Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12*/
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/cpu.h>
18#include <linux/highmem.h>
19#include <linux/slab.h>
20#include <linux/spinlock.h>
21#include <linux/types.h>
22#include <linux/atomic.h>
23#include <linux/rbtree.h>
24#include <linux/swap.h>
25#include <linux/crypto.h>
26#include <linux/scatterlist.h>
27#include <linux/mempolicy.h>
28#include <linux/mempool.h>
29#include <linux/zpool.h>
30#include <crypto/acompress.h>
31#include <linux/zswap.h>
32#include <linux/mm_types.h>
33#include <linux/page-flags.h>
34#include <linux/swapops.h>
35#include <linux/writeback.h>
36#include <linux/pagemap.h>
37#include <linux/workqueue.h>
38#include <linux/list_lru.h>
39
40#include "swap.h"
41#include "internal.h"
42
43/*********************************
44* statistics
45**********************************/
46/* Total bytes used by the compressed storage */
47u64 zswap_pool_total_size;
48/* The number of compressed pages currently stored in zswap */
49atomic_t zswap_stored_pages = ATOMIC_INIT(0);
50/* The number of same-value filled pages currently stored in zswap */
51static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
52
53/*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58*/
59
60/* Pool limit was hit (see zswap_max_pool_percent) */
61static u64 zswap_pool_limit_hit;
62/* Pages written back when pool limit was reached */
63static u64 zswap_written_back_pages;
64/* Store failed due to a reclaim failure after pool limit was reached */
65static u64 zswap_reject_reclaim_fail;
66/* Store failed due to compression algorithm failure */
67static u64 zswap_reject_compress_fail;
68/* Compressed page was too big for the allocator to (optimally) store */
69static u64 zswap_reject_compress_poor;
70/* Store failed because underlying allocator could not get memory */
71static u64 zswap_reject_alloc_fail;
72/* Store failed because the entry metadata could not be allocated (rare) */
73static u64 zswap_reject_kmemcache_fail;
74/* Duplicate store was encountered (rare) */
75static u64 zswap_duplicate_entry;
76
77/* Shrinker work queue */
78static struct workqueue_struct *shrink_wq;
79/* Pool limit was hit, we need to calm down */
80static bool zswap_pool_reached_full;
81
82/*********************************
83* tunables
84**********************************/
85
86#define ZSWAP_PARAM_UNSET ""
87
88static int zswap_setup(void);
89
90/* Enable/disable zswap */
91static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
92static int zswap_enabled_param_set(const char *,
93 const struct kernel_param *);
94static const struct kernel_param_ops zswap_enabled_param_ops = {
95 .set = zswap_enabled_param_set,
96 .get = param_get_bool,
97};
98module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
99
100/* Crypto compressor to use */
101static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
102static int zswap_compressor_param_set(const char *,
103 const struct kernel_param *);
104static const struct kernel_param_ops zswap_compressor_param_ops = {
105 .set = zswap_compressor_param_set,
106 .get = param_get_charp,
107 .free = param_free_charp,
108};
109module_param_cb(compressor, &zswap_compressor_param_ops,
110 &zswap_compressor, 0644);
111
112/* Compressed storage zpool to use */
113static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
114static int zswap_zpool_param_set(const char *, const struct kernel_param *);
115static const struct kernel_param_ops zswap_zpool_param_ops = {
116 .set = zswap_zpool_param_set,
117 .get = param_get_charp,
118 .free = param_free_charp,
119};
120module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
121
122/* The maximum percentage of memory that the compressed pool can occupy */
123static unsigned int zswap_max_pool_percent = 20;
124module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
125
126/* The threshold for accepting new pages after the max_pool_percent was hit */
127static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
128module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
129 uint, 0644);
130
131/*
132 * Enable/disable handling same-value filled pages (enabled by default).
133 * If disabled every page is considered non-same-value filled.
134 */
135static bool zswap_same_filled_pages_enabled = true;
136module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
137 bool, 0644);
138
139/* Enable/disable handling non-same-value filled pages (enabled by default) */
140static bool zswap_non_same_filled_pages_enabled = true;
141module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
142 bool, 0644);
143
144static bool zswap_exclusive_loads_enabled = IS_ENABLED(
145 CONFIG_ZSWAP_EXCLUSIVE_LOADS_DEFAULT_ON);
146module_param_named(exclusive_loads, zswap_exclusive_loads_enabled, bool, 0644);
147
148/* Number of zpools in zswap_pool (empirically determined for scalability) */
149#define ZSWAP_NR_ZPOOLS 32
150
151/* Enable/disable memory pressure-based shrinker. */
152static bool zswap_shrinker_enabled = IS_ENABLED(
153 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
154module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
155
156bool is_zswap_enabled(void)
157{
158 return zswap_enabled;
159}
160
161/*********************************
162* data structures
163**********************************/
164
165struct crypto_acomp_ctx {
166 struct crypto_acomp *acomp;
167 struct acomp_req *req;
168 struct crypto_wait wait;
169 u8 *buffer;
170 struct mutex mutex;
171};
172
173/*
174 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
175 * The only case where lru_lock is not acquired while holding tree.lock is
176 * when a zswap_entry is taken off the lru for writeback, in that case it
177 * needs to be verified that it's still valid in the tree.
178 */
179struct zswap_pool {
180 struct zpool *zpools[ZSWAP_NR_ZPOOLS];
181 struct crypto_acomp_ctx __percpu *acomp_ctx;
182 struct kref kref;
183 struct list_head list;
184 struct work_struct release_work;
185 struct work_struct shrink_work;
186 struct hlist_node node;
187 char tfm_name[CRYPTO_MAX_ALG_NAME];
188 struct list_lru list_lru;
189 struct mem_cgroup *next_shrink;
190 struct shrinker *shrinker;
191 atomic_t nr_stored;
192};
193
194/*
195 * struct zswap_entry
196 *
197 * This structure contains the metadata for tracking a single compressed
198 * page within zswap.
199 *
200 * rbnode - links the entry into red-black tree for the appropriate swap type
201 * swpentry - associated swap entry, the offset indexes into the red-black tree
202 * refcount - the number of outstanding reference to the entry. This is needed
203 * to protect against premature freeing of the entry by code
204 * concurrent calls to load, invalidate, and writeback. The lock
205 * for the zswap_tree structure that contains the entry must
206 * be held while changing the refcount. Since the lock must
207 * be held, there is no reason to also make refcount atomic.
208 * length - the length in bytes of the compressed page data. Needed during
209 * decompression. For a same value filled page length is 0, and both
210 * pool and lru are invalid and must be ignored.
211 * pool - the zswap_pool the entry's data is in
212 * handle - zpool allocation handle that stores the compressed page data
213 * value - value of the same-value filled pages which have same content
214 * objcg - the obj_cgroup that the compressed memory is charged to
215 * lru - handle to the pool's lru used to evict pages.
216 */
217struct zswap_entry {
218 struct rb_node rbnode;
219 swp_entry_t swpentry;
220 int refcount;
221 unsigned int length;
222 struct zswap_pool *pool;
223 union {
224 unsigned long handle;
225 unsigned long value;
226 };
227 struct obj_cgroup *objcg;
228 struct list_head lru;
229};
230
231/*
232 * The tree lock in the zswap_tree struct protects a few things:
233 * - the rbtree
234 * - the refcount field of each entry in the tree
235 */
236struct zswap_tree {
237 struct rb_root rbroot;
238 spinlock_t lock;
239};
240
241static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
242
243/* RCU-protected iteration */
244static LIST_HEAD(zswap_pools);
245/* protects zswap_pools list modification */
246static DEFINE_SPINLOCK(zswap_pools_lock);
247/* pool counter to provide unique names to zpool */
248static atomic_t zswap_pools_count = ATOMIC_INIT(0);
249
250enum zswap_init_type {
251 ZSWAP_UNINIT,
252 ZSWAP_INIT_SUCCEED,
253 ZSWAP_INIT_FAILED
254};
255
256static enum zswap_init_type zswap_init_state;
257
258/* used to ensure the integrity of initialization */
259static DEFINE_MUTEX(zswap_init_lock);
260
261/* init completed, but couldn't create the initial pool */
262static bool zswap_has_pool;
263
264/*********************************
265* helpers and fwd declarations
266**********************************/
267
268#define zswap_pool_debug(msg, p) \
269 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
270 zpool_get_type((p)->zpools[0]))
271
272static int zswap_writeback_entry(struct zswap_entry *entry,
273 struct zswap_tree *tree);
274static int zswap_pool_get(struct zswap_pool *pool);
275static void zswap_pool_put(struct zswap_pool *pool);
276
277static bool zswap_is_full(void)
278{
279 return totalram_pages() * zswap_max_pool_percent / 100 <
280 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
281}
282
283static bool zswap_can_accept(void)
284{
285 return totalram_pages() * zswap_accept_thr_percent / 100 *
286 zswap_max_pool_percent / 100 >
287 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
288}
289
290static u64 get_zswap_pool_size(struct zswap_pool *pool)
291{
292 u64 pool_size = 0;
293 int i;
294
295 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
296 pool_size += zpool_get_total_size(pool->zpools[i]);
297
298 return pool_size;
299}
300
301static void zswap_update_total_size(void)
302{
303 struct zswap_pool *pool;
304 u64 total = 0;
305
306 rcu_read_lock();
307
308 list_for_each_entry_rcu(pool, &zswap_pools, list)
309 total += get_zswap_pool_size(pool);
310
311 rcu_read_unlock();
312
313 zswap_pool_total_size = total;
314}
315
316/* should be called under RCU */
317#ifdef CONFIG_MEMCG
318static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
319{
320 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
321}
322#else
323static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
324{
325 return NULL;
326}
327#endif
328
329static inline int entry_to_nid(struct zswap_entry *entry)
330{
331 return page_to_nid(virt_to_page(entry));
332}
333
334void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
335{
336 struct zswap_pool *pool;
337
338 /* lock out zswap pools list modification */
339 spin_lock(&zswap_pools_lock);
340 list_for_each_entry(pool, &zswap_pools, list) {
341 if (pool->next_shrink == memcg)
342 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
343 }
344 spin_unlock(&zswap_pools_lock);
345}
346
347/*********************************
348* zswap entry functions
349**********************************/
350static struct kmem_cache *zswap_entry_cache;
351
352static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
353{
354 struct zswap_entry *entry;
355 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
356 if (!entry)
357 return NULL;
358 entry->refcount = 1;
359 RB_CLEAR_NODE(&entry->rbnode);
360 return entry;
361}
362
363static void zswap_entry_cache_free(struct zswap_entry *entry)
364{
365 kmem_cache_free(zswap_entry_cache, entry);
366}
367
368/*********************************
369* zswap lruvec functions
370**********************************/
371void zswap_lruvec_state_init(struct lruvec *lruvec)
372{
373 atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
374}
375
376void zswap_folio_swapin(struct folio *folio)
377{
378 struct lruvec *lruvec;
379
380 VM_WARN_ON_ONCE(!folio_test_locked(folio));
381 lruvec = folio_lruvec(folio);
382 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
383}
384
385/*********************************
386* lru functions
387**********************************/
388static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
389{
390 atomic_long_t *nr_zswap_protected;
391 unsigned long lru_size, old, new;
392 int nid = entry_to_nid(entry);
393 struct mem_cgroup *memcg;
394 struct lruvec *lruvec;
395
396 /*
397 * Note that it is safe to use rcu_read_lock() here, even in the face of
398 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
399 * used in list_lru lookup, only two scenarios are possible:
400 *
401 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
402 * new entry will be reparented to memcg's parent's list_lru.
403 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
404 * new entry will be added directly to memcg's parent's list_lru.
405 *
406 * Similar reasoning holds for list_lru_del() and list_lru_putback().
407 */
408 rcu_read_lock();
409 memcg = mem_cgroup_from_entry(entry);
410 /* will always succeed */
411 list_lru_add(list_lru, &entry->lru, nid, memcg);
412
413 /* Update the protection area */
414 lru_size = list_lru_count_one(list_lru, nid, memcg);
415 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
416 nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
417 old = atomic_long_inc_return(nr_zswap_protected);
418 /*
419 * Decay to avoid overflow and adapt to changing workloads.
420 * This is based on LRU reclaim cost decaying heuristics.
