Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/mlock.c
  4 *
  5 *  (C) Copyright 1995 Linus Torvalds
  6 *  (C) Copyright 2002 Christoph Hellwig
  7 */
  8
  9#include <linux/capability.h>
 10#include <linux/mman.h>
 11#include <linux/mm.h>
 12#include <linux/sched/user.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/pagemap.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagewalk.h>
 18#include <linux/mempolicy.h>
 19#include <linux/syscalls.h>
 20#include <linux/sched.h>
 21#include <linux/export.h>
 22#include <linux/rmap.h>
 23#include <linux/mmzone.h>
 24#include <linux/hugetlb.h>
 25#include <linux/memcontrol.h>
 26#include <linux/mm_inline.h>
 27#include <linux/secretmem.h>
 28
 29#include "internal.h"
 30
 31struct mlock_fbatch {
 32	local_lock_t lock;
 33	struct folio_batch fbatch;
 34};
 35
 36static DEFINE_PER_CPU(struct mlock_fbatch, mlock_fbatch) = {
 37	.lock = INIT_LOCAL_LOCK(lock),
 38};
 39
 40bool can_do_mlock(void)
 41{
 42	if (rlimit(RLIMIT_MEMLOCK) != 0)
 43		return true;
 44	if (capable(CAP_IPC_LOCK))
 45		return true;
 46	return false;
 
 
 47}
 48EXPORT_SYMBOL(can_do_mlock);
 49
 50/*
 51 * Mlocked folios are marked with the PG_mlocked flag for efficient testing
 52 * in vmscan and, possibly, the fault path; and to support semi-accurate
 53 * statistics.
 54 *
 55 * An mlocked folio [folio_test_mlocked(folio)] is unevictable.  As such, it
 56 * will be ostensibly placed on the LRU "unevictable" list (actually no such
 57 * list exists), rather than the [in]active lists. PG_unevictable is set to
 58 * indicate the unevictable state.
 
 
 
 
 
 
 59 */
 60
 61static struct lruvec *__mlock_folio(struct folio *folio, struct lruvec *lruvec)
 
 
 
 62{
 63	/* There is nothing more we can do while it's off LRU */
 64	if (!folio_test_clear_lru(folio))
 65		return lruvec;
 66
 67	lruvec = folio_lruvec_relock_irq(folio, lruvec);
 
 
 68
 69	if (unlikely(folio_evictable(folio))) {
 
 
 
 
 70		/*
 71		 * This is a little surprising, but quite possible: PG_mlocked
 72		 * must have got cleared already by another CPU.  Could this
 73		 * folio be unevictable?  I'm not sure, but move it now if so.
 74		 */
 75		if (folio_test_unevictable(folio)) {
 76			lruvec_del_folio(lruvec, folio);
 77			folio_clear_unevictable(folio);
 78			lruvec_add_folio(lruvec, folio);
 79
 80			__count_vm_events(UNEVICTABLE_PGRESCUED,
 81					  folio_nr_pages(folio));
 82		}
 83		goto out;
 84	}
 85
 86	if (folio_test_unevictable(folio)) {
 87		if (folio_test_mlocked(folio))
 88			folio->mlock_count++;
 89		goto out;
 90	}
 91
 92	lruvec_del_folio(lruvec, folio);
 93	folio_clear_active(folio);
 94	folio_set_unevictable(folio);
 95	folio->mlock_count = !!folio_test_mlocked(folio);
 96	lruvec_add_folio(lruvec, folio);
 97	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
 98out:
 99	folio_set_lru(folio);
100	return lruvec;
101}
102
103static struct lruvec *__mlock_new_folio(struct folio *folio, struct lruvec *lruvec)
104{
105	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
106
107	lruvec = folio_lruvec_relock_irq(folio, lruvec);
108
109	/* As above, this is a little surprising, but possible */
110	if (unlikely(folio_evictable(folio)))
111		goto out;
112
113	folio_set_unevictable(folio);
114	folio->mlock_count = !!folio_test_mlocked(folio);
115	__count_vm_events(UNEVICTABLE_PGCULLED, folio_nr_pages(folio));
116out:
117	lruvec_add_folio(lruvec, folio);
118	folio_set_lru(folio);
119	return lruvec;
120}
121
122static struct lruvec *__munlock_folio(struct folio *folio, struct lruvec *lruvec)
123{
124	int nr_pages = folio_nr_pages(folio);
125	bool isolated = false;
126
127	if (!folio_test_clear_lru(folio))
128		goto munlock;
129
130	isolated = true;
131	lruvec = folio_lruvec_relock_irq(folio, lruvec);
132
133	if (folio_test_unevictable(folio)) {
134		/* Then mlock_count is maintained, but might undercount */
135		if (folio->mlock_count)
136			folio->mlock_count--;
137		if (folio->mlock_count)
138			goto out;
139	}
140	/* else assume that was the last mlock: reclaim will fix it if not */
141
142munlock:
143	if (folio_test_clear_mlocked(folio)) {
144		__zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
145		if (isolated || !folio_test_unevictable(folio))
146			__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147		else
148			__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
149	}
150
151	/* folio_evictable() has to be checked *after* clearing Mlocked */
152	if (isolated && folio_test_unevictable(folio) && folio_evictable(folio)) {
153		lruvec_del_folio(lruvec, folio);
154		folio_clear_unevictable(folio);
155		lruvec_add_folio(lruvec, folio);
156		__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
157	}
158out:
159	if (isolated)
160		folio_set_lru(folio);
161	return lruvec;
162}
163
164/*
165 * Flags held in the low bits of a struct folio pointer on the mlock_fbatch.
166 */
167#define LRU_FOLIO 0x1
168#define NEW_FOLIO 0x2
169static inline struct folio *mlock_lru(struct folio *folio)
170{
171	return (struct folio *)((unsigned long)folio + LRU_FOLIO);
172}
173
174static inline struct folio *mlock_new(struct folio *folio)
175{
176	return (struct folio *)((unsigned long)folio + NEW_FOLIO);
177}
178
179/*
180 * mlock_folio_batch() is derived from folio_batch_move_lru(): perhaps that can
181 * make use of such folio pointer flags in future, but for now just keep it for
182 * mlock.  We could use three separate folio batches instead, but one feels
183 * better (munlocking a full folio batch does not need to drain mlocking folio
184 * batches first).
185 */
186static void mlock_folio_batch(struct folio_batch *fbatch)
187{
188	struct lruvec *lruvec = NULL;
189	unsigned long mlock;
190	struct folio *folio;
191	int i;
192
193	for (i = 0; i < folio_batch_count(fbatch); i++) {
194		folio = fbatch->folios[i];
195		mlock = (unsigned long)folio & (LRU_FOLIO | NEW_FOLIO);
196		folio = (struct folio *)((unsigned long)folio - mlock);
197		fbatch->folios[i] = folio;
198
199		if (mlock & LRU_FOLIO)
200			lruvec = __mlock_folio(folio, lruvec);
201		else if (mlock & NEW_FOLIO)
202			lruvec = __mlock_new_folio(folio, lruvec);
203		else
204			lruvec = __munlock_folio(folio, lruvec);
205	}
206
207	if (lruvec)
208		unlock_page_lruvec_irq(lruvec);
209	folios_put(fbatch->folios, folio_batch_count(fbatch));
210	folio_batch_reinit(fbatch);
211}
212
213void mlock_drain_local(void)
214{
215	struct folio_batch *fbatch;
216
217	local_lock(&mlock_fbatch.lock);
218	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
219	if (folio_batch_count(fbatch))
220		mlock_folio_batch(fbatch);
221	local_unlock(&mlock_fbatch.lock);
222}
223
224void mlock_drain_remote(int cpu)
225{
226	struct folio_batch *fbatch;
227
228	WARN_ON_ONCE(cpu_online(cpu));
229	fbatch = &per_cpu(mlock_fbatch.fbatch, cpu);
230	if (folio_batch_count(fbatch))
231		mlock_folio_batch(fbatch);
232}
233
234bool need_mlock_drain(int cpu)
235{
236	return folio_batch_count(&per_cpu(mlock_fbatch.fbatch, cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237}
238
239/**
240 * mlock_folio - mlock a folio already on (or temporarily off) LRU
241 * @folio: folio to be mlocked.
 
