Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12*/
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/cpu.h>
18#include <linux/highmem.h>
19#include <linux/slab.h>
20#include <linux/spinlock.h>
21#include <linux/types.h>
22#include <linux/atomic.h>
23#include <linux/rbtree.h>
24#include <linux/swap.h>
25#include <linux/crypto.h>
26#include <linux/scatterlist.h>
27#include <linux/mempolicy.h>
28#include <linux/mempool.h>
29#include <linux/zpool.h>
30#include <crypto/acompress.h>
31#include <linux/zswap.h>
32#include <linux/mm_types.h>
33#include <linux/page-flags.h>
34#include <linux/swapops.h>
35#include <linux/writeback.h>
36#include <linux/pagemap.h>
37#include <linux/workqueue.h>
38#include <linux/list_lru.h>
39
40#include "swap.h"
41#include "internal.h"
42
43/*********************************
44* statistics
45**********************************/
46/* Total bytes used by the compressed storage */
47u64 zswap_pool_total_size;
48/* The number of compressed pages currently stored in zswap */
49atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50/* The number of same-value filled pages currently stored in zswap */
51static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53/*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58*/
59
60/* Pool limit was hit (see zswap_max_pool_percent) */
61static u64 zswap_pool_limit_hit;
62/* Pages written back when pool limit was reached */
63static u64 zswap_written_back_pages;
64/* Store failed due to a reclaim failure after pool limit was reached */
65static u64 zswap_reject_reclaim_fail;
66/* Store failed due to compression algorithm failure */
67static u64 zswap_reject_compress_fail;
68/* Compressed page was too big for the allocator to (optimally) store */
69static u64 zswap_reject_compress_poor;
70/* Store failed because underlying allocator could not get memory */
71static u64 zswap_reject_alloc_fail;
72/* Store failed because the entry metadata could not be allocated (rare) */
73static u64 zswap_reject_kmemcache_fail;
74/* Duplicate store was encountered (rare) */
75static u64 zswap_duplicate_entry;
76
77/* Shrinker work queue */
78static struct workqueue_struct *shrink_wq;
79/* Pool limit was hit, we need to calm down */
80static bool zswap_pool_reached_full;
81
82/*********************************
83* tunables
84**********************************/
85
86#define ZSWAP_PARAM_UNSET ""
87
88static int zswap_setup(void);
89
90/* Enable/disable zswap */
91static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92static int zswap_enabled_param_set(const char *,
93 const struct kernel_param *);
94static const struct kernel_param_ops zswap_enabled_param_ops = {
95 .set = zswap_enabled_param_set,
96 .get = param_get_bool,
97};
98module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
99
100/* Crypto compressor to use */
101static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102static int zswap_compressor_param_set(const char *,
103 const struct kernel_param *);
104static const struct kernel_param_ops zswap_compressor_param_ops = {
105 .set = zswap_compressor_param_set,
106 .get = param_get_charp,
107 .free = param_free_charp,
108};
109module_param_cb(compressor, &zswap_compressor_param_ops,
110 &zswap_compressor, 0644);
111
112/* Compressed storage zpool to use */
113static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115static const struct kernel_param_ops zswap_zpool_param_ops = {
116 .set = zswap_zpool_param_set,
117 .get = param_get_charp,
118 .free = param_free_charp,
119};
120module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
121
122/* The maximum percentage of memory that the compressed pool can occupy */
123static unsigned int zswap_max_pool_percent = 20;
124module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
125
126/* The threshold for accepting new pages after the max_pool_percent was hit */
127static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
129 uint, 0644);
130
131/*
132 * Enable/disable handling same-value filled pages (enabled by default).
133 * If disabled every page is considered non-same-value filled.
134 */
135static bool zswap_same_filled_pages_enabled = true;
136module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137 bool, 0644);
138
139/* Enable/disable handling non-same-value filled pages (enabled by default) */
140static bool zswap_non_same_filled_pages_enabled = true;
141module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142 bool, 0644);
143
144static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145 CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
147
148/* Number of zpools in zswap_pool (empirically determined for scalability) */
149#define ZSWAP_NR_ZPOOLS 32
150
151/* Enable/disable memory pressure-based shrinker. */
152static bool zswap_shrinker_enabled = IS_ENABLED(
153 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
155
156bool is_zswap_enabled(void)
157{
158 return zswap_enabled;
159}
160
161/*********************************
162* data structures
163**********************************/
164
165struct crypto_acomp_ctx {
166 struct crypto_acomp *acomp;
167 struct acomp_req *req;
168 struct crypto_wait wait;
169 u8 *buffer;
170 struct mutex mutex;
171};
172
173/*
174 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
175 * The only case where lru_lock is not acquired while holding tree.lock is
176 * when a zswap_entry is taken off the lru for writeback, in that case it
177 * needs to be verified that it's still valid in the tree.
178 */
179struct zswap_pool {
180 struct zpool *zpools[ZSWAP_NR_ZPOOLS];
181 struct crypto_acomp_ctx __percpu *acomp_ctx;
182 struct kref kref;
183 struct list_head list;
184 struct work_struct release_work;
185 struct work_struct shrink_work;
186 struct hlist_node node;
187 char tfm_name[CRYPTO_MAX_ALG_NAME];
188 struct list_lru list_lru;
189 struct mem_cgroup *next_shrink;
190 struct shrinker *shrinker;
191 atomic_t nr_stored;
192};
193
194/*
195 * struct zswap_entry
196 *
197 * This structure contains the metadata for tracking a single compressed
198 * page within zswap.
199 *
200 * rbnode - links the entry into red-black tree for the appropriate swap type
201 * swpentry - associated swap entry, the offset indexes into the red-black tree
202 * refcount - the number of outstanding reference to the entry. This is needed
203 * to protect against premature freeing of the entry by code
204 * concurrent calls to load, invalidate, and writeback. The lock
205 * for the zswap_tree structure that contains the entry must
206 * be held while changing the refcount. Since the lock must
207 * be held, there is no reason to also make refcount atomic.
208 * length - the length in bytes of the compressed page data. Needed during
209 * decompression. For a same value filled page length is 0, and both
210 * pool and lru are invalid and must be ignored.
211 * pool - the zswap_pool the entry's data is in
212 * handle - zpool allocation handle that stores the compressed page data
213 * value - value of the same-value filled pages which have same content
214 * objcg - the obj_cgroup that the compressed memory is charged to
215 * lru - handle to the pool's lru used to evict pages.
216 */
217struct zswap_entry {
218 struct rb_node rbnode;
219 swp_entry_t swpentry;
220 int refcount;
221 unsigned int length;
222 struct zswap_pool *pool;
223 union {
224 unsigned long handle;
225 unsigned long value;
226 };
227 struct obj_cgroup *objcg;
228 struct list_head lru;
229};
230
231/*
232 * The tree lock in the zswap_tree struct protects a few things:
233 * - the rbtree
234 * - the refcount field of each entry in the tree
235 */
236struct zswap_tree {
237 struct rb_root rbroot;
238 spinlock_t lock;
239};
240
241static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
242
243/* RCU-protected iteration */
244static LIST_HEAD(zswap_pools);
245/* protects zswap_pools list modification */
246static DEFINE_SPINLOCK(zswap_pools_lock);
247/* pool counter to provide unique names to zpool */
248static atomic_t zswap_pools_count = ATOMIC_INIT(0);
249
250enum zswap_init_type {
251 ZSWAP_UNINIT,
252 ZSWAP_INIT_SUCCEED,
253 ZSWAP_INIT_FAILED
254};
255
256static enum zswap_init_type zswap_init_state;
257
258/* used to ensure the integrity of initialization */
259static DEFINE_MUTEX(zswap_init_lock);
260
261/* init completed, but couldn't create the initial pool */
262static bool zswap_has_pool;
263
264/*********************************
265* helpers and fwd declarations
266**********************************/
267
268#define zswap_pool_debug(msg, p) \
269 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
270 zpool_get_type((p)->zpools[0]))
271
272static int zswap_writeback_entry(struct zswap_entry *entry,
273 struct zswap_tree *tree);
274static int zswap_pool_get(struct zswap_pool *pool);
275static void zswap_pool_put(struct zswap_pool *pool);
276
277static bool zswap_is_full(void)
278{
279 return totalram_pages() * zswap_max_pool_percent / 100 <
280 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281}
282
283static bool zswap_can_accept(void)
284{
285 return totalram_pages() * zswap_accept_thr_percent / 100 *
286 zswap_max_pool_percent / 100 >
287 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
288}
289
290static u64 get_zswap_pool_size(struct zswap_pool *pool)
291{
292 u64 pool_size = 0;
293 int i;
294
295 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
296 pool_size += zpool_get_total_size(pool->zpools[i]);
297
298 return pool_size;
299}
300
301static void zswap_update_total_size(void)
302{
303 struct zswap_pool *pool;
304 u64 total = 0;
305
306 rcu_read_lock();
307
308 list_for_each_entry_rcu(pool, &zswap_pools, list)
309 total += get_zswap_pool_size(pool);
310
311 rcu_read_unlock();
312
313 zswap_pool_total_size = total;
314}
315
316/* should be called under RCU */
317#ifdef CONFIG_MEMCG
318static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
319{
320 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
321}
322#else
323static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324{
325 return NULL;
326}
327#endif
328
329static inline int entry_to_nid(struct zswap_entry *entry)
330{
331 return page_to_nid(virt_to_page(entry));
332}
333
334void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
335{
336 struct zswap_pool *pool;
337
338 /* lock out zswap pools list modification */
339 spin_lock(&zswap_pools_lock);
340 list_for_each_entry(pool, &zswap_pools, list) {
341 if (pool->next_shrink == memcg)
342 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
343 }
344 spin_unlock(&zswap_pools_lock);
345}
346
347/*********************************
348* zswap entry functions
349**********************************/
350static struct kmem_cache *zswap_entry_cache;
351
352static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
353{
354 struct zswap_entry *entry;
355 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
356 if (!entry)
357 return NULL;
358 entry->refcount = 1;
359 RB_CLEAR_NODE(&entry->rbnode);
360 return entry;
361}
362
363static void zswap_entry_cache_free(struct zswap_entry *entry)
364{
365 kmem_cache_free(zswap_entry_cache, entry);
366}
367
368/*********************************
369* zswap lruvec functions
370**********************************/
371void zswap_lruvec_state_init(struct lruvec *lruvec)
372{
373 atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
374}
375
376void zswap_folio_swapin(struct folio *folio)
377{
378 struct lruvec *lruvec;
379
380 VM_WARN_ON_ONCE(!folio_test_locked(folio));
381 lruvec = folio_lruvec(folio);
382 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
383}
384
385/*********************************
386* lru functions
387**********************************/
388static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
389{
390 atomic_long_t *nr_zswap_protected;
391 unsigned long lru_size, old, new;
392 int nid = entry_to_nid(entry);
393 struct mem_cgroup *memcg;
394 struct lruvec *lruvec;
395
396 /*
397 * Note that it is safe to use rcu_read_lock() here, even in the face of
398 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
399 * used in list_lru lookup, only two scenarios are possible:
400 *
401 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
402 * new entry will be reparented to memcg's parent's list_lru.
403 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
404 * new entry will be added directly to memcg's parent's list_lru.
405 *
406 * Similar reasoning holds for list_lru_del() and list_lru_putback().
407 */
408 rcu_read_lock();
409 memcg = mem_cgroup_from_entry(entry);
410 /* will always succeed */
411 list_lru_add(list_lru, &entry->lru, nid, memcg);
412
413 /* Update the protection area */
414 lru_size = list_lru_count_one(list_lru, nid, memcg);
415 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
416 nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
417 old = atomic_long_inc_return(nr_zswap_protected);
418 /*
419 * Decay to avoid overflow and adapt to changing workloads.
420 * This is based on LRU reclaim cost decaying heuristics.
