1870		sb_count = o_len / CCP_SB_BYTES;
1871		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1872								sb_count);
1873		if (!op.sb_key)
1874			return -EIO;
1875	} else {
1876		/* A version 5 device allows a modulus size that will not fit
1877		 * in the LSB, so the command will transfer it from memory.
1878		 * Set the sb key to the default, even though it's not used.
1879		 */
1880		op.sb_key = cmd_q->sb_key;
1881	}
1882
1883	/* The RSA exponent must be in little endian format. Reverse its
1884	 * byte order.
1885	 */
1886	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1887	if (ret)
1888		goto e_sb;
1889
1890	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1891	if (ret)
1892		goto e_exp;
1893
1894	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1895		/* Copy the exponent to the local storage block, using
1896		 * as many 32-byte blocks as were allocated above. It's
1897		 * already little endian, so no further change is required.
1898		 */
1899		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1900				     CCP_PASSTHRU_BYTESWAP_NOOP);
1901		if (ret) {
1902			cmd->engine_error = cmd_q->cmd_error;
1903			goto e_exp;
1904		}
1905	} else {
1906		/* The exponent can be retrieved from memory via DMA. */
1907		op.exp.u.dma.address = exp.dma.address;
1908		op.exp.u.dma.offset = 0;
1909	}
1910
1911	/* Concatenate the modulus and the message. Both the modulus and
1912	 * the operands must be in little endian format.  Since the input
1913	 * is in big endian format it must be converted.
1914	 */
1915	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1916	if (ret)
1917		goto e_exp;
1918
1919	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1920	if (ret)
1921		goto e_src;
1922	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1923	if (ret)
1924		goto e_src;
1925
1926	/* Prepare the output area for the operation */
1927	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1928	if (ret)
1929		goto e_src;
1930
1931	op.soc = 1;
1932	op.src.u.dma.address = src.dma.address;
1933	op.src.u.dma.offset = 0;
1934	op.src.u.dma.length = i_len;
1935	op.dst.u.dma.address = dst.dma.address;
1936	op.dst.u.dma.offset = 0;
1937	op.dst.u.dma.length = o_len;
1938
1939	op.u.rsa.mod_size = rsa->key_size;
1940	op.u.rsa.input_len = i_len;
1941
1942	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1943	if (ret) {
1944		cmd->engine_error = cmd_q->cmd_error;
1945		goto e_dst;
1946	}
1947
1948	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1949
1950e_dst:
1951	ccp_dm_free(&dst);
1952
1953e_src:
1954	ccp_dm_free(&src);
1955
1956e_exp:
1957	ccp_dm_free(&exp);
1958
1959e_sb:
1960	if (sb_count)
1961		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1962
1963	return ret;
1964}
1965
1966static noinline_for_stack int
1967ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1968{
1969	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1970	struct ccp_dm_workarea mask;
1971	struct ccp_data src, dst;
1972	struct ccp_op op;
1973	bool in_place = false;
1974	unsigned int i;
1975	int ret = 0;
1976
1977	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1978		return -EINVAL;
1979
1980	if (!pt->src || !pt->dst)
1981		return -EINVAL;
1982
1983	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1984		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1985			return -EINVAL;
1986		if (!pt->mask)
1987			return -EINVAL;
1988	}
1989
1990	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1991
1992	memset(&op, 0, sizeof(op));
1993	op.cmd_q = cmd_q;
1994	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1995
1996	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1997		/* Load the mask */
1998		op.sb_key = cmd_q->sb_key;
1999
2000		ret = ccp_init_dm_workarea(&mask, cmd_q,
2001					   CCP_PASSTHRU_SB_COUNT *
2002					   CCP_SB_BYTES,
2003					   DMA_TO_DEVICE);
2004		if (ret)
2005			return ret;
2006
2007		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
2008		if (ret)
2009			goto e_mask;
2010		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2011				     CCP_PASSTHRU_BYTESWAP_NOOP);
2012		if (ret) {
2013			cmd->engine_error = cmd_q->cmd_error;
2014			goto e_mask;
2015		}
2016	}
2017
2018	/* Prepare the input and output data workareas. For in-place
2019	 * operations we need to set the dma direction to BIDIRECTIONAL
2020	 * and copy the src workarea to the dst workarea.
2021	 */
2022	if (sg_virt(pt->src) == sg_virt(pt->dst))
2023		in_place = true;
2024
2025	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2026			    CCP_PASSTHRU_MASKSIZE,
2027			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2028	if (ret)
2029		goto e_mask;
2030
2031	if (in_place) {
2032		dst = src;
2033	} else {
2034		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2035				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2036		if (ret)
2037			goto e_src;
2038	}
2039
2040	/* Send data to the CCP Passthru engine
2041	 *   Because the CCP engine works on a single source and destination
2042	 *   dma address at a time, each entry in the source scatterlist
2043	 *   (after the dma_map_sg call) must be less than or equal to the
2044	 *   (remaining) length in the destination scatterlist entry and the
2045	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2046	 */
2047	dst.sg_wa.sg_used = 0;
2048	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2049		if (!dst.sg_wa.sg ||
2050		    (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) {
2051			ret = -EINVAL;
2052			goto e_dst;
2053		}
2054
2055		if (i == src.sg_wa.dma_count) {
2056			op.eom = 1;
2057			op.soc = 1;
2058		}
2059
2060		op.src.type = CCP_MEMTYPE_SYSTEM;
2061		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2062		op.src.u.dma.offset = 0;
2063		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2064
2065		op.dst.type = CCP_MEMTYPE_SYSTEM;
2066		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2067		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2068		op.dst.u.dma.length = op.src.u.dma.length;
2069
2070		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2071		if (ret) {
2072			cmd->engine_error = cmd_q->cmd_error;
2073			goto e_dst;
2074		}
2075
2076		dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg);
2077		if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) {
2078			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2079			dst.sg_wa.sg_used = 0;
2080		}
2081		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2082	}
2083
2084e_dst:
2085	if (!in_place)
2086		ccp_free_data(&dst, cmd_q);
2087
2088e_src:
2089	ccp_free_data(&src, cmd_q);
2090
2091e_mask:
2092	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2093		ccp_dm_free(&mask);
2094
2095	return ret;
2096}
2097
2098static noinline_for_stack int
2099ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2100				      struct ccp_cmd *cmd)
2101{
2102	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2103	struct ccp_dm_workarea mask;
2104	struct ccp_op op;
2105	int ret;
2106
2107	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2108		return -EINVAL;
2109
2110	if (!pt->src_dma || !pt->dst_dma)
2111		return -EINVAL;
2112
2113	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2114		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2115			return -EINVAL;
2116		if (!pt->mask)
2117			return -EINVAL;
2118	}
2119
2120	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2121
2122	memset(&op, 0, sizeof(op));
2123	op.cmd_q = cmd_q;
2124	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2125
2126	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2127		/* Load the mask */
2128		op.sb_key = cmd_q->sb_key;
2129
2130		mask.length = pt->mask_len;
2131		mask.dma.address = pt->mask;
2132		mask.dma.length = pt->mask_len;
2133
2134		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2135				     CCP_PASSTHRU_BYTESWAP_NOOP);
2136		if (ret) {
2137			cmd->engine_error = cmd_q->cmd_error;
2138			return ret;
2139		}
2140	}
2141
2142	/* Send data to the CCP Passthru engine */
2143	op.eom = 1;
2144	op.soc = 1;
2145
2146	op.src.type = CCP_MEMTYPE_SYSTEM;
2147	op.src.u.dma.address = pt->src_dma;
2148	op.src.u.dma.offset = 0;
2149	op.src.u.dma.length = pt->src_len;
2150
2151	op.dst.type = CCP_MEMTYPE_SYSTEM;
2152	op.dst.u.dma.address = pt->dst_dma;
2153	op.dst.u.dma.offset = 0;
2154	op.dst.u.dma.length = pt->src_len;
2155
2156	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2157	if (ret)
2158		cmd->engine_error = cmd_q->cmd_error;
2159
2160	return ret;
2161}
2162
2163static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2164{
2165	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2166	struct ccp_dm_workarea src, dst;
2167	struct ccp_op op;
2168	int ret;
2169	u8 *save;
2170
2171	if (!ecc->u.mm.operand_1 ||
2172	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2173		return -EINVAL;
2174
2175	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2176		if (!ecc->u.mm.operand_2 ||
2177		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2178			return -EINVAL;
2179
2180	if (!ecc->u.mm.result ||
2181	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2182		return -EINVAL;
2183
2184	memset(&op, 0, sizeof(op));
2185	op.cmd_q = cmd_q;
2186	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2187
2188	/* Concatenate the modulus and the operands. Both the modulus and
2189	 * the operands must be in little endian format.  Since the input
2190	 * is in big endian format it must be converted and placed in a
2191	 * fixed length buffer.
2192	 */
2193	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2194				   DMA_TO_DEVICE);
2195	if (ret)
2196		return ret;
2197
2198	/* Save the workarea address since it is updated in order to perform
2199	 * the concatenation
2200	 */
2201	save = src.address;
2202
2203	/* Copy the ECC modulus */
2204	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2205	if (ret)
2206		goto e_src;
2207	src.address += CCP_ECC_OPERAND_SIZE;
2208
2209	/* Copy the first operand */
2210	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2211				      ecc->u.mm.operand_1_len);
2212	if (ret)
2213		goto e_src;
2214	src.address += CCP_ECC_OPERAND_SIZE;
2215
2216	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2217		/* Copy the second operand */
2218		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2219					      ecc->u.mm.operand_2_len);
2220		if (ret)
2221			goto e_src;
2222		src.address += CCP_ECC_OPERAND_SIZE;
2223	}
2224
2225	/* Restore the workarea address */
2226	src.address = save;
2227
2228	/* Prepare the output area for the operation */
2229	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2230				   DMA_FROM_DEVICE);
2231	if (ret)
2232		goto e_src;
2233
2234	op.soc = 1;
2235	op.src.u.dma.address = src.dma.address;
2236	op.src.u.dma.offset = 0;
2237	op.src.u.dma.length = src.length;
2238	op.dst.u.dma.address = dst.dma.address;
2239	op.dst.u.dma.offset = 0;
2240	op.dst.u.dma.length = dst.length;
2241
2242	op.u.ecc.function = cmd->u.ecc.function;
2243
2244	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2245	if (ret) {
2246		cmd->engine_error = cmd_q->cmd_error;
2247		goto e_dst;
2248	}
2249
2250	ecc->ecc_result = le16_to_cpup(
2251		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2252	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2253		ret = -EIO;
2254		goto e_dst;
2255	}
2256
2257	/* Save the ECC result */
2258	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2259				CCP_ECC_MODULUS_BYTES);
2260
2261e_dst:
2262	ccp_dm_free(&dst);
2263
2264e_src:
2265	ccp_dm_free(&src);
2266
2267	return ret;
2268}
2269
2270static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2271{
2272	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2273	struct ccp_dm_workarea src, dst;
2274	struct ccp_op op;
2275	int ret;
2276	u8 *save;
2277
2278	if (!ecc->u.pm.point_1.x ||
2279	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2280	    !ecc->u.pm.point_1.y ||
2281	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2282		return -EINVAL;
2283
2284	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2285		if (!ecc->u.pm.point_2.x ||
2286		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2287		    !ecc->u.pm.point_2.y ||
2288		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2289			return -EINVAL;
2290	} else {
2291		if (!ecc->u.pm.domain_a ||
2292		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2293			return -EINVAL;
2294
2295		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2296			if (!ecc->u.pm.scalar ||
2297			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2298				return -EINVAL;
2299	}
2300
2301	if (!ecc->u.pm.result.x ||
2302	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2303	    !ecc->u.pm.result.y ||
2304	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2305		return -EINVAL;
2306
2307	memset(&op, 0, sizeof(op));
2308	op.cmd_q = cmd_q;
2309	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2310
2311	/* Concatenate the modulus and the operands. Both the modulus and
2312	 * the operands must be in little endian format.  Since the input
2313	 * is in big endian format it must be converted and placed in a
2314	 * fixed length buffer.
2315	 */
2316	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2317				   DMA_TO_DEVICE);
2318	if (ret)
2319		return ret;
2320
2321	/* Save the workarea address since it is updated in order to perform
2322	 * the concatenation
2323	 */
2324	save = src.address;
2325
2326	/* Copy the ECC modulus */
2327	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2328	if (ret)
2329		goto e_src;
2330	src.address += CCP_ECC_OPERAND_SIZE;
2331
2332	/* Copy the first point X and Y coordinate */
2333	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2334				      ecc->u.pm.point_1.x_len);
2335	if (ret)
2336		goto e_src;
2337	src.address += CCP_ECC_OPERAND_SIZE;
2338	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2339				      ecc->u.pm.point_1.y_len);
2340	if (ret)
2341		goto e_src;
2342	src.address += CCP_ECC_OPERAND_SIZE;
2343
2344	/* Set the first point Z coordinate to 1 */
2345	*src.address = 0x01;
2346	src.address += CCP_ECC_OPERAND_SIZE;
2347
2348	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2349		/* Copy the second point X and Y coordinate */
2350		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2351					      ecc->u.pm.point_2.x_len);
2352		if (ret)
2353			goto e_src;
2354		src.address += CCP_ECC_OPERAND_SIZE;
2355		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2356					      ecc->u.pm.point_2.y_len);
2357		if (ret)
2358			goto e_src;
2359		src.address += CCP_ECC_OPERAND_SIZE;
2360
2361		/* Set the second point Z coordinate to 1 */
2362		*src.address = 0x01;
2363		src.address += CCP_ECC_OPERAND_SIZE;
2364	} else {
2365		/* Copy the Domain "a" parameter */
2366		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2367					      ecc->u.pm.domain_a_len);
2368		if (ret)
2369			goto e_src;
2370		src.address += CCP_ECC_OPERAND_SIZE;
2371
2372		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2373			/* Copy the scalar value */
2374			ret = ccp_reverse_set_dm_area(&src, 0,
2375						      ecc->u.pm.scalar, 0,
2376						      ecc->u.pm.scalar_len);
2377			if (ret)
2378				goto e_src;
2379			src.address += CCP_ECC_OPERAND_SIZE;
2380		}
2381	}
2382
2383	/* Restore the workarea address */
2384	src.address = save;
2385
2386	/* Prepare the output area for the operation */
2387	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2388				   DMA_FROM_DEVICE);
2389	if (ret)
2390		goto e_src;
2391
2392	op.soc = 1;
2393	op.src.u.dma.address = src.dma.address;
2394	op.src.u.dma.offset = 0;
2395	op.src.u.dma.length = src.length;
2396	op.dst.u.dma.address = dst.dma.address;
2397	op.dst.u.dma.offset = 0;
2398	op.dst.u.dma.length = dst.length;
2399
2400	op.u.ecc.function = cmd->u.ecc.function;
2401
2402	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2403	if (ret) {
2404		cmd->engine_error = cmd_q->cmd_error;
2405		goto e_dst;
2406	}
2407
2408	ecc->ecc_result = le16_to_cpup(
2409		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2410	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2411		ret = -EIO;
2412		goto e_dst;
2413	}
2414
2415	/* Save the workarea address since it is updated as we walk through
2416	 * to copy the point math result
2417	 */
2418	save = dst.address;
2419
2420	/* Save the ECC result X and Y coordinates */
2421	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2422				CCP_ECC_MODULUS_BYTES);
2423	dst.address += CCP_ECC_OUTPUT_SIZE;
2424	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2425				CCP_ECC_MODULUS_BYTES);
 