 
 
 
 
 
 
 
242 */
243void mlock_folio(struct folio *folio)
 
 
244{
245	struct folio_batch *fbatch;
246
247	local_lock(&mlock_fbatch.lock);
248	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
 
 
 
 
 
 
249
250	if (!folio_test_set_mlocked(folio)) {
251		int nr_pages = folio_nr_pages(folio);
 
 
 
 
 
 
252
253		zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
254		__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
255	}
 
 
 
256
257	folio_get(folio);
258	if (!folio_batch_add(fbatch, mlock_lru(folio)) ||
259	    folio_test_large(folio) || lru_cache_disabled())
260		mlock_folio_batch(fbatch);
261	local_unlock(&mlock_fbatch.lock);
262}
263
264/**
265 * mlock_new_folio - mlock a newly allocated folio not yet on LRU
266 * @folio: folio to be mlocked, either normal or a THP head.
267 */
268void mlock_new_folio(struct folio *folio)
269{
270	struct folio_batch *fbatch;
271	int nr_pages = folio_nr_pages(folio);
272
273	local_lock(&mlock_fbatch.lock);
274	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
275	folio_set_mlocked(folio);
276
277	zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
278	__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
279
280	folio_get(folio);
281	if (!folio_batch_add(fbatch, mlock_new(folio)) ||
282	    folio_test_large(folio) || lru_cache_disabled())
283		mlock_folio_batch(fbatch);
284	local_unlock(&mlock_fbatch.lock);
285}
286
287/**
288 * munlock_folio - munlock a folio
289 * @folio: folio to be munlocked, either normal or a THP head.
 
 
 
 
 
 
 
 
 
290 */
291void munlock_folio(struct folio *folio)
 
292{
293	struct folio_batch *fbatch;
 
