Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Derived from "arch/i386/kernel/process.c"
   4 *    Copyright (C) 1995  Linus Torvalds
   5 *
   6 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   7 *  Paul Mackerras (paulus@cs.anu.edu.au)
   8 *
   9 *  PowerPC version
  10 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 
 
 
 
 
  11 */
  12
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/sched/debug.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/task_stack.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/ptrace.h>
  24#include <linux/slab.h>
  25#include <linux/user.h>
  26#include <linux/elf.h>
  27#include <linux/prctl.h>
  28#include <linux/init_task.h>
  29#include <linux/export.h>
  30#include <linux/kallsyms.h>
  31#include <linux/mqueue.h>
  32#include <linux/hardirq.h>
  33#include <linux/utsname.h>
  34#include <linux/ftrace.h>
  35#include <linux/kernel_stat.h>
  36#include <linux/personality.h>
 
  37#include <linux/hw_breakpoint.h>
  38#include <linux/uaccess.h>
  39#include <linux/pkeys.h>
  40#include <linux/seq_buf.h>
  41
  42#include <asm/interrupt.h>
  43#include <asm/io.h>
  44#include <asm/processor.h>
  45#include <asm/mmu.h>
 
  46#include <asm/machdep.h>
  47#include <asm/time.h>
  48#include <asm/runlatch.h>
  49#include <asm/syscalls.h>
  50#include <asm/switch_to.h>
  51#include <asm/tm.h>
  52#include <asm/debug.h>
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/hw_irq.h>
  56#endif
  57#include <asm/code-patching.h>
  58#include <asm/exec.h>
  59#include <asm/livepatch.h>
  60#include <asm/cpu_has_feature.h>
  61#include <asm/asm-prototypes.h>
  62#include <asm/stacktrace.h>
  63#include <asm/hw_breakpoint.h>
  64
  65#include <linux/kprobes.h>
  66#include <linux/kdebug.h>
  67
  68/* Transactional Memory debug */
  69#ifdef TM_DEBUG_SW
  70#define TM_DEBUG(x...) printk(KERN_INFO x)
  71#else
  72#define TM_DEBUG(x...) do { } while(0)
  73#endif
  74
  75extern unsigned long _get_SP(void);
  76
  77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  78/*
  79 * Are we running in "Suspend disabled" mode? If so we have to block any
  80 * sigreturn that would get us into suspended state, and we also warn in some
  81 * other paths that we should never reach with suspend disabled.
  82 */
  83bool tm_suspend_disabled __ro_after_init = false;
  84
  85static void check_if_tm_restore_required(struct task_struct *tsk)
  86{
  87	/*
  88	 * If we are saving the current thread's registers, and the
  89	 * thread is in a transactional state, set the TIF_RESTORE_TM
  90	 * bit so that we know to restore the registers before
  91	 * returning to userspace.
  92	 */
  93	if (tsk == current && tsk->thread.regs &&
  94	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  95	    !test_thread_flag(TIF_RESTORE_TM)) {
  96		regs_set_return_msr(&tsk->thread.ckpt_regs,
  97						tsk->thread.regs->msr);
  98		set_thread_flag(TIF_RESTORE_TM);
  99	}
 100}
 101
 102#else
 103static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
 104#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 105
 106bool strict_msr_control;
 107EXPORT_SYMBOL(strict_msr_control);
 108
 109static int __init enable_strict_msr_control(char *str)
 110{
 111	strict_msr_control = true;
 112	pr_info("Enabling strict facility control\n");
 113
 114	return 0;
 115}
 116early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 117
 118/* notrace because it's called by restore_math */
 119unsigned long notrace msr_check_and_set(unsigned long bits)
 120{
 121	unsigned long oldmsr = mfmsr();
 122	unsigned long newmsr;
 123
 124	newmsr = oldmsr | bits;
 125
 
 126	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 127		newmsr |= MSR_VSX;
 
 128
 129	if (oldmsr != newmsr)
 130		newmsr = mtmsr_isync_irqsafe(newmsr);
 131
 132	return newmsr;
 133}
 134EXPORT_SYMBOL_GPL(msr_check_and_set);
 135
 136/* notrace because it's called by restore_math */
 137void notrace __msr_check_and_clear(unsigned long bits)
 138{
 139	unsigned long oldmsr = mfmsr();
 140	unsigned long newmsr;
 141
 142	newmsr = oldmsr & ~bits;
 143
 
 144	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 145		newmsr &= ~MSR_VSX;
 
 146
 147	if (oldmsr != newmsr)
 148		mtmsr_isync_irqsafe(newmsr);
 149}
 150EXPORT_SYMBOL(__msr_check_and_clear);
 151
 152#ifdef CONFIG_PPC_FPU
 153static void __giveup_fpu(struct task_struct *tsk)
 154{
 155	unsigned long msr;
 156
 157	save_fpu(tsk);
 158	msr = tsk->thread.regs->msr;
 159	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
 160	if (cpu_has_feature(CPU_FTR_VSX))
 161		msr &= ~MSR_VSX;
 162	regs_set_return_msr(tsk->thread.regs, msr);
 163}
 164
 165void giveup_fpu(struct task_struct *tsk)
 166{
 167	check_if_tm_restore_required(tsk);
 168
 169	msr_check_and_set(MSR_FP);
 170	__giveup_fpu(tsk);
 171	msr_check_and_clear(MSR_FP);
 172}
 173EXPORT_SYMBOL(giveup_fpu);
 174
 175/*
 176 * Make sure the floating-point register state in the
 177 * the thread_struct is up to date for task tsk.
 178 */
 179void flush_fp_to_thread(struct task_struct *tsk)
 180{
 181	if (tsk->thread.regs) {
 182		/*
 183		 * We need to disable preemption here because if we didn't,
 184		 * another process could get scheduled after the regs->msr
 185		 * test but before we have finished saving the FP registers
 186		 * to the thread_struct.  That process could take over the
 187		 * FPU, and then when we get scheduled again we would store
 188		 * bogus values for the remaining FP registers.
 189		 */
 190		preempt_disable();
 191		if (tsk->thread.regs->msr & MSR_FP) {
 192			/*
 193			 * This should only ever be called for current or
 194			 * for a stopped child process.  Since we save away
 195			 * the FP register state on context switch,
 196			 * there is something wrong if a stopped child appears
 197			 * to still have its FP state in the CPU registers.
 198			 */
 199			BUG_ON(tsk != current);
 200			giveup_fpu(tsk);
 201		}
 202		preempt_enable();
 203	}
 204}
 205EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 206
 207void enable_kernel_fp(void)
 208{
 209	unsigned long cpumsr;
 210
 211	WARN_ON(preemptible());
 212
 213	cpumsr = msr_check_and_set(MSR_FP);
 214
 215	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 216		check_if_tm_restore_required(current);
 217		/*
 218		 * If a thread has already been reclaimed then the
 219		 * checkpointed registers are on the CPU but have definitely
 220		 * been saved by the reclaim code. Don't need to and *cannot*
 221		 * giveup as this would save  to the 'live' structure not the
 222		 * checkpointed structure.
 223		 */
 224		if (!MSR_TM_ACTIVE(cpumsr) &&
 225		     MSR_TM_ACTIVE(current->thread.regs->msr))
 226			return;
 227		__giveup_fpu(current);
 228	}
 229}
 230EXPORT_SYMBOL(enable_kernel_fp);
 
 
 
 
 
 
 
 
 
 231#else
 232static inline void __giveup_fpu(struct task_struct *tsk) { }
 233#endif /* CONFIG_PPC_FPU */
 234
 235#ifdef CONFIG_ALTIVEC
 
 
 236static void __giveup_altivec(struct task_struct *tsk)
 237{
 238	unsigned long msr;
 239
 240	save_altivec(tsk);
 241	msr = tsk->thread.regs->msr;
 242	msr &= ~MSR_VEC;
 243	if (cpu_has_feature(CPU_FTR_VSX))
 244		msr &= ~MSR_VSX;
 245	regs_set_return_msr(tsk->thread.regs, msr);
 246}
 247
 248void giveup_altivec(struct task_struct *tsk)
 249{
 250	check_if_tm_restore_required(tsk);
 251
 252	msr_check_and_set(MSR_VEC);
 253	__giveup_altivec(tsk);
 254	msr_check_and_clear(MSR_VEC);
 255}
 256EXPORT_SYMBOL(giveup_altivec);
 257
 258void enable_kernel_altivec(void)
 259{
 260	unsigned long cpumsr;
 261
 262	WARN_ON(preemptible());
 263
 264	cpumsr = msr_check_and_set(MSR_VEC);
 265
 266	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 267		check_if_tm_restore_required(current);
 268		/*
 269		 * If a thread has already been reclaimed then the
 270		 * checkpointed registers are on the CPU but have definitely
 271		 * been saved by the reclaim code. Don't need to and *cannot*
 272		 * giveup as this would save  to the 'live' structure not the
 273		 * checkpointed structure.
 274		 */
 275		if (!MSR_TM_ACTIVE(cpumsr) &&
 276		     MSR_TM_ACTIVE(current->thread.regs->msr))
 277			return;
 278		__giveup_altivec(current);
 279	}
 280}
 281EXPORT_SYMBOL(enable_kernel_altivec);
 282
 283/*
 284 * Make sure the VMX/Altivec register state in the
 285 * the thread_struct is up to date for task tsk.
 286 */
 287void flush_altivec_to_thread(struct task_struct *tsk)
 288{
 289	if (tsk->thread.regs) {
 290		preempt_disable();
 291		if (tsk->thread.regs->msr & MSR_VEC) {
 292			BUG_ON(tsk != current);
 293			giveup_altivec(tsk);
 294		}
 295		preempt_enable();
 296	}
 297}
 298EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299#endif /* CONFIG_ALTIVEC */
 300
 301#ifdef CONFIG_VSX
 302static void __giveup_vsx(struct task_struct *tsk)
 303{
 304	unsigned long msr = tsk->thread.regs->msr;
 305
 306	/*
 307	 * We should never be setting MSR_VSX without also setting
 308	 * MSR_FP and MSR_VEC
 309	 */
 310	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
 311
 312	/* __giveup_fpu will clear MSR_VSX */
 313	if (msr & MSR_FP)
 314		__giveup_fpu(tsk);
 315	if (msr & MSR_VEC)
 316		__giveup_altivec(tsk);
 
 317}
 318
 319static void giveup_vsx(struct task_struct *tsk)
 320{
 321	check_if_tm_restore_required(tsk);
 322
 323	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 324	__giveup_vsx(tsk);
 325	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 326}
 327
 328void enable_kernel_vsx(void)
 329{
 330	unsigned long cpumsr;
 
 
 
 
 331
 
 
 332	WARN_ON(preemptible());
 333
 334	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 335
 336	if (current->thread.regs &&
 337	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
 338		check_if_tm_restore_required(current);
 339		/*
 340		 * If a thread has already been reclaimed then the
 341		 * checkpointed registers are on the CPU but have definitely
 342		 * been saved by the reclaim code. Don't need to and *cannot*
 343		 * giveup as this would save  to the 'live' structure not the
 344		 * checkpointed structure.
 345		 */
 346		if (!MSR_TM_ACTIVE(cpumsr) &&
 347		     MSR_TM_ACTIVE(current->thread.regs->msr))
 348			return;
 349		__giveup_vsx(current);
 350	}
 351}
 352EXPORT_SYMBOL(enable_kernel_vsx);
 353
 354void flush_vsx_to_thread(struct task_struct *tsk)
 355{
 356	if (tsk->thread.regs) {
 357		preempt_disable();
 358		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
 359			BUG_ON(tsk != current);
 360			giveup_vsx(tsk);
 361		}
 362		preempt_enable();
 363	}
 364}
 365EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 366#endif /* CONFIG_VSX */
 367
 368#ifdef CONFIG_SPE
 369void giveup_spe(struct task_struct *tsk)
 370{
 371	check_if_tm_restore_required(tsk);
 372
 373	msr_check_and_set(MSR_SPE);
 374	__giveup_spe(tsk);
 375	msr_check_and_clear(MSR_SPE);
 376}
 377EXPORT_SYMBOL(giveup_spe);
 378
 379void enable_kernel_spe(void)
 380{
 381	WARN_ON(preemptible());
 382
 383	msr_check_and_set(MSR_SPE);
 384
 385	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 386		check_if_tm_restore_required(current);
 387		__giveup_spe(current);
 388	}
 389}
 390EXPORT_SYMBOL(enable_kernel_spe);
 391
 392void flush_spe_to_thread(struct task_struct *tsk)
 393{
 394	if (tsk->thread.regs) {
 395		preempt_disable();
 396		if (tsk->thread.regs->msr & MSR_SPE) {
 397			BUG_ON(tsk != current);
 398			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 399			giveup_spe(tsk);
 400		}
 401		preempt_enable();
 402	}
 403}
 404#endif /* CONFIG_SPE */
 405
 406static unsigned long msr_all_available;
 407
 408static int __init init_msr_all_available(void)
 409{
 410	if (IS_ENABLED(CONFIG_PPC_FPU))
 411		msr_all_available |= MSR_FP;
 
 
 412	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 413		msr_all_available |= MSR_VEC;
 
 
 414	if (cpu_has_feature(CPU_FTR_VSX))
 415		msr_all_available |= MSR_VSX;
 
 
 416	if (cpu_has_feature(CPU_FTR_SPE))
 417		msr_all_available |= MSR_SPE;
 
 418
 419	return 0;
 420}
 421early_initcall(init_msr_all_available);
 422
 423void giveup_all(struct task_struct *tsk)
 424{
 425	unsigned long usermsr;
 426
 427	if (!tsk->thread.regs)
 428		return;
 429
 430	check_if_tm_restore_required(tsk);
 431
 432	usermsr = tsk->thread.regs->msr;
 433
 434	if ((usermsr & msr_all_available) == 0)
 435		return;
 436
 437	msr_check_and_set(msr_all_available);
 438
 439	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 440
 441	if (usermsr & MSR_FP)
 442		__giveup_fpu(tsk);
 
 
 443	if (usermsr & MSR_VEC)
 444		__giveup_altivec(tsk);
 
 
 
 
 
 
 445	if (usermsr & MSR_SPE)
 446		__giveup_spe(tsk);
 
 447
 448	msr_check_and_clear(msr_all_available);
 449}
 450EXPORT_SYMBOL(giveup_all);
 451
 452#ifdef CONFIG_PPC_BOOK3S_64
 453#ifdef CONFIG_PPC_FPU
 454static bool should_restore_fp(void)
 455{
 456	if (current->thread.load_fp) {
 457		current->thread.load_fp++;
 458		return true;
 459	}
 460	return false;
 461}
 462
 463static void do_restore_fp(void)
 464{
 465	load_fp_state(&current->thread.fp_state);
 466}
 467#else
 468static bool should_restore_fp(void) { return false; }
 469static void do_restore_fp(void) { }
 470#endif /* CONFIG_PPC_FPU */
 471
 472#ifdef CONFIG_ALTIVEC
 473static bool should_restore_altivec(void)
 474{
 475	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
 476		current->thread.load_vec++;
 477		return true;
 478	}
 479	return false;
 480}
 481
 482static void do_restore_altivec(void)
 483{
 484	load_vr_state(&current->thread.vr_state);
 485	current->thread.used_vr = 1;
 486}
 487#else
 488static bool should_restore_altivec(void) { return false; }
 489static void do_restore_altivec(void) { }
 490#endif /* CONFIG_ALTIVEC */
 491
 492static bool should_restore_vsx(void)
 493{
 494	if (cpu_has_feature(CPU_FTR_VSX))
 495		return true;
 496	return false;
 497}
 498#ifdef CONFIG_VSX
 499static void do_restore_vsx(void)
 500{
 501	current->thread.used_vsr = 1;
 502}
 503#else
 504static void do_restore_vsx(void) { }
 505#endif /* CONFIG_VSX */
 506
 507/*
 508 * The exception exit path calls restore_math() with interrupts hard disabled
 509 * but the soft irq state not "reconciled". ftrace code that calls
 510 * local_irq_save/restore causes warnings.
 511 *
 512 * Rather than complicate the exit path, just don't trace restore_math. This
 513 * could be done by having ftrace entry code check for this un-reconciled
 514 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
 515 * temporarily fix it up for the duration of the ftrace call.
 516 */
 517void notrace restore_math(struct pt_regs *regs)
 518{
 519	unsigned long msr;
 520	unsigned long new_msr = 0;
 
 
 521
 522	msr = regs->msr;
 