2426
2427	/* Restore the workarea address */
2428	dst.address = save;
2429
2430e_dst:
2431	ccp_dm_free(&dst);
2432
2433e_src:
2434	ccp_dm_free(&src);
2435
2436	return ret;
2437}
2438
2439static noinline_for_stack int
2440ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2441{
2442	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2443
2444	ecc->ecc_result = 0;
2445
2446	if (!ecc->mod ||
2447	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2448		return -EINVAL;
2449
2450	switch (ecc->function) {
2451	case CCP_ECC_FUNCTION_MMUL_384BIT:
2452	case CCP_ECC_FUNCTION_MADD_384BIT:
2453	case CCP_ECC_FUNCTION_MINV_384BIT:
2454		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2455
2456	case CCP_ECC_FUNCTION_PADD_384BIT:
2457	case CCP_ECC_FUNCTION_PMUL_384BIT:
2458	case CCP_ECC_FUNCTION_PDBL_384BIT:
2459		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2460
2461	default:
2462		return -EINVAL;
2463	}
2464}
2465
2466int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2467{
2468	int ret;
2469
2470	cmd->engine_error = 0;
2471	cmd_q->cmd_error = 0;
2472	cmd_q->int_rcvd = 0;
2473	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2474
2475	switch (cmd->engine) {
2476	case CCP_ENGINE_AES:
2477		switch (cmd->u.aes.mode) {
2478		case CCP_AES_MODE_CMAC:
2479			ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2480			break;
2481		case CCP_AES_MODE_GCM:
2482			ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2483			break;
2484		default:
2485			ret = ccp_run_aes_cmd(cmd_q, cmd);
2486			break;
2487		}
2488		break;
2489	case CCP_ENGINE_XTS_AES_128:
2490		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2491		break;
2492	case CCP_ENGINE_DES3:
2493		ret = ccp_run_des3_cmd(cmd_q, cmd);
2494		break;
2495	case CCP_ENGINE_SHA:
2496		ret = ccp_run_sha_cmd(cmd_q, cmd);
2497		break;
2498	case CCP_ENGINE_RSA:
2499		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2500		break;
2501	case CCP_ENGINE_PASSTHRU:
2502		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2503			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2504		else
2505			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2506		break;
2507	case CCP_ENGINE_ECC:
2508		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2509		break;
2510	default:
2511		ret = -EINVAL;
2512	}
2513
2514	return ret;
2515}
v4.17
 
   1/*
   2 * AMD Cryptographic Coprocessor (CCP) driver
   3 *
   4 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
   5 *
   6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   7 * Author: Gary R Hook <gary.hook@amd.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13
 
  14#include <linux/module.h>
  15#include <linux/kernel.h>
  16#include <linux/pci.h>
  17#include <linux/interrupt.h>
  18#include <crypto/scatterwalk.h>
  19#include <crypto/des.h>
  20#include <linux/ccp.h>
  21
  22#include "ccp-dev.h"
  23
  24/* SHA initial context values */
  25static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
  26	cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
  27	cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
  28	cpu_to_be32(SHA1_H4),
  29};
  30
  31static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  32	cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
  33	cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
  34	cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
  35	cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
  36};
  37
  38static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
  39	cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
  40	cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
  41	cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
  42	cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
  43};
  44
  45static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  46	cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
  47	cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
  48	cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
  49	cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
  50};
  51
  52static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
  53	cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
  54	cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
  55	cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
  56	cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
  57};
  58
  59#define	CCP_NEW_JOBID(ccp)	((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
  60					ccp_gen_jobid(ccp) : 0)
  61
  62static u32 ccp_gen_jobid(struct ccp_device *ccp)
  63{
  64	return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
  65}
  66
  67static void ccp_sg_free(struct ccp_sg_workarea *wa)
  68{
  69	if (wa->dma_count)
  70		dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
  71
  72	wa->dma_count = 0;
  73}
  74
  75static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
  76				struct scatterlist *sg, u64 len,
  77				enum dma_data_direction dma_dir)
  78{
  79	memset(wa, 0, sizeof(*wa));
  80
  81	wa->sg = sg;
  82	if (!sg)
  83		return 0;
  84
  85	wa->nents = sg_nents_for_len(sg, len);
  86	if (wa->nents < 0)
  87		return wa->nents;
  88
  89	wa->bytes_left = len;
  90	wa->sg_used = 0;
  91
  92	if (len == 0)
  93		return 0;
  94
  95	if (dma_dir == DMA_NONE)
  96		return 0;
  97
  98	wa->dma_sg = sg;
 
  99	wa->dma_dev = dev;
 100	wa->dma_dir = dma_dir;
 101	wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
 102	if (!wa->dma_count)
 103		return -ENOMEM;
 104
 105	return 0;
 106}
 107
 108static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
 109{
 110	unsigned int nbytes = min_t(u64, len, wa->bytes_left);
 
 111
 112	if (!wa->sg)
 113		return;
 114
 115	wa->sg_used += nbytes;
 116	wa->bytes_left -= nbytes;
 117	if (wa->sg_used == wa->sg->length) {
 118		wa->sg = sg_next(wa->sg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 119		wa->sg_used = 0;
 120	}
 121}
 122
 123static void ccp_dm_free(struct ccp_dm_workarea *wa)
 124{
 125	if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
 126		if (wa->address)
 127			dma_pool_free(wa->dma_pool, wa->address,
 128				      wa->dma.address);
 129	} else {
 130		if (wa->dma.address)
 131			dma_unmap_single(wa->dev, wa->dma.address, wa->length,
 132					 wa->dma.dir);
 133		kfree(wa->address);
 134	}
 135
 136	wa->address = NULL;
 137	wa->dma.address = 0;
 138}
 139
 140static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
 141				struct ccp_cmd_queue *cmd_q,
 142				unsigned int len,
 143				enum dma_data_direction dir)
 144{
 145	memset(wa, 0, sizeof(*wa));
 146
 147	if (!len)
 148		return 0;
 149
 150	wa->dev = cmd_q->ccp->dev;
 151	wa->length = len;
 152
 153	if (len <= CCP_DMAPOOL_MAX_SIZE) {
 154		wa->dma_pool = cmd_q->dma_pool;
 155
 156		wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
 157					     &wa->dma.address);
 158		if (!wa->address)
 159			return -ENOMEM;
 160
 161		wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
 162
 163		memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
 164	} else {
 165		wa->address = kzalloc(len, GFP_KERNEL);
 166		if (!wa->address)
 167			return -ENOMEM;
 168
 169		wa->dma.address = dma_map_single(wa->dev, wa->address, len,
 170						 dir);
 171		if (dma_mapping_error(wa->dev, wa->dma.address))
 
 
 172			return -ENOMEM;
 