421 */
422 do {
423 new = old > lru_size / 4 ? old / 2 : old;
424 } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
425 rcu_read_unlock();
426}
427
428static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
429{
430 int nid = entry_to_nid(entry);
431 struct mem_cgroup *memcg;
432
433 rcu_read_lock();
434 memcg = mem_cgroup_from_entry(entry);
435 /* will always succeed */
436 list_lru_del(list_lru, &entry->lru, nid, memcg);
437 rcu_read_unlock();
438}
439
440static void zswap_lru_putback(struct list_lru *list_lru,
441 struct zswap_entry *entry)
442{
443 int nid = entry_to_nid(entry);
444 spinlock_t *lock = &list_lru->node[nid].lock;
445 struct mem_cgroup *memcg;
446 struct lruvec *lruvec;
447
448 rcu_read_lock();
449 memcg = mem_cgroup_from_entry(entry);
450 spin_lock(lock);
451 /* we cannot use list_lru_add here, because it increments node's lru count */
452 list_lru_putback(list_lru, &entry->lru, nid, memcg);
453 spin_unlock(lock);
454
455 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
456 /* increment the protection area to account for the LRU rotation. */
457 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
458 rcu_read_unlock();
459}
460
461/*********************************
462* rbtree functions
463**********************************/
464static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
465{
466 struct rb_node *node = root->rb_node;
467 struct zswap_entry *entry;
468 pgoff_t entry_offset;
469
470 while (node) {
471 entry = rb_entry(node, struct zswap_entry, rbnode);
472 entry_offset = swp_offset(entry->swpentry);
473 if (entry_offset > offset)
474 node = node->rb_left;
475 else if (entry_offset < offset)
476 node = node->rb_right;
477 else
478 return entry;
479 }
480 return NULL;
481}
482
483/*
484 * In the case that a entry with the same offset is found, a pointer to
485 * the existing entry is stored in dupentry and the function returns -EEXIST
486 */
487static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
488 struct zswap_entry **dupentry)
489{
490 struct rb_node **link = &root->rb_node, *parent = NULL;
491 struct zswap_entry *myentry;
492 pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
493
494 while (*link) {
495 parent = *link;
496 myentry = rb_entry(parent, struct zswap_entry, rbnode);
497 myentry_offset = swp_offset(myentry->swpentry);
498 if (myentry_offset > entry_offset)
499 link = &(*link)->rb_left;
500 else if (myentry_offset < entry_offset)
501 link = &(*link)->rb_right;
502 else {
503 *dupentry = myentry;
504 return -EEXIST;
505 }
506 }
507 rb_link_node(&entry->rbnode, parent, link);
508 rb_insert_color(&entry->rbnode, root);
509 return 0;
510}
511
512static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
513{
514 if (!RB_EMPTY_NODE(&entry->rbnode)) {
515 rb_erase(&entry->rbnode, root);
516 RB_CLEAR_NODE(&entry->rbnode);
517 return true;
518 }
519 return false;
520}
521
522static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
523{
524 int i = 0;
525
526 if (ZSWAP_NR_ZPOOLS > 1)
527 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
528
529 return entry->pool->zpools[i];
530}
531
532/*
533 * Carries out the common pattern of freeing and entry's zpool allocation,
534 * freeing the entry itself, and decrementing the number of stored pages.
535 */
536static void zswap_free_entry(struct zswap_entry *entry)
537{
538 if (!entry->length)
539 atomic_dec(&zswap_same_filled_pages);
540 else {
541 zswap_lru_del(&entry->pool->list_lru, entry);
542 zpool_free(zswap_find_zpool(entry), entry->handle);
543 atomic_dec(&entry->pool->nr_stored);
544 zswap_pool_put(entry->pool);
545 }
546 if (entry->objcg) {
547 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
548 obj_cgroup_put(entry->objcg);
549 }
550 zswap_entry_cache_free(entry);
551 atomic_dec(&zswap_stored_pages);
552 zswap_update_total_size();
553}
554
555/* caller must hold the tree lock */
556static void zswap_entry_get(struct zswap_entry *entry)
557{
558 entry->refcount++;
559}
560
561/* caller must hold the tree lock
562* remove from the tree and free it, if nobody reference the entry
563*/
564static void zswap_entry_put(struct zswap_tree *tree,
565 struct zswap_entry *entry)
566{
567 int refcount = --entry->refcount;
568
569 WARN_ON_ONCE(refcount < 0);
570 if (refcount == 0) {
571 WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
572 zswap_free_entry(entry);
573 }
574}
575
576/* caller must hold the tree lock */
577static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
578 pgoff_t offset)
579{
580 struct zswap_entry *entry;
581
582 entry = zswap_rb_search(root, offset);
583 if (entry)
584 zswap_entry_get(entry);
585
586 return entry;
587}
588
589/*********************************
590* shrinker functions
591**********************************/
592static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
593 spinlock_t *lock, void *arg);
594
595static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
596 struct shrink_control *sc)
597{
598 struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
599 unsigned long shrink_ret, nr_protected, lru_size;
600 struct zswap_pool *pool = shrinker->private_data;
601 bool encountered_page_in_swapcache = false;
602
603 if (!zswap_shrinker_enabled ||
604 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
605 sc->nr_scanned = 0;
606 return SHRINK_STOP;
607 }
608
609 nr_protected =
610 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
611 lru_size = list_lru_shrink_count(&pool->list_lru, sc);
612
613 /*
614 * Abort if we are shrinking into the protected region.
615 *
616 * This short-circuiting is necessary because if we have too many multiple
617 * concurrent reclaimers getting the freeable zswap object counts at the
618 * same time (before any of them made reasonable progress), the total
619 * number of reclaimed objects might be more than the number of unprotected
620 * objects (i.e the reclaimers will reclaim into the protected area of the
621 * zswap LRU).
622 */
623 if (nr_protected >= lru_size - sc->nr_to_scan) {
624 sc->nr_scanned = 0;
625 return SHRINK_STOP;
626 }
627
628 shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
629 &encountered_page_in_swapcache);
630
631 if (encountered_page_in_swapcache)
632 return SHRINK_STOP;
633
634 return shrink_ret ? shrink_ret : SHRINK_STOP;
635}
636
637static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
638 struct shrink_control *sc)
639{
640 struct zswap_pool *pool = shrinker->private_data;
641 struct mem_cgroup *memcg = sc->memcg;
642 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
643 unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
644
645 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
646 return 0;
647
648#ifdef CONFIG_MEMCG_KMEM
649 mem_cgroup_flush_stats(memcg);
650 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
651 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
652#else
653 /* use pool stats instead of memcg stats */
654 nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
655 nr_stored = atomic_read(&pool->nr_stored);
656#endif
657
658 if (!nr_stored)
659 return 0;
660
661 nr_protected =
662 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
663 nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
664 /*
665 * Subtract the lru size by an estimate of the number of pages
666 * that should be protected.
667 */
668 nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
669
670 /*
671 * Scale the number of freeable pages by the memory saving factor.
672 * This ensures that the better zswap compresses memory, the fewer
673 * pages we will evict to swap (as it will otherwise incur IO for
674 * relatively small memory saving).
675 */
676 return mult_frac(nr_freeable, nr_backing, nr_stored);
677}
678
679static void zswap_alloc_shrinker(struct zswap_pool *pool)
680{
681 pool->shrinker =
682 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
683 if (!pool->shrinker)
684 return;
685
686 pool->shrinker->private_data = pool;
687 pool->shrinker->scan_objects = zswap_shrinker_scan;
688 pool->shrinker->count_objects = zswap_shrinker_count;
689 pool->shrinker->batch = 0;
690 pool->shrinker->seeks = DEFAULT_SEEKS;
691}
692
693/*********************************
694* per-cpu code
695**********************************/
696static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
697{
698 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
699 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
700 struct crypto_acomp *acomp;
701 struct acomp_req *req;
702 int ret;
703
704 mutex_init(&acomp_ctx->mutex);
705
706 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
707 if (!acomp_ctx->buffer)
708 return -ENOMEM;
709
710 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
711 if (IS_ERR(acomp)) {
712 pr_err("could not alloc crypto acomp %s : %ld\n",
713 pool->tfm_name, PTR_ERR(acomp));
714 ret = PTR_ERR(acomp);
715 goto acomp_fail;
716 }
717 acomp_ctx->acomp = acomp;
718
719 req = acomp_request_alloc(acomp_ctx->acomp);
720 if (!req) {
721 pr_err("could not alloc crypto acomp_request %s\n",
722 pool->tfm_name);
723 ret = -ENOMEM;
724 goto req_fail;
725 }
726 acomp_ctx->req = req;
727
728 crypto_init_wait(&acomp_ctx->wait);
729 /*
730 * if the backend of acomp is async zip, crypto_req_done() will wakeup
731 * crypto_wait_req(); if the backend of acomp is scomp, the callback
732 * won't be called, crypto_wait_req() will return without blocking.
733 */
734 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
735 crypto_req_done, &acomp_ctx->wait);
736
737 return 0;
738
739req_fail:
740 crypto_free_acomp(acomp_ctx->acomp);
741acomp_fail:
742 kfree(acomp_ctx->buffer);
743 return ret;
744}
745
746static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
747{
748 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
749 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
750
751 if (!IS_ERR_OR_NULL(acomp_ctx)) {
752 if (!IS_ERR_OR_NULL(acomp_ctx->req))
753 acomp_request_free(acomp_ctx->req);
754 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
755 crypto_free_acomp(acomp_ctx->acomp);
756 kfree(acomp_ctx->buffer);
757 }
758
759 return 0;
760}
761
762/*********************************
763* pool functions
764**********************************/
765
766static struct zswap_pool *__zswap_pool_current(void)
767{
768 struct zswap_pool *pool;
769
770 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
771 WARN_ONCE(!pool && zswap_has_pool,
772 "%s: no page storage pool!\n", __func__);
773
774 return pool;
775}
776
777static struct zswap_pool *zswap_pool_current(void)
778{
779 assert_spin_locked(&zswap_pools_lock);
780
781 return __zswap_pool_current();
782}
783
784static struct zswap_pool *zswap_pool_current_get(void)
785{
786 struct zswap_pool *pool;
787
788 rcu_read_lock();
789
790 pool = __zswap_pool_current();
791 if (!zswap_pool_get(pool))
792 pool = NULL;
793
794 rcu_read_unlock();
795
796 return pool;
797}
798
799static struct zswap_pool *zswap_pool_last_get(void)
800{
801 struct zswap_pool *pool, *last = NULL;
802
803 rcu_read_lock();
804
805 list_for_each_entry_rcu(pool, &zswap_pools, list)
806 last = pool;
807 WARN_ONCE(!last && zswap_has_pool,
808 "%s: no page storage pool!\n", __func__);
809 if (!zswap_pool_get(last))
810 last = NULL;
811
812 rcu_read_unlock();
813
814 return last;
815}
816
817/* type and compressor must be null-terminated */
818static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
819{
820 struct zswap_pool *pool;
821
822 assert_spin_locked(&zswap_pools_lock);
823
824 list_for_each_entry_rcu(pool, &zswap_pools, list) {
825 if (strcmp(pool->tfm_name, compressor))
826 continue;
827 /* all zpools share the same type */
828 if (strcmp(zpool_get_type(pool->zpools[0]), type))
829 continue;
830 /* if we can't get it, it's about to be destroyed */
831 if (!zswap_pool_get(pool))
832 continue;
833 return pool;
834 }
835
836 return NULL;
837}
838
839/*
840 * If the entry is still valid in the tree, drop the initial ref and remove it
841 * from the tree. This function must be called with an additional ref held,
842 * otherwise it may race with another invalidation freeing the entry.