 523
 524	/*
 525	 * new_msr tracks the facilities that are to be restored. Only reload
 526	 * if the bit is not set in the user MSR (if it is set, the registers
 527	 * are live for the user thread).
 528	 */
 529	if ((!(msr & MSR_FP)) && should_restore_fp())
 530		new_msr |= MSR_FP;
 531
 532	if ((!(msr & MSR_VEC)) && should_restore_altivec())
 533		new_msr |= MSR_VEC;
 534
 535	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
 536		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
 537			new_msr |= MSR_VSX;
 538	}
 539
 540	if (new_msr) {
 541		unsigned long fpexc_mode = 0;
 542
 543		msr_check_and_set(new_msr);
 544
 545		if (new_msr & MSR_FP) {
 546			do_restore_fp();
 547
 548			// This also covers VSX, because VSX implies FP
 549			fpexc_mode = current->thread.fpexc_mode;
 550		}
 551
 552		if (new_msr & MSR_VEC)
 553			do_restore_altivec();
 554
 555		if (new_msr & MSR_VSX)
 556			do_restore_vsx();
 557
 558		msr_check_and_clear(new_msr);
 559
 560		regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
 561	}
 562}
 563#endif /* CONFIG_PPC_BOOK3S_64 */
 564
 565static void save_all(struct task_struct *tsk)
 566{
 567	unsigned long usermsr;
 568
 569	if (!tsk->thread.regs)
 570		return;
 571
 572	usermsr = tsk->thread.regs->msr;
 573
 574	if ((usermsr & msr_all_available) == 0)
 575		return;
 576
 577	msr_check_and_set(msr_all_available);
 578
 579	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 580
 581	if (usermsr & MSR_FP)
 582		save_fpu(tsk);
 
 
 
 
 
 583
 584	if (usermsr & MSR_VEC)
 585		save_altivec(tsk);
 
 586
 587	if (usermsr & MSR_SPE)
 588		__giveup_spe(tsk);
 589
 590	msr_check_and_clear(msr_all_available);
 591}
 592
 593void flush_all_to_thread(struct task_struct *tsk)
 594{
 595	if (tsk->thread.regs) {
 596		preempt_disable();
 597		BUG_ON(tsk != current);
 
 
 598#ifdef CONFIG_SPE
 599		if (tsk->thread.regs->msr & MSR_SPE)
 600			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 601#endif
 602		save_all(tsk);
 603
 604		preempt_enable();
 605	}
 606}
 607EXPORT_SYMBOL(flush_all_to_thread);
 608
 609#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 610void do_send_trap(struct pt_regs *regs, unsigned long address,
 611		  unsigned long error_code, int breakpt)
 612{
 613	current->thread.trap_nr = TRAP_HWBKPT;
 
 
 614	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 615			11, SIGSEGV) == NOTIFY_STOP)
 616		return;
 617
 618	/* Deliver the signal to userspace */
 619	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
 620				    (void __user *)address);
 
 
 
 621}
 622#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 623
 624static void do_break_handler(struct pt_regs *regs)
 625{
 626	struct arch_hw_breakpoint null_brk = {0};
 627	struct arch_hw_breakpoint *info;
 628	ppc_inst_t instr = ppc_inst(0);
 629	int type = 0;
 630	int size = 0;
 631	unsigned long ea;
 632	int i;
 633
 634	/*
 635	 * If underneath hw supports only one watchpoint, we know it
 636	 * caused exception. 8xx also falls into this category.
 637	 */
 638	if (nr_wp_slots() == 1) {
 639		__set_breakpoint(0, &null_brk);
 640		current->thread.hw_brk[0] = null_brk;
 641		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
 642		return;
 643	}
 644
 645	/* Otherwise find out which DAWR caused exception and disable it. */
 646	wp_get_instr_detail(regs, &instr, &type, &size, &ea);
 647
 648	for (i = 0; i < nr_wp_slots(); i++) {
 649		info = &current->thread.hw_brk[i];
 650		if (!info->address)
 651			continue;
 652
 653		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
 654			__set_breakpoint(i, &null_brk);
 655			current->thread.hw_brk[i] = null_brk;
 656			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
 657		}
 658	}
 659}
 660
 661DEFINE_INTERRUPT_HANDLER(do_break)
 662{
 663	current->thread.trap_nr = TRAP_HWBKPT;
 664	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
 665			11, SIGSEGV) == NOTIFY_STOP)
 666		return;
 667
 668	if (debugger_break_match(regs))
 669		return;
 670
 671	/*
 672	 * We reach here only when watchpoint exception is generated by ptrace
 673	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
 674	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
 675	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
 676	 * we need to manually handle the watchpoint here.
 677	 */
 678	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
 679		do_break_handler(regs);
 680
 681	/* Deliver the signal to userspace */
 682	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
 
 
 
 
 683}
 684#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 685
 686static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
 687
 688#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 689/*
 690 * Set the debug registers back to their default "safe" values.
 691 */
 692static void set_debug_reg_defaults(struct thread_struct *thread)
 693{
 694	thread->debug.iac1 = thread->debug.iac2 = 0;
 695#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 696	thread->debug.iac3 = thread->debug.iac4 = 0;
 697#endif
 698	thread->debug.dac1 = thread->debug.dac2 = 0;
 699#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 700	thread->debug.dvc1 = thread->debug.dvc2 = 0;
 701#endif
 702	thread->debug.dbcr0 = 0;
 703#ifdef CONFIG_BOOKE
 704	/*
 705	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 706	 */
 707	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 708			DBCR1_IAC3US | DBCR1_IAC4US;
 709	/*
 710	 * Force Data Address Compare User/Supervisor bits to be User-only
 711	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 712	 */
 713	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 714#else
 715	thread->debug.dbcr1 = 0;
 716#endif
 717}
 718
 719static void prime_debug_regs(struct debug_reg *debug)
 720{
 721	/*
 722	 * We could have inherited MSR_DE from userspace, since
 723	 * it doesn't get cleared on exception entry.  Make sure
 724	 * MSR_DE is clear before we enable any debug events.
 725	 */
 726	mtmsr(mfmsr() & ~MSR_DE);
 727
 728	mtspr(SPRN_IAC1, debug->iac1);
 729	mtspr(SPRN_IAC2, debug->iac2);
 730#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 731	mtspr(SPRN_IAC3, debug->iac3);
 732	mtspr(SPRN_IAC4, debug->iac4);
 733#endif
 734	mtspr(SPRN_DAC1, debug->dac1);
 735	mtspr(SPRN_DAC2, debug->dac2);
 736#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 737	mtspr(SPRN_DVC1, debug->dvc1);
 738	mtspr(SPRN_DVC2, debug->dvc2);
 739#endif
 740	mtspr(SPRN_DBCR0, debug->dbcr0);
 741	mtspr(SPRN_DBCR1, debug->dbcr1);
 742#ifdef CONFIG_BOOKE
 743	mtspr(SPRN_DBCR2, debug->dbcr2);
 744#endif
 745}
 746/*
 747 * Unless neither the old or new thread are making use of the
 748 * debug registers, set the debug registers from the values
 749 * stored in the new thread.
 750 */
 751void switch_booke_debug_regs(struct debug_reg *new_debug)
 752{
 753	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 754		|| (new_debug->dbcr0 & DBCR0_IDM))
 755			prime_debug_regs(new_debug);
 756}
 757EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 758#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 759#ifndef CONFIG_HAVE_HW_BREAKPOINT
 760static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
 761{
 762	preempt_disable();
 763	__set_breakpoint(i, brk);
 764	preempt_enable();
 765}
 
 
 766
 767static void set_debug_reg_defaults(struct thread_struct *thread)
 
 768{
 769	int i;
 770	struct arch_hw_breakpoint null_brk = {0};
 771
 772	for (i = 0; i < nr_wp_slots(); i++) {
 773		thread->hw_brk[i] = null_brk;
 774		if (ppc_breakpoint_available())
 775			set_breakpoint(i, &thread->hw_brk[i]);
 776	}
 777}
 778
 779static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 780				struct arch_hw_breakpoint *b)
 781{
 782	if (a->address != b->address)
 783		return false;
 784	if (a->type != b->type)
 785		return false;
 786	if (a->len != b->len)
 787		return false;
 788	/* no need to check hw_len. it's calculated from address and len */
 789	return true;
 790}
 791
 792static void switch_hw_breakpoint(struct task_struct *new)
 793{
 794	int i;
 795
 796	for (i = 0; i < nr_wp_slots(); i++) {
 797		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
 798					&new->thread.hw_brk[i])))
 799			continue;
 800
 801		__set_breakpoint(i, &new->thread.hw_brk[i]);
 802	}
 803}
 804#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 805#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 806
 807static inline int set_dabr(struct arch_hw_breakpoint *brk)
 808{
 809	unsigned long dabr, dabrx;
 810
 811	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 812	dabrx = ((brk->type >> 3) & 0x7);
 813
 814	if (ppc_md.set_dabr)
 815		return ppc_md.set_dabr(dabr, dabrx);
 816
 817	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
 818		mtspr(SPRN_DAC1, dabr);
 819		if (IS_ENABLED(CONFIG_PPC_47x))
 820			isync();
 821		return 0;
 822	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
 823		mtspr(SPRN_DABR, dabr);
 824		if (cpu_has_feature(CPU_FTR_DABRX))
 825			mtspr(SPRN_DABRX, dabrx);
 826		return 0;
 827	} else {
 828		return -EINVAL;
 829	}
 830}
 831
 832static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
 833{
 834	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
 835			       LCTRL1_CRWF_RW;
 836	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
 837	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
 838	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
 839
 840	if (start_addr == 0)
 841		lctrl2 |= LCTRL2_LW0LA_F;
 842	else if (end_addr == 0)
 843		lctrl2 |= LCTRL2_LW0LA_E;
 844	else
 845		lctrl2 |= LCTRL2_LW0LA_EandF;
 846
 847	mtspr(SPRN_LCTRL2, 0);
 848
 849	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
 850		return 0;
 851
 852	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
 853		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
 854	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
 855		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
 856
 857	mtspr(SPRN_CMPE, start_addr - 1);
 858	mtspr(SPRN_CMPF, end_addr);
 859	mtspr(SPRN_LCTRL1, lctrl1);
 860	mtspr(SPRN_LCTRL2, lctrl2);
 861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	return 0;
 863}
 864
 865static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
 866{
 867	if (dawr_enabled())
 868		// Power8 or later
 869		set_dawr(nr, brk);
 870	else if (IS_ENABLED(CONFIG_PPC_8xx))
 871		set_breakpoint_8xx(brk);
 872	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 873		// Power7 or earlier
 874		set_dabr(brk);
 875	else
 876		// Shouldn't happen due to higher level checks
 877		WARN_ON_ONCE(1);
 878}
 879
 880void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
 881{
 882	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
 883	set_hw_breakpoint(nr, brk);
 884}
 885
 886/* Check if we have DAWR or DABR hardware */
 887bool ppc_breakpoint_available(void)
 888{
 889	if (dawr_enabled())
 890		return true; /* POWER8 DAWR or POWER9 forced DAWR */
 891	if (cpu_has_feature(CPU_FTR_ARCH_207S))
 892		return false; /* POWER9 with DAWR disabled */
 893	/* DABR: Everything but POWER8 and POWER9 */
 894	return true;
 895}
 896EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
 897
 898/* Disable the breakpoint in hardware without touching current_brk[] */
 899void suspend_breakpoints(void)
 900{
 901	struct arch_hw_breakpoint brk = {0};
 902	int i;
 903
 904	if (!ppc_breakpoint_available())
 905		return;
 906
 907	for (i = 0; i < nr_wp_slots(); i++)
 908		set_hw_breakpoint(i, &brk);
 909}
 910
 911/*
 912 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
 913 * from current_brk[]
 914 */
 915void restore_breakpoints(void)
 916{
 917	int i;
 918
 919	if (!ppc_breakpoint_available())
 920		return;
 921
 922	for (i = 0; i < nr_wp_slots(); i++)
 923		set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
 924}
 925
 926#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 927
 928static inline bool tm_enabled(struct task_struct *tsk)
 929{
 930	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
 931}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932
 933static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
 934{
 935	/*
 936	 * Use the current MSR TM suspended bit to track if we have
 937	 * checkpointed state outstanding.
 938	 * On signal delivery, we'd normally reclaim the checkpointed
 939	 * state to obtain stack pointer (see:get_tm_stackpointer()).
 940	 * This will then directly return to userspace without going
 941	 * through __switch_to(). However, if the stack frame is bad,
 942	 * we need to exit this thread which calls __switch_to() which
 943	 * will again attempt to reclaim the already saved tm state.
 944	 * Hence we need to check that we've not already reclaimed
 945	 * this state.
 946	 * We do this using the current MSR, rather tracking it in
 947	 * some specific thread_struct bit, as it has the additional
 948	 * benefit of checking for a potential TM bad thing exception.
 949	 */
 950	if (!MSR_TM_SUSPENDED(mfmsr()))
 951		return;
 952
 953	giveup_all(container_of(thr, struct task_struct, thread));
 954
 955	tm_reclaim(thr, cause);
 956
 957	/*
 958	 * If we are in a transaction and FP is off then we can't have
 959	 * used FP inside that transaction. Hence the checkpointed
 960	 * state is the same as the live state. We need to copy the
 961	 * live state to the checkpointed state so that when the
 962	 * transaction is restored, the checkpointed state is correct
 963	 * and the aborted transaction sees the correct state. We use
 964	 * ckpt_regs.msr here as that's what tm_reclaim will use to
 965	 * determine if it's going to write the checkpointed state or
 966	 * not. So either this will write the checkpointed registers,
 967	 * or reclaim will. Similarly for VMX.
 968	 */
 969	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
 970		memcpy(&thr->ckfp_state, &thr->fp_state,
 971		       sizeof(struct thread_fp_state));
 972	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
 973		memcpy(&thr->ckvr_state, &thr->vr_state,
 974		       sizeof(struct thread_vr_state));
 975}
 976
 977void tm_reclaim_current(uint8_t cause)
 978{
 979	tm_enable();
 980	tm_reclaim_thread(&current->thread, cause);
 981}
 982
 983static inline void tm_reclaim_task(struct task_struct *tsk)
 984{
 985	/* We have to work out if we're switching from/to a task that's in the
 986	 * middle of a transaction.
 987	 *
 988	 * In switching we need to maintain a 2nd register state as
 989	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 990	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
 991	 * ckvr_state
 992	 *
 993	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 994	 */
 995	struct thread_struct *thr = &tsk->thread;
 996
 997	if (!thr->regs)
 998		return;
 999
1000	if (!MSR_TM_ACTIVE(thr->regs->msr))
1001		goto out_and_saveregs;
1002
1003	WARN_ON(tm_suspend_disabled);
 
 
 
 
 
 
1004
1005	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1006		 "ccr=%lx, msr=%lx, trap=%lx)\n",
1007		 tsk->pid, thr->regs->nip,
1008		 thr->regs->ccr, thr->regs->msr,
1009		 thr->regs->trap);
1010
1011	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
1012
1013	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1014		 tsk->pid);
1015
1016out_and_saveregs:
1017	/* Always save the regs here, even if a transaction's not active.
1018	 * This context-switches a thread's TM info SPRs.  We do it here to
1019	 * be consistent with the restore path (in recheckpoint) which
1020	 * cannot happen later in _switch().
1021	 */
1022	tm_save_sprs(thr);
1023}
1024
1025extern void __tm_recheckpoint(struct thread_struct *thread);
 
1026
1027void tm_recheckpoint(struct thread_struct *thread)
 
1028{
1029	unsigned long flags;
1030
1031	if (!(thread->regs->msr & MSR_TM))
1032		return;
1033
1034	/* We really can't be interrupted here as the TEXASR registers can't
1035	 * change and later in the trecheckpoint code, we have a userspace R1.
1036	 * So let's hard disable over this region.
1037	 */
1038	local_irq_save(flags);
1039	hard_irq_disable();
1040
1041	/* The TM SPRs are restored here, so that TEXASR.FS can be set
1042	 * before the trecheckpoint and no explosion occurs.
1043	 */
1044	tm_restore_sprs(thread);
1045
1046	__tm_recheckpoint(thread);
1047
1048	local_irq_restore(flags);
1049}
1050
1051static inline void tm_recheckpoint_new_task(struct task_struct *new)
1052{
 
 
1053	if (!cpu_has_feature(CPU_FTR_TM))
1054		return;
1055
1056	/* Recheckpoint the registers of the thread we're about to switch to.
1057	 *
1058	 * If the task was using FP, we non-lazily reload both the original and
1059	 * the speculative FP register states.  This is because the kernel
1060	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1061	 * unavailable later, we are unable to determine which set of FP regs
1062	 * need to be restored.
1063	 */
1064	if (!tm_enabled(new))
1065		return;
1066
1067	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1068		tm_restore_sprs(&new->thread);
1069		return;
1070	}
 
1071	/* Recheckpoint to restore original checkpointed register state. */
1072	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1073		 new->pid, new->thread.regs->msr);
1074
1075	tm_recheckpoint(&new->thread);
1076
1077	/*
1078	 * The checkpointed state has been restored but the live state has
1079	 * not, ensure all the math functionality is turned off to trigger
1080	 * restore_math() to reload.
1081	 */
1082	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
 
 
 
 
 
 
 
 
 
 
 