 173
 174		wa->dma.length = len;
 175	}
 176	wa->dma.dir = dir;
 177
 178	return 0;
 179}
 180
 181static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 182			   struct scatterlist *sg, unsigned int sg_offset,
 183			   unsigned int len)
 184{
 185	WARN_ON(!wa->address);
 186
 187	if (len > (wa->length - wa_offset))
 188		return -EINVAL;
 189
 190	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 191				 0);
 192	return 0;
 193}
 194
 195static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
 196			    struct scatterlist *sg, unsigned int sg_offset,
 197			    unsigned int len)
 198{
 199	WARN_ON(!wa->address);
 200
 201	scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
 202				 1);
 203}
 204
 205static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
 206				   unsigned int wa_offset,
 207				   struct scatterlist *sg,
 208				   unsigned int sg_offset,
 209				   unsigned int len)
 210{
 211	u8 *p, *q;
 212	int	rc;
 213
 214	rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
 215	if (rc)
 216		return rc;
 217
 218	p = wa->address + wa_offset;
 219	q = p + len - 1;
 220	while (p < q) {
 221		*p = *p ^ *q;
 222		*q = *p ^ *q;
 223		*p = *p ^ *q;
 224		p++;
 225		q--;
 226	}
 227	return 0;
 228}
 229
 230static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
 231				    unsigned int wa_offset,
 232				    struct scatterlist *sg,
 233				    unsigned int sg_offset,
 234				    unsigned int len)
 235{
 236	u8 *p, *q;
 237
 238	p = wa->address + wa_offset;
 239	q = p + len - 1;
 240	while (p < q) {
 241		*p = *p ^ *q;
 242		*q = *p ^ *q;
 243		*p = *p ^ *q;
 244		p++;
 245		q--;
 246	}
 247
 248	ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
 249}
 250
 251static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
 252{
 253	ccp_dm_free(&data->dm_wa);
 254	ccp_sg_free(&data->sg_wa);
 255}
 256
 257static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
 258			 struct scatterlist *sg, u64 sg_len,
 259			 unsigned int dm_len,
 260			 enum dma_data_direction dir)
 261{
 262	int ret;
 263
 264	memset(data, 0, sizeof(*data));
 265
 266	ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
 267				   dir);
 268	if (ret)
 269		goto e_err;
 270
 271	ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
 272	if (ret)
 273		goto e_err;
 274
 275	return 0;
 276
 277e_err:
 278	ccp_free_data(data, cmd_q);
 279
 280	return ret;
 281}
 282
 283static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
 284{
 285	struct ccp_sg_workarea *sg_wa = &data->sg_wa;
 286	struct ccp_dm_workarea *dm_wa = &data->dm_wa;
 287	unsigned int buf_count, nbytes;
 288
 289	/* Clear the buffer if setting it */
 290	if (!from)
 291		memset(dm_wa->address, 0, dm_wa->length);
 292
 293	if (!sg_wa->sg)
 294		return 0;
 295
 296	/* Perform the copy operation
 297	 *   nbytes will always be <= UINT_MAX because dm_wa->length is
 298	 *   an unsigned int
 299	 */
 300	nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
 301	scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
 302				 nbytes, from);
 303
 304	/* Update the structures and generate the count */
 305	buf_count = 0;
 306	while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
 307		nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
 308			     dm_wa->length - buf_count);
 309		nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
 310
 311		buf_count += nbytes;
 312		ccp_update_sg_workarea(sg_wa, nbytes);
 313	}
 314
 315	return buf_count;
 316}
 317
 318static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
 319{
 320	return ccp_queue_buf(data, 0);
 321}
 322
 323static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
 324{
 325	return ccp_queue_buf(data, 1);
 326}
 327
 328static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
 329			     struct ccp_op *op, unsigned int block_size,
 330			     bool blocksize_op)
 331{
 332	unsigned int sg_src_len, sg_dst_len, op_len;
 333
 334	/* The CCP can only DMA from/to one address each per operation. This
 335	 * requires that we find the smallest DMA area between the source
 336	 * and destination. The resulting len values will always be <= UINT_MAX
 337	 * because the dma length is an unsigned int.
 338	 */
 339	sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
 340	sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
 341
 342	if (dst) {
 343		sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
 344		sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
 345		op_len = min(sg_src_len, sg_dst_len);
 346	} else {
 347		op_len = sg_src_len;
 348	}
 349
 350	/* The data operation length will be at least block_size in length
 351	 * or the smaller of available sg room remaining for the source or
 352	 * the destination
 353	 */
 354	op_len = max(op_len, block_size);
 355
 356	/* Unless we have to buffer data, there's no reason to wait */
 357	op->soc = 0;
 358
 359	if (sg_src_len < block_size) {
 360		/* Not enough data in the sg element, so it
 361		 * needs to be buffered into a blocksize chunk
 362		 */
 363		int cp_len = ccp_fill_queue_buf(src);
 364
 365		op->soc = 1;
 366		op->src.u.dma.address = src->dm_wa.dma.address;
 367		op->src.u.dma.offset = 0;
 368		op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
 369	} else {
 370		/* Enough data in the sg element, but we need to
 371		 * adjust for any previously copied data
 372		 */
 373		op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
 374		op->src.u.dma.offset = src->sg_wa.sg_used;
 375		op->src.u.dma.length = op_len & ~(block_size - 1);
 376
 377		ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
 378	}
 379
 380	if (dst) {
 381		if (sg_dst_len < block_size) {
 382			/* Not enough room in the sg element or we're on the
 383			 * last piece of data (when using padding), so the
 384			 * output needs to be buffered into a blocksize chunk
 385			 */
 386			op->soc = 1;
 387			op->dst.u.dma.address = dst->dm_wa.dma.address;
 388			op->dst.u.dma.offset = 0;
 389			op->dst.u.dma.length = op->src.u.dma.length;
 390		} else {
 391			/* Enough room in the sg element, but we need to
 392			 * adjust for any previously used area
 393			 */
 394			op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
 395			op->dst.u.dma.offset = dst->sg_wa.sg_used;
 396			op->dst.u.dma.length = op->src.u.dma.length;
 397		}
 398	}
 399}
 400
 401static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
 402			     struct ccp_op *op)
 403{
 404	op->init = 0;
 405
 406	if (dst) {
 407		if (op->dst.u.dma.address == dst->dm_wa.dma.address)
 408			ccp_empty_queue_buf(dst);
 409		else
 410			ccp_update_sg_workarea(&dst->sg_wa,
 411					       op->dst.u.dma.length);
 412	}
 413}
 414
 415static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
 416			       struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 417			       u32 byte_swap, bool from)
 418{
 419	struct ccp_op op;
 420
 421	memset(&op, 0, sizeof(op));
 422
 423	op.cmd_q = cmd_q;
 424	op.jobid = jobid;
 425	op.eom = 1;
 426
 427	if (from) {
 428		op.soc = 1;
 429		op.src.type = CCP_MEMTYPE_SB;
 430		op.src.u.sb = sb;
 431		op.dst.type = CCP_MEMTYPE_SYSTEM;
 432		op.dst.u.dma.address = wa->dma.address;
 433		op.dst.u.dma.length = wa->length;
 434	} else {
 435		op.src.type = CCP_MEMTYPE_SYSTEM;
 436		op.src.u.dma.address = wa->dma.address;
 437		op.src.u.dma.length = wa->length;
 438		op.dst.type = CCP_MEMTYPE_SB;
 439		op.dst.u.sb = sb;
 440	}
 441
 442	op.u.passthru.byte_swap = byte_swap;
 443
 444	return cmd_q->ccp->vdata->perform->passthru(&op);
 445}
 446
 447static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
 448			  struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 449			  u32 byte_swap)
 450{
 451	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
 452}
 453
 454static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
 455			    struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
 456			    u32 byte_swap)
 457{
 458	return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
 459}
 460
 461static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
 462				struct ccp_cmd *cmd)
 463{
 464	struct ccp_aes_engine *aes = &cmd->u.aes;
 465	struct ccp_dm_workarea key, ctx;
 466	struct ccp_data src;
 467	struct ccp_op op;
 468	unsigned int dm_offset;
 469	int ret;
 470
 471	if (!((aes->key_len == AES_KEYSIZE_128) ||
 472	      (aes->key_len == AES_KEYSIZE_192) ||
 473	      (aes->key_len == AES_KEYSIZE_256)))
 474		return -EINVAL;
 475
 476	if (aes->src_len & (AES_BLOCK_SIZE - 1))
 477		return -EINVAL;
 478
 479	if (aes->iv_len != AES_BLOCK_SIZE)
 480		return -EINVAL;
 481
 482	if (!aes->key || !aes->iv || !aes->src)
 483		return -EINVAL;
 484
 485	if (aes->cmac_final) {
 486		if (aes->cmac_key_len != AES_BLOCK_SIZE)
 487			return -EINVAL;
 488
 489		if (!aes->cmac_key)
 490			return -EINVAL;
 491	}
 492
 493	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 494	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 495
 496	ret = -EIO;
 497	memset(&op, 0, sizeof(op));
 498	op.cmd_q = cmd_q;
 499	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 500	op.sb_key = cmd_q->sb_key;
 501	op.sb_ctx = cmd_q->sb_ctx;
 502	op.init = 1;
 503	op.u.aes.type = aes->type;
 504	op.u.aes.mode = aes->mode;
 505	op.u.aes.action = aes->action;
 506
 507	/* All supported key sizes fit in a single (32-byte) SB entry
 508	 * and must be in little endian format. Use the 256-bit byte
 509	 * swap passthru option to convert from big endian to little
 510	 * endian.
 511	 */
 512	ret = ccp_init_dm_workarea(&key, cmd_q,
 513				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 514				   DMA_TO_DEVICE);
 515	if (ret)
 516		return ret;
 517
 518	dm_offset = CCP_SB_BYTES - aes->key_len;
 519	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 520	if (ret)
 521		goto e_key;
 522	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 523			     CCP_PASSTHRU_BYTESWAP_256BIT);
 524	if (ret) {
 525		cmd->engine_error = cmd_q->cmd_error;
 526		goto e_key;
 527	}
 528
 529	/* The AES context fits in a single (32-byte) SB entry and
 530	 * must be in little endian format. Use the 256-bit byte swap
 531	 * passthru option to convert from big endian to little endian.
 532	 */
 533	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 534				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 535				   DMA_BIDIRECTIONAL);
 536	if (ret)
 537		goto e_key;
 538
 539	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 540	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 541	if (ret)
 542		goto e_ctx;
 543	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 544			     CCP_PASSTHRU_BYTESWAP_256BIT);
 545	if (ret) {
 546		cmd->engine_error = cmd_q->cmd_error;
 547		goto e_ctx;
 548	}
 549
 550	/* Send data to the CCP AES engine */
 551	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 552			    AES_BLOCK_SIZE, DMA_TO_DEVICE);
 553	if (ret)
 554		goto e_ctx;
 555
 556	while (src.sg_wa.bytes_left) {
 557		ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
 558		if (aes->cmac_final && !src.sg_wa.bytes_left) {
 559			op.eom = 1;
 560
 561			/* Push the K1/K2 key to the CCP now */
 562			ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
 563					       op.sb_ctx,
 564					       CCP_PASSTHRU_BYTESWAP_256BIT);
 565			if (ret) {
 566				cmd->engine_error = cmd_q->cmd_error;
 567				goto e_src;
 568			}
 569
 570			ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
 571					      aes->cmac_key_len);
 572			if (ret)
 573				goto e_src;
 574			ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 575					     CCP_PASSTHRU_BYTESWAP_256BIT);
 576			if (ret) {
 577				cmd->engine_error = cmd_q->cmd_error;
 578				goto e_src;
 579			}
 580		}
 581
 582		ret = cmd_q->ccp->vdata->perform->aes(&op);
 583		if (ret) {
 584			cmd->engine_error = cmd_q->cmd_error;
 585			goto e_src;
 586		}
 587
 588		ccp_process_data(&src, NULL, &op);
 589	}
 590
 591	/* Retrieve the AES context - convert from LE to BE using
 592	 * 32-byte (256-bit) byteswapping
 593	 */
 594	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 595			       CCP_PASSTHRU_BYTESWAP_256BIT);
 596	if (ret) {
 597		cmd->engine_error = cmd_q->cmd_error;
 598		goto e_src;
 599	}
 600
 601	/* ...but we only need AES_BLOCK_SIZE bytes */
 602	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 603	ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 604
 605e_src:
 606	ccp_free_data(&src, cmd_q);
 607
 608e_ctx:
 609	ccp_dm_free(&ctx);
 610
 611e_key:
 612	ccp_dm_free(&key);
 613
 614	return ret;
 615}
 616
 617static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
 618			       struct ccp_cmd *cmd)
 619{
 620	struct ccp_aes_engine *aes = &cmd->u.aes;
 621	struct ccp_dm_workarea key, ctx, final_wa, tag;
 622	struct ccp_data src, dst;
 623	struct ccp_data aad;
 624	struct ccp_op op;
 625
 626	unsigned long long *final;
 627	unsigned int dm_offset;
 