294
295	local_lock(&mlock_fbatch.lock);
296	fbatch = this_cpu_ptr(&mlock_fbatch.fbatch);
297	/*
298	 * folio_test_clear_mlocked(folio) must be left to __munlock_folio(),
299	 * which will check whether the folio is multiply mlocked.
300	 */
301	folio_get(folio);
302	if (!folio_batch_add(fbatch, folio) ||
303	    folio_test_large(folio) || lru_cache_disabled())
304		mlock_folio_batch(fbatch);
305	local_unlock(&mlock_fbatch.lock);
306}
307
308static inline unsigned int folio_mlock_step(struct folio *folio,
309		pte_t *pte, unsigned long addr, unsigned long end)
310{
311	unsigned int count, i, nr = folio_nr_pages(folio);
312	unsigned long pfn = folio_pfn(folio);
313	pte_t ptent = ptep_get(pte);
314
315	if (!folio_test_large(folio))
316		return 1;
317
318	count = pfn + nr - pte_pfn(ptent);
319	count = min_t(unsigned int, count, (end - addr) >> PAGE_SHIFT);
320
321	for (i = 0; i < count; i++, pte++) {
322		pte_t entry = ptep_get(pte);
323
324		if (!pte_present(entry))
325			break;
326		if (pte_pfn(entry) - pfn >= nr)
327			break;
328	}
329
330	return i;
331}
332
333static inline bool allow_mlock_munlock(struct folio *folio,
334		struct vm_area_struct *vma, unsigned long start,
335		unsigned long end, unsigned int step)
336{
337	/*
338	 * For unlock, allow munlock large folio which is partially
339	 * mapped to VMA. As it's possible that large folio is
340	 * mlocked and VMA is split later.
341	 *
342	 * During memory pressure, such kind of large folio can
343	 * be split. And the pages are not in VM_LOCKed VMA
344	 * can be reclaimed.
345	 */
346	if (!(vma->vm_flags & VM_LOCKED))
347		return true;
348
349	/* folio_within_range() cannot take KSM, but any small folio is OK */
350	if (!folio_test_large(folio))
351		return true;
352
353	/* folio not in range [start, end), skip mlock */
354	if (!folio_within_range(folio, vma, start, end))
355		return false;
356
357	/* folio is not fully mapped, skip mlock */
358	if (step != folio_nr_pages(folio))
359		return false;
360
361	return true;
362}
363
364static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
365			   unsigned long end, struct mm_walk *walk)
366
367{
368	struct vm_area_struct *vma = walk->vma;
369	spinlock_t *ptl;
370	pte_t *start_pte, *pte;
371	pte_t ptent;
372	struct folio *folio;
373	unsigned int step = 1;
374	unsigned long start = addr;
375
376	ptl = pmd_trans_huge_lock(pmd, vma);
377	if (ptl) {
378		if (!pmd_present(*pmd))
379			goto out;
380		if (is_huge_zero_pmd(*pmd))
381			goto out;
382		folio = page_folio(pmd_page(*pmd));
383		if (vma->vm_flags & VM_LOCKED)
384			mlock_folio(folio);
385		else
386			munlock_folio(folio);
387		goto out;
388	}
389
390	start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
391	if (!start_pte) {
392		walk->action = ACTION_AGAIN;
393		return 0;
394	}
395
396	for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
397		ptent = ptep_get(pte);
398		if (!pte_present(ptent))
399			continue;
400		folio = vm_normal_folio(vma, addr, ptent);
401		if (!folio || folio_is_zone_device(folio))
402			continue;
403
404		step = folio_mlock_step(folio, pte, addr, end);
405		if (!allow_mlock_munlock(folio, vma, start, end, step))
406			goto next_entry;
407
408		if (vma->vm_flags & VM_LOCKED)
409			mlock_folio(folio);
410		else
411			munlock_folio(folio);
412
413next_entry:
414		pte += step - 1;
415		addr += (step - 1) << PAGE_SHIFT;
416	}
417	pte_unmap(start_pte);
418out:
419	spin_unlock(ptl);
420	cond_resched();
421	return 0;
422}
423
424/*
425 * mlock_vma_pages_range() - mlock any pages already in the range,
426 *                           or munlock all pages in the range.
427 * @vma - vma containing range to be mlock()ed or munlock()ed
428 * @start - start address in @vma of the range
429 * @end - end of range in @vma
430 * @newflags - the new set of flags for @vma.
 
 
 
431 *
432 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
433 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
 
 
 
 
 
434 */
435static void mlock_vma_pages_range(struct vm_area_struct *vma,
436	unsigned long start, unsigned long end, vm_flags_t newflags)
437{
438	static const struct mm_walk_ops mlock_walk_ops = {
439		.pmd_entry = mlock_pte_range,
440		.walk_lock = PGWALK_WRLOCK_VERIFY,
441	};
442
443	/*
444	 * There is a slight chance that concurrent page migration,
445	 * or page reclaim finding a page of this now-VM_LOCKED vma,
446	 * will call mlock_vma_folio() and raise page's mlock_count:
447	 * double counting, leaving the page unevictable indefinitely.
448	 * Communicate this danger to mlock_vma_folio() with VM_IO,
449	 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
450	 * mmap_lock is held in write mode here, so this weird
451	 * combination should not be visible to other mmap_lock users;
452	 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
453	 */
454	if (newflags & VM_LOCKED)
455		newflags |= VM_IO;
456	vma_start_write(vma);
457	vm_flags_reset_once(vma, newflags);
458
459	lru_add_drain();
460	walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
461	lru_add_drain();
462
463	if (newflags & VM_IO) {
464		newflags &= ~VM_IO;
465		vm_flags_reset_once(vma, newflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466	}
467}
468
469/*
470 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
471 *
472 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
473 * munlock is a no-op.  However, for some special vmas, we go ahead and
474 * populate the ptes.
475 *
476 * For vmas that pass the filters, merge/split as appropriate.
477 */
478static int mlock_fixup(struct vma_iterator *vmi, struct vm_area_struct *vma,
479	       struct vm_area_struct **prev, unsigned long start,
480	       unsigned long end, vm_flags_t newflags)
481{
482	struct mm_struct *mm = vma->vm_mm;
 
483	int nr_pages;
484	int ret = 0;
485	vm_flags_t oldflags = vma->vm_flags;
486
487	if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
488	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
489	    vma_is_dax(vma) || vma_is_secretmem(vma))
490		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
491		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
492
493	vma = vma_modify_flags(vmi, *prev, vma, start, end, newflags);
494	if (IS_ERR(vma)) {
495		ret = PTR_ERR(vma);
496		goto out;
497	}
498
 