843 */
844static void zswap_invalidate_entry(struct zswap_tree *tree,
845 struct zswap_entry *entry)
846{
847 if (zswap_rb_erase(&tree->rbroot, entry))
848 zswap_entry_put(tree, entry);
849}
850
851static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
852 spinlock_t *lock, void *arg)
853{
854 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
855 bool *encountered_page_in_swapcache = (bool *)arg;
856 struct zswap_tree *tree;
857 pgoff_t swpoffset;
858 enum lru_status ret = LRU_REMOVED_RETRY;
859 int writeback_result;
860
861 /*
862 * Once the lru lock is dropped, the entry might get freed. The
863 * swpoffset is copied to the stack, and entry isn't deref'd again
864 * until the entry is verified to still be alive in the tree.
865 */
866 swpoffset = swp_offset(entry->swpentry);
867 tree = zswap_trees[swp_type(entry->swpentry)];
868 list_lru_isolate(l, item);
869 /*
870 * It's safe to drop the lock here because we return either
871 * LRU_REMOVED_RETRY or LRU_RETRY.
872 */
873 spin_unlock(lock);
874
875 /* Check for invalidate() race */
876 spin_lock(&tree->lock);
877 if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
878 goto unlock;
879
880 /* Hold a reference to prevent a free during writeback */
881 zswap_entry_get(entry);
882 spin_unlock(&tree->lock);
883
884 writeback_result = zswap_writeback_entry(entry, tree);
885
886 spin_lock(&tree->lock);
887 if (writeback_result) {
888 zswap_reject_reclaim_fail++;
889 zswap_lru_putback(&entry->pool->list_lru, entry);
890 ret = LRU_RETRY;
891
892 /*
893 * Encountering a page already in swap cache is a sign that we are shrinking
894 * into the warmer region. We should terminate shrinking (if we're in the dynamic
895 * shrinker context).
896 */
897 if (writeback_result == -EEXIST && encountered_page_in_swapcache)
898 *encountered_page_in_swapcache = true;
899
900 goto put_unlock;
901 }
902 zswap_written_back_pages++;
903
904 if (entry->objcg)
905 count_objcg_event(entry->objcg, ZSWPWB);
906
907 count_vm_event(ZSWPWB);
908 /*
909 * Writeback started successfully, the page now belongs to the
910 * swapcache. Drop the entry from zswap - unless invalidate already
911 * took it out while we had the tree->lock released for IO.
912 */
913 zswap_invalidate_entry(tree, entry);
914
915put_unlock:
916 /* Drop local reference */
917 zswap_entry_put(tree, entry);
918unlock:
919 spin_unlock(&tree->lock);
920 spin_lock(lock);
921 return ret;
922}
923
924static int shrink_memcg(struct mem_cgroup *memcg)
925{
926 struct zswap_pool *pool;
927 int nid, shrunk = 0;
928
929 if (!mem_cgroup_zswap_writeback_enabled(memcg))
930 return -EINVAL;
931
932 /*
933 * Skip zombies because their LRUs are reparented and we would be
934 * reclaiming from the parent instead of the dead memcg.
935 */
936 if (memcg && !mem_cgroup_online(memcg))
937 return -ENOENT;
938
939 pool = zswap_pool_current_get();
940 if (!pool)
941 return -EINVAL;
942
943 for_each_node_state(nid, N_NORMAL_MEMORY) {
944 unsigned long nr_to_walk = 1;
945
946 shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
947 &shrink_memcg_cb, NULL, &nr_to_walk);
948 }
949 zswap_pool_put(pool);
950 return shrunk ? 0 : -EAGAIN;
951}
952
953static void shrink_worker(struct work_struct *w)
954{
955 struct zswap_pool *pool = container_of(w, typeof(*pool),
956 shrink_work);
957 struct mem_cgroup *memcg;
958 int ret, failures = 0;
959
960 /* global reclaim will select cgroup in a round-robin fashion. */
961 do {
962 spin_lock(&zswap_pools_lock);
963 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
964 memcg = pool->next_shrink;
965
966 /*
967 * We need to retry if we have gone through a full round trip, or if we
968 * got an offline memcg (or else we risk undoing the effect of the
969 * zswap memcg offlining cleanup callback). This is not catastrophic
970 * per se, but it will keep the now offlined memcg hostage for a while.
971 *
972 * Note that if we got an online memcg, we will keep the extra
973 * reference in case the original reference obtained by mem_cgroup_iter
974 * is dropped by the zswap memcg offlining callback, ensuring that the
975 * memcg is not killed when we are reclaiming.
976 */
977 if (!memcg) {
978 spin_unlock(&zswap_pools_lock);
979 if (++failures == MAX_RECLAIM_RETRIES)
980 break;
981
982 goto resched;
983 }
984
985 if (!mem_cgroup_tryget_online(memcg)) {
986 /* drop the reference from mem_cgroup_iter() */
987 mem_cgroup_iter_break(NULL, memcg);
988 pool->next_shrink = NULL;
989 spin_unlock(&zswap_pools_lock);
990
991 if (++failures == MAX_RECLAIM_RETRIES)
992 break;
993
994 goto resched;
995 }
996 spin_unlock(&zswap_pools_lock);
997
998 ret = shrink_memcg(memcg);
999 /* drop the extra reference */
1000 mem_cgroup_put(memcg);
1001
1002 if (ret == -EINVAL)
1003 break;
1004 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1005 break;
1006
1007resched:
1008 cond_resched();
1009 } while (!zswap_can_accept());
1010 zswap_pool_put(pool);
1011}
1012
1013static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1014{
1015 int i;
1016 struct zswap_pool *pool;
1017 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1018 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1019 int ret;
1020
1021 if (!zswap_has_pool) {
1022 /* if either are unset, pool initialization failed, and we
1023 * need both params to be set correctly before trying to
1024 * create a pool.
1025 */
1026 if (!strcmp(type, ZSWAP_PARAM_UNSET))
1027 return NULL;
1028 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1029 return NULL;
1030 }
1031
1032 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1033 if (!pool)
1034 return NULL;
1035
1036 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1037 /* unique name for each pool specifically required by zsmalloc */
1038 snprintf(name, 38, "zswap%x",
1039 atomic_inc_return(&zswap_pools_count));
1040
1041 pool->zpools[i] = zpool_create_pool(type, name, gfp);
1042 if (!pool->zpools[i]) {
1043 pr_err("%s zpool not available\n", type);
1044 goto error;
1045 }
1046 }
1047 pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1048
1049 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1050
1051 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1052 if (!pool->acomp_ctx) {
1053 pr_err("percpu alloc failed\n");
1054 goto error;
1055 }
1056
1057 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1058 &pool->node);
1059 if (ret)
1060 goto error;
1061
1062 zswap_alloc_shrinker(pool);
1063 if (!pool->shrinker)
1064 goto error;
1065
1066 pr_debug("using %s compressor\n", pool->tfm_name);
1067
1068 /* being the current pool takes 1 ref; this func expects the
1069 * caller to always add the new pool as the current pool
1070 */
1071 kref_init(&pool->kref);
1072 INIT_LIST_HEAD(&pool->list);
1073 if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1074 goto lru_fail;
1075 shrinker_register(pool->shrinker);
1076 INIT_WORK(&pool->shrink_work, shrink_worker);
1077 atomic_set(&pool->nr_stored, 0);
1078
1079 zswap_pool_debug("created", pool);
1080
1081 return pool;
1082
1083lru_fail:
1084 list_lru_destroy(&pool->list_lru);
1085 shrinker_free(pool->shrinker);
1086error:
1087 if (pool->acomp_ctx)
1088 free_percpu(pool->acomp_ctx);
1089 while (i--)
1090 zpool_destroy_pool(pool->zpools[i]);
1091 kfree(pool);
1092 return NULL;
1093}
1094
1095static struct zswap_pool *__zswap_pool_create_fallback(void)
1096{
1097 bool has_comp, has_zpool;
1098
1099 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1100 if (!has_comp && strcmp(zswap_compressor,
1101 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1102 pr_err("compressor %s not available, using default %s\n",
1103 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1104 param_free_charp(&zswap_compressor);
1105 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1106 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1107 }
1108 if (!has_comp) {
1109 pr_err("default compressor %s not available\n",
1110 zswap_compressor);
1111 param_free_charp(&zswap_compressor);
1112 zswap_compressor = ZSWAP_PARAM_UNSET;
1113 }
1114
1115 has_zpool = zpool_has_pool(zswap_zpool_type);
1116 if (!has_zpool && strcmp(zswap_zpool_type,
1117 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1118 pr_err("zpool %s not available, using default %s\n",
1119 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1120 param_free_charp(&zswap_zpool_type);
1121 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1122 has_zpool = zpool_has_pool(zswap_zpool_type);
1123 }
1124 if (!has_zpool) {
1125 pr_err("default zpool %s not available\n",
1126 zswap_zpool_type);
1127 param_free_charp(&zswap_zpool_type);
1128 zswap_zpool_type = ZSWAP_PARAM_UNSET;
1129 }
1130
1131 if (!has_comp || !has_zpool)
1132 return NULL;
1133
1134 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1135}
1136
1137static void zswap_pool_destroy(struct zswap_pool *pool)
1138{
1139 int i;
1140
1141 zswap_pool_debug("destroying", pool);
1142
1143 shrinker_free(pool->shrinker);
1144 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1145 free_percpu(pool->acomp_ctx);
1146 list_lru_destroy(&pool->list_lru);
1147
1148 spin_lock(&zswap_pools_lock);
1149 mem_cgroup_iter_break(NULL, pool->next_shrink);
1150 pool->next_shrink = NULL;
1151 spin_unlock(&zswap_pools_lock);
1152
1153 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1154 zpool_destroy_pool(pool->zpools[i]);
1155 kfree(pool);
1156}
1157
1158static int __must_check zswap_pool_get(struct zswap_pool *pool)
1159{
1160 if (!pool)
1161 return 0;
1162
1163 return kref_get_unless_zero(&pool->kref);
1164}
1165
1166static void __zswap_pool_release(struct work_struct *work)
1167{
1168 struct zswap_pool *pool = container_of(work, typeof(*pool),
1169 release_work);
1170
1171 synchronize_rcu();
1172
1173 /* nobody should have been able to get a kref... */
1174 WARN_ON(kref_get_unless_zero(&pool->kref));
1175
1176 /* pool is now off zswap_pools list and has no references. */
1177 zswap_pool_destroy(pool);
1178}
1179
1180static void __zswap_pool_empty(struct kref *kref)
1181{
1182 struct zswap_pool *pool;
1183
1184 pool = container_of(kref, typeof(*pool), kref);
1185
1186 spin_lock(&zswap_pools_lock);
1187
1188 WARN_ON(pool == zswap_pool_current());
1189
1190 list_del_rcu(&pool->list);
1191
1192 INIT_WORK(&pool->release_work, __zswap_pool_release);
1193 schedule_work(&pool->release_work);
1194
1195 spin_unlock(&zswap_pools_lock);
1196}
1197
1198static void zswap_pool_put(struct zswap_pool *pool)
1199{
1200 kref_put(&pool->kref, __zswap_pool_empty);
1201}
1202
1203/*********************************
1204* param callbacks
1205**********************************/
1206
1207static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1208{
1209 /* no change required */
1210 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1211 return false;
1212 return true;
1213}
1214
1215/* val must be a null-terminated string */
1216static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1217 char *type, char *compressor)
1218{
1219 struct zswap_pool *pool, *put_pool = NULL;
1220 char *s = strstrip((char *)val);
1221 int ret = 0;
1222 bool new_pool = false;
1223
1224 mutex_lock(&zswap_init_lock);
1225 switch (zswap_init_state) {
1226 case ZSWAP_UNINIT:
1227 /* if this is load-time (pre-init) param setting,
1228 * don't create a pool; that's done during init.