 
 628	unsigned int ilen;
 629	bool in_place = true; /* Default value */
 
 630	int ret;
 631
 632	struct scatterlist *p_inp, sg_inp[2];
 633	struct scatterlist *p_tag, sg_tag[2];
 634	struct scatterlist *p_outp, sg_outp[2];
 635	struct scatterlist *p_aad;
 636
 637	if (!aes->iv)
 638		return -EINVAL;
 639
 640	if (!((aes->key_len == AES_KEYSIZE_128) ||
 641		(aes->key_len == AES_KEYSIZE_192) ||
 642		(aes->key_len == AES_KEYSIZE_256)))
 643		return -EINVAL;
 644
 645	if (!aes->key) /* Gotta have a key SGL */
 646		return -EINVAL;
 647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648	/* First, decompose the source buffer into AAD & PT,
 649	 * and the destination buffer into AAD, CT & tag, or
 650	 * the input into CT & tag.
 651	 * It is expected that the input and output SGs will
 652	 * be valid, even if the AAD and input lengths are 0.
 653	 */
 654	p_aad = aes->src;
 655	p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
 656	p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
 657	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 658		ilen = aes->src_len;
 659		p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
 660	} else {
 661		/* Input length for decryption includes tag */
 662		ilen = aes->src_len - AES_BLOCK_SIZE;
 663		p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
 664	}
 665
 
 
 666	memset(&op, 0, sizeof(op));
 667	op.cmd_q = cmd_q;
 668	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 669	op.sb_key = cmd_q->sb_key; /* Pre-allocated */
 670	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
 671	op.init = 1;
 672	op.u.aes.type = aes->type;
 673
 674	/* Copy the key to the LSB */
 675	ret = ccp_init_dm_workarea(&key, cmd_q,
 676				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 677				   DMA_TO_DEVICE);
 678	if (ret)
 679		return ret;
 680
 681	dm_offset = CCP_SB_BYTES - aes->key_len;
 682	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 683	if (ret)
 684		goto e_key;
 685	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 686			     CCP_PASSTHRU_BYTESWAP_256BIT);
 687	if (ret) {
 688		cmd->engine_error = cmd_q->cmd_error;
 689		goto e_key;
 690	}
 691
 692	/* Copy the context (IV) to the LSB.
 693	 * There is an assumption here that the IV is 96 bits in length, plus
 694	 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
 695	 */
 696	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 697				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 698				   DMA_BIDIRECTIONAL);
 699	if (ret)
 700		goto e_key;
 701
 702	dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
 703	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 704	if (ret)
 705		goto e_ctx;
 706
 707	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 708			     CCP_PASSTHRU_BYTESWAP_256BIT);
 709	if (ret) {
 710		cmd->engine_error = cmd_q->cmd_error;
 711		goto e_ctx;
 712	}
 713
 714	op.init = 1;
 715	if (aes->aad_len > 0) {
 716		/* Step 1: Run a GHASH over the Additional Authenticated Data */
 717		ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
 718				    AES_BLOCK_SIZE,
 719				    DMA_TO_DEVICE);
 720		if (ret)
 721			goto e_ctx;
 722
 723		op.u.aes.mode = CCP_AES_MODE_GHASH;
 724		op.u.aes.action = CCP_AES_GHASHAAD;
 725
 726		while (aad.sg_wa.bytes_left) {
 727			ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
 728
 729			ret = cmd_q->ccp->vdata->perform->aes(&op);
 730			if (ret) {
 731				cmd->engine_error = cmd_q->cmd_error;
 732				goto e_aad;
 733			}
 734
 735			ccp_process_data(&aad, NULL, &op);
 736			op.init = 0;
 737		}
 738	}
 739
 740	op.u.aes.mode = CCP_AES_MODE_GCTR;
 741	op.u.aes.action = aes->action;
 742
 743	if (ilen > 0) {
 744		/* Step 2: Run a GCTR over the plaintext */
 745		in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
 746
 747		ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
 748				    AES_BLOCK_SIZE,
 749				    in_place ? DMA_BIDIRECTIONAL
 750					     : DMA_TO_DEVICE);
 751		if (ret)
 752			goto e_ctx;
 753
 754		if (in_place) {
 755			dst = src;
 756		} else {
 757			ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
 758					    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 759			if (ret)
 760				goto e_src;
 761		}
 762
 763		op.soc = 0;
 764		op.eom = 0;
 765		op.init = 1;
 766		while (src.sg_wa.bytes_left) {
 767			ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
 768			if (!src.sg_wa.bytes_left) {
 769				unsigned int nbytes = aes->src_len
 770						      % AES_BLOCK_SIZE;
 771
 772				if (nbytes) {
 773					op.eom = 1;
 774					op.u.aes.size = (nbytes * 8) - 1;
 775				}
 776			}
 777
 778			ret = cmd_q->ccp->vdata->perform->aes(&op);
 779			if (ret) {
 780				cmd->engine_error = cmd_q->cmd_error;
 781				goto e_dst;
 782			}
 783
 784			ccp_process_data(&src, &dst, &op);
 785			op.init = 0;
 786		}
 787	}
 788
 789	/* Step 3: Update the IV portion of the context with the original IV */
 790	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 791			       CCP_PASSTHRU_BYTESWAP_256BIT);
 792	if (ret) {
 793		cmd->engine_error = cmd_q->cmd_error;
 794		goto e_dst;
 795	}
 796
 797	ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 798	if (ret)
 799		goto e_dst;
 800
 801	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 802			     CCP_PASSTHRU_BYTESWAP_256BIT);
 803	if (ret) {
 804		cmd->engine_error = cmd_q->cmd_error;
 805		goto e_dst;
 806	}
 807
 808	/* Step 4: Concatenate the lengths of the AAD and source, and
 809	 * hash that 16 byte buffer.
 810	 */
 811	ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
 812				   DMA_BIDIRECTIONAL);
 813	if (ret)
 814		goto e_dst;
 815	final = (unsigned long long *) final_wa.address;
 816	final[0] = cpu_to_be64(aes->aad_len * 8);
 817	final[1] = cpu_to_be64(ilen * 8);
 818
 
 
 
 
 
 
 
 819	op.u.aes.mode = CCP_AES_MODE_GHASH;
 820	op.u.aes.action = CCP_AES_GHASHFINAL;
 821	op.src.type = CCP_MEMTYPE_SYSTEM;
 822	op.src.u.dma.address = final_wa.dma.address;
 823	op.src.u.dma.length = AES_BLOCK_SIZE;
 824	op.dst.type = CCP_MEMTYPE_SYSTEM;
 825	op.dst.u.dma.address = final_wa.dma.address;
 826	op.dst.u.dma.length = AES_BLOCK_SIZE;
 827	op.eom = 1;
 828	op.u.aes.size = 0;
 829	ret = cmd_q->ccp->vdata->perform->aes(&op);
 830	if (ret)
 831		goto e_dst;
 832
 833	if (aes->action == CCP_AES_ACTION_ENCRYPT) {
 834		/* Put the ciphered tag after the ciphertext. */
 835		ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
 836	} else {
 837		/* Does this ciphered tag match the input? */
 838		ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
 839					   DMA_BIDIRECTIONAL);
 840		if (ret)
 841			goto e_tag;
 842		ret = ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
 843		if (ret)
 844			goto e_tag;
 
