Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS 64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115#define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157};
158
159/* usb 2.0 root hub device descriptor */
160static const u8 usb2_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178};
179
180/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181
182/* usb 1.1 root hub device descriptor */
183static const u8 usb11_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
187
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
192
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
196
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
201};
202
203
204/*-------------------------------------------------------------------------*/
205
206/* Configuration descriptors for our root hubs */
207
208static const u8 fs_rh_config_descriptor[] = {
209
210 /* one configuration */
211 0x09, /* __u8 bLength; */
212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213 0x19, 0x00, /* __le16 wTotalLength; */
214 0x01, /* __u8 bNumInterfaces; (1) */
215 0x01, /* __u8 bConfigurationValue; */
216 0x00, /* __u8 iConfiguration; */
217 0xc0, /* __u8 bmAttributes;
218 Bit 7: must be set,
219 6: Self-powered,
220 5: Remote wakeup,
221 4..0: resvd */
222 0x00, /* __u8 MaxPower; */
223
224 /* USB 1.1:
225 * USB 2.0, single TT organization (mandatory):
226 * one interface, protocol 0
227 *
228 * USB 2.0, multiple TT organization (optional):
229 * two interfaces, protocols 1 (like single TT)
230 * and 2 (multiple TT mode) ... config is
231 * sometimes settable
232 * NOT IMPLEMENTED
233 */
234
235 /* one interface */
236 0x09, /* __u8 if_bLength; */
237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
238 0x00, /* __u8 if_bInterfaceNumber; */
239 0x00, /* __u8 if_bAlternateSetting; */
240 0x01, /* __u8 if_bNumEndpoints; */
241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
242 0x00, /* __u8 if_bInterfaceSubClass; */
243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
244 0x00, /* __u8 if_iInterface; */
245
246 /* one endpoint (status change endpoint) */
247 0x07, /* __u8 ep_bLength; */
248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
250 0x03, /* __u8 ep_bmAttributes; Interrupt */
251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
253};
254
255static const u8 hs_rh_config_descriptor[] = {
256
257 /* one configuration */
258 0x09, /* __u8 bLength; */
259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260 0x19, 0x00, /* __le16 wTotalLength; */
261 0x01, /* __u8 bNumInterfaces; (1) */
262 0x01, /* __u8 bConfigurationValue; */
263 0x00, /* __u8 iConfiguration; */
264 0xc0, /* __u8 bmAttributes;
265 Bit 7: must be set,
266 6: Self-powered,
267 5: Remote wakeup,
268 4..0: resvd */
269 0x00, /* __u8 MaxPower; */
270
271 /* USB 1.1:
272 * USB 2.0, single TT organization (mandatory):
273 * one interface, protocol 0
274 *
275 * USB 2.0, multiple TT organization (optional):
276 * two interfaces, protocols 1 (like single TT)
277 * and 2 (multiple TT mode) ... config is
278 * sometimes settable
279 * NOT IMPLEMENTED
280 */
281
282 /* one interface */
283 0x09, /* __u8 if_bLength; */
284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285 0x00, /* __u8 if_bInterfaceNumber; */
286 0x00, /* __u8 if_bAlternateSetting; */
287 0x01, /* __u8 if_bNumEndpoints; */
288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
289 0x00, /* __u8 if_bInterfaceSubClass; */
290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
291 0x00, /* __u8 if_iInterface; */
292
293 /* one endpoint (status change endpoint) */
294 0x07, /* __u8 ep_bLength; */
295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
297 0x03, /* __u8 ep_bmAttributes; Interrupt */
298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299 * see hub.c:hub_configure() for details. */
300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
302};
303
304static const u8 ss_rh_config_descriptor[] = {
305 /* one configuration */
306 0x09, /* __u8 bLength; */
307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308 0x1f, 0x00, /* __le16 wTotalLength; */
309 0x01, /* __u8 bNumInterfaces; (1) */
310 0x01, /* __u8 bConfigurationValue; */
311 0x00, /* __u8 iConfiguration; */
312 0xc0, /* __u8 bmAttributes;
313 Bit 7: must be set,
314 6: Self-powered,
315 5: Remote wakeup,
316 4..0: resvd */
317 0x00, /* __u8 MaxPower; */
318
319 /* one interface */
320 0x09, /* __u8 if_bLength; */
321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322 0x00, /* __u8 if_bInterfaceNumber; */
323 0x00, /* __u8 if_bAlternateSetting; */
324 0x01, /* __u8 if_bNumEndpoints; */
325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
326 0x00, /* __u8 if_bInterfaceSubClass; */
327 0x00, /* __u8 if_bInterfaceProtocol; */
328 0x00, /* __u8 if_iInterface; */
329
330 /* one endpoint (status change endpoint) */
331 0x07, /* __u8 ep_bLength; */
332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
334 0x03, /* __u8 ep_bmAttributes; Interrupt */
335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336 * see hub.c:hub_configure() for details. */
337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
339
340 /* one SuperSpeed endpoint companion descriptor */
341 0x06, /* __u8 ss_bLength */
342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343 /* Companion */
344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347};
348
349/* authorized_default behaviour:
350 * -1 is authorized for all devices (leftover from wireless USB)
351 * 0 is unauthorized for all devices
352 * 1 is authorized for all devices
353 * 2 is authorized for internal devices
354 */
355#define USB_AUTHORIZE_WIRED -1
356#define USB_AUTHORIZE_NONE 0
357#define USB_AUTHORIZE_ALL 1
358#define USB_AUTHORIZE_INTERNAL 2
359
360static int authorized_default = USB_AUTHORIZE_WIRED;
361module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362MODULE_PARM_DESC(authorized_default,
363 "Default USB device authorization: 0 is not authorized, 1 is "
364 "authorized, 2 is authorized for internal devices, -1 is "
365 "authorized (default, same as 1)");
366/*-------------------------------------------------------------------------*/
367
368/**
369 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
370 * @s: Null-terminated ASCII (actually ISO-8859-1) string
371 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
372 * @len: Length (in bytes; may be odd) of descriptor buffer.
373 *
374 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
375 * whichever is less.
376 *
377 * Note:
378 * USB String descriptors can contain at most 126 characters; input
379 * strings longer than that are truncated.
380 */
381static unsigned
382ascii2desc(char const *s, u8 *buf, unsigned len)
383{
384 unsigned n, t = 2 + 2*strlen(s);
385
386 if (t > 254)
387 t = 254; /* Longest possible UTF string descriptor */
388 if (len > t)
389 len = t;
390
391 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
392
393 n = len;
394 while (n--) {
395 *buf++ = t;
396 if (!n--)
397 break;
398 *buf++ = t >> 8;
399 t = (unsigned char)*s++;
400 }
401 return len;
402}
403
404/**
405 * rh_string() - provides string descriptors for root hub
406 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
407 * @hcd: the host controller for this root hub
408 * @data: buffer for output packet
409 * @len: length of the provided buffer
410 *
411 * Produces either a manufacturer, product or serial number string for the
412 * virtual root hub device.
413 *
414 * Return: The number of bytes filled in: the length of the descriptor or
415 * of the provided buffer, whichever is less.
416 */
417static unsigned
418rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
419{
420 char buf[100];
421 char const *s;
422 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
423
424 /* language ids */
425 switch (id) {
426 case 0:
427 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
428 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
429 if (len > 4)
430 len = 4;
431 memcpy(data, langids, len);
432 return len;
433 case 1:
434 /* Serial number */
435 s = hcd->self.bus_name;
436 break;
437 case 2:
438 /* Product name */
439 s = hcd->product_desc;
440 break;
441 case 3:
442 /* Manufacturer */
443 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
444 init_utsname()->release, hcd->driver->description);
445 s = buf;
446 break;
447 default:
448 /* Can't happen; caller guarantees it */
449 return 0;
450 }
451
452 return ascii2desc(s, data, len);
453}
454
455
456/* Root hub control transfers execute synchronously */
457static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
458{
459 struct usb_ctrlrequest *cmd;
460 u16 typeReq, wValue, wIndex, wLength;
461 u8 *ubuf = urb->transfer_buffer;
462 unsigned len = 0;
463 int status;
464 u8 patch_wakeup = 0;
465 u8 patch_protocol = 0;
466 u16 tbuf_size;
467 u8 *tbuf = NULL;
468 const u8 *bufp;
469
470 might_sleep();
471
472 spin_lock_irq(&hcd_root_hub_lock);
473 status = usb_hcd_link_urb_to_ep(hcd, urb);
474 spin_unlock_irq(&hcd_root_hub_lock);
475 if (status)
476 return status;
477 urb->hcpriv = hcd; /* Indicate it's queued */
478
479 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
480 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
481 wValue = le16_to_cpu (cmd->wValue);
482 wIndex = le16_to_cpu (cmd->wIndex);
483 wLength = le16_to_cpu (cmd->wLength);
484
485 if (wLength > urb->transfer_buffer_length)
486 goto error;
487
488 /*
489 * tbuf should be at least as big as the
490 * USB hub descriptor.
491 */
492 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
493 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
494 if (!tbuf) {
495 status = -ENOMEM;
496 goto err_alloc;
497 }
498
499 bufp = tbuf;
500
501
502 urb->actual_length = 0;
503 switch (typeReq) {
504
505 /* DEVICE REQUESTS */
506
507 /* The root hub's remote wakeup enable bit is implemented using
508 * driver model wakeup flags. If this system supports wakeup
509 * through USB, userspace may change the default "allow wakeup"
510 * policy through sysfs or these calls.
511 *
512 * Most root hubs support wakeup from downstream devices, for
513 * runtime power management (disabling USB clocks and reducing
514 * VBUS power usage). However, not all of them do so; silicon,
515 * board, and BIOS bugs here are not uncommon, so these can't
516 * be treated quite like external hubs.
517 *
518 * Likewise, not all root hubs will pass wakeup events upstream,
519 * to wake up the whole system. So don't assume root hub and
520 * controller capabilities are identical.
521 */
522
523 case DeviceRequest | USB_REQ_GET_STATUS:
524 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
525 << USB_DEVICE_REMOTE_WAKEUP)
526 | (1 << USB_DEVICE_SELF_POWERED);
527 tbuf[1] = 0;
528 len = 2;
529 break;
530 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
531 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
532 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
533 else
534 goto error;
535 break;
536 case DeviceOutRequest | USB_REQ_SET_FEATURE:
537 if (device_can_wakeup(&hcd->self.root_hub->dev)
538 && wValue == USB_DEVICE_REMOTE_WAKEUP)
539 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
540 else
541 goto error;
542 break;
543 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
544 tbuf[0] = 1;
545 len = 1;
546 fallthrough;
547 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
548 break;
549 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
550 switch (wValue & 0xff00) {
551 case USB_DT_DEVICE << 8:
552 switch (hcd->speed) {
553 case HCD_USB32:
554 case HCD_USB31:
555 bufp = usb31_rh_dev_descriptor;
556 break;
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB2:
561 bufp = usb2_rh_dev_descriptor;
562 break;
563 case HCD_USB11:
564 bufp = usb11_rh_dev_descriptor;
565 break;
566 default:
567 goto error;
568 }
569 len = 18;
570 if (hcd->has_tt)
571 patch_protocol = 1;
572 break;
573 case USB_DT_CONFIG << 8:
574 switch (hcd->speed) {
575 case HCD_USB32:
576 case HCD_USB31:
577 case HCD_USB3:
578 bufp = ss_rh_config_descriptor;
579 len = sizeof ss_rh_config_descriptor;
580 break;
581 case HCD_USB2:
582 bufp = hs_rh_config_descriptor;
583 len = sizeof hs_rh_config_descriptor;
584 break;
585 case HCD_USB11:
586 bufp = fs_rh_config_descriptor;
587 len = sizeof fs_rh_config_descriptor;
588 break;
589 default:
590 goto error;
591 }
592 if (device_can_wakeup(&hcd->self.root_hub->dev))
593 patch_wakeup = 1;
594 break;
595 case USB_DT_STRING << 8:
596 if ((wValue & 0xff) < 4)
597 urb->actual_length = rh_string(wValue & 0xff,
598 hcd, ubuf, wLength);
599 else /* unsupported IDs --> "protocol stall" */
600 goto error;
601 break;
602 case USB_DT_BOS << 8:
603 goto nongeneric;
604 default:
605 goto error;
606 }
607 break;
608 case DeviceRequest | USB_REQ_GET_INTERFACE:
609 tbuf[0] = 0;
610 len = 1;
611 fallthrough;
612 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
613 break;
614 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
615 /* wValue == urb->dev->devaddr */
616 dev_dbg (hcd->self.controller, "root hub device address %d\n",
617 wValue);
618 break;
619
620 /* INTERFACE REQUESTS (no defined feature/status flags) */
621
622 /* ENDPOINT REQUESTS */
623
624 case EndpointRequest | USB_REQ_GET_STATUS:
625 /* ENDPOINT_HALT flag */
626 tbuf[0] = 0;
627 tbuf[1] = 0;
628 len = 2;
629 fallthrough;
630 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
631 case EndpointOutRequest | USB_REQ_SET_FEATURE:
632 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
633 break;
634
635 /* CLASS REQUESTS (and errors) */
636
637 default:
638nongeneric:
639 /* non-generic request */
640 switch (typeReq) {
641 case GetHubStatus:
642 len = 4;
643 break;
644 case GetPortStatus:
645 if (wValue == HUB_PORT_STATUS)
646 len = 4;
647 else
648 /* other port status types return 8 bytes */
649 len = 8;
650 break;
651 case GetHubDescriptor:
652 len = sizeof (struct usb_hub_descriptor);
653 break;
654 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
655 /* len is returned by hub_control */
656 break;
657 }
658 status = hcd->driver->hub_control (hcd,
659 typeReq, wValue, wIndex,
660 tbuf, wLength);
661
662 if (typeReq == GetHubDescriptor)
663 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
664 (struct usb_hub_descriptor *)tbuf);
665 break;
666error:
667 /* "protocol stall" on error */
668 status = -EPIPE;
669 }
670
671 if (status < 0) {
672 len = 0;
673 if (status != -EPIPE) {
674 dev_dbg (hcd->self.controller,
675 "CTRL: TypeReq=0x%x val=0x%x "
676 "idx=0x%x len=%d ==> %d\n",
677 typeReq, wValue, wIndex,
678 wLength, status);
679 }
680 } else if (status > 0) {
681 /* hub_control may return the length of data copied. */
682 len = status;
683 status = 0;
684 }
685 if (len) {
686 if (urb->transfer_buffer_length < len)
687 len = urb->transfer_buffer_length;
688 urb->actual_length = len;
689 /* always USB_DIR_IN, toward host */
690 memcpy (ubuf, bufp, len);
691
692 /* report whether RH hardware supports remote wakeup */
693 if (patch_wakeup &&
694 len > offsetof (struct usb_config_descriptor,
695 bmAttributes))
696 ((struct usb_config_descriptor *)ubuf)->bmAttributes
697 |= USB_CONFIG_ATT_WAKEUP;
698
699 /* report whether RH hardware has an integrated TT */
700 if (patch_protocol &&
701 len > offsetof(struct usb_device_descriptor,
702 bDeviceProtocol))
703 ((struct usb_device_descriptor *) ubuf)->
704 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
705 }
706
707 kfree(tbuf);
708 err_alloc:
709
710 /* any errors get returned through the urb completion */
711 spin_lock_irq(&hcd_root_hub_lock);
712 usb_hcd_unlink_urb_from_ep(hcd, urb);
713 usb_hcd_giveback_urb(hcd, urb, status);
714 spin_unlock_irq(&hcd_root_hub_lock);
715 return 0;
716}
717
718/*-------------------------------------------------------------------------*/
719
720/*
721 * Root Hub interrupt transfers are polled using a timer if the
722 * driver requests it; otherwise the driver is responsible for
723 * calling usb_hcd_poll_rh_status() when an event occurs.
724 *
725 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
726 */
727void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728{
729 struct urb *urb;
730 int length;
731 int status;
732 unsigned long flags;
733 char buffer[6]; /* Any root hubs with > 31 ports? */
734
735 if (unlikely(!hcd->rh_pollable))
736 return;
737 if (!hcd->uses_new_polling && !hcd->status_urb)
738 return;
739
740 length = hcd->driver->hub_status_data(hcd, buffer);
741 if (length > 0) {
742
743 /* try to complete the status urb */
744 spin_lock_irqsave(&hcd_root_hub_lock, flags);
745 urb = hcd->status_urb;
746 if (urb) {
747 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
748 hcd->status_urb = NULL;
749 if (urb->transfer_buffer_length >= length) {
750 status = 0;
751 } else {
752 status = -EOVERFLOW;
753 length = urb->transfer_buffer_length;
754 }
755 urb->actual_length = length;
756 memcpy(urb->transfer_buffer, buffer, length);
757
758 usb_hcd_unlink_urb_from_ep(hcd, urb);
759 usb_hcd_giveback_urb(hcd, urb, status);
760 } else {
761 length = 0;
762 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
763 }
764 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
765 }
766
767 /* The USB 2.0 spec says 256 ms. This is close enough and won't
768 * exceed that limit if HZ is 100. The math is more clunky than
769 * maybe expected, this is to make sure that all timers for USB devices
770 * fire at the same time to give the CPU a break in between */
771 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
772 (length == 0 && hcd->status_urb != NULL))
773 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
774}
775EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
776
777/* timer callback */
778static void rh_timer_func (struct timer_list *t)
779{
780 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
781
782 usb_hcd_poll_rh_status(_hcd);
783}
784
785/*-------------------------------------------------------------------------*/
786
787static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
788{
789 int retval;
790 unsigned long flags;
791 unsigned len = 1 + (urb->dev->maxchild / 8);
792
793 spin_lock_irqsave (&hcd_root_hub_lock, flags);
794 if (hcd->status_urb || urb->transfer_buffer_length < len) {
795 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
796 retval = -EINVAL;
797 goto done;
798 }
799
800 retval = usb_hcd_link_urb_to_ep(hcd, urb);
801 if (retval)
802 goto done;
803
804 hcd->status_urb = urb;
805 urb->hcpriv = hcd; /* indicate it's queued */
806 if (!hcd->uses_new_polling)
807 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
808
809 /* If a status change has already occurred, report it ASAP */
810 else if (HCD_POLL_PENDING(hcd))
811 mod_timer(&hcd->rh_timer, jiffies);
812 retval = 0;
813 done:
814 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
815 return retval;
816}
817
818static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
819{
820 if (usb_endpoint_xfer_int(&urb->ep->desc))
821 return rh_queue_status (hcd, urb);
822 if (usb_endpoint_xfer_control(&urb->ep->desc))
823 return rh_call_control (hcd, urb);
824 return -EINVAL;
825}
826
827/*-------------------------------------------------------------------------*/
828
829/* Unlinks of root-hub control URBs are legal, but they don't do anything
830 * since these URBs always execute synchronously.
831 */
832static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
833{
834 unsigned long flags;
835 int rc;
836
837 spin_lock_irqsave(&hcd_root_hub_lock, flags);
838 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
839 if (rc)
840 goto done;
841
842 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
843 ; /* Do nothing */
844
845 } else { /* Status URB */
846 if (!hcd->uses_new_polling)
847 del_timer (&hcd->rh_timer);
848 if (urb == hcd->status_urb) {
849 hcd->status_urb = NULL;
850 usb_hcd_unlink_urb_from_ep(hcd, urb);
851 usb_hcd_giveback_urb(hcd, urb, status);
852 }
853 }
854 done:
855 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
856 return rc;
857}
858
859
860/*-------------------------------------------------------------------------*/
861
862/**
863 * usb_bus_init - shared initialization code
864 * @bus: the bus structure being initialized
865 *
866 * This code is used to initialize a usb_bus structure, memory for which is
867 * separately managed.
868 */
869static void usb_bus_init (struct usb_bus *bus)
870{
871 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
872
873 bus->devnum_next = 1;
874
875 bus->root_hub = NULL;
876 bus->busnum = -1;
877 bus->bandwidth_allocated = 0;
878 bus->bandwidth_int_reqs = 0;
879 bus->bandwidth_isoc_reqs = 0;
880 mutex_init(&bus->devnum_next_mutex);
881}
882
883/*-------------------------------------------------------------------------*/
884
885/**
886 * usb_register_bus - registers the USB host controller with the usb core
887 * @bus: pointer to the bus to register
888 *
889 * Context: task context, might sleep.
890 *
891 * Assigns a bus number, and links the controller into usbcore data
892 * structures so that it can be seen by scanning the bus list.
893 *
894 * Return: 0 if successful. A negative error code otherwise.
895 */
896static int usb_register_bus(struct usb_bus *bus)
897{
898 int result = -E2BIG;
899 int busnum;
900
901 mutex_lock(&usb_bus_idr_lock);
902 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
903 if (busnum < 0) {
904 pr_err("%s: failed to get bus number\n", usbcore_name);
905 goto error_find_busnum;
906 }
907 bus->busnum = busnum;
908 mutex_unlock(&usb_bus_idr_lock);
909
910 usb_notify_add_bus(bus);
911
912 dev_info (bus->controller, "new USB bus registered, assigned bus "
913 "number %d\n", bus->busnum);
914 return 0;
915
916error_find_busnum:
917 mutex_unlock(&usb_bus_idr_lock);
918 return result;
919}
920
921/**
922 * usb_deregister_bus - deregisters the USB host controller
923 * @bus: pointer to the bus to deregister
924 *
925 * Context: task context, might sleep.
926 *
927 * Recycles the bus number, and unlinks the controller from usbcore data
928 * structures so that it won't be seen by scanning the bus list.
929 */
930static void usb_deregister_bus (struct usb_bus *bus)
931{
932 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
933
934 /*
935 * NOTE: make sure that all the devices are removed by the
936 * controller code, as well as having it call this when cleaning
937 * itself up
938 */
939 mutex_lock(&usb_bus_idr_lock);
940 idr_remove(&usb_bus_idr, bus->busnum);
941 mutex_unlock(&usb_bus_idr_lock);
942
943 usb_notify_remove_bus(bus);
944}
945
946/**
947 * register_root_hub - called by usb_add_hcd() to register a root hub
948 * @hcd: host controller for this root hub
949 *
950 * This function registers the root hub with the USB subsystem. It sets up
951 * the device properly in the device tree and then calls usb_new_device()
952 * to register the usb device. It also assigns the root hub's USB address
953 * (always 1).
954 *
955 * Return: 0 if successful. A negative error code otherwise.