499	/*
500	 * Keep track of amount of locked VM.
501	 */
502	nr_pages = (end - start) >> PAGE_SHIFT;
503	if (!(newflags & VM_LOCKED))
504		nr_pages = -nr_pages;
505	else if (oldflags & VM_LOCKED)
506		nr_pages = 0;
507	mm->locked_vm += nr_pages;
508
509	/*
510	 * vm_flags is protected by the mmap_lock held in write mode.
511	 * It's okay if try_to_unmap_one unmaps a page just after we
512	 * set VM_LOCKED, populate_vma_page_range will bring it back.
513	 */
514	if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
515		/* No work to do, and mlocking twice would be wrong */
516		vma_start_write(vma);
517		vm_flags_reset(vma, newflags);
518	} else {
519		mlock_vma_pages_range(vma, start, end, newflags);
520	}
521out:
522	*prev = vma;
523	return ret;
524}
525
526static int apply_vma_lock_flags(unsigned long start, size_t len,
527				vm_flags_t flags)
528{
529	unsigned long nstart, end, tmp;
530	struct vm_area_struct *vma, *prev;
531	VMA_ITERATOR(vmi, current->mm, start);
532
533	VM_BUG_ON(offset_in_page(start));
534	VM_BUG_ON(len != PAGE_ALIGN(len));
535	end = start + len;
536	if (end < start)
537		return -EINVAL;
538	if (end == start)
539		return 0;
540	vma = vma_iter_load(&vmi);
541	if (!vma)
542		return -ENOMEM;
543
544	prev = vma_prev(&vmi);
545	if (start > vma->vm_start)
546		prev = vma;
547
548	nstart = start;
549	tmp = vma->vm_start;
550	for_each_vma_range(vmi, vma, end) {
551		int error;
552		vm_flags_t newflags;
553
554		if (vma->vm_start != tmp)
555			return -ENOMEM;
556
557		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
558		newflags |= flags;
559		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 
 
 
 
 
560		tmp = vma->vm_end;
561		if (tmp > end)
562			tmp = end;
563		error = mlock_fixup(&vmi, vma, &prev, nstart, tmp, newflags);
564		if (error)
565			return error;
566		tmp = vma_iter_end(&vmi);
567		nstart = tmp;
568	}
569
570	if (tmp < end)
571		return -ENOMEM;
572
573	return 0;
 
 
 
 
 
 
574}
575
576/*
577 * Go through vma areas and sum size of mlocked
578 * vma pages, as return value.
579 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
580 * is also counted.
581 * Return value: previously mlocked page counts
582 */
583static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
584		unsigned long start, size_t len)
585{
586	struct vm_area_struct *vma;
587	unsigned long count = 0;
588	unsigned long end;
589	VMA_ITERATOR(vmi, mm, start);
590
591	/* Don't overflow past ULONG_MAX */
592	if (unlikely(ULONG_MAX - len < start))
593		end = ULONG_MAX;
594	else
595		end = start + len;
596
597	for_each_vma_range(vmi, vma, end) {
598		if (vma->vm_flags & VM_LOCKED) {
599			if (start > vma->vm_start)
600				count -= (start - vma->vm_start);
601			if (end < vma->vm_end) {
602				count += end - vma->vm_start;
603				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604			}
605			count += vma->vm_end - vma->vm_start;
 
606		}
 
 
607	}
608
609	return count >> PAGE_SHIFT;
 
610}
611
612/*
613 * convert get_user_pages() return value to posix mlock() error
614 */
615static int __mlock_posix_error_return(long retval)
616{
617	if (retval == -EFAULT)
618		retval = -ENOMEM;
619	else if (retval == -ENOMEM)
620		retval = -EAGAIN;
621	return retval;
622}
623
624static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
625{
626	unsigned long locked;
627	unsigned long lock_limit;
628	int error = -ENOMEM;
629
630	start = untagged_addr(start);
631
632	if (!can_do_mlock())
633		return -EPERM;
634
635	len = PAGE_ALIGN(len + (offset_in_page(start)));
 
 
 
636	start &= PAGE_MASK;
637
638	lock_limit = rlimit(RLIMIT_MEMLOCK);
639	lock_limit >>= PAGE_SHIFT;
640	locked = len >> PAGE_SHIFT;
641
642	if (mmap_write_lock_killable(current->mm))
643		return -EINTR;
644
645	locked += current->mm->locked_vm;
646	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
647		/*
648		 * It is possible that the regions requested intersect with
649		 * previously mlocked areas, that part area in "mm->locked_vm"
650		 * should not be counted to new mlock increment count. So check
651		 * and adjust locked count if necessary.
652		 */
653		locked -= count_mm_mlocked_page_nr(current->mm,
654				start, len);
655	}
656
657	/* check against resource limits */
658	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
659		error = apply_vma_lock_flags(start, len, flags);
660
661	mmap_write_unlock(current->mm);
662	if (error)
663		return error;
664
665	error = __mm_populate(start, len, 0);
666	if (error)
667		return __mlock_posix_error_return(error);
668	return 0;
669}
670
671SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
672{
673	return do_mlock(start, len, VM_LOCKED);
674}
675
676SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
677{
678	vm_flags_t vm_flags = VM_LOCKED;
679
680	if (flags & ~MLOCK_ONFAULT)
681		return -EINVAL;
682
683	if (flags & MLOCK_ONFAULT)
684		vm_flags |= VM_LOCKONFAULT;
685
686	return do_mlock(start, len, vm_flags);
687}
688
689SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
690{
691	int ret;
692
693	start = untagged_addr(start);
694
695	len = PAGE_ALIGN(len + (offset_in_page(start)));
696	start &= PAGE_MASK;
697
698	if (mmap_write_lock_killable(current->mm))
699		return -EINTR;
700	ret = apply_vma_lock_flags(start, len, 0);
701	mmap_write_unlock(current->mm);
702
703	return ret;
704}
705
706/*
707 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
708 * and translate into the appropriate modifications to mm->def_flags and/or the
709 * flags for all current VMAs.
710 *
711 * There are a couple of subtleties with this.  If mlockall() is called multiple
712 * times with different flags, the values do not necessarily stack.  If mlockall
713 * is called once including the MCL_FUTURE flag and then a second time without
714 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
715 */
716static int apply_mlockall_flags(int flags)
717{
718	VMA_ITERATOR(vmi, current->mm, 0);
719	struct vm_area_struct *vma, *prev = NULL;
720	vm_flags_t to_add = 0;
721
722	current->mm->def_flags &= ~VM_LOCKED_MASK;
723	if (flags & MCL_FUTURE) {
724		current->mm->def_flags |= VM_LOCKED;
725
726		if (flags & MCL_ONFAULT)
727			current->mm->def_flags |= VM_LOCKONFAULT;
728
729		if (!(flags & MCL_CURRENT))
730			goto out;
731	}
732
733	if (flags & MCL_CURRENT) {
734		to_add |= VM_LOCKED;
735		if (flags & MCL_ONFAULT)
736			to_add |= VM_LOCKONFAULT;
737	}
738
739	for_each_vma(vmi, vma) {
740		vm_flags_t newflags;
741
742		newflags = vma->vm_flags & ~VM_LOCKED_MASK;
743		newflags |= to_add;
 