 
 845
 846		ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
 
 847		ccp_dm_free(&tag);
 848	}
 849
 850e_tag:
 851	ccp_dm_free(&final_wa);
 852
 853e_dst:
 854	if (aes->src_len && !in_place)
 855		ccp_free_data(&dst, cmd_q);
 856
 857e_src:
 858	if (aes->src_len)
 859		ccp_free_data(&src, cmd_q);
 860
 861e_aad:
 862	if (aes->aad_len)
 863		ccp_free_data(&aad, cmd_q);
 864
 865e_ctx:
 866	ccp_dm_free(&ctx);
 867
 868e_key:
 869	ccp_dm_free(&key);
 870
 871	return ret;
 872}
 873
 874static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
 875{
 876	struct ccp_aes_engine *aes = &cmd->u.aes;
 877	struct ccp_dm_workarea key, ctx;
 878	struct ccp_data src, dst;
 879	struct ccp_op op;
 880	unsigned int dm_offset;
 881	bool in_place = false;
 882	int ret;
 883
 884	if (aes->mode == CCP_AES_MODE_CMAC)
 885		return ccp_run_aes_cmac_cmd(cmd_q, cmd);
 886
 887	if (aes->mode == CCP_AES_MODE_GCM)
 888		return ccp_run_aes_gcm_cmd(cmd_q, cmd);
 889
 890	if (!((aes->key_len == AES_KEYSIZE_128) ||
 891	      (aes->key_len == AES_KEYSIZE_192) ||
 892	      (aes->key_len == AES_KEYSIZE_256)))
 893		return -EINVAL;
 894
 895	if (((aes->mode == CCP_AES_MODE_ECB) ||
 896	     (aes->mode == CCP_AES_MODE_CBC) ||
 897	     (aes->mode == CCP_AES_MODE_CFB)) &&
 898	    (aes->src_len & (AES_BLOCK_SIZE - 1)))
 899		return -EINVAL;
 900
 901	if (!aes->key || !aes->src || !aes->dst)
 902		return -EINVAL;
 903
 904	if (aes->mode != CCP_AES_MODE_ECB) {
 905		if (aes->iv_len != AES_BLOCK_SIZE)
 906			return -EINVAL;
 907
 908		if (!aes->iv)
 909			return -EINVAL;
 910	}
 911
 912	BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
 913	BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
 914
 915	ret = -EIO;
 916	memset(&op, 0, sizeof(op));
 917	op.cmd_q = cmd_q;
 918	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
 919	op.sb_key = cmd_q->sb_key;
 920	op.sb_ctx = cmd_q->sb_ctx;
 921	op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
 922	op.u.aes.type = aes->type;
 923	op.u.aes.mode = aes->mode;
 924	op.u.aes.action = aes->action;
 925
 926	/* All supported key sizes fit in a single (32-byte) SB entry
 927	 * and must be in little endian format. Use the 256-bit byte
 928	 * swap passthru option to convert from big endian to little
 929	 * endian.
 930	 */
 931	ret = ccp_init_dm_workarea(&key, cmd_q,
 932				   CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
 933				   DMA_TO_DEVICE);
 934	if (ret)
 935		return ret;
 936
 937	dm_offset = CCP_SB_BYTES - aes->key_len;
 938	ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
 939	if (ret)
 940		goto e_key;
 941	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
 942			     CCP_PASSTHRU_BYTESWAP_256BIT);
 943	if (ret) {
 944		cmd->engine_error = cmd_q->cmd_error;
 945		goto e_key;
 946	}
 947
 948	/* The AES context fits in a single (32-byte) SB entry and
 949	 * must be in little endian format. Use the 256-bit byte swap
 950	 * passthru option to convert from big endian to little endian.
 951	 */
 952	ret = ccp_init_dm_workarea(&ctx, cmd_q,
 953				   CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
 954				   DMA_BIDIRECTIONAL);
 955	if (ret)
 956		goto e_key;
 957
 958	if (aes->mode != CCP_AES_MODE_ECB) {
 959		/* Load the AES context - convert to LE */
 960		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
 961		ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
 962		if (ret)
 963			goto e_ctx;
 964		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
 965				     CCP_PASSTHRU_BYTESWAP_256BIT);
 966		if (ret) {
 967			cmd->engine_error = cmd_q->cmd_error;
 968			goto e_ctx;
 969		}
 970	}
 971	switch (aes->mode) {
 972	case CCP_AES_MODE_CFB: /* CFB128 only */
 973	case CCP_AES_MODE_CTR:
 974		op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
 975		break;
 976	default:
 977		op.u.aes.size = 0;
 978	}
 979
 980	/* Prepare the input and output data workareas. For in-place
 981	 * operations we need to set the dma direction to BIDIRECTIONAL
 982	 * and copy the src workarea to the dst workarea.
 983	 */
 984	if (sg_virt(aes->src) == sg_virt(aes->dst))
 985		in_place = true;
 986
 987	ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
 988			    AES_BLOCK_SIZE,
 989			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
 990	if (ret)
 991		goto e_ctx;
 992
 993	if (in_place) {
 994		dst = src;
 995	} else {
 996		ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
 997				    AES_BLOCK_SIZE, DMA_FROM_DEVICE);
 998		if (ret)
 999			goto e_src;
1000	}
1001
1002	/* Send data to the CCP AES engine */
1003	while (src.sg_wa.bytes_left) {
1004		ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1005		if (!src.sg_wa.bytes_left) {
1006			op.eom = 1;
1007
1008			/* Since we don't retrieve the AES context in ECB
1009			 * mode we have to wait for the operation to complete
1010			 * on the last piece of data
1011			 */
1012			if (aes->mode == CCP_AES_MODE_ECB)
1013				op.soc = 1;
1014		}
1015
1016		ret = cmd_q->ccp->vdata->perform->aes(&op);
1017		if (ret) {
1018			cmd->engine_error = cmd_q->cmd_error;
1019			goto e_dst;
1020		}
1021
1022		ccp_process_data(&src, &dst, &op);
1023	}
1024
1025	if (aes->mode != CCP_AES_MODE_ECB) {
1026		/* Retrieve the AES context - convert from LE to BE using
1027		 * 32-byte (256-bit) byteswapping
1028		 */
1029		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1030				       CCP_PASSTHRU_BYTESWAP_256BIT);
1031		if (ret) {
1032			cmd->engine_error = cmd_q->cmd_error;
1033			goto e_dst;
1034		}
1035
1036		/* ...but we only need AES_BLOCK_SIZE bytes */
1037		dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1038		ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1039	}
1040
1041e_dst:
1042	if (!in_place)
1043		ccp_free_data(&dst, cmd_q);
1044
1045e_src:
1046	ccp_free_data(&src, cmd_q);
1047
1048e_ctx:
1049	ccp_dm_free(&ctx);
1050
1051e_key:
1052	ccp_dm_free(&key);
1053
1054	return ret;
1055}
1056
1057static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
1058			       struct ccp_cmd *cmd)
1059{
1060	struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1061	struct ccp_dm_workarea key, ctx;
1062	struct ccp_data src, dst;
1063	struct ccp_op op;
1064	unsigned int unit_size, dm_offset;
1065	bool in_place = false;
1066	unsigned int sb_count;
1067	enum ccp_aes_type aestype;
1068	int ret;
1069
1070	switch (xts->unit_size) {
1071	case CCP_XTS_AES_UNIT_SIZE_16:
1072		unit_size = 16;
1073		break;
1074	case CCP_XTS_AES_UNIT_SIZE_512:
1075		unit_size = 512;
1076		break;
1077	case CCP_XTS_AES_UNIT_SIZE_1024:
1078		unit_size = 1024;
1079		break;
1080	case CCP_XTS_AES_UNIT_SIZE_2048:
1081		unit_size = 2048;
1082		break;
1083	case CCP_XTS_AES_UNIT_SIZE_4096:
1084		unit_size = 4096;
1085		break;
1086
1087	default:
1088		return -EINVAL;
1089	}
1090
1091	if (xts->key_len == AES_KEYSIZE_128)
1092		aestype = CCP_AES_TYPE_128;
1093	else if (xts->key_len == AES_KEYSIZE_256)
1094		aestype = CCP_AES_TYPE_256;
1095	else
1096		return -EINVAL;
1097
1098	if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1099		return -EINVAL;
1100
1101	if (xts->iv_len != AES_BLOCK_SIZE)
1102		return -EINVAL;
1103
1104	if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1105		return -EINVAL;
1106
1107	BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1108	BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1109
1110	ret = -EIO;
1111	memset(&op, 0, sizeof(op));
1112	op.cmd_q = cmd_q;
1113	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1114	op.sb_key = cmd_q->sb_key;
1115	op.sb_ctx = cmd_q->sb_ctx;
1116	op.init = 1;
1117	op.u.xts.type = aestype;
1118	op.u.xts.action = xts->action;
1119	op.u.xts.unit_size = xts->unit_size;
1120
1121	/* A version 3 device only supports 128-bit keys, which fits into a
1122	 * single SB entry. A version 5 device uses a 512-bit vector, so two
1123	 * SB entries.
1124	 */
1125	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1126		sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1127	else
1128		sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1129	ret = ccp_init_dm_workarea(&key, cmd_q,
1130				   sb_count * CCP_SB_BYTES,
1131				   DMA_TO_DEVICE);
1132	if (ret)
1133		return ret;
1134
1135	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1136		/* All supported key sizes must be in little endian format.
1137		 * Use the 256-bit byte swap passthru option to convert from
1138		 * big endian to little endian.
1139		 */
1140		dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1141		ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1142		if (ret)
1143			goto e_key;
1144		ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1145		if (ret)
1146			goto e_key;
1147	} else {
1148		/* Version 5 CCPs use a 512-bit space for the key: each portion
1149		 * occupies 256 bits, or one entire slot, and is zero-padded.
1150		 */
1151		unsigned int pad;
1152
1153		dm_offset = CCP_SB_BYTES;
1154		pad = dm_offset - xts->key_len;
1155		ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1156		if (ret)
1157			goto e_key;
1158		ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1159				      xts->key_len, xts->key_len);
1160		if (ret)
1161			goto e_key;
1162	}
1163	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1164			     CCP_PASSTHRU_BYTESWAP_256BIT);
1165	if (ret) {
1166		cmd->engine_error = cmd_q->cmd_error;
1167		goto e_key;
1168	}
1169
1170	/* The AES context fits in a single (32-byte) SB entry and
1171	 * for XTS is already in little endian format so no byte swapping
1172	 * is needed.
1173	 */
1174	ret = ccp_init_dm_workarea(&ctx, cmd_q,
1175				   CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1176				   DMA_BIDIRECTIONAL);
1177	if (ret)
1178		goto e_key;
1179
1180	ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1181	if (ret)
1182		goto e_ctx;
1183	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1184			     CCP_PASSTHRU_BYTESWAP_NOOP);
1185	if (ret) {
1186		cmd->engine_error = cmd_q->cmd_error;
1187		goto e_ctx;
1188	}
1189
1190	/* Prepare the input and output data workareas. For in-place
1191	 * operations we need to set the dma direction to BIDIRECTIONAL
1192	 * and copy the src workarea to the dst workarea.
1193	 */
1194	if (sg_virt(xts->src) == sg_virt(xts->dst))
1195		in_place = true;
1196
1197	ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1198			    unit_size,
1199			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1200	if (ret)
1201		goto e_ctx;
1202
1203	if (in_place) {
1204		dst = src;
1205	} else {
1206		ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1207				    unit_size, DMA_FROM_DEVICE);
1208		if (ret)
1209			goto e_src;
1210	}
1211
1212	/* Send data to the CCP AES engine */
1213	while (src.sg_wa.bytes_left) {
1214		ccp_prepare_data(&src, &dst, &op, unit_size, true);
1215		if (!src.sg_wa.bytes_left)
1216			op.eom = 1;
1217
1218		ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1219		if (ret) {
1220			cmd->engine_error = cmd_q->cmd_error;
1221			goto e_dst;
1222		}
1223
1224		ccp_process_data(&src, &dst, &op);
1225	}
1226
1227	/* Retrieve the AES context - convert from LE to BE using
1228	 * 32-byte (256-bit) byteswapping
1229	 */
1230	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1231			       CCP_PASSTHRU_BYTESWAP_256BIT);
1232	if (ret) {
1233		cmd->engine_error = cmd_q->cmd_error;
1234		goto e_dst;
1235	}
1236
1237	/* ...but we only need AES_BLOCK_SIZE bytes */
1238	dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1239	ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1240
1241e_dst:
1242	if (!in_place)
1243		ccp_free_data(&dst, cmd_q);
1244
1245e_src:
1246	ccp_free_data(&src, cmd_q);
1247
1248e_ctx:
1249	ccp_dm_free(&ctx);
1250
1251e_key:
1252	ccp_dm_free(&key);
1253
1254	return ret;
1255}
1256
1257static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1258{
1259	struct ccp_des3_engine *des3 = &cmd->u.des3;
1260
1261	struct ccp_dm_workarea key, ctx;
1262	struct ccp_data src, dst;
1263	struct ccp_op op;
1264	unsigned int dm_offset;
1265	unsigned int len_singlekey;
1266	bool in_place = false;
1267	int ret;
1268
1269	/* Error checks */
 
 
 