421 */
422 do {
423 new = old > lru_size / 4 ? old / 2 : old;
424 } while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
425 rcu_read_unlock();
426}
427
428static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
429{
430 int nid = entry_to_nid(entry);
431 struct mem_cgroup *memcg;
432
433 rcu_read_lock();
434 memcg = mem_cgroup_from_entry(entry);
435 /* will always succeed */
436 list_lru_del(list_lru, &entry->lru, nid, memcg);
437 rcu_read_unlock();
438}
439
440static void zswap_lru_putback(struct list_lru *list_lru,
441 struct zswap_entry *entry)
442{
443 int nid = entry_to_nid(entry);
444 spinlock_t *lock = &list_lru->node[nid].lock;
445 struct mem_cgroup *memcg;
446 struct lruvec *lruvec;
447
448 rcu_read_lock();
449 memcg = mem_cgroup_from_entry(entry);
450 spin_lock(lock);
451 /* we cannot use list_lru_add here, because it increments node's lru count */
452 list_lru_putback(list_lru, &entry->lru, nid, memcg);
453 spin_unlock(lock);
454
455 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(entry_to_nid(entry)));
456 /* increment the protection area to account for the LRU rotation. */
457 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
458 rcu_read_unlock();
459}
460
461/*********************************
462* rbtree functions
463**********************************/
464static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
465{
466 struct rb_node *node = root->rb_node;
467 struct zswap_entry *entry;
468 pgoff_t entry_offset;
469
470 while (node) {
471 entry = rb_entry(node, struct zswap_entry, rbnode);
472 entry_offset = swp_offset(entry->swpentry);
473 if (entry_offset > offset)
474 node = node->rb_left;
475 else if (entry_offset < offset)
476 node = node->rb_right;
477 else
478 return entry;
479 }
480 return NULL;
481}
482
483/*
484 * In the case that a entry with the same offset is found, a pointer to
485 * the existing entry is stored in dupentry and the function returns -EEXIST
486 */
487static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
488 struct zswap_entry **dupentry)
489{
490 struct rb_node **link = &root->rb_node, *parent = NULL;
491 struct zswap_entry *myentry;
492 pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
493
494 while (*link) {
495 parent = *link;
496 myentry = rb_entry(parent, struct zswap_entry, rbnode);
497 myentry_offset = swp_offset(myentry->swpentry);
498 if (myentry_offset > entry_offset)
499 link = &(*link)->rb_left;
500 else if (myentry_offset < entry_offset)
501 link = &(*link)->rb_right;
502 else {
503 *dupentry = myentry;
504 return -EEXIST;
505 }
506 }
507 rb_link_node(&entry->rbnode, parent, link);
508 rb_insert_color(&entry->rbnode, root);
509 return 0;
510}
511
512static bool zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
513{
514 if (!RB_EMPTY_NODE(&entry->rbnode)) {
515 rb_erase(&entry->rbnode, root);
516 RB_CLEAR_NODE(&entry->rbnode);
517 return true;
518 }
519 return false;
520}
521
522static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
523{
524 int i = 0;
525
526 if (ZSWAP_NR_ZPOOLS > 1)
527 i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
528
529 return entry->pool->zpools[i];
530}
531
532/*
533 * Carries out the common pattern of freeing and entry's zpool allocation,
534 * freeing the entry itself, and decrementing the number of stored pages.
535 */
536static void zswap_free_entry(struct zswap_entry *entry)
537{
538 if (!entry->length)
539 atomic_dec(&zswap_same_filled_pages);
540 else {
541 zswap_lru_del(&entry->pool->list_lru, entry);
542 zpool_free(zswap_find_zpool(entry), entry->handle);
543 atomic_dec(&entry->pool->nr_stored);
544 zswap_pool_put(entry->pool);
545 }
546 if (entry->objcg) {
547 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
548 obj_cgroup_put(entry->objcg);
549 }
550 zswap_entry_cache_free(entry);
551 atomic_dec(&zswap_stored_pages);
552 zswap_update_total_size();
553}
554
555/* caller must hold the tree lock */
556static void zswap_entry_get(struct zswap_entry *entry)
557{
558 entry->refcount++;
559}
560
561/* caller must hold the tree lock
562* remove from the tree and free it, if nobody reference the entry
563*/
564static void zswap_entry_put(struct zswap_tree *tree,
565 struct zswap_entry *entry)
566{
567 int refcount = --entry->refcount;
568
569 WARN_ON_ONCE(refcount < 0);
570 if (refcount == 0) {
571 WARN_ON_ONCE(!RB_EMPTY_NODE(&entry->rbnode));
572 zswap_free_entry(entry);
573 }
574}
575
576/* caller must hold the tree lock */
577static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
578 pgoff_t offset)
579{
580 struct zswap_entry *entry;
581
582 entry = zswap_rb_search(root, offset);
583 if (entry)
584 zswap_entry_get(entry);
585
586 return entry;
587}
588
589/*********************************
590* shrinker functions
591**********************************/
592static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
593 spinlock_t *lock, void *arg);
594
595static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
596 struct shrink_control *sc)
597{
598 struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
599 unsigned long shrink_ret, nr_protected, lru_size;
600 struct zswap_pool *pool = shrinker->private_data;
601 bool encountered_page_in_swapcache = false;
602
603 if (!zswap_shrinker_enabled ||
604 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
605 sc->nr_scanned = 0;
606 return SHRINK_STOP;
607 }
608
609 nr_protected =
610 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
611 lru_size = list_lru_shrink_count(&pool->list_lru, sc);
612
613 /*
614 * Abort if we are shrinking into the protected region.
615 *
616 * This short-circuiting is necessary because if we have too many multiple
617 * concurrent reclaimers getting the freeable zswap object counts at the
618 * same time (before any of them made reasonable progress), the total
619 * number of reclaimed objects might be more than the number of unprotected
620 * objects (i.e the reclaimers will reclaim into the protected area of the
621 * zswap LRU).
622 */
623 if (nr_protected >= lru_size - sc->nr_to_scan) {
624 sc->nr_scanned = 0;
625 return SHRINK_STOP;
626 }
627
628 shrink_ret = list_lru_shrink_walk(&pool->list_lru, sc, &shrink_memcg_cb,
629 &encountered_page_in_swapcache);
630
631 if (encountered_page_in_swapcache)
632 return SHRINK_STOP;
633
634 return shrink_ret ? shrink_ret : SHRINK_STOP;
635}
636
637static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
638 struct shrink_control *sc)
639{
640 struct zswap_pool *pool = shrinker->private_data;
641 struct mem_cgroup *memcg = sc->memcg;
642 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
643 unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
644
645 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
646 return 0;
647
648#ifdef CONFIG_MEMCG_KMEM
649 mem_cgroup_flush_stats(memcg);
650 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
651 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
652#else
653 /* use pool stats instead of memcg stats */
654 nr_backing = get_zswap_pool_size(pool) >> PAGE_SHIFT;
655 nr_stored = atomic_read(&pool->nr_stored);
656#endif
657
658 if (!nr_stored)
659 return 0;
660
661 nr_protected =
662 atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
663 nr_freeable = list_lru_shrink_count(&pool->list_lru, sc);
664 /*
665 * Subtract the lru size by an estimate of the number of pages
666 * that should be protected.
667 */
668 nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
669
670 /*
671 * Scale the number of freeable pages by the memory saving factor.
672 * This ensures that the better zswap compresses memory, the fewer
673 * pages we will evict to swap (as it will otherwise incur IO for
674 * relatively small memory saving).
675 */
676 return mult_frac(nr_freeable, nr_backing, nr_stored);
677}
678
679static void zswap_alloc_shrinker(struct zswap_pool *pool)
680{
681 pool->shrinker =
682 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
683 if (!pool->shrinker)
684 return;
685
686 pool->shrinker->private_data = pool;
687 pool->shrinker->scan_objects = zswap_shrinker_scan;
688 pool->shrinker->count_objects = zswap_shrinker_count;
689 pool->shrinker->batch = 0;
690 pool->shrinker->seeks = DEFAULT_SEEKS;
691}
692
693/*********************************
694* per-cpu code
695**********************************/
696static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
697{
698 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
699 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
700 struct crypto_acomp *acomp;
701 struct acomp_req *req;
702 int ret;
703
704 mutex_init(&acomp_ctx->mutex);
705
706 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
707 if (!acomp_ctx->buffer)
708 return -ENOMEM;
709
710 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
711 if (IS_ERR(acomp)) {
712 pr_err("could not alloc crypto acomp %s : %ld\n",
713 pool->tfm_name, PTR_ERR(acomp));
714 ret = PTR_ERR(acomp);
715 goto acomp_fail;
716 }
717 acomp_ctx->acomp = acomp;
718
719 req = acomp_request_alloc(acomp_ctx->acomp);
720 if (!req) {
721 pr_err("could not alloc crypto acomp_request %s\n",
722 pool->tfm_name);
723 ret = -ENOMEM;
724 goto req_fail;
725 }
726 acomp_ctx->req = req;
727
728 crypto_init_wait(&acomp_ctx->wait);
729 /*
730 * if the backend of acomp is async zip, crypto_req_done() will wakeup
731 * crypto_wait_req(); if the backend of acomp is scomp, the callback
732 * won't be called, crypto_wait_req() will return without blocking.
733 */
734 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
735 crypto_req_done, &acomp_ctx->wait);
736
737 return 0;
738
739req_fail:
740 crypto_free_acomp(acomp_ctx->acomp);
741acomp_fail:
742 kfree(acomp_ctx->buffer);
743 return ret;
744}
745
746static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
747{
748 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
749 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
750
751 if (!IS_ERR_OR_NULL(acomp_ctx)) {
752 if (!IS_ERR_OR_NULL(acomp_ctx->req))
753 acomp_request_free(acomp_ctx->req);
754 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
755 crypto_free_acomp(acomp_ctx->acomp);
756 kfree(acomp_ctx->buffer);
757 }
758
759 return 0;
760}
761
762/*********************************
763* pool functions
764**********************************/
765
766static struct zswap_pool *__zswap_pool_current(void)
767{
768 struct zswap_pool *pool;
769
770 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
771 WARN_ONCE(!pool && zswap_has_pool,
772 "%s: no page storage pool!\n", __func__);
773
774 return pool;
775}
776
777static struct zswap_pool *zswap_pool_current(void)
778{
779 assert_spin_locked(&zswap_pools_lock);
780
781 return __zswap_pool_current();
782}
783
784static struct zswap_pool *zswap_pool_current_get(void)
785{
786 struct zswap_pool *pool;
787
788 rcu_read_lock();
789
790 pool = __zswap_pool_current();
791 if (!zswap_pool_get(pool))
792 pool = NULL;
793
794 rcu_read_unlock();
795
796 return pool;
797}
798
799static struct zswap_pool *zswap_pool_last_get(void)
800{
801 struct zswap_pool *pool, *last = NULL;
802
803 rcu_read_lock();
804
805 list_for_each_entry_rcu(pool, &zswap_pools, list)
806 last = pool;
807 WARN_ONCE(!last && zswap_has_pool,
808 "%s: no page storage pool!\n", __func__);
809 if (!zswap_pool_get(last))
810 last = NULL;
811
812 rcu_read_unlock();
813
814 return last;
815}
816
817/* type and compressor must be null-terminated */
818static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
819{
820 struct zswap_pool *pool;
821
822 assert_spin_locked(&zswap_pools_lock);
823
824 list_for_each_entry_rcu(pool, &zswap_pools, list) {
825 if (strcmp(pool->tfm_name, compressor))
826 continue;
827 /* all zpools share the same type */
828 if (strcmp(zpool_get_type(pool->zpools[0]), type))
829 continue;
830 /* if we can't get it, it's about to be destroyed */
831 if (!zswap_pool_get(pool))
832 continue;
833 return pool;
834 }
835
836 return NULL;
837}
838
839/*
840 * If the entry is still valid in the tree, drop the initial ref and remove it
841 * from the tree. This function must be called with an additional ref held,
842 * otherwise it may race with another invalidation freeing the entry.
843 */
844static void zswap_invalidate_entry(struct zswap_tree *tree,
845 struct zswap_entry *entry)
846{
847 if (zswap_rb_erase(&tree->rbroot, entry))
848 zswap_entry_put(tree, entry);
849}
850
851static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
852 spinlock_t *lock, void *arg)
853{
854 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
855 bool *encountered_page_in_swapcache = (bool *)arg;
856 struct zswap_tree *tree;
857 pgoff_t swpoffset;
858 enum lru_status ret = LRU_REMOVED_RETRY;
859 int writeback_result;
860
861 /*
862 * Once the lru lock is dropped, the entry might get freed. The
863 * swpoffset is copied to the stack, and entry isn't deref'd again
864 * until the entry is verified to still be alive in the tree.
865 */
866 swpoffset = swp_offset(entry->swpentry);
867 tree = zswap_trees[swp_type(entry->swpentry)];
868 list_lru_isolate(l, item);
869 /*
870 * It's safe to drop the lock here because we return either
871 * LRU_REMOVED_RETRY or LRU_RETRY.
872 */
873 spin_unlock(lock);
874
875 /* Check for invalidate() race */
876 spin_lock(&tree->lock);
877 if (entry != zswap_rb_search(&tree->rbroot, swpoffset))
878 goto unlock;
879
880 /* Hold a reference to prevent a free during writeback */
881 zswap_entry_get(entry);
882 spin_unlock(&tree->lock);
883
884 writeback_result = zswap_writeback_entry(entry, tree);
885
886 spin_lock(&tree->lock);
887 if (writeback_result) {
888 zswap_reject_reclaim_fail++;
889 zswap_lru_putback(&entry->pool->list_lru, entry);
890 ret = LRU_RETRY;
891
892 /*
893 * Encountering a page already in swap cache is a sign that we are shrinking
894 * into the warmer region. We should terminate shrinking (if we're in the dynamic
895 * shrinker context).
