Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/mlock.c
  4 *
  5 *  (C) Copyright 1995 Linus Torvalds
  6 *  (C) Copyright 2002 Christoph Hellwig
  7 */
  8
  9#include <linux/capability.h>
 10#include <linux/mman.h>
 11#include <linux/mm.h>
 12#include <linux/sched/user.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/pagemap.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagewalk.h>
 18#include <linux/mempolicy.h>
 19#include <linux/syscalls.h>
 20#include <linux/sched.h>
 21#include <linux/export.h>
 22#include <linux/rmap.h>
 23#include <linux/mmzone.h>
 24#include <linux/hugetlb.h>
 25#include <linux/memcontrol.h>
 26#include <linux/mm_inline.h>
 27#include <linux/secretmem.h>
 28
 29#include "internal.h"
 30
 31struct mlock_fbatch {
 32	local_lock_t lock;
 33	struct folio_batch fbatch;
 34};
 35
 36static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = {
 37	.lock = INIT_LOCAL_LOCK(lock),
 38};
 39
 40bool can_do_mlock(void)
 41{
 42	if (rlimit(RLIMIT_MEMLOCK) != 0)
 43		return true;
 44	if (capable(CAP_IPC_LOCK))
 45		return true;
 46	return false;
 47}
 48EXPORT_SYMBOL(can_do_mlock);
 49
 50/*
 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing
 52 * in vmscan and, possibly, the fault path; and to support semi-accurate
 53 * statistics.
 54 *
 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable.  As such, it
 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such
 57 * list exists), rather than the [in]active lists. PG_unevictable is set to
 58 * indicate the unevictable state.
 
 
 
 
 
 
 59 */
 60
 61static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 62{
 63	/* There is nothing more we can do while it's off LRU */
 64	if (!folio_test_clear_lru(folio))
 65		return lruvec;
 66
 67	lruvec = folio_lruvec_relock_irq(folio, lruvec);
 68
 69	if (unlikely(folio_evictable(folio))) {
 
 
 
 70		/*
 71		 * This is a little surprising, but quite possible: PG_mlocked
 72		 * must have got cleared already by another CPU.  Could this
 73		 * folio be unevictable?  I'm not sure, but move it now if so.
 74		 */
 75		if (folio_test_unevictable(folio)) {
 76			lruvec_del_folio(lruvec, folio);
 77			folio_clear_unevictable(folio);
 78			lruvec_add_folio(lruvec, folio);
 79
 80			__count_vm_events(UNEVICTABLE_PGRESCUED,
 81					  folio_nr_pages(folio));
 82		}
 83		goto out;
 84	}
 85
 86	if (folio_test_unevictable(folio)) {
 87		if (folio_test_mlocked(folio))
 88			folio->mlock_count++;
 89		goto out;
 90	}
 91
 92	lruvec_del_folio(lruvec, folio);
 93	folio_clear_active(folio);
 94	folio_set_unevictable(folio);
 95	folio->mlock_count = !!folio_test_mlocked(folio);
 96	lruvec_add_folio(lruvec, folio);
 97	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
 98out:
 99	folio_set_lru(folio);
100	return lruvec;
101}
102
103static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 
104{
105	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
106
107	lruvec = folio_lruvec_relock_irq(folio, lruvec);
108
109	/* As above, this is a little surprising, but possible */
110	if (unlikely(folio_evictable(folio)))
111		goto out;
112
113	folio_set_unevictable(folio);
114	folio->mlock_count = !!folio_test_mlocked(folio);
115	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
116out:
117	lruvec_add_folio(lruvec, folio);
118	folio_set_lru(folio);
119	return lruvec;
120}
121
122static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 
123{
124	int nr_pages = folio_nr_pages(folio);
125	bool isolated = false;
126
127	if (!folio_test_clear_lru(folio))
128		goto munlock;
129
130	isolated = true;
131	lruvec = folio_lruvec_relock_irq(folio, lruvec);
132
133	if (folio_test_unevictable(folio)) {
134		/* Then mlock_count is maintained, but might undercount */
135		if (folio->mlock_count)
136			folio->mlock_count--;
137		if (folio->mlock_count)
138			goto out;
139	}
140	/* else assume that was the last mlock: reclaim will fix it if not */
141
142munlock:
143	if (folio_test_clear_mlocked(folio)) {
144		__zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
145		if (isolated || !folio_test_unevictable(folio))
146			__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147		else
148			__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
149	}
150
151	/* folio_evictable() has to be checked *after* clearing Mlocked */
152	if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) {
153		lruvec_del_folio(lruvec, folio);
154		folio_clear_unevictable(folio);
155		lruvec_add_folio(lruvec, folio);
156		__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
157	}
158out:
159	if (isolated)
160		folio_set_lru(folio);
161	return lruvec;
162}
163
164/*
165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch.
 
 
 
166 */
167#define LRU_FOLIO 0x1
168#define NEW_FOLIO 0x2
169static inline struct folio *mlock_lru(struct folio *folio)
170{
171	return (struct folio *)((unsigned long)folio + LRU_FOLIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
172}
173
174static inline struct folio *mlock_new(struct folio *folio)
 
 
 
 
 
 
 
 
 
175{
176	return (struct folio *)((unsigned long)folio + NEW_FOLIO);
 
 
 
177}
178
179/*
180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can
181 * make use of such folio pointer flags in future, but for now just keep it for
182 * mlock.  We could use three separate folio batches instead, but one feels
183 * better (munlocking a full folio batch does not need to drain mlocking folio
184 * batches first).
 