1270	if (!cmd_q->ccp->vdata->perform->des3)
1271		return -EINVAL;
1272
1273	if (des3->key_len != DES3_EDE_KEY_SIZE)
1274		return -EINVAL;
1275
1276	if (((des3->mode == CCP_DES3_MODE_ECB) ||
1277		(des3->mode == CCP_DES3_MODE_CBC)) &&
1278		(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1279		return -EINVAL;
1280
1281	if (!des3->key || !des3->src || !des3->dst)
1282		return -EINVAL;
1283
1284	if (des3->mode != CCP_DES3_MODE_ECB) {
1285		if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1286			return -EINVAL;
1287
1288		if (!des3->iv)
1289			return -EINVAL;
1290	}
1291
1292	ret = -EIO;
1293	/* Zero out all the fields of the command desc */
1294	memset(&op, 0, sizeof(op));
1295
1296	/* Set up the Function field */
1297	op.cmd_q = cmd_q;
1298	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1299	op.sb_key = cmd_q->sb_key;
1300
1301	op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1302	op.u.des3.type = des3->type;
1303	op.u.des3.mode = des3->mode;
1304	op.u.des3.action = des3->action;
1305
1306	/*
1307	 * All supported key sizes fit in a single (32-byte) KSB entry and
1308	 * (like AES) must be in little endian format. Use the 256-bit byte
1309	 * swap passthru option to convert from big endian to little endian.
1310	 */
1311	ret = ccp_init_dm_workarea(&key, cmd_q,
1312				   CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1313				   DMA_TO_DEVICE);
1314	if (ret)
1315		return ret;
1316
1317	/*
1318	 * The contents of the key triplet are in the reverse order of what
1319	 * is required by the engine. Copy the 3 pieces individually to put
1320	 * them where they belong.
1321	 */
1322	dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1323
1324	len_singlekey = des3->key_len / 3;
1325	ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1326			      des3->key, 0, len_singlekey);
1327	if (ret)
1328		goto e_key;
1329	ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1330			      des3->key, len_singlekey, len_singlekey);
1331	if (ret)
1332		goto e_key;
1333	ret = ccp_set_dm_area(&key, dm_offset,
1334			      des3->key, 2 * len_singlekey, len_singlekey);
1335	if (ret)
1336		goto e_key;
1337
1338	/* Copy the key to the SB */
1339	ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1340			     CCP_PASSTHRU_BYTESWAP_256BIT);
1341	if (ret) {
1342		cmd->engine_error = cmd_q->cmd_error;
1343		goto e_key;
1344	}
1345
1346	/*
1347	 * The DES3 context fits in a single (32-byte) KSB entry and
1348	 * must be in little endian format. Use the 256-bit byte swap
1349	 * passthru option to convert from big endian to little endian.
1350	 */
1351	if (des3->mode != CCP_DES3_MODE_ECB) {
1352		u32 load_mode;
1353
1354		op.sb_ctx = cmd_q->sb_ctx;
1355
1356		ret = ccp_init_dm_workarea(&ctx, cmd_q,
1357					   CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1358					   DMA_BIDIRECTIONAL);
1359		if (ret)
1360			goto e_key;
1361
1362		/* Load the context into the LSB */
1363		dm_offset = CCP_SB_BYTES - des3->iv_len;
1364		ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1365				      des3->iv_len);
1366		if (ret)
1367			goto e_ctx;
1368
1369		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1370			load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
1371		else
1372			load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
1373		ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1374				     load_mode);
1375		if (ret) {
1376			cmd->engine_error = cmd_q->cmd_error;
1377			goto e_ctx;
1378		}
1379	}
1380
1381	/*
1382	 * Prepare the input and output data workareas. For in-place
1383	 * operations we need to set the dma direction to BIDIRECTIONAL
1384	 * and copy the src workarea to the dst workarea.
1385	 */
1386	if (sg_virt(des3->src) == sg_virt(des3->dst))
1387		in_place = true;
1388
1389	ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1390			DES3_EDE_BLOCK_SIZE,
1391			in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1392	if (ret)
1393		goto e_ctx;
1394
1395	if (in_place)
1396		dst = src;
1397	else {
1398		ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1399				DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1400		if (ret)
1401			goto e_src;
1402	}
1403
1404	/* Send data to the CCP DES3 engine */
1405	while (src.sg_wa.bytes_left) {
1406		ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1407		if (!src.sg_wa.bytes_left) {
1408			op.eom = 1;
1409
1410			/* Since we don't retrieve the context in ECB mode
1411			 * we have to wait for the operation to complete
1412			 * on the last piece of data
1413			 */
1414			op.soc = 0;
1415		}
1416
1417		ret = cmd_q->ccp->vdata->perform->des3(&op);
1418		if (ret) {
1419			cmd->engine_error = cmd_q->cmd_error;
1420			goto e_dst;
1421		}
1422
1423		ccp_process_data(&src, &dst, &op);
1424	}
1425
1426	if (des3->mode != CCP_DES3_MODE_ECB) {
1427		/* Retrieve the context and make BE */
1428		ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1429				       CCP_PASSTHRU_BYTESWAP_256BIT);
1430		if (ret) {
1431			cmd->engine_error = cmd_q->cmd_error;
1432			goto e_dst;
1433		}
1434
1435		/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1436		if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1437			dm_offset = CCP_SB_BYTES - des3->iv_len;
1438		else
1439			dm_offset = 0;
1440		ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1441				DES3_EDE_BLOCK_SIZE);
1442	}
1443e_dst:
1444	if (!in_place)
1445		ccp_free_data(&dst, cmd_q);
1446
1447e_src:
1448	ccp_free_data(&src, cmd_q);
1449
1450e_ctx:
1451	if (des3->mode != CCP_DES3_MODE_ECB)
1452		ccp_dm_free(&ctx);
1453
1454e_key:
1455	ccp_dm_free(&key);
1456
1457	return ret;
1458}
1459
1460static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1461{
1462	struct ccp_sha_engine *sha = &cmd->u.sha;
1463	struct ccp_dm_workarea ctx;
1464	struct ccp_data src;
1465	struct ccp_op op;
1466	unsigned int ioffset, ooffset;
1467	unsigned int digest_size;
1468	int sb_count;
1469	const void *init;
1470	u64 block_size;
1471	int ctx_size;
1472	int ret;
1473
1474	switch (sha->type) {
1475	case CCP_SHA_TYPE_1:
1476		if (sha->ctx_len < SHA1_DIGEST_SIZE)
1477			return -EINVAL;
1478		block_size = SHA1_BLOCK_SIZE;
1479		break;
1480	case CCP_SHA_TYPE_224:
1481		if (sha->ctx_len < SHA224_DIGEST_SIZE)
1482			return -EINVAL;
1483		block_size = SHA224_BLOCK_SIZE;
1484		break;
1485	case CCP_SHA_TYPE_256:
1486		if (sha->ctx_len < SHA256_DIGEST_SIZE)
1487			return -EINVAL;
1488		block_size = SHA256_BLOCK_SIZE;
1489		break;
1490	case CCP_SHA_TYPE_384:
1491		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1492		    || sha->ctx_len < SHA384_DIGEST_SIZE)
1493			return -EINVAL;
1494		block_size = SHA384_BLOCK_SIZE;
1495		break;
1496	case CCP_SHA_TYPE_512:
1497		if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1498		    || sha->ctx_len < SHA512_DIGEST_SIZE)
1499			return -EINVAL;
1500		block_size = SHA512_BLOCK_SIZE;
1501		break;
1502	default:
1503		return -EINVAL;
1504	}
1505
1506	if (!sha->ctx)
1507		return -EINVAL;
1508
1509	if (!sha->final && (sha->src_len & (block_size - 1)))
1510		return -EINVAL;
1511
1512	/* The version 3 device can't handle zero-length input */
1513	if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1514
1515		if (!sha->src_len) {
1516			unsigned int digest_len;
1517			const u8 *sha_zero;
1518
1519			/* Not final, just return */
1520			if (!sha->final)
1521				return 0;
1522
1523			/* CCP can't do a zero length sha operation so the
1524			 * caller must buffer the data.
1525			 */
1526			if (sha->msg_bits)
1527				return -EINVAL;
1528
1529			/* The CCP cannot perform zero-length sha operations
1530			 * so the caller is required to buffer data for the
1531			 * final operation. However, a sha operation for a
1532			 * message with a total length of zero is valid so
1533			 * known values are required to supply the result.
1534			 */
1535			switch (sha->type) {
1536			case CCP_SHA_TYPE_1:
1537				sha_zero = sha1_zero_message_hash;
1538				digest_len = SHA1_DIGEST_SIZE;
1539				break;
1540			case CCP_SHA_TYPE_224:
1541				sha_zero = sha224_zero_message_hash;
1542				digest_len = SHA224_DIGEST_SIZE;
1543				break;
1544			case CCP_SHA_TYPE_256:
1545				sha_zero = sha256_zero_message_hash;
1546				digest_len = SHA256_DIGEST_SIZE;
1547				break;
1548			default:
1549				return -EINVAL;
1550			}
1551
1552			scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1553						 digest_len, 1);
1554
1555			return 0;
1556		}
1557	}
1558
1559	/* Set variables used throughout */
1560	switch (sha->type) {
1561	case CCP_SHA_TYPE_1:
1562		digest_size = SHA1_DIGEST_SIZE;
1563		init = (void *) ccp_sha1_init;
1564		ctx_size = SHA1_DIGEST_SIZE;
1565		sb_count = 1;
1566		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1567			ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1568		else
1569			ooffset = ioffset = 0;
1570		break;
1571	case CCP_SHA_TYPE_224:
1572		digest_size = SHA224_DIGEST_SIZE;
1573		init = (void *) ccp_sha224_init;
1574		ctx_size = SHA256_DIGEST_SIZE;
1575		sb_count = 1;
1576		ioffset = 0;
1577		if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1578			ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1579		else
1580			ooffset = 0;
1581		break;
1582	case CCP_SHA_TYPE_256:
1583		digest_size = SHA256_DIGEST_SIZE;
1584		init = (void *) ccp_sha256_init;
1585		ctx_size = SHA256_DIGEST_SIZE;
1586		sb_count = 1;
1587		ooffset = ioffset = 0;
1588		break;
1589	case CCP_SHA_TYPE_384:
1590		digest_size = SHA384_DIGEST_SIZE;
1591		init = (void *) ccp_sha384_init;
1592		ctx_size = SHA512_DIGEST_SIZE;
1593		sb_count = 2;
1594		ioffset = 0;
1595		ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1596		break;
1597	case CCP_SHA_TYPE_512:
1598		digest_size = SHA512_DIGEST_SIZE;
1599		init = (void *) ccp_sha512_init;
1600		ctx_size = SHA512_DIGEST_SIZE;
1601		sb_count = 2;
1602		ooffset = ioffset = 0;
1603		break;
1604	default:
1605		ret = -EINVAL;
1606		goto e_data;
1607	}
1608
1609	/* For zero-length plaintext the src pointer is ignored;
1610	 * otherwise both parts must be valid
1611	 */
1612	if (sha->src_len && !sha->src)
1613		return -EINVAL;
1614
1615	memset(&op, 0, sizeof(op));
1616	op.cmd_q = cmd_q;
1617	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1618	op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1619	op.u.sha.type = sha->type;
1620	op.u.sha.msg_bits = sha->msg_bits;
1621
1622	/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1623	 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1624	 * first slot, and the left half in the second. Each portion must then
1625	 * be in little endian format: use the 256-bit byte swap option.
1626	 */
1627	ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1628				   DMA_BIDIRECTIONAL);
1629	if (ret)
1630		return ret;
1631	if (sha->first) {
1632		switch (sha->type) {
1633		case CCP_SHA_TYPE_1:
1634		case CCP_SHA_TYPE_224:
1635		case CCP_SHA_TYPE_256:
1636			memcpy(ctx.address + ioffset, init, ctx_size);
1637			break;
1638		case CCP_SHA_TYPE_384:
1639		case CCP_SHA_TYPE_512:
1640			memcpy(ctx.address + ctx_size / 2, init,
1641			       ctx_size / 2);
1642			memcpy(ctx.address, init + ctx_size / 2,
1643			       ctx_size / 2);
1644			break;
1645		default:
1646			ret = -EINVAL;
1647			goto e_ctx;
1648		}
1649	} else {
1650		/* Restore the context */
1651		ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1652				      sb_count * CCP_SB_BYTES);
1653		if (ret)
1654			goto e_ctx;
1655	}
1656
1657	ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1658			     CCP_PASSTHRU_BYTESWAP_256BIT);
1659	if (ret) {
1660		cmd->engine_error = cmd_q->cmd_error;
1661		goto e_ctx;
1662	}
1663
1664	if (sha->src) {
1665		/* Send data to the CCP SHA engine; block_size is set above */
1666		ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1667				    block_size, DMA_TO_DEVICE);
1668		if (ret)
1669			goto e_ctx;
1670
1671		while (src.sg_wa.bytes_left) {
1672			ccp_prepare_data(&src, NULL, &op, block_size, false);
1673			if (sha->final && !src.sg_wa.bytes_left)
1674				op.eom = 1;
1675
1676			ret = cmd_q->ccp->vdata->perform->sha(&op);
1677			if (ret) {
1678				cmd->engine_error = cmd_q->cmd_error;
1679				goto e_data;
1680			}
1681
1682			ccp_process_data(&src, NULL, &op);
1683		}
1684	} else {
1685		op.eom = 1;
1686		ret = cmd_q->ccp->vdata->perform->sha(&op);
1687		if (ret) {
1688			cmd->engine_error = cmd_q->cmd_error;
1689			goto e_data;
1690		}
1691	}
1692
1693	/* Retrieve the SHA context - convert from LE to BE using
1694	 * 32-byte (256-bit) byteswapping to BE
1695	 */
1696	ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1697			       CCP_PASSTHRU_BYTESWAP_256BIT);
1698	if (ret) {
1699		cmd->engine_error = cmd_q->cmd_error;
1700		goto e_data;
1701	}
1702
1703	if (sha->final) {
1704		/* Finishing up, so get the digest */
1705		switch (sha->type) {
1706		case CCP_SHA_TYPE_1:
1707		case CCP_SHA_TYPE_224:
1708		case CCP_SHA_TYPE_256:
1709			ccp_get_dm_area(&ctx, ooffset,
1710					sha->ctx, 0,
1711					digest_size);
1712			break;
1713		case CCP_SHA_TYPE_384:
1714		case CCP_SHA_TYPE_512:
1715			ccp_get_dm_area(&ctx, 0,
1716					sha->ctx, LSB_ITEM_SIZE - ooffset,
1717					LSB_ITEM_SIZE);
1718			ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1719					sha->ctx, 0,
1720					LSB_ITEM_SIZE - ooffset);
1721			break;
1722		default:
1723			ret = -EINVAL;
1724			goto e_ctx;
1725		}
1726	} else {
1727		/* Stash the context */
1728		ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1729				sb_count * CCP_SB_BYTES);
1730	}
1731
1732	if (sha->final && sha->opad) {
1733		/* HMAC operation, recursively perform final SHA */
1734		struct ccp_cmd hmac_cmd;
1735		struct scatterlist sg;
1736		u8 *hmac_buf;
1737
1738		if (sha->opad_len != block_size) {
1739			ret = -EINVAL;
1740			goto e_data;
1741		}
1742
1743		hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1744		if (!hmac_buf) {
1745			ret = -ENOMEM;
1746			goto e_data;
1747		}
1748		sg_init_one(&sg, hmac_buf, block_size + digest_size);
1749
1750		scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1751		switch (sha->type) {
1752		case CCP_SHA_TYPE_1:
1753		case CCP_SHA_TYPE_224:
1754		case CCP_SHA_TYPE_256:
1755			memcpy(hmac_buf + block_size,
1756			       ctx.address + ooffset,
1757			       digest_size);
1758			break;
1759		case CCP_SHA_TYPE_384:
1760		case CCP_SHA_TYPE_512:
1761			memcpy(hmac_buf + block_size,
1762			       ctx.address + LSB_ITEM_SIZE + ooffset,
1763			       LSB_ITEM_SIZE);
1764			memcpy(hmac_buf + block_size +
1765			       (LSB_ITEM_SIZE - ooffset),
1766			       ctx.address,
1767			       LSB_ITEM_SIZE);
1768			break;
1769		default:
 
