Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * zswap.c - zswap driver file
   4 *
   5 * zswap is a cache that takes pages that are in the process
   6 * of being swapped out and attempts to compress and store them in a
   7 * RAM-based memory pool.  This can result in a significant I/O reduction on
   8 * the swap device and, in the case where decompressing from RAM is faster
   9 * than reading from the swap device, can also improve workload performance.
  10 *
  11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
 
 
 
 
 
 
 
 
 
 
  12*/
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/highmem.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22#include <linux/atomic.h>
 
  23#include <linux/rbtree.h>
  24#include <linux/swap.h>
  25#include <linux/crypto.h>
  26#include <linux/scatterlist.h>
  27#include <linux/mempolicy.h>
  28#include <linux/mempool.h>
  29#include <linux/zpool.h>
  30#include <crypto/acompress.h>
  31#include <linux/zswap.h>
  32#include <linux/mm_types.h>
  33#include <linux/page-flags.h>
  34#include <linux/swapops.h>
  35#include <linux/writeback.h>
  36#include <linux/pagemap.h>
  37#include <linux/workqueue.h>
  38#include <linux/list_lru.h>
  39
  40#include "swap.h"
  41#include "internal.h"
  42
  43/*********************************
  44* statistics
  45**********************************/
  46/* Total bytes used by the compressed storage */
  47u64 zswap_pool_total_size;
  48/* The number of compressed pages currently stored in zswap */
  49atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  50/* The number of same-value filled pages currently stored in zswap */
  51static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
  52
  53/*
  54 * The statistics below are not protected from concurrent access for
  55 * performance reasons so they may not be a 100% accurate.  However,
  56 * they do provide useful information on roughly how many times a
  57 * certain event is occurring.
  58*/
  59
  60/* Pool limit was hit (see zswap_max_pool_percent) */
  61static u64 zswap_pool_limit_hit;
  62/* Pages written back when pool limit was reached */
  63static u64 zswap_written_back_pages;
  64/* Store failed due to a reclaim failure after pool limit was reached */
  65static u64 zswap_reject_reclaim_fail;
  66/* Store failed due to compression algorithm failure */
  67static u64 zswap_reject_compress_fail;
  68/* Compressed page was too big for the allocator to (optimally) store */
  69static u64 zswap_reject_compress_poor;
  70/* Store failed because underlying allocator could not get memory */
  71static u64 zswap_reject_alloc_fail;
  72/* Store failed because the entry metadata could not be allocated (rare) */
  73static u64 zswap_reject_kmemcache_fail;
  74/* Duplicate store was encountered (rare) */
  75static u64 zswap_duplicate_entry;
  76
  77/* Shrinker work queue */
  78static struct workqueue_struct *shrink_wq;
  79/* Pool limit was hit, we need to calm down */
  80static bool zswap_pool_reached_full;
  81
  82/*********************************
  83* tunables
  84**********************************/
  85
  86#define ZSWAP_PARAM_UNSET ""
  87
  88static int zswap_setup(void);
  89
  90/* Enable/disable zswap */
  91static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
  92static int zswap_enabled_param_set(const char *,
  93				   const struct kernel_param *);
  94static const struct kernel_param_ops zswap_enabled_param_ops = {
  95	.set =		zswap_enabled_param_set,
  96	.get =		param_get_bool,
  97};
  98module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  99
 100/* Crypto compressor to use */
 101static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
 
 102static int zswap_compressor_param_set(const char *,
 103				      const struct kernel_param *);
 104static const struct kernel_param_ops zswap_compressor_param_ops = {
 105	.set =		zswap_compressor_param_set,
 106	.get =		param_get_charp,
 107	.free =		param_free_charp,
 108};
 109module_param_cb(compressor, &zswap_compressor_param_ops,
 110		&zswap_compressor, 0644);
 111
 112/* Compressed storage zpool to use */
 113static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 
 114static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 115static const struct kernel_param_ops zswap_zpool_param_ops = {
 116	.set =		zswap_zpool_param_set,
 117	.get =		param_get_charp,
 118	.free =		param_free_charp,
 119};
 120module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 121
 122/* The maximum percentage of memory that the compressed pool can occupy */
 123static unsigned int zswap_max_pool_percent = 20;
 124module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 125
 126/* The threshold for accepting new pages after the max_pool_percent was hit */
 127static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
 128module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
 129		   uint, 0644);
 130
 131/*
 132 * Enable/disable handling same-value filled pages (enabled by default).
 133 * If disabled every page is considered non-same-value filled.
 134 */
 135static bool zswap_same_filled_pages_enabled = true;
 136module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
 137		   bool, 0644);
 138
 139/* Enable/disable handling non-same-value filled pages (enabled by default) */
 140static bool zswap_non_same_filled_pages_enabled = true;
 141module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
 142		   bool, 0644);
 143
 144static bool zswap_exclusive_loads_enabled = IS_ENABLED(
 145		CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
 146module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
 147
 148/* Number of zpools in zswap_pool (empirically determined for scalability) */
 149#define ZSWAP_NR_ZPOOLS 32
 150
 151/* Enable/disable memory pressure-based shrinker. */
 152static bool zswap_shrinker_enabled = IS_ENABLED(
 153		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
 154module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
 155
 156bool is_zswap_enabled(void)
 157{
 158	return zswap_enabled;
 159}
 160
 161/*********************************
 162* data structures
 163**********************************/
 164
 165struct crypto_acomp_ctx {
 166	struct crypto_acomp *acomp;
 167	struct acomp_req *req;
 168	struct crypto_wait wait;
 169	u8 *buffer;
 170	struct mutex mutex;
 171};
 172
 173/*
 174 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
 175 * The only case where lru_lock is not acquired while holding tree.lock is
 176 * when a zswap_entry is taken off the lru for writeback, in that case it
 177 * needs to be verified that it's still valid in the tree.
 178 */
 179struct zswap_pool {
 180	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
 181	struct crypto_acomp_ctx __percpu *acomp_ctx;
 182	struct kref kref;
 183	struct list_head list;
 184	struct work_struct release_work;
 185	struct work_struct shrink_work;
 186	struct hlist_node node;
 187	char tfm_name[CRYPTO_MAX_ALG_NAME];
 188	struct list_lru list_lru;
 189	struct mem_cgroup *next_shrink;
 190	struct shrinker *shrinker;
 191	atomic_t nr_stored;
 192};
 193
 194/*
 195 * struct zswap_entry
 196 *
 197 * This structure contains the metadata for tracking a single compressed
 198 * page within zswap.
 199 *
 200 * rbnode - links the entry into red-black tree for the appropriate swap type
 201 * swpentry - associated swap entry, the offset indexes into the red-black tree
 202 * refcount - the number of outstanding reference to the entry. This is needed
 203 *            to protect against premature freeing of the entry by code
 204 *            concurrent calls to load, invalidate, and writeback.  The lock
 205 *            for the zswap_tree structure that contains the entry must
 206 *            be held while changing the refcount.  Since the lock must
 207 *            be held, there is no reason to also make refcount atomic.
 208 * length - the length in bytes of the compressed page data.  Needed during
 209 *          decompression. For a same value filled page length is 0, and both
 210 *          pool and lru are invalid and must be ignored.
 211 * pool - the zswap_pool the entry's data is in
 212 * handle - zpool allocation handle that stores the compressed page data
 213 * value - value of the same-value filled pages which have same content
 214 * objcg - the obj_cgroup that the compressed memory is charged to
 215 * lru - handle to the pool's lru used to evict pages.
 216 */
 217struct zswap_entry {
 218	struct rb_node rbnode;
 219	swp_entry_t swpentry;
 220	int refcount;
 221	unsigned int length;
 222	struct zswap_pool *pool;
 223	union {
 224		unsigned long handle;
 225		unsigned long value;
 226	};
 227	struct obj_cgroup *objcg;
 228	struct list_head lru;
 
 
 229};
 230
 231/*
 232 * The tree lock in the zswap_tree struct protects a few things:
 233 * - the rbtree
 234 * - the refcount field of each entry in the tree
 235 */
 236struct zswap_tree {
 237	struct rb_root rbroot;
 238	spinlock_t lock;
 239};
 240
 241static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 242
 243/* RCU-protected iteration */
 244static LIST_HEAD(zswap_pools);
 245/* protects zswap_pools list modification */
 246static DEFINE_SPINLOCK(zswap_pools_lock);
 247/* pool counter to provide unique names to zpool */
 248static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 249
 250enum zswap_init_type {
 251	ZSWAP_UNINIT,
 252	ZSWAP_INIT_SUCCEED,
 253	ZSWAP_INIT_FAILED
 254};
 255
 256static enum zswap_init_type zswap_init_state;
 257
 258/* used to ensure the integrity of initialization */
 259static DEFINE_MUTEX(zswap_init_lock);
 260
 261/* init completed, but couldn't create the initial pool */
 262static bool zswap_has_pool;
 263
 264/*********************************
 265* helpers and fwd declarations
 266**********************************/
 267
 268#define zswap_pool_debug(msg, p)				\
 269	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 270		 zpool_get_type((p)->zpools[0]))
 271
 272static int zswap_writeback_entry(struct zswap_entry *entry,
 273				 struct zswap_tree *tree);
 274static int zswap_pool_get(struct zswap_pool *pool);
 275static void zswap_pool_put(struct zswap_pool *pool);
 276
 277static bool zswap_is_full(void)
 278{
 279	return totalram_pages() * zswap_max_pool_percent / 100 <
 280			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 281}
 282
 283static bool zswap_can_accept(void)
 284{
 285	return totalram_pages() * zswap_accept_thr_percent / 100 *
 286				zswap_max_pool_percent / 100 >
 287			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 288}
 289
 290static u64 get_zswap_pool_size(struct zswap_pool *pool)
 291{
 292	u64 pool_size = 0;
 293	int i;
 294
 295	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
 296		pool_size += zpool_get_total_size(pool->zpools[i]);
 297
 298	return pool_size;
 299}
 300
 301static void zswap_update_total_size(void)
 302{
 303	struct zswap_pool *pool;
 304	u64 total = 0;
 305
 306	rcu_read_lock();
 307
 308	list_for_each_entry_rcu(pool, &zswap_pools, list)
 309		total += get_zswap_pool_size(pool);
 310
 311	rcu_read_unlock();
 312
 313	zswap_pool_total_size = total;
 314}
 315
 316/* should be called under RCU */
 317#ifdef CONFIG_MEMCG
 318static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
 319{
 320	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
 321}
 322#else
 323static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
 324{
 325	return NULL;
 326}
 327#endif
 328
 329static inline int entry_to_nid(struct zswap_entry *entry)
 330{
 331	return page_to_nid(virt_to_page(entry));
 