956 */
957static int register_root_hub(struct usb_hcd *hcd)
958{
959 struct device *parent_dev = hcd->self.controller;
960 struct usb_device *usb_dev = hcd->self.root_hub;
961 struct usb_device_descriptor *descr;
962 const int devnum = 1;
963 int retval;
964
965 usb_dev->devnum = devnum;
966 usb_dev->bus->devnum_next = devnum + 1;
967 set_bit (devnum, usb_dev->bus->devmap.devicemap);
968 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
969
970 mutex_lock(&usb_bus_idr_lock);
971
972 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
973 descr = usb_get_device_descriptor(usb_dev);
974 if (IS_ERR(descr)) {
975 retval = PTR_ERR(descr);
976 mutex_unlock(&usb_bus_idr_lock);
977 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
978 dev_name(&usb_dev->dev), retval);
979 return retval;
980 }
981 usb_dev->descriptor = *descr;
982 kfree(descr);
983
984 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
985 retval = usb_get_bos_descriptor(usb_dev);
986 if (!retval) {
987 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
988 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
989 mutex_unlock(&usb_bus_idr_lock);
990 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
991 dev_name(&usb_dev->dev), retval);
992 return retval;
993 }
994 }
995
996 retval = usb_new_device (usb_dev);
997 if (retval) {
998 dev_err (parent_dev, "can't register root hub for %s, %d\n",
999 dev_name(&usb_dev->dev), retval);
1000 } else {
1001 spin_lock_irq (&hcd_root_hub_lock);
1002 hcd->rh_registered = 1;
1003 spin_unlock_irq (&hcd_root_hub_lock);
1004
1005 /* Did the HC die before the root hub was registered? */
1006 if (HCD_DEAD(hcd))
1007 usb_hc_died (hcd); /* This time clean up */
1008 }
1009 mutex_unlock(&usb_bus_idr_lock);
1010
1011 return retval;
1012}
1013
1014/*
1015 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1016 * @bus: the bus which the root hub belongs to
1017 * @portnum: the port which is being resumed
1018 *
1019 * HCDs should call this function when they know that a resume signal is
1020 * being sent to a root-hub port. The root hub will be prevented from
1021 * going into autosuspend until usb_hcd_end_port_resume() is called.
1022 *
1023 * The bus's private lock must be held by the caller.
1024 */
1025void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1026{
1027 unsigned bit = 1 << portnum;
1028
1029 if (!(bus->resuming_ports & bit)) {
1030 bus->resuming_ports |= bit;
1031 pm_runtime_get_noresume(&bus->root_hub->dev);
1032 }
1033}
1034EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1035
1036/*
1037 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1038 * @bus: the bus which the root hub belongs to
1039 * @portnum: the port which is being resumed
1040 *
1041 * HCDs should call this function when they know that a resume signal has
1042 * stopped being sent to a root-hub port. The root hub will be allowed to
1043 * autosuspend again.
1044 *
1045 * The bus's private lock must be held by the caller.
1046 */
1047void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1048{
1049 unsigned bit = 1 << portnum;
1050
1051 if (bus->resuming_ports & bit) {
1052 bus->resuming_ports &= ~bit;
1053 pm_runtime_put_noidle(&bus->root_hub->dev);
1054 }
1055}
1056EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1057
1058/*-------------------------------------------------------------------------*/
1059
1060/**
1061 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1062 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1063 * @is_input: true iff the transaction sends data to the host
1064 * @isoc: true for isochronous transactions, false for interrupt ones
1065 * @bytecount: how many bytes in the transaction.
1066 *
1067 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1068 *
1069 * Note:
1070 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1071 * scheduled in software, this function is only used for such scheduling.
1072 */
1073long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1074{
1075 unsigned long tmp;
1076
1077 switch (speed) {
1078 case USB_SPEED_LOW: /* INTR only */
1079 if (is_input) {
1080 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1081 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1082 } else {
1083 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1084 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1085 }
1086 case USB_SPEED_FULL: /* ISOC or INTR */
1087 if (isoc) {
1088 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1089 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1090 } else {
1091 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1092 return 9107L + BW_HOST_DELAY + tmp;
1093 }
1094 case USB_SPEED_HIGH: /* ISOC or INTR */
1095 /* FIXME adjust for input vs output */
1096 if (isoc)
1097 tmp = HS_NSECS_ISO (bytecount);
1098 else
1099 tmp = HS_NSECS (bytecount);
1100 return tmp;
1101 default:
1102 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1103 return -1;
1104 }
1105}
1106EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1107
1108
1109/*-------------------------------------------------------------------------*/
1110
1111/*
1112 * Generic HC operations.
1113 */
1114
1115/*-------------------------------------------------------------------------*/
1116
1117/**
1118 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1119 * @hcd: host controller to which @urb was submitted
1120 * @urb: URB being submitted
1121 *
1122 * Host controller drivers should call this routine in their enqueue()
1123 * method. The HCD's private spinlock must be held and interrupts must
1124 * be disabled. The actions carried out here are required for URB
1125 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1126 *
1127 * Return: 0 for no error, otherwise a negative error code (in which case
1128 * the enqueue() method must fail). If no error occurs but enqueue() fails
1129 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1130 * the private spinlock and returning.
1131 */
1132int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1133{
1134 int rc = 0;
1135
1136 spin_lock(&hcd_urb_list_lock);
1137
1138 /* Check that the URB isn't being killed */
1139 if (unlikely(atomic_read(&urb->reject))) {
1140 rc = -EPERM;
1141 goto done;
1142 }
1143
1144 if (unlikely(!urb->ep->enabled)) {
1145 rc = -ENOENT;
1146 goto done;
1147 }
1148
1149 if (unlikely(!urb->dev->can_submit)) {
1150 rc = -EHOSTUNREACH;
1151 goto done;
1152 }
1153
1154 /*
1155 * Check the host controller's state and add the URB to the
1156 * endpoint's queue.
1157 */
1158 if (HCD_RH_RUNNING(hcd)) {
1159 urb->unlinked = 0;
1160 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1161 } else {
1162 rc = -ESHUTDOWN;
1163 goto done;
1164 }
1165 done:
1166 spin_unlock(&hcd_urb_list_lock);
1167 return rc;
1168}
1169EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1170
1171/**
1172 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1173 * @hcd: host controller to which @urb was submitted
1174 * @urb: URB being checked for unlinkability
1175 * @status: error code to store in @urb if the unlink succeeds
1176 *
1177 * Host controller drivers should call this routine in their dequeue()
1178 * method. The HCD's private spinlock must be held and interrupts must
1179 * be disabled. The actions carried out here are required for making
1180 * sure than an unlink is valid.
1181 *
1182 * Return: 0 for no error, otherwise a negative error code (in which case
1183 * the dequeue() method must fail). The possible error codes are:
1184 *
1185 * -EIDRM: @urb was not submitted or has already completed.
1186 * The completion function may not have been called yet.
1187 *
1188 * -EBUSY: @urb has already been unlinked.
1189 */
1190int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1191 int status)
1192{
1193 struct list_head *tmp;
1194
1195 /* insist the urb is still queued */
1196 list_for_each(tmp, &urb->ep->urb_list) {
1197 if (tmp == &urb->urb_list)
1198 break;
1199 }
1200 if (tmp != &urb->urb_list)
1201 return -EIDRM;
1202
1203 /* Any status except -EINPROGRESS means something already started to
1204 * unlink this URB from the hardware. So there's no more work to do.
1205 */
1206 if (urb->unlinked)
1207 return -EBUSY;
1208 urb->unlinked = status;
1209 return 0;
1210}
1211EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1212
1213/**
1214 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being unlinked
1217 *
1218 * Host controller drivers should call this routine before calling
1219 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1220 * interrupts must be disabled. The actions carried out here are required
1221 * for URB completion.
1222 */
1223void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1224{
1225 /* clear all state linking urb to this dev (and hcd) */
1226 spin_lock(&hcd_urb_list_lock);
1227 list_del_init(&urb->urb_list);
1228 spin_unlock(&hcd_urb_list_lock);
1229}
1230EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1231
1232/*
1233 * Some usb host controllers can only perform dma using a small SRAM area,
1234 * or have restrictions on addressable DRAM.
1235 * The usb core itself is however optimized for host controllers that can dma
1236 * using regular system memory - like pci devices doing bus mastering.
1237 *
1238 * To support host controllers with limited dma capabilities we provide dma
1239 * bounce buffers. This feature can be enabled by initializing
1240 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1241 *
1242 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1243 * data for dma using the genalloc API.
1244 *
1245 * So, to summarize...
1246 *
1247 * - We need "local" memory, canonical example being
1248 * a small SRAM on a discrete controller being the
1249 * only memory that the controller can read ...
1250 * (a) "normal" kernel memory is no good, and
1251 * (b) there's not enough to share
1252 *
1253 * - So we use that, even though the primary requirement
1254 * is that the memory be "local" (hence addressable
1255 * by that device), not "coherent".
1256 *
1257 */
1258
1259static int hcd_alloc_coherent(struct usb_bus *bus,
1260 gfp_t mem_flags, dma_addr_t *dma_handle,
1261 void **vaddr_handle, size_t size,
1262 enum dma_data_direction dir)
1263{
1264 unsigned char *vaddr;
1265
1266 if (*vaddr_handle == NULL) {
1267 WARN_ON_ONCE(1);
1268 return -EFAULT;
1269 }
1270
1271 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1272 mem_flags, dma_handle);
1273 if (!vaddr)
1274 return -ENOMEM;
1275
1276 /*
1277 * Store the virtual address of the buffer at the end
1278 * of the allocated dma buffer. The size of the buffer
1279 * may be uneven so use unaligned functions instead
1280 * of just rounding up. It makes sense to optimize for
1281 * memory footprint over access speed since the amount
1282 * of memory available for dma may be limited.
1283 */
1284 put_unaligned((unsigned long)*vaddr_handle,
1285 (unsigned long *)(vaddr + size));
1286
1287 if (dir == DMA_TO_DEVICE)
1288 memcpy(vaddr, *vaddr_handle, size);
1289
1290 *vaddr_handle = vaddr;
1291 return 0;
1292}
1293
1294static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1295 void **vaddr_handle, size_t size,
1296 enum dma_data_direction dir)
1297{
1298 unsigned char *vaddr = *vaddr_handle;
1299
1300 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1301
1302 if (dir == DMA_FROM_DEVICE)
1303 memcpy(vaddr, *vaddr_handle, size);
1304
1305 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1306
1307 *vaddr_handle = vaddr;
1308 *dma_handle = 0;
1309}
1310
1311void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1312{
1313 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1314 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1315 dma_unmap_single(hcd->self.sysdev,
1316 urb->setup_dma,
1317 sizeof(struct usb_ctrlrequest),
1318 DMA_TO_DEVICE);
1319 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1320 hcd_free_coherent(urb->dev->bus,
1321 &urb->setup_dma,
1322 (void **) &urb->setup_packet,
1323 sizeof(struct usb_ctrlrequest),
1324 DMA_TO_DEVICE);
1325
1326 /* Make it safe to call this routine more than once */
1327 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1330
1331static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1332{
1333 if (hcd->driver->unmap_urb_for_dma)
1334 hcd->driver->unmap_urb_for_dma(hcd, urb);
1335 else
1336 usb_hcd_unmap_urb_for_dma(hcd, urb);
1337}
1338
1339void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1340{
1341 enum dma_data_direction dir;
1342
1343 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1344
1345 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1346 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347 (urb->transfer_flags & URB_DMA_MAP_SG))
1348 dma_unmap_sg(hcd->self.sysdev,
1349 urb->sg,
1350 urb->num_sgs,
1351 dir);
1352 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1353 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1354 dma_unmap_page(hcd->self.sysdev,
1355 urb->transfer_dma,
1356 urb->transfer_buffer_length,
1357 dir);
1358 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360 dma_unmap_single(hcd->self.sysdev,
1361 urb->transfer_dma,
1362 urb->transfer_buffer_length,
1363 dir);
1364 else if (urb->transfer_flags & URB_MAP_LOCAL)
1365 hcd_free_coherent(urb->dev->bus,
1366 &urb->transfer_dma,
1367 &urb->transfer_buffer,
1368 urb->transfer_buffer_length,
1369 dir);
1370
1371 /* Make it safe to call this routine more than once */
1372 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1373 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1374}
1375EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1376
1377static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1378 gfp_t mem_flags)
1379{
1380 if (hcd->driver->map_urb_for_dma)
1381 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1382 else
1383 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1384}
1385
1386int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1387 gfp_t mem_flags)
1388{
1389 enum dma_data_direction dir;
1390 int ret = 0;
1391
1392 /* Map the URB's buffers for DMA access.
1393 * Lower level HCD code should use *_dma exclusively,
1394 * unless it uses pio or talks to another transport,
1395 * or uses the provided scatter gather list for bulk.
1396 */
1397
1398 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1399 if (hcd->self.uses_pio_for_control)
1400 return ret;
1401 if (hcd->localmem_pool) {
1402 ret = hcd_alloc_coherent(
1403 urb->dev->bus, mem_flags,
1404 &urb->setup_dma,
1405 (void **)&urb->setup_packet,
1406 sizeof(struct usb_ctrlrequest),
1407 DMA_TO_DEVICE);
1408 if (ret)
1409 return ret;
1410 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1411 } else if (hcd_uses_dma(hcd)) {
1412 if (object_is_on_stack(urb->setup_packet)) {
1413 WARN_ONCE(1, "setup packet is on stack\n");
1414 return -EAGAIN;
1415 }
1416
1417 urb->setup_dma = dma_map_single(
1418 hcd->self.sysdev,
1419 urb->setup_packet,
1420 sizeof(struct usb_ctrlrequest),
1421 DMA_TO_DEVICE);
1422 if (dma_mapping_error(hcd->self.sysdev,
1423 urb->setup_dma))
1424 return -EAGAIN;
1425 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1426 }
1427 }
1428
1429 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1430 if (urb->transfer_buffer_length != 0
1431 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1432 if (hcd->localmem_pool) {
1433 ret = hcd_alloc_coherent(
1434 urb->dev->bus, mem_flags,
1435 &urb->transfer_dma,
1436 &urb->transfer_buffer,
1437 urb->transfer_buffer_length,
1438 dir);
1439 if (ret == 0)
1440 urb->transfer_flags |= URB_MAP_LOCAL;
1441 } else if (hcd_uses_dma(hcd)) {
1442 if (urb->num_sgs) {
1443 int n;
1444
1445 /* We don't support sg for isoc transfers ! */
1446 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1447 WARN_ON(1);
1448 return -EINVAL;
1449 }
1450
1451 n = dma_map_sg(
1452 hcd->self.sysdev,
1453 urb->sg,
1454 urb->num_sgs,
1455 dir);
1456 if (!n)
1457 ret = -EAGAIN;
1458 else
1459 urb->transfer_flags |= URB_DMA_MAP_SG;
1460 urb->num_mapped_sgs = n;
1461 if (n != urb->num_sgs)
1462 urb->transfer_flags |=
1463 URB_DMA_SG_COMBINED;
1464 } else if (urb->sg) {
1465 struct scatterlist *sg = urb->sg;
1466 urb->transfer_dma = dma_map_page(
1467 hcd->self.sysdev,
1468 sg_page(sg),
1469 sg->offset,
1470 urb->transfer_buffer_length,
1471 dir);
1472 if (dma_mapping_error(hcd->self.sysdev,
1473 urb->transfer_dma))
1474 ret = -EAGAIN;
1475 else
1476 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1477 } else if (object_is_on_stack(urb->transfer_buffer)) {
1478 WARN_ONCE(1, "transfer buffer is on stack\n");
1479 ret = -EAGAIN;
1480 } else {
1481 urb->transfer_dma = dma_map_single(
1482 hcd->self.sysdev,
1483 urb->transfer_buffer,
1484 urb->transfer_buffer_length,
1485 dir);
1486 if (dma_mapping_error(hcd->self.sysdev,
1487 urb->transfer_dma))
1488 ret = -EAGAIN;
1489 else
1490 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1491 }
1492 }
1493 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1494 URB_SETUP_MAP_LOCAL)))
1495 usb_hcd_unmap_urb_for_dma(hcd, urb);
1496 }
1497 return ret;
1498}
1499EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1500
1501/*-------------------------------------------------------------------------*/
1502
1503/* may be called in any context with a valid urb->dev usecount
1504 * caller surrenders "ownership" of urb
1505 * expects usb_submit_urb() to have sanity checked and conditioned all
1506 * inputs in the urb
1507 */
1508int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1509{
1510 int status;
1511 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1512
1513 /* increment urb's reference count as part of giving it to the HCD
1514 * (which will control it). HCD guarantees that it either returns
1515 * an error or calls giveback(), but not both.
1516 */
1517 usb_get_urb(urb);
1518 atomic_inc(&urb->use_count);
1519 atomic_inc(&urb->dev->urbnum);
1520 usbmon_urb_submit(&hcd->self, urb);
1521
1522 /* NOTE requirements on root-hub callers (usbfs and the hub
1523 * driver, for now): URBs' urb->transfer_buffer must be
1524 * valid and usb_buffer_{sync,unmap}() not be needed, since
1525 * they could clobber root hub response data. Also, control
1526 * URBs must be submitted in process context with interrupts
1527 * enabled.
1528 */
1529
1530 if (is_root_hub(urb->dev)) {
1531 status = rh_urb_enqueue(hcd, urb);
1532 } else {
1533 status = map_urb_for_dma(hcd, urb, mem_flags);
1534 if (likely(status == 0)) {
1535 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1536 if (unlikely(status))
1537 unmap_urb_for_dma(hcd, urb);
1538 }
1539 }
1540
1541 if (unlikely(status)) {
1542 usbmon_urb_submit_error(&hcd->self, urb, status);
1543 urb->hcpriv = NULL;
1544 INIT_LIST_HEAD(&urb->urb_list);
1545 atomic_dec(&urb->use_count);
1546 /*
1547 * Order the write of urb->use_count above before the read
1548 * of urb->reject below. Pairs with the memory barriers in
1549 * usb_kill_urb() and usb_poison_urb().
1550 */
1551 smp_mb__after_atomic();
1552
1553 atomic_dec(&urb->dev->urbnum);
1554 if (atomic_read(&urb->reject))
1555 wake_up(&usb_kill_urb_queue);
1556 usb_put_urb(urb);
1557 }
1558 return status;
1559}
1560
1561/*-------------------------------------------------------------------------*/
1562
1563/* this makes the hcd giveback() the urb more quickly, by kicking it
1564 * off hardware queues (which may take a while) and returning it as
1565 * soon as practical. we've already set up the urb's return status,
1566 * but we can't know if the callback completed already.
1567 */
1568static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1569{
1570 int value;
1571
1572 if (is_root_hub(urb->dev))
1573 value = usb_rh_urb_dequeue(hcd, urb, status);
1574 else {
1575
1576 /* The only reason an HCD might fail this call is if
1577 * it has not yet fully queued the urb to begin with.
1578 * Such failures should be harmless. */
1579 value = hcd->driver->urb_dequeue(hcd, urb, status);
1580 }
1581 return value;
1582}
1583
1584/*
1585 * called in any context
1586 *
1587 * caller guarantees urb won't be recycled till both unlink()
1588 * and the urb's completion function return
1589 */
1590int usb_hcd_unlink_urb (struct urb *urb, int status)
1591{
1592 struct usb_hcd *hcd;
1593 struct usb_device *udev = urb->dev;
1594 int retval = -EIDRM;
1595 unsigned long flags;
1596
1597 /* Prevent the device and bus from going away while
1598 * the unlink is carried out. If they are already gone
1599 * then urb->use_count must be 0, since disconnected
1600 * devices can't have any active URBs.
1601 */
1602 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1603 if (atomic_read(&urb->use_count) > 0) {
1604 retval = 0;
1605 usb_get_dev(udev);
1606 }
1607 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1608 if (retval == 0) {
1609 hcd = bus_to_hcd(urb->dev->bus);
1610 retval = unlink1(hcd, urb, status);
1611 if (retval == 0)
1612 retval = -EINPROGRESS;
1613 else if (retval != -EIDRM && retval != -EBUSY)
1614 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1615 urb, retval);
1616 usb_put_dev(udev);
1617 }
1618 return retval;
1619}
1620
1621/*-------------------------------------------------------------------------*/
1622
1623static void __usb_hcd_giveback_urb(struct urb *urb)
1624{
1625 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1626 struct usb_anchor *anchor = urb->anchor;
1627 int status = urb->unlinked;
1628
1629 urb->hcpriv = NULL;
1630 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1631 urb->actual_length < urb->transfer_buffer_length &&
1632 !status))
1633 status = -EREMOTEIO;
1634
1635 unmap_urb_for_dma(hcd, urb);
1636 usbmon_urb_complete(&hcd->self, urb, status);
1637 usb_anchor_suspend_wakeups(anchor);
1638 usb_unanchor_urb(urb);
1639 if (likely(status == 0))
1640 usb_led_activity(USB_LED_EVENT_HOST);
1641
1642 /* pass ownership to the completion handler */
1643 urb->status = status;
1644 /*
1645 * This function can be called in task context inside another remote
1646 * coverage collection section, but kcov doesn't support that kind of
1647 * recursion yet. Only collect coverage in softirq context for now.
1648 */
1649 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650 urb->complete(urb);
1651 kcov_remote_stop_softirq();
1652
1653 usb_anchor_resume_wakeups(anchor);
1654 atomic_dec(&urb->use_count);
1655 /*
1656 * Order the write of urb->use_count above before the read
1657 * of urb->reject below. Pairs with the memory barriers in
1658 * usb_kill_urb() and usb_poison_urb().
1659 */
1660 smp_mb__after_atomic();
1661
1662 if (unlikely(atomic_read(&urb->reject)))
1663 wake_up(&usb_kill_urb_queue);
1664 usb_put_urb(urb);
1665}
1666
1667static void usb_giveback_urb_bh(struct tasklet_struct *t)
1668{
1669 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1670 struct list_head local_list;
1671
1672 spin_lock_irq(&bh->lock);
1673 bh->running = true;
1674 list_replace_init(&bh->head, &local_list);
1675 spin_unlock_irq(&bh->lock);
1676
1677 while (!list_empty(&local_list)) {
1678 struct urb *urb;
1679
1680 urb = list_entry(local_list.next, struct urb, urb_list);
1681 list_del_init(&urb->urb_list);
1682 bh->completing_ep = urb->ep;
1683 __usb_hcd_giveback_urb(urb);
1684 bh->completing_ep = NULL;
1685 }
1686
1687 /*
1688 * giveback new URBs next time to prevent this function
1689 * from not exiting for a long time.
1690 */
1691 spin_lock_irq(&bh->lock);
1692 if (!list_empty(&bh->head)) {
1693 if (bh->high_prio)
1694 tasklet_hi_schedule(&bh->bh);
1695 else
1696 tasklet_schedule(&bh->bh);
1697 }
1698 bh->running = false;
1699 spin_unlock_irq(&bh->lock);
1700}
1701
1702/**
1703 * usb_hcd_giveback_urb - return URB from HCD to device driver
1704 * @hcd: host controller returning the URB
1705 * @urb: urb being returned to the USB device driver.
1706 * @status: completion status code for the URB.
1707 *
1708 * Context: atomic. The completion callback is invoked in caller's context.
1709 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1710 * context (except for URBs submitted to the root hub which always complete in
1711 * caller's context).
1712 *
1713 * This hands the URB from HCD to its USB device driver, using its
1714 * completion function. The HCD has freed all per-urb resources
1715 * (and is done using urb->hcpriv). It also released all HCD locks;
1716 * the device driver won't cause problems if it frees, modifies,
1717 * or resubmits this URB.