744
745		/* Ignore errors */
746		mlock_fixup(&vmi, vma, &prev, vma->vm_start, vma->vm_end,
747			    newflags);
748		cond_resched();
749	}
750out:
751	return 0;
752}
753
754SYSCALL_DEFINE1(mlockall, int, flags)
755{
756	unsigned long lock_limit;
757	int ret;
758
759	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
760	    flags == MCL_ONFAULT)
761		return -EINVAL;
762
 
763	if (!can_do_mlock())
764		return -EPERM;
 
 
 
 
765
766	lock_limit = rlimit(RLIMIT_MEMLOCK);
767	lock_limit >>= PAGE_SHIFT;
768
769	if (mmap_write_lock_killable(current->mm))
770		return -EINTR;
771
772	ret = -ENOMEM;
773	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
774	    capable(CAP_IPC_LOCK))
775		ret = apply_mlockall_flags(flags);
776	mmap_write_unlock(current->mm);
777	if (!ret && (flags & MCL_CURRENT))
778		mm_populate(0, TASK_SIZE);
779
 
 
780	return ret;
781}
782
783SYSCALL_DEFINE0(munlockall)
784{
785	int ret;
786
787	if (mmap_write_lock_killable(current->mm))
788		return -EINTR;
789	ret = apply_mlockall_flags(0);
790	mmap_write_unlock(current->mm);
791	return ret;
792}
793
794/*
795 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
796 * shm segments) get accounted against the user_struct instead.
797 */
798static DEFINE_SPINLOCK(shmlock_user_lock);
799
800int user_shm_lock(size_t size, struct ucounts *ucounts)
801{
802	unsigned long lock_limit, locked;
803	long memlock;
804	int allowed = 0;
805
806	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
807	lock_limit = rlimit(RLIMIT_MEMLOCK);
808	if (lock_limit != RLIM_INFINITY)
809		lock_limit >>= PAGE_SHIFT;
 
810	spin_lock(&shmlock_user_lock);
811	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
812
813	if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
814		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
815		goto out;
816	}
817	if (!get_ucounts(ucounts)) {
818		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
819		allowed = 0;
820		goto out;
821	}
822	allowed = 1;
823out:
824	spin_unlock(&shmlock_user_lock);
825	return allowed;
826}
827
828void user_shm_unlock(size_t size, struct ucounts *ucounts)
829{
830	spin_lock(&shmlock_user_lock);
831	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
832	spin_unlock(&shmlock_user_lock);
833	put_ucounts(ucounts);
834}
v3.1
 
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 
 
 14#include <linux/mempolicy.h>
 15#include <linux/syscalls.h>
 16#include <linux/sched.h>
 17#include <linux/module.h>
 18#include <linux/rmap.h>
 19#include <linux/mmzone.h>
 20#include <linux/hugetlb.h>
 
 
 
 21
 22#include "internal.h"
 23
 24int can_do_mlock(void)
 
 
 
 
 
 
 
 
 
 25{
 
 
 26	if (capable(CAP_IPC_LOCK))
 27		return 1;
 28	if (rlimit(RLIMIT_MEMLOCK) != 0)
 29		return 1;
 30	return 0;
 31}
 32EXPORT_SYMBOL(can_do_mlock);
 33
 34/*
 35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 36 * in vmscan and, possibly, the fault path; and to support semi-accurate
 37 * statistics.
 38 *
 39 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 41 * The unevictable list is an LRU sibling list to the [in]active lists.
 42 * PageUnevictable is set to indicate the unevictable state.
 43 *
 44 * When lazy mlocking via vmscan, it is important to ensure that the
 45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 46 * may have mlocked a page that is being munlocked. So lazy mlock must take
 47 * the mmap_sem for read, and verify that the vma really is locked
 48 * (see mm/rmap.c).
 49 */
 50
 51/*
 52 *  LRU accounting for clear_page_mlock()
 53 */
 54void __clear_page_mlock(struct page *page)
 55{
 56	VM_BUG_ON(!PageLocked(page));
 
 
 57
 58	if (!page->mapping) {	/* truncated ? */
 59		return;
 60	}
 61
 62	dec_zone_page_state(page, NR_MLOCK);
 63	count_vm_event(UNEVICTABLE_PGCLEARED);
 64	if (!isolate_lru_page(page)) {
 65		putback_lru_page(page);
 66	} else {
 67		/*
 68		 * We lost the race. the page already moved to evictable list.
 