1770			ret = -EINVAL;
1771			goto e_ctx;
1772		}
1773
1774		memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1775		hmac_cmd.engine = CCP_ENGINE_SHA;
1776		hmac_cmd.u.sha.type = sha->type;
1777		hmac_cmd.u.sha.ctx = sha->ctx;
1778		hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1779		hmac_cmd.u.sha.src = &sg;
1780		hmac_cmd.u.sha.src_len = block_size + digest_size;
1781		hmac_cmd.u.sha.opad = NULL;
1782		hmac_cmd.u.sha.opad_len = 0;
1783		hmac_cmd.u.sha.first = 1;
1784		hmac_cmd.u.sha.final = 1;
1785		hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1786
1787		ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1788		if (ret)
1789			cmd->engine_error = hmac_cmd.engine_error;
1790
1791		kfree(hmac_buf);
1792	}
1793
1794e_data:
1795	if (sha->src)
1796		ccp_free_data(&src, cmd_q);
1797
1798e_ctx:
1799	ccp_dm_free(&ctx);
1800
1801	return ret;
1802}
1803
1804static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
1805{
1806	struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1807	struct ccp_dm_workarea exp, src, dst;
1808	struct ccp_op op;
1809	unsigned int sb_count, i_len, o_len;
1810	int ret;
1811
1812	/* Check against the maximum allowable size, in bits */
1813	if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1814		return -EINVAL;
1815
1816	if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1817		return -EINVAL;
1818
1819	memset(&op, 0, sizeof(op));
1820	op.cmd_q = cmd_q;
1821	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1822
1823	/* The RSA modulus must precede the message being acted upon, so
1824	 * it must be copied to a DMA area where the message and the
1825	 * modulus can be concatenated.  Therefore the input buffer
1826	 * length required is twice the output buffer length (which
1827	 * must be a multiple of 256-bits).  Compute o_len, i_len in bytes.
1828	 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1829	 * required.
1830	 */
1831	o_len = 32 * ((rsa->key_size + 255) / 256);
1832	i_len = o_len * 2;
1833
1834	sb_count = 0;
1835	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1836		/* sb_count is the number of storage block slots required
1837		 * for the modulus.
1838		 */
1839		sb_count = o_len / CCP_SB_BYTES;
1840		op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1841								sb_count);
1842		if (!op.sb_key)
1843			return -EIO;
1844	} else {
1845		/* A version 5 device allows a modulus size that will not fit
1846		 * in the LSB, so the command will transfer it from memory.
1847		 * Set the sb key to the default, even though it's not used.
1848		 */
1849		op.sb_key = cmd_q->sb_key;
1850	}
1851
1852	/* The RSA exponent must be in little endian format. Reverse its
1853	 * byte order.
1854	 */
1855	ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1856	if (ret)
1857		goto e_sb;
1858
1859	ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1860	if (ret)
1861		goto e_exp;
1862
1863	if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1864		/* Copy the exponent to the local storage block, using
1865		 * as many 32-byte blocks as were allocated above. It's
1866		 * already little endian, so no further change is required.
1867		 */
1868		ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1869				     CCP_PASSTHRU_BYTESWAP_NOOP);
1870		if (ret) {
1871			cmd->engine_error = cmd_q->cmd_error;
1872			goto e_exp;
1873		}
1874	} else {
1875		/* The exponent can be retrieved from memory via DMA. */
1876		op.exp.u.dma.address = exp.dma.address;
1877		op.exp.u.dma.offset = 0;
1878	}
1879
1880	/* Concatenate the modulus and the message. Both the modulus and
1881	 * the operands must be in little endian format.  Since the input
1882	 * is in big endian format it must be converted.
1883	 */
1884	ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1885	if (ret)
1886		goto e_exp;
1887
1888	ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1889	if (ret)
1890		goto e_src;
1891	ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1892	if (ret)
1893		goto e_src;
1894
1895	/* Prepare the output area for the operation */
1896	ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1897	if (ret)
1898		goto e_src;
1899
1900	op.soc = 1;
1901	op.src.u.dma.address = src.dma.address;
1902	op.src.u.dma.offset = 0;
1903	op.src.u.dma.length = i_len;
1904	op.dst.u.dma.address = dst.dma.address;
1905	op.dst.u.dma.offset = 0;
1906	op.dst.u.dma.length = o_len;
1907
1908	op.u.rsa.mod_size = rsa->key_size;
1909	op.u.rsa.input_len = i_len;
1910
1911	ret = cmd_q->ccp->vdata->perform->rsa(&op);
1912	if (ret) {
1913		cmd->engine_error = cmd_q->cmd_error;
1914		goto e_dst;
1915	}
1916
1917	ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1918
1919e_dst:
1920	ccp_dm_free(&dst);
1921
1922e_src:
1923	ccp_dm_free(&src);
1924
1925e_exp:
1926	ccp_dm_free(&exp);
1927
1928e_sb:
1929	if (sb_count)
1930		cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1931
1932	return ret;
1933}
1934
1935static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
1936				struct ccp_cmd *cmd)
1937{
1938	struct ccp_passthru_engine *pt = &cmd->u.passthru;
1939	struct ccp_dm_workarea mask;
1940	struct ccp_data src, dst;
1941	struct ccp_op op;
1942	bool in_place = false;
1943	unsigned int i;
1944	int ret = 0;
1945
1946	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1947		return -EINVAL;
1948
1949	if (!pt->src || !pt->dst)
1950		return -EINVAL;
1951
1952	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1953		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1954			return -EINVAL;
1955		if (!pt->mask)
1956			return -EINVAL;
1957	}
1958
1959	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1960
1961	memset(&op, 0, sizeof(op));
1962	op.cmd_q = cmd_q;
1963	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1964
1965	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1966		/* Load the mask */
1967		op.sb_key = cmd_q->sb_key;
1968
1969		ret = ccp_init_dm_workarea(&mask, cmd_q,
1970					   CCP_PASSTHRU_SB_COUNT *
1971					   CCP_SB_BYTES,
1972					   DMA_TO_DEVICE);
1973		if (ret)
1974			return ret;
1975
1976		ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1977		if (ret)
1978			goto e_mask;
1979		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1980				     CCP_PASSTHRU_BYTESWAP_NOOP);
1981		if (ret) {
1982			cmd->engine_error = cmd_q->cmd_error;
1983			goto e_mask;
1984		}
1985	}
1986
1987	/* Prepare the input and output data workareas. For in-place
1988	 * operations we need to set the dma direction to BIDIRECTIONAL
1989	 * and copy the src workarea to the dst workarea.
1990	 */
1991	if (sg_virt(pt->src) == sg_virt(pt->dst))
1992		in_place = true;
1993
1994	ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
1995			    CCP_PASSTHRU_MASKSIZE,
1996			    in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1997	if (ret)
1998		goto e_mask;
1999
2000	if (in_place) {
2001		dst = src;
2002	} else {
2003		ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2004				    CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2005		if (ret)
2006			goto e_src;
2007	}
2008
2009	/* Send data to the CCP Passthru engine
2010	 *   Because the CCP engine works on a single source and destination
2011	 *   dma address at a time, each entry in the source scatterlist
2012	 *   (after the dma_map_sg call) must be less than or equal to the
2013	 *   (remaining) length in the destination scatterlist entry and the
2014	 *   length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2015	 */
2016	dst.sg_wa.sg_used = 0;
2017	for (i = 1; i <= src.sg_wa.dma_count; i++) {
2018		if (!dst.sg_wa.sg ||
2019		    (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2020			ret = -EINVAL;
2021			goto e_dst;
2022		}
2023
2024		if (i == src.sg_wa.dma_count) {
2025			op.eom = 1;
2026			op.soc = 1;
2027		}
2028
2029		op.src.type = CCP_MEMTYPE_SYSTEM;
2030		op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2031		op.src.u.dma.offset = 0;
2032		op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2033
2034		op.dst.type = CCP_MEMTYPE_SYSTEM;
2035		op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2036		op.dst.u.dma.offset = dst.sg_wa.sg_used;
2037		op.dst.u.dma.length = op.src.u.dma.length;
2038
2039		ret = cmd_q->ccp->vdata->perform->passthru(&op);
2040		if (ret) {
2041			cmd->engine_error = cmd_q->cmd_error;
2042			goto e_dst;
2043		}
2044
2045		dst.sg_wa.sg_used += src.sg_wa.sg->length;
2046		if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2047			dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2048			dst.sg_wa.sg_used = 0;
2049		}
2050		src.sg_wa.sg = sg_next(src.sg_wa.sg);
2051	}
2052
2053e_dst:
2054	if (!in_place)
2055		ccp_free_data(&dst, cmd_q);
2056
2057e_src:
2058	ccp_free_data(&src, cmd_q);
2059
2060e_mask:
2061	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2062		ccp_dm_free(&mask);
2063
2064	return ret;
2065}
2066
2067static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
 