1229 */
1230 ret = param_set_charp(s, kp);
1231 break;
1232 case ZSWAP_INIT_SUCCEED:
1233 new_pool = zswap_pool_changed(s, kp);
1234 break;
1235 case ZSWAP_INIT_FAILED:
1236 pr_err("can't set param, initialization failed\n");
1237 ret = -ENODEV;
1238 }
1239 mutex_unlock(&zswap_init_lock);
1240
1241 /* no need to create a new pool, return directly */
1242 if (!new_pool)
1243 return ret;
1244
1245 if (!type) {
1246 if (!zpool_has_pool(s)) {
1247 pr_err("zpool %s not available\n", s);
1248 return -ENOENT;
1249 }
1250 type = s;
1251 } else if (!compressor) {
1252 if (!crypto_has_acomp(s, 0, 0)) {
1253 pr_err("compressor %s not available\n", s);
1254 return -ENOENT;
1255 }
1256 compressor = s;
1257 } else {
1258 WARN_ON(1);
1259 return -EINVAL;
1260 }
1261
1262 spin_lock(&zswap_pools_lock);
1263
1264 pool = zswap_pool_find_get(type, compressor);
1265 if (pool) {
1266 zswap_pool_debug("using existing", pool);
1267 WARN_ON(pool == zswap_pool_current());
1268 list_del_rcu(&pool->list);
1269 }
1270
1271 spin_unlock(&zswap_pools_lock);
1272
1273 if (!pool)
1274 pool = zswap_pool_create(type, compressor);
1275
1276 if (pool)
1277 ret = param_set_charp(s, kp);
1278 else
1279 ret = -EINVAL;
1280
1281 spin_lock(&zswap_pools_lock);
1282
1283 if (!ret) {
1284 put_pool = zswap_pool_current();
1285 list_add_rcu(&pool->list, &zswap_pools);
1286 zswap_has_pool = true;
1287 } else if (pool) {
1288 /* add the possibly pre-existing pool to the end of the pools
1289 * list; if it's new (and empty) then it'll be removed and
1290 * destroyed by the put after we drop the lock
1291 */
1292 list_add_tail_rcu(&pool->list, &zswap_pools);
1293 put_pool = pool;
1294 }
1295
1296 spin_unlock(&zswap_pools_lock);
1297
1298 if (!zswap_has_pool && !pool) {
1299 /* if initial pool creation failed, and this pool creation also
1300 * failed, maybe both compressor and zpool params were bad.
1301 * Allow changing this param, so pool creation will succeed
1302 * when the other param is changed. We already verified this
1303 * param is ok in the zpool_has_pool() or crypto_has_acomp()
1304 * checks above.
1305 */
1306 ret = param_set_charp(s, kp);
1307 }
1308
1309 /* drop the ref from either the old current pool,
1310 * or the new pool we failed to add
1311 */
1312 if (put_pool)
1313 zswap_pool_put(put_pool);
1314
1315 return ret;
1316}
1317
1318static int zswap_compressor_param_set(const char *val,
1319 const struct kernel_param *kp)
1320{
1321 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1322}
1323
1324static int zswap_zpool_param_set(const char *val,
1325 const struct kernel_param *kp)
1326{
1327 return __zswap_param_set(val, kp, NULL, zswap_compressor);
1328}
1329
1330static int zswap_enabled_param_set(const char *val,
1331 const struct kernel_param *kp)
1332{
1333 int ret = -ENODEV;
1334
1335 /* if this is load-time (pre-init) param setting, only set param. */
1336 if (system_state != SYSTEM_RUNNING)
1337 return param_set_bool(val, kp);
1338
1339 mutex_lock(&zswap_init_lock);
1340 switch (zswap_init_state) {
1341 case ZSWAP_UNINIT:
1342 if (zswap_setup())
1343 break;
1344 fallthrough;
1345 case ZSWAP_INIT_SUCCEED:
1346 if (!zswap_has_pool)
1347 pr_err("can't enable, no pool configured\n");
1348 else
1349 ret = param_set_bool(val, kp);
1350 break;
1351 case ZSWAP_INIT_FAILED:
1352 pr_err("can't enable, initialization failed\n");
1353 }
1354 mutex_unlock(&zswap_init_lock);
1355
1356 return ret;
1357}
1358
1359static void __zswap_load(struct zswap_entry *entry, struct page *page)
1360{
1361 struct zpool *zpool = zswap_find_zpool(entry);
1362 struct scatterlist input, output;
1363 struct crypto_acomp_ctx *acomp_ctx;
1364 u8 *src;
1365
1366 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1367 mutex_lock(&acomp_ctx->mutex);
1368
1369 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1370 if (!zpool_can_sleep_mapped(zpool)) {
1371 memcpy(acomp_ctx->buffer, src, entry->length);
1372 src = acomp_ctx->buffer;
1373 zpool_unmap_handle(zpool, entry->handle);
1374 }
1375
1376 sg_init_one(&input, src, entry->length);
1377 sg_init_table(&output, 1);
1378 sg_set_page(&output, page, PAGE_SIZE, 0);
1379 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1380 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1381 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1382 mutex_unlock(&acomp_ctx->mutex);
1383
1384 if (zpool_can_sleep_mapped(zpool))
1385 zpool_unmap_handle(zpool, entry->handle);
1386}
1387
1388/*********************************
1389* writeback code
1390**********************************/
1391/*
1392 * Attempts to free an entry by adding a folio to the swap cache,
1393 * decompressing the entry data into the folio, and issuing a
1394 * bio write to write the folio back to the swap device.
1395 *
1396 * This can be thought of as a "resumed writeback" of the folio
1397 * to the swap device. We are basically resuming the same swap
1398 * writeback path that was intercepted with the zswap_store()
1399 * in the first place. After the folio has been decompressed into
1400 * the swap cache, the compressed version stored by zswap can be
1401 * freed.
1402 */
1403static int zswap_writeback_entry(struct zswap_entry *entry,
1404 struct zswap_tree *tree)
1405{
1406 swp_entry_t swpentry = entry->swpentry;
1407 struct folio *folio;
1408 struct mempolicy *mpol;
1409 bool folio_was_allocated;
1410 struct writeback_control wbc = {
1411 .sync_mode = WB_SYNC_NONE,
1412 };
1413
1414 /* try to allocate swap cache folio */
1415 mpol = get_task_policy(current);
1416 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1417 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1418 if (!folio)
1419 return -ENOMEM;
1420
1421 /*
1422 * Found an existing folio, we raced with load/swapin. We generally
1423 * writeback cold folios from zswap, and swapin means the folio just
1424 * became hot. Skip this folio and let the caller find another one.
1425 */
1426 if (!folio_was_allocated) {
1427 folio_put(folio);
1428 return -EEXIST;
1429 }
1430
1431 /*
1432 * folio is locked, and the swapcache is now secured against
1433 * concurrent swapping to and from the slot. Verify that the
1434 * swap entry hasn't been invalidated and recycled behind our
1435 * backs (our zswap_entry reference doesn't prevent that), to
1436 * avoid overwriting a new swap folio with old compressed data.
1437 */
1438 spin_lock(&tree->lock);
1439 if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1440 spin_unlock(&tree->lock);
1441 delete_from_swap_cache(folio);
1442 folio_unlock(folio);
1443 folio_put(folio);
1444 return -ENOMEM;
1445 }
1446 spin_unlock(&tree->lock);
1447
1448 __zswap_load(entry, &folio->page);
1449
1450 /* folio is up to date */
1451 folio_mark_uptodate(folio);
1452
1453 /* move it to the tail of the inactive list after end_writeback */
1454 folio_set_reclaim(folio);
1455
1456 /* start writeback */
1457 __swap_writepage(folio, &wbc);
1458 folio_put(folio);
1459
1460 return 0;
1461}
1462
1463static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1464{
1465 unsigned long *page;
1466 unsigned long val;
1467 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1468
1469 page = (unsigned long *)ptr;
1470 val = page[0];
1471
1472 if (val != page[last_pos])
1473 return 0;
1474
1475 for (pos = 1; pos < last_pos; pos++) {
1476 if (val != page[pos])
1477 return 0;
1478 }
1479
1480 *value = val;
1481
1482 return 1;
1483}
1484
1485static void zswap_fill_page(void *ptr, unsigned long value)
1486{
1487 unsigned long *page;
1488
1489 page = (unsigned long *)ptr;
1490 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1491}
1492
1493bool zswap_store(struct folio *folio)
1494{
1495 swp_entry_t swp = folio->swap;
1496 int type = swp_type(swp);
1497 pgoff_t offset = swp_offset(swp);
1498 struct page *page = &folio->page;
1499 struct zswap_tree *tree = zswap_trees[type];
1500 struct zswap_entry *entry, *dupentry;
1501 struct scatterlist input, output;
1502 struct crypto_acomp_ctx *acomp_ctx;
1503 struct obj_cgroup *objcg = NULL;
1504 struct mem_cgroup *memcg = NULL;
1505 struct zswap_pool *pool;
1506 struct zpool *zpool;
1507 unsigned int dlen = PAGE_SIZE;
1508 unsigned long handle, value;
1509 char *buf;
1510 u8 *src, *dst;
1511 gfp_t gfp;
1512 int ret;
1513
1514 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1515 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1516
1517 /* Large folios aren't supported */
1518 if (folio_test_large(folio))
1519 return false;
1520
1521 if (!tree)
1522 return false;
1523
1524 /*
1525 * If this is a duplicate, it must be removed before attempting to store
1526 * it, otherwise, if the store fails the old page won't be removed from
1527 * the tree, and it might be written back overriding the new data.
1528 */
1529 spin_lock(&tree->lock);
1530 dupentry = zswap_rb_search(&tree->rbroot, offset);
1531 if (dupentry) {
1532 zswap_duplicate_entry++;
1533 zswap_invalidate_entry(tree, dupentry);
1534 }
1535 spin_unlock(&tree->lock);
1536
1537 if (!zswap_enabled)
1538 return false;
1539
1540 objcg = get_obj_cgroup_from_folio(folio);
1541 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1542 memcg = get_mem_cgroup_from_objcg(objcg);
1543 if (shrink_memcg(memcg)) {
1544 mem_cgroup_put(memcg);
1545 goto reject;
1546 }
1547 mem_cgroup_put(memcg);
1548 }
1549
1550 /* reclaim space if needed */
1551 if (zswap_is_full()) {
1552 zswap_pool_limit_hit++;
1553 zswap_pool_reached_full = true;
1554 goto shrink;
1555 }
1556
1557 if (zswap_pool_reached_full) {
1558 if (!zswap_can_accept())
1559 goto shrink;
1560 else
1561 zswap_pool_reached_full = false;
1562 }
1563
1564 /* allocate entry */
1565 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1566 if (!entry) {
1567 zswap_reject_kmemcache_fail++;
1568 goto reject;
1569 }
1570
1571 if (zswap_same_filled_pages_enabled) {
1572 src = kmap_local_page(page);
1573 if (zswap_is_page_same_filled(src, &value)) {
1574 kunmap_local(src);
1575 entry->swpentry = swp_entry(type, offset);
1576 entry->length = 0;
1577 entry->value = value;
1578 atomic_inc(&zswap_same_filled_pages);
1579 goto insert_entry;
1580 }
1581 kunmap_local(src);
1582 }
1583
1584 if (!zswap_non_same_filled_pages_enabled)
1585 goto freepage;
1586
1587 /* if entry is successfully added, it keeps the reference */
1588 entry->pool = zswap_pool_current_get();
1589 if (!entry->pool)
1590 goto freepage;
1591
1592 if (objcg) {
1593 memcg = get_mem_cgroup_from_objcg(objcg);
1594 if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1595 mem_cgroup_put(memcg);
1596 goto put_pool;
1597 }
1598 mem_cgroup_put(memcg);
1599 }
1600
1601 /* compress */
1602 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1603
1604 mutex_lock(&acomp_ctx->mutex);
1605
1606 dst = acomp_ctx->buffer;
1607 sg_init_table(&input, 1);
1608 sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1609
1610 /*
1611 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1612 * and hardware-accelerators may won't check the dst buffer size, so
1613 * giving the dst buffer with enough length to avoid buffer overflow.
1614 */
1615 sg_init_one(&output, dst, PAGE_SIZE * 2);
1616 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1617 /*
1618 * it maybe looks a little bit silly that we send an asynchronous request,
1619 * then wait for its completion synchronously. This makes the process look
1620 * synchronous in fact.