1718 *
1719 * If @urb was unlinked, the value of @status will be overridden by
1720 * @urb->unlinked. Erroneous short transfers are detected in case
1721 * the HCD hasn't checked for them.
1722 */
1723void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1724{
1725 struct giveback_urb_bh *bh;
1726 bool running;
1727
1728 /* pass status to tasklet via unlinked */
1729 if (likely(!urb->unlinked))
1730 urb->unlinked = status;
1731
1732 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1733 __usb_hcd_giveback_urb(urb);
1734 return;
1735 }
1736
1737 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1738 bh = &hcd->high_prio_bh;
1739 else
1740 bh = &hcd->low_prio_bh;
1741
1742 spin_lock(&bh->lock);
1743 list_add_tail(&urb->urb_list, &bh->head);
1744 running = bh->running;
1745 spin_unlock(&bh->lock);
1746
1747 if (running)
1748 ;
1749 else if (bh->high_prio)
1750 tasklet_hi_schedule(&bh->bh);
1751 else
1752 tasklet_schedule(&bh->bh);
1753}
1754EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1755
1756/*-------------------------------------------------------------------------*/
1757
1758/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1759 * queue to drain completely. The caller must first insure that no more
1760 * URBs can be submitted for this endpoint.
1761 */
1762void usb_hcd_flush_endpoint(struct usb_device *udev,
1763 struct usb_host_endpoint *ep)
1764{
1765 struct usb_hcd *hcd;
1766 struct urb *urb;
1767
1768 if (!ep)
1769 return;
1770 might_sleep();
1771 hcd = bus_to_hcd(udev->bus);
1772
1773 /* No more submits can occur */
1774 spin_lock_irq(&hcd_urb_list_lock);
1775rescan:
1776 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1777 int is_in;
1778
1779 if (urb->unlinked)
1780 continue;
1781 usb_get_urb (urb);
1782 is_in = usb_urb_dir_in(urb);
1783 spin_unlock(&hcd_urb_list_lock);
1784
1785 /* kick hcd */
1786 unlink1(hcd, urb, -ESHUTDOWN);
1787 dev_dbg (hcd->self.controller,
1788 "shutdown urb %pK ep%d%s-%s\n",
1789 urb, usb_endpoint_num(&ep->desc),
1790 is_in ? "in" : "out",
1791 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1792 usb_put_urb (urb);
1793
1794 /* list contents may have changed */
1795 spin_lock(&hcd_urb_list_lock);
1796 goto rescan;
1797 }
1798 spin_unlock_irq(&hcd_urb_list_lock);
1799
1800 /* Wait until the endpoint queue is completely empty */
1801 while (!list_empty (&ep->urb_list)) {
1802 spin_lock_irq(&hcd_urb_list_lock);
1803
1804 /* The list may have changed while we acquired the spinlock */
1805 urb = NULL;
1806 if (!list_empty (&ep->urb_list)) {
1807 urb = list_entry (ep->urb_list.prev, struct urb,
1808 urb_list);
1809 usb_get_urb (urb);
1810 }
1811 spin_unlock_irq(&hcd_urb_list_lock);
1812
1813 if (urb) {
1814 usb_kill_urb (urb);
1815 usb_put_urb (urb);
1816 }
1817 }
1818}
1819
1820/**
1821 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1822 * the bus bandwidth
1823 * @udev: target &usb_device
1824 * @new_config: new configuration to install
1825 * @cur_alt: the current alternate interface setting
1826 * @new_alt: alternate interface setting that is being installed
1827 *
1828 * To change configurations, pass in the new configuration in new_config,
1829 * and pass NULL for cur_alt and new_alt.
1830 *
1831 * To reset a device's configuration (put the device in the ADDRESSED state),
1832 * pass in NULL for new_config, cur_alt, and new_alt.
1833 *
1834 * To change alternate interface settings, pass in NULL for new_config,
1835 * pass in the current alternate interface setting in cur_alt,
1836 * and pass in the new alternate interface setting in new_alt.
1837 *
1838 * Return: An error if the requested bandwidth change exceeds the
1839 * bus bandwidth or host controller internal resources.
1840 */
1841int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1842 struct usb_host_config *new_config,
1843 struct usb_host_interface *cur_alt,
1844 struct usb_host_interface *new_alt)
1845{
1846 int num_intfs, i, j;
1847 struct usb_host_interface *alt = NULL;
1848 int ret = 0;
1849 struct usb_hcd *hcd;
1850 struct usb_host_endpoint *ep;
1851
1852 hcd = bus_to_hcd(udev->bus);
1853 if (!hcd->driver->check_bandwidth)
1854 return 0;
1855
1856 /* Configuration is being removed - set configuration 0 */
1857 if (!new_config && !cur_alt) {
1858 for (i = 1; i < 16; ++i) {
1859 ep = udev->ep_out[i];
1860 if (ep)
1861 hcd->driver->drop_endpoint(hcd, udev, ep);
1862 ep = udev->ep_in[i];
1863 if (ep)
1864 hcd->driver->drop_endpoint(hcd, udev, ep);
1865 }
1866 hcd->driver->check_bandwidth(hcd, udev);
1867 return 0;
1868 }
1869 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1870 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1871 * of the bus. There will always be bandwidth for endpoint 0, so it's
1872 * ok to exclude it.
1873 */
1874 if (new_config) {
1875 num_intfs = new_config->desc.bNumInterfaces;
1876 /* Remove endpoints (except endpoint 0, which is always on the
1877 * schedule) from the old config from the schedule
1878 */
1879 for (i = 1; i < 16; ++i) {
1880 ep = udev->ep_out[i];
1881 if (ep) {
1882 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1883 if (ret < 0)
1884 goto reset;
1885 }
1886 ep = udev->ep_in[i];
1887 if (ep) {
1888 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1889 if (ret < 0)
1890 goto reset;
1891 }
1892 }
1893 for (i = 0; i < num_intfs; ++i) {
1894 struct usb_host_interface *first_alt;
1895 int iface_num;
1896
1897 first_alt = &new_config->intf_cache[i]->altsetting[0];
1898 iface_num = first_alt->desc.bInterfaceNumber;
1899 /* Set up endpoints for alternate interface setting 0 */
1900 alt = usb_find_alt_setting(new_config, iface_num, 0);
1901 if (!alt)
1902 /* No alt setting 0? Pick the first setting. */
1903 alt = first_alt;
1904
1905 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1906 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1907 if (ret < 0)
1908 goto reset;
1909 }
1910 }
1911 }
1912 if (cur_alt && new_alt) {
1913 struct usb_interface *iface = usb_ifnum_to_if(udev,
1914 cur_alt->desc.bInterfaceNumber);
1915
1916 if (!iface)
1917 return -EINVAL;
1918 if (iface->resetting_device) {
1919 /*
1920 * The USB core just reset the device, so the xHCI host
1921 * and the device will think alt setting 0 is installed.
1922 * However, the USB core will pass in the alternate
1923 * setting installed before the reset as cur_alt. Dig
1924 * out the alternate setting 0 structure, or the first
1925 * alternate setting if a broken device doesn't have alt
1926 * setting 0.
1927 */
1928 cur_alt = usb_altnum_to_altsetting(iface, 0);
1929 if (!cur_alt)
1930 cur_alt = &iface->altsetting[0];
1931 }
1932
1933 /* Drop all the endpoints in the current alt setting */
1934 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1935 ret = hcd->driver->drop_endpoint(hcd, udev,
1936 &cur_alt->endpoint[i]);
1937 if (ret < 0)
1938 goto reset;
1939 }
1940 /* Add all the endpoints in the new alt setting */
1941 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1942 ret = hcd->driver->add_endpoint(hcd, udev,
1943 &new_alt->endpoint[i]);
1944 if (ret < 0)
1945 goto reset;
1946 }
1947 }
1948 ret = hcd->driver->check_bandwidth(hcd, udev);
1949reset:
1950 if (ret < 0)
1951 hcd->driver->reset_bandwidth(hcd, udev);
1952 return ret;
1953}
1954
1955/* Disables the endpoint: synchronizes with the hcd to make sure all
1956 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1957 * have been called previously. Use for set_configuration, set_interface,
1958 * driver removal, physical disconnect.
1959 *
1960 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1961 * type, maxpacket size, toggle, halt status, and scheduling.
1962 */
1963void usb_hcd_disable_endpoint(struct usb_device *udev,
1964 struct usb_host_endpoint *ep)
1965{
1966 struct usb_hcd *hcd;
1967
1968 might_sleep();
1969 hcd = bus_to_hcd(udev->bus);
1970 if (hcd->driver->endpoint_disable)
1971 hcd->driver->endpoint_disable(hcd, ep);
1972}
1973
1974/**
1975 * usb_hcd_reset_endpoint - reset host endpoint state
1976 * @udev: USB device.
1977 * @ep: the endpoint to reset.
1978 *
1979 * Resets any host endpoint state such as the toggle bit, sequence
1980 * number and current window.
1981 */
1982void usb_hcd_reset_endpoint(struct usb_device *udev,
1983 struct usb_host_endpoint *ep)
1984{
1985 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1986
1987 if (hcd->driver->endpoint_reset)
1988 hcd->driver->endpoint_reset(hcd, ep);
1989 else {
1990 int epnum = usb_endpoint_num(&ep->desc);
1991 int is_out = usb_endpoint_dir_out(&ep->desc);
1992 int is_control = usb_endpoint_xfer_control(&ep->desc);
1993
1994 usb_settoggle(udev, epnum, is_out, 0);
1995 if (is_control)
1996 usb_settoggle(udev, epnum, !is_out, 0);
1997 }
1998}
1999
2000/**
2001 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2002 * @interface: alternate setting that includes all endpoints.
2003 * @eps: array of endpoints that need streams.
2004 * @num_eps: number of endpoints in the array.
2005 * @num_streams: number of streams to allocate.
2006 * @mem_flags: flags hcd should use to allocate memory.
2007 *
2008 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2009 * Drivers may queue multiple transfers to different stream IDs, which may
2010 * complete in a different order than they were queued.
2011 *
2012 * Return: On success, the number of allocated streams. On failure, a negative
2013 * error code.
2014 */
2015int usb_alloc_streams(struct usb_interface *interface,
2016 struct usb_host_endpoint **eps, unsigned int num_eps,
2017 unsigned int num_streams, gfp_t mem_flags)
2018{
2019 struct usb_hcd *hcd;
2020 struct usb_device *dev;
2021 int i, ret;
2022
2023 dev = interface_to_usbdev(interface);
2024 hcd = bus_to_hcd(dev->bus);
2025 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2026 return -EINVAL;
2027 if (dev->speed < USB_SPEED_SUPER)
2028 return -EINVAL;
2029 if (dev->state < USB_STATE_CONFIGURED)
2030 return -ENODEV;
2031
2032 for (i = 0; i < num_eps; i++) {
2033 /* Streams only apply to bulk endpoints. */
2034 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2035 return -EINVAL;
2036 /* Re-alloc is not allowed */
2037 if (eps[i]->streams)
2038 return -EINVAL;
2039 }
2040
2041 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2042 num_streams, mem_flags);
2043 if (ret < 0)
2044 return ret;
2045
2046 for (i = 0; i < num_eps; i++)
2047 eps[i]->streams = ret;
2048
2049 return ret;
2050}
2051EXPORT_SYMBOL_GPL(usb_alloc_streams);
2052
2053/**
2054 * usb_free_streams - free bulk endpoint stream IDs.
2055 * @interface: alternate setting that includes all endpoints.
2056 * @eps: array of endpoints to remove streams from.
2057 * @num_eps: number of endpoints in the array.
2058 * @mem_flags: flags hcd should use to allocate memory.
2059 *
2060 * Reverts a group of bulk endpoints back to not using stream IDs.
2061 * Can fail if we are given bad arguments, or HCD is broken.
2062 *
2063 * Return: 0 on success. On failure, a negative error code.
2064 */
2065int usb_free_streams(struct usb_interface *interface,
2066 struct usb_host_endpoint **eps, unsigned int num_eps,
2067 gfp_t mem_flags)
2068{
2069 struct usb_hcd *hcd;
2070 struct usb_device *dev;
2071 int i, ret;
2072
2073 dev = interface_to_usbdev(interface);
2074 hcd = bus_to_hcd(dev->bus);
2075 if (dev->speed < USB_SPEED_SUPER)
2076 return -EINVAL;
2077
2078 /* Double-free is not allowed */
2079 for (i = 0; i < num_eps; i++)
2080 if (!eps[i] || !eps[i]->streams)
2081 return -EINVAL;
2082
2083 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2084 if (ret < 0)
2085 return ret;
2086
2087 for (i = 0; i < num_eps; i++)
2088 eps[i]->streams = 0;
2089
2090 return ret;
2091}
2092EXPORT_SYMBOL_GPL(usb_free_streams);
2093
2094/* Protect against drivers that try to unlink URBs after the device
2095 * is gone, by waiting until all unlinks for @udev are finished.
2096 * Since we don't currently track URBs by device, simply wait until
2097 * nothing is running in the locked region of usb_hcd_unlink_urb().
2098 */
2099void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2100{
2101 spin_lock_irq(&hcd_urb_unlink_lock);
2102 spin_unlock_irq(&hcd_urb_unlink_lock);
2103}
2104
2105/*-------------------------------------------------------------------------*/
2106
2107/* called in any context */
2108int usb_hcd_get_frame_number (struct usb_device *udev)
2109{
2110 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2111
2112 if (!HCD_RH_RUNNING(hcd))
2113 return -ESHUTDOWN;
2114 return hcd->driver->get_frame_number (hcd);
2115}
2116
2117/*-------------------------------------------------------------------------*/
2118#ifdef CONFIG_USB_HCD_TEST_MODE
2119
2120static void usb_ehset_completion(struct urb *urb)
2121{
2122 struct completion *done = urb->context;
2123
2124 complete(done);
2125}
2126/*
2127 * Allocate and initialize a control URB. This request will be used by the
2128 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2129 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2130 * Return NULL if failed.
2131 */
2132static struct urb *request_single_step_set_feature_urb(
2133 struct usb_device *udev,
2134 void *dr,
2135 void *buf,
2136 struct completion *done)
2137{
2138 struct urb *urb;
2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2140
2141 urb = usb_alloc_urb(0, GFP_KERNEL);
2142 if (!urb)
2143 return NULL;
2144
2145 urb->pipe = usb_rcvctrlpipe(udev, 0);
2146
2147 urb->ep = &udev->ep0;
2148 urb->dev = udev;
2149 urb->setup_packet = (void *)dr;
2150 urb->transfer_buffer = buf;
2151 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2152 urb->complete = usb_ehset_completion;
2153 urb->status = -EINPROGRESS;
2154 urb->actual_length = 0;
2155 urb->transfer_flags = URB_DIR_IN;
2156 usb_get_urb(urb);
2157 atomic_inc(&urb->use_count);
2158 atomic_inc(&urb->dev->urbnum);
2159 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2160 usb_put_urb(urb);
2161 usb_free_urb(urb);
2162 return NULL;
2163 }
2164
2165 urb->context = done;
2166 return urb;
2167}
2168
2169int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2170{
2171 int retval = -ENOMEM;
2172 struct usb_ctrlrequest *dr;
2173 struct urb *urb;
2174 struct usb_device *udev;
2175 struct usb_device_descriptor *buf;
2176 DECLARE_COMPLETION_ONSTACK(done);
2177
2178 /* Obtain udev of the rhub's child port */
2179 udev = usb_hub_find_child(hcd->self.root_hub, port);
2180 if (!udev) {
2181 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2182 return -ENODEV;
2183 }
2184 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2185 if (!buf)
2186 return -ENOMEM;
2187
2188 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2189 if (!dr) {
2190 kfree(buf);
2191 return -ENOMEM;
2192 }
2193
2194 /* Fill Setup packet for GetDescriptor */
2195 dr->bRequestType = USB_DIR_IN;
2196 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2197 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2198 dr->wIndex = 0;
2199 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2200 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2201 if (!urb)
2202 goto cleanup;
2203
2204 /* Submit just the SETUP stage */
2205 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2206 if (retval)
2207 goto out1;
2208 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2209 usb_kill_urb(urb);
2210 retval = -ETIMEDOUT;
2211 dev_err(hcd->self.controller,
2212 "%s SETUP stage timed out on ep0\n", __func__);
2213 goto out1;
2214 }
2215 msleep(15 * 1000);
2216
2217 /* Complete remaining DATA and STATUS stages using the same URB */
2218 urb->status = -EINPROGRESS;
2219 usb_get_urb(urb);
2220 atomic_inc(&urb->use_count);
2221 atomic_inc(&urb->dev->urbnum);
2222 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2223 if (!retval && !wait_for_completion_timeout(&done,
2224 msecs_to_jiffies(2000))) {
2225 usb_kill_urb(urb);
2226 retval = -ETIMEDOUT;
2227 dev_err(hcd->self.controller,
2228 "%s IN stage timed out on ep0\n", __func__);
2229 }
2230out1:
2231 usb_free_urb(urb);
2232cleanup:
2233 kfree(dr);
2234 kfree(buf);
2235 return retval;
2236}
2237EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2238#endif /* CONFIG_USB_HCD_TEST_MODE */
2239
2240/*-------------------------------------------------------------------------*/
2241
2242#ifdef CONFIG_PM
2243
2244int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2245{
2246 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2247 int status;
2248 int old_state = hcd->state;
2249
2250 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2251 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2252 rhdev->do_remote_wakeup);
2253 if (HCD_DEAD(hcd)) {
2254 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2255 return 0;
2256 }
2257
2258 if (!hcd->driver->bus_suspend) {
2259 status = -ENOENT;
2260 } else {
2261 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2262 hcd->state = HC_STATE_QUIESCING;
2263 status = hcd->driver->bus_suspend(hcd);
2264 }
2265 if (status == 0) {
2266 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2267 hcd->state = HC_STATE_SUSPENDED;
2268
2269 if (!PMSG_IS_AUTO(msg))
2270 usb_phy_roothub_suspend(hcd->self.sysdev,
2271 hcd->phy_roothub);
2272
2273 /* Did we race with a root-hub wakeup event? */
2274 if (rhdev->do_remote_wakeup) {
2275 char buffer[6];
2276
2277 status = hcd->driver->hub_status_data(hcd, buffer);
2278 if (status != 0) {
2279 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2280 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2281 status = -EBUSY;
2282 }
2283 }
2284 } else {
2285 spin_lock_irq(&hcd_root_hub_lock);
2286 if (!HCD_DEAD(hcd)) {
2287 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2288 hcd->state = old_state;
2289 }
2290 spin_unlock_irq(&hcd_root_hub_lock);
2291 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2292 "suspend", status);
2293 }
2294 return status;
2295}
2296
2297int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2298{
2299 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2300 int status;
2301 int old_state = hcd->state;
2302
2303 dev_dbg(&rhdev->dev, "usb %sresume\n",
2304 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2305 if (HCD_DEAD(hcd)) {
2306 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2307 return 0;
2308 }
2309
2310 if (!PMSG_IS_AUTO(msg)) {
2311 status = usb_phy_roothub_resume(hcd->self.sysdev,
2312 hcd->phy_roothub);
2313 if (status)
2314 return status;
2315 }
2316
2317 if (!hcd->driver->bus_resume)
2318 return -ENOENT;
2319 if (HCD_RH_RUNNING(hcd))
2320 return 0;
2321
2322 hcd->state = HC_STATE_RESUMING;
2323 status = hcd->driver->bus_resume(hcd);
2324 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2325 if (status == 0)
2326 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2327
2328 if (status == 0) {
2329 struct usb_device *udev;
2330 int port1;
2331
2332 spin_lock_irq(&hcd_root_hub_lock);
2333 if (!HCD_DEAD(hcd)) {
2334 usb_set_device_state(rhdev, rhdev->actconfig
2335 ? USB_STATE_CONFIGURED
2336 : USB_STATE_ADDRESS);
2337 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2338 hcd->state = HC_STATE_RUNNING;
2339 }
2340 spin_unlock_irq(&hcd_root_hub_lock);
2341
2342 /*
2343 * Check whether any of the enabled ports on the root hub are
2344 * unsuspended. If they are then a TRSMRCY delay is needed
2345 * (this is what the USB-2 spec calls a "global resume").
2346 * Otherwise we can skip the delay.
2347 */
2348 usb_hub_for_each_child(rhdev, port1, udev) {
2349 if (udev->state != USB_STATE_NOTATTACHED &&
2350 !udev->port_is_suspended) {
2351 usleep_range(10000, 11000); /* TRSMRCY */
2352 break;
2353 }
2354 }
2355 } else {
2356 hcd->state = old_state;
2357 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2358 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2359 "resume", status);
2360 if (status != -ESHUTDOWN)
2361 usb_hc_died(hcd);
2362 }
2363 return status;
2364}
2365
2366/* Workqueue routine for root-hub remote wakeup */
2367static void hcd_resume_work(struct work_struct *work)
2368{
2369 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2370 struct usb_device *udev = hcd->self.root_hub;
2371
2372 usb_remote_wakeup(udev);
2373}
2374
2375/**
2376 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2377 * @hcd: host controller for this root hub
2378 *
2379 * The USB host controller calls this function when its root hub is
2380 * suspended (with the remote wakeup feature enabled) and a remote
2381 * wakeup request is received. The routine submits a workqueue request
2382 * to resume the root hub (that is, manage its downstream ports again).
2383 */
2384void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2385{
2386 unsigned long flags;
2387
2388 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2389 if (hcd->rh_registered) {
2390 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2391 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2392 queue_work(pm_wq, &hcd->wakeup_work);
2393 }
2394 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2395}
2396EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2397
2398#endif /* CONFIG_PM */
2399
2400/*-------------------------------------------------------------------------*/
2401
2402#ifdef CONFIG_USB_OTG
2403
2404/**
2405 * usb_bus_start_enum - start immediate enumeration (for OTG)
2406 * @bus: the bus (must use hcd framework)
2407 * @port_num: 1-based number of port; usually bus->otg_port
2408 * Context: atomic
2409 *
2410 * Starts enumeration, with an immediate reset followed later by
2411 * hub_wq identifying and possibly configuring the device.
2412 * This is needed by OTG controller drivers, where it helps meet
2413 * HNP protocol timing requirements for starting a port reset.
2414 *
2415 * Return: 0 if successful.
2416 */
2417int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2418{
2419 struct usb_hcd *hcd;
2420 int status = -EOPNOTSUPP;
2421
2422 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2423 * boards with root hubs hooked up to internal devices (instead of
2424 * just the OTG port) may need more attention to resetting...
2425 */
2426 hcd = bus_to_hcd(bus);
2427 if (port_num && hcd->driver->start_port_reset)
2428 status = hcd->driver->start_port_reset(hcd, port_num);
2429
2430 /* allocate hub_wq shortly after (first) root port reset finishes;
2431 * it may issue others, until at least 50 msecs have passed.