1083
1084	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1085		 "(kernel msr 0x%lx)\n",
1086		 new->pid, mfmsr());
1087}
1088
1089static inline void __switch_to_tm(struct task_struct *prev,
1090		struct task_struct *new)
1091{
1092	if (cpu_has_feature(CPU_FTR_TM)) {
1093		if (tm_enabled(prev) || tm_enabled(new))
1094			tm_enable();
1095
1096		if (tm_enabled(prev)) {
1097			prev->thread.load_tm++;
1098			tm_reclaim_task(prev);
1099			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1100				prev->thread.regs->msr &= ~MSR_TM;
1101		}
1102
1103		tm_recheckpoint_new_task(new);
1104	}
1105}
1106
1107/*
1108 * This is called if we are on the way out to userspace and the
1109 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1110 * FP and/or vector state and does so if necessary.
1111 * If userspace is inside a transaction (whether active or
1112 * suspended) and FP/VMX/VSX instructions have ever been enabled
1113 * inside that transaction, then we have to keep them enabled
1114 * and keep the FP/VMX/VSX state loaded while ever the transaction
1115 * continues.  The reason is that if we didn't, and subsequently
1116 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1117 * we don't know whether it's the same transaction, and thus we
1118 * don't know which of the checkpointed state and the transactional
1119 * state to use.
1120 */
1121void restore_tm_state(struct pt_regs *regs)
1122{
1123	unsigned long msr_diff;
1124
1125	/*
1126	 * This is the only moment we should clear TIF_RESTORE_TM as
1127	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1128	 * again, anything else could lead to an incorrect ckpt_msr being
1129	 * saved and therefore incorrect signal contexts.
1130	 */
1131	clear_thread_flag(TIF_RESTORE_TM);
1132	if (!MSR_TM_ACTIVE(regs->msr))
1133		return;
1134
1135	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1136	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1137
1138	/* Ensure that restore_math() will restore */
1139	if (msr_diff & MSR_FP)
1140		current->thread.load_fp = 1;
1141#ifdef CONFIG_ALTIVEC
1142	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1143		current->thread.load_vec = 1;
1144#endif
1145	restore_math(regs);
1146
1147	regs_set_return_msr(regs, regs->msr | msr_diff);
1148}
1149
1150#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1151#define tm_recheckpoint_new_task(new)
1152#define __switch_to_tm(prev, new)
1153void tm_reclaim_current(uint8_t cause) {}
1154#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1155
1156static inline void save_sprs(struct thread_struct *t)
1157{
1158#ifdef CONFIG_ALTIVEC
1159	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1160		t->vrsave = mfspr(SPRN_VRSAVE);
1161#endif
1162#ifdef CONFIG_SPE
1163	if (cpu_has_feature(CPU_FTR_SPE))
1164		t->spefscr = mfspr(SPRN_SPEFSCR);
1165#endif
1166#ifdef CONFIG_PPC_BOOK3S_64
1167	if (cpu_has_feature(CPU_FTR_DSCR))
1168		t->dscr = mfspr(SPRN_DSCR);
1169
1170	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1171		t->bescr = mfspr(SPRN_BESCR);
1172		t->ebbhr = mfspr(SPRN_EBBHR);
1173		t->ebbrr = mfspr(SPRN_EBBRR);
1174
1175		t->fscr = mfspr(SPRN_FSCR);
1176
1177		/*
1178		 * Note that the TAR is not available for use in the kernel.
1179		 * (To provide this, the TAR should be backed up/restored on
1180		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1181		 * this should be in pt_regs anyway (for debug).)
1182		 */
1183		t->tar = mfspr(SPRN_TAR);
1184	}
1185
1186	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1187		t->hashkeyr = mfspr(SPRN_HASHKEYR);
1188#endif
1189}
1190
1191#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1192void kvmppc_save_user_regs(void)
1193{
1194	unsigned long usermsr;
1195
1196	if (!current->thread.regs)
1197		return;
1198
1199	usermsr = current->thread.regs->msr;
1200
1201	/* Caller has enabled FP/VEC/VSX/TM in MSR */
1202	if (usermsr & MSR_FP)
1203		__giveup_fpu(current);
1204	if (usermsr & MSR_VEC)
1205		__giveup_altivec(current);
1206
1207#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1208	if (usermsr & MSR_TM) {
1209		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1210		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1211		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1212		current->thread.regs->msr &= ~MSR_TM;
1213	}
1214#endif
1215}
1216EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1217
1218void kvmppc_save_current_sprs(void)
1219{
1220	save_sprs(&current->thread);
1221}
1222EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1223#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1224
1225static inline void restore_sprs(struct thread_struct *old_thread,
1226				struct thread_struct *new_thread)
1227{
1228#ifdef CONFIG_ALTIVEC
1229	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1230	    old_thread->vrsave != new_thread->vrsave)
1231		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1232#endif
1233#ifdef CONFIG_SPE
1234	if (cpu_has_feature(CPU_FTR_SPE) &&
1235	    old_thread->spefscr != new_thread->spefscr)
1236		mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1237#endif
1238#ifdef CONFIG_PPC_BOOK3S_64
1239	if (cpu_has_feature(CPU_FTR_DSCR)) {
1240		u64 dscr = get_paca()->dscr_default;
1241		if (new_thread->dscr_inherit)
 
 
1242			dscr = new_thread->dscr;
 
 
1243
1244		if (old_thread->dscr != dscr)
1245			mtspr(SPRN_DSCR, dscr);
 
 
 
1246	}
1247
1248	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1249		if (old_thread->bescr != new_thread->bescr)
1250			mtspr(SPRN_BESCR, new_thread->bescr);
1251		if (old_thread->ebbhr != new_thread->ebbhr)
1252			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1253		if (old_thread->ebbrr != new_thread->ebbrr)
1254			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1255
1256		if (old_thread->fscr != new_thread->fscr)
1257			mtspr(SPRN_FSCR, new_thread->fscr);
1258
1259		if (old_thread->tar != new_thread->tar)
1260			mtspr(SPRN_TAR, new_thread->tar);
1261	}
1262
1263	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1264	    old_thread->tidr != new_thread->tidr)
1265		mtspr(SPRN_TIDR, new_thread->tidr);
1266
1267	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1268	    old_thread->hashkeyr != new_thread->hashkeyr)
1269		mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
1270#endif
1271
1272}
1273
1274struct task_struct *__switch_to(struct task_struct *prev,
1275	struct task_struct *new)
1276{
1277	struct thread_struct *new_thread, *old_thread;
1278	struct task_struct *last;
1279#ifdef CONFIG_PPC_64S_HASH_MMU
1280	struct ppc64_tlb_batch *batch;
1281#endif
1282
1283	new_thread = &new->thread;
1284	old_thread = &current->thread;
1285
1286	WARN_ON(!irqs_disabled());
1287
1288#ifdef CONFIG_PPC_64S_HASH_MMU
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289	batch = this_cpu_ptr(&ppc64_tlb_batch);
1290	if (batch->active) {
1291		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1292		if (batch->index)
1293			__flush_tlb_pending(batch);
1294		batch->active = 0;
1295	}
1296
1297	/*
1298	 * On POWER9 the copy-paste buffer can only paste into
1299	 * foreign real addresses, so unprivileged processes can not
1300	 * see the data or use it in any way unless they have
1301	 * foreign real mappings. If the new process has the foreign
1302	 * real address mappings, we must issue a cp_abort to clear
1303	 * any state and prevent snooping, corruption or a covert
1304	 * channel. ISA v3.1 supports paste into local memory.
1305	 */
1306	if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1307			atomic_read(&new->mm->context.vas_windows)))
1308		asm volatile(PPC_CP_ABORT);
1309#endif /* CONFIG_PPC_BOOK3S_64 */
1310
1311#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1312	switch_booke_debug_regs(&new->thread.debug);
1313#else
1314/*
1315 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1316 * schedule DABR
1317 */
1318#ifndef CONFIG_HAVE_HW_BREAKPOINT
1319	switch_hw_breakpoint(new);
 
1320#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1321#endif
1322
1323	/*
1324	 * We need to save SPRs before treclaim/trecheckpoint as these will
1325	 * change a number of them.
1326	 */
1327	save_sprs(&prev->thread);
1328
 
 
1329	/* Save FPU, Altivec, VSX and SPE state */
1330	giveup_all(prev);
1331
1332	__switch_to_tm(prev, new);
 
 
 
 
 
1333
1334	if (!radix_enabled()) {
1335		/*
1336		 * We can't take a PMU exception inside _switch() since there
1337		 * is a window where the kernel stack SLB and the kernel stack
1338		 * are out of sync. Hard disable here.
1339		 */
1340		hard_irq_disable();
1341	}
1342
1343	/*
1344	 * Call restore_sprs() and set_return_regs_changed() before calling
1345	 * _switch(). If we move it after _switch() then we miss out on calling
1346	 * it for new tasks. The reason for this is we manually create a stack
1347	 * frame for new tasks that directly returns through ret_from_fork() or
1348	 * ret_from_kernel_thread(). See copy_thread() for details.
1349	 */
1350	restore_sprs(old_thread, new_thread);
1351
1352	set_return_regs_changed(); /* _switch changes stack (and regs) */
1353
1354	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1355		kuap_assert_locked();
1356
1357	last = _switch(old_thread, new_thread);
1358
1359	/*
1360	 * Nothing after _switch will be run for newly created tasks,
1361	 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1362	 * etc. Code added here should have a comment explaining why that is
1363	 * okay.
1364	 */
1365
1366#ifdef CONFIG_PPC_BOOK3S_64
1367#ifdef CONFIG_PPC_64S_HASH_MMU
1368	/*
1369	 * This applies to a process that was context switched while inside
1370	 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1371	 * deactivated above, before _switch(). This will never be the case
1372	 * for new tasks.
1373	 */
1374	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1375		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1376		batch = this_cpu_ptr(&ppc64_tlb_batch);
1377		batch->active = 1;
1378	}
1379#endif
1380
1381	/*
1382	 * Math facilities are masked out of the child MSR in copy_thread.
1383	 * A new task does not need to restore_math because it will
1384	 * demand fault them.
1385	 */
1386	if (current->thread.regs)
1387		restore_math(current->thread.regs);
1388#endif /* CONFIG_PPC_BOOK3S_64 */
1389
1390	return last;
1391}
1392
1393#define NR_INSN_TO_PRINT	16
1394
1395static void show_instructions(struct pt_regs *regs)
1396{
1397	int i;
1398	unsigned long nip = regs->nip;
1399	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1400
1401	printk("Code: ");
1402
1403	/*
1404	 * If we were executing with the MMU off for instructions, adjust pc
1405	 * rather than printing XXXXXXXX.
1406	 */
1407	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1408		pc = (unsigned long)phys_to_virt(pc);
1409		nip = (unsigned long)phys_to_virt(regs->nip);
1410	}
1411
1412	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1413		int instr;
1414
1415		if (get_kernel_nofault(instr, (const void *)pc)) {
1416			pr_cont("XXXXXXXX ");
 
 
 
 
 
 
 
 
 
 
 
 
1417		} else {
1418			if (nip == pc)
1419				pr_cont("<%08x> ", instr);
1420			else
1421				pr_cont("%08x ", instr);
1422		}
1423
1424		pc += sizeof(int);
1425	}
1426
1427	pr_cont("\n");
1428}
1429
1430void show_user_instructions(struct pt_regs *regs)
1431{
1432	unsigned long pc;
1433	int n = NR_INSN_TO_PRINT;
1434	struct seq_buf s;
1435	char buf[96]; /* enough for 8 times 9 + 2 chars */
1436
1437	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1438
1439	seq_buf_init(&s, buf, sizeof(buf));
1440
1441	while (n) {
1442		int i;
1443
1444		seq_buf_clear(&s);
1445
1446		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1447			int instr;
1448
1449			if (copy_from_user_nofault(&instr, (void __user *)pc,
1450					sizeof(instr))) {
1451				seq_buf_printf(&s, "XXXXXXXX ");
1452				continue;
1453			}
1454			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1455		}
1456
1457		if (!seq_buf_has_overflowed(&s))
1458			pr_info("%s[%d]: code: %s\n", current->comm,
1459				current->pid, s.buffer);
1460	}
1461}
1462
1463struct regbit {
1464	unsigned long bit;
1465	const char *name;
1466};
1467
1468static struct regbit msr_bits[] = {
1469#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1470	{MSR_SF,	"SF"},
1471	{MSR_HV,	"HV"},
1472#endif
1473	{MSR_VEC,	"VEC"},
1474	{MSR_VSX,	"VSX"},
1475#ifdef CONFIG_BOOKE
1476	{MSR_CE,	"CE"},
1477#endif
1478	{MSR_EE,	"EE"},
1479	{MSR_PR,	"PR"},
1480	{MSR_FP,	"FP"},
1481	{MSR_ME,	"ME"},
1482#ifdef CONFIG_BOOKE
1483	{MSR_DE,	"DE"},
1484#else
1485	{MSR_SE,	"SE"},
1486	{MSR_BE,	"BE"},
1487#endif
1488	{MSR_IR,	"IR"},
1489	{MSR_DR,	"DR"},
1490	{MSR_PMM,	"PMM"},
1491#ifndef CONFIG_BOOKE
1492	{MSR_RI,	"RI"},
1493	{MSR_LE,	"LE"},
1494#endif
1495	{0,		NULL}
1496};
1497
1498static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1499{
1500	const char *s = "";
1501
1502	for (; bits->bit; ++bits)
1503		if (val & bits->bit) {
1504			pr_cont("%s%s", s, bits->name);
1505			s = sep;
1506		}
1507}
1508
1509#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1510static struct regbit msr_tm_bits[] = {
1511	{MSR_TS_T,	"T"},
1512	{MSR_TS_S,	"S"},
1513	{MSR_TM,	"E"},
1514	{0,		NULL}
1515};
1516
1517static void print_tm_bits(unsigned long val)
1518{
1519/*
1520 * This only prints something if at least one of the TM bit is set.
1521 * Inside the TM[], the output means:
1522 *   E: Enabled		(bit 32)
1523 *   S: Suspended	(bit 33)
1524 *   T: Transactional	(bit 34)
1525 */
1526	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1527		pr_cont(",TM[");
1528		print_bits(val, msr_tm_bits, "");
1529		pr_cont("]");
1530	}
1531}
1532#else
1533static void print_tm_bits(unsigned long val) {}
1534#endif
1535
1536static void print_msr_bits(unsigned long val)
1537{
1538	pr_cont("<");
1539	print_bits(val, msr_bits, ",");
1540	print_tm_bits(val);
1541	pr_cont(">");
1542}
1543
1544#ifdef CONFIG_PPC64
1545#define REG		"%016lx"
1546#define REGS_PER_LINE	4
 
1547#else
1548#define REG		"%08lx"
1549#define REGS_PER_LINE	8
 
1550#endif
1551
1552static void __show_regs(struct pt_regs *regs)
1553{
1554	int i, trap;
1555
1556	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
 
 
1557	       regs->nip, regs->link, regs->ctr);
1558	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1559	       regs, regs->trap, print_tainted(), init_utsname()->release);
1560	printk("MSR:  "REG" ", regs->msr);
1561	print_msr_bits(regs->msr);
1562	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1563	trap = TRAP(regs);
1564	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1565		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1566	if (trap == INTERRUPT_MACHINE_CHECK ||
1567	    trap == INTERRUPT_DATA_STORAGE ||
1568	    trap == INTERRUPT_ALIGNMENT) {
1569		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1570			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1571		else
1572			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1573	}
1574
1575#ifdef CONFIG_PPC64
1576	pr_cont("IRQMASK: %lx ", regs->softe);
1577#endif
1578#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1579	if (MSR_TM_ACTIVE(regs->msr))
1580		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1581#endif
1582
1583	for (i = 0;  i < 32;  i++) {
1584		if ((i % REGS_PER_LINE) == 0)
1585			pr_cont("\nGPR%02d: ", i);
1586		pr_cont(REG " ", regs->gpr[i]);
 
 
1587	}
1588	pr_cont("\n");
 
1589	/*
1590	 * Lookup NIP late so we have the best change of getting the
1591	 * above info out without failing
1592	 */
1593	if (IS_ENABLED(CONFIG_KALLSYMS)) {
1594		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1595		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1596	}
 