1621 * Theoretically, acomp supports users send multiple acomp requests in one
1622 * acomp instance, then get those requests done simultaneously. but in this
1623 * case, zswap actually does store and load page by page, there is no
1624 * existing method to send the second page before the first page is done
1625 * in one thread doing zwap.
1626 * but in different threads running on different cpu, we have different
1627 * acomp instance, so multiple threads can do (de)compression in parallel.
1628 */
1629 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1630 dlen = acomp_ctx->req->dlen;
1631
1632 if (ret) {
1633 zswap_reject_compress_fail++;
1634 goto put_dstmem;
1635 }
1636
1637 /* store */
1638 zpool = zswap_find_zpool(entry);
1639 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1640 if (zpool_malloc_support_movable(zpool))
1641 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1642 ret = zpool_malloc(zpool, dlen, gfp, &handle);
1643 if (ret == -ENOSPC) {
1644 zswap_reject_compress_poor++;
1645 goto put_dstmem;
1646 }
1647 if (ret) {
1648 zswap_reject_alloc_fail++;
1649 goto put_dstmem;
1650 }
1651 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1652 memcpy(buf, dst, dlen);
1653 zpool_unmap_handle(zpool, handle);
1654 mutex_unlock(&acomp_ctx->mutex);
1655
1656 /* populate entry */
1657 entry->swpentry = swp_entry(type, offset);
1658 entry->handle = handle;
1659 entry->length = dlen;
1660
1661insert_entry:
1662 entry->objcg = objcg;
1663 if (objcg) {
1664 obj_cgroup_charge_zswap(objcg, entry->length);
1665 /* Account before objcg ref is moved to tree */
1666 count_objcg_event(objcg, ZSWPOUT);
1667 }
1668
1669 /* map */
1670 spin_lock(&tree->lock);
1671 /*
1672 * A duplicate entry should have been removed at the beginning of this
1673 * function. Since the swap entry should be pinned, if a duplicate is
1674 * found again here it means that something went wrong in the swap
1675 * cache.
1676 */
1677 while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1678 WARN_ON(1);
1679 zswap_duplicate_entry++;
1680 zswap_invalidate_entry(tree, dupentry);
1681 }
1682 if (entry->length) {
1683 INIT_LIST_HEAD(&entry->lru);
1684 zswap_lru_add(&entry->pool->list_lru, entry);
1685 atomic_inc(&entry->pool->nr_stored);
1686 }
1687 spin_unlock(&tree->lock);
1688
1689 /* update stats */
1690 atomic_inc(&zswap_stored_pages);
1691 zswap_update_total_size();
1692 count_vm_event(ZSWPOUT);
1693
1694 return true;
1695
1696put_dstmem:
1697 mutex_unlock(&acomp_ctx->mutex);
1698put_pool:
1699 zswap_pool_put(entry->pool);
1700freepage:
1701 zswap_entry_cache_free(entry);
1702reject:
1703 if (objcg)
1704 obj_cgroup_put(objcg);
1705 return false;
1706
1707shrink:
1708 pool = zswap_pool_last_get();
1709 if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1710 zswap_pool_put(pool);
1711 goto reject;
1712}
1713
1714bool zswap_load(struct folio *folio)
1715{
1716 swp_entry_t swp = folio->swap;
1717 int type = swp_type(swp);
1718 pgoff_t offset = swp_offset(swp);
1719 struct page *page = &folio->page;
1720 struct zswap_tree *tree = zswap_trees[type];
1721 struct zswap_entry *entry;
1722 u8 *dst;
1723
1724 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1725
1726 /* find */
1727 spin_lock(&tree->lock);
1728 entry = zswap_entry_find_get(&tree->rbroot, offset);
1729 if (!entry) {
1730 spin_unlock(&tree->lock);
1731 return false;
1732 }
1733 spin_unlock(&tree->lock);
1734
1735 if (entry->length)
1736 __zswap_load(entry, page);
1737 else {
1738 dst = kmap_local_page(page);
1739 zswap_fill_page(dst, entry->value);
1740 kunmap_local(dst);
1741 }
1742
1743 count_vm_event(ZSWPIN);
1744 if (entry->objcg)
1745 count_objcg_event(entry->objcg, ZSWPIN);
1746
1747 spin_lock(&tree->lock);
1748 if (zswap_exclusive_loads_enabled) {
1749 zswap_invalidate_entry(tree, entry);
1750 folio_mark_dirty(folio);
1751 } else if (entry->length) {
1752 zswap_lru_del(&entry->pool->list_lru, entry);
1753 zswap_lru_add(&entry->pool->list_lru, entry);
1754 }
1755 zswap_entry_put(tree, entry);
1756 spin_unlock(&tree->lock);
1757
1758 return true;
1759}
1760
1761void zswap_invalidate(int type, pgoff_t offset)
1762{
1763 struct zswap_tree *tree = zswap_trees[type];
1764 struct zswap_entry *entry;
1765
1766 /* find */
1767 spin_lock(&tree->lock);
1768 entry = zswap_rb_search(&tree->rbroot, offset);
1769 if (!entry) {
1770 /* entry was written back */
1771 spin_unlock(&tree->lock);
1772 return;
1773 }
1774 zswap_invalidate_entry(tree, entry);
1775 spin_unlock(&tree->lock);
1776}
1777
1778void zswap_swapon(int type)
1779{
1780 struct zswap_tree *tree;
1781
1782 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1783 if (!tree) {
1784 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1785 return;
1786 }
1787
1788 tree->rbroot = RB_ROOT;
1789 spin_lock_init(&tree->lock);
1790 zswap_trees[type] = tree;
1791}
1792
1793void zswap_swapoff(int type)
1794{
1795 struct zswap_tree *tree = zswap_trees[type];
1796 struct zswap_entry *entry, *n;
1797
1798 if (!tree)
1799 return;
1800
1801 /* walk the tree and free everything */
1802 spin_lock(&tree->lock);
1803 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1804 zswap_free_entry(entry);
1805 tree->rbroot = RB_ROOT;
1806 spin_unlock(&tree->lock);
1807 kfree(tree);
1808 zswap_trees[type] = NULL;
1809}
1810
1811/*********************************
1812* debugfs functions
1813**********************************/
1814#ifdef CONFIG_DEBUG_FS
1815#include <linux/debugfs.h>
1816
1817static struct dentry *zswap_debugfs_root;
1818
1819static int zswap_debugfs_init(void)
1820{
1821 if (!debugfs_initialized())
1822 return -ENODEV;
1823
1824 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1825
1826 debugfs_create_u64("pool_limit_hit", 0444,
1827 zswap_debugfs_root, &zswap_pool_limit_hit);
1828 debugfs_create_u64("reject_reclaim_fail", 0444,
1829 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1830 debugfs_create_u64("reject_alloc_fail", 0444,
1831 zswap_debugfs_root, &zswap_reject_alloc_fail);
1832 debugfs_create_u64("reject_kmemcache_fail", 0444,
1833 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1834 debugfs_create_u64("reject_compress_fail", 0444,
1835 zswap_debugfs_root, &zswap_reject_compress_fail);
1836 debugfs_create_u64("reject_compress_poor", 0444,
1837 zswap_debugfs_root, &zswap_reject_compress_poor);
1838 debugfs_create_u64("written_back_pages", 0444,
1839 zswap_debugfs_root, &zswap_written_back_pages);
1840 debugfs_create_u64("duplicate_entry", 0444,
1841 zswap_debugfs_root, &zswap_duplicate_entry);
1842 debugfs_create_u64("pool_total_size", 0444,
1843 zswap_debugfs_root, &zswap_pool_total_size);
1844 debugfs_create_atomic_t("stored_pages", 0444,
1845 zswap_debugfs_root, &zswap_stored_pages);
1846 debugfs_create_atomic_t("same_filled_pages", 0444,
1847 zswap_debugfs_root, &zswap_same_filled_pages);
1848
1849 return 0;
1850}
1851#else
1852static int zswap_debugfs_init(void)
1853{
1854 return 0;
1855}
1856#endif
1857
1858/*********************************
1859* module init and exit
1860**********************************/
1861static int zswap_setup(void)
1862{
1863 struct zswap_pool *pool;
1864 int ret;
1865
1866 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1867 if (!zswap_entry_cache) {
1868 pr_err("entry cache creation failed\n");
1869 goto cache_fail;
1870 }
1871
1872 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1873 "mm/zswap_pool:prepare",
1874 zswap_cpu_comp_prepare,
1875 zswap_cpu_comp_dead);
1876 if (ret)
1877 goto hp_fail;
1878
1879 pool = __zswap_pool_create_fallback();
1880 if (pool) {
1881 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1882 zpool_get_type(pool->zpools[0]));
1883 list_add(&pool->list, &zswap_pools);
1884 zswap_has_pool = true;
1885 } else {
1886 pr_err("pool creation failed\n");
1887 zswap_enabled = false;
1888 }
1889
1890 shrink_wq = create_workqueue("zswap-shrink");
1891 if (!shrink_wq)
1892 goto fallback_fail;
1893
1894 if (zswap_debugfs_init())
1895 pr_warn("debugfs initialization failed\n");
1896 zswap_init_state = ZSWAP_INIT_SUCCEED;
1897 return 0;
1898
1899fallback_fail:
1900 if (pool)
1901 zswap_pool_destroy(pool);
1902hp_fail:
1903 kmem_cache_destroy(zswap_entry_cache);
1904cache_fail:
1905 /* if built-in, we aren't unloaded on failure; don't allow use */
1906 zswap_init_state = ZSWAP_INIT_FAILED;
1907 zswap_enabled = false;
1908 return -ENOMEM;
1909}
1910
1911static int __init zswap_init(void)
1912{
1913 if (!zswap_enabled)
1914 return 0;
1915 return zswap_setup();
1916}
1917/* must be late so crypto has time to come up */
1918late_initcall(zswap_init);
1919
1920MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1921MODULE_DESCRIPTION("Compressed cache for swap pages");
1/*
2 * zswap.c - zswap driver file
3 *
4 * zswap is a backend for frontswap that takes pages that are in the process
5 * of being swapped out and attempts to compress and store them in a
6 * RAM-based memory pool. This can result in a significant I/O reduction on
7 * the swap device and, in the case where decompressing from RAM is faster
8 * than reading from the swap device, can also improve workload performance.