 
 
 
 
 
 
 
 
 
 
185 */
186static void mlock_folio_batch(struct folio_batch *fbatch)
187{
188	struct lruvec *lruvec = NULL;
189	unsigned long mlock;
190	struct folio *folio;
191	int i;
192
193	for (i = 0; i < folio_batch_count(fbatch); i++) {
194		folio = fbatch->folios[i];
195		mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO);
196		folio = (struct folio *)((unsigned long)folio - mlock);
197		fbatch->folios[i] = folio;
198
199		if (mlock & LRU_FOLIO)
200			lruvec = __mlock_folio(folio, lruvec);
201		else if (mlock & NEW_FOLIO)
202			lruvec = __mlock_new_folio(folio, lruvec);
203		else
204			lruvec = __munlock_folio(folio, lruvec);
205	}
206
207	if (lruvec)
208		unlock_page_lruvec_irq(lruvec);
209	folios_put(fbatch->folios, folio_batch_count(fbatch));
210	folio_batch_reinit(fbatch);
211}
 
212
213void mlock_drain_local(void)
214{
215	struct folio_batch *fbatch;
216
217	local_lock(&mlock_fbatch.lock);
218	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
219	if (folio_batch_count(fbatch))
220		mlock_folio_batch(fbatch);
221	local_unlock(&mlock_fbatch.lock);
222}
223
224void mlock_drain_remote(int cpu)
225{
226	struct folio_batch *fbatch;
 
 
 
227
228	WARN_ON_ONCE(cpu_online(cpu));
229	fbatch = &per_cpu(mlock_fbatch.fbatch, cpu);
230	if (folio_batch_count(fbatch))
231		mlock_folio_batch(fbatch);
232}
233
234bool need_mlock_drain(int cpu)
235{
236	return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu));
237}
238
239/**
240 * mlock_folio - mlock a folio already on (or temporarily off) LRU
241 * @folio: folio to be mlocked.
242 */
243void mlock_folio(struct folio *folio)
244{
245	struct folio_batch *fbatch;
246
247	local_lock(&mlock_fbatch.lock);
248	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
249
250	if (!folio_test_set_mlocked(folio)) {
251		int nr_pages = folio_nr_pages(folio);
252
253		zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
254		__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
255	}
256
257	folio_get(folio);
258	if (!folio_batch_add(fbatch, mlock_lru(folio)) ||
259	    folio_test_large(folio) || lru_cache_disabled())
260		mlock_folio_batch(fbatch);
261	local_unlock(&mlock_fbatch.lock);
262}
263
264/**
265 * mlock_new_folio - mlock a newly allocated folio not yet on LRU
266 * @folio: folio to be mlocked, either normal or a THP head.
 
 
 
 
 
 
 
 
267 */
268void mlock_new_folio(struct folio *folio)
 
269{
270	struct folio_batch *fbatch;
271	int nr_pages = folio_nr_pages(folio);
272
273	local_lock(&mlock_fbatch.lock);
274	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
275	folio_set_mlocked(folio);
276
277	zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
278	__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
279
280	folio_get(folio);
281	if (!folio_batch_add(fbatch, mlock_new(folio)) ||
282	    folio_test_large(folio) || lru_cache_disabled())
283		mlock_folio_batch(fbatch);
284	local_unlock(&mlock_fbatch.lock);
285}
286
287/**
288 * munlock_folio - munlock a folio
289 * @folio: folio to be munlocked, either normal or a THP head.
 
 
290 */
291void munlock_folio(struct folio *folio)
292{
293	struct folio_batch *fbatch;
294
295	local_lock(&mlock_fbatch.lock);
296	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
297	/*
298	 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(),
299	 * which will check whether the folio is multiply mlocked.
300	 */
301	folio_get(folio);
302	if (!folio_batch_add(fbatch, folio) ||
303	    folio_test_large(folio) || lru_cache_disabled())
304		mlock_folio_batch(fbatch);
305	local_unlock(&mlock_fbatch.lock);
306}
307
308static inline unsigned int folio_mlock_step(struct folio *folio,
309		pte_t *pte, unsigned long addr, unsigned long end)
 
 
 
 
 
 
 
 
 
310{
311	unsigned int count, i, nr = folio_nr_pages(folio);
312	unsigned long pfn = folio_pfn(folio);
313	pte_t ptent = ptep_get(pte);
314
315	if (!folio_test_large(folio))
316		return 1;
317
318	count = pfn + nr - pte_pfn(ptent);
319	count = min_t(unsigned int, count, (end - addr) >> PAGE_SHIFT);
320
321	for (i = 0; i < count; i++, pte++) {
322		pte_t entry = ptep_get(pte);
 
 
 
 
 
 
 
 
 
 
 
323
324		if (!pte_present(entry))
325			break;
326		if (pte_pfn(entry) - pfn >= nr)
327			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328	}
329
330	return i;
331}
332
333static inline bool allow_mlock_munlock(struct folio *folio,
334		struct vm_area_struct *vma, unsigned long start,
335		unsigned long end, unsigned int step)
336{
337	/*
338	 * For unlock, allow munlock large folio which is partially
339	 * mapped to VMA. As it's possible that large folio is
340	 * mlocked and VMA is split later.
341	 *
342	 * During memory pressure, such kind of large folio can
343	 * be split. And the pages are not in VM_LOCKed VMA
344	 * can be reclaimed.
345	 */
346	if (!(vma->vm_flags & VM_LOCKED))
347		return true;
348
349	/* folio_within_range() cannot take KSM, but any small folio is OK */
350	if (!folio_test_large(folio))
351		return true;
352
353	/* folio not in range [start, end), skip mlock */
354	if (!folio_within_range(folio, vma, start, end))
355		return false;
356
357	/* folio is not fully mapped, skip mlock */
358	if (step != folio_nr_pages(folio))
359		return false;
360
361	return true;
362}
363
364static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
365			   unsigned long end, struct mm_walk *walk)
366
 
 
 
 
 
 
 
 
 
 
 
 
 