896 */
897 if (writeback_result == -EEXIST && encountered_page_in_swapcache)
898 *encountered_page_in_swapcache = true;
899
900 goto put_unlock;
901 }
902 zswap_written_back_pages++;
903
904 if (entry->objcg)
905 count_objcg_event(entry->objcg, ZSWPWB);
906
907 count_vm_event(ZSWPWB);
908 /*
909 * Writeback started successfully, the page now belongs to the
910 * swapcache. Drop the entry from zswap - unless invalidate already
911 * took it out while we had the tree->lock released for IO.
912 */
913 zswap_invalidate_entry(tree, entry);
914
915put_unlock:
916 /* Drop local reference */
917 zswap_entry_put(tree, entry);
918unlock:
919 spin_unlock(&tree->lock);
920 spin_lock(lock);
921 return ret;
922}
923
924static int shrink_memcg(struct mem_cgroup *memcg)
925{
926 struct zswap_pool *pool;
927 int nid, shrunk = 0;
928
929 if (!mem_cgroup_zswap_writeback_enabled(memcg))
930 return -EINVAL;
931
932 /*
933 * Skip zombies because their LRUs are reparented and we would be
934 * reclaiming from the parent instead of the dead memcg.
935 */
936 if (memcg && !mem_cgroup_online(memcg))
937 return -ENOENT;
938
939 pool = zswap_pool_current_get();
940 if (!pool)
941 return -EINVAL;
942
943 for_each_node_state(nid, N_NORMAL_MEMORY) {
944 unsigned long nr_to_walk = 1;
945
946 shrunk += list_lru_walk_one(&pool->list_lru, nid, memcg,
947 &shrink_memcg_cb, NULL, &nr_to_walk);
948 }
949 zswap_pool_put(pool);
950 return shrunk ? 0 : -EAGAIN;
951}
952
953static void shrink_worker(struct work_struct *w)
954{
955 struct zswap_pool *pool = container_of(w, typeof(*pool),
956 shrink_work);
957 struct mem_cgroup *memcg;
958 int ret, failures = 0;
959
960 /* global reclaim will select cgroup in a round-robin fashion. */
961 do {
962 spin_lock(&zswap_pools_lock);
963 pool->next_shrink = mem_cgroup_iter(NULL, pool->next_shrink, NULL);
964 memcg = pool->next_shrink;
965
966 /*
967 * We need to retry if we have gone through a full round trip, or if we
968 * got an offline memcg (or else we risk undoing the effect of the
969 * zswap memcg offlining cleanup callback). This is not catastrophic
970 * per se, but it will keep the now offlined memcg hostage for a while.
971 *
972 * Note that if we got an online memcg, we will keep the extra
973 * reference in case the original reference obtained by mem_cgroup_iter
974 * is dropped by the zswap memcg offlining callback, ensuring that the
975 * memcg is not killed when we are reclaiming.
976 */
977 if (!memcg) {
978 spin_unlock(&zswap_pools_lock);
979 if (++failures == MAX_RECLAIM_RETRIES)
980 break;
981
982 goto resched;
983 }
984
985 if (!mem_cgroup_tryget_online(memcg)) {
986 /* drop the reference from mem_cgroup_iter() */
987 mem_cgroup_iter_break(NULL, memcg);
988 pool->next_shrink = NULL;
989 spin_unlock(&zswap_pools_lock);
990
991 if (++failures == MAX_RECLAIM_RETRIES)
992 break;
993
994 goto resched;
995 }
996 spin_unlock(&zswap_pools_lock);
997
998 ret = shrink_memcg(memcg);
999 /* drop the extra reference */
1000 mem_cgroup_put(memcg);
1001
1002 if (ret == -EINVAL)
1003 break;
1004 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1005 break;
1006
1007resched:
1008 cond_resched();
1009 } while (!zswap_can_accept());
1010 zswap_pool_put(pool);
1011}
1012
1013static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
1014{
1015 int i;
1016 struct zswap_pool *pool;
1017 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
1018 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1019 int ret;
1020
1021 if (!zswap_has_pool) {
1022 /* if either are unset, pool initialization failed, and we
1023 * need both params to be set correctly before trying to
1024 * create a pool.
1025 */
1026 if (!strcmp(type, ZSWAP_PARAM_UNSET))
1027 return NULL;
1028 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
1029 return NULL;
1030 }
1031
1032 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1033 if (!pool)
1034 return NULL;
1035
1036 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
1037 /* unique name for each pool specifically required by zsmalloc */
1038 snprintf(name, 38, "zswap%x",
1039 atomic_inc_return(&zswap_pools_count));
1040
1041 pool->zpools[i] = zpool_create_pool(type, name, gfp);
1042 if (!pool->zpools[i]) {
1043 pr_err("%s zpool not available\n", type);
1044 goto error;
1045 }
1046 }
1047 pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
1048
1049 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
1050
1051 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
1052 if (!pool->acomp_ctx) {
1053 pr_err("percpu alloc failed\n");
1054 goto error;
1055 }
1056
1057 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
1058 &pool->node);
1059 if (ret)
1060 goto error;
1061
1062 zswap_alloc_shrinker(pool);
1063 if (!pool->shrinker)
1064 goto error;
1065
1066 pr_debug("using %s compressor\n", pool->tfm_name);
1067
1068 /* being the current pool takes 1 ref; this func expects the
1069 * caller to always add the new pool as the current pool
1070 */
1071 kref_init(&pool->kref);
1072 INIT_LIST_HEAD(&pool->list);
1073 if (list_lru_init_memcg(&pool->list_lru, pool->shrinker))
1074 goto lru_fail;
1075 shrinker_register(pool->shrinker);
1076 INIT_WORK(&pool->shrink_work, shrink_worker);
1077 atomic_set(&pool->nr_stored, 0);
1078
1079 zswap_pool_debug("created", pool);
1080
1081 return pool;
1082
1083lru_fail:
1084 list_lru_destroy(&pool->list_lru);
1085 shrinker_free(pool->shrinker);
1086error:
1087 if (pool->acomp_ctx)
1088 free_percpu(pool->acomp_ctx);
1089 while (i--)
1090 zpool_destroy_pool(pool->zpools[i]);
1091 kfree(pool);
1092 return NULL;
1093}
1094
1095static struct zswap_pool *__zswap_pool_create_fallback(void)
1096{
1097 bool has_comp, has_zpool;
1098
1099 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1100 if (!has_comp && strcmp(zswap_compressor,
1101 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
1102 pr_err("compressor %s not available, using default %s\n",
1103 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
1104 param_free_charp(&zswap_compressor);
1105 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
1106 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
1107 }
1108 if (!has_comp) {
1109 pr_err("default compressor %s not available\n",
1110 zswap_compressor);
1111 param_free_charp(&zswap_compressor);
1112 zswap_compressor = ZSWAP_PARAM_UNSET;
1113 }
1114
1115 has_zpool = zpool_has_pool(zswap_zpool_type);
1116 if (!has_zpool && strcmp(zswap_zpool_type,
1117 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
1118 pr_err("zpool %s not available, using default %s\n",
1119 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
1120 param_free_charp(&zswap_zpool_type);
1121 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
1122 has_zpool = zpool_has_pool(zswap_zpool_type);
1123 }
1124 if (!has_zpool) {
1125 pr_err("default zpool %s not available\n",
1126 zswap_zpool_type);
1127 param_free_charp(&zswap_zpool_type);
1128 zswap_zpool_type = ZSWAP_PARAM_UNSET;
1129 }
1130
1131 if (!has_comp || !has_zpool)
1132 return NULL;
1133
1134 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
1135}
1136
1137static void zswap_pool_destroy(struct zswap_pool *pool)
1138{
1139 int i;
1140
1141 zswap_pool_debug("destroying", pool);
1142
1143 shrinker_free(pool->shrinker);
1144 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
1145 free_percpu(pool->acomp_ctx);
1146 list_lru_destroy(&pool->list_lru);
1147
1148 spin_lock(&zswap_pools_lock);
1149 mem_cgroup_iter_break(NULL, pool->next_shrink);
1150 pool->next_shrink = NULL;
1151 spin_unlock(&zswap_pools_lock);
1152
1153 for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
1154 zpool_destroy_pool(pool->zpools[i]);
1155 kfree(pool);
1156}
1157
1158static int __must_check zswap_pool_get(struct zswap_pool *pool)
1159{
1160 if (!pool)
1161 return 0;
1162
1163 return kref_get_unless_zero(&pool->kref);
1164}
1165
1166static void __zswap_pool_release(struct work_struct *work)
1167{
1168 struct zswap_pool *pool = container_of(work, typeof(*pool),
1169 release_work);
1170
1171 synchronize_rcu();
1172
1173 /* nobody should have been able to get a kref... */
1174 WARN_ON(kref_get_unless_zero(&pool->kref));
1175
1176 /* pool is now off zswap_pools list and has no references. */
1177 zswap_pool_destroy(pool);
1178}
1179
1180static void __zswap_pool_empty(struct kref *kref)
1181{
1182 struct zswap_pool *pool;
1183
1184 pool = container_of(kref, typeof(*pool), kref);
1185
1186 spin_lock(&zswap_pools_lock);
1187
1188 WARN_ON(pool == zswap_pool_current());
1189
1190 list_del_rcu(&pool->list);
1191
1192 INIT_WORK(&pool->release_work, __zswap_pool_release);
1193 schedule_work(&pool->release_work);
1194
1195 spin_unlock(&zswap_pools_lock);
1196}
1197
1198static void zswap_pool_put(struct zswap_pool *pool)
1199{
1200 kref_put(&pool->kref, __zswap_pool_empty);
1201}
1202
1203/*********************************
1204* param callbacks
1205**********************************/
1206
1207static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
1208{
1209 /* no change required */
1210 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
1211 return false;
1212 return true;
1213}
1214
1215/* val must be a null-terminated string */
1216static int __zswap_param_set(const char *val, const struct kernel_param *kp,
1217 char *type, char *compressor)
1218{
1219 struct zswap_pool *pool, *put_pool = NULL;
1220 char *s = strstrip((char *)val);
1221 int ret = 0;
1222 bool new_pool = false;
1223
1224 mutex_lock(&zswap_init_lock);
1225 switch (zswap_init_state) {
1226 case ZSWAP_UNINIT:
1227 /* if this is load-time (pre-init) param setting,
1228 * don't create a pool; that's done during init.
1229 */
1230 ret = param_set_charp(s, kp);
1231 break;
1232 case ZSWAP_INIT_SUCCEED:
1233 new_pool = zswap_pool_changed(s, kp);
1234 break;
1235 case ZSWAP_INIT_FAILED:
1236 pr_err("can't set param, initialization failed\n");
1237 ret = -ENODEV;
1238 }
1239 mutex_unlock(&zswap_init_lock);
1240
1241 /* no need to create a new pool, return directly */
1242 if (!new_pool)
1243 return ret;
1244
1245 if (!type) {
1246 if (!zpool_has_pool(s)) {
1247 pr_err("zpool %s not available\n", s);
1248 return -ENOENT;
1249 }
1250 type = s;
1251 } else if (!compressor) {
1252 if (!crypto_has_acomp(s, 0, 0)) {
1253 pr_err("compressor %s not available\n", s);
1254 return -ENOENT;
1255 }
1256 compressor = s;
1257 } else {
1258 WARN_ON(1);
1259 return -EINVAL;
1260 }
1261
1262 spin_lock(&zswap_pools_lock);
1263
1264 pool = zswap_pool_find_get(type, compressor);
1265 if (pool) {
1266 zswap_pool_debug("using existing", pool);
1267 WARN_ON(pool == zswap_pool_current());
1268 list_del_rcu(&pool->list);
1269 }
1270
1271 spin_unlock(&zswap_pools_lock);
1272
1273 if (!pool)
1274 pool = zswap_pool_create(type, compressor);
1275
1276 if (pool)
1277 ret = param_set_charp(s, kp);
1278 else
1279 ret = -EINVAL;
1280
1281 spin_lock(&zswap_pools_lock);
1282
1283 if (!ret) {
1284 put_pool = zswap_pool_current();
1285 list_add_rcu(&pool->list, &zswap_pools);
1286 zswap_has_pool = true;
1287 } else if (pool) {
1288 /* add the possibly pre-existing pool to the end of the pools
1289 * list; if it's new (and empty) then it'll be removed and
1290 * destroyed by the put after we drop the lock
1291 */
1292 list_add_tail_rcu(&pool->list, &zswap_pools);
1293 put_pool = pool;
1294 }
1295
1296 spin_unlock(&zswap_pools_lock);
1297
1298 if (!zswap_has_pool && !pool) {
1299 /* if initial pool creation failed, and this pool creation also
1300 * failed, maybe both compressor and zpool params were bad.