9 *
10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21*/
22
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/module.h>
26#include <linux/cpu.h>
27#include <linux/highmem.h>
28#include <linux/slab.h>
29#include <linux/spinlock.h>
30#include <linux/types.h>
31#include <linux/atomic.h>
32#include <linux/frontswap.h>
33#include <linux/rbtree.h>
34#include <linux/swap.h>
35#include <linux/crypto.h>
36#include <linux/mempool.h>
37#include <linux/zpool.h>
38
39#include <linux/mm_types.h>
40#include <linux/page-flags.h>
41#include <linux/swapops.h>
42#include <linux/writeback.h>
43#include <linux/pagemap.h>
44
45/*********************************
46* statistics
47**********************************/
48/* Total bytes used by the compressed storage */
49static u64 zswap_pool_total_size;
50/* The number of compressed pages currently stored in zswap */
51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53/*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58*/
59
60/* Pool limit was hit (see zswap_max_pool_percent) */
61static u64 zswap_pool_limit_hit;
62/* Pages written back when pool limit was reached */
63static u64 zswap_written_back_pages;
64/* Store failed due to a reclaim failure after pool limit was reached */
65static u64 zswap_reject_reclaim_fail;
66/* Compressed page was too big for the allocator to (optimally) store */
67static u64 zswap_reject_compress_poor;
68/* Store failed because underlying allocator could not get memory */
69static u64 zswap_reject_alloc_fail;
70/* Store failed because the entry metadata could not be allocated (rare) */
71static u64 zswap_reject_kmemcache_fail;
72/* Duplicate store was encountered (rare) */
73static u64 zswap_duplicate_entry;
74
75/*********************************
76* tunables
77**********************************/
78
79/* Enable/disable zswap (disabled by default) */
80static bool zswap_enabled;
81module_param_named(enabled, zswap_enabled, bool, 0644);
82
83/* Crypto compressor to use */
84#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
85static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
86static int zswap_compressor_param_set(const char *,
87 const struct kernel_param *);
88static struct kernel_param_ops zswap_compressor_param_ops = {
89 .set = zswap_compressor_param_set,
90 .get = param_get_charp,
91 .free = param_free_charp,
92};
93module_param_cb(compressor, &zswap_compressor_param_ops,
94 &zswap_compressor, 0644);
95
96/* Compressed storage zpool to use */
97#define ZSWAP_ZPOOL_DEFAULT "zbud"
98static char *zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
99static int zswap_zpool_param_set(const char *, const struct kernel_param *);
100static struct kernel_param_ops zswap_zpool_param_ops = {
101 .set = zswap_zpool_param_set,
102 .get = param_get_charp,
103 .free = param_free_charp,
104};
105module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
106
107/* The maximum percentage of memory that the compressed pool can occupy */
108static unsigned int zswap_max_pool_percent = 20;
109module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
110
111/*********************************
112* data structures
113**********************************/
114
115struct zswap_pool {
116 struct zpool *zpool;
117 struct crypto_comp * __percpu *tfm;
118 struct kref kref;
119 struct list_head list;
120 struct rcu_head rcu_head;
121 struct notifier_block notifier;
122 char tfm_name[CRYPTO_MAX_ALG_NAME];
123};
124
125/*
126 * struct zswap_entry
127 *
128 * This structure contains the metadata for tracking a single compressed
129 * page within zswap.
130 *
131 * rbnode - links the entry into red-black tree for the appropriate swap type
132 * offset - the swap offset for the entry. Index into the red-black tree.
133 * refcount - the number of outstanding reference to the entry. This is needed
134 * to protect against premature freeing of the entry by code
135 * concurrent calls to load, invalidate, and writeback. The lock
136 * for the zswap_tree structure that contains the entry must
137 * be held while changing the refcount. Since the lock must
138 * be held, there is no reason to also make refcount atomic.
139 * length - the length in bytes of the compressed page data. Needed during
140 * decompression
141 * pool - the zswap_pool the entry's data is in
142 * handle - zpool allocation handle that stores the compressed page data
143 */
144struct zswap_entry {
145 struct rb_node rbnode;
146 pgoff_t offset;
147 int refcount;
148 unsigned int length;
149 struct zswap_pool *pool;
150 unsigned long handle;
151};
152
153struct zswap_header {
154 swp_entry_t swpentry;
155};
156
157/*
158 * The tree lock in the zswap_tree struct protects a few things:
159 * - the rbtree
160 * - the refcount field of each entry in the tree
161 */
162struct zswap_tree {
163 struct rb_root rbroot;
164 spinlock_t lock;
165};
166
167static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
168
169/* RCU-protected iteration */
170static LIST_HEAD(zswap_pools);
171/* protects zswap_pools list modification */
172static DEFINE_SPINLOCK(zswap_pools_lock);
173/* pool counter to provide unique names to zpool */
174static atomic_t zswap_pools_count = ATOMIC_INIT(0);
175
176/* used by param callback function */
177static bool zswap_init_started;
178
179/*********************************
180* helpers and fwd declarations
181**********************************/
182
183#define zswap_pool_debug(msg, p) \
184 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
185 zpool_get_type((p)->zpool))
186
187static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
188static int zswap_pool_get(struct zswap_pool *pool);
189static void zswap_pool_put(struct zswap_pool *pool);
190
191static const struct zpool_ops zswap_zpool_ops = {
192 .evict = zswap_writeback_entry
193};
194
195static bool zswap_is_full(void)
196{
197 return totalram_pages * zswap_max_pool_percent / 100 <
198 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
199}
200
201static void zswap_update_total_size(void)
202{
203 struct zswap_pool *pool;
204 u64 total = 0;
205
206 rcu_read_lock();
207
208 list_for_each_entry_rcu(pool, &zswap_pools, list)
209 total += zpool_get_total_size(pool->zpool);
210
211 rcu_read_unlock();
212
213 zswap_pool_total_size = total;
214}
215
216/*********************************
217* zswap entry functions
218**********************************/
219static struct kmem_cache *zswap_entry_cache;
220
221static int __init zswap_entry_cache_create(void)
222{
223 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
224 return zswap_entry_cache == NULL;
225}
226
227static void __init zswap_entry_cache_destroy(void)
228{
229 kmem_cache_destroy(zswap_entry_cache);
230}
231
232static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
233{
234 struct zswap_entry *entry;
235 entry = kmem_cache_alloc(zswap_entry_cache, gfp);
236 if (!entry)
237 return NULL;
238 entry->refcount = 1;
239 RB_CLEAR_NODE(&entry->rbnode);
240 return entry;
241}
242
243static void zswap_entry_cache_free(struct zswap_entry *entry)
244{
245 kmem_cache_free(zswap_entry_cache, entry);
246}
247
248/*********************************
249* rbtree functions
250**********************************/
251static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
252{
253 struct rb_node *node = root->rb_node;
254 struct zswap_entry *entry;
255
256 while (node) {
257 entry = rb_entry(node, struct zswap_entry, rbnode);
258 if (entry->offset > offset)
259 node = node->rb_left;
260 else if (entry->offset < offset)
261 node = node->rb_right;
262 else
263 return entry;
264 }
265 return NULL;
266}
267
268/*
269 * In the case that a entry with the same offset is found, a pointer to
270 * the existing entry is stored in dupentry and the function returns -EEXIST
271 */
272static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
273 struct zswap_entry **dupentry)
274{
275 struct rb_node **link = &root->rb_node, *parent = NULL;
276 struct zswap_entry *myentry;
277
278 while (*link) {
279 parent = *link;
280 myentry = rb_entry(parent, struct zswap_entry, rbnode);
281 if (myentry->offset > entry->offset)
282 link = &(*link)->rb_left;
283 else if (myentry->offset < entry->offset)
284 link = &(*link)->rb_right;
285 else {
286 *dupentry = myentry;
287 return -EEXIST;
288 }
289 }
290 rb_link_node(&entry->rbnode, parent, link);
291 rb_insert_color(&entry->rbnode, root);
292 return 0;
293}
294
295static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
296{
297 if (!RB_EMPTY_NODE(&entry->rbnode)) {
298 rb_erase(&entry->rbnode, root);
299 RB_CLEAR_NODE(&entry->rbnode);
300 }
301}
302
303/*
304 * Carries out the common pattern of freeing and entry's zpool allocation,
305 * freeing the entry itself, and decrementing the number of stored pages.
306 */
307static void zswap_free_entry(struct zswap_entry *entry)
308{
309 zpool_free(entry->pool->zpool, entry->handle);
310 zswap_pool_put(entry->pool);
311 zswap_entry_cache_free(entry);
312 atomic_dec(&zswap_stored_pages);
313 zswap_update_total_size();
314}
315
316/* caller must hold the tree lock */
317static void zswap_entry_get(struct zswap_entry *entry)
318{
319 entry->refcount++;
320}
321
322/* caller must hold the tree lock
323* remove from the tree and free it, if nobody reference the entry
324*/
325static void zswap_entry_put(struct zswap_tree *tree,
326 struct zswap_entry *entry)
327{
328 int refcount = --entry->refcount;
329
330 BUG_ON(refcount < 0);
331 if (refcount == 0) {
332 zswap_rb_erase(&tree->rbroot, entry);
333 zswap_free_entry(entry);
334 }
335}
336
337/* caller must hold the tree lock */
338static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
339 pgoff_t offset)
340{
341 struct zswap_entry *entry;
342
343 entry = zswap_rb_search(root, offset);
344 if (entry)
345 zswap_entry_get(entry);
346
347 return entry;
348}
349
350/*********************************
351* per-cpu code
352**********************************/
353static DEFINE_PER_CPU(u8 *, zswap_dstmem);
354
355static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu)
356{
357 u8 *dst;
358
359 switch (action) {
360 case CPU_UP_PREPARE:
361 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
362 if (!dst) {
363 pr_err("can't allocate compressor buffer\n");
364 return NOTIFY_BAD;
365 }
366 per_cpu(zswap_dstmem, cpu) = dst;
367 break;
368 case CPU_DEAD:
369 case CPU_UP_CANCELED:
370 dst = per_cpu(zswap_dstmem, cpu);
371 kfree(dst);
372 per_cpu(zswap_dstmem, cpu) = NULL;
373 break;
374 default:
375 break;
376 }
377 return NOTIFY_OK;
378}
379
380static int zswap_cpu_dstmem_notifier(struct notifier_block *nb,
381 unsigned long action, void *pcpu)
382{
383 return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu);
384}
385
386static struct notifier_block zswap_dstmem_notifier = {
387 .notifier_call = zswap_cpu_dstmem_notifier,
388};
389
390static int __init zswap_cpu_dstmem_init(void)
391{
392 unsigned long cpu;
393
394 cpu_notifier_register_begin();
395 for_each_online_cpu(cpu)
396 if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) ==
397 NOTIFY_BAD)
398 goto cleanup;
399 __register_cpu_notifier(&zswap_dstmem_notifier);
400 cpu_notifier_register_done();
401 return 0;
402
403cleanup:
404 for_each_online_cpu(cpu)
405 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
406 cpu_notifier_register_done();
407 return -ENOMEM;
408}
409
410static void zswap_cpu_dstmem_destroy(void)
411{
412 unsigned long cpu;
413
414 cpu_notifier_register_begin();
415 for_each_online_cpu(cpu)
416 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu);
