Linux Audio

Check our new training course

Loading...
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 14#include <linux/mempolicy.h>
 15#include <linux/syscalls.h>
 16#include <linux/sched.h>
 17#include <linux/export.h>
 18#include <linux/rmap.h>
 19#include <linux/mmzone.h>
 20#include <linux/hugetlb.h>
 21
 22#include "internal.h"
 23
 24int can_do_mlock(void)
 25{
 26	if (capable(CAP_IPC_LOCK))
 27		return 1;
 28	if (rlimit(RLIMIT_MEMLOCK) != 0)
 29		return 1;
 30	return 0;
 31}
 32EXPORT_SYMBOL(can_do_mlock);
 33
 34/*
 35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 36 * in vmscan and, possibly, the fault path; and to support semi-accurate
 37 * statistics.
 38 *
 39 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 41 * The unevictable list is an LRU sibling list to the [in]active lists.
 42 * PageUnevictable is set to indicate the unevictable state.
 43 *
 44 * When lazy mlocking via vmscan, it is important to ensure that the
 45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 46 * may have mlocked a page that is being munlocked. So lazy mlock must take
 47 * the mmap_sem for read, and verify that the vma really is locked
 48 * (see mm/rmap.c).
 49 */
 50
 51/*
 52 *  LRU accounting for clear_page_mlock()
 53 */
 54void __clear_page_mlock(struct page *page)
 55{
 56	VM_BUG_ON(!PageLocked(page));
 57
 58	if (!page->mapping) {	/* truncated ? */
 59		return;
 60	}
 61
 62	dec_zone_page_state(page, NR_MLOCK);
 63	count_vm_event(UNEVICTABLE_PGCLEARED);
 64	if (!isolate_lru_page(page)) {
 65		putback_lru_page(page);
 66	} else {
 67		/*
 68		 * We lost the race. the page already moved to evictable list.
 69		 */
 70		if (PageUnevictable(page))
 71			count_vm_event(UNEVICTABLE_PGSTRANDED);
 72	}
 73}
 74
 75/*
 76 * Mark page as mlocked if not already.
 77 * If page on LRU, isolate and putback to move to unevictable list.
 78 */
 79void mlock_vma_page(struct page *page)
 80{
 81	BUG_ON(!PageLocked(page));
 82
 83	if (!TestSetPageMlocked(page)) {
 84		inc_zone_page_state(page, NR_MLOCK);
 85		count_vm_event(UNEVICTABLE_PGMLOCKED);
 86		if (!isolate_lru_page(page))
 87			putback_lru_page(page);
 88	}
 89}
 90
 91/**
 92 * munlock_vma_page - munlock a vma page
 93 * @page - page to be unlocked
 94 *
 95 * called from munlock()/munmap() path with page supposedly on the LRU.
 96 * When we munlock a page, because the vma where we found the page is being
 97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 98 * page locked so that we can leave it on the unevictable lru list and not
 99 * bother vmscan with it.  However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU.  If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance.  If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
105 */
106void munlock_vma_page(struct page *page)
107{
108	BUG_ON(!PageLocked(page));
109
110	if (TestClearPageMlocked(page)) {
111		dec_zone_page_state(page, NR_MLOCK);
112		if (!isolate_lru_page(page)) {
113			int ret = SWAP_AGAIN;
114
115			/*
116			 * Optimization: if the page was mapped just once,
117			 * that's our mapping and we don't need to check all the
118			 * other vmas.
119			 */
120			if (page_mapcount(page) > 1)
121				ret = try_to_munlock(page);
122			/*
123			 * did try_to_unlock() succeed or punt?
124			 */
125			if (ret != SWAP_MLOCK)
126				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
127
128			putback_lru_page(page);
129		} else {
130			/*
131			 * Some other task has removed the page from the LRU.
132			 * putback_lru_page() will take care of removing the
133			 * page from the unevictable list, if necessary.
134			 * vmscan [page_referenced()] will move the page back
135			 * to the unevictable list if some other vma has it
136			 * mlocked.
137			 */
138			if (PageUnevictable(page))
139				count_vm_event(UNEVICTABLE_PGSTRANDED);
140			else
141				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142		}
143	}
144}
145
146/**
147 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
148 * @vma:   target vma
149 * @start: start address
150 * @end:   end address
151 *
152 * This takes care of making the pages present too.
153 *
154 * return 0 on success, negative error code on error.
155 *
156 * vma->vm_mm->mmap_sem must be held for at least read.