2432 */
2433 if (status == 0)
2434 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2435 return status;
2436}
2437EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2438
2439#endif
2440
2441/*-------------------------------------------------------------------------*/
2442
2443/**
2444 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2445 * @irq: the IRQ being raised
2446 * @__hcd: pointer to the HCD whose IRQ is being signaled
2447 *
2448 * If the controller isn't HALTed, calls the driver's irq handler.
2449 * Checks whether the controller is now dead.
2450 *
2451 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2452 */
2453irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2454{
2455 struct usb_hcd *hcd = __hcd;
2456 irqreturn_t rc;
2457
2458 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2459 rc = IRQ_NONE;
2460 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2461 rc = IRQ_NONE;
2462 else
2463 rc = IRQ_HANDLED;
2464
2465 return rc;
2466}
2467EXPORT_SYMBOL_GPL(usb_hcd_irq);
2468
2469/*-------------------------------------------------------------------------*/
2470
2471/* Workqueue routine for when the root-hub has died. */
2472static void hcd_died_work(struct work_struct *work)
2473{
2474 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2475 static char *env[] = {
2476 "ERROR=DEAD",
2477 NULL
2478 };
2479
2480 /* Notify user space that the host controller has died */
2481 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2482}
2483
2484/**
2485 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2486 * @hcd: pointer to the HCD representing the controller
2487 *
2488 * This is called by bus glue to report a USB host controller that died
2489 * while operations may still have been pending. It's called automatically
2490 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2491 *
2492 * Only call this function with the primary HCD.
2493 */
2494void usb_hc_died (struct usb_hcd *hcd)
2495{
2496 unsigned long flags;
2497
2498 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2499
2500 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2501 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2502 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2503 if (hcd->rh_registered) {
2504 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2505
2506 /* make hub_wq clean up old urbs and devices */
2507 usb_set_device_state (hcd->self.root_hub,
2508 USB_STATE_NOTATTACHED);
2509 usb_kick_hub_wq(hcd->self.root_hub);
2510 }
2511 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2512 hcd = hcd->shared_hcd;
2513 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2514 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2515 if (hcd->rh_registered) {
2516 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2517
2518 /* make hub_wq clean up old urbs and devices */
2519 usb_set_device_state(hcd->self.root_hub,
2520 USB_STATE_NOTATTACHED);
2521 usb_kick_hub_wq(hcd->self.root_hub);
2522 }
2523 }
2524
2525 /* Handle the case where this function gets called with a shared HCD */
2526 if (usb_hcd_is_primary_hcd(hcd))
2527 schedule_work(&hcd->died_work);
2528 else
2529 schedule_work(&hcd->primary_hcd->died_work);
2530
2531 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2532 /* Make sure that the other roothub is also deallocated. */
2533}
2534EXPORT_SYMBOL_GPL (usb_hc_died);
2535
2536/*-------------------------------------------------------------------------*/
2537
2538static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2539{
2540
2541 spin_lock_init(&bh->lock);
2542 INIT_LIST_HEAD(&bh->head);
2543 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2544}
2545
2546struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2547 struct device *sysdev, struct device *dev, const char *bus_name,
2548 struct usb_hcd *primary_hcd)
2549{
2550 struct usb_hcd *hcd;
2551
2552 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2553 if (!hcd)
2554 return NULL;
2555 if (primary_hcd == NULL) {
2556 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2557 GFP_KERNEL);
2558 if (!hcd->address0_mutex) {
2559 kfree(hcd);
2560 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2561 return NULL;
2562 }
2563 mutex_init(hcd->address0_mutex);
2564 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2565 GFP_KERNEL);
2566 if (!hcd->bandwidth_mutex) {
2567 kfree(hcd->address0_mutex);
2568 kfree(hcd);
2569 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2570 return NULL;
2571 }
2572 mutex_init(hcd->bandwidth_mutex);
2573 dev_set_drvdata(dev, hcd);
2574 } else {
2575 mutex_lock(&usb_port_peer_mutex);
2576 hcd->address0_mutex = primary_hcd->address0_mutex;
2577 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2578 hcd->primary_hcd = primary_hcd;
2579 primary_hcd->primary_hcd = primary_hcd;
2580 hcd->shared_hcd = primary_hcd;
2581 primary_hcd->shared_hcd = hcd;
2582 mutex_unlock(&usb_port_peer_mutex);
2583 }
2584
2585 kref_init(&hcd->kref);
2586
2587 usb_bus_init(&hcd->self);
2588 hcd->self.controller = dev;
2589 hcd->self.sysdev = sysdev;
2590 hcd->self.bus_name = bus_name;
2591
2592 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2593#ifdef CONFIG_PM
2594 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2595#endif
2596
2597 INIT_WORK(&hcd->died_work, hcd_died_work);
2598
2599 hcd->driver = driver;
2600 hcd->speed = driver->flags & HCD_MASK;
2601 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2602 "USB Host Controller";
2603 return hcd;
2604}
2605EXPORT_SYMBOL_GPL(__usb_create_hcd);
2606
2607/**
2608 * usb_create_shared_hcd - create and initialize an HCD structure
2609 * @driver: HC driver that will use this hcd
2610 * @dev: device for this HC, stored in hcd->self.controller
2611 * @bus_name: value to store in hcd->self.bus_name
2612 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2613 * PCI device. Only allocate certain resources for the primary HCD
2614 *
2615 * Context: task context, might sleep.
2616 *
2617 * Allocate a struct usb_hcd, with extra space at the end for the
2618 * HC driver's private data. Initialize the generic members of the
2619 * hcd structure.
2620 *
2621 * Return: On success, a pointer to the created and initialized HCD structure.
2622 * On failure (e.g. if memory is unavailable), %NULL.
2623 */
2624struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2625 struct device *dev, const char *bus_name,
2626 struct usb_hcd *primary_hcd)
2627{
2628 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2629}
2630EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2631
2632/**
2633 * usb_create_hcd - create and initialize an HCD structure
2634 * @driver: HC driver that will use this hcd
2635 * @dev: device for this HC, stored in hcd->self.controller
2636 * @bus_name: value to store in hcd->self.bus_name
2637 *
2638 * Context: task context, might sleep.
2639 *
2640 * Allocate a struct usb_hcd, with extra space at the end for the
2641 * HC driver's private data. Initialize the generic members of the
2642 * hcd structure.
2643 *
2644 * Return: On success, a pointer to the created and initialized HCD
2645 * structure. On failure (e.g. if memory is unavailable), %NULL.
2646 */
2647struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2648 struct device *dev, const char *bus_name)
2649{
2650 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2651}
2652EXPORT_SYMBOL_GPL(usb_create_hcd);
2653
2654/*
2655 * Roothubs that share one PCI device must also share the bandwidth mutex.
2656 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2657 * deallocated.
2658 *
2659 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2660 * freed. When hcd_release() is called for either hcd in a peer set,
2661 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2662 */
2663static void hcd_release(struct kref *kref)
2664{
2665 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2666
2667 mutex_lock(&usb_port_peer_mutex);
2668 if (hcd->shared_hcd) {
2669 struct usb_hcd *peer = hcd->shared_hcd;
2670
2671 peer->shared_hcd = NULL;
2672 peer->primary_hcd = NULL;
2673 } else {
2674 kfree(hcd->address0_mutex);
2675 kfree(hcd->bandwidth_mutex);
2676 }
2677 mutex_unlock(&usb_port_peer_mutex);
2678 kfree(hcd);
2679}
2680
2681struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2682{
2683 if (hcd)
2684 kref_get (&hcd->kref);
2685 return hcd;
2686}
2687EXPORT_SYMBOL_GPL(usb_get_hcd);
2688
2689void usb_put_hcd (struct usb_hcd *hcd)
2690{
2691 if (hcd)
2692 kref_put (&hcd->kref, hcd_release);
2693}
2694EXPORT_SYMBOL_GPL(usb_put_hcd);
2695
2696int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2697{
2698 if (!hcd->primary_hcd)
2699 return 1;
2700 return hcd == hcd->primary_hcd;
2701}
2702EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2703
2704int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2705{
2706 if (!hcd->driver->find_raw_port_number)
2707 return port1;
2708
2709 return hcd->driver->find_raw_port_number(hcd, port1);
2710}
2711
2712static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2713 unsigned int irqnum, unsigned long irqflags)
2714{
2715 int retval;
2716
2717 if (hcd->driver->irq) {
2718
2719 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2720 hcd->driver->description, hcd->self.busnum);
2721 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2722 hcd->irq_descr, hcd);
2723 if (retval != 0) {
2724 dev_err(hcd->self.controller,
2725 "request interrupt %d failed\n",
2726 irqnum);
2727 return retval;
2728 }
2729 hcd->irq = irqnum;
2730 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2731 (hcd->driver->flags & HCD_MEMORY) ?
2732 "io mem" : "io port",
2733 (unsigned long long)hcd->rsrc_start);
2734 } else {
2735 hcd->irq = 0;
2736 if (hcd->rsrc_start)
2737 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2738 (hcd->driver->flags & HCD_MEMORY) ?
2739 "io mem" : "io port",
2740 (unsigned long long)hcd->rsrc_start);
2741 }
2742 return 0;
2743}
2744
2745/*
2746 * Before we free this root hub, flush in-flight peering attempts
2747 * and disable peer lookups
2748 */
2749static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2750{
2751 struct usb_device *rhdev;
2752
2753 mutex_lock(&usb_port_peer_mutex);
2754 rhdev = hcd->self.root_hub;
2755 hcd->self.root_hub = NULL;
2756 mutex_unlock(&usb_port_peer_mutex);
2757 usb_put_dev(rhdev);
2758}
2759
2760/**
2761 * usb_stop_hcd - Halt the HCD
2762 * @hcd: the usb_hcd that has to be halted
2763 *
2764 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2765 */
2766static void usb_stop_hcd(struct usb_hcd *hcd)
2767{
2768 hcd->rh_pollable = 0;
2769 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2770 del_timer_sync(&hcd->rh_timer);
2771
2772 hcd->driver->stop(hcd);
2773 hcd->state = HC_STATE_HALT;
2774
2775 /* In case the HCD restarted the timer, stop it again. */
2776 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2777 del_timer_sync(&hcd->rh_timer);
2778}
2779
2780/**
2781 * usb_add_hcd - finish generic HCD structure initialization and register
2782 * @hcd: the usb_hcd structure to initialize
2783 * @irqnum: Interrupt line to allocate
2784 * @irqflags: Interrupt type flags
2785 *
2786 * Finish the remaining parts of generic HCD initialization: allocate the
2787 * buffers of consistent memory, register the bus, request the IRQ line,
2788 * and call the driver's reset() and start() routines.
2789 */
2790int usb_add_hcd(struct usb_hcd *hcd,
2791 unsigned int irqnum, unsigned long irqflags)
2792{
2793 int retval;
2794 struct usb_device *rhdev;
2795 struct usb_hcd *shared_hcd;
2796
2797 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2798 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2799 if (IS_ERR(hcd->phy_roothub))
2800 return PTR_ERR(hcd->phy_roothub);
2801
2802 retval = usb_phy_roothub_init(hcd->phy_roothub);
2803 if (retval)
2804 return retval;
2805
2806 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2807 PHY_MODE_USB_HOST_SS);
2808 if (retval)
2809 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2810 PHY_MODE_USB_HOST);
2811 if (retval)
2812 goto err_usb_phy_roothub_power_on;
2813
2814 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2815 if (retval)
2816 goto err_usb_phy_roothub_power_on;
2817 }
2818
2819 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2820
2821 switch (authorized_default) {
2822 case USB_AUTHORIZE_NONE:
2823 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2824 break;
2825
2826 case USB_AUTHORIZE_INTERNAL:
2827 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2828 break;
2829
2830 case USB_AUTHORIZE_ALL:
2831 case USB_AUTHORIZE_WIRED:
2832 default:
2833 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2834 break;
2835 }
2836
2837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2838
2839 /* per default all interfaces are authorized */
2840 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2841
2842 /* HC is in reset state, but accessible. Now do the one-time init,
2843 * bottom up so that hcds can customize the root hubs before hub_wq
2844 * starts talking to them. (Note, bus id is assigned early too.)
2845 */
2846 retval = hcd_buffer_create(hcd);
2847 if (retval != 0) {
2848 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2849 goto err_create_buf;
2850 }
2851
2852 retval = usb_register_bus(&hcd->self);
2853 if (retval < 0)
2854 goto err_register_bus;
2855
2856 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2857 if (rhdev == NULL) {
2858 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2859 retval = -ENOMEM;
2860 goto err_allocate_root_hub;
2861 }
2862 mutex_lock(&usb_port_peer_mutex);
2863 hcd->self.root_hub = rhdev;
2864 mutex_unlock(&usb_port_peer_mutex);
2865
2866 rhdev->rx_lanes = 1;
2867 rhdev->tx_lanes = 1;
2868 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2869
2870 switch (hcd->speed) {
2871 case HCD_USB11:
2872 rhdev->speed = USB_SPEED_FULL;
2873 break;
2874 case HCD_USB2:
2875 rhdev->speed = USB_SPEED_HIGH;
2876 break;
2877 case HCD_USB3:
2878 rhdev->speed = USB_SPEED_SUPER;
2879 break;
2880 case HCD_USB32:
2881 rhdev->rx_lanes = 2;
2882 rhdev->tx_lanes = 2;
2883 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2884 rhdev->speed = USB_SPEED_SUPER_PLUS;
2885 break;
2886 case HCD_USB31:
2887 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2888 rhdev->speed = USB_SPEED_SUPER_PLUS;
2889 break;
2890 default:
2891 retval = -EINVAL;
2892 goto err_set_rh_speed;
2893 }
2894
2895 /* wakeup flag init defaults to "everything works" for root hubs,
2896 * but drivers can override it in reset() if needed, along with
2897 * recording the overall controller's system wakeup capability.
2898 */
2899 device_set_wakeup_capable(&rhdev->dev, 1);
2900
2901 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2902 * registered. But since the controller can die at any time,
2903 * let's initialize the flag before touching the hardware.
2904 */
2905 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2906
2907 /* "reset" is misnamed; its role is now one-time init. the controller
2908 * should already have been reset (and boot firmware kicked off etc).
2909 */
2910 if (hcd->driver->reset) {
2911 retval = hcd->driver->reset(hcd);
2912 if (retval < 0) {
2913 dev_err(hcd->self.controller, "can't setup: %d\n",
2914 retval);
2915 goto err_hcd_driver_setup;
2916 }
2917 }
2918 hcd->rh_pollable = 1;
2919
2920 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2921 if (retval)
2922 goto err_hcd_driver_setup;
2923
2924 /* NOTE: root hub and controller capabilities may not be the same */
2925 if (device_can_wakeup(hcd->self.controller)
2926 && device_can_wakeup(&hcd->self.root_hub->dev))
2927 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2928
2929 /* initialize tasklets */
2930 init_giveback_urb_bh(&hcd->high_prio_bh);
2931 hcd->high_prio_bh.high_prio = true;
2932 init_giveback_urb_bh(&hcd->low_prio_bh);
2933
2934 /* enable irqs just before we start the controller,
2935 * if the BIOS provides legacy PCI irqs.
2936 */
2937 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2938 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2939 if (retval)
2940 goto err_request_irq;
2941 }
2942
2943 hcd->state = HC_STATE_RUNNING;
2944 retval = hcd->driver->start(hcd);
2945 if (retval < 0) {
2946 dev_err(hcd->self.controller, "startup error %d\n", retval);
2947 goto err_hcd_driver_start;
2948 }
2949
2950 /* starting here, usbcore will pay attention to the shared HCD roothub */
2951 shared_hcd = hcd->shared_hcd;
2952 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2953 retval = register_root_hub(shared_hcd);
2954 if (retval != 0)
2955 goto err_register_root_hub;
2956
2957 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2958 usb_hcd_poll_rh_status(shared_hcd);
2959 }
2960
2961 /* starting here, usbcore will pay attention to this root hub */
2962 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2963 retval = register_root_hub(hcd);
2964 if (retval != 0)
2965 goto err_register_root_hub;
2966
2967 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2968 usb_hcd_poll_rh_status(hcd);
2969 }
2970
2971 return retval;
2972
2973err_register_root_hub:
2974 usb_stop_hcd(hcd);
2975err_hcd_driver_start:
2976 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2977 free_irq(irqnum, hcd);
2978err_request_irq:
2979err_hcd_driver_setup:
2980err_set_rh_speed:
2981 usb_put_invalidate_rhdev(hcd);
2982err_allocate_root_hub:
2983 usb_deregister_bus(&hcd->self);
2984err_register_bus:
2985 hcd_buffer_destroy(hcd);
2986err_create_buf:
2987 usb_phy_roothub_power_off(hcd->phy_roothub);
2988err_usb_phy_roothub_power_on:
2989 usb_phy_roothub_exit(hcd->phy_roothub);
2990
2991 return retval;
2992}
2993EXPORT_SYMBOL_GPL(usb_add_hcd);
2994
2995/**
2996 * usb_remove_hcd - shutdown processing for generic HCDs
2997 * @hcd: the usb_hcd structure to remove
2998 *
2999 * Context: task context, might sleep.
3000 *
3001 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3002 * invoking the HCD's stop() method.
3003 */
3004void usb_remove_hcd(struct usb_hcd *hcd)
3005{
3006 struct usb_device *rhdev;
3007 bool rh_registered;
3008
3009 if (!hcd) {
3010 pr_debug("%s: hcd is NULL\n", __func__);
3011 return;
3012 }
3013 rhdev = hcd->self.root_hub;
3014
3015 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3016
3017 usb_get_dev(rhdev);
3018 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3019 if (HC_IS_RUNNING (hcd->state))
3020 hcd->state = HC_STATE_QUIESCING;
3021
3022 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3023 spin_lock_irq (&hcd_root_hub_lock);
3024 rh_registered = hcd->rh_registered;
3025 hcd->rh_registered = 0;
3026 spin_unlock_irq (&hcd_root_hub_lock);
3027
3028#ifdef CONFIG_PM
3029 cancel_work_sync(&hcd->wakeup_work);
3030#endif
3031 cancel_work_sync(&hcd->died_work);
3032
3033 mutex_lock(&usb_bus_idr_lock);
3034 if (rh_registered)
3035 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3036 mutex_unlock(&usb_bus_idr_lock);
3037
3038 /*
3039 * tasklet_kill() isn't needed here because:
3040 * - driver's disconnect() called from usb_disconnect() should
3041 * make sure its URBs are completed during the disconnect()
3042 * callback
3043 *
3044 * - it is too late to run complete() here since driver may have
3045 * been removed already now
3046 */
3047
3048 /* Prevent any more root-hub status calls from the timer.
3049 * The HCD might still restart the timer (if a port status change
3050 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3051 * the hub_status_data() callback.
3052 */
3053 usb_stop_hcd(hcd);
3054
3055 if (usb_hcd_is_primary_hcd(hcd)) {
3056 if (hcd->irq > 0)
3057 free_irq(hcd->irq, hcd);
3058 }
3059
3060 usb_deregister_bus(&hcd->self);
3061 hcd_buffer_destroy(hcd);
3062
3063 usb_phy_roothub_power_off(hcd->phy_roothub);
3064 usb_phy_roothub_exit(hcd->phy_roothub);
3065
3066 usb_put_invalidate_rhdev(hcd);
3067 hcd->flags = 0;
3068}
3069EXPORT_SYMBOL_GPL(usb_remove_hcd);
3070
3071void
3072usb_hcd_platform_shutdown(struct platform_device *dev)
3073{
3074 struct usb_hcd *hcd = platform_get_drvdata(dev);
3075
3076 /* No need for pm_runtime_put(), we're shutting down */
3077 pm_runtime_get_sync(&dev->dev);
3078
3079 if (hcd->driver->shutdown)
3080 hcd->driver->shutdown(hcd);
3081}
3082EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3083
3084int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3085 dma_addr_t dma, size_t size)
3086{
3087 int err;
3088 void *local_mem;
3089
3090 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3091 dev_to_node(hcd->self.sysdev),
3092 dev_name(hcd->self.sysdev));
3093 if (IS_ERR(hcd->localmem_pool))
3094 return PTR_ERR(hcd->localmem_pool);
3095
3096 /*
3097 * if a physical SRAM address was passed, map it, otherwise
3098 * allocate system memory as a buffer.
3099 */
3100 if (phys_addr)
3101 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3102 size, MEMREMAP_WC);
3103 else
3104 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3105 GFP_KERNEL,
3106 DMA_ATTR_WRITE_COMBINE);
3107
3108 if (IS_ERR_OR_NULL(local_mem)) {
3109 if (!local_mem)
3110 return -ENOMEM;
3111
3112 return PTR_ERR(local_mem);
3113 }
3114
3115 /*
3116 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3117 * It's not backed by system memory and thus there's no kernel mapping
3118 * for it.
3119 */
3120 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3121 dma, size, dev_to_node(hcd->self.sysdev));
3122 if (err < 0) {
3123 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3124 err);
3125 return err;
3126 }
3127
3128 return 0;
3129}
3130EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3131
3132/*-------------------------------------------------------------------------*/
3133
3134#if IS_ENABLED(CONFIG_USB_MON)
3135
3136const struct usb_mon_operations *mon_ops;
3137
3138/*
3139 * The registration is unlocked.
3140 * We do it this way because we do not want to lock in hot paths.
3141 *
3142 * Notice that the code is minimally error-proof. Because usbmon needs
3143 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3144 */
3145
3146int usb_mon_register(const struct usb_mon_operations *ops)
3147{
3148
3149 if (mon_ops)
3150 return -EBUSY;
3151
3152 mon_ops = ops;
3153 mb();
3154 return 0;
3155}
3156EXPORT_SYMBOL_GPL (usb_mon_register);
3157
3158void usb_mon_deregister (void)
3159{
3160
3161 if (mon_ops == NULL) {
3162 printk(KERN_ERR "USB: monitor was not registered\n");
3163 return;
3164 }
3165 mon_ops = NULL;
3166 mb();
3167}
3168EXPORT_SYMBOL_GPL (usb_mon_deregister);
3169
3170#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32
33#include <linux/phy/phy.h>
34#include <linux/usb.h>
35#include <linux/usb/hcd.h>
36#include <linux/usb/phy.h>
37#include <linux/usb/otg.h>
38
39#include "usb.h"
40#include "phy.h"
41
42
43/*-------------------------------------------------------------------------*/
44
45/*
46 * USB Host Controller Driver framework
47 *
48 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
49 * HCD-specific behaviors/bugs.
50 *
51 * This does error checks, tracks devices and urbs, and delegates to a
52 * "hc_driver" only for code (and data) that really needs to know about
53 * hardware differences. That includes root hub registers, i/o queues,
54 * and so on ... but as little else as possible.
55 *
56 * Shared code includes most of the "root hub" code (these are emulated,
57 * though each HC's hardware works differently) and PCI glue, plus request
58 * tracking overhead. The HCD code should only block on spinlocks or on
59 * hardware handshaking; blocking on software events (such as other kernel
60 * threads releasing resources, or completing actions) is all generic.
61 *
62 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
63 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
64 * only by the hub driver ... and that neither should be seen or used by
65 * usb client device drivers.