367{
368	struct vm_area_struct *vma = walk->vma;
369	spinlock_t *ptl;
370	pte_t *start_pte, *pte;
371	pte_t ptent;
372	struct folio *folio;
373	unsigned int step = 1;
374	unsigned long start = addr;
375
376	ptl = pmd_trans_huge_lock(pmd, vma);
377	if (ptl) {
378		if (!pmd_present(*pmd))
379			goto out;
380		if (is_huge_zero_pmd(*pmd))
381			goto out;
382		folio = page_folio(pmd_page(*pmd));
383		if (vma->vm_flags & VM_LOCKED)
384			mlock_folio(folio);
385		else
386			munlock_folio(folio);
387		goto out;
388	}
389
390	start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
391	if (!start_pte) {
392		walk->action = ACTION_AGAIN;
393		return 0;
394	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395
396	for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
397		ptent = ptep_get(pte);
398		if (!pte_present(ptent))
399			continue;
400		folio = vm_normal_folio(vma, addr, ptent);
401		if (!folio || folio_is_zone_device(folio))
402			continue;
403
404		step = folio_mlock_step(folio, pte, addr, end);
405		if (!allow_mlock_munlock(folio, vma, start, end, step))
406			goto next_entry;
407
408		if (vma->vm_flags & VM_LOCKED)
409			mlock_folio(folio);
410		else
411			munlock_folio(folio);
412
413next_entry:
414		pte += step - 1;
415		addr += (step - 1) << PAGE_SHIFT;
416	}
417	pte_unmap(start_pte);
418out:
419	spin_unlock(ptl);
420	cond_resched();
421	return 0;
422}
423
424/*
425 * mlock_vma_pages_range() - mlock any pages already in the range,
426 *                           or munlock all pages in the range.
427 * @vma - vma containing range to be mlock()ed or munlock()ed
428 * @start - start address in @vma of the range
429 * @end - end of range in @vma
430 * @newflags - the new set of flags for @vma.
431 *
432 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
433 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
434 */
435static void mlock_vma_pages_range(struct vm_area_struct *vma,
436	unsigned long start, unsigned long end, vm_flags_t newflags)
437{
438	static const struct mm_walk_ops mlock_walk_ops = {
439		.pmd_entry = mlock_pte_range,
440		.walk_lock = PGWALK_WRLOCK_VERIFY,
441	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442
443	/*
444	 * There is a slight chance that concurrent page migration,
445	 * or page reclaim finding a page of this now-VM_LOCKED vma,
446	 * will call mlock_vma_folio() and raise page's mlock_count:
447	 * double counting, leaving the page unevictable indefinitely.
448	 * Communicate this danger to mlock_vma_folio() with VM_IO,
449	 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
450	 * mmap_lock is held in write mode here, so this weird
451	 * combination should not be visible to other mmap_lock users;
452	 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
453	 */
454	if (newflags & VM_LOCKED)
455		newflags |= VM_IO;
456	vma_start_write(vma);
457	vm_flags_reset_once(vma, newflags);
458
459	lru_add_drain();
460	walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
461	lru_add_drain();
462
463	if (newflags & VM_IO) {
464		newflags &= ~VM_IO;
465		vm_flags_reset_once(vma, newflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466	}
467}
468
469/*
470 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
471 *
472 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
473 * munlock is a no-op.  However, for some special vmas, we go ahead and
474 * populate the ptes.
475 *
476 * For vmas that pass the filters, merge/split as appropriate.
477 */
478static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma,
479	       struct vm_area_struct **prev, unsigned long start,
480	       unsigned long end, vm_flags_t newflags)
481{
482	struct mm_struct *mm = vma->vm_mm;
 
483	int nr_pages;
484	int ret = 0;
485	vm_flags_t oldflags = vma->vm_flags;
486
487	if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
488	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
489	    vma_is_dax(vma) || vma_is_secretmem(vma))
490		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
491		goto out;
492
493	vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags);
494	if (IS_ERR(vma)) {
495		ret = PTR_ERR(vma);
496		goto out;
 
 
 
 
 
 
 
 
 
497	}
498
 
 
 
 
 
 
 
499	/*
500	 * Keep track of amount of locked VM.
501	 */
502	nr_pages = (end - start) >> PAGE_SHIFT;
503	if (!(newflags & VM_LOCKED))
504		nr_pages = -nr_pages;
505	else if (oldflags & VM_LOCKED)
506		nr_pages = 0;
507	mm->locked_vm += nr_pages;
508
509	/*
510	 * vm_flags is protected by the mmap_lock held in write mode.
511	 * It's okay if try_to_unmap_one unmaps a page just after we
512	 * set VM_LOCKED, populate_vma_page_range will bring it back.
513	 */
514	if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
515		/* No work to do, and mlocking twice would be wrong */
516		vma_start_write(vma);
517		vm_flags_reset(vma, newflags);
518	} else {
519		mlock_vma_pages_range(vma, start, end, newflags);
520	}
521out:
522	*prev = vma;
523	return ret;
524}
525
526static int apply_vma_lock_flags(unsigned long start, size_t len,
527				vm_flags_t flags)
528{
529	unsigned long nstart, end, tmp;
530	struct vm_area_struct *vma, *prev;
531	VMA_ITERATOR(vmi, current->mm, start);
532
533	VM_BUG_ON(offset_in_page(start));
534	VM_BUG_ON(len != PAGE_ALIGN(len));
535	end = start + len;
536	if (end < start)
537		return -EINVAL;
538	if (end == start)
539		return 0;
540	vma = vma_iter_load(&vmi);
541	if (!vma)
542		return -ENOMEM;
543
544	prev = vma_prev(&vmi);
545	if (start > vma->vm_start)
546		prev = vma;
547
548	nstart = start;
549	tmp = vma->vm_start;
550	for_each_vma_range(vmi, vma, end) {
551		int error;
552		vm_flags_t newflags;
553
554		if (vma->vm_start != tmp)
555			return -ENOMEM;
556
557		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
558		newflags |= flags;
 
559		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
560		tmp = vma->vm_end;
561		if (tmp > end)
562			tmp = end;
563		error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags);
564		if (error)
565			return error;
566		tmp = vma_iter_end(&vmi);
567		nstart = tmp;
568	}
569
570	if (tmp < end)
571		return -ENOMEM;
572
573	return 0;
574}
575
576/*
577 * Go through vma areas and sum size of mlocked
578 * vma pages, as return value.
579 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
580 * is also counted.
581 * Return value: previously mlocked page counts
582 */
583static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
584		unsigned long start, size_t len)
585{
586	struct vm_area_struct *vma;
587	unsigned long count = 0;
588	unsigned long end;
589	VMA_ITERATOR(vmi, mm, start);
590
591	/* Don't overflow past ULONG_MAX */
592	if (unlikely(ULONG_MAX - len < start))
593		end = ULONG_MAX;
594	else
595		end = start + len;
596
597	for_each_vma_range(vmi, vma, end) {
598		if (vma->vm_flags & VM_LOCKED) {
599			if (start > vma->vm_start)
600				count -= (start - vma->vm_start);
601			if (end < vma->vm_end) {
602				count += end - vma->vm_start;
603				break;
604			}
605			count += vma->vm_end - vma->vm_start;
606		}
607	}
608
609	return count >> PAGE_SHIFT;
610}
611
612/*
613 * convert get_user_pages() return value to posix mlock() error
614 */
615static int __mlock_posix_error_return(long retval)
616{
617	if (retval == -EFAULT)
618		retval = -ENOMEM;
619	else if (retval == -ENOMEM)
620		retval = -EAGAIN;
621	return retval;
622}
623
624static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
625{
626	unsigned long locked;
627	unsigned long lock_limit;
628	int error = -ENOMEM;
629
630	start = untagged_addr(start);
631
632	if (!can_do_mlock())
633		return -EPERM;
634
 