 
 69		 */
 70		if (PageUnevictable(page))
 71			count_vm_event(UNEVICTABLE_PGSTRANDED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73}
 74
 75/*
 76 * Mark page as mlocked if not already.
 77 * If page on LRU, isolate and putback to move to unevictable list.
 
 
 
 78 */
 79void mlock_vma_page(struct page *page)
 80{
 81	BUG_ON(!PageLocked(page));
 
 
 
 
 
 
 
 
 
 82
 83	if (!TestSetPageMlocked(page)) {
 84		inc_zone_page_state(page, NR_MLOCK);
 85		count_vm_event(UNEVICTABLE_PGMLOCKED);
 86		if (!isolate_lru_page(page))
 87			putback_lru_page(page);
 
 88	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89}
 90
 91/**
 92 * munlock_vma_page - munlock a vma page
 93 * @page - page to be unlocked
 94 *
 95 * called from munlock()/munmap() path with page supposedly on the LRU.
 96 * When we munlock a page, because the vma where we found the page is being
 97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 98 * page locked so that we can leave it on the unevictable lru list and not
 99 * bother vmscan with it.  However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU.  If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance.  If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
105 */
106void munlock_vma_page(struct page *page)
107{
108	BUG_ON(!PageLocked(page));
109
110	if (TestClearPageMlocked(page)) {
111		dec_zone_page_state(page, NR_MLOCK);
112		if (!isolate_lru_page(page)) {
113			int ret = try_to_munlock(page);
114			/*
115			 * did try_to_unlock() succeed or punt?
116			 */
117			if (ret != SWAP_MLOCK)
118				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119
120			putback_lru_page(page);
121		} else {
122			/*
123			 * Some other task has removed the page from the LRU.
124			 * putback_lru_page() will take care of removing the
125			 * page from the unevictable list, if necessary.
126			 * vmscan [page_referenced()] will move the page back
127			 * to the unevictable list if some other vma has it
128			 * mlocked.
129			 */
130			if (PageUnevictable(page))
131				count_vm_event(UNEVICTABLE_PGSTRANDED);
132			else
133				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134		}
135	}
136}
137
138/**
139 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
140 * @vma:   target vma
141 * @start: start address
142 * @end:   end address
143 *
144 * This takes care of making the pages present too.
145 *
146 * return 0 on success, negative error code on error.
147 *
148 * vma->vm_mm->mmap_sem must be held for at least read.
149 */
150static long __mlock_vma_pages_range(struct vm_area_struct *vma,
151				    unsigned long start, unsigned long end,
152				    int *nonblocking)
153{
154	struct mm_struct *mm = vma->vm_mm;
155	unsigned long addr = start;
156	int nr_pages = (end - start) / PAGE_SIZE;
157	int gup_flags;
158
159	VM_BUG_ON(start & ~PAGE_MASK);
160	VM_BUG_ON(end   & ~PAGE_MASK);
161	VM_BUG_ON(start < vma->vm_start);
162	VM_BUG_ON(end   > vma->vm_end);
163	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
164
165	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
166	/*
167	 * We want to touch writable mappings with a write fault in order
168	 * to break COW, except for shared mappings because these don't COW
169	 * and we would not want to dirty them for nothing.
170	 */
171	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
172		gup_flags |= FOLL_WRITE;
173
174	/*
175	 * We want mlock to succeed for regions that have any permissions
176	 * other than PROT_NONE.
177	 */
178	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
179		gup_flags |= FOLL_FORCE;
180
181	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
182				NULL, NULL, nonblocking);
 
 
 
183}
184
185/*
186 * convert get_user_pages() return value to posix mlock() error
 
187 */
188static int __mlock_posix_error_return(long retval)
189{
190	if (retval == -EFAULT)
191		retval = -ENOMEM;
192	else if (retval == -ENOMEM)
193		retval = -EAGAIN;
194	return retval;
 
 
 
 
 
 
 
 
 
 
195}
196
197/**
198 * mlock_vma_pages_range() - mlock pages in specified vma range.
199 * @vma - the vma containing the specfied address range
200 * @start - starting address in @vma to mlock
201 * @end   - end address [+1] in @vma to mlock
202 *
203 * For mmap()/mremap()/expansion of mlocked vma.
204 *
205 * return 0 on success for "normal" vmas.
206 *
207 * return number of pages [> 0] to be removed from locked_vm on success
208 * of "special" vmas.
209 */
210long mlock_vma_pages_range(struct vm_area_struct *vma,
211			unsigned long start, unsigned long end)
212{
213	int nr_pages = (end - start) / PAGE_SIZE;
214	BUG_ON(!(vma->vm_flags & VM_LOCKED));
215
 
 
216	/*
217	 * filter unlockable vmas
 
218	 */
219	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
220		goto no_mlock;
 
 
 
 
221
222	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
223			is_vm_hugetlb_page(vma) ||
224			vma == get_gate_vma(current->mm))) {
 
 
 
225
226		__mlock_vma_pages_range(vma, start, end, NULL);
 
227
228		/* Hide errors from mmap() and other callers */
229		return 0;
 
 
 
 
 
 
 
 
230	}
231
 
 
 
 
 
 
 
232	/*
233	 * User mapped kernel pages or huge pages:
234	 * make these pages present to populate the ptes, but
235	 * fall thru' to reset VM_LOCKED--no need to unlock, and
236	 * return nr_pages so these don't get counted against task's
237	 * locked limit.  huge pages are already counted against
238	 * locked vm limit.
 