 332}
 333
 334void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
 335{
 336	struct zswap_pool *pool;
 337
 338	/* lock out zswap pools list modification */
 339	spin_lock(&zswap_pools_lock);
 340	list_for_each_entry(pool, &zswap_pools, list) {
 341		if (pool->next_shrink == memcg)
 342			pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
 343	}
 344	spin_unlock(&zswap_pools_lock);
 345}
 346
 347/*********************************
 348* zswap entry functions
 349**********************************/
 350static struct kmem_cache *zswap_entry_cache;
 351
 352static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
 353{
 354	struct zswap_entry *entry;
 355	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
 356	if (!entry)
 357		return NULL;
 358	entry->refcount = 1;
 359	RB_CLEAR_NODE(&entry->rbnode);
 360	return entry;
 361}
 362
 363static void zswap_entry_cache_free(struct zswap_entry *entry)
 364{
 365	kmem_cache_free(zswap_entry_cache, entry);
 366}
 367
 368/*********************************
 369* zswap lruvec functions
 370**********************************/
 371void zswap_lruvec_state_init(struct lruvec *lruvec)
 372{
 373	atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
 374}
 375
 376void zswap_folio_swapin(struct folio *folio)
 377{
 378	struct lruvec *lruvec;
 379
 380	VM_WARN_ON_ONCE(!folio_test_locked(folio));
 381	lruvec = folio_lruvec(folio);
 382	atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
 383}
 384
 385/*********************************
 386* lru functions
 387**********************************/
 388static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
 389{
 390	atomic_long_t *nr_zswap_protected;
 391	unsigned long lru_size, old, new;
 392	int nid = entry_to_nid(entry);
 393	struct mem_cgroup *memcg;
 394	struct lruvec *lruvec;
 395
 396	/*
 397	 * Note that it is safe to use rcu_read_lock() here, even in the face of
 398	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
 399	 * used in list_lru lookup, only two scenarios are possible:
 400	 *
 401	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
 402	 *    new entry will be reparented to memcg's parent's list_lru.
 403	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
 404	 *    new entry will be added directly to memcg's parent's list_lru.
 405	 *
 406	 * Similar reasoning holds for list_lru_del() and list_lru_putback().
 407	 */
 408	rcu_read_lock();
 409	memcg = mem_cgroup_from_entry(entry);
 410	/* will always succeed */
 411	list_lru_add(list_lru, &entry->lru, nid, memcg);
 412
 413	/* Update the protection area */
 414	lru_size = list_lru_count_one(list_lru, nid, memcg);
 415	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
 416	nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
 417	old = atomic_long_inc_return(nr_zswap_protected);
 418	/*
 419	 * Decay to avoid overflow and adapt to changing workloads.
 420	 * This is based on LRU reclaim cost decaying heuristics.
 421	 */
 422	do {
 423		new = old > lru_size / 4 ? old / 2 : old;
 424	} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
 425	rcu_read_unlock();
 426}
 427
 428static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
 429{
 430	int nid = entry_to_nid(entry);
 431	struct mem_cgroup *memcg;
 432
 433	rcu_read_lock();
 434	memcg = mem_cgroup_from_entry(entry);
 435	/* will always succeed */
 436	list_lru_del(list_lru, &entry->lru, nid, memcg);
 437	rcu_read_unlock();
 438}
 439
 440static void zswap_lru_putback(struct list_lru *list_lru,
 441		struct zswap_entry *entry)
 442{
 443	int nid = entry_to_nid(entry);
 444	spinlock_t *lock = &list_lru->node[nid].lock;
 445	struct mem_cgroup *memcg;
 446	struct lruvec *lruvec;
 447
 448	rcu_read_lock();
 449	memcg = mem_cgroup_from_entry(entry);
 450	spin_lock(lock);
 451	/* we cannot use list_lru_add here, because it increments node's lru count */
 452	list_lru_putback(list_lru, &entry->lru, nid, memcg);
 453	spin_unlock(lock);
 454
 455	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
 456	/* increment the protection area to account for the LRU rotation. */
 457	atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
 458	rcu_read_unlock();
 459}
 460
 461/*********************************
 462* rbtree functions
 463**********************************/
 464static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 465{
 466	struct rb_node *node = root->rb_node;
 467	struct zswap_entry *entry;
 468	pgoff_t entry_offset;
 469
 470	while (node) {
 471		entry = rb_entry(node, struct zswap_entry, rbnode);
 472		entry_offset = swp_offset(entry->swpentry);
 473		if (entry_offset > offset)
 474			node = node->rb_left;
 475		else if (entry_offset < offset)
 476			node = node->rb_right;
 477		else
 478			return entry;
 479	}
 480	return NULL;
 481}
 482
 483/*
 484 * In the case that a entry with the same offset is found, a pointer to
 485 * the existing entry is stored in dupentry and the function returns -EEXIST
 486 */
 487static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 488			struct zswap_entry **dupentry)
 489{
 490	struct rb_node **link = &root->rb_node, *parent = NULL;
 491	struct zswap_entry *myentry;
 492	pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
 493
 494	while (*link) {
 495		parent = *link;
 496		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 497		myentry_offset = swp_offset(myentry->swpentry);
 498		if (myentry_offset > entry_offset)
 499			link = &(*link)->rb_left;
 500		else if (myentry_offset < entry_offset)
 501			link = &(*link)->rb_right;
 502		else {
 503			*dupentry = myentry;
 504			return -EEXIST;
 505		}
 506	}
 507	rb_link_node(&entry->rbnode, parent, link);
 508	rb_insert_color(&entry->rbnode, root);
 509	return 0;
 510}
 511
 512static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 513{
 514	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 515		rb_erase(&entry->rbnode, root);
 516		RB_CLEAR_NODE(&entry->rbnode);
 517		return true;
 518	}
 519	return false;
 520}
 521
 522static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
 523{
 524	int i = 0;
 525
 526	if (ZSWAP_NR_ZPOOLS > 1)
 527		i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
 528
 529	return entry->pool->zpools[i];
 530}
 531
 532/*
 533 * Carries out the common pattern of freeing and entry's zpool allocation,
 534 * freeing the entry itself, and decrementing the number of stored pages.
 535 */
 536static void zswap_free_entry(struct zswap_entry *entry)
 537{
 538	if (!entry->length)
 539		atomic_dec(&zswap_same_filled_pages);
 540	else {
 541		zswap_lru_del(&entry->pool->list_lru, entry);
 542		zpool_free(zswap_find_zpool(entry), entry->handle);
 543		atomic_dec(&entry->pool->nr_stored);
 544		zswap_pool_put(entry->pool);
 545	}
 546	if (entry->objcg) {
 547		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
 548		obj_cgroup_put(entry->objcg);
 549	}
 550	zswap_entry_cache_free(entry);
 551	atomic_dec(&zswap_stored_pages);
 552	zswap_update_total_size();
 553}
 554
 555/* caller must hold the tree lock */
 556static void zswap_entry_get(struct zswap_entry *entry)
 557{
 558	entry->refcount++;
 559}
 560
 561/* caller must hold the tree lock
 562* remove from the tree and free it, if nobody reference the entry
 563*/
 564static void zswap_entry_put(struct zswap_tree *tree,
 565			struct zswap_entry *entry)
 566{
 567	int refcount = --entry->refcount;
 568
 569	WARN_ON_ONCE(refcount < 0);
 570	if (refcount == 0) {
 571		WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
 572		zswap_free_entry(entry);
 573	}
 574}
 575
 576/* caller must hold the tree lock */
 577static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 578				pgoff_t offset)
 579{
 580	struct zswap_entry *entry;
 581
 582	entry = zswap_rb_search(root, offset);
 583	if (entry)
 584		zswap_entry_get(entry);
 585
 586	return entry;
 587}
 588
 589/*********************************
 590* shrinker functions
 591**********************************/
 592static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
 593				       spinlock_t *lock, void *arg);
 594
 595static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
 596		struct shrink_control *sc)
 597{
 598	struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
 599	unsigned long shrink_ret, nr_protected, lru_size;
 600	struct zswap_pool *pool = shrinker->private_data;
 601	bool encountered_page_in_swapcache = false;
 602
 603	if (!zswap_shrinker_enabled ||
 604			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
 605		sc->nr_scanned = 0;
 606		return SHRINK_STOP;
 607	}
 608
 609	nr_protected =
 610		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
 611	lru_size = list_lru_shrink_count(&pool->list_lru, sc);
 612
 613	/*
 614	 * Abort if we are shrinking into the protected region.
 615	 *
 616	 * This short-circuiting is necessary because if we have too many multiple
 617	 * concurrent reclaimers getting the freeable zswap object counts at the
 618	 * same time (before any of them made reasonable progress), the total
 619	 * number of reclaimed objects might be more than the number of unprotected
 620	 * objects (i.e the reclaimers will reclaim into the protected area of the
 621	 * zswap LRU).
 622	 */
 623	if (nr_protected >= lru_size - sc->nr_to_scan) {
 624		sc->nr_scanned = 0;
 625		return SHRINK_STOP;
 626	}
 627
 628	shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
 629		&encountered_page_in_swapcache);
 630
 631	if (encountered_page_in_swapcache)
 632		return SHRINK_STOP;
 
 633
 634	return shrink_ret ? shrink_ret : SHRINK_STOP;
 
 635}
 636
 637static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
 638		struct shrink_control *sc)
 639{
 640	struct zswap_pool *pool = shrinker->private_data;
 641	struct mem_cgroup *memcg = sc->memcg;
 642	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
 643	unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
 644
 645	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
 646		return 0;
 647
 648#ifdef CONFIG_MEMCG_KMEM
 649	mem_cgroup_flush_stats(memcg);
 650	nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
 651	nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
 652#else
 653	/* use pool stats instead of memcg stats */
 654	nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
 655	nr_stored = atomic_read(&pool->nr_stored);
 656#endif
 657
 658	if (!nr_stored)
 659		return 0;
 660
 661	nr_protected =
 662		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
 663	nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
 664	/*
 665	 * Subtract the lru size by an estimate of the number of pages
 666	 * that should be protected.
 667	 */
 668	nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
 669
 670	/*
 671	 * Scale the number of freeable pages by the memory saving factor.
 672	 * This ensures that the better zswap compresses memory, the fewer
 673	 * pages we will evict to swap (as it will otherwise incur IO for
 674	 * relatively small memory saving).
 675	 */
 676	return mult_frac(nr_freeable, nr_backing, nr_stored);
 677}
 678
 679static void zswap_alloc_shrinker(struct zswap_pool *pool)
 680{
 681	pool->shrinker =
 682		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
 683	if (!pool->shrinker)
 684		return;
 685
 686	pool->shrinker->private_data = pool;
 687	pool->shrinker->scan_objects = zswap_shrinker_scan;
 688	pool->shrinker->count_objects = zswap_shrinker_count;
 689	pool->shrinker->batch = 0;
 690	pool->shrinker->seeks = DEFAULT_SEEKS;
 691}
 692
 693/*********************************
 694* per-cpu code
 695**********************************/
 696static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 697{
 698	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 699	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 700	struct crypto_acomp *acomp;
 701	struct acomp_req *req;
 702	int ret;
 703
 704	mutex_init(&acomp_ctx->mutex);
 
 705
 706	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 707	if (!acomp_ctx->buffer)
 
 
 708		return -ENOMEM;
 709
 710	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
 711	if (IS_ERR(acomp)) {
 712		pr_err("could not alloc crypto acomp %s : %ld\n",
 713				pool->tfm_name, PTR_ERR(acomp));
 714		ret = PTR_ERR(acomp);
 715		goto acomp_fail;
 716	}
 717	acomp_ctx->acomp = acomp;
 718
 719	req = acomp_request_alloc(acomp_ctx->acomp);
 720	if (!req) {
 721		pr_err("could not alloc crypto acomp_request %s\n",
 722		       pool->tfm_name);
 723		ret = -ENOMEM;
 724		goto req_fail;
 725	}
 726	acomp_ctx->req = req;
 727
 728	crypto_init_wait(&acomp_ctx->wait);
 729	/*
 730	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
 731	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
 732	 * won't be called, crypto_wait_req() will return without blocking.
 733	 */
 734	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 735				   crypto_req_done, &acomp_ctx->wait);
 736
 737	return 0;
 738
 739req_fail:
 740	crypto_free_acomp(acomp_ctx->acomp);
 741acomp_fail:
 742	kfree(acomp_ctx->buffer);
 743	return ret;
 744}
 745
 746static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 747{
 748	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 749	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 750
 751	if (!IS_ERR_OR_NULL(acomp_ctx)) {
 752		if (!IS_ERR_OR_NULL(acomp_ctx->req))
 753			acomp_request_free(acomp_ctx->req);
 754		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
 755			crypto_free_acomp(acomp_ctx->acomp);
 756		kfree(acomp_ctx->buffer);
 757	}
 758
 
 
 