66 *
67 * Contributors of ideas or unattributed patches include: David Brownell,
68 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
69 *
70 * HISTORY:
71 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
72 * associated cleanup. "usb_hcd" still != "usb_bus".
73 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
74 */
75
76/*-------------------------------------------------------------------------*/
77
78/* Keep track of which host controller drivers are loaded */
79unsigned long usb_hcds_loaded;
80EXPORT_SYMBOL_GPL(usb_hcds_loaded);
81
82/* host controllers we manage */
83DEFINE_IDR (usb_bus_idr);
84EXPORT_SYMBOL_GPL (usb_bus_idr);
85
86/* used when allocating bus numbers */
87#define USB_MAXBUS 64
88
89/* used when updating list of hcds */
90DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
91EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
92
93/* used for controlling access to virtual root hubs */
94static DEFINE_SPINLOCK(hcd_root_hub_lock);
95
96/* used when updating an endpoint's URB list */
97static DEFINE_SPINLOCK(hcd_urb_list_lock);
98
99/* used to protect against unlinking URBs after the device is gone */
100static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
101
102/* wait queue for synchronous unlinks */
103DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
104
105static inline int is_root_hub(struct usb_device *udev)
106{
107 return (udev->parent == NULL);
108}
109
110/*-------------------------------------------------------------------------*/
111
112/*
113 * Sharable chunks of root hub code.
114 */
115
116/*-------------------------------------------------------------------------*/
117#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
118#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119
120/* usb 3.1 root hub device descriptor */
121static const u8 usb31_rh_dev_descriptor[18] = {
122 0x12, /* __u8 bLength; */
123 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
124 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
125
126 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
127 0x00, /* __u8 bDeviceSubClass; */
128 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
129 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
130
131 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
132 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
133 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
134
135 0x03, /* __u8 iManufacturer; */
136 0x02, /* __u8 iProduct; */
137 0x01, /* __u8 iSerialNumber; */
138 0x01 /* __u8 bNumConfigurations; */
139};
140
141/* usb 3.0 root hub device descriptor */
142static const u8 usb3_rh_dev_descriptor[18] = {
143 0x12, /* __u8 bLength; */
144 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
145 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
146
147 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
148 0x00, /* __u8 bDeviceSubClass; */
149 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
150 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
151
152 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
153 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
154 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
155
156 0x03, /* __u8 iManufacturer; */
157 0x02, /* __u8 iProduct; */
158 0x01, /* __u8 iSerialNumber; */
159 0x01 /* __u8 bNumConfigurations; */
160};
161
162/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
163static const u8 usb25_rh_dev_descriptor[18] = {
164 0x12, /* __u8 bLength; */
165 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
166 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
167
168 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
169 0x00, /* __u8 bDeviceSubClass; */
170 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
171 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172
173 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
174 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
175 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
176
177 0x03, /* __u8 iManufacturer; */
178 0x02, /* __u8 iProduct; */
179 0x01, /* __u8 iSerialNumber; */
180 0x01 /* __u8 bNumConfigurations; */
181};
182
183/* usb 2.0 root hub device descriptor */
184static const u8 usb2_rh_dev_descriptor[18] = {
185 0x12, /* __u8 bLength; */
186 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
187 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
188
189 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
190 0x00, /* __u8 bDeviceSubClass; */
191 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
192 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
193
194 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
195 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
196 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
197
198 0x03, /* __u8 iManufacturer; */
199 0x02, /* __u8 iProduct; */
200 0x01, /* __u8 iSerialNumber; */
201 0x01 /* __u8 bNumConfigurations; */
202};
203
204/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205
206/* usb 1.1 root hub device descriptor */
207static const u8 usb11_rh_dev_descriptor[18] = {
208 0x12, /* __u8 bLength; */
209 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
210 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
211
212 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
213 0x00, /* __u8 bDeviceSubClass; */
214 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
215 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
216
217 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
218 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
219 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
220
221 0x03, /* __u8 iManufacturer; */
222 0x02, /* __u8 iProduct; */
223 0x01, /* __u8 iSerialNumber; */
224 0x01 /* __u8 bNumConfigurations; */
225};
226
227
228/*-------------------------------------------------------------------------*/
229
230/* Configuration descriptors for our root hubs */
231
232static const u8 fs_rh_config_descriptor[] = {
233
234 /* one configuration */
235 0x09, /* __u8 bLength; */
236 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
237 0x19, 0x00, /* __le16 wTotalLength; */
238 0x01, /* __u8 bNumInterfaces; (1) */
239 0x01, /* __u8 bConfigurationValue; */
240 0x00, /* __u8 iConfiguration; */
241 0xc0, /* __u8 bmAttributes;
242 Bit 7: must be set,
243 6: Self-powered,
244 5: Remote wakeup,
245 4..0: resvd */
246 0x00, /* __u8 MaxPower; */
247
248 /* USB 1.1:
249 * USB 2.0, single TT organization (mandatory):
250 * one interface, protocol 0
251 *
252 * USB 2.0, multiple TT organization (optional):
253 * two interfaces, protocols 1 (like single TT)
254 * and 2 (multiple TT mode) ... config is
255 * sometimes settable
256 * NOT IMPLEMENTED
257 */
258
259 /* one interface */
260 0x09, /* __u8 if_bLength; */
261 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
262 0x00, /* __u8 if_bInterfaceNumber; */
263 0x00, /* __u8 if_bAlternateSetting; */
264 0x01, /* __u8 if_bNumEndpoints; */
265 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
266 0x00, /* __u8 if_bInterfaceSubClass; */
267 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
268 0x00, /* __u8 if_iInterface; */
269
270 /* one endpoint (status change endpoint) */
271 0x07, /* __u8 ep_bLength; */
272 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
273 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
274 0x03, /* __u8 ep_bmAttributes; Interrupt */
275 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
276 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
277};
278
279static const u8 hs_rh_config_descriptor[] = {
280
281 /* one configuration */
282 0x09, /* __u8 bLength; */
283 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
284 0x19, 0x00, /* __le16 wTotalLength; */
285 0x01, /* __u8 bNumInterfaces; (1) */
286 0x01, /* __u8 bConfigurationValue; */
287 0x00, /* __u8 iConfiguration; */
288 0xc0, /* __u8 bmAttributes;
289 Bit 7: must be set,
290 6: Self-powered,
291 5: Remote wakeup,
292 4..0: resvd */
293 0x00, /* __u8 MaxPower; */
294
295 /* USB 1.1:
296 * USB 2.0, single TT organization (mandatory):
297 * one interface, protocol 0
298 *
299 * USB 2.0, multiple TT organization (optional):
300 * two interfaces, protocols 1 (like single TT)
301 * and 2 (multiple TT mode) ... config is
302 * sometimes settable
303 * NOT IMPLEMENTED
304 */
305
306 /* one interface */
307 0x09, /* __u8 if_bLength; */
308 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
309 0x00, /* __u8 if_bInterfaceNumber; */
310 0x00, /* __u8 if_bAlternateSetting; */
311 0x01, /* __u8 if_bNumEndpoints; */
312 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
313 0x00, /* __u8 if_bInterfaceSubClass; */
314 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
315 0x00, /* __u8 if_iInterface; */
316
317 /* one endpoint (status change endpoint) */
318 0x07, /* __u8 ep_bLength; */
319 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
320 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
321 0x03, /* __u8 ep_bmAttributes; Interrupt */
322 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
323 * see hub.c:hub_configure() for details. */
324 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
325 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
326};
327
328static const u8 ss_rh_config_descriptor[] = {
329 /* one configuration */
330 0x09, /* __u8 bLength; */
331 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
332 0x1f, 0x00, /* __le16 wTotalLength; */
333 0x01, /* __u8 bNumInterfaces; (1) */
334 0x01, /* __u8 bConfigurationValue; */
335 0x00, /* __u8 iConfiguration; */
336 0xc0, /* __u8 bmAttributes;
337 Bit 7: must be set,
338 6: Self-powered,
339 5: Remote wakeup,
340 4..0: resvd */
341 0x00, /* __u8 MaxPower; */
342
343 /* one interface */
344 0x09, /* __u8 if_bLength; */
345 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
346 0x00, /* __u8 if_bInterfaceNumber; */
347 0x00, /* __u8 if_bAlternateSetting; */
348 0x01, /* __u8 if_bNumEndpoints; */
349 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
350 0x00, /* __u8 if_bInterfaceSubClass; */
351 0x00, /* __u8 if_bInterfaceProtocol; */
352 0x00, /* __u8 if_iInterface; */
353
354 /* one endpoint (status change endpoint) */
355 0x07, /* __u8 ep_bLength; */
356 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
357 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
358 0x03, /* __u8 ep_bmAttributes; Interrupt */
359 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
360 * see hub.c:hub_configure() for details. */
361 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
362 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
363
364 /* one SuperSpeed endpoint companion descriptor */
365 0x06, /* __u8 ss_bLength */
366 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 /* Companion */
368 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
369 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
370 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
371};
372
373/* authorized_default behaviour:
374 * -1 is authorized for all devices except wireless (old behaviour)
375 * 0 is unauthorized for all devices
376 * 1 is authorized for all devices
377 */
378static int authorized_default = -1;
379module_param(authorized_default, int, S_IRUGO|S_IWUSR);
380MODULE_PARM_DESC(authorized_default,
381 "Default USB device authorization: 0 is not authorized, 1 is "
382 "authorized, -1 is authorized except for wireless USB (default, "
383 "old behaviour");
384/*-------------------------------------------------------------------------*/
385
386/**
387 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
388 * @s: Null-terminated ASCII (actually ISO-8859-1) string
389 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
390 * @len: Length (in bytes; may be odd) of descriptor buffer.
391 *
392 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
393 * whichever is less.
394 *
395 * Note:
396 * USB String descriptors can contain at most 126 characters; input
397 * strings longer than that are truncated.
398 */
399static unsigned
400ascii2desc(char const *s, u8 *buf, unsigned len)
401{
402 unsigned n, t = 2 + 2*strlen(s);
403
404 if (t > 254)
405 t = 254; /* Longest possible UTF string descriptor */
406 if (len > t)
407 len = t;
408
409 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
410
411 n = len;
412 while (n--) {
413 *buf++ = t;
414 if (!n--)
415 break;
416 *buf++ = t >> 8;
417 t = (unsigned char)*s++;
418 }
419 return len;
420}
421
422/**
423 * rh_string() - provides string descriptors for root hub
424 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
425 * @hcd: the host controller for this root hub
426 * @data: buffer for output packet
427 * @len: length of the provided buffer
428 *
429 * Produces either a manufacturer, product or serial number string for the
430 * virtual root hub device.
431 *
432 * Return: The number of bytes filled in: the length of the descriptor or
433 * of the provided buffer, whichever is less.
434 */
435static unsigned
436rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
437{
438 char buf[100];
439 char const *s;
440 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
441
442 /* language ids */
443 switch (id) {
444 case 0:
445 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
446 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
447 if (len > 4)
448 len = 4;
449 memcpy(data, langids, len);
450 return len;
451 case 1:
452 /* Serial number */
453 s = hcd->self.bus_name;
454 break;
455 case 2:
456 /* Product name */
457 s = hcd->product_desc;
458 break;
459 case 3:
460 /* Manufacturer */
461 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
462 init_utsname()->release, hcd->driver->description);
463 s = buf;
464 break;
465 default:
466 /* Can't happen; caller guarantees it */
467 return 0;
468 }
469
470 return ascii2desc(s, data, len);
471}
472
473
474/* Root hub control transfers execute synchronously */
475static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
476{
477 struct usb_ctrlrequest *cmd;
478 u16 typeReq, wValue, wIndex, wLength;
479 u8 *ubuf = urb->transfer_buffer;
480 unsigned len = 0;
481 int status;
482 u8 patch_wakeup = 0;
483 u8 patch_protocol = 0;
484 u16 tbuf_size;
485 u8 *tbuf = NULL;
486 const u8 *bufp;
487
488 might_sleep();
489
490 spin_lock_irq(&hcd_root_hub_lock);
491 status = usb_hcd_link_urb_to_ep(hcd, urb);
492 spin_unlock_irq(&hcd_root_hub_lock);
493 if (status)
494 return status;
495 urb->hcpriv = hcd; /* Indicate it's queued */
496
497 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
498 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
499 wValue = le16_to_cpu (cmd->wValue);
500 wIndex = le16_to_cpu (cmd->wIndex);
501 wLength = le16_to_cpu (cmd->wLength);
502
503 if (wLength > urb->transfer_buffer_length)
504 goto error;
505
506 /*
507 * tbuf should be at least as big as the
508 * USB hub descriptor.
509 */
510 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
511 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
512 if (!tbuf) {
513 status = -ENOMEM;
514 goto err_alloc;
515 }
516
517 bufp = tbuf;
518
519
520 urb->actual_length = 0;
521 switch (typeReq) {
522
523 /* DEVICE REQUESTS */
524
525 /* The root hub's remote wakeup enable bit is implemented using
526 * driver model wakeup flags. If this system supports wakeup
527 * through USB, userspace may change the default "allow wakeup"
528 * policy through sysfs or these calls.
529 *
530 * Most root hubs support wakeup from downstream devices, for
531 * runtime power management (disabling USB clocks and reducing
532 * VBUS power usage). However, not all of them do so; silicon,
533 * board, and BIOS bugs here are not uncommon, so these can't
534 * be treated quite like external hubs.
535 *
536 * Likewise, not all root hubs will pass wakeup events upstream,
537 * to wake up the whole system. So don't assume root hub and
538 * controller capabilities are identical.
539 */
540
541 case DeviceRequest | USB_REQ_GET_STATUS:
542 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
543 << USB_DEVICE_REMOTE_WAKEUP)
544 | (1 << USB_DEVICE_SELF_POWERED);
545 tbuf[1] = 0;
546 len = 2;
547 break;
548 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
549 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
550 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
551 else
552 goto error;
553 break;
554 case DeviceOutRequest | USB_REQ_SET_FEATURE:
555 if (device_can_wakeup(&hcd->self.root_hub->dev)
556 && wValue == USB_DEVICE_REMOTE_WAKEUP)
557 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
558 else
559 goto error;
560 break;
561 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
562 tbuf[0] = 1;
563 len = 1;
564 /* FALLTHROUGH */
565 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
566 break;
567 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
568 switch (wValue & 0xff00) {
569 case USB_DT_DEVICE << 8:
570 switch (hcd->speed) {
571 case HCD_USB31:
572 bufp = usb31_rh_dev_descriptor;
573 break;
574 case HCD_USB3:
575 bufp = usb3_rh_dev_descriptor;
576 break;
577 case HCD_USB25:
578 bufp = usb25_rh_dev_descriptor;
579 break;
580 case HCD_USB2:
581 bufp = usb2_rh_dev_descriptor;
582 break;
583 case HCD_USB11:
584 bufp = usb11_rh_dev_descriptor;
585 break;
586 default:
587 goto error;
588 }
589 len = 18;
590 if (hcd->has_tt)
591 patch_protocol = 1;
592 break;
593 case USB_DT_CONFIG << 8:
594 switch (hcd->speed) {
595 case HCD_USB31:
596 case HCD_USB3:
597 bufp = ss_rh_config_descriptor;
598 len = sizeof ss_rh_config_descriptor;
599 break;
600 case HCD_USB25:
601 case HCD_USB2:
602 bufp = hs_rh_config_descriptor;
603 len = sizeof hs_rh_config_descriptor;
604 break;
605 case HCD_USB11:
606 bufp = fs_rh_config_descriptor;
607 len = sizeof fs_rh_config_descriptor;
608 break;
609 default:
610 goto error;
611 }
612 if (device_can_wakeup(&hcd->self.root_hub->dev))
613 patch_wakeup = 1;
614 break;
615 case USB_DT_STRING << 8:
616 if ((wValue & 0xff) < 4)
617 urb->actual_length = rh_string(wValue & 0xff,
618 hcd, ubuf, wLength);
619 else /* unsupported IDs --> "protocol stall" */
620 goto error;
621 break;
622 case USB_DT_BOS << 8:
623 goto nongeneric;
624 default:
625 goto error;
626 }
627 break;
628 case DeviceRequest | USB_REQ_GET_INTERFACE:
629 tbuf[0] = 0;
630 len = 1;
631 /* FALLTHROUGH */
632 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
633 break;
634 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
635 /* wValue == urb->dev->devaddr */
636 dev_dbg (hcd->self.controller, "root hub device address %d\n",
637 wValue);
638 break;
639
640 /* INTERFACE REQUESTS (no defined feature/status flags) */
641
642 /* ENDPOINT REQUESTS */
643
644 case EndpointRequest | USB_REQ_GET_STATUS:
645 /* ENDPOINT_HALT flag */
646 tbuf[0] = 0;
647 tbuf[1] = 0;
648 len = 2;
649 /* FALLTHROUGH */
650 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
651 case EndpointOutRequest | USB_REQ_SET_FEATURE:
652 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
653 break;
654
655 /* CLASS REQUESTS (and errors) */
656
657 default:
658nongeneric:
659 /* non-generic request */
660 switch (typeReq) {
661 case GetHubStatus:
662 len = 4;
663 break;
664 case GetPortStatus:
665 if (wValue == HUB_PORT_STATUS)
666 len = 4;
667 else
668 /* other port status types return 8 bytes */
669 len = 8;
670 break;
671 case GetHubDescriptor:
672 len = sizeof (struct usb_hub_descriptor);
673 break;
674 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
675 /* len is returned by hub_control */
676 break;
677 }
678 status = hcd->driver->hub_control (hcd,
679 typeReq, wValue, wIndex,
680 tbuf, wLength);
681
682 if (typeReq == GetHubDescriptor)
683 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
684 (struct usb_hub_descriptor *)tbuf);
685 break;
686error:
687 /* "protocol stall" on error */
688 status = -EPIPE;
689 }
690
691 if (status < 0) {
692 len = 0;
693 if (status != -EPIPE) {
694 dev_dbg (hcd->self.controller,
695 "CTRL: TypeReq=0x%x val=0x%x "
696 "idx=0x%x len=%d ==> %d\n",
697 typeReq, wValue, wIndex,
698 wLength, status);
699 }
700 } else if (status > 0) {
701 /* hub_control may return the length of data copied. */
702 len = status;
703 status = 0;
704 }
705 if (len) {
706 if (urb->transfer_buffer_length < len)
707 len = urb->transfer_buffer_length;
708 urb->actual_length = len;
709 /* always USB_DIR_IN, toward host */
710 memcpy (ubuf, bufp, len);
711
712 /* report whether RH hardware supports remote wakeup */
713 if (patch_wakeup &&
714 len > offsetof (struct usb_config_descriptor,
715 bmAttributes))
716 ((struct usb_config_descriptor *)ubuf)->bmAttributes
717 |= USB_CONFIG_ATT_WAKEUP;
718
719 /* report whether RH hardware has an integrated TT */
720 if (patch_protocol &&
721 len > offsetof(struct usb_device_descriptor,
722 bDeviceProtocol))
723 ((struct usb_device_descriptor *) ubuf)->
724 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
725 }
726
727 kfree(tbuf);
728 err_alloc:
729
730 /* any errors get returned through the urb completion */
731 spin_lock_irq(&hcd_root_hub_lock);
732 usb_hcd_unlink_urb_from_ep(hcd, urb);
733 usb_hcd_giveback_urb(hcd, urb, status);
734 spin_unlock_irq(&hcd_root_hub_lock);
735 return 0;
736}
737
738/*-------------------------------------------------------------------------*/
739
740/*
741 * Root Hub interrupt transfers are polled using a timer if the
742 * driver requests it; otherwise the driver is responsible for
743 * calling usb_hcd_poll_rh_status() when an event occurs.
744 *
745 * Completions are called in_interrupt(), but they may or may not
746 * be in_irq().
747 */
748void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
749{
750 struct urb *urb;
751 int length;
752 unsigned long flags;
753 char buffer[6]; /* Any root hubs with > 31 ports? */
754
755 if (unlikely(!hcd->rh_pollable))
756 return;
757 if (!hcd->uses_new_polling && !hcd->status_urb)
758 return;
759
760 length = hcd->driver->hub_status_data(hcd, buffer);
761 if (length > 0) {
762
763 /* try to complete the status urb */
764 spin_lock_irqsave(&hcd_root_hub_lock, flags);
765 urb = hcd->status_urb;
766 if (urb) {
767 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
768 hcd->status_urb = NULL;
769 urb->actual_length = length;
770 memcpy(urb->transfer_buffer, buffer, length);
771
772 usb_hcd_unlink_urb_from_ep(hcd, urb);
773 usb_hcd_giveback_urb(hcd, urb, 0);
774 } else {
775 length = 0;
776 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
777 }
778 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
779 }
780
781 /* The USB 2.0 spec says 256 ms. This is close enough and won't
782 * exceed that limit if HZ is 100. The math is more clunky than
783 * maybe expected, this is to make sure that all timers for USB devices
784 * fire at the same time to give the CPU a break in between */
785 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
786 (length == 0 && hcd->status_urb != NULL))
787 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
788}
789EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
790
791/* timer callback */
792static void rh_timer_func (struct timer_list *t)
793{
794 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
795
796 usb_hcd_poll_rh_status(_hcd);
797}
798
799/*-------------------------------------------------------------------------*/
800
801static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
802{
803 int retval;
804 unsigned long flags;
805 unsigned len = 1 + (urb->dev->maxchild / 8);
806
807 spin_lock_irqsave (&hcd_root_hub_lock, flags);
808 if (hcd->status_urb || urb->transfer_buffer_length < len) {
809 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
810 retval = -EINVAL;
811 goto done;
812 }
813
814 retval = usb_hcd_link_urb_to_ep(hcd, urb);
815 if (retval)
816 goto done;
817
818 hcd->status_urb = urb;
819 urb->hcpriv = hcd; /* indicate it's queued */
820 if (!hcd->uses_new_polling)
821 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
822
823 /* If a status change has already occurred, report it ASAP */
824 else if (HCD_POLL_PENDING(hcd))
825 mod_timer(&hcd->rh_timer, jiffies);
826 retval = 0;
827 done:
828 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
829 return retval;
830}
831
832static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
833{
834 if (usb_endpoint_xfer_int(&urb->ep->desc))
835 return rh_queue_status (hcd, urb);
836 if (usb_endpoint_xfer_control(&urb->ep->desc))
837 return rh_call_control (hcd, urb);
838 return -EINVAL;
839}
840
841/*-------------------------------------------------------------------------*/
842
843/* Unlinks of root-hub control URBs are legal, but they don't do anything
844 * since these URBs always execute synchronously.