239	 */
240	make_pages_present(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
241
242no_mlock:
243	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
244	return nr_pages;		/* error or pages NOT mlocked */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245}
246
247/*
248 * munlock_vma_pages_range() - munlock all pages in the vma range.'
249 * @vma - vma containing range to be munlock()ed.
 
250 * @start - start address in @vma of the range
251 * @end - end of range in @vma.
252 *
253 *  For mremap(), munmap() and exit().
254 *
255 * Called with @vma VM_LOCKED.
256 *
257 * Returns with VM_LOCKED cleared.  Callers must be prepared to
258 * deal with this.
259 *
260 * We don't save and restore VM_LOCKED here because pages are
261 * still on lru.  In unmap path, pages might be scanned by reclaim
262 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
263 * free them.  This will result in freeing mlocked pages.
264 */
265void munlock_vma_pages_range(struct vm_area_struct *vma,
266			     unsigned long start, unsigned long end)
267{
268	unsigned long addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
270	lru_add_drain();
271	vma->vm_flags &= ~VM_LOCKED;
 
272
273	for (addr = start; addr < end; addr += PAGE_SIZE) {
274		struct page *page;
275		/*
276		 * Although FOLL_DUMP is intended for get_dump_page(),
277		 * it just so happens that its special treatment of the
278		 * ZERO_PAGE (returning an error instead of doing get_page)
279		 * suits munlock very well (and if somehow an abnormal page
280		 * has sneaked into the range, we won't oops here: great).
281		 */
282		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
283		if (page && !IS_ERR(page)) {
284			lock_page(page);
285			/*
286			 * Like in __mlock_vma_pages_range(),
287			 * because we lock page here and migration is
288			 * blocked by the elevated reference, we need
289			 * only check for file-cache page truncation.
290			 */
291			if (page->mapping)
292				munlock_vma_page(page);
293			unlock_page(page);
294			put_page(page);
295		}
296		cond_resched();
297	}
298}
299
300/*
301 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
302 *
303 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
304 * munlock is a no-op.  However, for some special vmas, we go ahead and
305 * populate the ptes via make_pages_present().
306 *
307 * For vmas that pass the filters, merge/split as appropriate.
308 */
309static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
310	unsigned long start, unsigned long end, vm_flags_t newflags)
 
311{
312	struct mm_struct *mm = vma->vm_mm;
313	pgoff_t pgoff;
314	int nr_pages;
315	int ret = 0;
316	int lock = !!(newflags & VM_LOCKED);
317
318	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
319	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
320		goto out;	/* don't set VM_LOCKED,  don't count */
321
322	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
323	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
324			  vma->vm_file, pgoff, vma_policy(vma));
325	if (*prev) {
326		vma = *prev;
327		goto success;
328	}
329
330	if (start != vma->vm_start) {
331		ret = split_vma(mm, vma, start, 1);
332		if (ret)
333			goto out;
334	}
335
336	if (end != vma->vm_end) {
337		ret = split_vma(mm, vma, end, 0);
338		if (ret)
339			goto out;
340	}
341
342success:
343	/*
344	 * Keep track of amount of locked VM.
345	 */
346	nr_pages = (end - start) >> PAGE_SHIFT;
347	if (!lock)
348		nr_pages = -nr_pages;
 
 
349	mm->locked_vm += nr_pages;
350
351	/*
352	 * vm_flags is protected by the mmap_sem held in write mode.
353	 * It's okay if try_to_unmap_one unmaps a page just after we
354	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
355	 */
356
357	if (lock)
358		vma->vm_flags = newflags;
359	else
360		munlock_vma_pages_range(vma, start, end);
361
 
362out:
363	*prev = vma;
364	return ret;
365}
366
367static int do_mlock(unsigned long start, size_t len, int on)
 
368{
369	unsigned long nstart, end, tmp;
370	struct vm_area_struct * vma, * prev;
371	int error;
372
373	VM_BUG_ON(start & ~PAGE_MASK);
374	VM_BUG_ON(len != PAGE_ALIGN(len));
375	end = start + len;
376	if (end < start)
377		return -EINVAL;
378	if (end == start)
379		return 0;
380	vma = find_vma_prev(current->mm, start, &prev);
381	if (!vma || vma->vm_start > start)
382		return -ENOMEM;
383
 
384	if (start > vma->vm_start)
385		prev = vma;
386
387	for (nstart = start ; ; ) {
 
 
 
388		vm_flags_t newflags;
389
 
 
 
 
 
390		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
391
392		newflags = vma->vm_flags | VM_LOCKED;
393		if (!on)
394			newflags &= ~VM_LOCKED;
395
396		tmp = vma->vm_end;
397		if (tmp > end)
398			tmp = end;
399		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
400		if (error)
401			break;
 