157 */
158static long __mlock_vma_pages_range(struct vm_area_struct *vma,
159				    unsigned long start, unsigned long end,
160				    int *nonblocking)
161{
162	struct mm_struct *mm = vma->vm_mm;
163	unsigned long addr = start;
164	int nr_pages = (end - start) / PAGE_SIZE;
165	int gup_flags;
166
167	VM_BUG_ON(start & ~PAGE_MASK);
168	VM_BUG_ON(end   & ~PAGE_MASK);
169	VM_BUG_ON(start < vma->vm_start);
170	VM_BUG_ON(end   > vma->vm_end);
171	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
172
173	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
174	/*
175	 * We want to touch writable mappings with a write fault in order
176	 * to break COW, except for shared mappings because these don't COW
177	 * and we would not want to dirty them for nothing.
178	 */
179	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
180		gup_flags |= FOLL_WRITE;
181
182	/*
183	 * We want mlock to succeed for regions that have any permissions
184	 * other than PROT_NONE.
185	 */
186	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
187		gup_flags |= FOLL_FORCE;
188
189	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
190				NULL, NULL, nonblocking);
191}
192
193/*
194 * convert get_user_pages() return value to posix mlock() error
195 */
196static int __mlock_posix_error_return(long retval)
197{
198	if (retval == -EFAULT)
199		retval = -ENOMEM;
200	else if (retval == -ENOMEM)
201		retval = -EAGAIN;
202	return retval;
203}
204
205/**
206 * mlock_vma_pages_range() - mlock pages in specified vma range.
207 * @vma - the vma containing the specfied address range
208 * @start - starting address in @vma to mlock
209 * @end   - end address [+1] in @vma to mlock
210 *
211 * For mmap()/mremap()/expansion of mlocked vma.
212 *
213 * return 0 on success for "normal" vmas.
214 *
215 * return number of pages [> 0] to be removed from locked_vm on success
216 * of "special" vmas.
217 */
218long mlock_vma_pages_range(struct vm_area_struct *vma,
219			unsigned long start, unsigned long end)
220{
221	int nr_pages = (end - start) / PAGE_SIZE;
222	BUG_ON(!(vma->vm_flags & VM_LOCKED));
223
224	/*
225	 * filter unlockable vmas
226	 */
227	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
228		goto no_mlock;
229
230	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
231			is_vm_hugetlb_page(vma) ||
232			vma == get_gate_vma(current->mm))) {
233
234		__mlock_vma_pages_range(vma, start, end, NULL);
235
236		/* Hide errors from mmap() and other callers */
237		return 0;
238	}
239
240	/*
241	 * User mapped kernel pages or huge pages:
242	 * make these pages present to populate the ptes, but
243	 * fall thru' to reset VM_LOCKED--no need to unlock, and
244	 * return nr_pages so these don't get counted against task's
245	 * locked limit.  huge pages are already counted against
246	 * locked vm limit.
247	 */
248	make_pages_present(start, end);
249
250no_mlock:
251	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
252	return nr_pages;		/* error or pages NOT mlocked */
253}
254
255/*
256 * munlock_vma_pages_range() - munlock all pages in the vma range.'
257 * @vma - vma containing range to be munlock()ed.
258 * @start - start address in @vma of the range
259 * @end - end of range in @vma.
260 *
261 *  For mremap(), munmap() and exit().
262 *
263 * Called with @vma VM_LOCKED.
264 *
265 * Returns with VM_LOCKED cleared.  Callers must be prepared to
266 * deal with this.
267 *
268 * We don't save and restore VM_LOCKED here because pages are
269 * still on lru.  In unmap path, pages might be scanned by reclaim
270 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
271 * free them.  This will result in freeing mlocked pages.
272 */
273void munlock_vma_pages_range(struct vm_area_struct *vma,
274			     unsigned long start, unsigned long end)
275{
276	unsigned long addr;
277
278	lru_add_drain();
279	vma->vm_flags &= ~VM_LOCKED;
280
281	for (addr = start; addr < end; addr += PAGE_SIZE) {
282		struct page *page;
283		/*
284		 * Although FOLL_DUMP is intended for get_dump_page(),
285		 * it just so happens that its special treatment of the
286		 * ZERO_PAGE (returning an error instead of doing get_page)
287		 * suits munlock very well (and if somehow an abnormal page
288		 * has sneaked into the range, we won't oops here: great).
289		 */
290		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
291		if (page && !IS_ERR(page)) {
292			lock_page(page);
293			/*
294			 * Like in __mlock_vma_pages_range(),
295			 * because we lock page here and migration is
296			 * blocked by the elevated reference, we need
297			 * only check for file-cache page truncation.