 
 759	return 0;
 760}
 761
 762/*********************************
 763* pool functions
 764**********************************/
 765
 766static struct zswap_pool *__zswap_pool_current(void)
 767{
 768	struct zswap_pool *pool;
 769
 770	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 771	WARN_ONCE(!pool && zswap_has_pool,
 772		  "%s: no page storage pool!\n", __func__);
 773
 774	return pool;
 775}
 776
 777static struct zswap_pool *zswap_pool_current(void)
 778{
 779	assert_spin_locked(&zswap_pools_lock);
 780
 781	return __zswap_pool_current();
 782}
 783
 784static struct zswap_pool *zswap_pool_current_get(void)
 785{
 786	struct zswap_pool *pool;
 787
 788	rcu_read_lock();
 789
 790	pool = __zswap_pool_current();
 791	if (!zswap_pool_get(pool))
 792		pool = NULL;
 793
 794	rcu_read_unlock();
 795
 796	return pool;
 797}
 798
 799static struct zswap_pool *zswap_pool_last_get(void)
 800{
 801	struct zswap_pool *pool, *last = NULL;
 802
 803	rcu_read_lock();
 804
 805	list_for_each_entry_rcu(pool, &zswap_pools, list)
 806		last = pool;
 807	WARN_ONCE(!last && zswap_has_pool,
 808		  "%s: no page storage pool!\n", __func__);
 809	if (!zswap_pool_get(last))
 810		last = NULL;
 811
 812	rcu_read_unlock();
 813
 814	return last;
 815}
 816
 817/* type and compressor must be null-terminated */
 818static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 819{
 820	struct zswap_pool *pool;
 821
 822	assert_spin_locked(&zswap_pools_lock);
 823
 824	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 825		if (strcmp(pool->tfm_name, compressor))
 826			continue;
 827		/* all zpools share the same type */
 828		if (strcmp(zpool_get_type(pool->zpools[0]), type))
 829			continue;
 830		/* if we can't get it, it's about to be destroyed */
 831		if (!zswap_pool_get(pool))
 832			continue;
 833		return pool;
 834	}
 835
 836	return NULL;
 837}
 838
 839/*
 840 * If the entry is still valid in the tree, drop the initial ref and remove it
 841 * from the tree. This function must be called with an additional ref held,
 842 * otherwise it may race with another invalidation freeing the entry.
 843 */
 844static void zswap_invalidate_entry(struct zswap_tree *tree,
 845				   struct zswap_entry *entry)
 846{
 847	if (zswap_rb_erase(&tree->rbroot, entry))
 848		zswap_entry_put(tree, entry);
 849}
 850
 851static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
 852				       spinlock_t *lock, void *arg)
 853{
 854	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
 855	bool *encountered_page_in_swapcache = (bool *)arg;
 856	struct zswap_tree *tree;
 857	pgoff_t swpoffset;
 858	enum lru_status ret = LRU_REMOVED_RETRY;
 859	int writeback_result;
 860
 861	/*
 862	 * Once the lru lock is dropped, the entry might get freed. The
 863	 * swpoffset is copied to the stack, and entry isn't deref'd again
 864	 * until the entry is verified to still be alive in the tree.
 865	 */
 866	swpoffset = swp_offset(entry->swpentry);
 867	tree = zswap_trees[swp_type(entry->swpentry)];
 868	list_lru_isolate(l, item);
 869	/*
 870	 * It's safe to drop the lock here because we return either
 871	 * LRU_REMOVED_RETRY or LRU_RETRY.
 872	 */
 873	spin_unlock(lock);
 874
 875	/* Check for invalidate() race */
 876	spin_lock(&tree->lock);
 877	if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
 878		goto unlock;
 879
 880	/* Hold a reference to prevent a free during writeback */
 881	zswap_entry_get(entry);
 882	spin_unlock(&tree->lock);
 883
 884	writeback_result = zswap_writeback_entry(entry, tree);
 885
 886	spin_lock(&tree->lock);
 887	if (writeback_result) {
 888		zswap_reject_reclaim_fail++;
 889		zswap_lru_putback(&entry->pool->list_lru, entry);
 890		ret = LRU_RETRY;
 891
 892		/*
 893		 * Encountering a page already in swap cache is a sign that we are shrinking
 894		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
 895		 * shrinker context).
 896		 */
 897		if (writeback_result == -EEXIST && encountered_page_in_swapcache)
 898			*encountered_page_in_swapcache = true;
 899
 900		goto put_unlock;
 901	}
 902	zswap_written_back_pages++;
 903
 904	if (entry->objcg)
 905		count_objcg_event(entry->objcg, ZSWPWB);
 906
 907	count_vm_event(ZSWPWB);
 908	/*
 909	 * Writeback started successfully, the page now belongs to the
 910	 * swapcache. Drop the entry from zswap - unless invalidate already
 911	 * took it out while we had the tree->lock released for IO.
 912	 */
 913	zswap_invalidate_entry(tree, entry);
 914
 915put_unlock:
 916	/* Drop local reference */
 917	zswap_entry_put(tree, entry);
 918unlock:
 919	spin_unlock(&tree->lock);
 920	spin_lock(lock);
 921	return ret;
 922}
 923
 924static int shrink_memcg(struct mem_cgroup *memcg)
 925{
 926	struct zswap_pool *pool;
 927	int nid, shrunk = 0;
 928
 929	if (!mem_cgroup_zswap_writeback_enabled(memcg))
 930		return -EINVAL;
 931
 932	/*
 933	 * Skip zombies because their LRUs are reparented and we would be
 934	 * reclaiming from the parent instead of the dead memcg.
 935	 */
 936	if (memcg && !mem_cgroup_online(memcg))
 937		return -ENOENT;
 938
 939	pool = zswap_pool_current_get();
 940	if (!pool)
 941		return -EINVAL;
 942
 943	for_each_node_state(nid, N_NORMAL_MEMORY) {
 944		unsigned long nr_to_walk = 1;
 945
 946		shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
 947					    &shrink_memcg_cb, NULL, &nr_to_walk);
 948	}
 949	zswap_pool_put(pool);
 950	return shrunk ? 0 : -EAGAIN;
 951}
 952
 953static void shrink_worker(struct work_struct *w)
 954{
 955	struct zswap_pool *pool = container_of(w, typeof(*pool),
 956						shrink_work);
 957	struct mem_cgroup *memcg;
 958	int ret, failures = 0;
 959
 960	/* global reclaim will select cgroup in a round-robin fashion. */
 961	do {
 962		spin_lock(&zswap_pools_lock);
 963		pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
 964		memcg = pool->next_shrink;
 965
 966		/*
 967		 * We need to retry if we have gone through a full round trip, or if we
 968		 * got an offline memcg (or else we risk undoing the effect of the
 969		 * zswap memcg offlining cleanup callback). This is not catastrophic
 970		 * per se, but it will keep the now offlined memcg hostage for a while.
 971		 *
 972		 * Note that if we got an online memcg, we will keep the extra
 973		 * reference in case the original reference obtained by mem_cgroup_iter
 974		 * is dropped by the zswap memcg offlining callback, ensuring that the
 975		 * memcg is not killed when we are reclaiming.
 976		 */
 977		if (!memcg) {
 978			spin_unlock(&zswap_pools_lock);
 979			if (++failures == MAX_RECLAIM_RETRIES)
 980				break;
 981
 982			goto resched;
 983		}
 984
 985		if (!mem_cgroup_tryget_online(memcg)) {
 986			/* drop the reference from mem_cgroup_iter() */
 987			mem_cgroup_iter_break(NULL, memcg);
 988			pool->next_shrink = NULL;
 989			spin_unlock(&zswap_pools_lock);
 990
 991			if (++failures == MAX_RECLAIM_RETRIES)
 992				break;
 993
 994			goto resched;
 995		}
 996		spin_unlock(&zswap_pools_lock);
 997
 998		ret = shrink_memcg(memcg);
 999		/* drop the extra reference */
1000		mem_cgroup_put(memcg);
1001
1002		if (ret == -EINVAL)
1003			break;
1004		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1005			break;
1006
1007resched:
1008		cond_resched();
1009	} while (!zswap_can_accept());
1010	zswap_pool_put(pool);
1011}
1012
1013static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1014{
1015	int i;
1016	struct zswap_pool *pool;
1017	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1018	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1019	int ret;
1020
1021	if (!zswap_has_pool) {
1022		/* if either are unset, pool initialization failed, and we
1023		 * need both params to be set correctly before trying to
1024		 * create a pool.
1025		 */
1026		if (!strcmp(type, ZSWAP_PARAM_UNSET))
1027			return NULL;
1028		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1029			return NULL;
1030	}
1031
1032	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1033	if (!pool)
1034		return NULL;
1035
1036	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1037		/* unique name for each pool specifically required by zsmalloc */
1038		snprintf(name, 38, "zswap%x",
1039			 atomic_inc_return(&zswap_pools_count));
1040
1041		pool->zpools[i] = zpool_create_pool(type, name, gfp);
1042		if (!pool->zpools[i]) {
1043			pr_err("%s zpool not available\n", type);
1044			goto error;
1045		}
1046	}
1047	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1048
1049	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 
 
 
 
 
1050
1051	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1052	if (!pool->acomp_ctx) {
 
1053		pr_err("percpu alloc failed\n");
1054		goto error;
1055	}
1056
1057	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1058				       &pool->node);
1059	if (ret)
1060		goto error;
1061
1062	zswap_alloc_shrinker(pool);
1063	if (!pool->shrinker)
1064		goto error;
1065
1066	pr_debug("using %s compressor\n", pool->tfm_name);
1067
1068	/* being the current pool takes 1 ref; this func expects the
1069	 * caller to always add the new pool as the current pool
1070	 */
1071	kref_init(&pool->kref);
1072	INIT_LIST_HEAD(&pool->list);
1073	if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1074		goto lru_fail;
1075	shrinker_register(pool->shrinker);
1076	INIT_WORK(&pool->shrink_work, shrink_worker);
1077	atomic_set(&pool->nr_stored, 0);
1078
1079	zswap_pool_debug("created", pool);
1080
1081	return pool;
1082
1083lru_fail:
1084	list_lru_destroy(&pool->list_lru);
1085	shrinker_free(pool->shrinker);
1086error:
1087	if (pool->acomp_ctx)
1088		free_percpu(pool->acomp_ctx);
1089	while (i--)
1090		zpool_destroy_pool(pool->zpools[i]);
1091	kfree(pool);
1092	return NULL;
1093}
1094
1095static struct zswap_pool *__zswap_pool_create_fallback(void)
1096{
1097	bool has_comp, has_zpool;
1098
1099	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1100	if (!has_comp && strcmp(zswap_compressor,
1101				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1102		pr_err("compressor %s not available, using default %s\n",
1103		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1104		param_free_charp(&zswap_compressor);
1105		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1106		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1107	}
1108	if (!has_comp) {
1109		pr_err("default compressor %s not available\n",
1110		       zswap_compressor);
1111		param_free_charp(&zswap_compressor);
1112		zswap_compressor = ZSWAP_PARAM_UNSET;
1113	}
1114
1115	has_zpool = zpool_has_pool(zswap_zpool_type);
1116	if (!has_zpool && strcmp(zswap_zpool_type,
1117				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1118		pr_err("zpool %s not available, using default %s\n",
1119		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1120		param_free_charp(&zswap_zpool_type);
1121		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1122		has_zpool = zpool_has_pool(zswap_zpool_type);
1123	}
1124	if (!has_zpool) {
1125		pr_err("default zpool %s not available\n",
1126		       zswap_zpool_type);
1127		param_free_charp(&zswap_zpool_type);
1128		zswap_zpool_type = ZSWAP_PARAM_UNSET;
1129	}
1130
1131	if (!has_comp || !has_zpool)
1132		return NULL;
1133
1134	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1135}
1136
1137static void zswap_pool_destroy(struct zswap_pool *pool)
1138{
1139	int i;
1140
1141	zswap_pool_debug("destroying", pool);
1142
1143	shrinker_free(pool->shrinker);
1144	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1145	free_percpu(pool->acomp_ctx);
1146	list_lru_destroy(&pool->list_lru);
1147
1148	spin_lock(&zswap_pools_lock);
1149	mem_cgroup_iter_break(NULL, pool->next_shrink);
1150	pool->next_shrink = NULL;
1151	spin_unlock(&zswap_pools_lock);
1152
1153	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1154		zpool_destroy_pool(pool->zpools[i]);
1155	kfree(pool);
1156}
1157
1158static int __must_check zswap_pool_get(struct zswap_pool *pool)
1159{
1160	if (!pool)
1161		return 0;
1162
1163	return kref_get_unless_zero(&pool->kref);
1164}
1165
1166static void __zswap_pool_release(struct work_struct *work)
1167{
1168	struct zswap_pool *pool = container_of(work, typeof(*pool),
1169						release_work);
1170
1171	synchronize_rcu();
1172
1173	/* nobody should have been able to get a kref... */
1174	WARN_ON(kref_get_unless_zero(&pool->kref));
1175
1176	/* pool is now off zswap_pools list and has no references. */
1177	zswap_pool_destroy(pool);
1178}
1179
1180static void __zswap_pool_empty(struct kref *kref)
1181{
1182	struct zswap_pool *pool;
1183
1184	pool = container_of(kref, typeof(*pool), kref);
1185
1186	spin_lock(&zswap_pools_lock);
1187
1188	WARN_ON(pool == zswap_pool_current());
1189
1190	list_del_rcu(&pool->list);
1191
1192	INIT_WORK(&pool->release_work, __zswap_pool_release);
1193	schedule_work(&pool->release_work);
1194
1195	spin_unlock(&zswap_pools_lock);
1196}
1197
1198static void zswap_pool_put(struct zswap_pool *pool)
1199{
1200	kref_put(&pool->kref, __zswap_pool_empty);
1201}
1202
1203/*********************************
1204* param callbacks
1205**********************************/
1206
1207static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1208{
1209	/* no change required */
1210	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1211		return false;
1212	return true;
1213}
1214
1215/* val must be a null-terminated string */
1216static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1217			     char *type, char *compressor)
1218{
1219	struct zswap_pool *pool, *put_pool = NULL;
1220	char *s = strstrip((char *)val);
1221	int ret = 0;
1222	bool new_pool = false;
1223
1224	mutex_lock(&zswap_init_lock);
1225	switch (zswap_init_state) {
1226	case ZSWAP_UNINIT:
1227		/* if this is load-time (pre-init) param setting,
1228		 * don't create a pool; that's done during init.
1229		 */
1230		ret = param_set_charp(s, kp);
1231		break;
1232	case ZSWAP_INIT_SUCCEED:
1233		new_pool = zswap_pool_changed(s, kp);
1234		break;
1235	case ZSWAP_INIT_FAILED:
1236		pr_err("can't set param, initialization failed\n");
1237		ret = -ENODEV;
1238	}
1239	mutex_unlock(&zswap_init_lock);
1240
1241	/* no need to create a new pool, return directly */
1242	if (!new_pool)
1243		return ret;
 
 
 
 
 