 
635	len = PAGE_ALIGN(len + (offset_in_page(start)));
636	start &= PAGE_MASK;
637
638	lock_limit = rlimit(RLIMIT_MEMLOCK);
639	lock_limit >>= PAGE_SHIFT;
640	locked = len >> PAGE_SHIFT;
641
642	if (mmap_write_lock_killable(current->mm))
643		return -EINTR;
644
645	locked += current->mm->locked_vm;
646	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
647		/*
648		 * It is possible that the regions requested intersect with
649		 * previously mlocked areas, that part area in "mm->locked_vm"
650		 * should not be counted to new mlock increment count. So check
651		 * and adjust locked count if necessary.
652		 */
653		locked -= count_mm_mlocked_page_nr(current->mm,
654				start, len);
655	}
656
657	/* check against resource limits */
658	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
659		error = apply_vma_lock_flags(start, len, flags);
660
661	mmap_write_unlock(current->mm);
662	if (error)
663		return error;
664
665	error = __mm_populate(start, len, 0);
666	if (error)
667		return __mlock_posix_error_return(error);
668	return 0;
669}
670
671SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
672{
673	return do_mlock(start, len, VM_LOCKED);
674}
675
676SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
677{
678	vm_flags_t vm_flags = VM_LOCKED;
679
680	if (flags & ~MLOCK_ONFAULT)
681		return -EINVAL;
682
683	if (flags & MLOCK_ONFAULT)
684		vm_flags |= VM_LOCKONFAULT;
685
686	return do_mlock(start, len, vm_flags);
687}
688
689SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
690{
691	int ret;
692
693	start = untagged_addr(start);
694
695	len = PAGE_ALIGN(len + (offset_in_page(start)));
696	start &= PAGE_MASK;
697
698	if (mmap_write_lock_killable(current->mm))
699		return -EINTR;
700	ret = apply_vma_lock_flags(start, len, 0);
701	mmap_write_unlock(current->mm);
702
703	return ret;
704}
705
706/*
707 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
708 * and translate into the appropriate modifications to mm->def_flags and/or the
709 * flags for all current VMAs.
710 *
711 * There are a couple of subtleties with this.  If mlockall() is called multiple
712 * times with different flags, the values do not necessarily stack.  If mlockall
713 * is called once including the MCL_FUTURE flag and then a second time without
714 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
715 */
716static int apply_mlockall_flags(int flags)
717{
718	VMA_ITERATOR(vmi, current->mm, 0);
719	struct vm_area_struct *vma, *prev = NULL;
720	vm_flags_t to_add = 0;
721
722	current->mm->def_flags &= ~VM_LOCKED_MASK;
723	if (flags & MCL_FUTURE) {
724		current->mm->def_flags |= VM_LOCKED;
725
726		if (flags & MCL_ONFAULT)
727			current->mm->def_flags |= VM_LOCKONFAULT;
728
729		if (!(flags & MCL_CURRENT))
730			goto out;
731	}
732
733	if (flags & MCL_CURRENT) {
734		to_add |= VM_LOCKED;
735		if (flags & MCL_ONFAULT)
736			to_add |= VM_LOCKONFAULT;
737	}
738
739	for_each_vma(vmi, vma) {
740		vm_flags_t newflags;
741
742		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
743		newflags |= to_add;
744
745		/* Ignore errors */
746		mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end,
747			    newflags);
748		cond_resched();
749	}
750out:
751	return 0;
752}
753
754SYSCALL_DEFINE1(mlockall, int, flags)
755{
756	unsigned long lock_limit;
757	int ret;
758
759	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
760	    flags == MCL_ONFAULT)
761		return -EINVAL;
762
763	if (!can_do_mlock())
764		return -EPERM;
765
 
 
 
766	lock_limit = rlimit(RLIMIT_MEMLOCK);
767	lock_limit >>= PAGE_SHIFT;
768
769	if (mmap_write_lock_killable(current->mm))
770		return -EINTR;
771
772	ret = -ENOMEM;
 
 
773	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
774	    capable(CAP_IPC_LOCK))
775		ret = apply_mlockall_flags(flags);
776	mmap_write_unlock(current->mm);
777	if (!ret && (flags & MCL_CURRENT))
778		mm_populate(0, TASK_SIZE);
779
780	return ret;
781}
782
783SYSCALL_DEFINE0(munlockall)
784{
785	int ret;
786
787	if (mmap_write_lock_killable(current->mm))
788		return -EINTR;
789	ret = apply_mlockall_flags(0);
790	mmap_write_unlock(current->mm);
791	return ret;
792}
793
794/*
795 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
796 * shm segments) get accounted against the user_struct instead.
797 */
798static DEFINE_SPINLOCK(shmlock_user_lock);
799
800int user_shm_lock(size_t size, struct ucounts *ucounts)
801{
802	unsigned long lock_limit, locked;
803	long memlock;
804	int allowed = 0;
805
806	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
807	lock_limit = rlimit(RLIMIT_MEMLOCK);
808	if (lock_limit != RLIM_INFINITY)
809		lock_limit >>= PAGE_SHIFT;
 
810	spin_lock(&shmlock_user_lock);
811	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
812
813	if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
814		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
815		goto out;
816	}
817	if (!get_ucounts(ucounts)) {
818		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
819		allowed = 0;
820		goto out;
821	}
822	allowed = 1;
823out:
824	spin_unlock(&shmlock_user_lock);
825	return allowed;
826}
827
828void user_shm_unlock(size_t size, struct ucounts *ucounts)
829{
830	spin_lock(&shmlock_user_lock);
831	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
832	spin_unlock(&shmlock_user_lock);
833	put_ucounts(ucounts);
834}
v4.6
 