2068				      struct ccp_cmd *cmd)
2069{
2070	struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2071	struct ccp_dm_workarea mask;
2072	struct ccp_op op;
2073	int ret;
2074
2075	if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2076		return -EINVAL;
2077
2078	if (!pt->src_dma || !pt->dst_dma)
2079		return -EINVAL;
2080
2081	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2082		if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2083			return -EINVAL;
2084		if (!pt->mask)
2085			return -EINVAL;
2086	}
2087
2088	BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2089
2090	memset(&op, 0, sizeof(op));
2091	op.cmd_q = cmd_q;
2092	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2093
2094	if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2095		/* Load the mask */
2096		op.sb_key = cmd_q->sb_key;
2097
2098		mask.length = pt->mask_len;
2099		mask.dma.address = pt->mask;
2100		mask.dma.length = pt->mask_len;
2101
2102		ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2103				     CCP_PASSTHRU_BYTESWAP_NOOP);
2104		if (ret) {
2105			cmd->engine_error = cmd_q->cmd_error;
2106			return ret;
2107		}
2108	}
2109
2110	/* Send data to the CCP Passthru engine */
2111	op.eom = 1;
2112	op.soc = 1;
2113
2114	op.src.type = CCP_MEMTYPE_SYSTEM;
2115	op.src.u.dma.address = pt->src_dma;
2116	op.src.u.dma.offset = 0;
2117	op.src.u.dma.length = pt->src_len;
2118
2119	op.dst.type = CCP_MEMTYPE_SYSTEM;
2120	op.dst.u.dma.address = pt->dst_dma;
2121	op.dst.u.dma.offset = 0;
2122	op.dst.u.dma.length = pt->src_len;
2123
2124	ret = cmd_q->ccp->vdata->perform->passthru(&op);
2125	if (ret)
2126		cmd->engine_error = cmd_q->cmd_error;
2127
2128	return ret;
2129}
2130
2131static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2132{
2133	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2134	struct ccp_dm_workarea src, dst;
2135	struct ccp_op op;
2136	int ret;
2137	u8 *save;
2138
2139	if (!ecc->u.mm.operand_1 ||
2140	    (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2141		return -EINVAL;
2142
2143	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2144		if (!ecc->u.mm.operand_2 ||
2145		    (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2146			return -EINVAL;
2147
2148	if (!ecc->u.mm.result ||
2149	    (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2150		return -EINVAL;
2151
2152	memset(&op, 0, sizeof(op));
2153	op.cmd_q = cmd_q;
2154	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2155
2156	/* Concatenate the modulus and the operands. Both the modulus and
2157	 * the operands must be in little endian format.  Since the input
2158	 * is in big endian format it must be converted and placed in a
2159	 * fixed length buffer.
2160	 */
2161	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2162				   DMA_TO_DEVICE);
2163	if (ret)
2164		return ret;
2165
2166	/* Save the workarea address since it is updated in order to perform
2167	 * the concatenation
2168	 */
2169	save = src.address;
2170
2171	/* Copy the ECC modulus */
2172	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2173	if (ret)
2174		goto e_src;
2175	src.address += CCP_ECC_OPERAND_SIZE;
2176
2177	/* Copy the first operand */
2178	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2179				      ecc->u.mm.operand_1_len);
2180	if (ret)
2181		goto e_src;
2182	src.address += CCP_ECC_OPERAND_SIZE;
2183
2184	if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2185		/* Copy the second operand */
2186		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2187					      ecc->u.mm.operand_2_len);
2188		if (ret)
2189			goto e_src;
2190		src.address += CCP_ECC_OPERAND_SIZE;
2191	}
2192
2193	/* Restore the workarea address */
2194	src.address = save;
2195
2196	/* Prepare the output area for the operation */
2197	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2198				   DMA_FROM_DEVICE);
2199	if (ret)
2200		goto e_src;
2201
2202	op.soc = 1;
2203	op.src.u.dma.address = src.dma.address;
2204	op.src.u.dma.offset = 0;
2205	op.src.u.dma.length = src.length;
2206	op.dst.u.dma.address = dst.dma.address;
2207	op.dst.u.dma.offset = 0;
2208	op.dst.u.dma.length = dst.length;
2209
2210	op.u.ecc.function = cmd->u.ecc.function;
2211
2212	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2213	if (ret) {
2214		cmd->engine_error = cmd_q->cmd_error;
2215		goto e_dst;
2216	}
2217
2218	ecc->ecc_result = le16_to_cpup(
2219		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2220	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2221		ret = -EIO;
2222		goto e_dst;
2223	}
2224
2225	/* Save the ECC result */
2226	ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2227				CCP_ECC_MODULUS_BYTES);
2228
2229e_dst:
2230	ccp_dm_free(&dst);
2231
2232e_src:
2233	ccp_dm_free(&src);
2234
2235	return ret;
2236}
2237
2238static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2239{
2240	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2241	struct ccp_dm_workarea src, dst;
2242	struct ccp_op op;
2243	int ret;
2244	u8 *save;
2245
2246	if (!ecc->u.pm.point_1.x ||
2247	    (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2248	    !ecc->u.pm.point_1.y ||
2249	    (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2250		return -EINVAL;
2251
2252	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2253		if (!ecc->u.pm.point_2.x ||
2254		    (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2255		    !ecc->u.pm.point_2.y ||
2256		    (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2257			return -EINVAL;
2258	} else {
2259		if (!ecc->u.pm.domain_a ||
2260		    (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2261			return -EINVAL;
2262
2263		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2264			if (!ecc->u.pm.scalar ||
2265			    (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2266				return -EINVAL;
2267	}
2268
2269	if (!ecc->u.pm.result.x ||
2270	    (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2271	    !ecc->u.pm.result.y ||
2272	    (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2273		return -EINVAL;
2274
2275	memset(&op, 0, sizeof(op));
2276	op.cmd_q = cmd_q;
2277	op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2278
2279	/* Concatenate the modulus and the operands. Both the modulus and
2280	 * the operands must be in little endian format.  Since the input
2281	 * is in big endian format it must be converted and placed in a
2282	 * fixed length buffer.
2283	 */
2284	ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2285				   DMA_TO_DEVICE);
2286	if (ret)
2287		return ret;
2288
2289	/* Save the workarea address since it is updated in order to perform
2290	 * the concatenation
2291	 */
2292	save = src.address;
2293
2294	/* Copy the ECC modulus */
2295	ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2296	if (ret)
2297		goto e_src;
2298	src.address += CCP_ECC_OPERAND_SIZE;
2299
2300	/* Copy the first point X and Y coordinate */
2301	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2302				      ecc->u.pm.point_1.x_len);
2303	if (ret)
2304		goto e_src;
2305	src.address += CCP_ECC_OPERAND_SIZE;
2306	ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2307				      ecc->u.pm.point_1.y_len);
2308	if (ret)
2309		goto e_src;
2310	src.address += CCP_ECC_OPERAND_SIZE;
2311
2312	/* Set the first point Z coordinate to 1 */
2313	*src.address = 0x01;
2314	src.address += CCP_ECC_OPERAND_SIZE;
2315
2316	if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2317		/* Copy the second point X and Y coordinate */
2318		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2319					      ecc->u.pm.point_2.x_len);
2320		if (ret)
2321			goto e_src;
2322		src.address += CCP_ECC_OPERAND_SIZE;
2323		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2324					      ecc->u.pm.point_2.y_len);
2325		if (ret)
2326			goto e_src;
2327		src.address += CCP_ECC_OPERAND_SIZE;
2328
2329		/* Set the second point Z coordinate to 1 */
2330		*src.address = 0x01;
2331		src.address += CCP_ECC_OPERAND_SIZE;
2332	} else {
2333		/* Copy the Domain "a" parameter */
2334		ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2335					      ecc->u.pm.domain_a_len);
2336		if (ret)
2337			goto e_src;
2338		src.address += CCP_ECC_OPERAND_SIZE;
2339
2340		if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2341			/* Copy the scalar value */
2342			ret = ccp_reverse_set_dm_area(&src, 0,
2343						      ecc->u.pm.scalar, 0,
2344						      ecc->u.pm.scalar_len);
2345			if (ret)
2346				goto e_src;
2347			src.address += CCP_ECC_OPERAND_SIZE;
2348		}
2349	}
2350
2351	/* Restore the workarea address */
2352	src.address = save;
2353
2354	/* Prepare the output area for the operation */
2355	ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2356				   DMA_FROM_DEVICE);
2357	if (ret)
2358		goto e_src;
2359
2360	op.soc = 1;
2361	op.src.u.dma.address = src.dma.address;
2362	op.src.u.dma.offset = 0;
2363	op.src.u.dma.length = src.length;
2364	op.dst.u.dma.address = dst.dma.address;
2365	op.dst.u.dma.offset = 0;
2366	op.dst.u.dma.length = dst.length;
2367
2368	op.u.ecc.function = cmd->u.ecc.function;
2369
2370	ret = cmd_q->ccp->vdata->perform->ecc(&op);
2371	if (ret) {
2372		cmd->engine_error = cmd_q->cmd_error;
2373		goto e_dst;
2374	}
2375
2376	ecc->ecc_result = le16_to_cpup(
2377		(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2378	if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2379		ret = -EIO;
2380		goto e_dst;
2381	}
2382
2383	/* Save the workarea address since it is updated as we walk through
2384	 * to copy the point math result
2385	 */
2386	save = dst.address;
2387
2388	/* Save the ECC result X and Y coordinates */
2389	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2390				CCP_ECC_MODULUS_BYTES);
2391	dst.address += CCP_ECC_OUTPUT_SIZE;
2392	ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2393				CCP_ECC_MODULUS_BYTES);
2394	dst.address += CCP_ECC_OUTPUT_SIZE;
2395
2396	/* Restore the workarea address */
2397	dst.address = save;
2398
2399e_dst:
2400	ccp_dm_free(&dst);
2401
2402e_src:
2403	ccp_dm_free(&src);
2404
2405	return ret;
2406}
2407
2408static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
 
2409{
2410	struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2411
2412	ecc->ecc_result = 0;
2413
2414	if (!ecc->mod ||
2415	    (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2416		return -EINVAL;
2417
2418	switch (ecc->function) {
2419	case CCP_ECC_FUNCTION_MMUL_384BIT:
2420	case CCP_ECC_FUNCTION_MADD_384BIT:
2421	case CCP_ECC_FUNCTION_MINV_384BIT:
2422		return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2423
2424	case CCP_ECC_FUNCTION_PADD_384BIT:
2425	case CCP_ECC_FUNCTION_PMUL_384BIT:
2426	case CCP_ECC_FUNCTION_PDBL_384BIT:
2427		return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2428
2429	default:
2430		return -EINVAL;
2431	}
2432}
2433
2434int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2435{
2436	int ret;
2437
2438	cmd->engine_error = 0;
2439	cmd_q->cmd_error = 0;
2440	cmd_q->int_rcvd = 0;
2441	cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2442
2443	switch (cmd->engine) {
2444	case CCP_ENGINE_AES:
2445		ret = ccp_run_aes_cmd(cmd_q, cmd);
 
 
 
 
 
 
 
 
 
 
2446		break;
2447	case CCP_ENGINE_XTS_AES_128:
2448		ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2449		break;
2450	case CCP_ENGINE_DES3:
2451		ret = ccp_run_des3_cmd(cmd_q, cmd);
2452		break;
2453	case CCP_ENGINE_SHA:
2454		ret = ccp_run_sha_cmd(cmd_q, cmd);
2455		break;
2456	case CCP_ENGINE_RSA:
2457		ret = ccp_run_rsa_cmd(cmd_q, cmd);
2458		break;
2459	case CCP_ENGINE_PASSTHRU:
2460		if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2461			ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2462		else
2463			ret = ccp_run_passthru_cmd(cmd_q, cmd);
2464		break;
2465	case CCP_ENGINE_ECC:
2466		ret = ccp_run_ecc_cmd(cmd_q, cmd);
2467		break;
2468	default:
2469		ret = -EINVAL;
2470	}
2471
2472	return ret;
2473}