1301 * Allow changing this param, so pool creation will succeed
1302 * when the other param is changed. We already verified this
1303 * param is ok in the zpool_has_pool() or crypto_has_acomp()
1304 * checks above.
1305 */
1306 ret = param_set_charp(s, kp);
1307 }
1308
1309 /* drop the ref from either the old current pool,
1310 * or the new pool we failed to add
1311 */
1312 if (put_pool)
1313 zswap_pool_put(put_pool);
1314
1315 return ret;
1316}
1317
1318static int zswap_compressor_param_set(const char *val,
1319 const struct kernel_param *kp)
1320{
1321 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
1322}
1323
1324static int zswap_zpool_param_set(const char *val,
1325 const struct kernel_param *kp)
1326{
1327 return __zswap_param_set(val, kp, NULL, zswap_compressor);
1328}
1329
1330static int zswap_enabled_param_set(const char *val,
1331 const struct kernel_param *kp)
1332{
1333 int ret = -ENODEV;
1334
1335 /* if this is load-time (pre-init) param setting, only set param. */
1336 if (system_state != SYSTEM_RUNNING)
1337 return param_set_bool(val, kp);
1338
1339 mutex_lock(&zswap_init_lock);
1340 switch (zswap_init_state) {
1341 case ZSWAP_UNINIT:
1342 if (zswap_setup())
1343 break;
1344 fallthrough;
1345 case ZSWAP_INIT_SUCCEED:
1346 if (!zswap_has_pool)
1347 pr_err("can't enable, no pool configured\n");
1348 else
1349 ret = param_set_bool(val, kp);
1350 break;
1351 case ZSWAP_INIT_FAILED:
1352 pr_err("can't enable, initialization failed\n");
1353 }
1354 mutex_unlock(&zswap_init_lock);
1355
1356 return ret;
1357}
1358
1359static void __zswap_load(struct zswap_entry *entry, struct page *page)
1360{
1361 struct zpool *zpool = zswap_find_zpool(entry);
1362 struct scatterlist input, output;
1363 struct crypto_acomp_ctx *acomp_ctx;
1364 u8 *src;
1365
1366 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1367 mutex_lock(&acomp_ctx->mutex);
1368
1369 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1370 if (!zpool_can_sleep_mapped(zpool)) {
1371 memcpy(acomp_ctx->buffer, src, entry->length);
1372 src = acomp_ctx->buffer;
1373 zpool_unmap_handle(zpool, entry->handle);
1374 }
1375
1376 sg_init_one(&input, src, entry->length);
1377 sg_init_table(&output, 1);
1378 sg_set_page(&output, page, PAGE_SIZE, 0);
1379 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1380 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1381 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1382 mutex_unlock(&acomp_ctx->mutex);
1383
1384 if (zpool_can_sleep_mapped(zpool))
1385 zpool_unmap_handle(zpool, entry->handle);
1386}
1387
1388/*********************************
1389* writeback code
1390**********************************/
1391/*
1392 * Attempts to free an entry by adding a folio to the swap cache,
1393 * decompressing the entry data into the folio, and issuing a
1394 * bio write to write the folio back to the swap device.
1395 *
1396 * This can be thought of as a "resumed writeback" of the folio
1397 * to the swap device. We are basically resuming the same swap
1398 * writeback path that was intercepted with the zswap_store()
1399 * in the first place. After the folio has been decompressed into
1400 * the swap cache, the compressed version stored by zswap can be
1401 * freed.
1402 */
1403static int zswap_writeback_entry(struct zswap_entry *entry,
1404 struct zswap_tree *tree)
1405{
1406 swp_entry_t swpentry = entry->swpentry;
1407 struct folio *folio;
1408 struct mempolicy *mpol;
1409 bool folio_was_allocated;
1410 struct writeback_control wbc = {
1411 .sync_mode = WB_SYNC_NONE,
1412 };
1413
1414 /* try to allocate swap cache folio */
1415 mpol = get_task_policy(current);
1416 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1417 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1418 if (!folio)
1419 return -ENOMEM;
1420
1421 /*
1422 * Found an existing folio, we raced with load/swapin. We generally
1423 * writeback cold folios from zswap, and swapin means the folio just
1424 * became hot. Skip this folio and let the caller find another one.
1425 */
1426 if (!folio_was_allocated) {
1427 folio_put(folio);
1428 return -EEXIST;
1429 }
1430
1431 /*
1432 * folio is locked, and the swapcache is now secured against
1433 * concurrent swapping to and from the slot. Verify that the
1434 * swap entry hasn't been invalidated and recycled behind our
1435 * backs (our zswap_entry reference doesn't prevent that), to
1436 * avoid overwriting a new swap folio with old compressed data.
1437 */
1438 spin_lock(&tree->lock);
1439 if (zswap_rb_search(&tree->rbroot, swp_offset(entry->swpentry)) != entry) {
1440 spin_unlock(&tree->lock);
1441 delete_from_swap_cache(folio);
1442 folio_unlock(folio);
1443 folio_put(folio);
1444 return -ENOMEM;
1445 }
1446 spin_unlock(&tree->lock);
1447
1448 __zswap_load(entry, &folio->page);
1449
1450 /* folio is up to date */
1451 folio_mark_uptodate(folio);
1452
1453 /* move it to the tail of the inactive list after end_writeback */
1454 folio_set_reclaim(folio);
1455
1456 /* start writeback */
1457 __swap_writepage(folio, &wbc);
1458 folio_put(folio);
1459
1460 return 0;
1461}
1462
1463static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1464{
1465 unsigned long *page;
1466 unsigned long val;
1467 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1468
1469 page = (unsigned long *)ptr;
1470 val = page[0];
1471
1472 if (val != page[last_pos])
1473 return 0;
1474
1475 for (pos = 1; pos < last_pos; pos++) {
1476 if (val != page[pos])
1477 return 0;
1478 }
1479
1480 *value = val;
1481
1482 return 1;
1483}
1484
1485static void zswap_fill_page(void *ptr, unsigned long value)
1486{
1487 unsigned long *page;
1488
1489 page = (unsigned long *)ptr;
1490 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1491}
1492
1493bool zswap_store(struct folio *folio)
1494{
1495 swp_entry_t swp = folio->swap;
1496 int type = swp_type(swp);
1497 pgoff_t offset = swp_offset(swp);
1498 struct page *page = &folio->page;
1499 struct zswap_tree *tree = zswap_trees[type];
1500 struct zswap_entry *entry, *dupentry;
1501 struct scatterlist input, output;
1502 struct crypto_acomp_ctx *acomp_ctx;
1503 struct obj_cgroup *objcg = NULL;
1504 struct mem_cgroup *memcg = NULL;
1505 struct zswap_pool *pool;
1506 struct zpool *zpool;
1507 unsigned int dlen = PAGE_SIZE;
1508 unsigned long handle, value;
1509 char *buf;
1510 u8 *src, *dst;
1511 gfp_t gfp;
1512 int ret;
1513
1514 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1515 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1516
1517 /* Large folios aren't supported */
1518 if (folio_test_large(folio))
1519 return false;
1520
1521 if (!tree)
1522 return false;
1523
1524 /*
1525 * If this is a duplicate, it must be removed before attempting to store
1526 * it, otherwise, if the store fails the old page won't be removed from
1527 * the tree, and it might be written back overriding the new data.
1528 */
1529 spin_lock(&tree->lock);
1530 dupentry = zswap_rb_search(&tree->rbroot, offset);
1531 if (dupentry) {
1532 zswap_duplicate_entry++;
1533 zswap_invalidate_entry(tree, dupentry);
1534 }
1535 spin_unlock(&tree->lock);
1536
1537 if (!zswap_enabled)
1538 return false;
1539
1540 objcg = get_obj_cgroup_from_folio(folio);
1541 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1542 memcg = get_mem_cgroup_from_objcg(objcg);
1543 if (shrink_memcg(memcg)) {
1544 mem_cgroup_put(memcg);
1545 goto reject;
1546 }
1547 mem_cgroup_put(memcg);
1548 }
1549
1550 /* reclaim space if needed */
1551 if (zswap_is_full()) {
1552 zswap_pool_limit_hit++;
1553 zswap_pool_reached_full = true;
1554 goto shrink;
1555 }
1556
1557 if (zswap_pool_reached_full) {
1558 if (!zswap_can_accept())
1559 goto shrink;
1560 else
1561 zswap_pool_reached_full = false;
1562 }
1563
1564 /* allocate entry */
1565 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1566 if (!entry) {
1567 zswap_reject_kmemcache_fail++;
1568 goto reject;
1569 }
1570
1571 if (zswap_same_filled_pages_enabled) {
1572 src = kmap_local_page(page);
1573 if (zswap_is_page_same_filled(src, &value)) {
1574 kunmap_local(src);
1575 entry->swpentry = swp_entry(type, offset);
1576 entry->length = 0;
1577 entry->value = value;
1578 atomic_inc(&zswap_same_filled_pages);
1579 goto insert_entry;
1580 }
1581 kunmap_local(src);
1582 }
1583
1584 if (!zswap_non_same_filled_pages_enabled)
1585 goto freepage;
1586
1587 /* if entry is successfully added, it keeps the reference */
1588 entry->pool = zswap_pool_current_get();
1589 if (!entry->pool)
1590 goto freepage;
1591
1592 if (objcg) {
1593 memcg = get_mem_cgroup_from_objcg(objcg);
1594 if (memcg_list_lru_alloc(memcg, &entry->pool->list_lru, GFP_KERNEL)) {
1595 mem_cgroup_put(memcg);
1596 goto put_pool;
1597 }
1598 mem_cgroup_put(memcg);
1599 }
1600
1601 /* compress */
1602 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1603
1604 mutex_lock(&acomp_ctx->mutex);
1605
1606 dst = acomp_ctx->buffer;
1607 sg_init_table(&input, 1);
1608 sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1609
1610 /*
1611 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1612 * and hardware-accelerators may won't check the dst buffer size, so
1613 * giving the dst buffer with enough length to avoid buffer overflow.
1614 */
1615 sg_init_one(&output, dst, PAGE_SIZE * 2);
1616 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1617 /*
1618 * it maybe looks a little bit silly that we send an asynchronous request,
1619 * then wait for its completion synchronously. This makes the process look
1620 * synchronous in fact.
1621 * Theoretically, acomp supports users send multiple acomp requests in one
1622 * acomp instance, then get those requests done simultaneously. but in this
1623 * case, zswap actually does store and load page by page, there is no
1624 * existing method to send the second page before the first page is done
1625 * in one thread doing zwap.
1626 * but in different threads running on different cpu, we have different
1627 * acomp instance, so multiple threads can do (de)compression in parallel.
1628 */
1629 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1630 dlen = acomp_ctx->req->dlen;
1631
1632 if (ret) {
1633 zswap_reject_compress_fail++;
1634 goto put_dstmem;
1635 }
1636
1637 /* store */
1638 zpool = zswap_find_zpool(entry);
1639 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1640 if (zpool_malloc_support_movable(zpool))
1641 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1642 ret = zpool_malloc(zpool, dlen, gfp, &handle);
1643 if (ret == -ENOSPC) {
1644 zswap_reject_compress_poor++;
1645 goto put_dstmem;
1646 }
1647 if (ret) {
1648 zswap_reject_alloc_fail++;
1649 goto put_dstmem;
1650 }
1651 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1652 memcpy(buf, dst, dlen);
1653 zpool_unmap_handle(zpool, handle);
1654 mutex_unlock(&acomp_ctx->mutex);
1655
1656 /* populate entry */
1657 entry->swpentry = swp_entry(type, offset);
1658 entry->handle = handle;
1659 entry->length = dlen;
1660
1661insert_entry:
1662 entry->objcg = objcg;
1663 if (objcg) {
1664 obj_cgroup_charge_zswap(objcg, entry->length);
1665 /* Account before objcg ref is moved to tree */
1666 count_objcg_event(objcg, ZSWPOUT);
1667 }
1668
1669 /* map */
1670 spin_lock(&tree->lock);
1671 /*
1672 * A duplicate entry should have been removed at the beginning of this
1673 * function. Since the swap entry should be pinned, if a duplicate is
1674 * found again here it means that something went wrong in the swap
1675 * cache.