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 14#include <linux/pagevec.h>
 
 15#include <linux/mempolicy.h>
 16#include <linux/syscalls.h>
 17#include <linux/sched.h>
 18#include <linux/export.h>
 19#include <linux/rmap.h>
 20#include <linux/mmzone.h>
 21#include <linux/hugetlb.h>
 22#include <linux/memcontrol.h>
 23#include <linux/mm_inline.h>
 
 24
 25#include "internal.h"
 26
 
 
 
 
 
 
 
 
 
 27bool can_do_mlock(void)
 28{
 29	if (rlimit(RLIMIT_MEMLOCK) != 0)
 30		return true;
 31	if (capable(CAP_IPC_LOCK))
 32		return true;
 33	return false;
 34}
 35EXPORT_SYMBOL(can_do_mlock);
 36
 37/*
 38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 39 * in vmscan and, possibly, the fault path; and to support semi-accurate
 40 * statistics.
 41 *
 42 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 44 * The unevictable list is an LRU sibling list to the [in]active lists.
 45 * PageUnevictable is set to indicate the unevictable state.
 46 *
 47 * When lazy mlocking via vmscan, it is important to ensure that the
 48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 49 * may have mlocked a page that is being munlocked. So lazy mlock must take
 50 * the mmap_sem for read, and verify that the vma really is locked
 51 * (see mm/rmap.c).
 52 */
 53
 54/*
 55 *  LRU accounting for clear_page_mlock()
 56 */
 57void clear_page_mlock(struct page *page)
 58{
 59	if (!TestClearPageMlocked(page))
 60		return;
 
 61
 62	mod_zone_page_state(page_zone(page), NR_MLOCK,
 63			    -hpage_nr_pages(page));
 64	count_vm_event(UNEVICTABLE_PGCLEARED);
 65	if (!isolate_lru_page(page)) {
 66		putback_lru_page(page);
 67	} else {
 68		/*
 69		 * We lost the race. the page already moved to evictable list.
 
 
 70		 */
 71		if (PageUnevictable(page))
 72			count_vm_event(UNEVICTABLE_PGSTRANDED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 73	}
 
 
 
 
 
 
 
 
 
 
 74}
 75
 76/*
 77 * Mark page as mlocked if not already.
 78 * If page on LRU, isolate and putback to move to unevictable list.
 79 */
 80void mlock_vma_page(struct page *page)
 81{
 82	/* Serialize with page migration */
 83	BUG_ON(!PageLocked(page));
 
 84
 85	VM_BUG_ON_PAGE(PageTail(page), page);
 86	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
 87
 88	if (!TestSetPageMlocked(page)) {
 89		mod_zone_page_state(page_zone(page), NR_MLOCK,
 90				    hpage_nr_pages(page));
 91		count_vm_event(UNEVICTABLE_PGMLOCKED);
 92		if (!isolate_lru_page(page))
 93			putback_lru_page(page);
 94	}
 
 95}
 96
 97/*
 98 * Isolate a page from LRU with optional get_page() pin.
 99 * Assumes lru_lock already held and page already pinned.
100 */
101static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
102{
103	if (PageLRU(page)) {
104		struct lruvec *lruvec;
105
106		lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
107		if (getpage)
108			get_page(page);
109		ClearPageLRU(page);
110		del_page_from_lru_list(page, lruvec, page_lru(page));
111		return true;
 
 
 
 
 
 
112	}
 
113
114	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115}
116
117/*
118 * Finish munlock after successful page isolation
119 *
120 * Page must be locked. This is a wrapper for try_to_munlock()
121 * and putback_lru_page() with munlock accounting.
122 */
123static void __munlock_isolated_page(struct page *page)
 
 
124{
125	int ret = SWAP_AGAIN;
126
127	/*
128	 * Optimization: if the page was mapped just once, that's our mapping
129	 * and we don't need to check all the other vmas.
130	 */
131	if (page_mapcount(page) > 1)
132		ret = try_to_munlock(page);
133
134	/* Did try_to_unlock() succeed or punt? */
135	if (ret != SWAP_MLOCK)
136		count_vm_event(UNEVICTABLE_PGMUNLOCKED);
137
138	putback_lru_page(page);
139}
140
141/*
142 * Accounting for page isolation fail during munlock
143 *
144 * Performs accounting when page isolation fails in munlock. There is nothing
145 * else to do because it means some other task has already removed the page
146 * from the LRU. putback_lru_page() will take care of removing the page from
147 * the unevictable list, if necessary. vmscan [page_referenced()] will move
148 * the page back to the unevictable list if some other vma has it mlocked.
149 */
150static void __munlock_isolation_failed(struct page *page)
151{
152	if (PageUnevictable(page))
153		__count_vm_event(UNEVICTABLE_PGSTRANDED);
154	else
155		__count_vm_event(UNEVICTABLE_PGMUNLOCKED);
156}
157
158/**
159 * munlock_vma_page - munlock a vma page
160 * @page - page to be unlocked, either a normal page or THP page head
161 *
162 * returns the size of the page as a page mask (0 for normal page,
163 *         HPAGE_PMD_NR - 1 for THP head page)
164 *
165 * called from munlock()/munmap() path with page supposedly on the LRU.
166 * When we munlock a page, because the vma where we found the page is being
167 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
168 * page locked so that we can leave it on the unevictable lru list and not
169 * bother vmscan with it.  However, to walk the page's rmap list in
170 * try_to_munlock() we must isolate the page from the LRU.  If some other
171 * task has removed the page from the LRU, we won't be able to do that.
172 * So we clear the PageMlocked as we might not get another chance.  If we
173 * can't isolate the page, we leave it for putback_lru_page() and vmscan
174 * [page_referenced()/try_to_unmap()] to deal with.
175 */
176unsigned int munlock_vma_page(struct page *page)
177{
178	int nr_pages;
179	struct zone *zone = page_zone(page);
 
 
180
181	/* For try_to_munlock() and to serialize with page migration */
182	BUG_ON(!PageLocked(page));
 
 
 
183
184	VM_BUG_ON_PAGE(PageTail(page), page);
 