 
1597}
1598
1599void show_regs(struct pt_regs *regs)
1600{
1601	show_regs_print_info(KERN_DEFAULT);
1602	__show_regs(regs);
1603	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1604	if (!user_mode(regs))
1605		show_instructions(regs);
1606}
1607
1608void flush_thread(void)
1609{
1610#ifdef CONFIG_HAVE_HW_BREAKPOINT
1611	flush_ptrace_hw_breakpoint(current);
1612#else /* CONFIG_HAVE_HW_BREAKPOINT */
1613	set_debug_reg_defaults(&current->thread);
1614#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1615}
1616
1617void arch_setup_new_exec(void)
1618{
1619
1620#ifdef CONFIG_PPC_BOOK3S_64
1621	if (!radix_enabled())
1622		hash__setup_new_exec();
1623#endif
1624	/*
1625	 * If we exec out of a kernel thread then thread.regs will not be
1626	 * set.  Do it now.
1627	 */
1628	if (!current->thread.regs) {
1629		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1630		current->thread.regs = regs - 1;
1631	}
1632
1633#ifdef CONFIG_PPC_MEM_KEYS
1634	current->thread.regs->amr  = default_amr;
1635	current->thread.regs->iamr  = default_iamr;
1636#endif
1637}
1638
1639#ifdef CONFIG_PPC64
1640/*
1641 * Assign a TIDR (thread ID) for task @t and set it in the thread
1642 * structure. For now, we only support setting TIDR for 'current' task.
1643 *
1644 * Since the TID value is a truncated form of it PID, it is possible
1645 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1646 * that 2 threads share the same TID and are waiting, one of the following
1647 * cases will happen:
1648 *
1649 * 1. The correct thread is running, the wrong thread is not
1650 * In this situation, the correct thread is woken and proceeds to pass it's
1651 * condition check.
1652 *
1653 * 2. Neither threads are running
1654 * In this situation, neither thread will be woken. When scheduled, the waiting
1655 * threads will execute either a wait, which will return immediately, followed
1656 * by a condition check, which will pass for the correct thread and fail
1657 * for the wrong thread, or they will execute the condition check immediately.
1658 *
1659 * 3. The wrong thread is running, the correct thread is not
1660 * The wrong thread will be woken, but will fail it's condition check and
1661 * re-execute wait. The correct thread, when scheduled, will execute either
1662 * it's condition check (which will pass), or wait, which returns immediately
1663 * when called the first time after the thread is scheduled, followed by it's
1664 * condition check (which will pass).
1665 *
1666 * 4. Both threads are running
1667 * Both threads will be woken. The wrong thread will fail it's condition check
1668 * and execute another wait, while the correct thread will pass it's condition
1669 * check.
1670 *
1671 * @t: the task to set the thread ID for
1672 */
1673int set_thread_tidr(struct task_struct *t)
1674{
1675	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1676		return -EINVAL;
1677
1678	if (t != current)
1679		return -EINVAL;
1680
1681	if (t->thread.tidr)
1682		return 0;
1683
1684	t->thread.tidr = (u16)task_pid_nr(t);
1685	mtspr(SPRN_TIDR, t->thread.tidr);
1686
1687	return 0;
1688}
1689EXPORT_SYMBOL_GPL(set_thread_tidr);
1690
1691#endif /* CONFIG_PPC64 */
1692
1693/*
1694 * this gets called so that we can store coprocessor state into memory and
1695 * copy the current task into the new thread.
1696 */
1697int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1698{
1699	flush_all_to_thread(src);
1700	/*
1701	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1702	 * flush but it removes the checkpointed state from the current CPU and
1703	 * transitions the CPU out of TM mode.  Hence we need to call
1704	 * tm_recheckpoint_new_task() (on the same task) to restore the
1705	 * checkpointed state back and the TM mode.
1706	 *
1707	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1708	 * dst is only important for __switch_to()
1709	 */
1710	__switch_to_tm(src, src);
 
1711
1712	*dst = *src;
1713
1714	clear_task_ebb(dst);
1715
1716	return 0;
1717}
1718
1719static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1720{
1721#ifdef CONFIG_PPC_64S_HASH_MMU
1722	unsigned long sp_vsid;
1723	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1724
1725	if (radix_enabled())
1726		return;
1727
1728	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1729		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1730			<< SLB_VSID_SHIFT_1T;
1731	else
1732		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1733			<< SLB_VSID_SHIFT;
1734	sp_vsid |= SLB_VSID_KERNEL | llp;
1735	p->thread.ksp_vsid = sp_vsid;
1736#endif
1737}
1738
1739/*
1740 * Copy a thread..
1741 */
1742
1743/*
1744 * Copy architecture-specific thread state
1745 */
1746int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
 
1747{
1748	struct pt_regs *kregs; /* Switch frame regs */
1749	extern void ret_from_fork(void);
1750	extern void ret_from_fork_scv(void);
1751	extern void ret_from_kernel_user_thread(void);
1752	extern void start_kernel_thread(void);
1753	void (*f)(void);
1754	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1755#ifdef CONFIG_HAVE_HW_BREAKPOINT
1756	int i;
1757#endif
1758
1759	klp_init_thread_info(p);
1760
 
 
 
1761	if (unlikely(p->flags & PF_KTHREAD)) {
1762		/* kernel thread */
1763
1764		/* Create initial minimum stack frame. */
1765		sp -= STACK_FRAME_MIN_SIZE;
1766		((unsigned long *)sp)[0] = 0;
1767
1768		f = start_kernel_thread;
 
 
 
 
 
1769		p->thread.regs = NULL;	/* no user register state */
1770		clear_tsk_compat_task(p);
 
1771	} else {
1772		/* user thread */
1773		struct pt_regs *childregs;
1774
1775		/* Create initial user return stack frame. */
1776		sp -= STACK_USER_INT_FRAME_SIZE;
1777		*(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1778
1779		childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1780
1781		if (unlikely(args->fn)) {
1782			/*
1783			 * A user space thread, but it first runs a kernel
1784			 * thread, and then returns as though it had called
1785			 * execve rather than fork, so user regs will be
1786			 * filled in (e.g., by kernel_execve()).
1787			 */
1788			((unsigned long *)sp)[0] = 0;
1789			memset(childregs, 0, sizeof(struct pt_regs));
1790#ifdef CONFIG_PPC64
1791			childregs->softe = IRQS_ENABLED;
1792#endif
1793			f = ret_from_kernel_user_thread;
1794		} else {
1795			struct pt_regs *regs = current_pt_regs();
1796			unsigned long clone_flags = args->flags;
1797			unsigned long usp = args->stack;
1798
1799			/* Copy registers */
1800			*childregs = *regs;
1801			if (usp)
1802				childregs->gpr[1] = usp;
1803			((unsigned long *)sp)[0] = childregs->gpr[1];
1804#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1805			WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1806#endif
1807			if (clone_flags & CLONE_SETTLS) {
1808				unsigned long tls = args->tls;
1809
1810				if (!is_32bit_task())
1811					childregs->gpr[13] = tls;
1812				else
1813					childregs->gpr[2] = tls;
1814			}
1815
1816			if (trap_is_scv(regs))
1817				f = ret_from_fork_scv;
1818			else
1819				f = ret_from_fork;
 
1820		}
1821
1822		childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1823		p->thread.regs = childregs;
1824	}
 
 
1825
1826	/*
1827	 * The way this works is that at some point in the future
1828	 * some task will call _switch to switch to the new task.
1829	 * That will pop off the stack frame created below and start
1830	 * the new task running at ret_from_fork.  The new task will
1831	 * do some house keeping and then return from the fork or clone
1832	 * system call, using the stack frame created above.
1833	 */
1834	((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
1835	sp -= STACK_SWITCH_FRAME_SIZE;
1836	((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
1837	kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
1838	kregs->nip = ppc_function_entry(f);
1839	if (unlikely(args->fn)) {
1840		/*
1841		 * Put kthread fn, arg parameters in non-volatile GPRs in the
1842		 * switch frame so they are loaded by _switch before it returns
1843		 * to ret_from_kernel_thread.
1844		 */
1845		kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1846		kregs->gpr[15] = (unsigned long)args->fn_arg;
1847	}
1848	p->thread.ksp = sp;
1849
 
 
 
1850#ifdef CONFIG_HAVE_HW_BREAKPOINT
1851	for (i = 0; i < nr_wp_slots(); i++)
1852		p->thread.ptrace_bps[i] = NULL;
1853#endif
1854
1855#ifdef CONFIG_PPC_FPU_REGS
1856	p->thread.fp_save_area = NULL;
1857#endif
1858#ifdef CONFIG_ALTIVEC
1859	p->thread.vr_save_area = NULL;
1860#endif
1861#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1862	p->thread.kuap = KUAP_NONE;
1863#endif
1864#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1865	p->thread.pid = MMU_NO_CONTEXT;
1866#endif
1867
1868	setup_ksp_vsid(p, sp);
1869
1870#ifdef CONFIG_PPC64 
1871	if (cpu_has_feature(CPU_FTR_DSCR)) {
1872		p->thread.dscr_inherit = current->thread.dscr_inherit;
1873		p->thread.dscr = mfspr(SPRN_DSCR);
1874	}
1875
1876	p->thread.tidr = 0;
1877#endif
1878#ifdef CONFIG_PPC_BOOK3S_64
1879	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1880		p->thread.hashkeyr = current->thread.hashkeyr;
1881#endif
 
1882	return 0;
1883}
1884
1885void preload_new_slb_context(unsigned long start, unsigned long sp);
1886
1887/*
1888 * Set up a thread for executing a new program
1889 */
1890void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1891{
1892#ifdef CONFIG_PPC64
1893	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1894
1895	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1896		preload_new_slb_context(start, sp);
1897#endif
1898
1899#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1900	/*
1901	 * Clear any transactional state, we're exec()ing. The cause is
1902	 * not important as there will never be a recheckpoint so it's not
1903	 * user visible.
1904	 */
1905	if (MSR_TM_SUSPENDED(mfmsr()))
1906		tm_reclaim_current(0);
1907#endif
 
1908
1909	memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1910	regs->ctr = 0;
1911	regs->link = 0;
1912	regs->xer = 0;
1913	regs->ccr = 0;
1914	regs->gpr[1] = sp;
1915
 
 
 
 
 
 
 
1916#ifdef CONFIG_PPC32
1917	regs->mq = 0;
1918	regs->nip = start;
1919	regs->msr = MSR_USER;
1920#else
1921	if (!is_32bit_task()) {
1922		unsigned long entry;
1923
1924		if (is_elf2_task()) {
1925			/* Look ma, no function descriptors! */
1926			entry = start;
1927
1928			/*
1929			 * Ulrich says:
1930			 *   The latest iteration of the ABI requires that when
1931			 *   calling a function (at its global entry point),
1932			 *   the caller must ensure r12 holds the entry point
1933			 *   address (so that the function can quickly
1934			 *   establish addressability).
1935			 */
1936			regs->gpr[12] = start;
1937			/* Make sure that's restored on entry to userspace. */
1938			set_thread_flag(TIF_RESTOREALL);
1939		} else {
1940			unsigned long toc;
1941
1942			/* start is a relocated pointer to the function
1943			 * descriptor for the elf _start routine.  The first
1944			 * entry in the function descriptor is the entry
1945			 * address of _start and the second entry is the TOC
1946			 * value we need to use.
1947			 */
1948			__get_user(entry, (unsigned long __user *)start);
1949			__get_user(toc, (unsigned long __user *)start+1);
1950
1951			/* Check whether the e_entry function descriptor entries
1952			 * need to be relocated before we can use them.
1953			 */
1954			if (load_addr != 0) {
1955				entry += load_addr;
1956				toc   += load_addr;
1957			}
1958			regs->gpr[2] = toc;
1959		}
1960		regs_set_return_ip(regs, entry);
1961		regs_set_return_msr(regs, MSR_USER64);
1962	} else {
 
1963		regs->gpr[2] = 0;
1964		regs_set_return_ip(regs, start);
1965		regs_set_return_msr(regs, MSR_USER32);
1966	}
1967
1968#endif
1969#ifdef CONFIG_VSX
1970	current->thread.used_vsr = 0;
1971#endif
1972	current->thread.load_slb = 0;
1973	current->thread.load_fp = 0;
1974#ifdef CONFIG_PPC_FPU_REGS
1975	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1976	current->thread.fp_save_area = NULL;
1977#endif
1978#ifdef CONFIG_ALTIVEC
1979	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1980	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1981	current->thread.vr_save_area = NULL;
1982	current->thread.vrsave = 0;
1983	current->thread.used_vr = 0;
1984	current->thread.load_vec = 0;
1985#endif /* CONFIG_ALTIVEC */
1986#ifdef CONFIG_SPE
1987	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1988	current->thread.acc = 0;
1989	current->thread.spefscr = 0;
1990	current->thread.used_spe = 0;
1991#endif /* CONFIG_SPE */
1992#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
1993	current->thread.tm_tfhar = 0;
1994	current->thread.tm_texasr = 0;
1995	current->thread.tm_tfiar = 0;
1996	current->thread.load_tm = 0;
1997#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1998#ifdef CONFIG_PPC_BOOK3S_64
1999	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2000		current->thread.hashkeyr = get_random_long();
2001		mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2002	}
2003#endif /* CONFIG_PPC_BOOK3S_64 */
2004}
2005EXPORT_SYMBOL(start_thread);
2006
2007#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2008		| PR_FP_EXC_RES | PR_FP_EXC_INV)
2009
2010int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2011{
2012	struct pt_regs *regs = tsk->thread.regs;
2013
2014	/* This is a bit hairy.  If we are an SPE enabled  processor
2015	 * (have embedded fp) we store the IEEE exception enable flags in
2016	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
2017	 * mode (asyn, precise, disabled) for 'Classic' FP. */
2018	if (val & PR_FP_EXC_SW_ENABLE) {
 
2019		if (cpu_has_feature(CPU_FTR_SPE)) {
2020			/*
2021			 * When the sticky exception bits are set
2022			 * directly by userspace, it must call prctl
2023			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2024			 * in the existing prctl settings) or
2025			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2026			 * the bits being set).  <fenv.h> functions
2027			 * saving and restoring the whole
2028			 * floating-point environment need to do so
2029			 * anyway to restore the prctl settings from
2030			 * the saved environment.
2031			 */
2032#ifdef CONFIG_SPE
2033			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2034			tsk->thread.fpexc_mode = val &
2035				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
2036#endif
2037			return 0;
2038		} else {
2039			return -EINVAL;
2040		}
 
 
 
2041	}
2042
2043	/* on a CONFIG_SPE this does not hurt us.  The bits that
2044	 * __pack_fe01 use do not overlap with bits used for
2045	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
2046	 * on CONFIG_SPE implementations are reserved so writing to
2047	 * them does not change anything */
2048	if (val > PR_FP_EXC_PRECISE)
2049		return -EINVAL;
2050	tsk->thread.fpexc_mode = __pack_fe01(val);
2051	if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2052		regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2053						| tsk->thread.fpexc_mode);
2054	}
2055	return 0;
2056}
2057
2058int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2059{
2060	unsigned int val = 0;
2061
2062	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
 
2063		if (cpu_has_feature(CPU_FTR_SPE)) {
2064			/*
2065			 * When the sticky exception bits are set
2066			 * directly by userspace, it must call prctl
2067			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2068			 * in the existing prctl settings) or
2069			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2070			 * the bits being set).  <fenv.h> functions
2071			 * saving and restoring the whole
2072			 * floating-point environment need to do so
2073			 * anyway to restore the prctl settings from
2074			 * the saved environment.
2075			 */
2076#ifdef CONFIG_SPE
2077			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2078			val = tsk->thread.fpexc_mode;
2079#endif
2080		} else
2081			return -EINVAL;
2082	} else {
 
 
 
2083		val = __unpack_fe01(tsk->thread.fpexc_mode);
2084	}
2085	return put_user(val, (unsigned int __user *) adr);
2086}
2087
2088int set_endian(struct task_struct *tsk, unsigned int val)
2089{
2090	struct pt_regs *regs = tsk->thread.regs;
2091
2092	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2093	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2094		return -EINVAL;
2095
2096	if (regs == NULL)
2097		return -EINVAL;
2098
2099	if (val == PR_ENDIAN_BIG)
2100		regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2101	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2102		regs_set_return_msr(regs, regs->msr | MSR_LE);
2103	else
2104		return -EINVAL;
2105
2106	return 0;
2107}
2108
2109int get_endian(struct task_struct *tsk, unsigned long adr)
2110{
2111	struct pt_regs *regs = tsk->thread.regs;
2112	unsigned int val;
2113
2114	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2115	    !cpu_has_feature(CPU_FTR_REAL_LE))
2116		return -EINVAL;
2117
2118	if (regs == NULL)
2119		return -EINVAL;
2120
2121	if (regs->msr & MSR_LE) {
2122		if (cpu_has_feature(CPU_FTR_REAL_LE))
2123			val = PR_ENDIAN_LITTLE;
2124		else
2125			val = PR_ENDIAN_PPC_LITTLE;
2126	} else
2127		val = PR_ENDIAN_BIG;
2128
2129	return put_user(val, (unsigned int __user *)adr);
2130}
2131
2132int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2133{
2134	tsk->thread.align_ctl = val;
2135	return 0;
2136}
2137
2138int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2139{
2140	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2141}
2142
2143static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2144				  unsigned long nbytes)
2145{
2146	unsigned long stack_page;
2147	unsigned long cpu = task_cpu(p);
2148
2149	if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2150		return 0;
2151
2152	stack_page = (unsigned long)hardirq_ctx[cpu];
2153	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2154		return 1;
2155
2156	stack_page = (unsigned long)softirq_ctx[cpu];
2157	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2158		return 1;
2159
2160	return 0;
2161}
2162
2163static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2164					unsigned long nbytes)
2165{
2166#ifdef CONFIG_PPC64
2167	unsigned long stack_page;
2168	unsigned long cpu = task_cpu(p);
2169
2170	if (!paca_ptrs)
2171		return 0;
2172
2173	if (!paca_ptrs[cpu]->emergency_sp)
2174		return 0;
2175
2176# ifdef CONFIG_PPC_BOOK3S_64
2177	if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2178		return 0;
2179#endif
2180
2181	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2182	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2183		return 1;
2184
2185# ifdef CONFIG_PPC_BOOK3S_64
2186	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2187	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2188		return 1;
2189
2190	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2191	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2192		return 1;
2193# endif
2194#endif
2195
2196	return 0;
2197}
2198
2199/*
2200 * validate the stack frame of a particular minimum size, used for when we are
2201 * looking at a certain object in the stack beyond the minimum.
2202 */
2203int validate_sp_size(unsigned long sp, struct task_struct *p,
2204		     unsigned long nbytes)
2205{
2206	unsigned long stack_page = (unsigned long)task_stack_page(p);
2207
2208	if (sp < THREAD_SIZE)
2209		return 0;
2210
2211	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2212		return 1;
2213
2214	if (valid_irq_stack(sp, p, nbytes))
2215		return 1;
2216
2217	return valid_emergency_stack(sp, p, nbytes);
2218}
2219
2220int validate_sp(unsigned long sp, struct task_struct *p)
2221{
2222	return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
2223}
2224
2225static unsigned long ___get_wchan(struct task_struct *p)
2226{
2227	unsigned long ip, sp;
2228	int count = 0;
2229
 