298			 */
299			if (page->mapping)
300				munlock_vma_page(page);
301			unlock_page(page);
302			put_page(page);
303		}
304		cond_resched();
305	}
306}
307
308/*
309 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
310 *
311 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
312 * munlock is a no-op.  However, for some special vmas, we go ahead and
313 * populate the ptes via make_pages_present().
314 *
315 * For vmas that pass the filters, merge/split as appropriate.
316 */
317static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
318	unsigned long start, unsigned long end, vm_flags_t newflags)
319{
320	struct mm_struct *mm = vma->vm_mm;
321	pgoff_t pgoff;
322	int nr_pages;
323	int ret = 0;
324	int lock = !!(newflags & VM_LOCKED);
325
326	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
327	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
328		goto out;	/* don't set VM_LOCKED,  don't count */
329
330	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
331	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
332			  vma->vm_file, pgoff, vma_policy(vma));
333	if (*prev) {
334		vma = *prev;
335		goto success;
336	}
337
338	if (start != vma->vm_start) {
339		ret = split_vma(mm, vma, start, 1);
340		if (ret)
341			goto out;
342	}
343
344	if (end != vma->vm_end) {
345		ret = split_vma(mm, vma, end, 0);
346		if (ret)
347			goto out;
348	}
349
350success:
351	/*
352	 * Keep track of amount of locked VM.
353	 */
354	nr_pages = (end - start) >> PAGE_SHIFT;
355	if (!lock)
356		nr_pages = -nr_pages;
357	mm->locked_vm += nr_pages;
358
359	/*
360	 * vm_flags is protected by the mmap_sem held in write mode.
361	 * It's okay if try_to_unmap_one unmaps a page just after we
362	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
363	 */
364
365	if (lock)
366		vma->vm_flags = newflags;
367	else
368		munlock_vma_pages_range(vma, start, end);
369
370out:
371	*prev = vma;
372	return ret;
373}
374
375static int do_mlock(unsigned long start, size_t len, int on)
376{
377	unsigned long nstart, end, tmp;
378	struct vm_area_struct * vma, * prev;
379	int error;
380
381	VM_BUG_ON(start & ~PAGE_MASK);
382	VM_BUG_ON(len != PAGE_ALIGN(len));
383	end = start + len;
384	if (end < start)
385		return -EINVAL;
386	if (end == start)
387		return 0;
388	vma = find_vma(current->mm, start);
389	if (!vma || vma->vm_start > start)
390		return -ENOMEM;
391
392	prev = vma->vm_prev;
393	if (start > vma->vm_start)
394		prev = vma;
395
396	for (nstart = start ; ; ) {
397		vm_flags_t newflags;
398
399		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
400
401		newflags = vma->vm_flags | VM_LOCKED;
402		if (!on)
403			newflags &= ~VM_LOCKED;
404
405		tmp = vma->vm_end;
406		if (tmp > end)
407			tmp = end;
408		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
409		if (error)
410			break;
411		nstart = tmp;
412		if (nstart < prev->vm_end)
413			nstart = prev->vm_end;
414		if (nstart >= end)
415			break;
416
417		vma = prev->vm_next;
418		if (!vma || vma->vm_start != nstart) {
419			error = -ENOMEM;
420			break;
421		}
422	}
423	return error;
424}
425
426static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
427{
428	struct mm_struct *mm = current->mm;
429	unsigned long end, nstart, nend;
430	struct vm_area_struct *vma = NULL;
431	int locked = 0;
432	int ret = 0;
433
434	VM_BUG_ON(start & ~PAGE_MASK);
435	VM_BUG_ON(len != PAGE_ALIGN(len));
436	end = start + len;
437
438	for (nstart = start; nstart < end; nstart = nend) {
439		/*
440		 * We want to fault in pages for [nstart; end) address range.
441		 * Find first corresponding VMA.
442		 */
443		if (!locked) {
444			locked = 1;
445			down_read(&mm->mmap_sem);
446			vma = find_vma(mm, nstart);
447		} else if (nstart >= vma->vm_end)
448			vma = vma->vm_next;
449		if (!vma || vma->vm_start >= end)
450			break;
451		/*
452		 * Set [nstart; nend) to intersection of desired address
453		 * range with the first VMA. Also, skip undesirable VMA types.
454		 */
455		nend = min(end, vma->vm_end);
456		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
457			continue;
458		if (nstart < vma->vm_start)
459			nstart = vma->vm_start;
460		/*
461		 * Now fault in a range of pages. __mlock_vma_pages_range()
462		 * double checks the vma flags, so that it won't mlock pages
463		 * if the vma was already munlocked.