845 */
846static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
847{
848 unsigned long flags;
849 int rc;
850
851 spin_lock_irqsave(&hcd_root_hub_lock, flags);
852 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
853 if (rc)
854 goto done;
855
856 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
857 ; /* Do nothing */
858
859 } else { /* Status URB */
860 if (!hcd->uses_new_polling)
861 del_timer (&hcd->rh_timer);
862 if (urb == hcd->status_urb) {
863 hcd->status_urb = NULL;
864 usb_hcd_unlink_urb_from_ep(hcd, urb);
865 usb_hcd_giveback_urb(hcd, urb, status);
866 }
867 }
868 done:
869 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
870 return rc;
871}
872
873
874
875/*
876 * Show & store the current value of authorized_default
877 */
878static ssize_t authorized_default_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880{
881 struct usb_device *rh_usb_dev = to_usb_device(dev);
882 struct usb_bus *usb_bus = rh_usb_dev->bus;
883 struct usb_hcd *hcd;
884
885 hcd = bus_to_hcd(usb_bus);
886 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
887}
888
889static ssize_t authorized_default_store(struct device *dev,
890 struct device_attribute *attr,
891 const char *buf, size_t size)
892{
893 ssize_t result;
894 unsigned val;
895 struct usb_device *rh_usb_dev = to_usb_device(dev);
896 struct usb_bus *usb_bus = rh_usb_dev->bus;
897 struct usb_hcd *hcd;
898
899 hcd = bus_to_hcd(usb_bus);
900 result = sscanf(buf, "%u\n", &val);
901 if (result == 1) {
902 if (val)
903 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
904 else
905 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
906
907 result = size;
908 } else {
909 result = -EINVAL;
910 }
911 return result;
912}
913static DEVICE_ATTR_RW(authorized_default);
914
915/*
916 * interface_authorized_default_show - show default authorization status
917 * for USB interfaces
918 *
919 * note: interface_authorized_default is the default value
920 * for initializing the authorized attribute of interfaces
921 */
922static ssize_t interface_authorized_default_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct usb_device *usb_dev = to_usb_device(dev);
926 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
927
928 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
929}
930
931/*
932 * interface_authorized_default_store - store default authorization status
933 * for USB interfaces
934 *
935 * note: interface_authorized_default is the default value
936 * for initializing the authorized attribute of interfaces
937 */
938static ssize_t interface_authorized_default_store(struct device *dev,
939 struct device_attribute *attr, const char *buf, size_t count)
940{
941 struct usb_device *usb_dev = to_usb_device(dev);
942 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943 int rc = count;
944 bool val;
945
946 if (strtobool(buf, &val) != 0)
947 return -EINVAL;
948
949 if (val)
950 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
951 else
952 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
953
954 return rc;
955}
956static DEVICE_ATTR_RW(interface_authorized_default);
957
958/* Group all the USB bus attributes */
959static struct attribute *usb_bus_attrs[] = {
960 &dev_attr_authorized_default.attr,
961 &dev_attr_interface_authorized_default.attr,
962 NULL,
963};
964
965static const struct attribute_group usb_bus_attr_group = {
966 .name = NULL, /* we want them in the same directory */
967 .attrs = usb_bus_attrs,
968};
969
970
971
972/*-------------------------------------------------------------------------*/
973
974/**
975 * usb_bus_init - shared initialization code
976 * @bus: the bus structure being initialized
977 *
978 * This code is used to initialize a usb_bus structure, memory for which is
979 * separately managed.
980 */
981static void usb_bus_init (struct usb_bus *bus)
982{
983 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
984
985 bus->devnum_next = 1;
986
987 bus->root_hub = NULL;
988 bus->busnum = -1;
989 bus->bandwidth_allocated = 0;
990 bus->bandwidth_int_reqs = 0;
991 bus->bandwidth_isoc_reqs = 0;
992 mutex_init(&bus->devnum_next_mutex);
993}
994
995/*-------------------------------------------------------------------------*/
996
997/**
998 * usb_register_bus - registers the USB host controller with the usb core
999 * @bus: pointer to the bus to register
1000 * Context: !in_interrupt()
1001 *
1002 * Assigns a bus number, and links the controller into usbcore data
1003 * structures so that it can be seen by scanning the bus list.
1004 *
1005 * Return: 0 if successful. A negative error code otherwise.
1006 */
1007static int usb_register_bus(struct usb_bus *bus)
1008{
1009 int result = -E2BIG;
1010 int busnum;
1011
1012 mutex_lock(&usb_bus_idr_lock);
1013 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1014 if (busnum < 0) {
1015 pr_err("%s: failed to get bus number\n", usbcore_name);
1016 goto error_find_busnum;
1017 }
1018 bus->busnum = busnum;
1019 mutex_unlock(&usb_bus_idr_lock);
1020
1021 usb_notify_add_bus(bus);
1022
1023 dev_info (bus->controller, "new USB bus registered, assigned bus "
1024 "number %d\n", bus->busnum);
1025 return 0;
1026
1027error_find_busnum:
1028 mutex_unlock(&usb_bus_idr_lock);
1029 return result;
1030}
1031
1032/**
1033 * usb_deregister_bus - deregisters the USB host controller
1034 * @bus: pointer to the bus to deregister
1035 * Context: !in_interrupt()
1036 *
1037 * Recycles the bus number, and unlinks the controller from usbcore data
1038 * structures so that it won't be seen by scanning the bus list.
1039 */
1040static void usb_deregister_bus (struct usb_bus *bus)
1041{
1042 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1043
1044 /*
1045 * NOTE: make sure that all the devices are removed by the
1046 * controller code, as well as having it call this when cleaning
1047 * itself up
1048 */
1049 mutex_lock(&usb_bus_idr_lock);
1050 idr_remove(&usb_bus_idr, bus->busnum);
1051 mutex_unlock(&usb_bus_idr_lock);
1052
1053 usb_notify_remove_bus(bus);
1054}
1055
1056/**
1057 * register_root_hub - called by usb_add_hcd() to register a root hub
1058 * @hcd: host controller for this root hub
1059 *
1060 * This function registers the root hub with the USB subsystem. It sets up
1061 * the device properly in the device tree and then calls usb_new_device()
1062 * to register the usb device. It also assigns the root hub's USB address
1063 * (always 1).
1064 *
1065 * Return: 0 if successful. A negative error code otherwise.
1066 */
1067static int register_root_hub(struct usb_hcd *hcd)
1068{
1069 struct device *parent_dev = hcd->self.controller;
1070 struct usb_device *usb_dev = hcd->self.root_hub;
1071 const int devnum = 1;
1072 int retval;
1073
1074 usb_dev->devnum = devnum;
1075 usb_dev->bus->devnum_next = devnum + 1;
1076 memset (&usb_dev->bus->devmap.devicemap, 0,
1077 sizeof usb_dev->bus->devmap.devicemap);
1078 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1079 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1080
1081 mutex_lock(&usb_bus_idr_lock);
1082
1083 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1084 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1085 if (retval != sizeof usb_dev->descriptor) {
1086 mutex_unlock(&usb_bus_idr_lock);
1087 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1088 dev_name(&usb_dev->dev), retval);
1089 return (retval < 0) ? retval : -EMSGSIZE;
1090 }
1091
1092 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1093 retval = usb_get_bos_descriptor(usb_dev);
1094 if (!retval) {
1095 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1096 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1097 mutex_unlock(&usb_bus_idr_lock);
1098 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1099 dev_name(&usb_dev->dev), retval);
1100 return retval;
1101 }
1102 }
1103
1104 retval = usb_new_device (usb_dev);
1105 if (retval) {
1106 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1107 dev_name(&usb_dev->dev), retval);
1108 } else {
1109 spin_lock_irq (&hcd_root_hub_lock);
1110 hcd->rh_registered = 1;
1111 spin_unlock_irq (&hcd_root_hub_lock);
1112
1113 /* Did the HC die before the root hub was registered? */
1114 if (HCD_DEAD(hcd))
1115 usb_hc_died (hcd); /* This time clean up */
1116 }
1117 mutex_unlock(&usb_bus_idr_lock);
1118
1119 return retval;
1120}
1121
1122/*
1123 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1124 * @bus: the bus which the root hub belongs to
1125 * @portnum: the port which is being resumed
1126 *
1127 * HCDs should call this function when they know that a resume signal is
1128 * being sent to a root-hub port. The root hub will be prevented from
1129 * going into autosuspend until usb_hcd_end_port_resume() is called.
1130 *
1131 * The bus's private lock must be held by the caller.
1132 */
1133void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1134{
1135 unsigned bit = 1 << portnum;
1136
1137 if (!(bus->resuming_ports & bit)) {
1138 bus->resuming_ports |= bit;
1139 pm_runtime_get_noresume(&bus->root_hub->dev);
1140 }
1141}
1142EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1143
1144/*
1145 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1146 * @bus: the bus which the root hub belongs to
1147 * @portnum: the port which is being resumed
1148 *
1149 * HCDs should call this function when they know that a resume signal has
1150 * stopped being sent to a root-hub port. The root hub will be allowed to
1151 * autosuspend again.
1152 *
1153 * The bus's private lock must be held by the caller.
1154 */
1155void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1156{
1157 unsigned bit = 1 << portnum;
1158
1159 if (bus->resuming_ports & bit) {
1160 bus->resuming_ports &= ~bit;
1161 pm_runtime_put_noidle(&bus->root_hub->dev);
1162 }
1163}
1164EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1165
1166/*-------------------------------------------------------------------------*/
1167
1168/**
1169 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1170 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1171 * @is_input: true iff the transaction sends data to the host
1172 * @isoc: true for isochronous transactions, false for interrupt ones
1173 * @bytecount: how many bytes in the transaction.
1174 *
1175 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1176 *
1177 * Note:
1178 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1179 * scheduled in software, this function is only used for such scheduling.
1180 */
1181long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1182{
1183 unsigned long tmp;
1184
1185 switch (speed) {
1186 case USB_SPEED_LOW: /* INTR only */
1187 if (is_input) {
1188 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1189 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1190 } else {
1191 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1192 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1193 }
1194 case USB_SPEED_FULL: /* ISOC or INTR */
1195 if (isoc) {
1196 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1198 } else {
1199 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200 return 9107L + BW_HOST_DELAY + tmp;
1201 }
1202 case USB_SPEED_HIGH: /* ISOC or INTR */
1203 /* FIXME adjust for input vs output */
1204 if (isoc)
1205 tmp = HS_NSECS_ISO (bytecount);
1206 else
1207 tmp = HS_NSECS (bytecount);
1208 return tmp;
1209 default:
1210 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1211 return -1;
1212 }
1213}
1214EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1215
1216
1217/*-------------------------------------------------------------------------*/
1218
1219/*
1220 * Generic HC operations.
1221 */
1222
1223/*-------------------------------------------------------------------------*/
1224
1225/**
1226 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being submitted
1229 *
1230 * Host controller drivers should call this routine in their enqueue()
1231 * method. The HCD's private spinlock must be held and interrupts must
1232 * be disabled. The actions carried out here are required for URB
1233 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1234 *
1235 * Return: 0 for no error, otherwise a negative error code (in which case
1236 * the enqueue() method must fail). If no error occurs but enqueue() fails
1237 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1238 * the private spinlock and returning.
1239 */
1240int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1241{
1242 int rc = 0;
1243
1244 spin_lock(&hcd_urb_list_lock);
1245
1246 /* Check that the URB isn't being killed */
1247 if (unlikely(atomic_read(&urb->reject))) {
1248 rc = -EPERM;
1249 goto done;
1250 }
1251
1252 if (unlikely(!urb->ep->enabled)) {
1253 rc = -ENOENT;
1254 goto done;
1255 }
1256
1257 if (unlikely(!urb->dev->can_submit)) {
1258 rc = -EHOSTUNREACH;
1259 goto done;
1260 }
1261
1262 /*
1263 * Check the host controller's state and add the URB to the
1264 * endpoint's queue.
1265 */
1266 if (HCD_RH_RUNNING(hcd)) {
1267 urb->unlinked = 0;
1268 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1269 } else {
1270 rc = -ESHUTDOWN;
1271 goto done;
1272 }
1273 done:
1274 spin_unlock(&hcd_urb_list_lock);
1275 return rc;
1276}
1277EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1278
1279/**
1280 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1281 * @hcd: host controller to which @urb was submitted
1282 * @urb: URB being checked for unlinkability
1283 * @status: error code to store in @urb if the unlink succeeds
1284 *
1285 * Host controller drivers should call this routine in their dequeue()
1286 * method. The HCD's private spinlock must be held and interrupts must
1287 * be disabled. The actions carried out here are required for making
1288 * sure than an unlink is valid.
1289 *
1290 * Return: 0 for no error, otherwise a negative error code (in which case
1291 * the dequeue() method must fail). The possible error codes are:
1292 *
1293 * -EIDRM: @urb was not submitted or has already completed.
1294 * The completion function may not have been called yet.
1295 *
1296 * -EBUSY: @urb has already been unlinked.
1297 */
1298int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1299 int status)
1300{
1301 struct list_head *tmp;
1302
1303 /* insist the urb is still queued */
1304 list_for_each(tmp, &urb->ep->urb_list) {
1305 if (tmp == &urb->urb_list)
1306 break;
1307 }
1308 if (tmp != &urb->urb_list)
1309 return -EIDRM;
1310
1311 /* Any status except -EINPROGRESS means something already started to
1312 * unlink this URB from the hardware. So there's no more work to do.
1313 */
1314 if (urb->unlinked)
1315 return -EBUSY;
1316 urb->unlinked = status;
1317 return 0;
1318}
1319EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1320
1321/**
1322 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1323 * @hcd: host controller to which @urb was submitted
1324 * @urb: URB being unlinked
1325 *
1326 * Host controller drivers should call this routine before calling
1327 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1328 * interrupts must be disabled. The actions carried out here are required
1329 * for URB completion.
1330 */
1331void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1332{
1333 /* clear all state linking urb to this dev (and hcd) */
1334 spin_lock(&hcd_urb_list_lock);
1335 list_del_init(&urb->urb_list);
1336 spin_unlock(&hcd_urb_list_lock);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1339
1340/*
1341 * Some usb host controllers can only perform dma using a small SRAM area.
1342 * The usb core itself is however optimized for host controllers that can dma
1343 * using regular system memory - like pci devices doing bus mastering.
1344 *
1345 * To support host controllers with limited dma capabilities we provide dma
1346 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1347 * For this to work properly the host controller code must first use the
1348 * function dma_declare_coherent_memory() to point out which memory area
1349 * that should be used for dma allocations.
1350 *
1351 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1352 * dma using dma_alloc_coherent() which in turn allocates from the memory
1353 * area pointed out with dma_declare_coherent_memory().
1354 *
1355 * So, to summarize...
1356 *
1357 * - We need "local" memory, canonical example being
1358 * a small SRAM on a discrete controller being the
1359 * only memory that the controller can read ...
1360 * (a) "normal" kernel memory is no good, and
1361 * (b) there's not enough to share
1362 *
1363 * - The only *portable* hook for such stuff in the
1364 * DMA framework is dma_declare_coherent_memory()
1365 *
1366 * - So we use that, even though the primary requirement
1367 * is that the memory be "local" (hence addressable
1368 * by that device), not "coherent".
1369 *
1370 */
1371
1372static int hcd_alloc_coherent(struct usb_bus *bus,
1373 gfp_t mem_flags, dma_addr_t *dma_handle,
1374 void **vaddr_handle, size_t size,
1375 enum dma_data_direction dir)
1376{
1377 unsigned char *vaddr;
1378
1379 if (*vaddr_handle == NULL) {
1380 WARN_ON_ONCE(1);
1381 return -EFAULT;
1382 }
1383
1384 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1385 mem_flags, dma_handle);
1386 if (!vaddr)
1387 return -ENOMEM;
1388
1389 /*
1390 * Store the virtual address of the buffer at the end
1391 * of the allocated dma buffer. The size of the buffer
1392 * may be uneven so use unaligned functions instead
1393 * of just rounding up. It makes sense to optimize for
1394 * memory footprint over access speed since the amount
1395 * of memory available for dma may be limited.
1396 */
1397 put_unaligned((unsigned long)*vaddr_handle,
1398 (unsigned long *)(vaddr + size));
1399
1400 if (dir == DMA_TO_DEVICE)
1401 memcpy(vaddr, *vaddr_handle, size);
1402
1403 *vaddr_handle = vaddr;
1404 return 0;
1405}
1406
1407static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1408 void **vaddr_handle, size_t size,
1409 enum dma_data_direction dir)
1410{
1411 unsigned char *vaddr = *vaddr_handle;
1412
1413 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1414
1415 if (dir == DMA_FROM_DEVICE)
1416 memcpy(vaddr, *vaddr_handle, size);
1417
1418 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1419
1420 *vaddr_handle = vaddr;
1421 *dma_handle = 0;
1422}
1423
1424void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1425{
1426 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1427 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1428 dma_unmap_single(hcd->self.sysdev,
1429 urb->setup_dma,
1430 sizeof(struct usb_ctrlrequest),
1431 DMA_TO_DEVICE);
1432 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1433 hcd_free_coherent(urb->dev->bus,
1434 &urb->setup_dma,
1435 (void **) &urb->setup_packet,
1436 sizeof(struct usb_ctrlrequest),
1437 DMA_TO_DEVICE);
1438
1439 /* Make it safe to call this routine more than once */
1440 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1441}
1442EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1443
1444static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445{
1446 if (hcd->driver->unmap_urb_for_dma)
1447 hcd->driver->unmap_urb_for_dma(hcd, urb);
1448 else
1449 usb_hcd_unmap_urb_for_dma(hcd, urb);
1450}
1451
1452void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1453{
1454 enum dma_data_direction dir;
1455
1456 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1457
1458 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1459 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1460 (urb->transfer_flags & URB_DMA_MAP_SG))
1461 dma_unmap_sg(hcd->self.sysdev,
1462 urb->sg,
1463 urb->num_sgs,
1464 dir);
1465 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1467 dma_unmap_page(hcd->self.sysdev,
1468 urb->transfer_dma,
1469 urb->transfer_buffer_length,
1470 dir);
1471 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1473 dma_unmap_single(hcd->self.sysdev,
1474 urb->transfer_dma,
1475 urb->transfer_buffer_length,
1476 dir);
1477 else if (urb->transfer_flags & URB_MAP_LOCAL)
1478 hcd_free_coherent(urb->dev->bus,
1479 &urb->transfer_dma,
1480 &urb->transfer_buffer,
1481 urb->transfer_buffer_length,
1482 dir);
1483
1484 /* Make it safe to call this routine more than once */
1485 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1486 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1487}
1488EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1489
1490static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1491 gfp_t mem_flags)
1492{
1493 if (hcd->driver->map_urb_for_dma)
1494 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1495 else
1496 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1497}
1498
1499int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1500 gfp_t mem_flags)
1501{
1502 enum dma_data_direction dir;
1503 int ret = 0;
1504
1505 /* Map the URB's buffers for DMA access.
1506 * Lower level HCD code should use *_dma exclusively,
1507 * unless it uses pio or talks to another transport,
1508 * or uses the provided scatter gather list for bulk.
1509 */
1510
1511 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1512 if (hcd->self.uses_pio_for_control)
1513 return ret;
1514 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1515 if (is_vmalloc_addr(urb->setup_packet)) {
1516 WARN_ONCE(1, "setup packet is not dma capable\n");
1517 return -EAGAIN;
1518 } else if (object_is_on_stack(urb->setup_packet)) {
1519 WARN_ONCE(1, "setup packet is on stack\n");
1520 return -EAGAIN;
1521 }
1522
1523 urb->setup_dma = dma_map_single(
1524 hcd->self.sysdev,
1525 urb->setup_packet,
1526 sizeof(struct usb_ctrlrequest),
1527 DMA_TO_DEVICE);
1528 if (dma_mapping_error(hcd->self.sysdev,
1529 urb->setup_dma))
1530 return -EAGAIN;
1531 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1532 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1533 ret = hcd_alloc_coherent(
1534 urb->dev->bus, mem_flags,
1535 &urb->setup_dma,
1536 (void **)&urb->setup_packet,
1537 sizeof(struct usb_ctrlrequest),
1538 DMA_TO_DEVICE);
1539 if (ret)
1540 return ret;
1541 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542 }
1543 }
1544
1545 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1546 if (urb->transfer_buffer_length != 0
1547 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1548 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1549 if (urb->num_sgs) {
1550 int n;
1551
1552 /* We don't support sg for isoc transfers ! */
1553 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1554 WARN_ON(1);
1555 return -EINVAL;
1556 }
1557
1558 n = dma_map_sg(
1559 hcd->self.sysdev,
1560 urb->sg,
1561 urb->num_sgs,
1562 dir);
1563 if (n <= 0)
1564 ret = -EAGAIN;
1565 else
1566 urb->transfer_flags |= URB_DMA_MAP_SG;
1567 urb->num_mapped_sgs = n;
1568 if (n != urb->num_sgs)
1569 urb->transfer_flags |=
1570 URB_DMA_SG_COMBINED;
1571 } else if (urb->sg) {
1572 struct scatterlist *sg = urb->sg;
1573 urb->transfer_dma = dma_map_page(
1574 hcd->self.sysdev,
1575 sg_page(sg),
1576 sg->offset,
1577 urb->transfer_buffer_length,
1578 dir);
1579 if (dma_mapping_error(hcd->self.sysdev,
1580 urb->transfer_dma))
1581 ret = -EAGAIN;
1582 else
1583 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1584 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1585 WARN_ONCE(1, "transfer buffer not dma capable\n");
1586 ret = -EAGAIN;
1587 } else if (object_is_on_stack(urb->transfer_buffer)) {
1588 WARN_ONCE(1, "transfer buffer is on stack\n");
1589 ret = -EAGAIN;
1590 } else {
1591 urb->transfer_dma = dma_map_single(
1592 hcd->self.sysdev,
1593 urb->transfer_buffer,
1594 urb->transfer_buffer_length,
1595 dir);
1596 if (dma_mapping_error(hcd->self.sysdev,
1597 urb->transfer_dma))
1598 ret = -EAGAIN;
1599 else
1600 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601 }
1602 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603 ret = hcd_alloc_coherent(
1604 urb->dev->bus, mem_flags,
1605 &urb->transfer_dma,
1606 &urb->transfer_buffer,
1607 urb->transfer_buffer_length,
1608 dir);
1609 if (ret == 0)
1610 urb->transfer_flags |= URB_MAP_LOCAL;
1611 }
1612 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613 URB_SETUP_MAP_LOCAL)))
1614 usb_hcd_unmap_urb_for_dma(hcd, urb);
1615 }
1616 return ret;
1617}
1618EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619
1620/*-------------------------------------------------------------------------*/
1621
1622/* may be called in any context with a valid urb->dev usecount
1623 * caller surrenders "ownership" of urb
1624 * expects usb_submit_urb() to have sanity checked and conditioned all
1625 * inputs in the urb
1626 */
1627int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628{
1629 int status;
1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1631
1632 /* increment urb's reference count as part of giving it to the HCD
1633 * (which will control it). HCD guarantees that it either returns
1634 * an error or calls giveback(), but not both.
1635 */
1636 usb_get_urb(urb);
1637 atomic_inc(&urb->use_count);
1638 atomic_inc(&urb->dev->urbnum);
1639 usbmon_urb_submit(&hcd->self, urb);
1640
1641 /* NOTE requirements on root-hub callers (usbfs and the hub
1642 * driver, for now): URBs' urb->transfer_buffer must be
1643 * valid and usb_buffer_{sync,unmap}() not be needed, since
1644 * they could clobber root hub response data. Also, control
1645 * URBs must be submitted in process context with interrupts
1646 * enabled.