1676 */
1677 while (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1678 WARN_ON(1);
1679 zswap_duplicate_entry++;
1680 zswap_invalidate_entry(tree, dupentry);
1681 }
1682 if (entry->length) {
1683 INIT_LIST_HEAD(&entry->lru);
1684 zswap_lru_add(&entry->pool->list_lru, entry);
1685 atomic_inc(&entry->pool->nr_stored);
1686 }
1687 spin_unlock(&tree->lock);
1688
1689 /* update stats */
1690 atomic_inc(&zswap_stored_pages);
1691 zswap_update_total_size();
1692 count_vm_event(ZSWPOUT);
1693
1694 return true;
1695
1696put_dstmem:
1697 mutex_unlock(&acomp_ctx->mutex);
1698put_pool:
1699 zswap_pool_put(entry->pool);
1700freepage:
1701 zswap_entry_cache_free(entry);
1702reject:
1703 if (objcg)
1704 obj_cgroup_put(objcg);
1705 return false;
1706
1707shrink:
1708 pool = zswap_pool_last_get();
1709 if (pool && !queue_work(shrink_wq, &pool->shrink_work))
1710 zswap_pool_put(pool);
1711 goto reject;
1712}
1713
1714bool zswap_load(struct folio *folio)
1715{
1716 swp_entry_t swp = folio->swap;
1717 int type = swp_type(swp);
1718 pgoff_t offset = swp_offset(swp);
1719 struct page *page = &folio->page;
1720 struct zswap_tree *tree = zswap_trees[type];
1721 struct zswap_entry *entry;
1722 u8 *dst;
1723
1724 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1725
1726 /* find */
1727 spin_lock(&tree->lock);
1728 entry = zswap_entry_find_get(&tree->rbroot, offset);
1729 if (!entry) {
1730 spin_unlock(&tree->lock);
1731 return false;
1732 }
1733 spin_unlock(&tree->lock);
1734
1735 if (entry->length)
1736 __zswap_load(entry, page);
1737 else {
1738 dst = kmap_local_page(page);
1739 zswap_fill_page(dst, entry->value);
1740 kunmap_local(dst);
1741 }
1742
1743 count_vm_event(ZSWPIN);
1744 if (entry->objcg)
1745 count_objcg_event(entry->objcg, ZSWPIN);
1746
1747 spin_lock(&tree->lock);
1748 if (zswap_exclusive_loads_enabled) {
1749 zswap_invalidate_entry(tree, entry);
1750 folio_mark_dirty(folio);
1751 } else if (entry->length) {
1752 zswap_lru_del(&entry->pool->list_lru, entry);
1753 zswap_lru_add(&entry->pool->list_lru, entry);
1754 }
1755 zswap_entry_put(tree, entry);
1756 spin_unlock(&tree->lock);
1757
1758 return true;
1759}
1760
1761void zswap_invalidate(int type, pgoff_t offset)
1762{
1763 struct zswap_tree *tree = zswap_trees[type];
1764 struct zswap_entry *entry;
1765
1766 /* find */
1767 spin_lock(&tree->lock);
1768 entry = zswap_rb_search(&tree->rbroot, offset);
1769 if (!entry) {
1770 /* entry was written back */
1771 spin_unlock(&tree->lock);
1772 return;
1773 }
1774 zswap_invalidate_entry(tree, entry);
1775 spin_unlock(&tree->lock);
1776}
1777
1778void zswap_swapon(int type)
1779{
1780 struct zswap_tree *tree;
1781
1782 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1783 if (!tree) {
1784 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1785 return;
1786 }
1787
1788 tree->rbroot = RB_ROOT;
1789 spin_lock_init(&tree->lock);
1790 zswap_trees[type] = tree;
1791}
1792
1793void zswap_swapoff(int type)
1794{
1795 struct zswap_tree *tree = zswap_trees[type];
1796 struct zswap_entry *entry, *n;
1797
1798 if (!tree)
1799 return;
1800
1801 /* walk the tree and free everything */
1802 spin_lock(&tree->lock);
1803 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1804 zswap_free_entry(entry);
1805 tree->rbroot = RB_ROOT;
1806 spin_unlock(&tree->lock);
1807 kfree(tree);
1808 zswap_trees[type] = NULL;
1809}
1810
1811/*********************************
1812* debugfs functions
1813**********************************/
1814#ifdef CONFIG_DEBUG_FS
1815#include <linux/debugfs.h>
1816
1817static struct dentry *zswap_debugfs_root;
1818
1819static int zswap_debugfs_init(void)
1820{
1821 if (!debugfs_initialized())
1822 return -ENODEV;
1823
1824 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1825
1826 debugfs_create_u64("pool_limit_hit", 0444,
1827 zswap_debugfs_root, &zswap_pool_limit_hit);
1828 debugfs_create_u64("reject_reclaim_fail", 0444,
1829 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1830 debugfs_create_u64("reject_alloc_fail", 0444,
1831 zswap_debugfs_root, &zswap_reject_alloc_fail);
1832 debugfs_create_u64("reject_kmemcache_fail", 0444,
1833 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1834 debugfs_create_u64("reject_compress_fail", 0444,
1835 zswap_debugfs_root, &zswap_reject_compress_fail);
1836 debugfs_create_u64("reject_compress_poor", 0444,
1837 zswap_debugfs_root, &zswap_reject_compress_poor);
1838 debugfs_create_u64("written_back_pages", 0444,
1839 zswap_debugfs_root, &zswap_written_back_pages);
1840 debugfs_create_u64("duplicate_entry", 0444,
1841 zswap_debugfs_root, &zswap_duplicate_entry);
1842 debugfs_create_u64("pool_total_size", 0444,
1843 zswap_debugfs_root, &zswap_pool_total_size);
1844 debugfs_create_atomic_t("stored_pages", 0444,
1845 zswap_debugfs_root, &zswap_stored_pages);
1846 debugfs_create_atomic_t("same_filled_pages", 0444,
1847 zswap_debugfs_root, &zswap_same_filled_pages);
1848
1849 return 0;
1850}
1851#else
1852static int zswap_debugfs_init(void)
1853{
1854 return 0;
1855}
1856#endif
1857
1858/*********************************
1859* module init and exit
1860**********************************/
1861static int zswap_setup(void)
1862{
1863 struct zswap_pool *pool;
1864 int ret;
1865
1866 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1867 if (!zswap_entry_cache) {
1868 pr_err("entry cache creation failed\n");
1869 goto cache_fail;
1870 }
1871
1872 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1873 "mm/zswap_pool:prepare",
1874 zswap_cpu_comp_prepare,
1875 zswap_cpu_comp_dead);
1876 if (ret)
1877 goto hp_fail;
1878
1879 pool = __zswap_pool_create_fallback();
1880 if (pool) {
1881 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1882 zpool_get_type(pool->zpools[0]));
1883 list_add(&pool->list, &zswap_pools);
1884 zswap_has_pool = true;
1885 } else {
1886 pr_err("pool creation failed\n");
1887 zswap_enabled = false;
1888 }
1889
1890 shrink_wq = create_workqueue("zswap-shrink");
1891 if (!shrink_wq)
1892 goto fallback_fail;
1893
1894 if (zswap_debugfs_init())
1895 pr_warn("debugfs initialization failed\n");
1896 zswap_init_state = ZSWAP_INIT_SUCCEED;
1897 return 0;
1898
1899fallback_fail:
1900 if (pool)
1901 zswap_pool_destroy(pool);
1902hp_fail:
1903 kmem_cache_destroy(zswap_entry_cache);
1904cache_fail:
1905 /* if built-in, we aren't unloaded on failure; don't allow use */
1906 zswap_init_state = ZSWAP_INIT_FAILED;
1907 zswap_enabled = false;
1908 return -ENOMEM;
1909}
1910
1911static int __init zswap_init(void)
1912{
1913 if (!zswap_enabled)
1914 return 0;
1915 return zswap_setup();
1916}
1917/* must be late so crypto has time to come up */
1918late_initcall(zswap_init);
1919
1920MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1921MODULE_DESCRIPTION("Compressed cache for swap pages");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a backend for frontswap that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12*/
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/cpu.h>
18#include <linux/highmem.h>
19#include <linux/slab.h>
20#include <linux/spinlock.h>
21#include <linux/types.h>
22#include <linux/atomic.h>
23#include <linux/frontswap.h>
24#include <linux/rbtree.h>
25#include <linux/swap.h>
26#include <linux/crypto.h>
27#include <linux/scatterlist.h>
28#include <linux/mempool.h>
29#include <linux/zpool.h>
30#include <crypto/acompress.h>
31
32#include <linux/mm_types.h>
33#include <linux/page-flags.h>
34#include <linux/swapops.h>
35#include <linux/writeback.h>
36#include <linux/pagemap.h>
37#include <linux/workqueue.h>
38
39#include "swap.h"
40
41/*********************************
42* statistics
43**********************************/
44/* Total bytes used by the compressed storage */
45u64 zswap_pool_total_size;
46/* The number of compressed pages currently stored in zswap */
47atomic_t zswap_stored_pages = ATOMIC_INIT(0);
48/* The number of same-value filled pages currently stored in zswap */
49static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
50
51/*
52 * The statistics below are not protected from concurrent access for
53 * performance reasons so they may not be a 100% accurate. However,
54 * they do provide useful information on roughly how many times a
55 * certain event is occurring.
56*/
57
58/* Pool limit was hit (see zswap_max_pool_percent) */
59static u64 zswap_pool_limit_hit;
60/* Pages written back when pool limit was reached */
61static u64 zswap_written_back_pages;
62/* Store failed due to a reclaim failure after pool limit was reached */
63static u64 zswap_reject_reclaim_fail;
64/* Compressed page was too big for the allocator to (optimally) store */
65static u64 zswap_reject_compress_poor;
66/* Store failed because underlying allocator could not get memory */
67static u64 zswap_reject_alloc_fail;
68/* Store failed because the entry metadata could not be allocated (rare) */
69static u64 zswap_reject_kmemcache_fail;
70/* Duplicate store was encountered (rare) */
71static u64 zswap_duplicate_entry;
72
73/* Shrinker work queue */
74static struct workqueue_struct *shrink_wq;
75/* Pool limit was hit, we need to calm down */
76static bool zswap_pool_reached_full;
77
78/*********************************
79* tunables
80**********************************/
81
82#define ZSWAP_PARAM_UNSET ""
83
84/* Enable/disable zswap */
85static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91};
92module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94/* Crypto compressor to use */
95static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102};
103module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106/* Compressed storage zpool to use */
107static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113};
114module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116/* The maximum percentage of memory that the compressed pool can occupy */
117static unsigned int zswap_max_pool_percent = 20;
118module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120/* The threshold for accepting new pages after the max_pool_percent was hit */
121static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125/*
126 * Enable/disable handling same-value filled pages (enabled by default).
127 * If disabled every page is considered non-same-value filled.
128 */
129static bool zswap_same_filled_pages_enabled = true;
130module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
131 bool, 0644);
132
133/* Enable/disable handling non-same-value filled pages (enabled by default) */
134static bool zswap_non_same_filled_pages_enabled = true;
135module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
136 bool, 0644);
137
138/*********************************
139* data structures
140**********************************/
141
142struct crypto_acomp_ctx {
143 struct crypto_acomp *acomp;
144 struct acomp_req *req;
145 struct crypto_wait wait;
146 u8 *dstmem;
147 struct mutex *mutex;
148};
149
150struct zswap_pool {
151 struct zpool *zpool;
152 struct crypto_acomp_ctx __percpu *acomp_ctx;
153 struct kref kref;
154 struct list_head list;
155 struct work_struct release_work;
156 struct work_struct shrink_work;
157 struct hlist_node node;
158 char tfm_name[CRYPTO_MAX_ALG_NAME];
159};
160
161/*
162 * struct zswap_entry
163 *
164 * This structure contains the metadata for tracking a single compressed
165 * page within zswap.
166 *
167 * rbnode - links the entry into red-black tree for the appropriate swap type
168 * offset - the swap offset for the entry. Index into the red-black tree.
169 * refcount - the number of outstanding reference to the entry. This is needed
170 * to protect against premature freeing of the entry by code
171 * concurrent calls to load, invalidate, and writeback. The lock
172 * for the zswap_tree structure that contains the entry must
173 * be held while changing the refcount. Since the lock must
174 * be held, there is no reason to also make refcount atomic.
175 * length - the length in bytes of the compressed page data. Needed during
176 * decompression. For a same value filled page length is 0.