 
 
2230	sp = p->thread.ksp;
2231	if (!validate_sp(sp, p))
2232		return 0;
2233
2234	do {
2235		sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2236		if (!validate_sp(sp, p) || task_is_running(p))
2237			return 0;
2238		if (count > 0) {
2239			ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2240			if (!in_sched_functions(ip))
2241				return ip;
2242		}
2243	} while (count++ < 16);
2244	return 0;
2245}
2246
2247unsigned long __get_wchan(struct task_struct *p)
2248{
2249	unsigned long ret;
2250
2251	if (!try_get_task_stack(p))
2252		return 0;
2253
2254	ret = ___get_wchan(p);
2255
2256	put_task_stack(p);
2257
2258	return ret;
2259}
2260
2261static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2262{
2263	unsigned long stack_page;
2264
2265	// A non-empty pt_regs should never have a zero MSR or TRAP value.
2266	if (regs->msr || regs->trap)
2267		return false;
2268
2269	// Check it sits at the very base of the stack
2270	stack_page = (unsigned long)task_stack_page(tsk);
2271	if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2272		return false;
2273
2274	return true;
2275}
2276
2277static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2278
2279void __no_sanitize_address show_stack(struct task_struct *tsk,
2280				      unsigned long *stack,
2281				      const char *loglvl)
2282{
2283	unsigned long sp, ip, lr, newsp;
2284	int count = 0;
2285	int firstframe = 1;
2286	unsigned long ret_addr;
2287	int ftrace_idx = 0;
 
 
 
2288
 
2289	if (tsk == NULL)
2290		tsk = current;
2291
2292	if (!try_get_task_stack(tsk))
2293		return;
2294
2295	sp = (unsigned long) stack;
2296	if (sp == 0) {
2297		if (tsk == current)
2298			sp = current_stack_frame();
2299		else
2300			sp = tsk->thread.ksp;
2301	}
2302
2303	lr = 0;
2304	printk("%sCall Trace:\n", loglvl);
2305	do {
2306		if (!validate_sp(sp, tsk))
2307			break;
2308
2309		stack = (unsigned long *) sp;
2310		newsp = stack[0];
2311		ip = stack[STACK_FRAME_LR_SAVE];
2312		if (!firstframe || ip != lr) {
2313			printk("%s["REG"] ["REG"] %pS",
2314				loglvl, sp, ip, (void *)ip);
2315			ret_addr = ftrace_graph_ret_addr(current,
2316						&ftrace_idx, ip, stack);
2317			if (ret_addr != ip)
2318				pr_cont(" (%pS)", (void *)ret_addr);
 
 
2319			if (firstframe)
2320				pr_cont(" (unreliable)");
2321			pr_cont("\n");
2322		}
2323		firstframe = 0;
2324
2325		/*
2326		 * See if this is an exception frame.
2327		 * We look for the "regs" marker in the current frame.
2328		 *
2329		 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2330		 * could hold a pt_regs, if that does not fit then it can't
2331		 * have regs.
2332		 */
2333		if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
2334		    && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
2335			struct pt_regs *regs = (struct pt_regs *)
2336				(sp + STACK_INT_FRAME_REGS);
2337
2338			lr = regs->link;
2339			printk("%s--- interrupt: %lx at %pS\n",
2340			       loglvl, regs->trap, (void *)regs->nip);
2341
2342			// Detect the case of an empty pt_regs at the very base
2343			// of the stack and suppress showing it in full.
2344			if (!empty_user_regs(regs, tsk)) {
2345				__show_regs(regs);
2346				printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2347			}
2348
2349			firstframe = 1;
2350		}
2351
2352		sp = newsp;
2353	} while (count++ < kstack_depth_to_print);
2354
2355	put_task_stack(tsk);
2356}
2357
2358#ifdef CONFIG_PPC64
2359/* Called with hard IRQs off */
2360void notrace __ppc64_runlatch_on(void)
2361{
2362	struct thread_info *ti = current_thread_info();
 
2363
2364	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2365		/*
2366		 * Least significant bit (RUN) is the only writable bit of
2367		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2368		 * earliest ISA where this is the case, but it's convenient.
2369		 */
2370		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2371	} else {
2372		unsigned long ctrl;
2373
2374		/*
2375		 * Some architectures (e.g., Cell) have writable fields other
2376		 * than RUN, so do the read-modify-write.
2377		 */
2378		ctrl = mfspr(SPRN_CTRLF);
2379		ctrl |= CTRL_RUNLATCH;
2380		mtspr(SPRN_CTRLT, ctrl);
2381	}
2382
2383	ti->local_flags |= _TLF_RUNLATCH;
2384}
2385
2386/* Called with hard IRQs off */
2387void notrace __ppc64_runlatch_off(void)
2388{
2389	struct thread_info *ti = current_thread_info();
 
2390
2391	ti->local_flags &= ~_TLF_RUNLATCH;
2392
2393	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2394		mtspr(SPRN_CTRLT, 0);
2395	} else {
2396		unsigned long ctrl;
2397
2398		ctrl = mfspr(SPRN_CTRLF);
2399		ctrl &= ~CTRL_RUNLATCH;
2400		mtspr(SPRN_CTRLT, ctrl);
2401	}
2402}
2403#endif /* CONFIG_PPC64 */
2404
2405unsigned long arch_align_stack(unsigned long sp)
2406{
2407	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2408		sp -= get_random_u32_below(PAGE_SIZE);
2409	return sp & ~0xf;
2410}
v4.6
 
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
 
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/slab.h>
  26#include <linux/user.h>
  27#include <linux/elf.h>
  28#include <linux/prctl.h>
  29#include <linux/init_task.h>
  30#include <linux/export.h>
  31#include <linux/kallsyms.h>
  32#include <linux/mqueue.h>
  33#include <linux/hardirq.h>
  34#include <linux/utsname.h>
  35#include <linux/ftrace.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/personality.h>
  38#include <linux/random.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/uaccess.h>
 
 
  41
  42#include <asm/pgtable.h>
  43#include <asm/io.h>
  44#include <asm/processor.h>
  45#include <asm/mmu.h>
  46#include <asm/prom.h>
  47#include <asm/machdep.h>
  48#include <asm/time.h>
  49#include <asm/runlatch.h>
  50#include <asm/syscalls.h>
  51#include <asm/switch_to.h>
  52#include <asm/tm.h>
  53#include <asm/debug.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/firmware.h>
 
  56#endif
  57#include <asm/code-patching.h>
 
 
 
 
 
 
 
  58#include <linux/kprobes.h>
  59#include <linux/kdebug.h>
  60
  61/* Transactional Memory debug */
  62#ifdef TM_DEBUG_SW
  63#define TM_DEBUG(x...) printk(KERN_INFO x)
  64#else
  65#define TM_DEBUG(x...) do { } while(0)
  66#endif
  67
  68extern unsigned long _get_SP(void);
  69
  70#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
 
 
 
 
 
  71static void check_if_tm_restore_required(struct task_struct *tsk)
  72{
  73	/*
  74	 * If we are saving the current thread's registers, and the
  75	 * thread is in a transactional state, set the TIF_RESTORE_TM
  76	 * bit so that we know to restore the registers before
  77	 * returning to userspace.
  78	 */
  79	if (tsk == current && tsk->thread.regs &&
  80	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  81	    !test_thread_flag(TIF_RESTORE_TM)) {
  82		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
 
  83		set_thread_flag(TIF_RESTORE_TM);
  84	}
  85}
 
  86#else
  87static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
  88#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  89
  90bool strict_msr_control;
  91EXPORT_SYMBOL(strict_msr_control);
  92
  93static int __init enable_strict_msr_control(char *str)
  94{
  95	strict_msr_control = true;
  96	pr_info("Enabling strict facility control\n");
  97
  98	return 0;
  99}
 100early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 101
 102void msr_check_and_set(unsigned long bits)
 
 103{
 104	unsigned long oldmsr = mfmsr();
 105	unsigned long newmsr;
 106
 107	newmsr = oldmsr | bits;
 108
 109#ifdef CONFIG_VSX
 110	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 111		newmsr |= MSR_VSX;
 112#endif
 113
 114	if (oldmsr != newmsr)
 115		mtmsr_isync(newmsr);
 
 
 116}
 
 117
 118void __msr_check_and_clear(unsigned long bits)
 
 119{
 120	unsigned long oldmsr = mfmsr();
 121	unsigned long newmsr;
 122
 123	newmsr = oldmsr & ~bits;
 124
 125#ifdef CONFIG_VSX
 126	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 127		newmsr &= ~MSR_VSX;
 128#endif
 129
 130	if (oldmsr != newmsr)
 131		mtmsr_isync(newmsr);
 132}
 133EXPORT_SYMBOL(__msr_check_and_clear);
 134
 135#ifdef CONFIG_PPC_FPU
 136void __giveup_fpu(struct task_struct *tsk)
 137{
 
 
 138	save_fpu(tsk);
 139	tsk->thread.regs->msr &= ~MSR_FP;
 140#ifdef CONFIG_VSX
 141	if (cpu_has_feature(CPU_FTR_VSX))
 142		tsk->thread.regs->msr &= ~MSR_VSX;
 143#endif
 144}
 145
 146void giveup_fpu(struct task_struct *tsk)
 147{
 148	check_if_tm_restore_required(tsk);
 149
 150	msr_check_and_set(MSR_FP);
 151	__giveup_fpu(tsk);
 152	msr_check_and_clear(MSR_FP);
 153}
 154EXPORT_SYMBOL(giveup_fpu);
 155
 156/*
 157 * Make sure the floating-point register state in the
 158 * the thread_struct is up to date for task tsk.
 159 */
 160void flush_fp_to_thread(struct task_struct *tsk)
 161{
 162	if (tsk->thread.regs) {
 163		/*
 164		 * We need to disable preemption here because if we didn't,
 165		 * another process could get scheduled after the regs->msr
 166		 * test but before we have finished saving the FP registers
 167		 * to the thread_struct.  That process could take over the
 168		 * FPU, and then when we get scheduled again we would store
 169		 * bogus values for the remaining FP registers.
 170		 */
 171		preempt_disable();
 172		if (tsk->thread.regs->msr & MSR_FP) {
 173			/*
 174			 * This should only ever be called for current or
 175			 * for a stopped child process.  Since we save away
 176			 * the FP register state on context switch,
 177			 * there is something wrong if a stopped child appears
 178			 * to still have its FP state in the CPU registers.
 179			 */
 180			BUG_ON(tsk != current);
 181			giveup_fpu(tsk);
 182		}
 183		preempt_enable();
 184	}
 185}
 186EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 187
 188void enable_kernel_fp(void)
 189{
 
 
 190	WARN_ON(preemptible());
 191
 192	msr_check_and_set(MSR_FP);
 193
 194	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 195		check_if_tm_restore_required(current);
 
 
 
 
 
 
 
 
 
 
 196		__giveup_fpu(current);
 197	}
 198}
 199EXPORT_SYMBOL(enable_kernel_fp);
 200
 201static int restore_fp(struct task_struct *tsk) {
 202	if (tsk->thread.load_fp) {
 203		load_fp_state(&current->thread.fp_state);
 204		current->thread.load_fp++;
 205		return 1;
 206	}
 207	return 0;
 208}
 209#else
 210static int restore_fp(struct task_struct *tsk) { return 0; }
 211#endif /* CONFIG_PPC_FPU */
 212
 213#ifdef CONFIG_ALTIVEC
 214#define loadvec(thr) ((thr).load_vec)
 215
 216static void __giveup_altivec(struct task_struct *tsk)
 217{
 
 
 218	save_altivec(tsk);
 219	tsk->thread.regs->msr &= ~MSR_VEC;
 220#ifdef CONFIG_VSX
 221	if (cpu_has_feature(CPU_FTR_VSX))
 222		tsk->thread.regs->msr &= ~MSR_VSX;
 223#endif
 224}
 225
 226void giveup_altivec(struct task_struct *tsk)
 227{
 228	check_if_tm_restore_required(tsk);
 229
 230	msr_check_and_set(MSR_VEC);
 231	__giveup_altivec(tsk);
 232	msr_check_and_clear(MSR_VEC);
 233}
 234EXPORT_SYMBOL(giveup_altivec);
 235
 236void enable_kernel_altivec(void)
 237{
 
 
 238	WARN_ON(preemptible());
 239
 240	msr_check_and_set(MSR_VEC);
 241
 242	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 243		check_if_tm_restore_required(current);
 
 
 
 
 
 
 
 
 
 
 244		__giveup_altivec(current);
 245	}
 246}
 247EXPORT_SYMBOL(enable_kernel_altivec);
 248
 249/*
 250 * Make sure the VMX/Altivec register state in the
 251 * the thread_struct is up to date for task tsk.
 252 */
 253void flush_altivec_to_thread(struct task_struct *tsk)
 254{
 255	if (tsk->thread.regs) {
 256		preempt_disable();
 257		if (tsk->thread.regs->msr & MSR_VEC) {
 258			BUG_ON(tsk != current);
 259			giveup_altivec(tsk);
 260		}
 261		preempt_enable();
 262	}
 263}
 264EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 265
 266static int restore_altivec(struct task_struct *tsk)
 267{
 268	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
 269		load_vr_state(&tsk->thread.vr_state);
 270		tsk->thread.used_vr = 1;
 271		tsk->thread.load_vec++;
 272
 273		return 1;
 274	}
 275	return 0;
 276}
 277#else
 278#define loadvec(thr) 0
 279static inline int restore_altivec(struct task_struct *tsk) { return 0; }
 280#endif /* CONFIG_ALTIVEC */
 281
 282#ifdef CONFIG_VSX
 283static void __giveup_vsx(struct task_struct *tsk)
 284{
 285	if (tsk->thread.regs->msr & MSR_FP)
 
 
 
 
 
 
 
 
 
 286		__giveup_fpu(tsk);
 287	if (tsk->thread.regs->msr & MSR_VEC)
 288		__giveup_altivec(tsk);
 289	tsk->thread.regs->msr &= ~MSR_VSX;
 290}
 291
 292static void giveup_vsx(struct task_struct *tsk)
 293{
 294	check_if_tm_restore_required(tsk);
 295
 296	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 297	__giveup_vsx(tsk);
 298	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 299}
 300
 301static void save_vsx(struct task_struct *tsk)
 302{
 303	if (tsk->thread.regs->msr & MSR_FP)
 304		save_fpu(tsk);
 305	if (tsk->thread.regs->msr & MSR_VEC)
 306		save_altivec(tsk);
 307}
 308
 309void enable_kernel_vsx(void)
 310{
 311	WARN_ON(preemptible());
 312
 313	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 314
 315	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
 
 316		check_if_tm_restore_required(current);
 317		if (current->thread.regs->msr & MSR_FP)
 318			__giveup_fpu(current);
 319		if (current->thread.regs->msr & MSR_VEC)
 320			__giveup_altivec(current);
 
 
 
 
 