417 __unregister_cpu_notifier(&zswap_dstmem_notifier);
418 cpu_notifier_register_done();
419}
420
421static int __zswap_cpu_comp_notifier(struct zswap_pool *pool,
422 unsigned long action, unsigned long cpu)
423{
424 struct crypto_comp *tfm;
425
426 switch (action) {
427 case CPU_UP_PREPARE:
428 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu)))
429 break;
430 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0);
431 if (IS_ERR_OR_NULL(tfm)) {
432 pr_err("could not alloc crypto comp %s : %ld\n",
433 pool->tfm_name, PTR_ERR(tfm));
434 return NOTIFY_BAD;
435 }
436 *per_cpu_ptr(pool->tfm, cpu) = tfm;
437 break;
438 case CPU_DEAD:
439 case CPU_UP_CANCELED:
440 tfm = *per_cpu_ptr(pool->tfm, cpu);
441 if (!IS_ERR_OR_NULL(tfm))
442 crypto_free_comp(tfm);
443 *per_cpu_ptr(pool->tfm, cpu) = NULL;
444 break;
445 default:
446 break;
447 }
448 return NOTIFY_OK;
449}
450
451static int zswap_cpu_comp_notifier(struct notifier_block *nb,
452 unsigned long action, void *pcpu)
453{
454 unsigned long cpu = (unsigned long)pcpu;
455 struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier);
456
457 return __zswap_cpu_comp_notifier(pool, action, cpu);
458}
459
460static int zswap_cpu_comp_init(struct zswap_pool *pool)
461{
462 unsigned long cpu;
463
464 memset(&pool->notifier, 0, sizeof(pool->notifier));
465 pool->notifier.notifier_call = zswap_cpu_comp_notifier;
466
467 cpu_notifier_register_begin();
468 for_each_online_cpu(cpu)
469 if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) ==
470 NOTIFY_BAD)
471 goto cleanup;
472 __register_cpu_notifier(&pool->notifier);
473 cpu_notifier_register_done();
474 return 0;
475
476cleanup:
477 for_each_online_cpu(cpu)
478 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
479 cpu_notifier_register_done();
480 return -ENOMEM;
481}
482
483static void zswap_cpu_comp_destroy(struct zswap_pool *pool)
484{
485 unsigned long cpu;
486
487 cpu_notifier_register_begin();
488 for_each_online_cpu(cpu)
489 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu);
490 __unregister_cpu_notifier(&pool->notifier);
491 cpu_notifier_register_done();
492}
493
494/*********************************
495* pool functions
496**********************************/
497
498static struct zswap_pool *__zswap_pool_current(void)
499{
500 struct zswap_pool *pool;
501
502 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
503 WARN_ON(!pool);
504
505 return pool;
506}
507
508static struct zswap_pool *zswap_pool_current(void)
509{
510 assert_spin_locked(&zswap_pools_lock);
511
512 return __zswap_pool_current();
513}
514
515static struct zswap_pool *zswap_pool_current_get(void)
516{
517 struct zswap_pool *pool;
518
519 rcu_read_lock();
520
521 pool = __zswap_pool_current();
522 if (!pool || !zswap_pool_get(pool))
523 pool = NULL;
524
525 rcu_read_unlock();
526
527 return pool;
528}
529
530static struct zswap_pool *zswap_pool_last_get(void)
531{
532 struct zswap_pool *pool, *last = NULL;
533
534 rcu_read_lock();
535
536 list_for_each_entry_rcu(pool, &zswap_pools, list)
537 last = pool;
538 if (!WARN_ON(!last) && !zswap_pool_get(last))
539 last = NULL;
540
541 rcu_read_unlock();
542
543 return last;
544}
545
546/* type and compressor must be null-terminated */
547static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
548{
549 struct zswap_pool *pool;
550
551 assert_spin_locked(&zswap_pools_lock);
552
553 list_for_each_entry_rcu(pool, &zswap_pools, list) {
554 if (strcmp(pool->tfm_name, compressor))
555 continue;
556 if (strcmp(zpool_get_type(pool->zpool), type))
557 continue;
558 /* if we can't get it, it's about to be destroyed */
559 if (!zswap_pool_get(pool))
560 continue;
561 return pool;
562 }
563
564 return NULL;
565}
566
567static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
568{
569 struct zswap_pool *pool;
570 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
571 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
572
573 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
574 if (!pool) {
575 pr_err("pool alloc failed\n");
576 return NULL;
577 }
578
579 /* unique name for each pool specifically required by zsmalloc */
580 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
581
582 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
583 if (!pool->zpool) {
584 pr_err("%s zpool not available\n", type);
585 goto error;
586 }
587 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
588
589 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
590 pool->tfm = alloc_percpu(struct crypto_comp *);
591 if (!pool->tfm) {
592 pr_err("percpu alloc failed\n");
593 goto error;
594 }
595
596 if (zswap_cpu_comp_init(pool))
597 goto error;
598 pr_debug("using %s compressor\n", pool->tfm_name);
599
600 /* being the current pool takes 1 ref; this func expects the
601 * caller to always add the new pool as the current pool
602 */
603 kref_init(&pool->kref);
604 INIT_LIST_HEAD(&pool->list);
605
606 zswap_pool_debug("created", pool);
607
608 return pool;
609
610error:
611 free_percpu(pool->tfm);
612 if (pool->zpool)
613 zpool_destroy_pool(pool->zpool);
614 kfree(pool);
615 return NULL;
616}
617
618static __init struct zswap_pool *__zswap_pool_create_fallback(void)
619{
620 if (!crypto_has_comp(zswap_compressor, 0, 0)) {
621 if (!strcmp(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT)) {
622 pr_err("default compressor %s not available\n",
623 zswap_compressor);
624 return NULL;
625 }
626 pr_err("compressor %s not available, using default %s\n",
627 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT);
628 param_free_charp(&zswap_compressor);
629 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
630 }
631 if (!zpool_has_pool(zswap_zpool_type)) {
632 if (!strcmp(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT)) {
633 pr_err("default zpool %s not available\n",
634 zswap_zpool_type);
635 return NULL;
636 }
637 pr_err("zpool %s not available, using default %s\n",
638 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT);
639 param_free_charp(&zswap_zpool_type);
640 zswap_zpool_type = ZSWAP_ZPOOL_DEFAULT;
641 }
642
643 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
644}
645
646static void zswap_pool_destroy(struct zswap_pool *pool)
647{
648 zswap_pool_debug("destroying", pool);
649
650 zswap_cpu_comp_destroy(pool);
651 free_percpu(pool->tfm);
652 zpool_destroy_pool(pool->zpool);
653 kfree(pool);
654}
655
656static int __must_check zswap_pool_get(struct zswap_pool *pool)
657{
658 return kref_get_unless_zero(&pool->kref);
659}
660
661static void __zswap_pool_release(struct rcu_head *head)
662{
663 struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head);
664
665 /* nobody should have been able to get a kref... */
666 WARN_ON(kref_get_unless_zero(&pool->kref));
667
668 /* pool is now off zswap_pools list and has no references. */
669 zswap_pool_destroy(pool);
670}
671
672static void __zswap_pool_empty(struct kref *kref)
673{
674 struct zswap_pool *pool;
675
676 pool = container_of(kref, typeof(*pool), kref);
677
678 spin_lock(&zswap_pools_lock);
679
680 WARN_ON(pool == zswap_pool_current());
681
682 list_del_rcu(&pool->list);
683 call_rcu(&pool->rcu_head, __zswap_pool_release);
684
685 spin_unlock(&zswap_pools_lock);
686}
687
688static void zswap_pool_put(struct zswap_pool *pool)
689{
690 kref_put(&pool->kref, __zswap_pool_empty);
691}
692
693/*********************************
694* param callbacks
695**********************************/
696
697/* val must be a null-terminated string */
698static int __zswap_param_set(const char *val, const struct kernel_param *kp,
699 char *type, char *compressor)
700{
701 struct zswap_pool *pool, *put_pool = NULL;
702 char *s = strstrip((char *)val);
703 int ret;
704
705 /* no change required */
706 if (!strcmp(s, *(char **)kp->arg))
707 return 0;
708
709 /* if this is load-time (pre-init) param setting,
710 * don't create a pool; that's done during init.
711 */
712 if (!zswap_init_started)
713 return param_set_charp(s, kp);
714
715 if (!type) {
716 if (!zpool_has_pool(s)) {
717 pr_err("zpool %s not available\n", s);
718 return -ENOENT;
719 }
720 type = s;
721 } else if (!compressor) {
722 if (!crypto_has_comp(s, 0, 0)) {
723 pr_err("compressor %s not available\n", s);
724 return -ENOENT;
725 }
726 compressor = s;
727 } else {
728 WARN_ON(1);
729 return -EINVAL;
730 }
731
732 spin_lock(&zswap_pools_lock);
733
734 pool = zswap_pool_find_get(type, compressor);
735 if (pool) {
736 zswap_pool_debug("using existing", pool);
737 list_del_rcu(&pool->list);
738 } else {
739 spin_unlock(&zswap_pools_lock);
740 pool = zswap_pool_create(type, compressor);
741 spin_lock(&zswap_pools_lock);
742 }
743
744 if (pool)
745 ret = param_set_charp(s, kp);
746 else
747 ret = -EINVAL;
748
749 if (!ret) {
750 put_pool = zswap_pool_current();
751 list_add_rcu(&pool->list, &zswap_pools);
752 } else if (pool) {
753 /* add the possibly pre-existing pool to the end of the pools
754 * list; if it's new (and empty) then it'll be removed and
755 * destroyed by the put after we drop the lock
756 */
757 list_add_tail_rcu(&pool->list, &zswap_pools);
758 put_pool = pool;
759 }
760
761 spin_unlock(&zswap_pools_lock);
762
763 /* drop the ref from either the old current pool,
764 * or the new pool we failed to add
765 */
766 if (put_pool)
767 zswap_pool_put(put_pool);
768
769 return ret;
770}
771
772static int zswap_compressor_param_set(const char *val,
773 const struct kernel_param *kp)
774{
775 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
776}
777
778static int zswap_zpool_param_set(const char *val,
779 const struct kernel_param *kp)
780{
781 return __zswap_param_set(val, kp, NULL, zswap_compressor);
782}
783
784/*********************************
785* writeback code
786**********************************/
787/* return enum for zswap_get_swap_cache_page */
788enum zswap_get_swap_ret {
789 ZSWAP_SWAPCACHE_NEW,
790 ZSWAP_SWAPCACHE_EXIST,
791 ZSWAP_SWAPCACHE_FAIL,
792};
793
794/*
795 * zswap_get_swap_cache_page
796 *
797 * This is an adaption of read_swap_cache_async()
798 *
799 * This function tries to find a page with the given swap entry
800 * in the swapper_space address space (the swap cache). If the page
801 * is found, it is returned in retpage. Otherwise, a page is allocated,
802 * added to the swap cache, and returned in retpage.
803 *
804 * If success, the swap cache page is returned in retpage
805 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
806 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
807 * the new page is added to swapcache and locked
808 * Returns ZSWAP_SWAPCACHE_FAIL on error
809 */
810static int zswap_get_swap_cache_page(swp_entry_t entry,
811 struct page **retpage)
812{
813 bool page_was_allocated;
814
815 *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
816 NULL, 0, &page_was_allocated);
817 if (page_was_allocated)
818 return ZSWAP_SWAPCACHE_NEW;
819 if (!*retpage)
820 return ZSWAP_SWAPCACHE_FAIL;
821 return ZSWAP_SWAPCACHE_EXIST;
822}
823
824/*
825 * Attempts to free an entry by adding a page to the swap cache,
826 * decompressing the entry data into the page, and issuing a
827 * bio write to write the page back to the swap device.
828 *
829 * This can be thought of as a "resumed writeback" of the page
830 * to the swap device. We are basically resuming the same swap
831 * writeback path that was intercepted with the frontswap_store()
832 * in the first place. After the page has been decompressed into
833 * the swap cache, the compressed version stored by zswap can be
834 * freed.