177 * pool - the zswap_pool the entry's data is in
178 * handle - zpool allocation handle that stores the compressed page data
179 * value - value of the same-value filled pages which have same content
180 */
181struct zswap_entry {
182 struct rb_node rbnode;
183 pgoff_t offset;
184 int refcount;
185 unsigned int length;
186 struct zswap_pool *pool;
187 union {
188 unsigned long handle;
189 unsigned long value;
190 };
191 struct obj_cgroup *objcg;
192};
193
194struct zswap_header {
195 swp_entry_t swpentry;
196};
197
198/*
199 * The tree lock in the zswap_tree struct protects a few things:
200 * - the rbtree
201 * - the refcount field of each entry in the tree
202 */
203struct zswap_tree {
204 struct rb_root rbroot;
205 spinlock_t lock;
206};
207
208static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
209
210/* RCU-protected iteration */
211static LIST_HEAD(zswap_pools);
212/* protects zswap_pools list modification */
213static DEFINE_SPINLOCK(zswap_pools_lock);
214/* pool counter to provide unique names to zpool */
215static atomic_t zswap_pools_count = ATOMIC_INIT(0);
216
217/* used by param callback function */
218static bool zswap_init_started;
219
220/* fatal error during init */
221static bool zswap_init_failed;
222
223/* init completed, but couldn't create the initial pool */
224static bool zswap_has_pool;
225
226/*********************************
227* helpers and fwd declarations
228**********************************/
229
230#define zswap_pool_debug(msg, p) \
231 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
232 zpool_get_type((p)->zpool))
233
234static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
235static int zswap_pool_get(struct zswap_pool *pool);
236static void zswap_pool_put(struct zswap_pool *pool);
237
238static const struct zpool_ops zswap_zpool_ops = {
239 .evict = zswap_writeback_entry
240};
241
242static bool zswap_is_full(void)
243{
244 return totalram_pages() * zswap_max_pool_percent / 100 <
245 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
246}
247
248static bool zswap_can_accept(void)
249{
250 return totalram_pages() * zswap_accept_thr_percent / 100 *
251 zswap_max_pool_percent / 100 >
252 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
253}
254
255static void zswap_update_total_size(void)
256{
257 struct zswap_pool *pool;
258 u64 total = 0;
259
260 rcu_read_lock();
261
262 list_for_each_entry_rcu(pool, &zswap_pools, list)
263 total += zpool_get_total_size(pool->zpool);
264
265 rcu_read_unlock();
266
267 zswap_pool_total_size = total;
268}
269
270/*********************************
271* zswap entry functions
272**********************************/
273static struct kmem_cache *zswap_entry_cache;
274
275static int __init zswap_entry_cache_create(void)
276{
277 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
278 return zswap_entry_cache == NULL;
279}
280
281static void __init zswap_entry_cache_destroy(void)
282{
283 kmem_cache_destroy(zswap_entry_cache);
284}
285
286static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
287{
288 struct zswap_entry *entry;
289 entry = kmem_cache_alloc(zswap_entry_cache, gfp);
290 if (!entry)
291 return NULL;
292 entry->refcount = 1;
293 RB_CLEAR_NODE(&entry->rbnode);
294 return entry;
295}
296
297static void zswap_entry_cache_free(struct zswap_entry *entry)
298{
299 kmem_cache_free(zswap_entry_cache, entry);
300}
301
302/*********************************
303* rbtree functions
304**********************************/
305static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
306{
307 struct rb_node *node = root->rb_node;
308 struct zswap_entry *entry;
309
310 while (node) {
311 entry = rb_entry(node, struct zswap_entry, rbnode);
312 if (entry->offset > offset)
313 node = node->rb_left;
314 else if (entry->offset < offset)
315 node = node->rb_right;
316 else
317 return entry;
318 }
319 return NULL;
320}
321
322/*
323 * In the case that a entry with the same offset is found, a pointer to
324 * the existing entry is stored in dupentry and the function returns -EEXIST
325 */
326static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
327 struct zswap_entry **dupentry)
328{
329 struct rb_node **link = &root->rb_node, *parent = NULL;
330 struct zswap_entry *myentry;
331
332 while (*link) {
333 parent = *link;
334 myentry = rb_entry(parent, struct zswap_entry, rbnode);
335 if (myentry->offset > entry->offset)
336 link = &(*link)->rb_left;
337 else if (myentry->offset < entry->offset)
338 link = &(*link)->rb_right;
339 else {
340 *dupentry = myentry;
341 return -EEXIST;
342 }
343 }
344 rb_link_node(&entry->rbnode, parent, link);
345 rb_insert_color(&entry->rbnode, root);
346 return 0;
347}
348
349static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
350{
351 if (!RB_EMPTY_NODE(&entry->rbnode)) {
352 rb_erase(&entry->rbnode, root);
353 RB_CLEAR_NODE(&entry->rbnode);
354 }
355}
356
357/*
358 * Carries out the common pattern of freeing and entry's zpool allocation,
359 * freeing the entry itself, and decrementing the number of stored pages.
360 */
361static void zswap_free_entry(struct zswap_entry *entry)
362{
363 if (entry->objcg) {
364 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
365 obj_cgroup_put(entry->objcg);
366 }
367 if (!entry->length)
368 atomic_dec(&zswap_same_filled_pages);
369 else {
370 zpool_free(entry->pool->zpool, entry->handle);
371 zswap_pool_put(entry->pool);
372 }
373 zswap_entry_cache_free(entry);
374 atomic_dec(&zswap_stored_pages);
375 zswap_update_total_size();
376}
377
378/* caller must hold the tree lock */
379static void zswap_entry_get(struct zswap_entry *entry)
380{
381 entry->refcount++;
382}
383
384/* caller must hold the tree lock
385* remove from the tree and free it, if nobody reference the entry
386*/
387static void zswap_entry_put(struct zswap_tree *tree,
388 struct zswap_entry *entry)
389{
390 int refcount = --entry->refcount;
391
392 BUG_ON(refcount < 0);
393 if (refcount == 0) {
394 zswap_rb_erase(&tree->rbroot, entry);
395 zswap_free_entry(entry);
396 }
397}
398
399/* caller must hold the tree lock */
400static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
401 pgoff_t offset)
402{
403 struct zswap_entry *entry;
404
405 entry = zswap_rb_search(root, offset);
406 if (entry)
407 zswap_entry_get(entry);
408
409 return entry;
410}
411
412/*********************************
413* per-cpu code
414**********************************/
415static DEFINE_PER_CPU(u8 *, zswap_dstmem);
416/*
417 * If users dynamically change the zpool type and compressor at runtime, i.e.
418 * zswap is running, zswap can have more than one zpool on one cpu, but they
419 * are sharing dtsmem. So we need this mutex to be per-cpu.
420 */
421static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
422
423static int zswap_dstmem_prepare(unsigned int cpu)
424{
425 struct mutex *mutex;
426 u8 *dst;
427
428 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
429 if (!dst)
430 return -ENOMEM;
431
432 mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
433 if (!mutex) {
434 kfree(dst);
435 return -ENOMEM;
436 }
437
438 mutex_init(mutex);
439 per_cpu(zswap_dstmem, cpu) = dst;
440 per_cpu(zswap_mutex, cpu) = mutex;
441 return 0;
442}
443
444static int zswap_dstmem_dead(unsigned int cpu)
445{
446 struct mutex *mutex;
447 u8 *dst;
448
449 mutex = per_cpu(zswap_mutex, cpu);
450 kfree(mutex);
451 per_cpu(zswap_mutex, cpu) = NULL;
452
453 dst = per_cpu(zswap_dstmem, cpu);
454 kfree(dst);
455 per_cpu(zswap_dstmem, cpu) = NULL;
456
457 return 0;
458}
459
460static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
461{
462 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
463 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
464 struct crypto_acomp *acomp;
465 struct acomp_req *req;
466
467 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
468 if (IS_ERR(acomp)) {
469 pr_err("could not alloc crypto acomp %s : %ld\n",
470 pool->tfm_name, PTR_ERR(acomp));
471 return PTR_ERR(acomp);
472 }
473 acomp_ctx->acomp = acomp;
474
475 req = acomp_request_alloc(acomp_ctx->acomp);
476 if (!req) {
477 pr_err("could not alloc crypto acomp_request %s\n",
478 pool->tfm_name);
479 crypto_free_acomp(acomp_ctx->acomp);
480 return -ENOMEM;
481 }
482 acomp_ctx->req = req;
483
484 crypto_init_wait(&acomp_ctx->wait);
485 /*
486 * if the backend of acomp is async zip, crypto_req_done() will wakeup
487 * crypto_wait_req(); if the backend of acomp is scomp, the callback
488 * won't be called, crypto_wait_req() will return without blocking.
489 */
490 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
491 crypto_req_done, &acomp_ctx->wait);
492
493 acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
494 acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
495
496 return 0;
497}
498
499static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
500{
501 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
502 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
503
504 if (!IS_ERR_OR_NULL(acomp_ctx)) {
505 if (!IS_ERR_OR_NULL(acomp_ctx->req))
506 acomp_request_free(acomp_ctx->req);
507 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
508 crypto_free_acomp(acomp_ctx->acomp);
509 }
510
511 return 0;
512}
513
514/*********************************
515* pool functions
516**********************************/
517
518static struct zswap_pool *__zswap_pool_current(void)
519{
520 struct zswap_pool *pool;
521
522 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
523 WARN_ONCE(!pool && zswap_has_pool,
524 "%s: no page storage pool!\n", __func__);
525
526 return pool;
527}
528
529static struct zswap_pool *zswap_pool_current(void)
530{
531 assert_spin_locked(&zswap_pools_lock);
532
533 return __zswap_pool_current();
534}
535
536static struct zswap_pool *zswap_pool_current_get(void)
537{
538 struct zswap_pool *pool;
539
540 rcu_read_lock();
541
542 pool = __zswap_pool_current();
543 if (!zswap_pool_get(pool))
544 pool = NULL;
545
546 rcu_read_unlock();
547
548 return pool;
549}
550
551static struct zswap_pool *zswap_pool_last_get(void)
552{
553 struct zswap_pool *pool, *last = NULL;
554
555 rcu_read_lock();
556
557 list_for_each_entry_rcu(pool, &zswap_pools, list)
558 last = pool;
559 WARN_ONCE(!last && zswap_has_pool,
560 "%s: no page storage pool!\n", __func__);
561 if (!zswap_pool_get(last))
562 last = NULL;
563
564 rcu_read_unlock();
565
566 return last;
567}
568
569/* type and compressor must be null-terminated */
570static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
571{
572 struct zswap_pool *pool;
573
574 assert_spin_locked(&zswap_pools_lock);
575
576 list_for_each_entry_rcu(pool, &zswap_pools, list) {
577 if (strcmp(pool->tfm_name, compressor))
578 continue;
579 if (strcmp(zpool_get_type(pool->zpool), type))
580 continue;
581 /* if we can't get it, it's about to be destroyed */
582 if (!zswap_pool_get(pool))
583 continue;
584 return pool;
585 }
586
587 return NULL;
588}
589
590static void shrink_worker(struct work_struct *w)
591{
592 struct zswap_pool *pool = container_of(w, typeof(*pool),
593 shrink_work);
594
595 if (zpool_shrink(pool->zpool, 1, NULL))
596 zswap_reject_reclaim_fail++;
597 zswap_pool_put(pool);
598}
599
600static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
601{
602 struct zswap_pool *pool;
603 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
604 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
605 int ret;
606
607 if (!zswap_has_pool) {
608 /* if either are unset, pool initialization failed, and we
609 * need both params to be set correctly before trying to
610 * create a pool.
611 */
612 if (!strcmp(type, ZSWAP_PARAM_UNSET))
613 return NULL;
614 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
615 return NULL;
616 }
617
618 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
619 if (!pool)
620 return NULL;
621
622 /* unique name for each pool specifically required by zsmalloc */
623 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
624
625 pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
626 if (!pool->zpool) {
627 pr_err("%s zpool not available\n", type);
628 goto error;
629 }
630 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
631
632 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
633
634 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
635 if (!pool->acomp_ctx) {
636 pr_err("percpu alloc failed\n");
637 goto error;
638 }
639
640 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
641 &pool->node);
642 if (ret)
643 goto error;
644 pr_debug("using %s compressor\n", pool->tfm_name);
645
646 /* being the current pool takes 1 ref; this func expects the
647 * caller to always add the new pool as the current pool
648 */
649 kref_init(&pool->kref);
650 INIT_LIST_HEAD(&pool->list);
651 INIT_WORK(&pool->shrink_work, shrink_worker);
652
653 zswap_pool_debug("created", pool);
654
655 return pool;
656
657error:
658 if (pool->acomp_ctx)
659 free_percpu(pool->acomp_ctx);
660 if (pool->zpool)
661 zpool_destroy_pool(pool->zpool);
662 kfree(pool);
663 return NULL;
664}
665
666static __init struct zswap_pool *__zswap_pool_create_fallback(void)
667{
668 bool has_comp, has_zpool;
669
670 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
671 if (!has_comp && strcmp(zswap_compressor,
672 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
673 pr_err("compressor %s not available, using default %s\n",
674 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
675 param_free_charp(&zswap_compressor);
676 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
677 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
678 }
679 if (!has_comp) {
680 pr_err("default compressor %s not available\n",
681 zswap_compressor);
682 param_free_charp(&zswap_compressor);
683 zswap_compressor = ZSWAP_PARAM_UNSET;
684 }
685
686 has_zpool = zpool_has_pool(zswap_zpool_type);
687 if (!has_zpool && strcmp(zswap_zpool_type,
688 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
689 pr_err("zpool %s not available, using default %s\n",
690 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
691 param_free_charp(&zswap_zpool_type);
692 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
693 has_zpool = zpool_has_pool(zswap_zpool_type);
694 }
695 if (!has_zpool) {
696 pr_err("default zpool %s not available\n",
697 zswap_zpool_type);
698 param_free_charp(&zswap_zpool_type);
699 zswap_zpool_type = ZSWAP_PARAM_UNSET;
700 }
701
702 if (!has_comp || !has_zpool)
703 return NULL;
704
705 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
706}
707
708static void zswap_pool_destroy(struct zswap_pool *pool)
709{
710 zswap_pool_debug("destroying", pool);
711
712 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
713 free_percpu(pool->acomp_ctx);
714 zpool_destroy_pool(pool->zpool);
715 kfree(pool);
716}
717
718static int __must_check zswap_pool_get(struct zswap_pool *pool)
719{
720 if (!pool)
721 return 0;
722
723 return kref_get_unless_zero(&pool->kref);
724}
725
726static void __zswap_pool_release(struct work_struct *work)
727{
728 struct zswap_pool *pool = container_of(work, typeof(*pool),
729 release_work);
730
731 synchronize_rcu();
732
733 /* nobody should have been able to get a kref... */
734 WARN_ON(kref_get_unless_zero(&pool->kref));
735
736 /* pool is now off zswap_pools list and has no references. */
737 zswap_pool_destroy(pool);
738}
739
740static void __zswap_pool_empty(struct kref *kref)
741{
742 struct zswap_pool *pool;
743
744 pool = container_of(kref, typeof(*pool), kref);
745
746 spin_lock(&zswap_pools_lock);
747
748 WARN_ON(pool == zswap_pool_current());
749
750 list_del_rcu(&pool->list);
751
752 INIT_WORK(&pool->release_work, __zswap_pool_release);
753 schedule_work(&pool->release_work);
754
755 spin_unlock(&zswap_pools_lock);
756}
757
758static void zswap_pool_put(struct zswap_pool *pool)
759{
760 kref_put(&pool->kref, __zswap_pool_empty);
761}
762
763/*********************************
764* param callbacks
765**********************************/
766
767/* val must be a null-terminated string */
768static int __zswap_param_set(const char *val, const struct kernel_param *kp,
769 char *type, char *compressor)
770{
771 struct zswap_pool *pool, *put_pool = NULL;
772 char *s = strstrip((char *)val);
773 int ret;
774
775 if (zswap_init_failed) {
776 pr_err("can't set param, initialization failed\n");
777 return -ENODEV;
778 }
779
780 /* no change required */
781 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
782 return 0;
783
784 /* if this is load-time (pre-init) param setting,
785 * don't create a pool; that's done during init.