 
 
 
 
 
185
186	/*
187	 * Serialize with any parallel __split_huge_page_refcount() which
188	 * might otherwise copy PageMlocked to part of the tail pages before
189	 * we clear it in the head page. It also stabilizes hpage_nr_pages().
190	 */
191	spin_lock_irq(&zone->lru_lock);
192
193	nr_pages = hpage_nr_pages(page);
194	if (!TestClearPageMlocked(page))
195		goto unlock_out;
196
197	__mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
 
 
 
 
 
198
199	if (__munlock_isolate_lru_page(page, true)) {
200		spin_unlock_irq(&zone->lru_lock);
201		__munlock_isolated_page(page);
202		goto out;
203	}
204	__munlock_isolation_failed(page);
205
206unlock_out:
207	spin_unlock_irq(&zone->lru_lock);
 
 
 
208
209out:
210	return nr_pages - 1;
 
211}
212
213/*
214 * convert get_user_pages() return value to posix mlock() error
 
215 */
216static int __mlock_posix_error_return(long retval)
217{
218	if (retval == -EFAULT)
219		retval = -ENOMEM;
220	else if (retval == -ENOMEM)
221		retval = -EAGAIN;
222	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
223}
224
225/*
226 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
227 *
228 * The fast path is available only for evictable pages with single mapping.
229 * Then we can bypass the per-cpu pvec and get better performance.
230 * when mapcount > 1 we need try_to_munlock() which can fail.
231 * when !page_evictable(), we need the full redo logic of putback_lru_page to
232 * avoid leaving evictable page in unevictable list.
233 *
234 * In case of success, @page is added to @pvec and @pgrescued is incremented
235 * in case that the page was previously unevictable. @page is also unlocked.
236 */
237static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
238		int *pgrescued)
239{
240	VM_BUG_ON_PAGE(PageLRU(page), page);
241	VM_BUG_ON_PAGE(!PageLocked(page), page);
242
243	if (page_mapcount(page) <= 1 && page_evictable(page)) {
244		pagevec_add(pvec, page);
245		if (TestClearPageUnevictable(page))
246			(*pgrescued)++;
247		unlock_page(page);
248		return true;
249	}
250
251	return false;
 
 
 
252}
253
254/*
255 * Putback multiple evictable pages to the LRU
256 *
257 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
258 * the pages might have meanwhile become unevictable but that is OK.
259 */
260static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
261{
262	count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 
 
 
263	/*
264	 *__pagevec_lru_add() calls release_pages() so we don't call
265	 * put_page() explicitly
266	 */
267	__pagevec_lru_add(pvec);
268	count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 
 
 
269}
270
271/*
272 * Munlock a batch of pages from the same zone
273 *
274 * The work is split to two main phases. First phase clears the Mlocked flag
275 * and attempts to isolate the pages, all under a single zone lru lock.
276 * The second phase finishes the munlock only for pages where isolation
277 * succeeded.
278 *
279 * Note that the pagevec may be modified during the process.
280 */
281static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
282{
283	int i;
284	int nr = pagevec_count(pvec);
285	int delta_munlocked;
286	struct pagevec pvec_putback;
287	int pgrescued = 0;
288
289	pagevec_init(&pvec_putback, 0);
290
291	/* Phase 1: page isolation */
292	spin_lock_irq(&zone->lru_lock);
293	for (i = 0; i < nr; i++) {
294		struct page *page = pvec->pages[i];
295
296		if (TestClearPageMlocked(page)) {
297			/*
298			 * We already have pin from follow_page_mask()
299			 * so we can spare the get_page() here.
300			 */
301			if (__munlock_isolate_lru_page(page, false))
302				continue;
303			else
304				__munlock_isolation_failed(page);
305		}
306
307		/*
308		 * We won't be munlocking this page in the next phase
309		 * but we still need to release the follow_page_mask()
310		 * pin. We cannot do it under lru_lock however. If it's
311		 * the last pin, __page_cache_release() would deadlock.
312		 */
313		pagevec_add(&pvec_putback, pvec->pages[i]);
314		pvec->pages[i] = NULL;
315	}
316	delta_munlocked = -nr + pagevec_count(&pvec_putback);
317	__mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
318	spin_unlock_irq(&zone->lru_lock);
319
320	/* Now we can release pins of pages that we are not munlocking */
321	pagevec_release(&pvec_putback);
322
323	/* Phase 2: page munlock */
324	for (i = 0; i < nr; i++) {
325		struct page *page = pvec->pages[i];
326
327		if (page) {
328			lock_page(page);
329			if (!__putback_lru_fast_prepare(page, &pvec_putback,
330					&pgrescued)) {
331				/*
332				 * Slow path. We don't want to lose the last
333				 * pin before unlock_page()
334				 */
335				get_page(page); /* for putback_lru_page() */
336				__munlock_isolated_page(page);
337				unlock_page(page);
338				put_page(page); /* from follow_page_mask() */
339			}
340		}
341	}
342
 
 
 
 
 
 
 
343	/*
344	 * Phase 3: page putback for pages that qualified for the fast path
345	 * This will also call put_page() to return pin from follow_page_mask()
 
 
 
 
 
346	 */
347	if (pagevec_count(&pvec_putback))
348		__putback_lru_fast(&pvec_putback, pgrescued);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349}
350
351/*
352 * Fill up pagevec for __munlock_pagevec using pte walk
353 *
354 * The function expects that the struct page corresponding to @start address is
355 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
356 *
357 * The rest of @pvec is filled by subsequent pages within the same pmd and same
358 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
359 * pages also get pinned.
360 *
361 * Returns the address of the next page that should be scanned. This equals
362 * @start + PAGE_SIZE when no page could be added by the pte walk.
363 */
364static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
365		struct vm_area_struct *vma, int zoneid,	unsigned long start,
366		unsigned long end)
367{
368	pte_t *pte;
369	spinlock_t *ptl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370
371	/*
372	 * Initialize pte walk starting at the already pinned page where we
373	 * are sure that there is a pte, as it was pinned under the same
374	 * mmap_sem write op.
375	 */
376	pte = get_locked_pte(vma->vm_mm, start,	&ptl);
377	/* Make sure we do not cross the page table boundary */
378	end = pgd_addr_end(start, end);
379	end = pud_addr_end(start, end);
380	end = pmd_addr_end(start, end);
381
382	/* The page next to the pinned page is the first we will try to get */
383	start += PAGE_SIZE;
384	while (start < end) {
385		struct page *page = NULL;
386		pte++;
387		if (pte_present(*pte))
388			page = vm_normal_page(vma, start, *pte);
389		/*
390		 * Break if page could not be obtained or the page's node+zone does not
391		 * match
392		 */
393		if (!page || page_zone_id(page) != zoneid)
394			break;
395
396		/*
397		 * Do not use pagevec for PTE-mapped THP,
398		 * munlock_vma_pages_range() will handle them.
399		 */
400		if (PageTransCompound(page))
401			break;
402
403		get_page(page);
404		/*
405		 * Increase the address that will be returned *before* the
406		 * eventual break due to pvec becoming full by adding the page
407		 */
408		start += PAGE_SIZE;
409		if (pagevec_add(pvec, page) == 0)
410			break;
 