464		 */
465		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
466		if (ret < 0) {
467			if (ignore_errors) {
468				ret = 0;
469				continue;	/* continue at next VMA */
470			}
471			ret = __mlock_posix_error_return(ret);
472			break;
473		}
474		nend = nstart + ret * PAGE_SIZE;
475		ret = 0;
476	}
477	if (locked)
478		up_read(&mm->mmap_sem);
479	return ret;	/* 0 or negative error code */
480}
481
482SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
483{
484	unsigned long locked;
485	unsigned long lock_limit;
486	int error = -ENOMEM;
487
488	if (!can_do_mlock())
489		return -EPERM;
490
491	lru_add_drain_all();	/* flush pagevec */
492
493	down_write(&current->mm->mmap_sem);
494	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
495	start &= PAGE_MASK;
496
497	locked = len >> PAGE_SHIFT;
498	locked += current->mm->locked_vm;
499
500	lock_limit = rlimit(RLIMIT_MEMLOCK);
501	lock_limit >>= PAGE_SHIFT;
502
503	/* check against resource limits */
504	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
505		error = do_mlock(start, len, 1);
506	up_write(&current->mm->mmap_sem);
507	if (!error)
508		error = do_mlock_pages(start, len, 0);
509	return error;
510}
511
512SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
513{
514	int ret;
515
516	down_write(&current->mm->mmap_sem);
517	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
518	start &= PAGE_MASK;
519	ret = do_mlock(start, len, 0);
520	up_write(&current->mm->mmap_sem);
521	return ret;
522}
523
524static int do_mlockall(int flags)
525{
526	struct vm_area_struct * vma, * prev = NULL;
527	unsigned int def_flags = 0;
528
529	if (flags & MCL_FUTURE)
530		def_flags = VM_LOCKED;
531	current->mm->def_flags = def_flags;
532	if (flags == MCL_FUTURE)
533		goto out;
534
535	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
536		vm_flags_t newflags;
537
538		newflags = vma->vm_flags | VM_LOCKED;
539		if (!(flags & MCL_CURRENT))
540			newflags &= ~VM_LOCKED;
541
542		/* Ignore errors */
543		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
544	}
545out:
546	return 0;
547}
548
549SYSCALL_DEFINE1(mlockall, int, flags)
550{
551	unsigned long lock_limit;
552	int ret = -EINVAL;
553
554	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
555		goto out;
556
557	ret = -EPERM;
558	if (!can_do_mlock())
559		goto out;
560
561	if (flags & MCL_CURRENT)
562		lru_add_drain_all();	/* flush pagevec */
563
564	down_write(&current->mm->mmap_sem);
565
566	lock_limit = rlimit(RLIMIT_MEMLOCK);
567	lock_limit >>= PAGE_SHIFT;
568
569	ret = -ENOMEM;
570	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
571	    capable(CAP_IPC_LOCK))
572		ret = do_mlockall(flags);
573	up_write(&current->mm->mmap_sem);
574	if (!ret && (flags & MCL_CURRENT)) {
575		/* Ignore errors */
576		do_mlock_pages(0, TASK_SIZE, 1);
577	}
578out:
579	return ret;
580}
581
582SYSCALL_DEFINE0(munlockall)
583{
584	int ret;
585
586	down_write(&current->mm->mmap_sem);
587	ret = do_mlockall(0);
588	up_write(&current->mm->mmap_sem);
589	return ret;
590}
591
592/*
593 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
594 * shm segments) get accounted against the user_struct instead.
595 */
596static DEFINE_SPINLOCK(shmlock_user_lock);
597
598int user_shm_lock(size_t size, struct user_struct *user)
599{
600	unsigned long lock_limit, locked;
601	int allowed = 0;
602
603	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
604	lock_limit = rlimit(RLIMIT_MEMLOCK);
605	if (lock_limit == RLIM_INFINITY)
606		allowed = 1;
607	lock_limit >>= PAGE_SHIFT;
608	spin_lock(&shmlock_user_lock);
609	if (!allowed &&
610	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
611		goto out;
612	get_uid(user);
613	user->locked_shm += locked;
614	allowed = 1;
615out:
616	spin_unlock(&shmlock_user_lock);
617	return allowed;
618}
619
620void user_shm_unlock(size_t size, struct user_struct *user)
621{
622	spin_lock(&shmlock_user_lock);
623	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
624	spin_unlock(&shmlock_user_lock);
625	free_uid(user);
626}