 
1244
1245	if (!type) {
1246		if (!zpool_has_pool(s)) {
1247			pr_err("zpool %s not available\n", s);
1248			return -ENOENT;
1249		}
1250		type = s;
1251	} else if (!compressor) {
1252		if (!crypto_has_acomp(s, 0, 0)) {
1253			pr_err("compressor %s not available\n", s);
1254			return -ENOENT;
1255		}
1256		compressor = s;
1257	} else {
1258		WARN_ON(1);
1259		return -EINVAL;
1260	}
1261
1262	spin_lock(&zswap_pools_lock);
1263
1264	pool = zswap_pool_find_get(type, compressor);
1265	if (pool) {
1266		zswap_pool_debug("using existing", pool);
1267		WARN_ON(pool == zswap_pool_current());
1268		list_del_rcu(&pool->list);
1269	}
1270
1271	spin_unlock(&zswap_pools_lock);
1272
1273	if (!pool)
1274		pool = zswap_pool_create(type, compressor);
1275
1276	if (pool)
1277		ret = param_set_charp(s, kp);
1278	else
1279		ret = -EINVAL;
1280
1281	spin_lock(&zswap_pools_lock);
1282
1283	if (!ret) {
1284		put_pool = zswap_pool_current();
1285		list_add_rcu(&pool->list, &zswap_pools);
1286		zswap_has_pool = true;
1287	} else if (pool) {
1288		/* add the possibly pre-existing pool to the end of the pools
1289		 * list; if it's new (and empty) then it'll be removed and
1290		 * destroyed by the put after we drop the lock
1291		 */
1292		list_add_tail_rcu(&pool->list, &zswap_pools);
1293		put_pool = pool;
1294	}
1295
1296	spin_unlock(&zswap_pools_lock);
1297
1298	if (!zswap_has_pool && !pool) {
1299		/* if initial pool creation failed, and this pool creation also
1300		 * failed, maybe both compressor and zpool params were bad.
1301		 * Allow changing this param, so pool creation will succeed
1302		 * when the other param is changed. We already verified this
1303		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
1304		 * checks above.
1305		 */
1306		ret = param_set_charp(s, kp);
1307	}
1308
1309	/* drop the ref from either the old current pool,
1310	 * or the new pool we failed to add
1311	 */
1312	if (put_pool)
1313		zswap_pool_put(put_pool);
1314
1315	return ret;
1316}
1317
1318static int zswap_compressor_param_set(const char *val,
1319				      const struct kernel_param *kp)
1320{
1321	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1322}
1323
1324static int zswap_zpool_param_set(const char *val,
1325				 const struct kernel_param *kp)
1326{
1327	return __zswap_param_set(val, kp, NULL, zswap_compressor);
1328}
1329
1330static int zswap_enabled_param_set(const char *val,
1331				   const struct kernel_param *kp)
1332{
1333	int ret = -ENODEV;
1334
1335	/* if this is load-time (pre-init) param setting, only set param. */
1336	if (system_state != SYSTEM_RUNNING)
1337		return param_set_bool(val, kp);
1338
1339	mutex_lock(&zswap_init_lock);
1340	switch (zswap_init_state) {
1341	case ZSWAP_UNINIT:
1342		if (zswap_setup())
1343			break;
1344		fallthrough;
1345	case ZSWAP_INIT_SUCCEED:
1346		if (!zswap_has_pool)
1347			pr_err("can't enable, no pool configured\n");
1348		else
1349			ret = param_set_bool(val, kp);
1350		break;
1351	case ZSWAP_INIT_FAILED:
1352		pr_err("can't enable, initialization failed\n");
 
 
 
 
 
1353	}
1354	mutex_unlock(&zswap_init_lock);
1355
1356	return ret;
1357}
1358
1359static void __zswap_load(struct zswap_entry *entry, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360{
1361	struct zpool *zpool = zswap_find_zpool(entry);
1362	struct scatterlist input, output;
1363	struct crypto_acomp_ctx *acomp_ctx;
1364	u8 *src;
1365
1366	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1367	mutex_lock(&acomp_ctx->mutex);
1368
1369	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1370	if (!zpool_can_sleep_mapped(zpool)) {
1371		memcpy(acomp_ctx->buffer, src, entry->length);
1372		src = acomp_ctx->buffer;
1373		zpool_unmap_handle(zpool, entry->handle);
1374	}
1375
1376	sg_init_one(&input, src, entry->length);
1377	sg_init_table(&output, 1);
1378	sg_set_page(&output, page, PAGE_SIZE, 0);
1379	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1380	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1381	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1382	mutex_unlock(&acomp_ctx->mutex);
1383
1384	if (zpool_can_sleep_mapped(zpool))
1385		zpool_unmap_handle(zpool, entry->handle);
 
 
 
 
 
1386}
1387
1388/*********************************
1389* writeback code
1390**********************************/
1391/*
1392 * Attempts to free an entry by adding a folio to the swap cache,
1393 * decompressing the entry data into the folio, and issuing a
1394 * bio write to write the folio back to the swap device.
1395 *
1396 * This can be thought of as a "resumed writeback" of the folio
1397 * to the swap device.  We are basically resuming the same swap
1398 * writeback path that was intercepted with the zswap_store()
1399 * in the first place.  After the folio has been decompressed into
1400 * the swap cache, the compressed version stored by zswap can be
1401 * freed.
1402 */
1403static int zswap_writeback_entry(struct zswap_entry *entry,
1404				 struct zswap_tree *tree)
1405{
1406	swp_entry_t swpentry = entry->swpentry;
1407	struct folio *folio;
1408	struct mempolicy *mpol;
1409	bool folio_was_allocated;
 
 
 
 
 
 
1410	struct writeback_control wbc = {
1411		.sync_mode = WB_SYNC_NONE,
1412	};
1413
1414	/* try to allocate swap cache folio */
1415	mpol = get_task_policy(current);
1416	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1417				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1418	if (!folio)
1419		return -ENOMEM;
1420
1421	/*
1422	 * Found an existing folio, we raced with load/swapin. We generally
1423	 * writeback cold folios from zswap, and swapin means the folio just
1424	 * became hot. Skip this folio and let the caller find another one.
1425	 */
1426	if (!folio_was_allocated) {
1427		folio_put(folio);
1428		return -EEXIST;
1429	}
1430
1431	/*
1432	 * folio is locked, and the swapcache is now secured against
1433	 * concurrent swapping to and from the slot. Verify that the
1434	 * swap entry hasn't been invalidated and recycled behind our
1435	 * backs (our zswap_entry reference doesn't prevent that), to
1436	 * avoid overwriting a new swap folio with old compressed data.
1437	 */
1438	spin_lock(&tree->lock);
1439	if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
 
 
1440		spin_unlock(&tree->lock);
1441		delete_from_swap_cache(folio);
1442		folio_unlock(folio);
1443		folio_put(folio);
1444		return -ENOMEM;
1445	}
1446	spin_unlock(&tree->lock);
 
1447
1448	__zswap_load(entry, &folio->page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449
1450	/* folio is up to date */
1451	folio_mark_uptodate(folio);
 
1452
1453	/* move it to the tail of the inactive list after end_writeback */
1454	folio_set_reclaim(folio);
1455
1456	/* start writeback */
1457	__swap_writepage(folio, &wbc);
1458	folio_put(folio);
 
1459
1460	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462
1463static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1464{
 
1465	unsigned long *page;
1466	unsigned long val;
1467	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1468
1469	page = (unsigned long *)ptr;
1470	val = page[0];
1471
1472	if (val != page[last_pos])
1473		return 0;
1474
1475	for (pos = 1; pos < last_pos; pos++) {
1476		if (val != page[pos])
1477			return 0;
1478	}
1479
1480	*value = val;
1481
1482	return 1;
1483}
1484
1485static void zswap_fill_page(void *ptr, unsigned long value)
1486{
1487	unsigned long *page;
1488
1489	page = (unsigned long *)ptr;
1490	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1491}
1492
1493bool zswap_store(struct folio *folio)
 
 
 
 
 
1494{
1495	swp_entry_t swp = folio->swap;
1496	int type = swp_type(swp);
1497	pgoff_t offset = swp_offset(swp);
1498	struct page *page = &folio->page;
1499	struct zswap_tree *tree = zswap_trees[type];
1500	struct zswap_entry *entry, *dupentry;
1501	struct scatterlist input, output;
1502	struct crypto_acomp_ctx *acomp_ctx;
1503	struct obj_cgroup *objcg = NULL;
1504	struct mem_cgroup *memcg = NULL;
1505	struct zswap_pool *pool;
1506	struct zpool *zpool;
1507	unsigned int dlen = PAGE_SIZE;
1508	unsigned long handle, value;
1509	char *buf;
1510	u8 *src, *dst;
1511	gfp_t gfp;
1512	int ret;
1513
1514	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1515	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1516
1517	/* Large folios aren't supported */
1518	if (folio_test_large(folio))
1519		return false;
1520
1521	if (!tree)
1522		return false;
1523
1524	/*
1525	 * If this is a duplicate, it must be removed before attempting to store
1526	 * it, otherwise, if the store fails the old page won't be removed from
1527	 * the tree, and it might be written back overriding the new data.
1528	 */
1529	spin_lock(&tree->lock);
1530	dupentry = zswap_rb_search(&tree->rbroot, offset);
1531	if (dupentry) {
1532		zswap_duplicate_entry++;
1533		zswap_invalidate_entry(tree, dupentry);
1534	}
1535	spin_unlock(&tree->lock);
1536
1537	if (!zswap_enabled)
1538		return false;
1539
1540	objcg = get_obj_cgroup_from_folio(folio);
1541	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1542		memcg = get_mem_cgroup_from_objcg(objcg);
1543		if (shrink_memcg(memcg)) {
1544			mem_cgroup_put(memcg);
1545			goto reject;
1546		}
1547		mem_cgroup_put(memcg);
1548	}
1549
1550	/* reclaim space if needed */
1551	if (zswap_is_full()) {
1552		zswap_pool_limit_hit++;
1553		zswap_pool_reached_full = true;
1554		goto shrink;
1555	}
1556
1557	if (zswap_pool_reached_full) {
1558	       if (!zswap_can_accept())
1559			goto shrink;
1560		else
1561			zswap_pool_reached_full = false;
1562	}
1563
1564	/* allocate entry */
1565	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1566	if (!entry) {
1567		zswap_reject_kmemcache_fail++;
 
1568		goto reject;
1569	}
1570
1571	if (zswap_same_filled_pages_enabled) {
1572		src = kmap_local_page(page);
1573		if (zswap_is_page_same_filled(src, &value)) {
1574			kunmap_local(src);
1575			entry->swpentry = swp_entry(type, offset);
1576			entry->length = 0;
1577			entry->value = value;
1578			atomic_inc(&zswap_same_filled_pages);
1579			goto insert_entry;
1580		}
1581		kunmap_local(src);
1582	}
1583
1584	if (!zswap_non_same_filled_pages_enabled)
1585		goto freepage;
1586
1587	/* if entry is successfully added, it keeps the reference */
1588	entry->pool = zswap_pool_current_get();
1589	if (!entry->pool)
 
1590		goto freepage;
1591
1592	if (objcg) {
1593		memcg = get_mem_cgroup_from_objcg(objcg);
1594		if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1595			mem_cgroup_put(memcg);
1596			goto put_pool;
1597		}
1598		mem_cgroup_put(memcg);
1599	}
1600
1601	/* compress */
1602	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1603
1604	mutex_lock(&acomp_ctx->mutex);
1605
1606	dst = acomp_ctx->buffer;
1607	sg_init_table(&input, 1);
1608	sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1609
1610	/*
1611	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1612	 * and hardware-accelerators may won't check the dst buffer size, so
1613	 * giving the dst buffer with enough length to avoid buffer overflow.
1614	 */
1615	sg_init_one(&output, dst, PAGE_SIZE * 2);
1616	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1617	/*
1618	 * it maybe looks a little bit silly that we send an asynchronous request,
1619	 * then wait for its completion synchronously. This makes the process look
1620	 * synchronous in fact.
1621	 * Theoretically, acomp supports users send multiple acomp requests in one
1622	 * acomp instance, then get those requests done simultaneously. but in this
1623	 * case, zswap actually does store and load page by page, there is no
1624	 * existing method to send the second page before the first page is done
1625	 * in one thread doing zwap.
1626	 * but in different threads running on different cpu, we have different
1627	 * acomp instance, so multiple threads can do (de)compression in parallel.
1628	 */
1629	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1630	dlen = acomp_ctx->req->dlen;
1631
1632	if (ret) {
1633		zswap_reject_compress_fail++;
1634		goto put_dstmem;
1635	}
1636
1637	/* store */
1638	zpool = zswap_find_zpool(entry);
1639	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1640	if (zpool_malloc_support_movable(zpool))
1641		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1642	ret = zpool_malloc(zpool, dlen, gfp, &handle);
1643	if (ret == -ENOSPC) {
1644		zswap_reject_compress_poor++;
1645		goto put_dstmem;
1646	}
1647	if (ret) {
1648		zswap_reject_alloc_fail++;
1649		goto put_dstmem;
1650	}
1651	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1652	memcpy(buf, dst, dlen);
1653	zpool_unmap_handle(zpool, handle);
1654	mutex_unlock(&acomp_ctx->mutex);
 