 
 
 
 
 
 
 
 
 
 
 
411	}
412	pte_unmap_unlock(pte, ptl);
413	return start;
 
 
 
414}
415
416/*
417 * munlock_vma_pages_range() - munlock all pages in the vma range.'
418 * @vma - vma containing range to be munlock()ed.
 
419 * @start - start address in @vma of the range
420 * @end - end of range in @vma.
 
421 *
422 *  For mremap(), munmap() and exit().
423 *
424 * Called with @vma VM_LOCKED.
425 *
426 * Returns with VM_LOCKED cleared.  Callers must be prepared to
427 * deal with this.
428 *
429 * We don't save and restore VM_LOCKED here because pages are
430 * still on lru.  In unmap path, pages might be scanned by reclaim
431 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
432 * free them.  This will result in freeing mlocked pages.
433 */
434void munlock_vma_pages_range(struct vm_area_struct *vma,
435			     unsigned long start, unsigned long end)
436{
437	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
438
439	while (start < end) {
440		struct page *page;
441		unsigned int page_mask;
442		unsigned long page_increm;
443		struct pagevec pvec;
444		struct zone *zone;
445		int zoneid;
446
447		pagevec_init(&pvec, 0);
448		/*
449		 * Although FOLL_DUMP is intended for get_dump_page(),
450		 * it just so happens that its special treatment of the
451		 * ZERO_PAGE (returning an error instead of doing get_page)
452		 * suits munlock very well (and if somehow an abnormal page
453		 * has sneaked into the range, we won't oops here: great).
454		 */
455		page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
456				&page_mask);
457
458		if (page && !IS_ERR(page)) {
459			if (PageTransTail(page)) {
460				VM_BUG_ON_PAGE(PageMlocked(page), page);
461				put_page(page); /* follow_page_mask() */
462			} else if (PageTransHuge(page)) {
463				lock_page(page);
464				/*
465				 * Any THP page found by follow_page_mask() may
466				 * have gotten split before reaching
467				 * munlock_vma_page(), so we need to recompute
468				 * the page_mask here.
469				 */
470				page_mask = munlock_vma_page(page);
471				unlock_page(page);
472				put_page(page); /* follow_page_mask() */
473			} else {
474				/*
475				 * Non-huge pages are handled in batches via
476				 * pagevec. The pin from follow_page_mask()
477				 * prevents them from collapsing by THP.
478				 */
479				pagevec_add(&pvec, page);
480				zone = page_zone(page);
481				zoneid = page_zone_id(page);
482
483				/*
484				 * Try to fill the rest of pagevec using fast
485				 * pte walk. This will also update start to
486				 * the next page to process. Then munlock the
487				 * pagevec.
488				 */
489				start = __munlock_pagevec_fill(&pvec, vma,
490						zoneid, start, end);
491				__munlock_pagevec(&pvec, zone);
492				goto next;
493			}
494		}
495		page_increm = 1 + page_mask;
496		start += page_increm * PAGE_SIZE;
497next:
498		cond_resched();
499	}
500}
501
502/*
503 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
504 *
505 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
506 * munlock is a no-op.  However, for some special vmas, we go ahead and
507 * populate the ptes.
508 *
509 * For vmas that pass the filters, merge/split as appropriate.
510 */
511static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
512	unsigned long start, unsigned long end, vm_flags_t newflags)
 
513{
514	struct mm_struct *mm = vma->vm_mm;
515	pgoff_t pgoff;
516	int nr_pages;
517	int ret = 0;
518	int lock = !!(newflags & VM_LOCKED);
519
520	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
521	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
 
522		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
523		goto out;
524
525	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
526	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
527			  vma->vm_file, pgoff, vma_policy(vma),
528			  vma->vm_userfaultfd_ctx);
529	if (*prev) {
530		vma = *prev;
531		goto success;
532	}
533
534	if (start != vma->vm_start) {
535		ret = split_vma(mm, vma, start, 1);
536		if (ret)
537			goto out;
538	}
539
540	if (end != vma->vm_end) {
541		ret = split_vma(mm, vma, end, 0);
542		if (ret)
543			goto out;
544	}
545
546success:
547	/*
548	 * Keep track of amount of locked VM.
549	 */
550	nr_pages = (end - start) >> PAGE_SHIFT;
551	if (!lock)
552		nr_pages = -nr_pages;
 
 
553	mm->locked_vm += nr_pages;
554
555	/*
556	 * vm_flags is protected by the mmap_sem held in write mode.
557	 * It's okay if try_to_unmap_one unmaps a page just after we
558	 * set VM_LOCKED, populate_vma_page_range will bring it back.
559	 */
560
561	if (lock)
562		vma->vm_flags = newflags;
563	else
564		munlock_vma_pages_range(vma, start, end);
565
 
566out:
567	*prev = vma;
568	return ret;
569}
570
571static int apply_vma_lock_flags(unsigned long start, size_t len,
572				vm_flags_t flags)
573{
574	unsigned long nstart, end, tmp;
575	struct vm_area_struct * vma, * prev;
576	int error;
577
578	VM_BUG_ON(offset_in_page(start));
579	VM_BUG_ON(len != PAGE_ALIGN(len));
580	end = start + len;
581	if (end < start)
582		return -EINVAL;
583	if (end == start)
584		return 0;
585	vma = find_vma(current->mm, start);
586	if (!vma || vma->vm_start > start)
587		return -ENOMEM;
588
589	prev = vma->vm_prev;
590	if (start > vma->vm_start)
591		prev = vma;
592
593	for (nstart = start ; ; ) {
594		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 
 