835 */
836static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
837{
838 struct zswap_header *zhdr;
839 swp_entry_t swpentry;
840 struct zswap_tree *tree;
841 pgoff_t offset;
842 struct zswap_entry *entry;
843 struct page *page;
844 struct crypto_comp *tfm;
845 u8 *src, *dst;
846 unsigned int dlen;
847 int ret;
848 struct writeback_control wbc = {
849 .sync_mode = WB_SYNC_NONE,
850 };
851
852 /* extract swpentry from data */
853 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
854 swpentry = zhdr->swpentry; /* here */
855 zpool_unmap_handle(pool, handle);
856 tree = zswap_trees[swp_type(swpentry)];
857 offset = swp_offset(swpentry);
858
859 /* find and ref zswap entry */
860 spin_lock(&tree->lock);
861 entry = zswap_entry_find_get(&tree->rbroot, offset);
862 if (!entry) {
863 /* entry was invalidated */
864 spin_unlock(&tree->lock);
865 return 0;
866 }
867 spin_unlock(&tree->lock);
868 BUG_ON(offset != entry->offset);
869
870 /* try to allocate swap cache page */
871 switch (zswap_get_swap_cache_page(swpentry, &page)) {
872 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
873 ret = -ENOMEM;
874 goto fail;
875
876 case ZSWAP_SWAPCACHE_EXIST:
877 /* page is already in the swap cache, ignore for now */
878 put_page(page);
879 ret = -EEXIST;
880 goto fail;
881
882 case ZSWAP_SWAPCACHE_NEW: /* page is locked */
883 /* decompress */
884 dlen = PAGE_SIZE;
885 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
886 ZPOOL_MM_RO) + sizeof(struct zswap_header);
887 dst = kmap_atomic(page);
888 tfm = *get_cpu_ptr(entry->pool->tfm);
889 ret = crypto_comp_decompress(tfm, src, entry->length,
890 dst, &dlen);
891 put_cpu_ptr(entry->pool->tfm);
892 kunmap_atomic(dst);
893 zpool_unmap_handle(entry->pool->zpool, entry->handle);
894 BUG_ON(ret);
895 BUG_ON(dlen != PAGE_SIZE);
896
897 /* page is up to date */
898 SetPageUptodate(page);
899 }
900
901 /* move it to the tail of the inactive list after end_writeback */
902 SetPageReclaim(page);
903
904 /* start writeback */
905 __swap_writepage(page, &wbc, end_swap_bio_write);
906 put_page(page);
907 zswap_written_back_pages++;
908
909 spin_lock(&tree->lock);
910 /* drop local reference */
911 zswap_entry_put(tree, entry);
912
913 /*
914 * There are two possible situations for entry here:
915 * (1) refcount is 1(normal case), entry is valid and on the tree
916 * (2) refcount is 0, entry is freed and not on the tree
917 * because invalidate happened during writeback
918 * search the tree and free the entry if find entry
919 */
920 if (entry == zswap_rb_search(&tree->rbroot, offset))
921 zswap_entry_put(tree, entry);
922 spin_unlock(&tree->lock);
923
924 goto end;
925
926 /*
927 * if we get here due to ZSWAP_SWAPCACHE_EXIST
928 * a load may happening concurrently
929 * it is safe and okay to not free the entry
930 * if we free the entry in the following put
931 * it it either okay to return !0
932 */
933fail:
934 spin_lock(&tree->lock);
935 zswap_entry_put(tree, entry);
936 spin_unlock(&tree->lock);
937
938end:
939 return ret;
940}
941
942static int zswap_shrink(void)
943{
944 struct zswap_pool *pool;
945 int ret;
946
947 pool = zswap_pool_last_get();
948 if (!pool)
949 return -ENOENT;
950
951 ret = zpool_shrink(pool->zpool, 1, NULL);
952
953 zswap_pool_put(pool);
954
955 return ret;
956}
957
958/*********************************
959* frontswap hooks
960**********************************/
961/* attempts to compress and store an single page */
962static int zswap_frontswap_store(unsigned type, pgoff_t offset,
963 struct page *page)
964{
965 struct zswap_tree *tree = zswap_trees[type];
966 struct zswap_entry *entry, *dupentry;
967 struct crypto_comp *tfm;
968 int ret;
969 unsigned int dlen = PAGE_SIZE, len;
970 unsigned long handle;
971 char *buf;
972 u8 *src, *dst;
973 struct zswap_header *zhdr;
974
975 if (!zswap_enabled || !tree) {
976 ret = -ENODEV;
977 goto reject;
978 }
979
980 /* reclaim space if needed */
981 if (zswap_is_full()) {
982 zswap_pool_limit_hit++;
983 if (zswap_shrink()) {
984 zswap_reject_reclaim_fail++;
985 ret = -ENOMEM;
986 goto reject;
987 }
988 }
989
990 /* allocate entry */
991 entry = zswap_entry_cache_alloc(GFP_KERNEL);
992 if (!entry) {
993 zswap_reject_kmemcache_fail++;
994 ret = -ENOMEM;
995 goto reject;
996 }
997
998 /* if entry is successfully added, it keeps the reference */
999 entry->pool = zswap_pool_current_get();
1000 if (!entry->pool) {
1001 ret = -EINVAL;
1002 goto freepage;
1003 }
1004
1005 /* compress */
1006 dst = get_cpu_var(zswap_dstmem);
1007 tfm = *get_cpu_ptr(entry->pool->tfm);
1008 src = kmap_atomic(page);
1009 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen);
1010 kunmap_atomic(src);
1011 put_cpu_ptr(entry->pool->tfm);
1012 if (ret) {
1013 ret = -EINVAL;
1014 goto put_dstmem;
1015 }
1016
1017 /* store */
1018 len = dlen + sizeof(struct zswap_header);
1019 ret = zpool_malloc(entry->pool->zpool, len,
1020 __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM,
1021 &handle);
1022 if (ret == -ENOSPC) {
1023 zswap_reject_compress_poor++;
1024 goto put_dstmem;
1025 }
1026 if (ret) {
1027 zswap_reject_alloc_fail++;
1028 goto put_dstmem;
1029 }
1030 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW);
1031 zhdr->swpentry = swp_entry(type, offset);
1032 buf = (u8 *)(zhdr + 1);
1033 memcpy(buf, dst, dlen);
1034 zpool_unmap_handle(entry->pool->zpool, handle);
1035 put_cpu_var(zswap_dstmem);
1036
1037 /* populate entry */
1038 entry->offset = offset;
1039 entry->handle = handle;
1040 entry->length = dlen;
1041
1042 /* map */
1043 spin_lock(&tree->lock);
1044 do {
1045 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1046 if (ret == -EEXIST) {
1047 zswap_duplicate_entry++;
1048 /* remove from rbtree */
1049 zswap_rb_erase(&tree->rbroot, dupentry);
1050 zswap_entry_put(tree, dupentry);
1051 }
1052 } while (ret == -EEXIST);
1053 spin_unlock(&tree->lock);
1054
1055 /* update stats */
1056 atomic_inc(&zswap_stored_pages);
1057 zswap_update_total_size();
1058
1059 return 0;
1060
1061put_dstmem:
1062 put_cpu_var(zswap_dstmem);
1063 zswap_pool_put(entry->pool);
1064freepage:
1065 zswap_entry_cache_free(entry);
1066reject:
1067 return ret;
1068}
1069
1070/*
1071 * returns 0 if the page was successfully decompressed
1072 * return -1 on entry not found or error
1073*/
1074static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1075 struct page *page)
1076{
1077 struct zswap_tree *tree = zswap_trees[type];
1078 struct zswap_entry *entry;
1079 struct crypto_comp *tfm;
1080 u8 *src, *dst;
1081 unsigned int dlen;
1082 int ret;
1083
1084 /* find */
1085 spin_lock(&tree->lock);
1086 entry = zswap_entry_find_get(&tree->rbroot, offset);
1087 if (!entry) {
1088 /* entry was written back */
1089 spin_unlock(&tree->lock);
1090 return -1;
1091 }
1092 spin_unlock(&tree->lock);
1093
1094 /* decompress */
1095 dlen = PAGE_SIZE;
1096 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle,
1097 ZPOOL_MM_RO) + sizeof(struct zswap_header);
1098 dst = kmap_atomic(page);
1099 tfm = *get_cpu_ptr(entry->pool->tfm);
1100 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen);
1101 put_cpu_ptr(entry->pool->tfm);
1102 kunmap_atomic(dst);
1103 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1104 BUG_ON(ret);
1105
1106 spin_lock(&tree->lock);
1107 zswap_entry_put(tree, entry);
1108 spin_unlock(&tree->lock);
1109
1110 return 0;
1111}
1112
1113/* frees an entry in zswap */
1114static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1115{
1116 struct zswap_tree *tree = zswap_trees[type];
1117 struct zswap_entry *entry;
1118
1119 /* find */
1120 spin_lock(&tree->lock);
1121 entry = zswap_rb_search(&tree->rbroot, offset);
1122 if (!entry) {
1123 /* entry was written back */
1124 spin_unlock(&tree->lock);
1125 return;
1126 }
1127
1128 /* remove from rbtree */
1129 zswap_rb_erase(&tree->rbroot, entry);
1130
1131 /* drop the initial reference from entry creation */
1132 zswap_entry_put(tree, entry);
1133
1134 spin_unlock(&tree->lock);
1135}
1136
1137/* frees all zswap entries for the given swap type */
1138static void zswap_frontswap_invalidate_area(unsigned type)
1139{
1140 struct zswap_tree *tree = zswap_trees[type];
1141 struct zswap_entry *entry, *n;
1142
1143 if (!tree)
1144 return;
1145
1146 /* walk the tree and free everything */
1147 spin_lock(&tree->lock);
1148 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1149 zswap_free_entry(entry);
1150 tree->rbroot = RB_ROOT;
1151 spin_unlock(&tree->lock);
1152 kfree(tree);
1153 zswap_trees[type] = NULL;
1154}
1155
1156static void zswap_frontswap_init(unsigned type)
1157{
1158 struct zswap_tree *tree;
1159
1160 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
1161 if (!tree) {
1162 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1163 return;
1164 }
1165
1166 tree->rbroot = RB_ROOT;
1167 spin_lock_init(&tree->lock);
1168 zswap_trees[type] = tree;
1169}
1170
1171static struct frontswap_ops zswap_frontswap_ops = {
1172 .store = zswap_frontswap_store,
1173 .load = zswap_frontswap_load,
1174 .invalidate_page = zswap_frontswap_invalidate_page,
1175 .invalidate_area = zswap_frontswap_invalidate_area,
1176 .init = zswap_frontswap_init
1177};
1178
1179/*********************************
1180* debugfs functions
1181**********************************/
1182#ifdef CONFIG_DEBUG_FS
1183#include <linux/debugfs.h>
1184
1185static struct dentry *zswap_debugfs_root;
1186
1187static int __init zswap_debugfs_init(void)
1188{
1189 if (!debugfs_initialized())
1190 return -ENODEV;
1191
1192 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1193 if (!zswap_debugfs_root)
1194 return -ENOMEM;
1195
1196 debugfs_create_u64("pool_limit_hit", S_IRUGO,
1197 zswap_debugfs_root, &zswap_pool_limit_hit);
1198 debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
1199 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1200 debugfs_create_u64("reject_alloc_fail", S_IRUGO,
1201 zswap_debugfs_root, &zswap_reject_alloc_fail);
1202 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
1203 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1204 debugfs_create_u64("reject_compress_poor", S_IRUGO,
1205 zswap_debugfs_root, &zswap_reject_compress_poor);
1206 debugfs_create_u64("written_back_pages", S_IRUGO,
1207 zswap_debugfs_root, &zswap_written_back_pages);
1208 debugfs_create_u64("duplicate_entry", S_IRUGO,
1209 zswap_debugfs_root, &zswap_duplicate_entry);
1210 debugfs_create_u64("pool_total_size", S_IRUGO,
1211 zswap_debugfs_root, &zswap_pool_total_size);
1212 debugfs_create_atomic_t("stored_pages", S_IRUGO,
1213 zswap_debugfs_root, &zswap_stored_pages);
1214
1215 return 0;
1216}
1217
1218static void __exit zswap_debugfs_exit(void)
1219{
1220 debugfs_remove_recursive(zswap_debugfs_root);
1221}
1222#else
1223static int __init zswap_debugfs_init(void)
1224{
1225 return 0;
1226}
1227
1228static void __exit zswap_debugfs_exit(void) { }
1229#endif
1230
1231/*********************************
1232* module init and exit
1233**********************************/
1234static int __init init_zswap(void)
1235{
1236 struct zswap_pool *pool;
1237
1238 zswap_init_started = true;
1239
1240 if (zswap_entry_cache_create()) {
1241 pr_err("entry cache creation failed\n");
1242 goto cache_fail;
1243 }
1244
1245 if (zswap_cpu_dstmem_init()) {
1246 pr_err("dstmem alloc failed\n");
1247 goto dstmem_fail;
1248 }
1249
1250 pool = __zswap_pool_create_fallback();
1251 if (!pool) {
1252 pr_err("pool creation failed\n");
1253 goto pool_fail;
1254 }
1255 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1256 zpool_get_type(pool->zpool));
1257
1258 list_add(&pool->list, &zswap_pools);
1259
1260 frontswap_register_ops(&zswap_frontswap_ops);
1261 if (zswap_debugfs_init())
1262 pr_warn("debugfs initialization failed\n");
1263 return 0;
1264
1265pool_fail:
1266 zswap_cpu_dstmem_destroy();
1267dstmem_fail:
1268 zswap_entry_cache_destroy();
1269cache_fail:
1270 return -ENOMEM;
1271}
1272/* must be late so crypto has time to come up */
1273late_initcall(init_zswap);
1274
1275MODULE_LICENSE("GPL");
1276MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1277MODULE_DESCRIPTION("Compressed cache for swap pages");