1655
1656	/* populate entry */
1657	entry->swpentry = swp_entry(type, offset);
1658	entry->handle = handle;
1659	entry->length = dlen;
1660
1661insert_entry:
1662	entry->objcg = objcg;
1663	if (objcg) {
1664		obj_cgroup_charge_zswap(objcg, entry->length);
1665		/* Account before objcg ref is moved to tree */
1666		count_objcg_event(objcg, ZSWPOUT);
1667	}
1668
1669	/* map */
1670	spin_lock(&tree->lock);
1671	/*
1672	 * A duplicate entry should have been removed at the beginning of this
1673	 * function. Since the swap entry should be pinned, if a duplicate is
1674	 * found again here it means that something went wrong in the swap
1675	 * cache.
1676	 */
1677	while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1678		WARN_ON(1);
1679		zswap_duplicate_entry++;
1680		zswap_invalidate_entry(tree, dupentry);
1681	}
1682	if (entry->length) {
1683		INIT_LIST_HEAD(&entry->lru);
1684		zswap_lru_add(&entry->pool->list_lru, entry);
1685		atomic_inc(&entry->pool->nr_stored);
1686	}
1687	spin_unlock(&tree->lock);
1688
1689	/* update stats */
1690	atomic_inc(&zswap_stored_pages);
1691	zswap_update_total_size();
1692	count_vm_event(ZSWPOUT);
1693
1694	return true;
1695
1696put_dstmem:
1697	mutex_unlock(&acomp_ctx->mutex);
1698put_pool:
1699	zswap_pool_put(entry->pool);
1700freepage:
1701	zswap_entry_cache_free(entry);
1702reject:
1703	if (objcg)
1704		obj_cgroup_put(objcg);
1705	return false;
1706
1707shrink:
1708	pool = zswap_pool_last_get();
1709	if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1710		zswap_pool_put(pool);
1711	goto reject;
1712}
1713
1714bool zswap_load(struct folio *folio)
 
 
 
 
 
1715{
1716	swp_entry_t swp = folio->swap;
1717	int type = swp_type(swp);
1718	pgoff_t offset = swp_offset(swp);
1719	struct page *page = &folio->page;
1720	struct zswap_tree *tree = zswap_trees[type];
1721	struct zswap_entry *entry;
1722	u8 *dst;
1723
1724	VM_WARN_ON_ONCE(!folio_test_locked(folio));
 
1725
1726	/* find */
1727	spin_lock(&tree->lock);
1728	entry = zswap_entry_find_get(&tree->rbroot, offset);
1729	if (!entry) {
 
1730		spin_unlock(&tree->lock);
1731		return false;
1732	}
1733	spin_unlock(&tree->lock);
1734
1735	if (entry->length)
1736		__zswap_load(entry, page);
1737	else {
1738		dst = kmap_local_page(page);
1739		zswap_fill_page(dst, entry->value);
1740		kunmap_local(dst);
 
1741	}
1742
1743	count_vm_event(ZSWPIN);
1744	if (entry->objcg)
1745		count_objcg_event(entry->objcg, ZSWPIN);
 
 
 
 
 
 
 
 
 
1746
 
1747	spin_lock(&tree->lock);
1748	if (zswap_exclusive_loads_enabled) {
1749		zswap_invalidate_entry(tree, entry);
1750		folio_mark_dirty(folio);
1751	} else if (entry->length) {
1752		zswap_lru_del(&entry->pool->list_lru, entry);
1753		zswap_lru_add(&entry->pool->list_lru, entry);
1754	}
1755	zswap_entry_put(tree, entry);
1756	spin_unlock(&tree->lock);
1757
1758	return true;
1759}
1760
1761void zswap_invalidate(int type, pgoff_t offset)
 
1762{
1763	struct zswap_tree *tree = zswap_trees[type];
1764	struct zswap_entry *entry;
1765
1766	/* find */
1767	spin_lock(&tree->lock);
1768	entry = zswap_rb_search(&tree->rbroot, offset);
1769	if (!entry) {
1770		/* entry was written back */
1771		spin_unlock(&tree->lock);
1772		return;
1773	}
1774	zswap_invalidate_entry(tree, entry);
1775	spin_unlock(&tree->lock);
1776}
1777
1778void zswap_swapon(int type)
1779{
1780	struct zswap_tree *tree;
1781
1782	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1783	if (!tree) {
1784		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1785		return;
1786	}
1787
1788	tree->rbroot = RB_ROOT;
1789	spin_lock_init(&tree->lock);
1790	zswap_trees[type] = tree;
1791}
1792
1793void zswap_swapoff(int type)
 
1794{
1795	struct zswap_tree *tree = zswap_trees[type];
1796	struct zswap_entry *entry, *n;
1797
1798	if (!tree)
1799		return;
1800
1801	/* walk the tree and free everything */
1802	spin_lock(&tree->lock);
1803	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1804		zswap_free_entry(entry);
1805	tree->rbroot = RB_ROOT;
1806	spin_unlock(&tree->lock);
1807	kfree(tree);
1808	zswap_trees[type] = NULL;
1809}
1810
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811/*********************************
1812* debugfs functions
1813**********************************/
1814#ifdef CONFIG_DEBUG_FS
1815#include <linux/debugfs.h>
1816
1817static struct dentry *zswap_debugfs_root;
1818
1819static int zswap_debugfs_init(void)
1820{
1821	if (!debugfs_initialized())
1822		return -ENODEV;
1823
1824	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
 
 
1825
1826	debugfs_create_u64("pool_limit_hit", 0444,
1827			   zswap_debugfs_root, &zswap_pool_limit_hit);
1828	debugfs_create_u64("reject_reclaim_fail", 0444,
1829			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1830	debugfs_create_u64("reject_alloc_fail", 0444,
1831			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1832	debugfs_create_u64("reject_kmemcache_fail", 0444,
1833			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1834	debugfs_create_u64("reject_compress_fail", 0444,
1835			   zswap_debugfs_root, &zswap_reject_compress_fail);
1836	debugfs_create_u64("reject_compress_poor", 0444,
1837			   zswap_debugfs_root, &zswap_reject_compress_poor);
1838	debugfs_create_u64("written_back_pages", 0444,
1839			   zswap_debugfs_root, &zswap_written_back_pages);
1840	debugfs_create_u64("duplicate_entry", 0444,
1841			   zswap_debugfs_root, &zswap_duplicate_entry);
1842	debugfs_create_u64("pool_total_size", 0444,
1843			   zswap_debugfs_root, &zswap_pool_total_size);
1844	debugfs_create_atomic_t("stored_pages", 0444,
1845				zswap_debugfs_root, &zswap_stored_pages);
1846	debugfs_create_atomic_t("same_filled_pages", 0444,
1847				zswap_debugfs_root, &zswap_same_filled_pages);
1848
1849	return 0;
1850}
 
 
 
 
 
1851#else
1852static int zswap_debugfs_init(void)
1853{
1854	return 0;
1855}
 
 
1856#endif
1857
1858/*********************************
1859* module init and exit
1860**********************************/
1861static int zswap_setup(void)
1862{
1863	struct zswap_pool *pool;
1864	int ret;
1865
1866	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1867	if (!zswap_entry_cache) {
 
1868		pr_err("entry cache creation failed\n");
1869		goto cache_fail;
1870	}
1871
 
 
 
 
 
 
 
1872	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1873				      "mm/zswap_pool:prepare",
1874				      zswap_cpu_comp_prepare,
1875				      zswap_cpu_comp_dead);
1876	if (ret)
1877		goto hp_fail;
1878
1879	pool = __zswap_pool_create_fallback();
1880	if (pool) {
1881		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1882			zpool_get_type(pool->zpools[0]));
1883		list_add(&pool->list, &zswap_pools);
1884		zswap_has_pool = true;
1885	} else {
1886		pr_err("pool creation failed\n");
1887		zswap_enabled = false;
1888	}
1889
1890	shrink_wq = create_workqueue("zswap-shrink");
1891	if (!shrink_wq)
1892		goto fallback_fail;
1893
1894	if (zswap_debugfs_init())
1895		pr_warn("debugfs initialization failed\n");
1896	zswap_init_state = ZSWAP_INIT_SUCCEED;
1897	return 0;
1898
1899fallback_fail:
1900	if (pool)
1901		zswap_pool_destroy(pool);
1902hp_fail:
1903	kmem_cache_destroy(zswap_entry_cache);
 
 
1904cache_fail:
1905	/* if built-in, we aren't unloaded on failure; don't allow use */
1906	zswap_init_state = ZSWAP_INIT_FAILED;
1907	zswap_enabled = false;
1908	return -ENOMEM;
1909}
1910
1911static int __init zswap_init(void)
1912{
1913	if (!zswap_enabled)
1914		return 0;
1915	return zswap_setup();
1916}
1917/* must be late so crypto has time to come up */
1918late_initcall(zswap_init);
1919
 
1920MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1921MODULE_DESCRIPTION("Compressed cache for swap pages");
v4.17
 
   1/*
   2 * zswap.c - zswap driver file
   3 *
   4 * zswap is a backend for frontswap that takes pages that are in the process
   5 * of being swapped out and attempts to compress and store them in a
   6 * RAM-based memory pool.  This can result in a significant I/O reduction on
   7 * the swap device and, in the case where decompressing from RAM is faster
   8 * than reading from the swap device, can also improve workload performance.
   9 *
  10 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
  11 *
  12 * This program is free software; you can redistribute it and/or
  13 * modify it under the terms of the GNU General Public License
  14 * as published by the Free Software Foundation; either version 2
  15 * of the License, or (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21*/
  22
  23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24
  25#include <linux/module.h>
  26#include <linux/cpu.h>
  27#include <linux/highmem.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30#include <linux/types.h>
  31#include <linux/atomic.h>
  32#include <linux/frontswap.h>
  33#include <linux/rbtree.h>
  34#include <linux/swap.h>
  35#include <linux/crypto.h>
 
 
  36#include <linux/mempool.h>
  37#include <linux/zpool.h>
  38
 
  39#include <linux/mm_types.h>
  40#include <linux/page-flags.h>
  41#include <linux/swapops.h>
  42#include <linux/writeback.h>
  43#include <linux/pagemap.h>
 
 
 
 
 
  44
  45/*********************************
  46* statistics
  47**********************************/
  48/* Total bytes used by the compressed storage */
  49static u64 zswap_pool_total_size;
  50/* The number of compressed pages currently stored in zswap */
  51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  52/* The number of same-value filled pages currently stored in zswap */
  53static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
  54
  55/*
  56 * The statistics below are not protected from concurrent access for
  57 * performance reasons so they may not be a 100% accurate.  However,
  58 * they do provide useful information on roughly how many times a
  59 * certain event is occurring.
  60*/
  61
  62/* Pool limit was hit (see zswap_max_pool_percent) */
  63static u64 zswap_pool_limit_hit;
  64/* Pages written back when pool limit was reached */
  65static u64 zswap_written_back_pages;
  66/* Store failed due to a reclaim failure after pool limit was reached */
  67static u64 zswap_reject_reclaim_fail;
 
 
  68/* Compressed page was too big for the allocator to (optimally) store */
  69static u64 zswap_reject_compress_poor;
  70/* Store failed because underlying allocator could not get memory */
  71static u64 zswap_reject_alloc_fail;
  72/* Store failed because the entry metadata could not be allocated (rare) */
  73static u64 zswap_reject_kmemcache_fail;
  74/* Duplicate store was encountered (rare) */
  75static u64 zswap_duplicate_entry;
  76
 
 
 
 
 
  77/*********************************
  78* tunables
  79**********************************/
  80
  81#define ZSWAP_PARAM_UNSET ""
  82
  83/* Enable/disable zswap (disabled by default) */
  84static bool zswap_enabled;
 
 
  85static int zswap_enabled_param_set(const char *,
  86				   const struct kernel_param *);
  87static struct kernel_param_ops zswap_enabled_param_ops = {
  88	.set =		zswap_enabled_param_set,
  89	.get =		param_get_bool,
  90};
  91module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  92
  93/* Crypto compressor to use */
  94#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
  95static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
  96static int zswap_compressor_param_set(const char *,
  97				      const struct kernel_param *);
  98static struct kernel_param_ops zswap_compressor_param_ops = {
  99	.set =		zswap_compressor_param_set,
 100	.get =		param_get_charp,
 101	.free =		param_free_charp,
 102};
 103module_param_cb(compressor, &zswap_compressor_param_ops,
 104		&zswap_compressor, 0644);
 105
 106/* Compressed storage zpool to use */
 107#define ZSWAP_ZPOOL_DEFAULT "zbud"
 108static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 109static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 110static struct kernel_param_ops zswap_zpool_param_ops = {
 111	.set =		zswap_zpool_param_set,
 112	.get =		param_get_charp,
 113	.free =		param_free_charp,
 114};
 115module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 116
 117/* The maximum percentage of memory that the compressed pool can occupy */
 118static unsigned int zswap_max_pool_percent = 20;
 119module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 120
 121/* Enable/disable handling same-value filled pages (enabled by default) */
 
 
 
 
 
 
 
 
 122static bool zswap_same_filled_pages_enabled = true;
 123module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
 124		   bool, 0644);
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126/*********************************
 127* data structures
 128**********************************/
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130struct zswap_pool {
 131	struct zpool *zpool;
 132	struct crypto_comp * __percpu *tfm;
 133	struct kref kref;
 134	struct list_head list;
 135	struct work_struct work;
 
 136	struct hlist_node node;
 137	char tfm_name[CRYPTO_MAX_ALG_NAME];
 
 
 
 
 138};
 139
 140/*
 141 * struct zswap_entry
 142 *
 143 * This structure contains the metadata for tracking a single compressed
 144 * page within zswap.
 145 *
 146 * rbnode - links the entry into red-black tree for the appropriate swap type
 147 * offset - the swap offset for the entry.  Index into the red-black tree.
 148 * refcount - the number of outstanding reference to the entry. This is needed
 149 *            to protect against premature freeing of the entry by code
 150 *            concurrent calls to load, invalidate, and writeback.  The lock
 151 *            for the zswap_tree structure that contains the entry must
 152 *            be held while changing the refcount.  Since the lock must
 153 *            be held, there is no reason to also make refcount atomic.
 154 * length - the length in bytes of the compressed page data.  Needed during
 155 *          decompression. For a same value filled page length is 0.
 