 
 
 
 
595
 
596		newflags |= flags;
597
598		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
599		tmp = vma->vm_end;
600		if (tmp > end)
601			tmp = end;
602		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
603		if (error)
604			break;
 
605		nstart = tmp;
606		if (nstart < prev->vm_end)
607			nstart = prev->vm_end;
608		if (nstart >= end)
609			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610
611		vma = prev->vm_next;
612		if (!vma || vma->vm_start != nstart) {
613			error = -ENOMEM;
614			break;
 
 
 
 
 
615		}
616	}
617	return error;
 
618}
619
620static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
621{
622	unsigned long locked;
623	unsigned long lock_limit;
624	int error = -ENOMEM;
625
 
 
626	if (!can_do_mlock())
627		return -EPERM;
628
629	lru_add_drain_all();	/* flush pagevec */
630
631	len = PAGE_ALIGN(len + (offset_in_page(start)));
632	start &= PAGE_MASK;
633
634	lock_limit = rlimit(RLIMIT_MEMLOCK);
635	lock_limit >>= PAGE_SHIFT;
636	locked = len >> PAGE_SHIFT;
637
638	down_write(&current->mm->mmap_sem);
 
639
640	locked += current->mm->locked_vm;
 
 
 
 
 
 
 
 
 
 
641
642	/* check against resource limits */
643	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
644		error = apply_vma_lock_flags(start, len, flags);
645
646	up_write(&current->mm->mmap_sem);
647	if (error)
648		return error;
649
650	error = __mm_populate(start, len, 0);
651	if (error)
652		return __mlock_posix_error_return(error);
653	return 0;
654}
655
656SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
657{
658	return do_mlock(start, len, VM_LOCKED);
659}
660
661SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
662{
663	vm_flags_t vm_flags = VM_LOCKED;
664
665	if (flags & ~MLOCK_ONFAULT)
666		return -EINVAL;
667
668	if (flags & MLOCK_ONFAULT)
669		vm_flags |= VM_LOCKONFAULT;
670
671	return do_mlock(start, len, vm_flags);
672}
673
674SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
675{
676	int ret;
677
 
 
678	len = PAGE_ALIGN(len + (offset_in_page(start)));
679	start &= PAGE_MASK;
680
681	down_write(&current->mm->mmap_sem);
 
682	ret = apply_vma_lock_flags(start, len, 0);
683	up_write(&current->mm->mmap_sem);
684
685	return ret;
686}
687
688/*
689 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
690 * and translate into the appropriate modifications to mm->def_flags and/or the
691 * flags for all current VMAs.
692 *
693 * There are a couple of subtleties with this.  If mlockall() is called multiple
694 * times with different flags, the values do not necessarily stack.  If mlockall
695 * is called once including the MCL_FUTURE flag and then a second time without
696 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
697 */
698static int apply_mlockall_flags(int flags)
699{
700	struct vm_area_struct * vma, * prev = NULL;
 
701	vm_flags_t to_add = 0;
702
703	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
704	if (flags & MCL_FUTURE) {
705		current->mm->def_flags |= VM_LOCKED;
706
707		if (flags & MCL_ONFAULT)
708			current->mm->def_flags |= VM_LOCKONFAULT;
709
710		if (!(flags & MCL_CURRENT))
711			goto out;
712	}
713
714	if (flags & MCL_CURRENT) {
715		to_add |= VM_LOCKED;
716		if (flags & MCL_ONFAULT)
717			to_add |= VM_LOCKONFAULT;
718	}
719
720	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
721		vm_flags_t newflags;
722
723		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
724		newflags |= to_add;
725
726		/* Ignore errors */
727		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
728		cond_resched_rcu_qs();
 
729	}
730out:
731	return 0;
732}
733
734SYSCALL_DEFINE1(mlockall, int, flags)
735{
736	unsigned long lock_limit;
737	int ret;
738
739	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
 
740		return -EINVAL;
741
742	if (!can_do_mlock())
743		return -EPERM;
744
745	if (flags & MCL_CURRENT)
746		lru_add_drain_all();	/* flush pagevec */
747
748	lock_limit = rlimit(RLIMIT_MEMLOCK);
749	lock_limit >>= PAGE_SHIFT;
750
 
 
 
751	ret = -ENOMEM;
752	down_write(&current->mm->mmap_sem);
753
754	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
755	    capable(CAP_IPC_LOCK))
756		ret = apply_mlockall_flags(flags);
757	up_write(&current->mm->mmap_sem);
758	if (!ret && (flags & MCL_CURRENT))
759		mm_populate(0, TASK_SIZE);
760
761	return ret;
762}
763
764SYSCALL_DEFINE0(munlockall)
765{
766	int ret;
767
768	down_write(&current->mm->mmap_sem);
 
769	ret = apply_mlockall_flags(0);
770	up_write(&current->mm->mmap_sem);
771	return ret;
772}
773
774/*
775 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
776 * shm segments) get accounted against the user_struct instead.
777 */
778static DEFINE_SPINLOCK(shmlock_user_lock);
779
780int user_shm_lock(size_t size, struct user_struct *user)
781{
782	unsigned long lock_limit, locked;
 
783	int allowed = 0;
784
785	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
786	lock_limit = rlimit(RLIMIT_MEMLOCK);
787	if (lock_limit == RLIM_INFINITY)
788		allowed = 1;
789	lock_limit >>= PAGE_SHIFT;
790	spin_lock(&shmlock_user_lock);
791	if (!allowed &&
792	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 
 
793		goto out;
794	get_uid(user);
795	user->locked_shm += locked;
 
 
 
 
796	allowed = 1;
797out:
798	spin_unlock(&shmlock_user_lock);
799	return allowed;
800}
801
802void user_shm_unlock(size_t size, struct user_struct *user)
803{
804	spin_lock(&shmlock_user_lock);
805	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
806	spin_unlock(&shmlock_user_lock);
807	free_uid(user);
808}