786 */
787 if (!zswap_init_started)
788 return param_set_charp(s, kp);
789
790 if (!type) {
791 if (!zpool_has_pool(s)) {
792 pr_err("zpool %s not available\n", s);
793 return -ENOENT;
794 }
795 type = s;
796 } else if (!compressor) {
797 if (!crypto_has_acomp(s, 0, 0)) {
798 pr_err("compressor %s not available\n", s);
799 return -ENOENT;
800 }
801 compressor = s;
802 } else {
803 WARN_ON(1);
804 return -EINVAL;
805 }
806
807 spin_lock(&zswap_pools_lock);
808
809 pool = zswap_pool_find_get(type, compressor);
810 if (pool) {
811 zswap_pool_debug("using existing", pool);
812 WARN_ON(pool == zswap_pool_current());
813 list_del_rcu(&pool->list);
814 }
815
816 spin_unlock(&zswap_pools_lock);
817
818 if (!pool)
819 pool = zswap_pool_create(type, compressor);
820
821 if (pool)
822 ret = param_set_charp(s, kp);
823 else
824 ret = -EINVAL;
825
826 spin_lock(&zswap_pools_lock);
827
828 if (!ret) {
829 put_pool = zswap_pool_current();
830 list_add_rcu(&pool->list, &zswap_pools);
831 zswap_has_pool = true;
832 } else if (pool) {
833 /* add the possibly pre-existing pool to the end of the pools
834 * list; if it's new (and empty) then it'll be removed and
835 * destroyed by the put after we drop the lock
836 */
837 list_add_tail_rcu(&pool->list, &zswap_pools);
838 put_pool = pool;
839 }
840
841 spin_unlock(&zswap_pools_lock);
842
843 if (!zswap_has_pool && !pool) {
844 /* if initial pool creation failed, and this pool creation also
845 * failed, maybe both compressor and zpool params were bad.
846 * Allow changing this param, so pool creation will succeed
847 * when the other param is changed. We already verified this
848 * param is ok in the zpool_has_pool() or crypto_has_acomp()
849 * checks above.
850 */
851 ret = param_set_charp(s, kp);
852 }
853
854 /* drop the ref from either the old current pool,
855 * or the new pool we failed to add
856 */
857 if (put_pool)
858 zswap_pool_put(put_pool);
859
860 return ret;
861}
862
863static int zswap_compressor_param_set(const char *val,
864 const struct kernel_param *kp)
865{
866 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
867}
868
869static int zswap_zpool_param_set(const char *val,
870 const struct kernel_param *kp)
871{
872 return __zswap_param_set(val, kp, NULL, zswap_compressor);
873}
874
875static int zswap_enabled_param_set(const char *val,
876 const struct kernel_param *kp)
877{
878 if (zswap_init_failed) {
879 pr_err("can't enable, initialization failed\n");
880 return -ENODEV;
881 }
882 if (!zswap_has_pool && zswap_init_started) {
883 pr_err("can't enable, no pool configured\n");
884 return -ENODEV;
885 }
886
887 return param_set_bool(val, kp);
888}
889
890/*********************************
891* writeback code
892**********************************/
893/* return enum for zswap_get_swap_cache_page */
894enum zswap_get_swap_ret {
895 ZSWAP_SWAPCACHE_NEW,
896 ZSWAP_SWAPCACHE_EXIST,
897 ZSWAP_SWAPCACHE_FAIL,
898};
899
900/*
901 * zswap_get_swap_cache_page
902 *
903 * This is an adaption of read_swap_cache_async()
904 *
905 * This function tries to find a page with the given swap entry
906 * in the swapper_space address space (the swap cache). If the page
907 * is found, it is returned in retpage. Otherwise, a page is allocated,
908 * added to the swap cache, and returned in retpage.
909 *
910 * If success, the swap cache page is returned in retpage
911 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
912 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
913 * the new page is added to swapcache and locked
914 * Returns ZSWAP_SWAPCACHE_FAIL on error
915 */
916static int zswap_get_swap_cache_page(swp_entry_t entry,
917 struct page **retpage)
918{
919 bool page_was_allocated;
920
921 *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
922 NULL, 0, &page_was_allocated);
923 if (page_was_allocated)
924 return ZSWAP_SWAPCACHE_NEW;
925 if (!*retpage)
926 return ZSWAP_SWAPCACHE_FAIL;
927 return ZSWAP_SWAPCACHE_EXIST;
928}
929
930/*
931 * Attempts to free an entry by adding a page to the swap cache,
932 * decompressing the entry data into the page, and issuing a
933 * bio write to write the page back to the swap device.
934 *
935 * This can be thought of as a "resumed writeback" of the page
936 * to the swap device. We are basically resuming the same swap
937 * writeback path that was intercepted with the frontswap_store()
938 * in the first place. After the page has been decompressed into
939 * the swap cache, the compressed version stored by zswap can be
940 * freed.
941 */
942static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
943{
944 struct zswap_header *zhdr;
945 swp_entry_t swpentry;
946 struct zswap_tree *tree;
947 pgoff_t offset;
948 struct zswap_entry *entry;
949 struct page *page;
950 struct scatterlist input, output;
951 struct crypto_acomp_ctx *acomp_ctx;
952
953 u8 *src, *tmp = NULL;
954 unsigned int dlen;
955 int ret;
956 struct writeback_control wbc = {
957 .sync_mode = WB_SYNC_NONE,
958 };
959
960 if (!zpool_can_sleep_mapped(pool)) {
961 tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
962 if (!tmp)
963 return -ENOMEM;
964 }
965
966 /* extract swpentry from data */
967 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
968 swpentry = zhdr->swpentry; /* here */
969 tree = zswap_trees[swp_type(swpentry)];
970 offset = swp_offset(swpentry);
971 zpool_unmap_handle(pool, handle);
972
973 /* find and ref zswap entry */
974 spin_lock(&tree->lock);
975 entry = zswap_entry_find_get(&tree->rbroot, offset);
976 if (!entry) {
977 /* entry was invalidated */
978 spin_unlock(&tree->lock);
979 kfree(tmp);
980 return 0;
981 }
982 spin_unlock(&tree->lock);
983 BUG_ON(offset != entry->offset);
984
985 /* try to allocate swap cache page */
986 switch (zswap_get_swap_cache_page(swpentry, &page)) {
987 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
988 ret = -ENOMEM;
989 goto fail;
990
991 case ZSWAP_SWAPCACHE_EXIST:
992 /* page is already in the swap cache, ignore for now */
993 put_page(page);
994 ret = -EEXIST;
995 goto fail;
996
997 case ZSWAP_SWAPCACHE_NEW: /* page is locked */
998 /* decompress */
999 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1000 dlen = PAGE_SIZE;
1001
1002 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
1003 src = (u8 *)zhdr + sizeof(struct zswap_header);
1004 if (!zpool_can_sleep_mapped(pool)) {
1005 memcpy(tmp, src, entry->length);
1006 src = tmp;
1007 zpool_unmap_handle(pool, handle);
1008 }
1009
1010 mutex_lock(acomp_ctx->mutex);
1011 sg_init_one(&input, src, entry->length);
1012 sg_init_table(&output, 1);
1013 sg_set_page(&output, page, PAGE_SIZE, 0);
1014 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1015 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1016 dlen = acomp_ctx->req->dlen;
1017 mutex_unlock(acomp_ctx->mutex);
1018
1019 if (!zpool_can_sleep_mapped(pool))
1020 kfree(tmp);
1021 else
1022 zpool_unmap_handle(pool, handle);
1023
1024 BUG_ON(ret);
1025 BUG_ON(dlen != PAGE_SIZE);
1026
1027 /* page is up to date */
1028 SetPageUptodate(page);
1029 }
1030
1031 /* move it to the tail of the inactive list after end_writeback */
1032 SetPageReclaim(page);
1033
1034 /* start writeback */
1035 __swap_writepage(page, &wbc);
1036 put_page(page);
1037 zswap_written_back_pages++;
1038
1039 spin_lock(&tree->lock);
1040 /* drop local reference */
1041 zswap_entry_put(tree, entry);
1042
1043 /*
1044 * There are two possible situations for entry here:
1045 * (1) refcount is 1(normal case), entry is valid and on the tree
1046 * (2) refcount is 0, entry is freed and not on the tree
1047 * because invalidate happened during writeback
1048 * search the tree and free the entry if find entry
1049 */
1050 if (entry == zswap_rb_search(&tree->rbroot, offset))
1051 zswap_entry_put(tree, entry);
1052 spin_unlock(&tree->lock);
1053
1054 return ret;
1055
1056fail:
1057 if (!zpool_can_sleep_mapped(pool))
1058 kfree(tmp);
1059
1060 /*
1061 * if we get here due to ZSWAP_SWAPCACHE_EXIST
1062 * a load may be happening concurrently.
1063 * it is safe and okay to not free the entry.
1064 * if we free the entry in the following put
1065 * it is also okay to return !0
1066 */
1067 spin_lock(&tree->lock);
1068 zswap_entry_put(tree, entry);
1069 spin_unlock(&tree->lock);
1070
1071 return ret;
1072}
1073
1074static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1075{
1076 unsigned int pos;
1077 unsigned long *page;
1078
1079 page = (unsigned long *)ptr;
1080 for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
1081 if (page[pos] != page[0])
1082 return 0;
1083 }
1084 *value = page[0];
1085 return 1;
1086}
1087
1088static void zswap_fill_page(void *ptr, unsigned long value)
1089{
1090 unsigned long *page;
1091
1092 page = (unsigned long *)ptr;
1093 memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1094}
1095
1096/*********************************
1097* frontswap hooks
1098**********************************/
1099/* attempts to compress and store an single page */
1100static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1101 struct page *page)
1102{
1103 struct zswap_tree *tree = zswap_trees[type];
1104 struct zswap_entry *entry, *dupentry;
1105 struct scatterlist input, output;
1106 struct crypto_acomp_ctx *acomp_ctx;
1107 struct obj_cgroup *objcg = NULL;
1108 struct zswap_pool *pool;
1109 int ret;
1110 unsigned int hlen, dlen = PAGE_SIZE;
1111 unsigned long handle, value;
1112 char *buf;
1113 u8 *src, *dst;
1114 struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1115 gfp_t gfp;
1116
1117 /* THP isn't supported */
1118 if (PageTransHuge(page)) {
1119 ret = -EINVAL;
1120 goto reject;
1121 }
1122
1123 if (!zswap_enabled || !tree) {
1124 ret = -ENODEV;
1125 goto reject;
1126 }
1127
1128 objcg = get_obj_cgroup_from_page(page);
1129 if (objcg && !obj_cgroup_may_zswap(objcg))
1130 goto shrink;
1131
1132 /* reclaim space if needed */
1133 if (zswap_is_full()) {
1134 zswap_pool_limit_hit++;
1135 zswap_pool_reached_full = true;
1136 goto shrink;
1137 }
1138
1139 if (zswap_pool_reached_full) {
1140 if (!zswap_can_accept()) {
1141 ret = -ENOMEM;
1142 goto reject;
1143 } else
1144 zswap_pool_reached_full = false;
1145 }
1146
1147 /* allocate entry */
1148 entry = zswap_entry_cache_alloc(GFP_KERNEL);
1149 if (!entry) {
1150 zswap_reject_kmemcache_fail++;
1151 ret = -ENOMEM;
1152 goto reject;
1153 }
1154
1155 if (zswap_same_filled_pages_enabled) {
1156 src = kmap_atomic(page);
1157 if (zswap_is_page_same_filled(src, &value)) {
1158 kunmap_atomic(src);
1159 entry->offset = offset;
1160 entry->length = 0;
1161 entry->value = value;
1162 atomic_inc(&zswap_same_filled_pages);
1163 goto insert_entry;
1164 }
1165 kunmap_atomic(src);
1166 }
1167
1168 if (!zswap_non_same_filled_pages_enabled) {
1169 ret = -EINVAL;
1170 goto freepage;
1171 }
1172
1173 /* if entry is successfully added, it keeps the reference */
1174 entry->pool = zswap_pool_current_get();
1175 if (!entry->pool) {
1176 ret = -EINVAL;
1177 goto freepage;
1178 }
1179
1180 /* compress */
1181 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1182
1183 mutex_lock(acomp_ctx->mutex);
1184
1185 dst = acomp_ctx->dstmem;
1186 sg_init_table(&input, 1);
1187 sg_set_page(&input, page, PAGE_SIZE, 0);
1188
1189 /* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1190 sg_init_one(&output, dst, PAGE_SIZE * 2);
1191 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1192 /*
1193 * it maybe looks a little bit silly that we send an asynchronous request,
1194 * then wait for its completion synchronously. This makes the process look
1195 * synchronous in fact.