 156 * pool - the zswap_pool the entry's data is in
 157 * handle - zpool allocation handle that stores the compressed page data
 158 * value - value of the same-value filled pages which have same content
 
 
 159 */
 160struct zswap_entry {
 161	struct rb_node rbnode;
 162	pgoff_t offset;
 163	int refcount;
 164	unsigned int length;
 165	struct zswap_pool *pool;
 166	union {
 167		unsigned long handle;
 168		unsigned long value;
 169	};
 170};
 171
 172struct zswap_header {
 173	swp_entry_t swpentry;
 174};
 175
 176/*
 177 * The tree lock in the zswap_tree struct protects a few things:
 178 * - the rbtree
 179 * - the refcount field of each entry in the tree
 180 */
 181struct zswap_tree {
 182	struct rb_root rbroot;
 183	spinlock_t lock;
 184};
 185
 186static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 187
 188/* RCU-protected iteration */
 189static LIST_HEAD(zswap_pools);
 190/* protects zswap_pools list modification */
 191static DEFINE_SPINLOCK(zswap_pools_lock);
 192/* pool counter to provide unique names to zpool */
 193static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 194
 195/* used by param callback function */
 196static bool zswap_init_started;
 
 
 
 197
 198/* fatal error during init */
 199static bool zswap_init_failed;
 
 
 200
 201/* init completed, but couldn't create the initial pool */
 202static bool zswap_has_pool;
 203
 204/*********************************
 205* helpers and fwd declarations
 206**********************************/
 207
 208#define zswap_pool_debug(msg, p)				\
 209	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 210		 zpool_get_type((p)->zpool))
 211
 212static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
 
 213static int zswap_pool_get(struct zswap_pool *pool);
 214static void zswap_pool_put(struct zswap_pool *pool);
 215
 216static const struct zpool_ops zswap_zpool_ops = {
 217	.evict = zswap_writeback_entry
 218};
 
 
 
 
 
 
 
 
 
 219
 220static bool zswap_is_full(void)
 221{
 222	return totalram_pages * zswap_max_pool_percent / 100 <
 223		DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 
 
 
 
 
 224}
 225
 226static void zswap_update_total_size(void)
 227{
 228	struct zswap_pool *pool;
 229	u64 total = 0;
 230
 231	rcu_read_lock();
 232
 233	list_for_each_entry_rcu(pool, &zswap_pools, list)
 234		total += zpool_get_total_size(pool->zpool);
 235
 236	rcu_read_unlock();
 237
 238	zswap_pool_total_size = total;
 239}
 240
 241/*********************************
 242* zswap entry functions
 243**********************************/
 244static struct kmem_cache *zswap_entry_cache;
 
 
 
 
 
 
 
 
 245
 246static int __init zswap_entry_cache_create(void)
 247{
 248	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 249	return zswap_entry_cache == NULL;
 250}
 251
 252static void __init zswap_entry_cache_destroy(void)
 253{
 254	kmem_cache_destroy(zswap_entry_cache);
 
 
 
 
 
 
 
 
 255}
 256
 257static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 
 
 
 
 
 258{
 259	struct zswap_entry *entry;
 260	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 261	if (!entry)
 262		return NULL;
 263	entry->refcount = 1;
 264	RB_CLEAR_NODE(&entry->rbnode);
 265	return entry;
 266}
 267
 268static void zswap_entry_cache_free(struct zswap_entry *entry)
 269{
 270	kmem_cache_free(zswap_entry_cache, entry);
 271}
 272
 273/*********************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274* rbtree functions
 275**********************************/
 276static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 277{
 278	struct rb_node *node = root->rb_node;
 279	struct zswap_entry *entry;
 
 280
 281	while (node) {
 282		entry = rb_entry(node, struct zswap_entry, rbnode);
 283		if (entry->offset > offset)
 
 284			node = node->rb_left;
 285		else if (entry->offset < offset)
 286			node = node->rb_right;
 287		else
 288			return entry;
 289	}
 290	return NULL;
 291}
 292
 293/*
 294 * In the case that a entry with the same offset is found, a pointer to
 295 * the existing entry is stored in dupentry and the function returns -EEXIST
 296 */
 297static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 298			struct zswap_entry **dupentry)
 299{
 300	struct rb_node **link = &root->rb_node, *parent = NULL;
 301	struct zswap_entry *myentry;
 
 302
 303	while (*link) {
 304		parent = *link;
 305		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 306		if (myentry->offset > entry->offset)
 
 307			link = &(*link)->rb_left;
 308		else if (myentry->offset < entry->offset)
 309			link = &(*link)->rb_right;
 310		else {
 311			*dupentry = myentry;
 312			return -EEXIST;
 313		}
 314	}
 315	rb_link_node(&entry->rbnode, parent, link);
 316	rb_insert_color(&entry->rbnode, root);
 317	return 0;
 318}
 319
 320static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 321{
 322	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 323		rb_erase(&entry->rbnode, root);
 324		RB_CLEAR_NODE(&entry->rbnode);
 
 325	}
 
 
 
 
 
 
 
 
 
 
 
 326}
 327
 328/*
 329 * Carries out the common pattern of freeing and entry's zpool allocation,
 330 * freeing the entry itself, and decrementing the number of stored pages.
 331 */
 332static void zswap_free_entry(struct zswap_entry *entry)
 333{
 334	if (!entry->length)
 335		atomic_dec(&zswap_same_filled_pages);
 336	else {
 337		zpool_free(entry->pool->zpool, entry->handle);
 
 
 338		zswap_pool_put(entry->pool);
 339	}
 
 
 
 
 340	zswap_entry_cache_free(entry);
 341	atomic_dec(&zswap_stored_pages);
 342	zswap_update_total_size();
 343}
 344
 345/* caller must hold the tree lock */
 346static void zswap_entry_get(struct zswap_entry *entry)
 347{
 348	entry->refcount++;
 349}
 350
 351/* caller must hold the tree lock
 352* remove from the tree and free it, if nobody reference the entry
 353*/
 354static void zswap_entry_put(struct zswap_tree *tree,
 355			struct zswap_entry *entry)
 356{
 357	int refcount = --entry->refcount;
 358
 359	BUG_ON(refcount < 0);
 360	if (refcount == 0) {
 361		zswap_rb_erase(&tree->rbroot, entry);
 362		zswap_free_entry(entry);
 363	}
 364}
 365
 366/* caller must hold the tree lock */
 367static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 368				pgoff_t offset)
 369{
 370	struct zswap_entry *entry;
 371
 372	entry = zswap_rb_search(root, offset);
 373	if (entry)
 374		zswap_entry_get(entry);
 375
 376	return entry;
 377}
 378
 379/*********************************
 380* per-cpu code
 381**********************************/
 382static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 
 383
 384static int zswap_dstmem_prepare(unsigned int cpu)
 
 385{
 386	u8 *dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387
 388	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 389	if (!dst)
 390		return -ENOMEM;
 391
 392	per_cpu(zswap_dstmem, cpu) = dst;
 393	return 0;
 394}
 395
 396static int zswap_dstmem_dead(unsigned int cpu)
 
 397{
 398	u8 *dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399
 400	dst = per_cpu(zswap_dstmem, cpu);
 401	kfree(dst);
 402	per_cpu(zswap_dstmem, cpu) = NULL;
 
 
 
 
 
 403
 404	return 0;
 
 
 
 
 
 
 
 
 
 
 
 405}
 406
 
 
 
 407static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 408{
 409	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 410	struct crypto_comp *tfm;
 
 
 
 411
 412	if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
 413		return 0;
 414
 415	tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
 416	if (IS_ERR_OR_NULL(tfm)) {
 417		pr_err("could not alloc crypto comp %s : %ld\n",
 418		       pool->tfm_name, PTR_ERR(tfm));
 419		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420	}
 421	*per_cpu_ptr(pool->tfm, cpu) = tfm;
 
 
 
 
 
 
 
 
 
 
 422	return 0;
 
 
 
 
 
 
 423}
 424
 425static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 426{
 427	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 428	struct crypto_comp *tfm;
 
 
 
 
 
 
 
 
 429
 430	tfm = *per_cpu_ptr(pool->tfm, cpu);
 431	if (!IS_ERR_OR_NULL(tfm))
 432		crypto_free_comp(tfm);
 433	*per_cpu_ptr(pool->tfm, cpu) = NULL;
 434	return 0;
 435}
 436
 437/*********************************
 438* pool functions
 439**********************************/
 440
 441static struct zswap_pool *__zswap_pool_current(void)
 442{
 443	struct zswap_pool *pool;
 444
 445	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 446	WARN_ONCE(!pool && zswap_has_pool,
 447		  "%s: no page storage pool!\n", __func__);
 448
 449	return pool;
 450}
 451
 452static struct zswap_pool *zswap_pool_current(void)
 453{
 454	assert_spin_locked(&zswap_pools_lock);
 455
 456	return __zswap_pool_current();
 457}
 458
 459static struct zswap_pool *zswap_pool_current_get(void)
 460{
 461	struct zswap_pool *pool;
 462
 463	rcu_read_lock();
 464
 465	pool = __zswap_pool_current();
 466	if (!zswap_pool_get(pool))
 467		pool = NULL;
 468
 469	rcu_read_unlock();
 470
 471	return pool;
 472}
 473
 474static struct zswap_pool *zswap_pool_last_get(void)
 475{
 476	struct zswap_pool *pool, *last = NULL;
 477
 478	rcu_read_lock();
 479
 480	list_for_each_entry_rcu(pool, &zswap_pools, list)
 481		last = pool;
 482	WARN_ONCE(!last && zswap_has_pool,
 483		  "%s: no page storage pool!\n", __func__);
 484	if (!zswap_pool_get(last))
 485		last = NULL;
 486
 487	rcu_read_unlock();
 488
 489	return last;
 490}
 491
 492/* type and compressor must be null-terminated */
 493static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 494{
 495	struct zswap_pool *pool;
 496
 497	assert_spin_locked(&zswap_pools_lock);
 498
 499	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 500		if (strcmp(pool->tfm_name, compressor))
 501			continue;
 502		if (strcmp(zpool_get_type(pool->zpool), type))
 
 503			continue;
 504		/* if we can't get it, it's about to be destroyed */
 505		if (!zswap_pool_get(pool))
 506			continue;
 507		return pool;
 508	}
 509
 510	return NULL;
 511}
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 514{
 
 515	struct zswap_pool *pool;
 516	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 517	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 518	int ret;
 519
 520	if (!zswap_has_pool) {
 521		/* if either are unset, pool initialization failed, and we
 522		 * need both params to be set correctly before trying to
 523		 * create a pool.
 524		 */
 525		if (!strcmp(type, ZSWAP_PARAM_UNSET))
 526			return NULL;
 527		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
 528			return NULL;
 529	}
 530
 531	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 532	if (!pool)
 533		return NULL;
 534
 535	/* unique name for each pool specifically required by zsmalloc */
 536	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 
 
 
 
 
 
 
 
 
 
 537
 538	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
 539	if (!pool->zpool) {
 540		pr_err("%s zpool not available\n", type);
 541		goto error;
 542	}
 543	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 544
 545	strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 546	pool->tfm = alloc_percpu(struct crypto_comp *);
 547	if (!pool->tfm) {
 548		pr_err("percpu alloc failed\n");
 549		goto error;
 550	}
 551
 552	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
 553				       &pool->node);
 554	if (ret)
 555		goto error;
 
 
 
 
 
 556	pr_debug("using %s compressor\n", pool->tfm_name);
 557
 558	/* being the current pool takes 1 ref; this func expects the
 559	 * caller to always add the new pool as the current pool
 560	 */
 561	kref_init(&pool->kref);
 562	INIT_LIST_HEAD(&pool->list);
 