1647 */
1648
1649 if (is_root_hub(urb->dev)) {
1650 status = rh_urb_enqueue(hcd, urb);
1651 } else {
1652 status = map_urb_for_dma(hcd, urb, mem_flags);
1653 if (likely(status == 0)) {
1654 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655 if (unlikely(status))
1656 unmap_urb_for_dma(hcd, urb);
1657 }
1658 }
1659
1660 if (unlikely(status)) {
1661 usbmon_urb_submit_error(&hcd->self, urb, status);
1662 urb->hcpriv = NULL;
1663 INIT_LIST_HEAD(&urb->urb_list);
1664 atomic_dec(&urb->use_count);
1665 atomic_dec(&urb->dev->urbnum);
1666 if (atomic_read(&urb->reject))
1667 wake_up(&usb_kill_urb_queue);
1668 usb_put_urb(urb);
1669 }
1670 return status;
1671}
1672
1673/*-------------------------------------------------------------------------*/
1674
1675/* this makes the hcd giveback() the urb more quickly, by kicking it
1676 * off hardware queues (which may take a while) and returning it as
1677 * soon as practical. we've already set up the urb's return status,
1678 * but we can't know if the callback completed already.
1679 */
1680static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681{
1682 int value;
1683
1684 if (is_root_hub(urb->dev))
1685 value = usb_rh_urb_dequeue(hcd, urb, status);
1686 else {
1687
1688 /* The only reason an HCD might fail this call is if
1689 * it has not yet fully queued the urb to begin with.
1690 * Such failures should be harmless. */
1691 value = hcd->driver->urb_dequeue(hcd, urb, status);
1692 }
1693 return value;
1694}
1695
1696/*
1697 * called in any context
1698 *
1699 * caller guarantees urb won't be recycled till both unlink()
1700 * and the urb's completion function return
1701 */
1702int usb_hcd_unlink_urb (struct urb *urb, int status)
1703{
1704 struct usb_hcd *hcd;
1705 struct usb_device *udev = urb->dev;
1706 int retval = -EIDRM;
1707 unsigned long flags;
1708
1709 /* Prevent the device and bus from going away while
1710 * the unlink is carried out. If they are already gone
1711 * then urb->use_count must be 0, since disconnected
1712 * devices can't have any active URBs.
1713 */
1714 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715 if (atomic_read(&urb->use_count) > 0) {
1716 retval = 0;
1717 usb_get_dev(udev);
1718 }
1719 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720 if (retval == 0) {
1721 hcd = bus_to_hcd(urb->dev->bus);
1722 retval = unlink1(hcd, urb, status);
1723 if (retval == 0)
1724 retval = -EINPROGRESS;
1725 else if (retval != -EIDRM && retval != -EBUSY)
1726 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1727 urb, retval);
1728 usb_put_dev(udev);
1729 }
1730 return retval;
1731}
1732
1733/*-------------------------------------------------------------------------*/
1734
1735static void __usb_hcd_giveback_urb(struct urb *urb)
1736{
1737 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738 struct usb_anchor *anchor = urb->anchor;
1739 int status = urb->unlinked;
1740 unsigned long flags;
1741
1742 urb->hcpriv = NULL;
1743 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744 urb->actual_length < urb->transfer_buffer_length &&
1745 !status))
1746 status = -EREMOTEIO;
1747
1748 unmap_urb_for_dma(hcd, urb);
1749 usbmon_urb_complete(&hcd->self, urb, status);
1750 usb_anchor_suspend_wakeups(anchor);
1751 usb_unanchor_urb(urb);
1752 if (likely(status == 0))
1753 usb_led_activity(USB_LED_EVENT_HOST);
1754
1755 /* pass ownership to the completion handler */
1756 urb->status = status;
1757
1758 /*
1759 * We disable local IRQs here avoid possible deadlock because
1760 * drivers may call spin_lock() to hold lock which might be
1761 * acquired in one hard interrupt handler.
1762 *
1763 * The local_irq_save()/local_irq_restore() around complete()
1764 * will be removed if current USB drivers have been cleaned up
1765 * and no one may trigger the above deadlock situation when
1766 * running complete() in tasklet.
1767 */
1768 local_irq_save(flags);
1769 urb->complete(urb);
1770 local_irq_restore(flags);
1771
1772 usb_anchor_resume_wakeups(anchor);
1773 atomic_dec(&urb->use_count);
1774 if (unlikely(atomic_read(&urb->reject)))
1775 wake_up(&usb_kill_urb_queue);
1776 usb_put_urb(urb);
1777}
1778
1779static void usb_giveback_urb_bh(unsigned long param)
1780{
1781 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782 struct list_head local_list;
1783
1784 spin_lock_irq(&bh->lock);
1785 bh->running = true;
1786 restart:
1787 list_replace_init(&bh->head, &local_list);
1788 spin_unlock_irq(&bh->lock);
1789
1790 while (!list_empty(&local_list)) {
1791 struct urb *urb;
1792
1793 urb = list_entry(local_list.next, struct urb, urb_list);
1794 list_del_init(&urb->urb_list);
1795 bh->completing_ep = urb->ep;
1796 __usb_hcd_giveback_urb(urb);
1797 bh->completing_ep = NULL;
1798 }
1799
1800 /* check if there are new URBs to giveback */
1801 spin_lock_irq(&bh->lock);
1802 if (!list_empty(&bh->head))
1803 goto restart;
1804 bh->running = false;
1805 spin_unlock_irq(&bh->lock);
1806}
1807
1808/**
1809 * usb_hcd_giveback_urb - return URB from HCD to device driver
1810 * @hcd: host controller returning the URB
1811 * @urb: urb being returned to the USB device driver.
1812 * @status: completion status code for the URB.
1813 * Context: in_interrupt()
1814 *
1815 * This hands the URB from HCD to its USB device driver, using its
1816 * completion function. The HCD has freed all per-urb resources
1817 * (and is done using urb->hcpriv). It also released all HCD locks;
1818 * the device driver won't cause problems if it frees, modifies,
1819 * or resubmits this URB.
1820 *
1821 * If @urb was unlinked, the value of @status will be overridden by
1822 * @urb->unlinked. Erroneous short transfers are detected in case
1823 * the HCD hasn't checked for them.
1824 */
1825void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826{
1827 struct giveback_urb_bh *bh;
1828 bool running, high_prio_bh;
1829
1830 /* pass status to tasklet via unlinked */
1831 if (likely(!urb->unlinked))
1832 urb->unlinked = status;
1833
1834 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835 __usb_hcd_giveback_urb(urb);
1836 return;
1837 }
1838
1839 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840 bh = &hcd->high_prio_bh;
1841 high_prio_bh = true;
1842 } else {
1843 bh = &hcd->low_prio_bh;
1844 high_prio_bh = false;
1845 }
1846
1847 spin_lock(&bh->lock);
1848 list_add_tail(&urb->urb_list, &bh->head);
1849 running = bh->running;
1850 spin_unlock(&bh->lock);
1851
1852 if (running)
1853 ;
1854 else if (high_prio_bh)
1855 tasklet_hi_schedule(&bh->bh);
1856 else
1857 tasklet_schedule(&bh->bh);
1858}
1859EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860
1861/*-------------------------------------------------------------------------*/
1862
1863/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864 * queue to drain completely. The caller must first insure that no more
1865 * URBs can be submitted for this endpoint.
1866 */
1867void usb_hcd_flush_endpoint(struct usb_device *udev,
1868 struct usb_host_endpoint *ep)
1869{
1870 struct usb_hcd *hcd;
1871 struct urb *urb;
1872
1873 if (!ep)
1874 return;
1875 might_sleep();
1876 hcd = bus_to_hcd(udev->bus);
1877
1878 /* No more submits can occur */
1879 spin_lock_irq(&hcd_urb_list_lock);
1880rescan:
1881 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1882 int is_in;
1883
1884 if (urb->unlinked)
1885 continue;
1886 usb_get_urb (urb);
1887 is_in = usb_urb_dir_in(urb);
1888 spin_unlock(&hcd_urb_list_lock);
1889
1890 /* kick hcd */
1891 unlink1(hcd, urb, -ESHUTDOWN);
1892 dev_dbg (hcd->self.controller,
1893 "shutdown urb %pK ep%d%s%s\n",
1894 urb, usb_endpoint_num(&ep->desc),
1895 is_in ? "in" : "out",
1896 ({ char *s;
1897
1898 switch (usb_endpoint_type(&ep->desc)) {
1899 case USB_ENDPOINT_XFER_CONTROL:
1900 s = ""; break;
1901 case USB_ENDPOINT_XFER_BULK:
1902 s = "-bulk"; break;
1903 case USB_ENDPOINT_XFER_INT:
1904 s = "-intr"; break;
1905 default:
1906 s = "-iso"; break;
1907 };
1908 s;
1909 }));
1910 usb_put_urb (urb);
1911
1912 /* list contents may have changed */
1913 spin_lock(&hcd_urb_list_lock);
1914 goto rescan;
1915 }
1916 spin_unlock_irq(&hcd_urb_list_lock);
1917
1918 /* Wait until the endpoint queue is completely empty */
1919 while (!list_empty (&ep->urb_list)) {
1920 spin_lock_irq(&hcd_urb_list_lock);
1921
1922 /* The list may have changed while we acquired the spinlock */
1923 urb = NULL;
1924 if (!list_empty (&ep->urb_list)) {
1925 urb = list_entry (ep->urb_list.prev, struct urb,
1926 urb_list);
1927 usb_get_urb (urb);
1928 }
1929 spin_unlock_irq(&hcd_urb_list_lock);
1930
1931 if (urb) {
1932 usb_kill_urb (urb);
1933 usb_put_urb (urb);
1934 }
1935 }
1936}
1937
1938/**
1939 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940 * the bus bandwidth
1941 * @udev: target &usb_device
1942 * @new_config: new configuration to install
1943 * @cur_alt: the current alternate interface setting
1944 * @new_alt: alternate interface setting that is being installed
1945 *
1946 * To change configurations, pass in the new configuration in new_config,
1947 * and pass NULL for cur_alt and new_alt.
1948 *
1949 * To reset a device's configuration (put the device in the ADDRESSED state),
1950 * pass in NULL for new_config, cur_alt, and new_alt.
1951 *
1952 * To change alternate interface settings, pass in NULL for new_config,
1953 * pass in the current alternate interface setting in cur_alt,
1954 * and pass in the new alternate interface setting in new_alt.
1955 *
1956 * Return: An error if the requested bandwidth change exceeds the
1957 * bus bandwidth or host controller internal resources.
1958 */
1959int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960 struct usb_host_config *new_config,
1961 struct usb_host_interface *cur_alt,
1962 struct usb_host_interface *new_alt)
1963{
1964 int num_intfs, i, j;
1965 struct usb_host_interface *alt = NULL;
1966 int ret = 0;
1967 struct usb_hcd *hcd;
1968 struct usb_host_endpoint *ep;
1969
1970 hcd = bus_to_hcd(udev->bus);
1971 if (!hcd->driver->check_bandwidth)
1972 return 0;
1973
1974 /* Configuration is being removed - set configuration 0 */
1975 if (!new_config && !cur_alt) {
1976 for (i = 1; i < 16; ++i) {
1977 ep = udev->ep_out[i];
1978 if (ep)
1979 hcd->driver->drop_endpoint(hcd, udev, ep);
1980 ep = udev->ep_in[i];
1981 if (ep)
1982 hcd->driver->drop_endpoint(hcd, udev, ep);
1983 }
1984 hcd->driver->check_bandwidth(hcd, udev);
1985 return 0;
1986 }
1987 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1988 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989 * of the bus. There will always be bandwidth for endpoint 0, so it's
1990 * ok to exclude it.
1991 */
1992 if (new_config) {
1993 num_intfs = new_config->desc.bNumInterfaces;
1994 /* Remove endpoints (except endpoint 0, which is always on the
1995 * schedule) from the old config from the schedule
1996 */
1997 for (i = 1; i < 16; ++i) {
1998 ep = udev->ep_out[i];
1999 if (ep) {
2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 if (ret < 0)
2002 goto reset;
2003 }
2004 ep = udev->ep_in[i];
2005 if (ep) {
2006 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007 if (ret < 0)
2008 goto reset;
2009 }
2010 }
2011 for (i = 0; i < num_intfs; ++i) {
2012 struct usb_host_interface *first_alt;
2013 int iface_num;
2014
2015 first_alt = &new_config->intf_cache[i]->altsetting[0];
2016 iface_num = first_alt->desc.bInterfaceNumber;
2017 /* Set up endpoints for alternate interface setting 0 */
2018 alt = usb_find_alt_setting(new_config, iface_num, 0);
2019 if (!alt)
2020 /* No alt setting 0? Pick the first setting. */
2021 alt = first_alt;
2022
2023 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025 if (ret < 0)
2026 goto reset;
2027 }
2028 }
2029 }
2030 if (cur_alt && new_alt) {
2031 struct usb_interface *iface = usb_ifnum_to_if(udev,
2032 cur_alt->desc.bInterfaceNumber);
2033
2034 if (!iface)
2035 return -EINVAL;
2036 if (iface->resetting_device) {
2037 /*
2038 * The USB core just reset the device, so the xHCI host
2039 * and the device will think alt setting 0 is installed.
2040 * However, the USB core will pass in the alternate
2041 * setting installed before the reset as cur_alt. Dig
2042 * out the alternate setting 0 structure, or the first
2043 * alternate setting if a broken device doesn't have alt
2044 * setting 0.
2045 */
2046 cur_alt = usb_altnum_to_altsetting(iface, 0);
2047 if (!cur_alt)
2048 cur_alt = &iface->altsetting[0];
2049 }
2050
2051 /* Drop all the endpoints in the current alt setting */
2052 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053 ret = hcd->driver->drop_endpoint(hcd, udev,
2054 &cur_alt->endpoint[i]);
2055 if (ret < 0)
2056 goto reset;
2057 }
2058 /* Add all the endpoints in the new alt setting */
2059 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060 ret = hcd->driver->add_endpoint(hcd, udev,
2061 &new_alt->endpoint[i]);
2062 if (ret < 0)
2063 goto reset;
2064 }
2065 }
2066 ret = hcd->driver->check_bandwidth(hcd, udev);
2067reset:
2068 if (ret < 0)
2069 hcd->driver->reset_bandwidth(hcd, udev);
2070 return ret;
2071}
2072
2073/* Disables the endpoint: synchronizes with the hcd to make sure all
2074 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2075 * have been called previously. Use for set_configuration, set_interface,
2076 * driver removal, physical disconnect.
2077 *
2078 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2079 * type, maxpacket size, toggle, halt status, and scheduling.
2080 */
2081void usb_hcd_disable_endpoint(struct usb_device *udev,
2082 struct usb_host_endpoint *ep)
2083{
2084 struct usb_hcd *hcd;
2085
2086 might_sleep();
2087 hcd = bus_to_hcd(udev->bus);
2088 if (hcd->driver->endpoint_disable)
2089 hcd->driver->endpoint_disable(hcd, ep);
2090}
2091
2092/**
2093 * usb_hcd_reset_endpoint - reset host endpoint state
2094 * @udev: USB device.
2095 * @ep: the endpoint to reset.
2096 *
2097 * Resets any host endpoint state such as the toggle bit, sequence
2098 * number and current window.
2099 */
2100void usb_hcd_reset_endpoint(struct usb_device *udev,
2101 struct usb_host_endpoint *ep)
2102{
2103 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104
2105 if (hcd->driver->endpoint_reset)
2106 hcd->driver->endpoint_reset(hcd, ep);
2107 else {
2108 int epnum = usb_endpoint_num(&ep->desc);
2109 int is_out = usb_endpoint_dir_out(&ep->desc);
2110 int is_control = usb_endpoint_xfer_control(&ep->desc);
2111
2112 usb_settoggle(udev, epnum, is_out, 0);
2113 if (is_control)
2114 usb_settoggle(udev, epnum, !is_out, 0);
2115 }
2116}
2117
2118/**
2119 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120 * @interface: alternate setting that includes all endpoints.
2121 * @eps: array of endpoints that need streams.
2122 * @num_eps: number of endpoints in the array.
2123 * @num_streams: number of streams to allocate.
2124 * @mem_flags: flags hcd should use to allocate memory.
2125 *
2126 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127 * Drivers may queue multiple transfers to different stream IDs, which may
2128 * complete in a different order than they were queued.
2129 *
2130 * Return: On success, the number of allocated streams. On failure, a negative
2131 * error code.
2132 */
2133int usb_alloc_streams(struct usb_interface *interface,
2134 struct usb_host_endpoint **eps, unsigned int num_eps,
2135 unsigned int num_streams, gfp_t mem_flags)
2136{
2137 struct usb_hcd *hcd;
2138 struct usb_device *dev;
2139 int i, ret;
2140
2141 dev = interface_to_usbdev(interface);
2142 hcd = bus_to_hcd(dev->bus);
2143 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144 return -EINVAL;
2145 if (dev->speed < USB_SPEED_SUPER)
2146 return -EINVAL;
2147 if (dev->state < USB_STATE_CONFIGURED)
2148 return -ENODEV;
2149
2150 for (i = 0; i < num_eps; i++) {
2151 /* Streams only apply to bulk endpoints. */
2152 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153 return -EINVAL;
2154 /* Re-alloc is not allowed */
2155 if (eps[i]->streams)
2156 return -EINVAL;
2157 }
2158
2159 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160 num_streams, mem_flags);
2161 if (ret < 0)
2162 return ret;
2163
2164 for (i = 0; i < num_eps; i++)
2165 eps[i]->streams = ret;
2166
2167 return ret;
2168}
2169EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170
2171/**
2172 * usb_free_streams - free bulk endpoint stream IDs.
2173 * @interface: alternate setting that includes all endpoints.
2174 * @eps: array of endpoints to remove streams from.
2175 * @num_eps: number of endpoints in the array.
2176 * @mem_flags: flags hcd should use to allocate memory.
2177 *
2178 * Reverts a group of bulk endpoints back to not using stream IDs.
2179 * Can fail if we are given bad arguments, or HCD is broken.
2180 *
2181 * Return: 0 on success. On failure, a negative error code.
2182 */
2183int usb_free_streams(struct usb_interface *interface,
2184 struct usb_host_endpoint **eps, unsigned int num_eps,
2185 gfp_t mem_flags)
2186{
2187 struct usb_hcd *hcd;
2188 struct usb_device *dev;
2189 int i, ret;
2190
2191 dev = interface_to_usbdev(interface);
2192 hcd = bus_to_hcd(dev->bus);
2193 if (dev->speed < USB_SPEED_SUPER)
2194 return -EINVAL;
2195
2196 /* Double-free is not allowed */
2197 for (i = 0; i < num_eps; i++)
2198 if (!eps[i] || !eps[i]->streams)
2199 return -EINVAL;
2200
2201 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202 if (ret < 0)
2203 return ret;
2204
2205 for (i = 0; i < num_eps; i++)
2206 eps[i]->streams = 0;
2207
2208 return ret;
2209}
2210EXPORT_SYMBOL_GPL(usb_free_streams);
2211
2212/* Protect against drivers that try to unlink URBs after the device
2213 * is gone, by waiting until all unlinks for @udev are finished.
2214 * Since we don't currently track URBs by device, simply wait until
2215 * nothing is running in the locked region of usb_hcd_unlink_urb().
2216 */
2217void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218{
2219 spin_lock_irq(&hcd_urb_unlink_lock);
2220 spin_unlock_irq(&hcd_urb_unlink_lock);
2221}
2222
2223/*-------------------------------------------------------------------------*/
2224
2225/* called in any context */
2226int usb_hcd_get_frame_number (struct usb_device *udev)
2227{
2228 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2229
2230 if (!HCD_RH_RUNNING(hcd))
2231 return -ESHUTDOWN;
2232 return hcd->driver->get_frame_number (hcd);
2233}
2234
2235/*-------------------------------------------------------------------------*/
2236
2237#ifdef CONFIG_PM
2238
2239int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240{
2241 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2242 int status;
2243 int old_state = hcd->state;
2244
2245 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247 rhdev->do_remote_wakeup);
2248 if (HCD_DEAD(hcd)) {
2249 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250 return 0;
2251 }
2252
2253 if (!hcd->driver->bus_suspend) {
2254 status = -ENOENT;
2255 } else {
2256 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257 hcd->state = HC_STATE_QUIESCING;
2258 status = hcd->driver->bus_suspend(hcd);
2259 }
2260 if (status == 0) {
2261 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262 hcd->state = HC_STATE_SUSPENDED;
2263
2264 if (!PMSG_IS_AUTO(msg))
2265 usb_phy_roothub_suspend(hcd->self.sysdev,
2266 hcd->phy_roothub);
2267
2268 /* Did we race with a root-hub wakeup event? */
2269 if (rhdev->do_remote_wakeup) {
2270 char buffer[6];
2271
2272 status = hcd->driver->hub_status_data(hcd, buffer);
2273 if (status != 0) {
2274 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2275 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2276 status = -EBUSY;
2277 }
2278 }
2279 } else {
2280 spin_lock_irq(&hcd_root_hub_lock);
2281 if (!HCD_DEAD(hcd)) {
2282 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2283 hcd->state = old_state;
2284 }
2285 spin_unlock_irq(&hcd_root_hub_lock);
2286 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2287 "suspend", status);
2288 }
2289 return status;
2290}
2291
2292int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2293{
2294 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2295 int status;
2296 int old_state = hcd->state;
2297
2298 dev_dbg(&rhdev->dev, "usb %sresume\n",
2299 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2300 if (HCD_DEAD(hcd)) {
2301 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2302 return 0;
2303 }
2304
2305 if (!PMSG_IS_AUTO(msg)) {
2306 status = usb_phy_roothub_resume(hcd->self.sysdev,
2307 hcd->phy_roothub);
2308 if (status)
2309 return status;
2310 }
2311
2312 if (!hcd->driver->bus_resume)
2313 return -ENOENT;
2314 if (HCD_RH_RUNNING(hcd))
2315 return 0;
2316
2317 hcd->state = HC_STATE_RESUMING;
2318 status = hcd->driver->bus_resume(hcd);
2319 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2320 if (status == 0) {
2321 struct usb_device *udev;
2322 int port1;
2323
2324 spin_lock_irq(&hcd_root_hub_lock);
2325 if (!HCD_DEAD(hcd)) {
2326 usb_set_device_state(rhdev, rhdev->actconfig
2327 ? USB_STATE_CONFIGURED
2328 : USB_STATE_ADDRESS);
2329 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2330 hcd->state = HC_STATE_RUNNING;
2331 }
2332 spin_unlock_irq(&hcd_root_hub_lock);
2333
2334 /*
2335 * Check whether any of the enabled ports on the root hub are
2336 * unsuspended. If they are then a TRSMRCY delay is needed
2337 * (this is what the USB-2 spec calls a "global resume").