1196 * Theoretically, acomp supports users send multiple acomp requests in one
1197 * acomp instance, then get those requests done simultaneously. but in this
1198 * case, frontswap actually does store and load page by page, there is no
1199 * existing method to send the second page before the first page is done
1200 * in one thread doing frontswap.
1201 * but in different threads running on different cpu, we have different
1202 * acomp instance, so multiple threads can do (de)compression in parallel.
1203 */
1204 ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1205 dlen = acomp_ctx->req->dlen;
1206
1207 if (ret) {
1208 ret = -EINVAL;
1209 goto put_dstmem;
1210 }
1211
1212 /* store */
1213 hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1214 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1215 if (zpool_malloc_support_movable(entry->pool->zpool))
1216 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1217 ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1218 if (ret == -ENOSPC) {
1219 zswap_reject_compress_poor++;
1220 goto put_dstmem;
1221 }
1222 if (ret) {
1223 zswap_reject_alloc_fail++;
1224 goto put_dstmem;
1225 }
1226 buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1227 memcpy(buf, &zhdr, hlen);
1228 memcpy(buf + hlen, dst, dlen);
1229 zpool_unmap_handle(entry->pool->zpool, handle);
1230 mutex_unlock(acomp_ctx->mutex);
1231
1232 /* populate entry */
1233 entry->offset = offset;
1234 entry->handle = handle;
1235 entry->length = dlen;
1236
1237insert_entry:
1238 entry->objcg = objcg;
1239 if (objcg) {
1240 obj_cgroup_charge_zswap(objcg, entry->length);
1241 /* Account before objcg ref is moved to tree */
1242 count_objcg_event(objcg, ZSWPOUT);
1243 }
1244
1245 /* map */
1246 spin_lock(&tree->lock);
1247 do {
1248 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1249 if (ret == -EEXIST) {
1250 zswap_duplicate_entry++;
1251 /* remove from rbtree */
1252 zswap_rb_erase(&tree->rbroot, dupentry);
1253 zswap_entry_put(tree, dupentry);
1254 }
1255 } while (ret == -EEXIST);
1256 spin_unlock(&tree->lock);
1257
1258 /* update stats */
1259 atomic_inc(&zswap_stored_pages);
1260 zswap_update_total_size();
1261 count_vm_event(ZSWPOUT);
1262
1263 return 0;
1264
1265put_dstmem:
1266 mutex_unlock(acomp_ctx->mutex);
1267 zswap_pool_put(entry->pool);
1268freepage:
1269 zswap_entry_cache_free(entry);
1270reject:
1271 if (objcg)
1272 obj_cgroup_put(objcg);
1273 return ret;
1274
1275shrink:
1276 pool = zswap_pool_last_get();
1277 if (pool)
1278 queue_work(shrink_wq, &pool->shrink_work);
1279 ret = -ENOMEM;
1280 goto reject;
1281}
1282
1283/*
1284 * returns 0 if the page was successfully decompressed
1285 * return -1 on entry not found or error
1286*/
1287static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1288 struct page *page)
1289{
1290 struct zswap_tree *tree = zswap_trees[type];
1291 struct zswap_entry *entry;
1292 struct scatterlist input, output;
1293 struct crypto_acomp_ctx *acomp_ctx;
1294 u8 *src, *dst, *tmp;
1295 unsigned int dlen;
1296 int ret;
1297
1298 /* find */
1299 spin_lock(&tree->lock);
1300 entry = zswap_entry_find_get(&tree->rbroot, offset);
1301 if (!entry) {
1302 /* entry was written back */
1303 spin_unlock(&tree->lock);
1304 return -1;
1305 }
1306 spin_unlock(&tree->lock);
1307
1308 if (!entry->length) {
1309 dst = kmap_atomic(page);
1310 zswap_fill_page(dst, entry->value);
1311 kunmap_atomic(dst);
1312 ret = 0;
1313 goto stats;
1314 }
1315
1316 if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1317 tmp = kmalloc(entry->length, GFP_KERNEL);
1318 if (!tmp) {
1319 ret = -ENOMEM;
1320 goto freeentry;
1321 }
1322 }
1323
1324 /* decompress */
1325 dlen = PAGE_SIZE;
1326 src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1327 if (zpool_evictable(entry->pool->zpool))
1328 src += sizeof(struct zswap_header);
1329
1330 if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1331 memcpy(tmp, src, entry->length);
1332 src = tmp;
1333 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1334 }
1335
1336 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1337 mutex_lock(acomp_ctx->mutex);
1338 sg_init_one(&input, src, entry->length);
1339 sg_init_table(&output, 1);
1340 sg_set_page(&output, page, PAGE_SIZE, 0);
1341 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1342 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1343 mutex_unlock(acomp_ctx->mutex);
1344
1345 if (zpool_can_sleep_mapped(entry->pool->zpool))
1346 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1347 else
1348 kfree(tmp);
1349
1350 BUG_ON(ret);
1351stats:
1352 count_vm_event(ZSWPIN);
1353 if (entry->objcg)
1354 count_objcg_event(entry->objcg, ZSWPIN);
1355freeentry:
1356 spin_lock(&tree->lock);
1357 zswap_entry_put(tree, entry);
1358 spin_unlock(&tree->lock);
1359
1360 return ret;
1361}
1362
1363/* frees an entry in zswap */
1364static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1365{
1366 struct zswap_tree *tree = zswap_trees[type];
1367 struct zswap_entry *entry;
1368
1369 /* find */
1370 spin_lock(&tree->lock);
1371 entry = zswap_rb_search(&tree->rbroot, offset);
1372 if (!entry) {
1373 /* entry was written back */
1374 spin_unlock(&tree->lock);
1375 return;
1376 }
1377
1378 /* remove from rbtree */
1379 zswap_rb_erase(&tree->rbroot, entry);
1380
1381 /* drop the initial reference from entry creation */
1382 zswap_entry_put(tree, entry);
1383
1384 spin_unlock(&tree->lock);
1385}
1386
1387/* frees all zswap entries for the given swap type */
1388static void zswap_frontswap_invalidate_area(unsigned type)
1389{
1390 struct zswap_tree *tree = zswap_trees[type];
1391 struct zswap_entry *entry, *n;
1392
1393 if (!tree)
1394 return;
1395
1396 /* walk the tree and free everything */
1397 spin_lock(&tree->lock);
1398 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1399 zswap_free_entry(entry);
1400 tree->rbroot = RB_ROOT;
1401 spin_unlock(&tree->lock);
1402 kfree(tree);
1403 zswap_trees[type] = NULL;
1404}
1405
1406static void zswap_frontswap_init(unsigned type)
1407{
1408 struct zswap_tree *tree;
1409
1410 tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1411 if (!tree) {
1412 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1413 return;
1414 }
1415
1416 tree->rbroot = RB_ROOT;
1417 spin_lock_init(&tree->lock);
1418 zswap_trees[type] = tree;
1419}
1420
1421static const struct frontswap_ops zswap_frontswap_ops = {
1422 .store = zswap_frontswap_store,
1423 .load = zswap_frontswap_load,
1424 .invalidate_page = zswap_frontswap_invalidate_page,
1425 .invalidate_area = zswap_frontswap_invalidate_area,
1426 .init = zswap_frontswap_init
1427};
1428
1429/*********************************
1430* debugfs functions
1431**********************************/
1432#ifdef CONFIG_DEBUG_FS
1433#include <linux/debugfs.h>
1434
1435static struct dentry *zswap_debugfs_root;
1436
1437static int __init zswap_debugfs_init(void)
1438{
1439 if (!debugfs_initialized())
1440 return -ENODEV;
1441
1442 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1443
1444 debugfs_create_u64("pool_limit_hit", 0444,
1445 zswap_debugfs_root, &zswap_pool_limit_hit);
1446 debugfs_create_u64("reject_reclaim_fail", 0444,
1447 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1448 debugfs_create_u64("reject_alloc_fail", 0444,
1449 zswap_debugfs_root, &zswap_reject_alloc_fail);
1450 debugfs_create_u64("reject_kmemcache_fail", 0444,
1451 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1452 debugfs_create_u64("reject_compress_poor", 0444,
1453 zswap_debugfs_root, &zswap_reject_compress_poor);
1454 debugfs_create_u64("written_back_pages", 0444,
1455 zswap_debugfs_root, &zswap_written_back_pages);
1456 debugfs_create_u64("duplicate_entry", 0444,
1457 zswap_debugfs_root, &zswap_duplicate_entry);
1458 debugfs_create_u64("pool_total_size", 0444,
1459 zswap_debugfs_root, &zswap_pool_total_size);
1460 debugfs_create_atomic_t("stored_pages", 0444,
1461 zswap_debugfs_root, &zswap_stored_pages);
1462 debugfs_create_atomic_t("same_filled_pages", 0444,
1463 zswap_debugfs_root, &zswap_same_filled_pages);
1464
1465 return 0;
1466}
1467#else
1468static int __init zswap_debugfs_init(void)
1469{
1470 return 0;
1471}
1472#endif
1473
1474/*********************************
1475* module init and exit
1476**********************************/
1477static int __init init_zswap(void)
1478{
1479 struct zswap_pool *pool;
1480 int ret;
1481
1482 zswap_init_started = true;
1483
1484 if (zswap_entry_cache_create()) {
1485 pr_err("entry cache creation failed\n");
1486 goto cache_fail;
1487 }
1488
1489 ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1490 zswap_dstmem_prepare, zswap_dstmem_dead);
1491 if (ret) {
1492 pr_err("dstmem alloc failed\n");
1493 goto dstmem_fail;
1494 }
1495
1496 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1497 "mm/zswap_pool:prepare",
1498 zswap_cpu_comp_prepare,
1499 zswap_cpu_comp_dead);
1500 if (ret)
1501 goto hp_fail;
1502
1503 pool = __zswap_pool_create_fallback();
1504 if (pool) {
1505 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1506 zpool_get_type(pool->zpool));
1507 list_add(&pool->list, &zswap_pools);
1508 zswap_has_pool = true;
1509 } else {
1510 pr_err("pool creation failed\n");
1511 zswap_enabled = false;
1512 }
1513
1514 shrink_wq = create_workqueue("zswap-shrink");
1515 if (!shrink_wq)
1516 goto fallback_fail;
1517
1518 ret = frontswap_register_ops(&zswap_frontswap_ops);
1519 if (ret)
1520 goto destroy_wq;
1521 if (zswap_debugfs_init())
1522 pr_warn("debugfs initialization failed\n");
1523 return 0;
1524
1525destroy_wq:
1526 destroy_workqueue(shrink_wq);
1527fallback_fail:
1528 if (pool)
1529 zswap_pool_destroy(pool);
1530hp_fail:
1531 cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1532dstmem_fail:
1533 zswap_entry_cache_destroy();
1534cache_fail:
1535 /* if built-in, we aren't unloaded on failure; don't allow use */
1536 zswap_init_failed = true;
1537 zswap_enabled = false;
1538 return -ENOMEM;
1539}
1540/* must be late so crypto has time to come up */
1541late_initcall(init_zswap);
1542
1543MODULE_LICENSE("GPL");
1544MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1545MODULE_DESCRIPTION("Compressed cache for swap pages");