402		nstart = tmp;
403		if (nstart < prev->vm_end)
404			nstart = prev->vm_end;
405		if (nstart >= end)
406			break;
407
408		vma = prev->vm_next;
409		if (!vma || vma->vm_start != nstart) {
410			error = -ENOMEM;
411			break;
412		}
413	}
414	return error;
415}
416
417static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
418{
419	struct mm_struct *mm = current->mm;
420	unsigned long end, nstart, nend;
421	struct vm_area_struct *vma = NULL;
422	int locked = 0;
423	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
424
425	VM_BUG_ON(start & ~PAGE_MASK);
426	VM_BUG_ON(len != PAGE_ALIGN(len));
427	end = start + len;
428
429	for (nstart = start; nstart < end; nstart = nend) {
430		/*
431		 * We want to fault in pages for [nstart; end) address range.
432		 * Find first corresponding VMA.
433		 */
434		if (!locked) {
435			locked = 1;
436			down_read(&mm->mmap_sem);
437			vma = find_vma(mm, nstart);
438		} else if (nstart >= vma->vm_end)
439			vma = vma->vm_next;
440		if (!vma || vma->vm_start >= end)
441			break;
442		/*
443		 * Set [nstart; nend) to intersection of desired address
444		 * range with the first VMA. Also, skip undesirable VMA types.
445		 */
446		nend = min(end, vma->vm_end);
447		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
448			continue;
449		if (nstart < vma->vm_start)
450			nstart = vma->vm_start;
451		/*
452		 * Now fault in a range of pages. __mlock_vma_pages_range()
453		 * double checks the vma flags, so that it won't mlock pages
454		 * if the vma was already munlocked.
455		 */
456		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
457		if (ret < 0) {
458			if (ignore_errors) {
459				ret = 0;
460				continue;	/* continue at next VMA */
461			}
462			ret = __mlock_posix_error_return(ret);
463			break;
464		}
465		nend = nstart + ret * PAGE_SIZE;
466		ret = 0;
467	}
468	if (locked)
469		up_read(&mm->mmap_sem);
470	return ret;	/* 0 or negative error code */
471}
472
473SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 
 
 
 
 
 
 
 
 
 
 
 
474{
475	unsigned long locked;
476	unsigned long lock_limit;
477	int error = -ENOMEM;
478
 
 
479	if (!can_do_mlock())
480		return -EPERM;
481
482	lru_add_drain_all();	/* flush pagevec */
483
484	down_write(&current->mm->mmap_sem);
485	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
486	start &= PAGE_MASK;
487
 
 
488	locked = len >> PAGE_SHIFT;
 
 
 
 
489	locked += current->mm->locked_vm;
490
491	lock_limit = rlimit(RLIMIT_MEMLOCK);
492	lock_limit >>= PAGE_SHIFT;
 
 
 
 
 
 
 
493
494	/* check against resource limits */
495	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
496		error = do_mlock(start, len, 1);
497	up_write(&current->mm->mmap_sem);
498	if (!error)
499		error = do_mlock_pages(start, len, 0);
500	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501}
502
503SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
504{
505	int ret;
506
507	down_write(&current->mm->mmap_sem);
508	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 
509	start &= PAGE_MASK;
510	ret = do_mlock(start, len, 0);
511	up_write(&current->mm->mmap_sem);
 
 
 
 
512	return ret;
513}
514
515static int do_mlockall(int flags)
516{
517	struct vm_area_struct * vma, * prev = NULL;
518	unsigned int def_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519
520	if (flags & MCL_FUTURE)
521		def_flags = VM_LOCKED;
522	current->mm->def_flags = def_flags;
523	if (flags == MCL_FUTURE)
524		goto out;
525
526	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
527		vm_flags_t newflags;
528
529		newflags = vma->vm_flags | VM_LOCKED;
530		if (!(flags & MCL_CURRENT))
531			newflags &= ~VM_LOCKED;
532
533		/* Ignore errors */
534		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 
 
535	}
536out:
537	return 0;
538}
539
540SYSCALL_DEFINE1(mlockall, int, flags)
541{
542	unsigned long lock_limit;
543	int ret = -EINVAL;
544
545	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
546		goto out;
 
547
548	ret = -EPERM;
549	if (!can_do_mlock())
550		goto out;
551
552	lru_add_drain_all();	/* flush pagevec */
553
554	down_write(&current->mm->mmap_sem);
555
556	lock_limit = rlimit(RLIMIT_MEMLOCK);
557	lock_limit >>= PAGE_SHIFT;
558
 
 
 
559	ret = -ENOMEM;
560	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
561	    capable(CAP_IPC_LOCK))
562		ret = do_mlockall(flags);
563	up_write(&current->mm->mmap_sem);
564	if (!ret && (flags & MCL_CURRENT)) {
565		/* Ignore errors */
566		do_mlock_pages(0, TASK_SIZE, 1);
567	}
568out:
569	return ret;
570}
571
572SYSCALL_DEFINE0(munlockall)
573{
574	int ret;
575
576	down_write(&current->mm->mmap_sem);
577	ret = do_mlockall(0);
578	up_write(&current->mm->mmap_sem);
 
579	return ret;
580}
581
582/*
583 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
584 * shm segments) get accounted against the user_struct instead.
585 */
586static DEFINE_SPINLOCK(shmlock_user_lock);
587
588int user_shm_lock(size_t size, struct user_struct *user)
589{
590	unsigned long lock_limit, locked;
 
591	int allowed = 0;
592
593	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
594	lock_limit = rlimit(RLIMIT_MEMLOCK);
595	if (lock_limit == RLIM_INFINITY)
596		allowed = 1;
597	lock_limit >>= PAGE_SHIFT;
598	spin_lock(&shmlock_user_lock);
599	if (!allowed &&
600	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 
 
601		goto out;
602	get_uid(user);
603	user->locked_shm += locked;
 
 
 
 
604	allowed = 1;
605out:
606	spin_unlock(&shmlock_user_lock);
607	return allowed;
608}
609
610void user_shm_unlock(size_t size, struct user_struct *user)
611{
612	spin_lock(&shmlock_user_lock);
613	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
614	spin_unlock(&shmlock_user_lock);
615	free_uid(user);
616}