 
 321		__giveup_vsx(current);
 322	}
 323}
 324EXPORT_SYMBOL(enable_kernel_vsx);
 325
 326void flush_vsx_to_thread(struct task_struct *tsk)
 327{
 328	if (tsk->thread.regs) {
 329		preempt_disable();
 330		if (tsk->thread.regs->msr & MSR_VSX) {
 331			BUG_ON(tsk != current);
 332			giveup_vsx(tsk);
 333		}
 334		preempt_enable();
 335	}
 336}
 337EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 338
 339static int restore_vsx(struct task_struct *tsk)
 340{
 341	if (cpu_has_feature(CPU_FTR_VSX)) {
 342		tsk->thread.used_vsr = 1;
 343		return 1;
 344	}
 345
 346	return 0;
 347}
 348#else
 349static inline int restore_vsx(struct task_struct *tsk) { return 0; }
 350static inline void save_vsx(struct task_struct *tsk) { }
 351#endif /* CONFIG_VSX */
 352
 353#ifdef CONFIG_SPE
 354void giveup_spe(struct task_struct *tsk)
 355{
 356	check_if_tm_restore_required(tsk);
 357
 358	msr_check_and_set(MSR_SPE);
 359	__giveup_spe(tsk);
 360	msr_check_and_clear(MSR_SPE);
 361}
 362EXPORT_SYMBOL(giveup_spe);
 363
 364void enable_kernel_spe(void)
 365{
 366	WARN_ON(preemptible());
 367
 368	msr_check_and_set(MSR_SPE);
 369
 370	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 371		check_if_tm_restore_required(current);
 372		__giveup_spe(current);
 373	}
 374}
 375EXPORT_SYMBOL(enable_kernel_spe);
 376
 377void flush_spe_to_thread(struct task_struct *tsk)
 378{
 379	if (tsk->thread.regs) {
 380		preempt_disable();
 381		if (tsk->thread.regs->msr & MSR_SPE) {
 382			BUG_ON(tsk != current);
 383			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 384			giveup_spe(tsk);
 385		}
 386		preempt_enable();
 387	}
 388}
 389#endif /* CONFIG_SPE */
 390
 391static unsigned long msr_all_available;
 392
 393static int __init init_msr_all_available(void)
 394{
 395#ifdef CONFIG_PPC_FPU
 396	msr_all_available |= MSR_FP;
 397#endif
 398#ifdef CONFIG_ALTIVEC
 399	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 400		msr_all_available |= MSR_VEC;
 401#endif
 402#ifdef CONFIG_VSX
 403	if (cpu_has_feature(CPU_FTR_VSX))
 404		msr_all_available |= MSR_VSX;
 405#endif
 406#ifdef CONFIG_SPE
 407	if (cpu_has_feature(CPU_FTR_SPE))
 408		msr_all_available |= MSR_SPE;
 409#endif
 410
 411	return 0;
 412}
 413early_initcall(init_msr_all_available);
 414
 415void giveup_all(struct task_struct *tsk)
 416{
 417	unsigned long usermsr;
 418
 419	if (!tsk->thread.regs)
 420		return;
 421
 
 
 422	usermsr = tsk->thread.regs->msr;
 423
 424	if ((usermsr & msr_all_available) == 0)
 425		return;
 426
 427	msr_check_and_set(msr_all_available);
 428
 429#ifdef CONFIG_PPC_FPU
 
 430	if (usermsr & MSR_FP)
 431		__giveup_fpu(tsk);
 432#endif
 433#ifdef CONFIG_ALTIVEC
 434	if (usermsr & MSR_VEC)
 435		__giveup_altivec(tsk);
 436#endif
 437#ifdef CONFIG_VSX
 438	if (usermsr & MSR_VSX)
 439		__giveup_vsx(tsk);
 440#endif
 441#ifdef CONFIG_SPE
 442	if (usermsr & MSR_SPE)
 443		__giveup_spe(tsk);
 444#endif
 445
 446	msr_check_and_clear(msr_all_available);
 447}
 448EXPORT_SYMBOL(giveup_all);
 449
 450void restore_math(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451{
 452	unsigned long msr;
 453
 454	if (!current->thread.load_fp && !loadvec(current->thread))
 455		return;
 456
 457	msr = regs->msr;
 458	msr_check_and_set(msr_all_available);
 459
 460	/*
 461	 * Only reload if the bit is not set in the user MSR, the bit BEING set
 462	 * indicates that the registers are hot
 
 463	 */
 464	if ((!(msr & MSR_FP)) && restore_fp(current))
 465		msr |= MSR_FP | current->thread.fpexc_mode;
 466
 467	if ((!(msr & MSR_VEC)) && restore_altivec(current))
 468		msr |= MSR_VEC;
 469
 470	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
 471			restore_vsx(current)) {
 472		msr |= MSR_VSX;
 473	}
 474
 475	msr_check_and_clear(msr_all_available);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	regs->msr = msr;
 
 478}
 
 479
 480void save_all(struct task_struct *tsk)
 481{
 482	unsigned long usermsr;
 483
 484	if (!tsk->thread.regs)
 485		return;
 486
 487	usermsr = tsk->thread.regs->msr;
 488
 489	if ((usermsr & msr_all_available) == 0)
 490		return;
 491
 492	msr_check_and_set(msr_all_available);
 493
 494	/*
 495	 * Saving the way the register space is in hardware, save_vsx boils
 496	 * down to a save_fpu() and save_altivec()
 497	 */
 498	if (usermsr & MSR_VSX) {
 499		save_vsx(tsk);
 500	} else {
 501		if (usermsr & MSR_FP)
 502			save_fpu(tsk);
 503
 504		if (usermsr & MSR_VEC)
 505			save_altivec(tsk);
 506	}
 507
 508	if (usermsr & MSR_SPE)
 509		__giveup_spe(tsk);
 510
 511	msr_check_and_clear(msr_all_available);
 512}
 513
 514void flush_all_to_thread(struct task_struct *tsk)
 515{
 516	if (tsk->thread.regs) {
 517		preempt_disable();
 518		BUG_ON(tsk != current);
 519		save_all(tsk);
 520
 521#ifdef CONFIG_SPE
 522		if (tsk->thread.regs->msr & MSR_SPE)
 523			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 524#endif
 
 525
 526		preempt_enable();
 527	}
 528}
 529EXPORT_SYMBOL(flush_all_to_thread);
 530
 531#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 532void do_send_trap(struct pt_regs *regs, unsigned long address,
 533		  unsigned long error_code, int signal_code, int breakpt)
 534{
 535	siginfo_t info;
 536
 537	current->thread.trap_nr = signal_code;
 538	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 539			11, SIGSEGV) == NOTIFY_STOP)
 540		return;
 541
 542	/* Deliver the signal to userspace */
 543	info.si_signo = SIGTRAP;
 544	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
 545	info.si_code = signal_code;
 546	info.si_addr = (void __user *)address;
 547	force_sig_info(SIGTRAP, &info, current);
 548}
 549#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 550void do_break (struct pt_regs *regs, unsigned long address,
 551		    unsigned long error_code)
 552{
 553	siginfo_t info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555	current->thread.trap_nr = TRAP_HWBKPT;
 556	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 557			11, SIGSEGV) == NOTIFY_STOP)
 558		return;
 559
 560	if (debugger_break_match(regs))
 561		return;
 562
 563	/* Clear the breakpoint */
 564	hw_breakpoint_disable();
 
 
 
 
 
 
 
 565
 566	/* Deliver the signal to userspace */
 567	info.si_signo = SIGTRAP;
 568	info.si_errno = 0;
 569	info.si_code = TRAP_HWBKPT;
 570	info.si_addr = (void __user *)address;
 571	force_sig_info(SIGTRAP, &info, current);
 572}
 573#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 574
 575static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 576
 577#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 578/*
 579 * Set the debug registers back to their default "safe" values.
 580 */
 581static void set_debug_reg_defaults(struct thread_struct *thread)
 582{
 583	thread->debug.iac1 = thread->debug.iac2 = 0;
 584#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 585	thread->debug.iac3 = thread->debug.iac4 = 0;
 586#endif
 587	thread->debug.dac1 = thread->debug.dac2 = 0;
 588#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 589	thread->debug.dvc1 = thread->debug.dvc2 = 0;
 590#endif
 591	thread->debug.dbcr0 = 0;
 592#ifdef CONFIG_BOOKE
 593	/*
 594	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 595	 */
 596	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 597			DBCR1_IAC3US | DBCR1_IAC4US;
 598	/*
 599	 * Force Data Address Compare User/Supervisor bits to be User-only
 600	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 601	 */
 602	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 603#else
 604	thread->debug.dbcr1 = 0;
 605#endif
 606}
 607
 608static void prime_debug_regs(struct debug_reg *debug)
 609{
 610	/*
 611	 * We could have inherited MSR_DE from userspace, since
 612	 * it doesn't get cleared on exception entry.  Make sure
 613	 * MSR_DE is clear before we enable any debug events.
 614	 */
 615	mtmsr(mfmsr() & ~MSR_DE);
 616
 617	mtspr(SPRN_IAC1, debug->iac1);
 618	mtspr(SPRN_IAC2, debug->iac2);
 619#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 620	mtspr(SPRN_IAC3, debug->iac3);
 621	mtspr(SPRN_IAC4, debug->iac4);
 622#endif
 623	mtspr(SPRN_DAC1, debug->dac1);
 624	mtspr(SPRN_DAC2, debug->dac2);
 625#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 626	mtspr(SPRN_DVC1, debug->dvc1);
 627	mtspr(SPRN_DVC2, debug->dvc2);
 628#endif
 629	mtspr(SPRN_DBCR0, debug->dbcr0);
 630	mtspr(SPRN_DBCR1, debug->dbcr1);
 631#ifdef CONFIG_BOOKE
 632	mtspr(SPRN_DBCR2, debug->dbcr2);
 633#endif
 634}
 635/*
 636 * Unless neither the old or new thread are making use of the
 637 * debug registers, set the debug registers from the values
 638 * stored in the new thread.
 639 */
 640void switch_booke_debug_regs(struct debug_reg *new_debug)
 641{
 642	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 643		|| (new_debug->dbcr0 & DBCR0_IDM))
 644			prime_debug_regs(new_debug);
 645}
 646EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 647#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 648#ifndef CONFIG_HAVE_HW_BREAKPOINT
 649static void set_debug_reg_defaults(struct thread_struct *thread)
 650{
 651	thread->hw_brk.address = 0;
 652	thread->hw_brk.type = 0;
 653	set_breakpoint(&thread->hw_brk);
 654}
 655#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 656#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 657
 658#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 659static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 660{
 661	mtspr(SPRN_DAC1, dabr);
 662#ifdef CONFIG_PPC_47x
 663	isync();
 664#endif
 665	return 0;
 
 
 
 666}
 667#elif defined(CONFIG_PPC_BOOK3S)
 668static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 
 669{
 670	mtspr(SPRN_DABR, dabr);
 671	if (cpu_has_feature(CPU_FTR_DABRX))
 672		mtspr(SPRN_DABRX, dabrx);
 673	return 0;
 
 
 
 
 674}
 675#else
 676static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 677{
 678	return -EINVAL;
 
 
 
 
 
 
 
 
 679}
 680#endif
 
 681
 682static inline int set_dabr(struct arch_hw_breakpoint *brk)
 683{
 684	unsigned long dabr, dabrx;
 685
 686	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 687	dabrx = ((brk->type >> 3) & 0x7);
 688
 689	if (ppc_md.set_dabr)
 690		return ppc_md.set_dabr(dabr, dabrx);
 691
 692	return __set_dabr(dabr, dabrx);
 
 
 
 
 
 
 
 
 
 
 
 
 693}
 694
 695static inline int set_dawr(struct arch_hw_breakpoint *brk)
 696{
 697	unsigned long dawr, dawrx, mrd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	dawr = brk->address;
 
 
 
 
 
 
 
 
 700
 701	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 702		                   << (63 - 58); //* read/write bits */
 703	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 704		                   << (63 - 59); //* translate */
 705	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 706		                   >> 3; //* PRIM bits */
 707	/* dawr length is stored in field MDR bits 48:53.  Matches range in
 708	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 709	   0b111111=64DW.
 710	   brk->len is in bytes.
 711	   This aligns up to double word size, shifts and does the bias.
 712	*/
 713	mrd = ((brk->len + 7) >> 3) - 1;
 714	dawrx |= (mrd & 0x3f) << (63 - 53);
 715
 716	if (ppc_md.set_dawr)
 717		return ppc_md.set_dawr(dawr, dawrx);
 718	mtspr(SPRN_DAWR, dawr);
 719	mtspr(SPRN_DAWRX, dawrx);
 720	return 0;
 721}
 722
 723void __set_breakpoint(struct arch_hw_breakpoint *brk)
 724{
 725	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 
 
 
 
 
 
 
 
 
 
 
 726
 727	if (cpu_has_feature(CPU_FTR_DAWR))
 728		set_dawr(brk);
 729	else
 730		set_dabr(brk);
 731}
 732
 733void set_breakpoint(struct arch_hw_breakpoint *brk)
 
 734{
 735	preempt_disable();
 736	__set_breakpoint(brk);
 737	preempt_enable();
 
 
 
 738}
 
 
 
 
 
 
 
 739
 740#ifdef CONFIG_PPC64
 741DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 742#endif
 
 
 
 743
 744static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 745			      struct arch_hw_breakpoint *b)
 
 
 
 746{
 747	if (a->address != b->address)
 748		return false;
 749	if (a->type != b->type)
 750		return false;
 751	if (a->len != b->len)
 752		return false;
 753	return true;
 754}
 755
 756#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 757static void tm_reclaim_thread(struct thread_struct *thr,
 758			      struct thread_info *ti, uint8_t cause)
 759{
 760	unsigned long msr_diff = 0;
 761
 762	/*
 763	 * If FP/VSX registers have been already saved to the
 764	 * thread_struct, move them to the transact_fp array.
 765	 * We clear the TIF_RESTORE_TM bit since after the reclaim
 766	 * the thread will no longer be transactional.
 767	 */
 768	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
 769		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
 770		if (msr_diff & MSR_FP)
 771			memcpy(&thr->transact_fp, &thr->fp_state,
 772			       sizeof(struct thread_fp_state));
 773		if (msr_diff & MSR_VEC)
 774			memcpy(&thr->transact_vr, &thr->vr_state,
 775			       sizeof(struct thread_vr_state));
 776		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
 777		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
 778	}
 779
 
 
 780	/*
 781	 * Use the current MSR TM suspended bit to track if we have
 782	 * checkpointed state outstanding.
 783	 * On signal delivery, we'd normally reclaim the checkpointed
 784	 * state to obtain stack pointer (see:get_tm_stackpointer()).
 785	 * This will then directly return to userspace without going
 786	 * through __switch_to(). However, if the stack frame is bad,
 787	 * we need to exit this thread which calls __switch_to() which
 788	 * will again attempt to reclaim the already saved tm state.
 789	 * Hence we need to check that we've not already reclaimed
 790	 * this state.
 791	 * We do this using the current MSR, rather tracking it in
 792	 * some specific thread_struct bit, as it has the additional
 793	 * benifit of checking for a potential TM bad thing exception.
 794	 */
 795	if (!MSR_TM_SUSPENDED(mfmsr()))
 796		return;
 797
 798	tm_reclaim(thr, thr->regs->msr, cause);
 799
 800	/* Having done the reclaim, we now have the checkpointed
 801	 * FP/VSX values in the registers.  These might be valid
 802	 * even if we have previously called enable_kernel_fp() or
 803	 * flush_fp_to_thread(), so update thr->regs->msr to
 804	 * indicate their current validity.
 805	 */
 806	thr->regs->msr |= msr_diff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 807}
 808
 809void tm_reclaim_current(uint8_t cause)
 810{
 811	tm_enable();
 812	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
 813}
 814
 815static inline void tm_reclaim_task(struct task_struct *tsk)
 816{
 817	/* We have to work out if we're switching from/to a task that's in the
 818	 * middle of a transaction.
 819	 *
 820	 * In switching we need to maintain a 2nd register state as
 821	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 822	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
 823	 * (current) FPRs into oldtask->thread.transact_fpr[].
 824	 *
 825	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 826	 */
 827	struct thread_struct *thr = &tsk->thread;
 828
 829	if (!thr->regs)
 830		return;
 831
 832	if (!MSR_TM_ACTIVE(thr->regs->msr))
 833		goto out_and_saveregs;
 834
 835	/* Stash the original thread MSR, as giveup_fpu et al will
 836	 * modify it.  We hold onto it to see whether the task used
 837	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
 838	 * ckpt_regs.msr is already set.
 839	 */
 840	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
 841		thr->ckpt_regs.msr = thr->regs->msr;
 842
 843	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 844		 "ccr=%lx, msr=%lx, trap=%lx)\n",
 845		 tsk->pid, thr->regs->nip,
 846		 thr->regs->ccr, thr->regs->msr,
 847		 thr->regs->trap);
 848
 849	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
 850
 851	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 852		 tsk->pid);
 853
 854out_and_saveregs:
 855	/* Always save the regs here, even if a transaction's not active.
 856	 * This context-switches a thread's TM info SPRs.  We do it here to
 857	 * be consistent with the restore path (in recheckpoint) which
 858	 * cannot happen later in _switch().
 859	 */
 860	tm_save_sprs(thr);
 861}
 862
 863extern void __tm_recheckpoint(struct thread_struct *thread,
 864			      unsigned long orig_msr);
 865
 866void tm_recheckpoint(struct thread_struct *thread,
 867		     unsigned long orig_msr)
 868{
 869	unsigned long flags;
 870
 
 
 
 871	/* We really can't be interrupted here as the TEXASR registers can't
 872	 * change and later in the trecheckpoint code, we have a userspace R1.
 873	 * So let's hard disable over this region.
 874	 */
 875	local_irq_save(flags);
 876	hard_irq_disable();
 877
 878	/* The TM SPRs are restored here, so that TEXASR.FS can be set
 879	 * before the trecheckpoint and no explosion occurs.
 880	 */
 881	tm_restore_sprs(thread);
 882
 883	__tm_recheckpoint(thread, orig_msr);
 884
 885	local_irq_restore(flags);
 886}
 887
 888static inline void tm_recheckpoint_new_task(struct task_struct *new)
 889{
 890	unsigned long msr;
 891
 892	if (!cpu_has_feature(CPU_FTR_TM))
 893		return;
 894
 895	/* Recheckpoint the registers of the thread we're about to switch to.
 896	 *
 897	 * If the task was using FP, we non-lazily reload both the original and
 898	 * the speculative FP register states.  This is because the kernel
 899	 * doesn't see if/when a TM rollback occurs, so if we take an FP
 900	 * unavoidable later, we are unable to determine which set of FP regs
 901	 * need to be restored.
 902	 */
 903	if (!new->thread.regs)
 904		return;
 905
 906	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 907		tm_restore_sprs(&new->thread);
 908		return;
 909	}
 910	msr = new->thread.ckpt_regs.msr;
 911	/* Recheckpoint to restore original checkpointed register state. */
 912	TM_DEBUG("*** tm_recheckpoint of pid %d "
 913		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 914		 new->pid, new->thread.regs->msr, msr);
 915
 916	/* This loads the checkpointed FP/VEC state, if used */
 917	tm_recheckpoint(&new->thread, msr);
 918
 919	/* This loads the speculative FP/VEC state, if used */
 920	if (msr & MSR_FP) {
 921		do_load_up_transact_fpu(&new->thread);
 922		new->thread.regs->msr |=
 923			(MSR_FP | new->thread.fpexc_mode);
 924	}
 925#ifdef CONFIG_ALTIVEC
 926	if (msr & MSR_VEC) {
 927		do_load_up_transact_altivec(&new->thread);
 928		new->thread.regs->msr |= MSR_VEC;
 929	}
 930#endif
 931	/* We may as well turn on VSX too since all the state is restored now */
 932	if (msr & MSR_VSX)
 933		new->thread.regs->msr |= MSR_VSX;
 934
 935	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 936		 "(kernel msr 0x%lx)\n",
 937		 new->pid, mfmsr());
 938}
 939
 940static inline void __switch_to_tm(struct task_struct *prev)
 
 941{
 942	if (cpu_has_feature(CPU_FTR_TM)) {
 943		tm_enable();
 944		tm_reclaim_task(prev);
 
 
 
 
 
 
 
 
 
 945	}
 946}
 947
 948/*
 949 * This is called if we are on the way out to userspace and the
 950 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 951 * FP and/or vector state and does so if necessary.
 952 * If userspace is inside a transaction (whether active or
 953 * suspended) and FP/VMX/VSX instructions have ever been enabled
 954 * inside that transaction, then we have to keep them enabled
 955 * and keep the FP/VMX/VSX state loaded while ever the transaction
 956 * continues.  The reason is that if we didn't, and subsequently
 957 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 958 * we don't know whether it's the same transaction, and thus we
 959 * don't know which of the checkpointed state and the transactional
 960 * state to use.
 961 */
 962void restore_tm_state(struct pt_regs *regs)
 963{
 964	unsigned long msr_diff;
 965
 
 
 
 
 
 
 966	clear_thread_flag(TIF_RESTORE_TM);
 967	if (!MSR_TM_ACTIVE(regs->msr))
 968		return;
 969
 970	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
 971	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
 972
 
 
 
 
 
 
 
 973	restore_math(regs);
 974
 975	regs->msr |= msr_diff;
 976}
 977
 978#else
 979#define tm_recheckpoint_new_task(new)
 980#define __switch_to_tm(prev)
 
 981#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 982
 983static inline void save_sprs(struct thread_struct *t)
 984{
 985#ifdef CONFIG_ALTIVEC
 986	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 987		t->vrsave = mfspr(SPRN_VRSAVE);
 988#endif
 
 
 
 
 989#ifdef CONFIG_PPC_BOOK3S_64
 990	if (cpu_has_feature(CPU_FTR_DSCR))
 991		t->dscr = mfspr(SPRN_DSCR);
 992
 993	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 994		t->bescr = mfspr(SPRN_BESCR);
 995		t->ebbhr = mfspr(SPRN_EBBHR);
 996		t->ebbrr = mfspr(SPRN_EBBRR);
 997
 998		t->fscr = mfspr(SPRN_FSCR);
 999
1000		/*
1001		 * Note that the TAR is not available for use in the kernel.
1002		 * (To provide this, the TAR should be backed up/restored on
1003		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1004		 * this should be in pt_regs anyway (for debug).)
1005		 */
1006		t->tar = mfspr(SPRN_TAR);
1007	}
 
 
 
1008#endif
1009}
1010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011static inline void restore_sprs(struct thread_struct *old_thread,
1012				struct thread_struct *new_thread)
1013{
1014#ifdef CONFIG_ALTIVEC
1015	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1016	    old_thread->vrsave != new_thread->vrsave)
1017		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1018#endif
 
 
 
 
 
1019#ifdef CONFIG_PPC_BOOK3S_64
1020	if (cpu_has_feature(CPU_FTR_DSCR)) {
1021		u64 dscr = get_paca()->dscr_default;
1022		u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1023
1024		if (new_thread->dscr_inherit) {
1025			dscr = new_thread->dscr;
1026			fscr |= FSCR_DSCR;
1027		}
1028
1029		if (old_thread->dscr != dscr)
1030			mtspr(SPRN_DSCR, dscr);
1031
1032		if (old_thread->fscr != fscr)
1033			mtspr(SPRN_FSCR, fscr);
1034	}
1035
1036	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1037		if (old_thread->bescr != new_thread->bescr)
1038			mtspr(SPRN_BESCR, new_thread->bescr);
1039		if (old_thread->ebbhr != new_thread->ebbhr)
1040			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1041		if (old_thread->ebbrr != new_thread->ebbrr)
1042			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1043
 
 
 
1044		if (old_thread->tar != new_thread->tar)
1045			mtspr(SPRN_TAR, new_thread->tar);
1046	}
 
 
 
 
 
 
 
 
1047#endif
 
1048}
1049
1050struct task_struct *__switch_to(struct task_struct *prev,
1051	struct task_struct *new)
1052{
1053	struct thread_struct *new_thread, *old_thread;
1054	struct task_struct *last;
1055#ifdef CONFIG_PPC_BOOK3S_64
1056	struct ppc64_tlb_batch *batch;
1057#endif
1058
1059	new_thread = &new->thread;
1060	old_thread = &current->thread;
1061
1062	WARN_ON(!irqs_disabled());
1063
1064#ifdef CONFIG_PPC64
1065	/*
1066	 * Collect processor utilization data per process
1067	 */
1068	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1069		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1070		long unsigned start_tb, current_tb;
1071		start_tb = old_thread->start_tb;
1072		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1073		old_thread->accum_tb += (current_tb - start_tb);
1074		new_thread->start_tb = current_tb;
1075	}
1076#endif /* CONFIG_PPC64 */
1077
1078#ifdef CONFIG_PPC_BOOK3S_64
1079	batch = this_cpu_ptr(&ppc64_tlb_batch);
1080	if (batch->active) {
1081		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1082		if (batch->index)
1083			__flush_tlb_pending(batch);
1084		batch->active = 0;
1085	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1086#endif /* CONFIG_PPC_BOOK3S_64 */
1087
1088#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1089	switch_booke_debug_regs(&new->thread.debug);
1090#else
1091/*
1092 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1093 * schedule DABR
1094 */
1095#ifndef CONFIG_HAVE_HW_BREAKPOINT
1096	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1097		__set_breakpoint(&new->thread.hw_brk);
1098#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1099#endif
1100
1101	/*
1102	 * We need to save SPRs before treclaim/trecheckpoint as these will
1103	 * change a number of them.
1104	 */
1105	save_sprs(&prev->thread);
1106
1107	__switch_to_tm(prev);
1108
1109	/* Save FPU, Altivec, VSX and SPE state */
1110	giveup_all(prev);
1111
1112	/*
1113	 * We can't take a PMU exception inside _switch() since there is a
1114	 * window where the kernel stack SLB and the kernel stack are out
1115	 * of sync. Hard disable here.
1116	 */
1117	hard_irq_disable();
1118
1119	tm_recheckpoint_new_task(new);
 
 
 
 
 
 
 
1120
1121	/*
1122	 * Call restore_sprs() before calling _switch(). If we move it after
1123	 * _switch() then we miss out on calling it for new tasks. The reason
1124	 * for this is we manually create a stack frame for new tasks that
1125	 * directly returns through ret_from_fork() or
1126	 * ret_from_kernel_thread(). See copy_thread() for details.
1127	 */
1128	restore_sprs(old_thread, new_thread);
1129
 
 
 
 
 
1130	last = _switch(old_thread, new_thread);
1131
 
 
 
 
 
 
 
1132#ifdef CONFIG_PPC_BOOK3S_64
 
 
 
 
 
 
 
1133	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1134		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1135		batch = this_cpu_ptr(&ppc64_tlb_batch);
1136		batch->active = 1;
1137	}
 
1138
1139	if (current_thread_info()->task->thread.regs)
1140		restore_math(current_thread_info()->task->thread.regs);
1141
 
 
 
 
1142#endif /* CONFIG_PPC_BOOK3S_64 */
1143
1144	return last;
1145}
1146
1147static int instructions_to_print = 16;
1148
1149static void show_instructions(struct pt_regs *regs)
1150{
1151	int i;
1152	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1153			sizeof(int));
 
 
1154
1155	printk("Instruction dump:");
 
 
 
 
 
 
 
1156
1157	for (i = 0; i < instructions_to_print; i++) {
1158		int instr;
1159
1160		if (!(i % 8))
1161			printk("\n");
1162
1163#if !defined(CONFIG_BOOKE)
1164		/* If executing with the IMMU off, adjust pc rather
1165		 * than print XXXXXXXX.
1166		 */
1167		if (!(regs->msr & MSR_IR))
1168			pc = (unsigned long)phys_to_virt(pc);
1169#endif
1170
1171		if (!__kernel_text_address(pc) ||
1172		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1173			printk(KERN_CONT "XXXXXXXX ");
1174		} else {
1175			if (regs->nip == pc)
1176				printk(KERN_CONT "<%08x> ", instr);
1177			else
1178				printk(KERN_CONT "%08x ", instr);
1179		}
1180
1181		pc += sizeof(int);
1182	}
1183
1184	printk("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
1186
1187struct regbit {
1188	unsigned long bit;
1189	const char *name;
1190};
1191
1192static struct regbit msr_bits[] = {
1193#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1194	{MSR_SF,	"SF"},
1195	{MSR_HV,	"HV"},
1196#endif
1197	{MSR_VEC,	"VEC"},
1198	{MSR_VSX,	"VSX"},
1199#ifdef CONFIG_BOOKE
1200	{MSR_CE,	"CE"},
1201#endif
1202	{MSR_EE,	"EE"},
1203	{MSR_PR,	"PR"},
1204	{MSR_FP,	"FP"},
1205	{MSR_ME,	"ME"},
1206#ifdef CONFIG_BOOKE
1207	{MSR_DE,	"DE"},
1208#else
1209	{MSR_SE,	"SE"},
1210	{MSR_BE,	"BE"},
1211#endif
1212	{MSR_IR,	"IR"},
1213	{MSR_DR,	"DR"},
1214	{MSR_PMM,	"PMM"},
1215#ifndef CONFIG_BOOKE
1216	{MSR_RI,	"RI"},
1217	{MSR_LE,	"LE"},
1218#endif
1219	{0,		NULL}
1220};
1221
1222static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1223{
1224	const char *s = "";
1225
1226	for (; bits->bit; ++bits)
1227		if (val & bits->bit) {
1228			printk("%s%s", s, bits->name);
1229			s = sep;
1230		}
1231}
1232
1233#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1234static struct regbit msr_tm_bits[] = {
1235	{MSR_TS_T,	"T"},
1236	{MSR_TS_S,	"S"},
1237	{MSR_TM,	"E"},
1238	{0,		NULL}
1239};
1240
1241static void print_tm_bits(unsigned long val)
1242{
1243/*
1244 * This only prints something if at least one of the TM bit is set.
1245 * Inside the TM[], the output means:
1246 *   E: Enabled		(bit 32)
1247 *   S: Suspended	(bit 33)
1248 *   T: Transactional	(bit 34)
1249 */
1250	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1251		printk(",TM[");
1252		print_bits(val, msr_tm_bits, "");
1253		printk("]");
1254	}
1255}
1256#else
1257static void print_tm_bits(unsigned long val) {}
1258#endif
1259
1260static void print_msr_bits(unsigned long val)
1261{
1262	printk("<");
1263	print_bits(val, msr_bits, ",");
1264	print_tm_bits(val);
1265	printk(">");
1266}
1267
1268#ifdef CONFIG_PPC64
1269#define REG		"%016lx"
1270#define REGS_PER_LINE	4
1271#define LAST_VOLATILE	13
1272#else
1273#define REG		"%08lx"
1274#define REGS_PER_LINE	8
1275#define LAST_VOLATILE	12
1276#endif
1277
1278void show_regs(struct pt_regs * regs)
1279{
1280	int i, trap;
1281
1282	show_regs_print_info(KERN_DEFAULT);
1283
1284	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1285	       regs->nip, regs->link, regs->ctr);
1286	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1287	       regs, regs->trap, print_tainted(), init_utsname()->release);
1288	printk("MSR: "REG" ", regs->msr);
1289	print_msr_bits(regs->msr);
1290	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1291	trap = TRAP(regs);
1292	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1293		printk("CFAR: "REG" ", regs->orig_gpr3);
1294	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1295#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1297#else
1298		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1299#endif
 
 
 
1300#ifdef CONFIG_PPC64
1301	printk("SOFTE: %ld ", regs->softe);
1302#endif
1303#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304	if (MSR_TM_ACTIVE(regs->msr))
1305		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1306#endif
1307
1308	for (i = 0;  i < 32;  i++) {
1309		if ((i % REGS_PER_LINE) == 0)
1310			printk("\nGPR%02d: ", i);
1311		printk(REG " ", regs->gpr[i]);
1312		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1313			break;
1314	}
1315	printk("\n");
1316#ifdef CONFIG_KALLSYMS
1317	/*
1318	 * Lookup NIP late so we have the best change of getting the
1319	 * above info out without failing
1320	 */
1321	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1322	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1323#endif
1324	show_stack(current, (unsigned long *) regs->gpr[1]);
1325	if (!user_mode(regs))
1326		show_instructions(regs);
1327}
1328
1329void exit_thread(void)
1330{
 
 
 
 
 
1331}
1332
1333void flush_thread(void)
1334{
1335#ifdef CONFIG_HAVE_HW_BREAKPOINT
1336	flush_ptrace_hw_breakpoint(current);
1337#else /* CONFIG_HAVE_HW_BREAKPOINT */
1338	set_debug_reg_defaults(&current->thread);
1339#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1340}
1341
1342void
1343release_thread(struct task_struct *t)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344{
 
 
 
 
 
 
 
 
 
 
 
 
 
1345}
 
 
 
1346
1347/*
1348 * this gets called so that we can store coprocessor state into memory and
1349 * copy the current task into the new thread.
1350 */
1351int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1352{
1353	flush_all_to_thread(src);
1354	/*
1355	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1356	 * flush but it removes the checkpointed state from the current CPU and
1357	 * transitions the CPU out of TM mode.  Hence we need to call
1358	 * tm_recheckpoint_new_task() (on the same task) to restore the
1359	 * checkpointed state back and the TM mode.
 
 
 
1360	 */
1361	__switch_to_tm(src);
1362	tm_recheckpoint_new_task(src);
1363
1364	*dst = *src;
1365
1366	clear_task_ebb(dst);
1367
1368	return 0;
1369}
1370
1371static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1372{
1373#ifdef CONFIG_PPC_STD_MMU_64
1374	unsigned long sp_vsid;
1375	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1376
 
 
 
1377	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1378		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1379			<< SLB_VSID_SHIFT_1T;
1380	else
1381		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1382			<< SLB_VSID_SHIFT;
1383	sp_vsid |= SLB_VSID_KERNEL | llp;
1384	p->thread.ksp_vsid = sp_vsid;
1385#endif
1386}
1387
1388/*
1389 * Copy a thread..
1390 */
1391
1392/*
1393 * Copy architecture-specific thread state
1394 */
1395int copy_thread(unsigned long clone_flags, unsigned long usp,
1396		unsigned long kthread_arg, struct task_struct *p)
1397{
1398	struct pt_regs *childregs, *kregs;
1399	extern void ret_from_fork(void);
1400	extern void ret_from_kernel_thread(void);
 
 
1401	void (*f)(void);
1402	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 
 
 
 
 
1403
1404	/* Copy registers */
1405	sp -= sizeof(struct pt_regs);
1406	childregs = (struct pt_regs *) sp;
1407	if (unlikely(p->flags & PF_KTHREAD)) {
1408		/* kernel thread */
1409		struct thread_info *ti = (void *)task_stack_page(p);
1410		memset(childregs, 0, sizeof(struct pt_regs));
1411		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1412		/* function */
1413		if (usp)
1414			childregs->gpr[14] = ppc_function_entry((void *)usp);
1415#ifdef CONFIG_PPC64
1416		clear_tsk_thread_flag(p, TIF_32BIT);
1417		childregs->softe = 1;
1418#endif
1419		childregs->gpr[15] = kthread_arg;
1420		p->thread.regs = NULL;	/* no user register state */
1421		ti->flags |= _TIF_RESTOREALL;
1422		f = ret_from_kernel_thread;
1423	} else {
1424		/* user thread */
1425		struct pt_regs *regs = current_pt_regs();
1426		CHECK_FULL_REGS(regs);
1427		*childregs = *regs;
1428		if (usp)
1429			childregs->gpr[1] = usp;
1430		p->thread.regs = childregs;
1431		childregs->gpr[3] = 0;  /* Result from fork() */
1432		if (clone_flags & CLONE_SETTLS) {
 
 
 
 
 
 
 
 
 
1433#ifdef CONFIG_PPC64
1434			if (!is_32bit_task())
1435				childregs->gpr[13] = childregs->gpr[6];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436			else
1437#endif
1438				childregs->gpr[2] = childregs->gpr[6];
1439		}
1440
1441		f = ret_from_fork;
 
1442	}
1443	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1444	sp -= STACK_FRAME_OVERHEAD;
1445
1446	/*
1447	 * The way this works is that at some point in the future
1448	 * some task will call _switch to switch to the new task.
1449	 * That will pop off the stack frame created below and start
1450	 * the new task running at ret_from_fork.  The new task will
1451	 * do some house keeping and then return from the fork or clone
1452	 * system call, using the stack frame created above.
1453	 */
1454	((unsigned long *)sp)[0] = 0;
1455	sp -= sizeof(struct pt_regs);
1456	kregs = (struct pt_regs *) sp;
1457	sp -= STACK_FRAME_OVERHEAD;
 
 
 
 
 
 
 
 
 
 
1458	p->thread.ksp = sp;
1459#ifdef CONFIG_PPC32
1460	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1461				_ALIGN_UP(sizeof(struct thread_info), 16);
1462#endif
1463#ifdef CONFIG_HAVE_HW_BREAKPOINT
1464	p->thread.ptrace_bps[0] = NULL;
 
1465#endif
1466
 
1467	p->thread.fp_save_area = NULL;
 
1468#ifdef CONFIG_ALTIVEC
1469	p->thread.vr_save_area = NULL;
1470#endif
 
 
 
 
 
 
1471
1472	setup_ksp_vsid(p, sp);
1473
1474#ifdef CONFIG_PPC64 
1475	if (cpu_has_feature(CPU_FTR_DSCR)) {
1476		p->thread.dscr_inherit = current->thread.dscr_inherit;
1477		p->thread.dscr = mfspr(SPRN_DSCR);
1478	}
1479	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1480		p->thread.ppr = INIT_PPR;
 
 
 
 
1481#endif
1482	kregs->nip = ppc_function_entry(f);
1483	return 0;
1484}
1485
 
 
1486/*
1487 * Set up a thread for executing a new program
1488 */
1489void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1490{
1491#ifdef CONFIG_PPC64
1492	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
 
 
 
1493#endif
1494
 
1495	/*
1496	 * If we exec out of a kernel thread then thread.regs will not be
1497	 * set.  Do it now.
 
1498	 */
1499	if (!current->thread.regs) {
1500		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1501		current->thread.regs = regs - 1;
1502	}
1503
1504	memset(regs->gpr, 0, sizeof(regs->gpr));
1505	regs->ctr = 0;
1506	regs->link = 0;
1507	regs->xer = 0;
1508	regs->ccr = 0;
1509	regs->gpr[1] = sp;
1510
1511	/*
1512	 * We have just cleared all the nonvolatile GPRs, so make
1513	 * FULL_REGS(regs) return true.  This is necessary to allow
1514	 * ptrace to examine the thread immediately after exec.
1515	 */
1516	regs->trap &= ~1UL;
1517
1518#ifdef CONFIG_PPC32
1519	regs->mq = 0;
1520	regs->nip = start;
1521	regs->msr = MSR_USER;
1522#else
1523	if (!is_32bit_task()) {
1524		unsigned long entry;
1525
1526		if (is_elf2_task()) {
1527			/* Look ma, no function descriptors! */
1528			entry = start;
1529
1530			/*
1531			 * Ulrich says:
1532			 *   The latest iteration of the ABI requires that when
1533			 *   calling a function (at its global entry point),
1534			 *   the caller must ensure r12 holds the entry point
1535			 *   address (so that the function can quickly
1536			 *   establish addressability).
1537			 */
1538			regs->gpr[12] = start;
1539			/* Make sure that's restored on entry to userspace. */
1540			set_thread_flag(TIF_RESTOREALL);
1541		} else {
1542			unsigned long toc;
1543
1544			/* start is a relocated pointer to the function
1545			 * descriptor for the elf _start routine.  The first
1546			 * entry in the function descriptor is the entry
1547			 * address of _start and the second entry is the TOC
1548			 * value we need to use.
1549			 */
1550			__get_user(entry, (unsigned long __user *)start);
1551			__get_user(toc, (unsigned long __user *)start+1);
1552
1553			/* Check whether the e_entry function descriptor entries
1554			 * need to be relocated before we can use them.
1555			 */
1556			if (load_addr != 0) {
1557				entry += load_addr;
1558				toc   += load_addr;
1559			}
1560			regs->gpr[2] = toc;
1561		}
1562		regs->nip = entry;
1563		regs->msr = MSR_USER64;
1564	} else {
1565		regs->nip = start;
1566		regs->gpr[2] = 0;
1567		regs->msr = MSR_USER32;
 
1568	}
 
1569#endif
1570#ifdef CONFIG_VSX
1571	current->thread.used_vsr = 0;
1572#endif
 
 
 
1573	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1574	current->thread.fp_save_area = NULL;
 
1575#ifdef CONFIG_ALTIVEC
1576	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1577	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1578	current->thread.vr_save_area = NULL;
1579	current->thread.vrsave = 0;
1580	current->thread.used_vr = 0;
 
1581#endif /* CONFIG_ALTIVEC */
1582#ifdef CONFIG_SPE
1583	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1584	current->thread.acc = 0;
1585	current->thread.spefscr = 0;
1586	current->thread.used_spe = 0;
1587#endif /* CONFIG_SPE */
1588#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1589	if (cpu_has_feature(CPU_FTR_TM))
1590		regs->msr |= MSR_TM;
1591	current->thread.tm_tfhar = 0;
1592	current->thread.tm_texasr = 0;
1593	current->thread.tm_tfiar = 0;
 
1594#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 
 
 
 
 
 
1595}
1596EXPORT_SYMBOL(start_thread);
1597
1598#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1599		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1600
1601int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1602{
1603	struct pt_regs *regs = tsk->thread.regs;
1604
1605	/* This is a bit hairy.  If we are an SPE enabled  processor
1606	 * (have embedded fp) we store the IEEE exception enable flags in
1607	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1608	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1609	if (val & PR_FP_EXC_SW_ENABLE) {
1610#ifdef CONFIG_SPE
1611		if (cpu_has_feature(CPU_FTR_SPE)) {
1612			/*
1613			 * When the sticky exception bits are set
1614			 * directly by userspace, it must call prctl
1615			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1616			 * in the existing prctl settings) or
1617			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1618			 * the bits being set).  <fenv.h> functions
1619			 * saving and restoring the whole
1620			 * floating-point environment need to do so
1621			 * anyway to restore the prctl settings from
1622			 * the saved environment.
1623			 */
 
1624			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1625			tsk->thread.fpexc_mode = val &
1626				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
 
1627			return 0;
1628		} else {
1629			return -EINVAL;
1630		}
1631#else
1632		return -EINVAL;
1633#endif
1634	}
1635
1636	/* on a CONFIG_SPE this does not hurt us.  The bits that
1637	 * __pack_fe01 use do not overlap with bits used for
1638	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1639	 * on CONFIG_SPE implementations are reserved so writing to
1640	 * them does not change anything */
1641	if (val > PR_FP_EXC_PRECISE)
1642		return -EINVAL;
1643	tsk->thread.fpexc_mode = __pack_fe01(val);
1644	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1645		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1646			| tsk->thread.fpexc_mode;
 
1647	return 0;
1648}
1649
1650int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1651{
1652	unsigned int val;
1653
1654	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1655#ifdef CONFIG_SPE
1656		if (cpu_has_feature(CPU_FTR_SPE)) {
1657			/*
1658			 * When the sticky exception bits are set
1659			 * directly by userspace, it must call prctl
1660			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1661			 * in the existing prctl settings) or
1662			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1663			 * the bits being set).  <fenv.h> functions
1664			 * saving and restoring the whole
1665			 * floating-point environment need to do so
1666			 * anyway to restore the prctl settings from
1667			 * the saved environment.
1668			 */
 
1669			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1670			val = tsk->thread.fpexc_mode;
 
1671		} else
1672			return -EINVAL;
1673#else
1674		return -EINVAL;
1675#endif
1676	else
1677		val = __unpack_fe01(tsk->thread.fpexc_mode);
 
1678	return put_user(val, (unsigned int __user *) adr);
1679}
1680
1681int set_endian(struct task_struct *tsk, unsigned int val)
1682{
1683	struct pt_regs *regs = tsk->thread.regs;
1684
1685	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1686	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1687		return -EINVAL;
1688
1689	if (regs == NULL)
1690		return -EINVAL;
1691
1692	if (val == PR_ENDIAN_BIG)
1693		regs->msr &= ~MSR_LE;
1694	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1695		regs->msr |= MSR_LE;
1696	else
1697		return -EINVAL;
1698
1699	return 0;
1700}
1701
1702int get_endian(struct task_struct *tsk, unsigned long adr)
1703{
1704	struct pt_regs *regs = tsk->thread.regs;
1705	unsigned int val;
1706
1707	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1708	    !cpu_has_feature(CPU_FTR_REAL_LE))
1709		return -EINVAL;
1710
1711	if (regs == NULL)
1712		return -EINVAL;
1713
1714	if (regs->msr & MSR_LE) {
1715		if (cpu_has_feature(CPU_FTR_REAL_LE))
1716			val = PR_ENDIAN_LITTLE;
1717		else
1718			val = PR_ENDIAN_PPC_LITTLE;
1719	} else
1720		val = PR_ENDIAN_BIG;
1721
1722	return put_user(val, (unsigned int __user *)adr);
1723}
1724
1725int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1726{
1727	tsk->thread.align_ctl = val;
1728	return 0;
1729}
1730
1731int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1732{
1733	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1734}
1735
1736static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1737				  unsigned long nbytes)
1738{
1739	unsigned long stack_page;
1740	unsigned long cpu = task_cpu(p);
1741
1742	/*
1743	 * Avoid crashing if the stack has overflowed and corrupted
1744	 * task_cpu(p), which is in the thread_info struct.
1745	 */
1746	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1747		stack_page = (unsigned long) hardirq_ctx[cpu];
1748		if (sp >= stack_page + sizeof(struct thread_struct)
1749		    && sp <= stack_page + THREAD_SIZE - nbytes)
1750			return 1;
1751
1752		stack_page = (unsigned long) softirq_ctx[cpu];
1753		if (sp >= stack_page + sizeof(struct thread_struct)
1754		    && sp <= stack_page + THREAD_SIZE - nbytes)
1755			return 1;
1756	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757	return 0;
1758}
1759
1760int validate_sp(unsigned long sp, struct task_struct *p,
1761		       unsigned long nbytes)
 
 
 
 
1762{
1763	unsigned long stack_page = (unsigned long)task_stack_page(p);
1764
1765	if (sp >= stack_page + sizeof(struct thread_struct)
1766	    && sp <= stack_page + THREAD_SIZE - nbytes)
 
 
 
 
 
1767		return 1;
1768
1769	return valid_irq_stack(sp, p, nbytes);
1770}
1771
1772EXPORT_SYMBOL(validate_sp);
 
 
 
1773
1774unsigned long get_wchan(struct task_struct *p)
1775{
1776	unsigned long ip, sp;
1777	int count = 0;
1778
1779	if (!p || p == current || p->state == TASK_RUNNING)
1780		return 0;
1781
1782	sp = p->thread.ksp;
1783	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1784		return 0;
1785
1786	do {
1787		sp = *(unsigned long *)sp;
1788		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1789			return 0;
1790		if (count > 0) {
1791			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1792			if (!in_sched_functions(ip))
1793				return ip;
1794		}
1795	} while (count++ < 16);
1796	return 0;
1797}
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1800
1801void show_stack(struct task_struct *tsk, unsigned long *stack)
 
 
1802{
1803	unsigned long sp, ip, lr, newsp;
1804	int count = 0;
1805	int firstframe = 1;
1806#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1807	int curr_frame = current->curr_ret_stack;
1808	extern void return_to_handler(void);
1809	unsigned long rth = (unsigned long)return_to_handler;
1810#endif
1811
1812	sp = (unsigned long) stack;
1813	if (tsk == NULL)
1814		tsk = current;
 
 
 
 
 
1815	if (sp == 0) {
1816		if (tsk == current)
1817			sp = current_stack_pointer();
1818		else
1819			sp = tsk->thread.ksp;
1820	}
1821
1822	lr = 0;
1823	printk("Call Trace:\n");
1824	do {
1825		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1826			return;
1827
1828		stack = (unsigned long *) sp;
1829		newsp = stack[0];
1830		ip = stack[STACK_FRAME_LR_SAVE];
1831		if (!firstframe || ip != lr) {
1832			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1833#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834			if ((ip == rth) && curr_frame >= 0) {
1835				printk(" (%pS)",
1836				       (void *)current->ret_stack[curr_frame].ret);
1837				curr_frame--;
1838			}
1839#endif
1840			if (firstframe)
1841				printk(" (unreliable)");
1842			printk("\n");
1843		}
1844		firstframe = 0;
1845
1846		/*
1847		 * See if this is an exception frame.
1848		 * We look for the "regshere" marker in the current frame.
 
 
 
 
1849		 */
1850		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1851		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1852			struct pt_regs *regs = (struct pt_regs *)
1853				(sp + STACK_FRAME_OVERHEAD);
 
1854			lr = regs->link;
1855			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1856			       regs->trap, (void *)regs->nip, (void *)lr);
 
 
 
 
 
 
 
 
1857			firstframe = 1;
1858		}
1859
1860		sp = newsp;
1861	} while (count++ < kstack_depth_to_print);
 
 
1862}
1863
1864#ifdef CONFIG_PPC64
1865/* Called with hard IRQs off */
1866void notrace __ppc64_runlatch_on(void)
1867{
1868	struct thread_info *ti = current_thread_info();
1869	unsigned long ctrl;
1870
1871	ctrl = mfspr(SPRN_CTRLF);
1872	ctrl |= CTRL_RUNLATCH;
1873	mtspr(SPRN_CTRLT, ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874
1875	ti->local_flags |= _TLF_RUNLATCH;
1876}
1877
1878/* Called with hard IRQs off */
1879void notrace __ppc64_runlatch_off(void)
1880{
1881	struct thread_info *ti = current_thread_info();
1882	unsigned long ctrl;
1883
1884	ti->local_flags &= ~_TLF_RUNLATCH;
1885
1886	ctrl = mfspr(SPRN_CTRLF);
1887	ctrl &= ~CTRL_RUNLATCH;
1888	mtspr(SPRN_CTRLT, ctrl);
 
 
 
 
 
 
1889}
1890#endif /* CONFIG_PPC64 */
1891
1892unsigned long arch_align_stack(unsigned long sp)
1893{
1894	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1895		sp -= get_random_int() & ~PAGE_MASK;
1896	return sp & ~0xf;
1897}
1898
1899static inline unsigned long brk_rnd(void)
1900{
1901        unsigned long rnd = 0;
1902
1903	/* 8MB for 32bit, 1GB for 64bit */
1904	if (is_32bit_task())
1905		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1906	else
1907		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1908
1909	return rnd << PAGE_SHIFT;
1910}
1911
1912unsigned long arch_randomize_brk(struct mm_struct *mm)
1913{
1914	unsigned long base = mm->brk;
1915	unsigned long ret;
1916
1917#ifdef CONFIG_PPC_STD_MMU_64
1918	/*
1919	 * If we are using 1TB segments and we are allowed to randomise
1920	 * the heap, we can put it above 1TB so it is backed by a 1TB
1921	 * segment. Otherwise the heap will be in the bottom 1TB
1922	 * which always uses 256MB segments and this may result in a
1923	 * performance penalty.
1924	 */
1925	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1926		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1927#endif
1928
1929	ret = PAGE_ALIGN(base + brk_rnd());
1930
1931	if (ret < mm->brk)
1932		return mm->brk;
1933
1934	return ret;
1935}
1936