 
 
 
 
 563
 564	zswap_pool_debug("created", pool);
 565
 566	return pool;
 567
 
 
 
 568error:
 569	free_percpu(pool->tfm);
 570	if (pool->zpool)
 571		zpool_destroy_pool(pool->zpool);
 
 572	kfree(pool);
 573	return NULL;
 574}
 575
 576static __init struct zswap_pool *__zswap_pool_create_fallback(void)
 577{
 578	bool has_comp, has_zpool;
 579
 580	has_comp = crypto_has_comp(zswap_compressor, 0, 0);
 581	if (!has_comp && strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
 
 582		pr_err("compressor %s not available, using default %s\n",
 583		       zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
 584		param_free_charp(&zswap_compressor);
 585		zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
 586		has_comp = crypto_has_comp(zswap_compressor, 0, 0);
 587	}
 588	if (!has_comp) {
 589		pr_err("default compressor %s not available\n",
 590		       zswap_compressor);
 591		param_free_charp(&zswap_compressor);
 592		zswap_compressor = ZSWAP_PARAM_UNSET;
 593	}
 594
 595	has_zpool = zpool_has_pool(zswap_zpool_type);
 596	if (!has_zpool && strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
 
 597		pr_err("zpool %s not available, using default %s\n",
 598		       zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
 599		param_free_charp(&zswap_zpool_type);
 600		zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
 601		has_zpool = zpool_has_pool(zswap_zpool_type);
 602	}
 603	if (!has_zpool) {
 604		pr_err("default zpool %s not available\n",
 605		       zswap_zpool_type);
 606		param_free_charp(&zswap_zpool_type);
 607		zswap_zpool_type = ZSWAP_PARAM_UNSET;
 608	}
 609
 610	if (!has_comp || !has_zpool)
 611		return NULL;
 612
 613	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 614}
 615
 616static void zswap_pool_destroy(struct zswap_pool *pool)
 617{
 
 
 618	zswap_pool_debug("destroying", pool);
 619
 
 620	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 621	free_percpu(pool->tfm);
 622	zpool_destroy_pool(pool->zpool);
 
 
 
 
 
 
 
 
 623	kfree(pool);
 624}
 625
 626static int __must_check zswap_pool_get(struct zswap_pool *pool)
 627{
 628	if (!pool)
 629		return 0;
 630
 631	return kref_get_unless_zero(&pool->kref);
 632}
 633
 634static void __zswap_pool_release(struct work_struct *work)
 635{
 636	struct zswap_pool *pool = container_of(work, typeof(*pool), work);
 
 637
 638	synchronize_rcu();
 639
 640	/* nobody should have been able to get a kref... */
 641	WARN_ON(kref_get_unless_zero(&pool->kref));
 642
 643	/* pool is now off zswap_pools list and has no references. */
 644	zswap_pool_destroy(pool);
 645}
 646
 647static void __zswap_pool_empty(struct kref *kref)
 648{
 649	struct zswap_pool *pool;
 650
 651	pool = container_of(kref, typeof(*pool), kref);
 652
 653	spin_lock(&zswap_pools_lock);
 654
 655	WARN_ON(pool == zswap_pool_current());
 656
 657	list_del_rcu(&pool->list);
 658
 659	INIT_WORK(&pool->work, __zswap_pool_release);
 660	schedule_work(&pool->work);
 661
 662	spin_unlock(&zswap_pools_lock);
 663}
 664
 665static void zswap_pool_put(struct zswap_pool *pool)
 666{
 667	kref_put(&pool->kref, __zswap_pool_empty);
 668}
 669
 670/*********************************
 671* param callbacks
 672**********************************/
 673
 
 
 
 
 
 
 
 
 674/* val must be a null-terminated string */
 675static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 676			     char *type, char *compressor)
 677{
 678	struct zswap_pool *pool, *put_pool = NULL;
 679	char *s = strstrip((char *)val);
 680	int ret;
 
 681
 682	if (zswap_init_failed) {
 
 
 
 
 
 
 
 
 
 
 
 683		pr_err("can't set param, initialization failed\n");
 684		return -ENODEV;
 685	}
 
 686
 687	/* no change required */
 688	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
 689		return 0;
 690
 691	/* if this is load-time (pre-init) param setting,
 692	 * don't create a pool; that's done during init.
 693	 */
 694	if (!zswap_init_started)
 695		return param_set_charp(s, kp);
 696
 697	if (!type) {
 698		if (!zpool_has_pool(s)) {
 699			pr_err("zpool %s not available\n", s);
 700			return -ENOENT;
 701		}
 702		type = s;
 703	} else if (!compressor) {
 704		if (!crypto_has_comp(s, 0, 0)) {
 705			pr_err("compressor %s not available\n", s);
 706			return -ENOENT;
 707		}
 708		compressor = s;
 709	} else {
 710		WARN_ON(1);
 711		return -EINVAL;
 712	}
 713
 714	spin_lock(&zswap_pools_lock);
 715
 716	pool = zswap_pool_find_get(type, compressor);
 717	if (pool) {
 718		zswap_pool_debug("using existing", pool);
 719		WARN_ON(pool == zswap_pool_current());
 720		list_del_rcu(&pool->list);
 721	}
 722
 723	spin_unlock(&zswap_pools_lock);
 724
 725	if (!pool)
 726		pool = zswap_pool_create(type, compressor);
 727
 728	if (pool)
 729		ret = param_set_charp(s, kp);
 730	else
 731		ret = -EINVAL;
 732
 733	spin_lock(&zswap_pools_lock);
 734
 735	if (!ret) {
 736		put_pool = zswap_pool_current();
 737		list_add_rcu(&pool->list, &zswap_pools);
 738		zswap_has_pool = true;
 739	} else if (pool) {
 740		/* add the possibly pre-existing pool to the end of the pools
 741		 * list; if it's new (and empty) then it'll be removed and
 742		 * destroyed by the put after we drop the lock
 743		 */
 744		list_add_tail_rcu(&pool->list, &zswap_pools);
 745		put_pool = pool;
 746	}
 747
 748	spin_unlock(&zswap_pools_lock);
 749
 750	if (!zswap_has_pool && !pool) {
 751		/* if initial pool creation failed, and this pool creation also
 752		 * failed, maybe both compressor and zpool params were bad.
 753		 * Allow changing this param, so pool creation will succeed
 754		 * when the other param is changed. We already verified this
 755		 * param is ok in the zpool_has_pool() or crypto_has_comp()
 756		 * checks above.
 757		 */
 758		ret = param_set_charp(s, kp);
 759	}
 760
 761	/* drop the ref from either the old current pool,
 762	 * or the new pool we failed to add
 763	 */
 764	if (put_pool)
 765		zswap_pool_put(put_pool);
 766
 767	return ret;
 768}
 769
 770static int zswap_compressor_param_set(const char *val,
 771				      const struct kernel_param *kp)
 772{
 773	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 774}
 775
 776static int zswap_zpool_param_set(const char *val,
 777				 const struct kernel_param *kp)
 778{
 779	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 780}
 781
 782static int zswap_enabled_param_set(const char *val,
 783				   const struct kernel_param *kp)
 784{
 785	if (zswap_init_failed) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		pr_err("can't enable, initialization failed\n");
 787		return -ENODEV;
 788	}
 789	if (!zswap_has_pool && zswap_init_started) {
 790		pr_err("can't enable, no pool configured\n");
 791		return -ENODEV;
 792	}
 
 793
 794	return param_set_bool(val, kp);
 795}
 796
 797/*********************************
 798* writeback code
 799**********************************/
 800/* return enum for zswap_get_swap_cache_page */
 801enum zswap_get_swap_ret {
 802	ZSWAP_SWAPCACHE_NEW,
 803	ZSWAP_SWAPCACHE_EXIST,
 804	ZSWAP_SWAPCACHE_FAIL,
 805};
 806
 807/*
 808 * zswap_get_swap_cache_page
 809 *
 810 * This is an adaption of read_swap_cache_async()
 811 *
 812 * This function tries to find a page with the given swap entry
 813 * in the swapper_space address space (the swap cache).  If the page
 814 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 815 * added to the swap cache, and returned in retpage.
 816 *
 817 * If success, the swap cache page is returned in retpage
 818 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 819 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 820 *     the new page is added to swapcache and locked
 821 * Returns ZSWAP_SWAPCACHE_FAIL on error
 822 */
 823static int zswap_get_swap_cache_page(swp_entry_t entry,
 824				struct page **retpage)
 825{
 826	bool page_was_allocated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
 829			NULL, 0, &page_was_allocated);
 830	if (page_was_allocated)
 831		return ZSWAP_SWAPCACHE_NEW;
 832	if (!*retpage)
 833		return ZSWAP_SWAPCACHE_FAIL;
 834	return ZSWAP_SWAPCACHE_EXIST;
 835}
 836
 
 
 
 837/*
 838 * Attempts to free an entry by adding a page to the swap cache,
 839 * decompressing the entry data into the page, and issuing a
 840 * bio write to write the page back to the swap device.
 841 *
 842 * This can be thought of as a "resumed writeback" of the page
 843 * to the swap device.  We are basically resuming the same swap
 844 * writeback path that was intercepted with the frontswap_store()
 845 * in the first place.  After the page has been decompressed into
 846 * the swap cache, the compressed version stored by zswap can be
 847 * freed.
 848 */
 849static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
 
 850{
 851	struct zswap_header *zhdr;
 852	swp_entry_t swpentry;
 853	struct zswap_tree *tree;
 854	pgoff_t offset;
 855	struct zswap_entry *entry;
 856	struct page *page;
 857	struct crypto_comp *tfm;
 858	u8 *src, *dst;
 859	unsigned int dlen;
 860	int ret;
 861	struct writeback_control wbc = {
 862		.sync_mode = WB_SYNC_NONE,
 863	};
 864
 865	/* extract swpentry from data */
 866	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
 867	swpentry = zhdr->swpentry; /* here */
 868	zpool_unmap_handle(pool, handle);
 869	tree = zswap_trees[swp_type(swpentry)];
 870	offset = swp_offset(swpentry);
 871
 872	/* find and ref zswap entry */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873	spin_lock(&tree->lock);
 874	entry = zswap_entry_find_get(&tree->rbroot, offset);
 875	if (!entry) {
 876		/* entry was invalidated */
 877		spin_unlock(&tree->lock);
 878		return 0;
 
 
 
 879	}
 880	spin_unlock(&tree->lock);
 881	BUG_ON(offset != entry->offset);
 882
 883	/* try to allocate swap cache page */
 884	switch (zswap_get_swap_cache_page(swpentry, &page)) {
 885	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 886		ret = -ENOMEM;
 887		goto fail;
 888
 889	case ZSWAP_SWAPCACHE_EXIST:
 890		/* page is already in the swap cache, ignore for now */
 891		put_page(page);
 892		ret = -EEXIST;
 893		goto fail;
 894
 895	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 896		/* decompress */
 897		dlen = PAGE_SIZE;
 898		src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
 899				ZPOOL_MM_RO) + sizeof(struct zswap_header);
 900		dst = kmap_atomic(page);
 901		tfm = *get_cpu_ptr(entry->pool->tfm);
 902		ret = crypto_comp_decompress(tfm, src, entry->length,
 903					     dst, &dlen);
 904		put_cpu_ptr(entry->pool->tfm);
 905		kunmap_atomic(dst);
 906		zpool_unmap_handle(entry->pool->zpool, entry->handle);
 907		BUG_ON(ret);
 908		BUG_ON(dlen != PAGE_SIZE);
 909
 910		/* page is up to date */
 911		SetPageUptodate(page);
 912	}
 913
 914	/* move it to the tail of the inactive list after end_writeback */
 915	SetPageReclaim(page);
 916
 917	/* start writeback */
 918	__swap_writepage(page, &wbc, end_swap_bio_write);
 919	put_page(page);
 920	zswap_written_back_pages++;
 921
 922	spin_lock(&tree->lock);
 923	/* drop local reference */
 924	zswap_entry_put(tree, entry);
 925
 926	/*
 927	* There are two possible situations for entry here:
 928	* (1) refcount is 1(normal case),  entry is valid and on the tree
 929	* (2) refcount is 0, entry is freed and not on the tree
 930	*     because invalidate happened during writeback
 931	*  search the tree and free the entry if find entry
 932	*/
 933	if (entry == zswap_rb_search(&tree->rbroot, offset))
 934		zswap_entry_put(tree, entry);
 935	spin_unlock(&tree->lock);
 936
 937	goto end;
 938
 939	/*
 940	* if we get here due to ZSWAP_SWAPCACHE_EXIST
 941	* a load may happening concurrently
 942	* it is safe and okay to not free the entry
 943	* if we free the entry in the following put
 944	* it it either okay to return !0
 945	*/
 946fail:
 947	spin_lock(&tree->lock);
 948	zswap_entry_put(tree, entry);
 949	spin_unlock(&tree->lock);
 950
 951end:
 952	return ret;
 953}
 954
 955static int zswap_shrink(void)
 956{
 957	struct zswap_pool *pool;
 958	int ret;
 959
 960	pool = zswap_pool_last_get();
 961	if (!pool)
 962		return -ENOENT;
 963
 964	ret = zpool_shrink(pool->zpool, 1, NULL);
 965
 966	zswap_pool_put(pool);
 967
 968	return ret;
 969}
 970
 971static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
 972{
 973	unsigned int pos;
 974	unsigned long *page;
 
 
 975
 976	page = (unsigned long *)ptr;
 977	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
 978		if (page[pos] != page[0])
 
 
 
 
 
 979			return 0;
 980	}
 981	*value = page[0];
 
 
 982	return 1;
 983}
 984
 985static void zswap_fill_page(void *ptr, unsigned long value)
 986{
 987	unsigned long *page;
 988
 989	page = (unsigned long *)ptr;
 990	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
 991}
 992
 993/*********************************
 994* frontswap hooks
 995**********************************/
 996/* attempts to compress and store an single page */
 997static int zswap_frontswap_store(unsigned type, pgoff_t offset,
 998				struct page *page)
 999{
 
 
 
 
1000	struct zswap_tree *tree = zswap_trees[type];
1001	struct zswap_entry *entry, *dupentry;
1002	struct crypto_comp *tfm;
1003	int ret;
1004	unsigned int hlen, dlen = PAGE_SIZE;
 
 
 
 
1005	unsigned long handle, value;
1006	char *buf;
1007	u8 *src, *dst;
1008	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
 
 
 
 
1009
1010	/* THP isn't supported */
1011	if (PageTransHuge(page)) {
1012		ret = -EINVAL;
1013		goto reject;
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	}
 
 
 
 
1015
1016	if (!zswap_enabled || !tree) {
1017		ret = -ENODEV;
1018		goto reject;
 
 
 
 
 
1019	}
1020
1021	/* reclaim space if needed */
1022	if (zswap_is_full()) {
1023		zswap_pool_limit_hit++;
1024		if (zswap_shrink()) {
1025			zswap_reject_reclaim_fail++;
1026			ret = -ENOMEM;
1027			goto reject;
1028		}
 
 
 
 
1029	}
1030
1031	/* allocate entry */
1032	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1033	if (!entry) {
1034		zswap_reject_kmemcache_fail++;
1035		ret = -ENOMEM;
1036		goto reject;
1037	}
1038
1039	if (zswap_same_filled_pages_enabled) {
1040		src = kmap_atomic(page);
1041		if (zswap_is_page_same_filled(src, &value)) {
1042			kunmap_atomic(src);
1043			entry->offset = offset;
1044			entry->length = 0;
1045			entry->value = value;
1046			atomic_inc(&zswap_same_filled_pages);
1047			goto insert_entry;
1048		}
1049		kunmap_atomic(src);
1050	}
1051
 
 
 
1052	/* if entry is successfully added, it keeps the reference */
1053	entry->pool = zswap_pool_current_get();
1054	if (!entry->pool) {
1055		ret = -EINVAL;
1056		goto freepage;
 
 
 
 
 
 
 
 
1057	}
1058
1059	/* compress */
1060	dst = get_cpu_var(zswap_dstmem);
1061	tfm = *get_cpu_ptr(entry->pool->tfm);
1062	src = kmap_atomic(page);
1063	ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1064	kunmap_atomic(src);
1065	put_cpu_ptr(entry->pool->tfm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	if (ret) {
1067		ret = -EINVAL;
1068		goto put_dstmem;
1069	}
1070
1071	/* store */
1072	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1073	ret = zpool_malloc(entry->pool->zpool, hlen + dlen,
1074			   __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1075			   &handle);
 
1076	if (ret == -ENOSPC) {
1077		zswap_reject_compress_poor++;
1078		goto put_dstmem;
1079	}
1080	if (ret) {
1081		zswap_reject_alloc_fail++;
1082		goto put_dstmem;
1083	}
1084	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1085	memcpy(buf, &zhdr, hlen);
1086	memcpy(buf + hlen, dst, dlen);
1087	zpool_unmap_handle(entry->pool->zpool, handle);
1088	put_cpu_var(zswap_dstmem);
1089
1090	/* populate entry */
1091	entry->offset = offset;
1092	entry->handle = handle;
1093	entry->length = dlen;
1094
1095insert_entry:
 
 
 
 
 
 
 
1096	/* map */
1097	spin_lock(&tree->lock);
1098	do {
1099		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1100		if (ret == -EEXIST) {
1101			zswap_duplicate_entry++;
1102			/* remove from rbtree */
1103			zswap_rb_erase(&tree->rbroot, dupentry);
1104			zswap_entry_put(tree, dupentry);
1105		}
1106	} while (ret == -EEXIST);
 
 
 
 
 
 
 
1107	spin_unlock(&tree->lock);
1108
1109	/* update stats */
1110	atomic_inc(&zswap_stored_pages);
1111	zswap_update_total_size();
 
1112
1113	return 0;
1114
1115put_dstmem:
1116	put_cpu_var(zswap_dstmem);
 
1117	zswap_pool_put(entry->pool);
1118freepage:
1119	zswap_entry_cache_free(entry);
1120reject:
1121	return ret;
 
 
 
 
 
 
 
 
1122}
1123
1124/*
1125 * returns 0 if the page was successfully decompressed
1126 * return -1 on entry not found or error
1127*/
1128static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1129				struct page *page)
1130{
 
 
 
 
1131	struct zswap_tree *tree = zswap_trees[type];
1132	struct zswap_entry *entry;
1133	struct crypto_comp *tfm;
1134	u8 *src, *dst;
1135	unsigned int dlen;
1136	int ret;
1137
1138	/* find */
1139	spin_lock(&tree->lock);
1140	entry = zswap_entry_find_get(&tree->rbroot, offset);
1141	if (!entry) {
1142		/* entry was written back */
1143		spin_unlock(&tree->lock);
1144		return -1;
1145	}
1146	spin_unlock(&tree->lock);
1147
1148	if (!entry->length) {
1149		dst = kmap_atomic(page);
 
 
1150		zswap_fill_page(dst, entry->value);
1151		kunmap_atomic(dst);
1152		goto freeentry;
1153	}
1154
1155	/* decompress */
1156	dlen = PAGE_SIZE;
1157	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1158	if (zpool_evictable(entry->pool->zpool))
1159		src += sizeof(struct zswap_header);
1160	dst = kmap_atomic(page);
1161	tfm = *get_cpu_ptr(entry->pool->tfm);
1162	ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1163	put_cpu_ptr(entry->pool->tfm);
1164	kunmap_atomic(dst);
1165	zpool_unmap_handle(entry->pool->zpool, entry->handle);
1166	BUG_ON(ret);
1167
1168freeentry:
1169	spin_lock(&tree->lock);
 
 
 
 
 
 
 
1170	zswap_entry_put(tree, entry);
1171	spin_unlock(&tree->lock);
1172
1173	return 0;
1174}
1175
1176/* frees an entry in zswap */
1177static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1178{
1179	struct zswap_tree *tree = zswap_trees[type];
1180	struct zswap_entry *entry;
1181
1182	/* find */
1183	spin_lock(&tree->lock);
1184	entry = zswap_rb_search(&tree->rbroot, offset);
1185	if (!entry) {
1186		/* entry was written back */
1187		spin_unlock(&tree->lock);
1188		return;
1189	}
 
 
 
1190
1191	/* remove from rbtree */
1192	zswap_rb_erase(&tree->rbroot, entry);
 
1193
1194	/* drop the initial reference from entry creation */
1195	zswap_entry_put(tree, entry);
 
 
 
1196
1197	spin_unlock(&tree->lock);
 
 
1198}
1199
1200/* frees all zswap entries for the given swap type */
1201static void zswap_frontswap_invalidate_area(unsigned type)
1202{
1203	struct zswap_tree *tree = zswap_trees[type];
1204	struct zswap_entry *entry, *n;
1205
1206	if (!tree)
1207		return;
1208
1209	/* walk the tree and free everything */
1210	spin_lock(&tree->lock);
1211	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1212		zswap_free_entry(entry);
1213	tree->rbroot = RB_ROOT;
1214	spin_unlock(&tree->lock);
1215	kfree(tree);
1216	zswap_trees[type] = NULL;
1217}
1218
1219static void zswap_frontswap_init(unsigned type)
1220{
1221	struct zswap_tree *tree;
1222
1223	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1224	if (!tree) {
1225		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1226		return;
1227	}
1228
1229	tree->rbroot = RB_ROOT;
1230	spin_lock_init(&tree->lock);
1231	zswap_trees[type] = tree;
1232}
1233
1234static struct frontswap_ops zswap_frontswap_ops = {
1235	.store = zswap_frontswap_store,
1236	.load = zswap_frontswap_load,
1237	.invalidate_page = zswap_frontswap_invalidate_page,
1238	.invalidate_area = zswap_frontswap_invalidate_area,
1239	.init = zswap_frontswap_init
1240};
1241
1242/*********************************
1243* debugfs functions
1244**********************************/
1245#ifdef CONFIG_DEBUG_FS
1246#include <linux/debugfs.h>
1247
1248static struct dentry *zswap_debugfs_root;
1249
1250static int __init zswap_debugfs_init(void)
1251{
1252	if (!debugfs_initialized())
1253		return -ENODEV;
1254
1255	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1256	if (!zswap_debugfs_root)
1257		return -ENOMEM;
1258
1259	debugfs_create_u64("pool_limit_hit", S_IRUGO,
1260			zswap_debugfs_root, &zswap_pool_limit_hit);
1261	debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1262			zswap_debugfs_root, &zswap_reject_reclaim_fail);
1263	debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1264			zswap_debugfs_root, &zswap_reject_alloc_fail);
1265	debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1266			zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1267	debugfs_create_u64("reject_compress_poor", S_IRUGO,
1268			zswap_debugfs_root, &zswap_reject_compress_poor);
1269	debugfs_create_u64("written_back_pages", S_IRUGO,
1270			zswap_debugfs_root, &zswap_written_back_pages);
1271	debugfs_create_u64("duplicate_entry", S_IRUGO,
1272			zswap_debugfs_root, &zswap_duplicate_entry);
1273	debugfs_create_u64("pool_total_size", S_IRUGO,
1274			zswap_debugfs_root, &zswap_pool_total_size);
1275	debugfs_create_atomic_t("stored_pages", S_IRUGO,
1276			zswap_debugfs_root, &zswap_stored_pages);
 
 
1277	debugfs_create_atomic_t("same_filled_pages", 0444,
1278			zswap_debugfs_root, &zswap_same_filled_pages);
1279
1280	return 0;
1281}
1282
1283static void __exit zswap_debugfs_exit(void)
1284{
1285	debugfs_remove_recursive(zswap_debugfs_root);
1286}
1287#else
1288static int __init zswap_debugfs_init(void)
1289{
1290	return 0;
1291}
1292
1293static void __exit zswap_debugfs_exit(void) { }
1294#endif
1295
1296/*********************************
1297* module init and exit
1298**********************************/
1299static int __init init_zswap(void)
1300{
1301	struct zswap_pool *pool;
1302	int ret;
1303
1304	zswap_init_started = true;
1305
1306	if (zswap_entry_cache_create()) {
1307		pr_err("entry cache creation failed\n");
1308		goto cache_fail;
1309	}
1310
1311	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1312				zswap_dstmem_prepare, zswap_dstmem_dead);
1313	if (ret) {
1314		pr_err("dstmem alloc failed\n");
1315		goto dstmem_fail;
1316	}
1317
1318	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1319				      "mm/zswap_pool:prepare",
1320				      zswap_cpu_comp_prepare,
1321				      zswap_cpu_comp_dead);
1322	if (ret)
1323		goto hp_fail;
1324
1325	pool = __zswap_pool_create_fallback();
1326	if (pool) {
1327		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1328			zpool_get_type(pool->zpool));
1329		list_add(&pool->list, &zswap_pools);
1330		zswap_has_pool = true;
1331	} else {
1332		pr_err("pool creation failed\n");
1333		zswap_enabled = false;
1334	}
1335
1336	frontswap_register_ops(&zswap_frontswap_ops);
 
 
 
1337	if (zswap_debugfs_init())
1338		pr_warn("debugfs initialization failed\n");
 
1339	return 0;
1340
 
 
 
1341hp_fail:
1342	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1343dstmem_fail:
1344	zswap_entry_cache_destroy();
1345cache_fail:
1346	/* if built-in, we aren't unloaded on failure; don't allow use */
1347	zswap_init_failed = true;
1348	zswap_enabled = false;
1349	return -ENOMEM;
1350}
 
 
 
 
 
 
 
1351/* must be late so crypto has time to come up */
1352late_initcall(init_zswap);
1353
1354MODULE_LICENSE("GPL");
1355MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1356MODULE_DESCRIPTION("Compressed cache for swap pages");