2338 * Otherwise we can skip the delay.
2339 */
2340 usb_hub_for_each_child(rhdev, port1, udev) {
2341 if (udev->state != USB_STATE_NOTATTACHED &&
2342 !udev->port_is_suspended) {
2343 usleep_range(10000, 11000); /* TRSMRCY */
2344 break;
2345 }
2346 }
2347 } else {
2348 hcd->state = old_state;
2349 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2350 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2351 "resume", status);
2352 if (status != -ESHUTDOWN)
2353 usb_hc_died(hcd);
2354 }
2355 return status;
2356}
2357
2358/* Workqueue routine for root-hub remote wakeup */
2359static void hcd_resume_work(struct work_struct *work)
2360{
2361 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2362 struct usb_device *udev = hcd->self.root_hub;
2363
2364 usb_remote_wakeup(udev);
2365}
2366
2367/**
2368 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2369 * @hcd: host controller for this root hub
2370 *
2371 * The USB host controller calls this function when its root hub is
2372 * suspended (with the remote wakeup feature enabled) and a remote
2373 * wakeup request is received. The routine submits a workqueue request
2374 * to resume the root hub (that is, manage its downstream ports again).
2375 */
2376void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2377{
2378 unsigned long flags;
2379
2380 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2381 if (hcd->rh_registered) {
2382 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2383 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2384 queue_work(pm_wq, &hcd->wakeup_work);
2385 }
2386 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2387}
2388EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2389
2390#endif /* CONFIG_PM */
2391
2392/*-------------------------------------------------------------------------*/
2393
2394#ifdef CONFIG_USB_OTG
2395
2396/**
2397 * usb_bus_start_enum - start immediate enumeration (for OTG)
2398 * @bus: the bus (must use hcd framework)
2399 * @port_num: 1-based number of port; usually bus->otg_port
2400 * Context: in_interrupt()
2401 *
2402 * Starts enumeration, with an immediate reset followed later by
2403 * hub_wq identifying and possibly configuring the device.
2404 * This is needed by OTG controller drivers, where it helps meet
2405 * HNP protocol timing requirements for starting a port reset.
2406 *
2407 * Return: 0 if successful.
2408 */
2409int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2410{
2411 struct usb_hcd *hcd;
2412 int status = -EOPNOTSUPP;
2413
2414 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2415 * boards with root hubs hooked up to internal devices (instead of
2416 * just the OTG port) may need more attention to resetting...
2417 */
2418 hcd = bus_to_hcd(bus);
2419 if (port_num && hcd->driver->start_port_reset)
2420 status = hcd->driver->start_port_reset(hcd, port_num);
2421
2422 /* allocate hub_wq shortly after (first) root port reset finishes;
2423 * it may issue others, until at least 50 msecs have passed.
2424 */
2425 if (status == 0)
2426 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2427 return status;
2428}
2429EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2430
2431#endif
2432
2433/*-------------------------------------------------------------------------*/
2434
2435/**
2436 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2437 * @irq: the IRQ being raised
2438 * @__hcd: pointer to the HCD whose IRQ is being signaled
2439 *
2440 * If the controller isn't HALTed, calls the driver's irq handler.
2441 * Checks whether the controller is now dead.
2442 *
2443 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2444 */
2445irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2446{
2447 struct usb_hcd *hcd = __hcd;
2448 irqreturn_t rc;
2449
2450 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2451 rc = IRQ_NONE;
2452 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2453 rc = IRQ_NONE;
2454 else
2455 rc = IRQ_HANDLED;
2456
2457 return rc;
2458}
2459EXPORT_SYMBOL_GPL(usb_hcd_irq);
2460
2461/*-------------------------------------------------------------------------*/
2462
2463/**
2464 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2465 * @hcd: pointer to the HCD representing the controller
2466 *
2467 * This is called by bus glue to report a USB host controller that died
2468 * while operations may still have been pending. It's called automatically
2469 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2470 *
2471 * Only call this function with the primary HCD.
2472 */
2473void usb_hc_died (struct usb_hcd *hcd)
2474{
2475 unsigned long flags;
2476
2477 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2478
2479 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2480 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2481 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2482 if (hcd->rh_registered) {
2483 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2484
2485 /* make hub_wq clean up old urbs and devices */
2486 usb_set_device_state (hcd->self.root_hub,
2487 USB_STATE_NOTATTACHED);
2488 usb_kick_hub_wq(hcd->self.root_hub);
2489 }
2490 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2491 hcd = hcd->shared_hcd;
2492 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2493 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2494 if (hcd->rh_registered) {
2495 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2496
2497 /* make hub_wq clean up old urbs and devices */
2498 usb_set_device_state(hcd->self.root_hub,
2499 USB_STATE_NOTATTACHED);
2500 usb_kick_hub_wq(hcd->self.root_hub);
2501 }
2502 }
2503 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2504 /* Make sure that the other roothub is also deallocated. */
2505}
2506EXPORT_SYMBOL_GPL (usb_hc_died);
2507
2508/*-------------------------------------------------------------------------*/
2509
2510static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2511{
2512
2513 spin_lock_init(&bh->lock);
2514 INIT_LIST_HEAD(&bh->head);
2515 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2516}
2517
2518struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2519 struct device *sysdev, struct device *dev, const char *bus_name,
2520 struct usb_hcd *primary_hcd)
2521{
2522 struct usb_hcd *hcd;
2523
2524 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2525 if (!hcd)
2526 return NULL;
2527 if (primary_hcd == NULL) {
2528 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2529 GFP_KERNEL);
2530 if (!hcd->address0_mutex) {
2531 kfree(hcd);
2532 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2533 return NULL;
2534 }
2535 mutex_init(hcd->address0_mutex);
2536 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2537 GFP_KERNEL);
2538 if (!hcd->bandwidth_mutex) {
2539 kfree(hcd->address0_mutex);
2540 kfree(hcd);
2541 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2542 return NULL;
2543 }
2544 mutex_init(hcd->bandwidth_mutex);
2545 dev_set_drvdata(dev, hcd);
2546 } else {
2547 mutex_lock(&usb_port_peer_mutex);
2548 hcd->address0_mutex = primary_hcd->address0_mutex;
2549 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2550 hcd->primary_hcd = primary_hcd;
2551 primary_hcd->primary_hcd = primary_hcd;
2552 hcd->shared_hcd = primary_hcd;
2553 primary_hcd->shared_hcd = hcd;
2554 mutex_unlock(&usb_port_peer_mutex);
2555 }
2556
2557 kref_init(&hcd->kref);
2558
2559 usb_bus_init(&hcd->self);
2560 hcd->self.controller = dev;
2561 hcd->self.sysdev = sysdev;
2562 hcd->self.bus_name = bus_name;
2563 hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2564
2565 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2566#ifdef CONFIG_PM
2567 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2568#endif
2569
2570 hcd->driver = driver;
2571 hcd->speed = driver->flags & HCD_MASK;
2572 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2573 "USB Host Controller";
2574 return hcd;
2575}
2576EXPORT_SYMBOL_GPL(__usb_create_hcd);
2577
2578/**
2579 * usb_create_shared_hcd - create and initialize an HCD structure
2580 * @driver: HC driver that will use this hcd
2581 * @dev: device for this HC, stored in hcd->self.controller
2582 * @bus_name: value to store in hcd->self.bus_name
2583 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2584 * PCI device. Only allocate certain resources for the primary HCD
2585 * Context: !in_interrupt()
2586 *
2587 * Allocate a struct usb_hcd, with extra space at the end for the
2588 * HC driver's private data. Initialize the generic members of the
2589 * hcd structure.
2590 *
2591 * Return: On success, a pointer to the created and initialized HCD structure.
2592 * On failure (e.g. if memory is unavailable), %NULL.
2593 */
2594struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2595 struct device *dev, const char *bus_name,
2596 struct usb_hcd *primary_hcd)
2597{
2598 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2599}
2600EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2601
2602/**
2603 * usb_create_hcd - create and initialize an HCD structure
2604 * @driver: HC driver that will use this hcd
2605 * @dev: device for this HC, stored in hcd->self.controller
2606 * @bus_name: value to store in hcd->self.bus_name
2607 * Context: !in_interrupt()
2608 *
2609 * Allocate a struct usb_hcd, with extra space at the end for the
2610 * HC driver's private data. Initialize the generic members of the
2611 * hcd structure.
2612 *
2613 * Return: On success, a pointer to the created and initialized HCD
2614 * structure. On failure (e.g. if memory is unavailable), %NULL.
2615 */
2616struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2617 struct device *dev, const char *bus_name)
2618{
2619 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2620}
2621EXPORT_SYMBOL_GPL(usb_create_hcd);
2622
2623/*
2624 * Roothubs that share one PCI device must also share the bandwidth mutex.
2625 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2626 * deallocated.
2627 *
2628 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2629 * freed. When hcd_release() is called for either hcd in a peer set,
2630 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2631 */
2632static void hcd_release(struct kref *kref)
2633{
2634 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2635
2636 mutex_lock(&usb_port_peer_mutex);
2637 if (hcd->shared_hcd) {
2638 struct usb_hcd *peer = hcd->shared_hcd;
2639
2640 peer->shared_hcd = NULL;
2641 peer->primary_hcd = NULL;
2642 } else {
2643 kfree(hcd->address0_mutex);
2644 kfree(hcd->bandwidth_mutex);
2645 }
2646 mutex_unlock(&usb_port_peer_mutex);
2647 kfree(hcd);
2648}
2649
2650struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2651{
2652 if (hcd)
2653 kref_get (&hcd->kref);
2654 return hcd;
2655}
2656EXPORT_SYMBOL_GPL(usb_get_hcd);
2657
2658void usb_put_hcd (struct usb_hcd *hcd)
2659{
2660 if (hcd)
2661 kref_put (&hcd->kref, hcd_release);
2662}
2663EXPORT_SYMBOL_GPL(usb_put_hcd);
2664
2665int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2666{
2667 if (!hcd->primary_hcd)
2668 return 1;
2669 return hcd == hcd->primary_hcd;
2670}
2671EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2672
2673int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2674{
2675 if (!hcd->driver->find_raw_port_number)
2676 return port1;
2677
2678 return hcd->driver->find_raw_port_number(hcd, port1);
2679}
2680
2681static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2682 unsigned int irqnum, unsigned long irqflags)
2683{
2684 int retval;
2685
2686 if (hcd->driver->irq) {
2687
2688 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2689 hcd->driver->description, hcd->self.busnum);
2690 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2691 hcd->irq_descr, hcd);
2692 if (retval != 0) {
2693 dev_err(hcd->self.controller,
2694 "request interrupt %d failed\n",
2695 irqnum);
2696 return retval;
2697 }
2698 hcd->irq = irqnum;
2699 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2700 (hcd->driver->flags & HCD_MEMORY) ?
2701 "io mem" : "io base",
2702 (unsigned long long)hcd->rsrc_start);
2703 } else {
2704 hcd->irq = 0;
2705 if (hcd->rsrc_start)
2706 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2707 (hcd->driver->flags & HCD_MEMORY) ?
2708 "io mem" : "io base",
2709 (unsigned long long)hcd->rsrc_start);
2710 }
2711 return 0;
2712}
2713
2714/*
2715 * Before we free this root hub, flush in-flight peering attempts
2716 * and disable peer lookups
2717 */
2718static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2719{
2720 struct usb_device *rhdev;
2721
2722 mutex_lock(&usb_port_peer_mutex);
2723 rhdev = hcd->self.root_hub;
2724 hcd->self.root_hub = NULL;
2725 mutex_unlock(&usb_port_peer_mutex);
2726 usb_put_dev(rhdev);
2727}
2728
2729/**
2730 * usb_add_hcd - finish generic HCD structure initialization and register
2731 * @hcd: the usb_hcd structure to initialize
2732 * @irqnum: Interrupt line to allocate
2733 * @irqflags: Interrupt type flags
2734 *
2735 * Finish the remaining parts of generic HCD initialization: allocate the
2736 * buffers of consistent memory, register the bus, request the IRQ line,
2737 * and call the driver's reset() and start() routines.
2738 */
2739int usb_add_hcd(struct usb_hcd *hcd,
2740 unsigned int irqnum, unsigned long irqflags)
2741{
2742 int retval;
2743 struct usb_device *rhdev;
2744
2745 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->skip_phy_initialization) {
2746 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2747
2748 if (IS_ERR(phy)) {
2749 retval = PTR_ERR(phy);
2750 if (retval == -EPROBE_DEFER)
2751 return retval;
2752 } else {
2753 retval = usb_phy_init(phy);
2754 if (retval) {
2755 usb_put_phy(phy);
2756 return retval;
2757 }
2758 hcd->usb_phy = phy;
2759 hcd->remove_phy = 1;
2760 }
2761 }
2762
2763 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2764 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2765 if (IS_ERR(hcd->phy_roothub)) {
2766 retval = PTR_ERR(hcd->phy_roothub);
2767 goto err_phy_roothub_alloc;
2768 }
2769
2770 retval = usb_phy_roothub_init(hcd->phy_roothub);
2771 if (retval)
2772 goto err_phy_roothub_alloc;
2773
2774 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2775 if (retval)
2776 goto err_usb_phy_roothub_power_on;
2777 }
2778
2779 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2780
2781 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2782 if (authorized_default < 0 || authorized_default > 1) {
2783 if (hcd->wireless)
2784 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785 else
2786 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2787 } else {
2788 if (authorized_default)
2789 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2790 else
2791 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2792 }
2793 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2794
2795 /* per default all interfaces are authorized */
2796 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2797
2798 /* HC is in reset state, but accessible. Now do the one-time init,
2799 * bottom up so that hcds can customize the root hubs before hub_wq
2800 * starts talking to them. (Note, bus id is assigned early too.)
2801 */
2802 retval = hcd_buffer_create(hcd);
2803 if (retval != 0) {
2804 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2805 goto err_create_buf;
2806 }
2807
2808 retval = usb_register_bus(&hcd->self);
2809 if (retval < 0)
2810 goto err_register_bus;
2811
2812 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2813 if (rhdev == NULL) {
2814 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2815 retval = -ENOMEM;
2816 goto err_allocate_root_hub;
2817 }
2818 mutex_lock(&usb_port_peer_mutex);
2819 hcd->self.root_hub = rhdev;
2820 mutex_unlock(&usb_port_peer_mutex);
2821
2822 switch (hcd->speed) {
2823 case HCD_USB11:
2824 rhdev->speed = USB_SPEED_FULL;
2825 break;
2826 case HCD_USB2:
2827 rhdev->speed = USB_SPEED_HIGH;
2828 break;
2829 case HCD_USB25:
2830 rhdev->speed = USB_SPEED_WIRELESS;
2831 break;
2832 case HCD_USB3:
2833 rhdev->speed = USB_SPEED_SUPER;
2834 break;
2835 case HCD_USB31:
2836 rhdev->speed = USB_SPEED_SUPER_PLUS;
2837 break;
2838 default:
2839 retval = -EINVAL;
2840 goto err_set_rh_speed;
2841 }
2842
2843 /* wakeup flag init defaults to "everything works" for root hubs,
2844 * but drivers can override it in reset() if needed, along with
2845 * recording the overall controller's system wakeup capability.
2846 */
2847 device_set_wakeup_capable(&rhdev->dev, 1);
2848
2849 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2850 * registered. But since the controller can die at any time,
2851 * let's initialize the flag before touching the hardware.
2852 */
2853 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2854
2855 /* "reset" is misnamed; its role is now one-time init. the controller
2856 * should already have been reset (and boot firmware kicked off etc).
2857 */
2858 if (hcd->driver->reset) {
2859 retval = hcd->driver->reset(hcd);
2860 if (retval < 0) {
2861 dev_err(hcd->self.controller, "can't setup: %d\n",
2862 retval);
2863 goto err_hcd_driver_setup;
2864 }
2865 }
2866 hcd->rh_pollable = 1;
2867
2868 /* NOTE: root hub and controller capabilities may not be the same */
2869 if (device_can_wakeup(hcd->self.controller)
2870 && device_can_wakeup(&hcd->self.root_hub->dev))
2871 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2872
2873 /* initialize tasklets */
2874 init_giveback_urb_bh(&hcd->high_prio_bh);
2875 init_giveback_urb_bh(&hcd->low_prio_bh);
2876
2877 /* enable irqs just before we start the controller,
2878 * if the BIOS provides legacy PCI irqs.
2879 */
2880 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2881 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2882 if (retval)
2883 goto err_request_irq;
2884 }
2885
2886 hcd->state = HC_STATE_RUNNING;
2887 retval = hcd->driver->start(hcd);
2888 if (retval < 0) {
2889 dev_err(hcd->self.controller, "startup error %d\n", retval);
2890 goto err_hcd_driver_start;
2891 }
2892
2893 /* starting here, usbcore will pay attention to this root hub */
2894 retval = register_root_hub(hcd);
2895 if (retval != 0)
2896 goto err_register_root_hub;
2897
2898 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2899 if (retval < 0) {
2900 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2901 retval);
2902 goto error_create_attr_group;
2903 }
2904 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2905 usb_hcd_poll_rh_status(hcd);
2906
2907 return retval;
2908
2909error_create_attr_group:
2910 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2911 if (HC_IS_RUNNING(hcd->state))
2912 hcd->state = HC_STATE_QUIESCING;
2913 spin_lock_irq(&hcd_root_hub_lock);
2914 hcd->rh_registered = 0;
2915 spin_unlock_irq(&hcd_root_hub_lock);
2916
2917#ifdef CONFIG_PM
2918 cancel_work_sync(&hcd->wakeup_work);
2919#endif
2920 mutex_lock(&usb_bus_idr_lock);
2921 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2922 mutex_unlock(&usb_bus_idr_lock);
2923err_register_root_hub:
2924 hcd->rh_pollable = 0;
2925 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2926 del_timer_sync(&hcd->rh_timer);
2927 hcd->driver->stop(hcd);
2928 hcd->state = HC_STATE_HALT;
2929 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2930 del_timer_sync(&hcd->rh_timer);
2931err_hcd_driver_start:
2932 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2933 free_irq(irqnum, hcd);
2934err_request_irq:
2935err_hcd_driver_setup:
2936err_set_rh_speed:
2937 usb_put_invalidate_rhdev(hcd);
2938err_allocate_root_hub:
2939 usb_deregister_bus(&hcd->self);
2940err_register_bus:
2941 hcd_buffer_destroy(hcd);
2942err_create_buf:
2943 usb_phy_roothub_power_off(hcd->phy_roothub);
2944err_usb_phy_roothub_power_on:
2945 usb_phy_roothub_exit(hcd->phy_roothub);
2946err_phy_roothub_alloc:
2947 if (hcd->remove_phy && hcd->usb_phy) {
2948 usb_phy_shutdown(hcd->usb_phy);
2949 usb_put_phy(hcd->usb_phy);
2950 hcd->usb_phy = NULL;
2951 }
2952 return retval;
2953}
2954EXPORT_SYMBOL_GPL(usb_add_hcd);
2955
2956/**
2957 * usb_remove_hcd - shutdown processing for generic HCDs
2958 * @hcd: the usb_hcd structure to remove
2959 * Context: !in_interrupt()
2960 *
2961 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2962 * invoking the HCD's stop() method.
2963 */
2964void usb_remove_hcd(struct usb_hcd *hcd)
2965{
2966 struct usb_device *rhdev = hcd->self.root_hub;
2967
2968 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2969
2970 usb_get_dev(rhdev);
2971 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2972
2973 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2974 if (HC_IS_RUNNING (hcd->state))
2975 hcd->state = HC_STATE_QUIESCING;
2976
2977 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2978 spin_lock_irq (&hcd_root_hub_lock);
2979 hcd->rh_registered = 0;
2980 spin_unlock_irq (&hcd_root_hub_lock);
2981
2982#ifdef CONFIG_PM
2983 cancel_work_sync(&hcd->wakeup_work);
2984#endif
2985
2986 mutex_lock(&usb_bus_idr_lock);
2987 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2988 mutex_unlock(&usb_bus_idr_lock);
2989
2990 /*
2991 * tasklet_kill() isn't needed here because:
2992 * - driver's disconnect() called from usb_disconnect() should
2993 * make sure its URBs are completed during the disconnect()
2994 * callback
2995 *
2996 * - it is too late to run complete() here since driver may have
2997 * been removed already now
2998 */
2999
3000 /* Prevent any more root-hub status calls from the timer.
3001 * The HCD might still restart the timer (if a port status change
3002 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3003 * the hub_status_data() callback.
3004 */
3005 hcd->rh_pollable = 0;
3006 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3007 del_timer_sync(&hcd->rh_timer);
3008
3009 hcd->driver->stop(hcd);
3010 hcd->state = HC_STATE_HALT;
3011
3012 /* In case the HCD restarted the timer, stop it again. */
3013 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3014 del_timer_sync(&hcd->rh_timer);
3015
3016 if (usb_hcd_is_primary_hcd(hcd)) {
3017 if (hcd->irq > 0)
3018 free_irq(hcd->irq, hcd);
3019 }
3020
3021 usb_deregister_bus(&hcd->self);
3022 hcd_buffer_destroy(hcd);
3023
3024 usb_phy_roothub_power_off(hcd->phy_roothub);
3025 usb_phy_roothub_exit(hcd->phy_roothub);
3026
3027 if (hcd->remove_phy && hcd->usb_phy) {
3028 usb_phy_shutdown(hcd->usb_phy);
3029 usb_put_phy(hcd->usb_phy);
3030 hcd->usb_phy = NULL;
3031 }
3032
3033 usb_put_invalidate_rhdev(hcd);
3034 hcd->flags = 0;
3035}
3036EXPORT_SYMBOL_GPL(usb_remove_hcd);
3037
3038void
3039usb_hcd_platform_shutdown(struct platform_device *dev)
3040{
3041 struct usb_hcd *hcd = platform_get_drvdata(dev);
3042
3043 if (hcd->driver->shutdown)
3044 hcd->driver->shutdown(hcd);
3045}
3046EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3047
3048/*-------------------------------------------------------------------------*/
3049
3050#if IS_ENABLED(CONFIG_USB_MON)
3051
3052const struct usb_mon_operations *mon_ops;
3053
3054/*
3055 * The registration is unlocked.
3056 * We do it this way because we do not want to lock in hot paths.
3057 *
3058 * Notice that the code is minimally error-proof. Because usbmon needs
3059 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3060 */
3061
3062int usb_mon_register(const struct usb_mon_operations *ops)
3063{
3064
3065 if (mon_ops)
3066 return -EBUSY;
3067
3068 mon_ops = ops;
3069 mb();
3070 return 0;
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_register);
3073
3074void usb_mon_deregister (void)
3075{
3076
3077 if (mon_ops == NULL) {
3078 printk(KERN_ERR "USB: monitor was not registered\n");
3079 return;
3080 }
3081 mon_ops = NULL;
3082 mb();
3083}
3084EXPORT_SYMBOL_GPL (usb_mon_deregister);
3085
3086#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */