Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS 64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115#define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157};
158
159/* usb 2.0 root hub device descriptor */
160static const u8 usb2_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178};
179
180/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181
182/* usb 1.1 root hub device descriptor */
183static const u8 usb11_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
187
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
192
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
196
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
201};
202
203
204/*-------------------------------------------------------------------------*/
205
206/* Configuration descriptors for our root hubs */
207
208static const u8 fs_rh_config_descriptor[] = {
209
210 /* one configuration */
211 0x09, /* __u8 bLength; */
212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213 0x19, 0x00, /* __le16 wTotalLength; */
214 0x01, /* __u8 bNumInterfaces; (1) */
215 0x01, /* __u8 bConfigurationValue; */
216 0x00, /* __u8 iConfiguration; */
217 0xc0, /* __u8 bmAttributes;
218 Bit 7: must be set,
219 6: Self-powered,
220 5: Remote wakeup,
221 4..0: resvd */
222 0x00, /* __u8 MaxPower; */
223
224 /* USB 1.1:
225 * USB 2.0, single TT organization (mandatory):
226 * one interface, protocol 0
227 *
228 * USB 2.0, multiple TT organization (optional):
229 * two interfaces, protocols 1 (like single TT)
230 * and 2 (multiple TT mode) ... config is
231 * sometimes settable
232 * NOT IMPLEMENTED
233 */
234
235 /* one interface */
236 0x09, /* __u8 if_bLength; */
237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
238 0x00, /* __u8 if_bInterfaceNumber; */
239 0x00, /* __u8 if_bAlternateSetting; */
240 0x01, /* __u8 if_bNumEndpoints; */
241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
242 0x00, /* __u8 if_bInterfaceSubClass; */
243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
244 0x00, /* __u8 if_iInterface; */
245
246 /* one endpoint (status change endpoint) */
247 0x07, /* __u8 ep_bLength; */
248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
250 0x03, /* __u8 ep_bmAttributes; Interrupt */
251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
253};
254
255static const u8 hs_rh_config_descriptor[] = {
256
257 /* one configuration */
258 0x09, /* __u8 bLength; */
259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260 0x19, 0x00, /* __le16 wTotalLength; */
261 0x01, /* __u8 bNumInterfaces; (1) */
262 0x01, /* __u8 bConfigurationValue; */
263 0x00, /* __u8 iConfiguration; */
264 0xc0, /* __u8 bmAttributes;
265 Bit 7: must be set,
266 6: Self-powered,
267 5: Remote wakeup,
268 4..0: resvd */
269 0x00, /* __u8 MaxPower; */
270
271 /* USB 1.1:
272 * USB 2.0, single TT organization (mandatory):
273 * one interface, protocol 0
274 *
275 * USB 2.0, multiple TT organization (optional):
276 * two interfaces, protocols 1 (like single TT)
277 * and 2 (multiple TT mode) ... config is
278 * sometimes settable
279 * NOT IMPLEMENTED
280 */
281
282 /* one interface */
283 0x09, /* __u8 if_bLength; */
284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285 0x00, /* __u8 if_bInterfaceNumber; */
286 0x00, /* __u8 if_bAlternateSetting; */
287 0x01, /* __u8 if_bNumEndpoints; */
288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
289 0x00, /* __u8 if_bInterfaceSubClass; */
290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
291 0x00, /* __u8 if_iInterface; */
292
293 /* one endpoint (status change endpoint) */
294 0x07, /* __u8 ep_bLength; */
295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
297 0x03, /* __u8 ep_bmAttributes; Interrupt */
298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299 * see hub.c:hub_configure() for details. */
300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
302};
303
304static const u8 ss_rh_config_descriptor[] = {
305 /* one configuration */
306 0x09, /* __u8 bLength; */
307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308 0x1f, 0x00, /* __le16 wTotalLength; */
309 0x01, /* __u8 bNumInterfaces; (1) */
310 0x01, /* __u8 bConfigurationValue; */
311 0x00, /* __u8 iConfiguration; */
312 0xc0, /* __u8 bmAttributes;
313 Bit 7: must be set,
314 6: Self-powered,
315 5: Remote wakeup,
316 4..0: resvd */
317 0x00, /* __u8 MaxPower; */
318
319 /* one interface */
320 0x09, /* __u8 if_bLength; */
321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322 0x00, /* __u8 if_bInterfaceNumber; */
323 0x00, /* __u8 if_bAlternateSetting; */
324 0x01, /* __u8 if_bNumEndpoints; */
325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
326 0x00, /* __u8 if_bInterfaceSubClass; */
327 0x00, /* __u8 if_bInterfaceProtocol; */
328 0x00, /* __u8 if_iInterface; */
329
330 /* one endpoint (status change endpoint) */
331 0x07, /* __u8 ep_bLength; */
332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
334 0x03, /* __u8 ep_bmAttributes; Interrupt */
335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336 * see hub.c:hub_configure() for details. */
337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
339
340 /* one SuperSpeed endpoint companion descriptor */
341 0x06, /* __u8 ss_bLength */
342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343 /* Companion */
344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347};
348
349/* authorized_default behaviour:
350 * -1 is authorized for all devices (leftover from wireless USB)
351 * 0 is unauthorized for all devices
352 * 1 is authorized for all devices
353 * 2 is authorized for internal devices
354 */
355#define USB_AUTHORIZE_WIRED -1
356#define USB_AUTHORIZE_NONE 0
357#define USB_AUTHORIZE_ALL 1
358#define USB_AUTHORIZE_INTERNAL 2
359
360static int authorized_default = USB_AUTHORIZE_WIRED;
361module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362MODULE_PARM_DESC(authorized_default,
363 "Default USB device authorization: 0 is not authorized, 1 is "
364 "authorized, 2 is authorized for internal devices, -1 is "
365 "authorized (default, same as 1)");
366/*-------------------------------------------------------------------------*/
367
368/**
369 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
370 * @s: Null-terminated ASCII (actually ISO-8859-1) string
371 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
372 * @len: Length (in bytes; may be odd) of descriptor buffer.
373 *
374 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
375 * whichever is less.
376 *
377 * Note:
378 * USB String descriptors can contain at most 126 characters; input
379 * strings longer than that are truncated.
380 */
381static unsigned
382ascii2desc(char const *s, u8 *buf, unsigned len)
383{
384 unsigned n, t = 2 + 2*strlen(s);
385
386 if (t > 254)
387 t = 254; /* Longest possible UTF string descriptor */
388 if (len > t)
389 len = t;
390
391 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
392
393 n = len;
394 while (n--) {
395 *buf++ = t;
396 if (!n--)
397 break;
398 *buf++ = t >> 8;
399 t = (unsigned char)*s++;
400 }
401 return len;
402}
403
404/**
405 * rh_string() - provides string descriptors for root hub
406 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
407 * @hcd: the host controller for this root hub
408 * @data: buffer for output packet
409 * @len: length of the provided buffer
410 *
411 * Produces either a manufacturer, product or serial number string for the
412 * virtual root hub device.
413 *
414 * Return: The number of bytes filled in: the length of the descriptor or
415 * of the provided buffer, whichever is less.
416 */
417static unsigned
418rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
419{
420 char buf[100];
421 char const *s;
422 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
423
424 /* language ids */
425 switch (id) {
426 case 0:
427 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
428 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
429 if (len > 4)
430 len = 4;
431 memcpy(data, langids, len);
432 return len;
433 case 1:
434 /* Serial number */
435 s = hcd->self.bus_name;
436 break;
437 case 2:
438 /* Product name */
439 s = hcd->product_desc;
440 break;
441 case 3:
442 /* Manufacturer */
443 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
444 init_utsname()->release, hcd->driver->description);
445 s = buf;
446 break;
447 default:
448 /* Can't happen; caller guarantees it */
449 return 0;
450 }
451
452 return ascii2desc(s, data, len);
453}
454
455
456/* Root hub control transfers execute synchronously */
457static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
458{
459 struct usb_ctrlrequest *cmd;
460 u16 typeReq, wValue, wIndex, wLength;
461 u8 *ubuf = urb->transfer_buffer;
462 unsigned len = 0;
463 int status;
464 u8 patch_wakeup = 0;
465 u8 patch_protocol = 0;
466 u16 tbuf_size;
467 u8 *tbuf = NULL;
468 const u8 *bufp;
469
470 might_sleep();
471
472 spin_lock_irq(&hcd_root_hub_lock);
473 status = usb_hcd_link_urb_to_ep(hcd, urb);
474 spin_unlock_irq(&hcd_root_hub_lock);
475 if (status)
476 return status;
477 urb->hcpriv = hcd; /* Indicate it's queued */
478
479 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
480 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
481 wValue = le16_to_cpu (cmd->wValue);
482 wIndex = le16_to_cpu (cmd->wIndex);
483 wLength = le16_to_cpu (cmd->wLength);
484
485 if (wLength > urb->transfer_buffer_length)
486 goto error;
487
488 /*
489 * tbuf should be at least as big as the
490 * USB hub descriptor.
491 */
492 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
493 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
494 if (!tbuf) {
495 status = -ENOMEM;
496 goto err_alloc;
497 }
498
499 bufp = tbuf;
500
501
502 urb->actual_length = 0;
503 switch (typeReq) {
504
505 /* DEVICE REQUESTS */
506
507 /* The root hub's remote wakeup enable bit is implemented using
508 * driver model wakeup flags. If this system supports wakeup
509 * through USB, userspace may change the default "allow wakeup"
510 * policy through sysfs or these calls.
511 *
512 * Most root hubs support wakeup from downstream devices, for
513 * runtime power management (disabling USB clocks and reducing
514 * VBUS power usage). However, not all of them do so; silicon,
515 * board, and BIOS bugs here are not uncommon, so these can't
516 * be treated quite like external hubs.
517 *
518 * Likewise, not all root hubs will pass wakeup events upstream,
519 * to wake up the whole system. So don't assume root hub and
520 * controller capabilities are identical.
521 */
522
523 case DeviceRequest | USB_REQ_GET_STATUS:
524 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
525 << USB_DEVICE_REMOTE_WAKEUP)
526 | (1 << USB_DEVICE_SELF_POWERED);
527 tbuf[1] = 0;
528 len = 2;
529 break;
530 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
531 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
532 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
533 else
534 goto error;
535 break;
536 case DeviceOutRequest | USB_REQ_SET_FEATURE:
537 if (device_can_wakeup(&hcd->self.root_hub->dev)
538 && wValue == USB_DEVICE_REMOTE_WAKEUP)
539 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
540 else
541 goto error;
542 break;
543 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
544 tbuf[0] = 1;
545 len = 1;
546 fallthrough;
547 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
548 break;
549 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
550 switch (wValue & 0xff00) {
551 case USB_DT_DEVICE << 8:
552 switch (hcd->speed) {
553 case HCD_USB32:
554 case HCD_USB31:
555 bufp = usb31_rh_dev_descriptor;
556 break;
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB2:
561 bufp = usb2_rh_dev_descriptor;
562 break;
563 case HCD_USB11:
564 bufp = usb11_rh_dev_descriptor;
565 break;
566 default:
567 goto error;
568 }
569 len = 18;
570 if (hcd->has_tt)
571 patch_protocol = 1;
572 break;
573 case USB_DT_CONFIG << 8:
574 switch (hcd->speed) {
575 case HCD_USB32:
576 case HCD_USB31:
577 case HCD_USB3:
578 bufp = ss_rh_config_descriptor;
579 len = sizeof ss_rh_config_descriptor;
580 break;
581 case HCD_USB2:
582 bufp = hs_rh_config_descriptor;
583 len = sizeof hs_rh_config_descriptor;
584 break;
585 case HCD_USB11:
586 bufp = fs_rh_config_descriptor;
587 len = sizeof fs_rh_config_descriptor;
588 break;
589 default:
590 goto error;
591 }
592 if (device_can_wakeup(&hcd->self.root_hub->dev))
593 patch_wakeup = 1;
594 break;
595 case USB_DT_STRING << 8:
596 if ((wValue & 0xff) < 4)
597 urb->actual_length = rh_string(wValue & 0xff,
598 hcd, ubuf, wLength);
599 else /* unsupported IDs --> "protocol stall" */
600 goto error;
601 break;
602 case USB_DT_BOS << 8:
603 goto nongeneric;
604 default:
605 goto error;
606 }
607 break;
608 case DeviceRequest | USB_REQ_GET_INTERFACE:
609 tbuf[0] = 0;
610 len = 1;
611 fallthrough;
612 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
613 break;
614 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
615 /* wValue == urb->dev->devaddr */
616 dev_dbg (hcd->self.controller, "root hub device address %d\n",
617 wValue);
618 break;
619
620 /* INTERFACE REQUESTS (no defined feature/status flags) */
621
622 /* ENDPOINT REQUESTS */
623
624 case EndpointRequest | USB_REQ_GET_STATUS:
625 /* ENDPOINT_HALT flag */
626 tbuf[0] = 0;
627 tbuf[1] = 0;
628 len = 2;
629 fallthrough;
630 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
631 case EndpointOutRequest | USB_REQ_SET_FEATURE:
632 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
633 break;
634
635 /* CLASS REQUESTS (and errors) */
636
637 default:
638nongeneric:
639 /* non-generic request */
640 switch (typeReq) {
641 case GetHubStatus:
642 len = 4;
643 break;
644 case GetPortStatus:
645 if (wValue == HUB_PORT_STATUS)
646 len = 4;
647 else
648 /* other port status types return 8 bytes */
649 len = 8;
650 break;
651 case GetHubDescriptor:
652 len = sizeof (struct usb_hub_descriptor);
653 break;
654 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
655 /* len is returned by hub_control */
656 break;
657 }
658 status = hcd->driver->hub_control (hcd,
659 typeReq, wValue, wIndex,
660 tbuf, wLength);
661
662 if (typeReq == GetHubDescriptor)
663 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
664 (struct usb_hub_descriptor *)tbuf);
665 break;
666error:
667 /* "protocol stall" on error */
668 status = -EPIPE;
669 }
670
671 if (status < 0) {
672 len = 0;
673 if (status != -EPIPE) {
674 dev_dbg (hcd->self.controller,
675 "CTRL: TypeReq=0x%x val=0x%x "
676 "idx=0x%x len=%d ==> %d\n",
677 typeReq, wValue, wIndex,
678 wLength, status);
679 }
680 } else if (status > 0) {
681 /* hub_control may return the length of data copied. */
682 len = status;
683 status = 0;
684 }
685 if (len) {
686 if (urb->transfer_buffer_length < len)
687 len = urb->transfer_buffer_length;
688 urb->actual_length = len;
689 /* always USB_DIR_IN, toward host */
690 memcpy (ubuf, bufp, len);
691
692 /* report whether RH hardware supports remote wakeup */
693 if (patch_wakeup &&
694 len > offsetof (struct usb_config_descriptor,
695 bmAttributes))
696 ((struct usb_config_descriptor *)ubuf)->bmAttributes
697 |= USB_CONFIG_ATT_WAKEUP;
698
699 /* report whether RH hardware has an integrated TT */
700 if (patch_protocol &&
701 len > offsetof(struct usb_device_descriptor,
702 bDeviceProtocol))
703 ((struct usb_device_descriptor *) ubuf)->
704 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
705 }
706
707 kfree(tbuf);
708 err_alloc:
709
710 /* any errors get returned through the urb completion */
711 spin_lock_irq(&hcd_root_hub_lock);
712 usb_hcd_unlink_urb_from_ep(hcd, urb);
713 usb_hcd_giveback_urb(hcd, urb, status);
714 spin_unlock_irq(&hcd_root_hub_lock);
715 return 0;
716}
717
718/*-------------------------------------------------------------------------*/
719
720/*
721 * Root Hub interrupt transfers are polled using a timer if the
722 * driver requests it; otherwise the driver is responsible for
723 * calling usb_hcd_poll_rh_status() when an event occurs.
724 *
725 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
726 */
727void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728{
729 struct urb *urb;
730 int length;
731 int status;
732 unsigned long flags;
733 char buffer[6]; /* Any root hubs with > 31 ports? */
734
735 if (unlikely(!hcd->rh_pollable))
736 return;
737 if (!hcd->uses_new_polling && !hcd->status_urb)
738 return;
739
740 length = hcd->driver->hub_status_data(hcd, buffer);
741 if (length > 0) {
742
743 /* try to complete the status urb */
744 spin_lock_irqsave(&hcd_root_hub_lock, flags);
745 urb = hcd->status_urb;
746 if (urb) {
747 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
748 hcd->status_urb = NULL;
749 if (urb->transfer_buffer_length >= length) {
750 status = 0;
751 } else {
752 status = -EOVERFLOW;
753 length = urb->transfer_buffer_length;
754 }
755 urb->actual_length = length;
756 memcpy(urb->transfer_buffer, buffer, length);
757
758 usb_hcd_unlink_urb_from_ep(hcd, urb);
759 usb_hcd_giveback_urb(hcd, urb, status);
760 } else {
761 length = 0;
762 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
763 }
764 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
765 }
766
767 /* The USB 2.0 spec says 256 ms. This is close enough and won't
768 * exceed that limit if HZ is 100. The math is more clunky than
769 * maybe expected, this is to make sure that all timers for USB devices
770 * fire at the same time to give the CPU a break in between */
771 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
772 (length == 0 && hcd->status_urb != NULL))
773 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
774}
775EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
776
777/* timer callback */
778static void rh_timer_func (struct timer_list *t)
779{
780 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
781
782 usb_hcd_poll_rh_status(_hcd);
783}
784
785/*-------------------------------------------------------------------------*/
786
787static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
788{
789 int retval;
790 unsigned long flags;
791 unsigned len = 1 + (urb->dev->maxchild / 8);
792
793 spin_lock_irqsave (&hcd_root_hub_lock, flags);
794 if (hcd->status_urb || urb->transfer_buffer_length < len) {
795 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
796 retval = -EINVAL;
797 goto done;
798 }
799
800 retval = usb_hcd_link_urb_to_ep(hcd, urb);
801 if (retval)
802 goto done;
803
804 hcd->status_urb = urb;
805 urb->hcpriv = hcd; /* indicate it's queued */
806 if (!hcd->uses_new_polling)
807 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
808
809 /* If a status change has already occurred, report it ASAP */
810 else if (HCD_POLL_PENDING(hcd))
811 mod_timer(&hcd->rh_timer, jiffies);
812 retval = 0;
813 done:
814 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
815 return retval;
816}
817
818static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
819{
820 if (usb_endpoint_xfer_int(&urb->ep->desc))
821 return rh_queue_status (hcd, urb);
822 if (usb_endpoint_xfer_control(&urb->ep->desc))
823 return rh_call_control (hcd, urb);
824 return -EINVAL;
825}
826
827/*-------------------------------------------------------------------------*/
828
829/* Unlinks of root-hub control URBs are legal, but they don't do anything
830 * since these URBs always execute synchronously.
831 */
832static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
833{
834 unsigned long flags;
835 int rc;
836
837 spin_lock_irqsave(&hcd_root_hub_lock, flags);
838 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
839 if (rc)
840 goto done;
841
842 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
843 ; /* Do nothing */
844
845 } else { /* Status URB */
846 if (!hcd->uses_new_polling)
847 del_timer (&hcd->rh_timer);
848 if (urb == hcd->status_urb) {
849 hcd->status_urb = NULL;
850 usb_hcd_unlink_urb_from_ep(hcd, urb);
851 usb_hcd_giveback_urb(hcd, urb, status);
852 }
853 }
854 done:
855 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
856 return rc;
857}
858
859
860/*-------------------------------------------------------------------------*/
861
862/**
863 * usb_bus_init - shared initialization code
864 * @bus: the bus structure being initialized
865 *
866 * This code is used to initialize a usb_bus structure, memory for which is
867 * separately managed.
868 */
869static void usb_bus_init (struct usb_bus *bus)
870{
871 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
872
873 bus->devnum_next = 1;
874
875 bus->root_hub = NULL;
876 bus->busnum = -1;
877 bus->bandwidth_allocated = 0;
878 bus->bandwidth_int_reqs = 0;
879 bus->bandwidth_isoc_reqs = 0;
880 mutex_init(&bus->devnum_next_mutex);
881}
882
883/*-------------------------------------------------------------------------*/
884
885/**
886 * usb_register_bus - registers the USB host controller with the usb core
887 * @bus: pointer to the bus to register
888 *
889 * Context: task context, might sleep.
890 *
891 * Assigns a bus number, and links the controller into usbcore data
892 * structures so that it can be seen by scanning the bus list.
893 *
894 * Return: 0 if successful. A negative error code otherwise.
895 */
896static int usb_register_bus(struct usb_bus *bus)
897{
898 int result = -E2BIG;
899 int busnum;
900
901 mutex_lock(&usb_bus_idr_lock);
902 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
903 if (busnum < 0) {
904 pr_err("%s: failed to get bus number\n", usbcore_name);
905 goto error_find_busnum;
906 }
907 bus->busnum = busnum;
908 mutex_unlock(&usb_bus_idr_lock);
909
910 usb_notify_add_bus(bus);
911
912 dev_info (bus->controller, "new USB bus registered, assigned bus "
913 "number %d\n", bus->busnum);
914 return 0;
915
916error_find_busnum:
917 mutex_unlock(&usb_bus_idr_lock);
918 return result;
919}
920
921/**
922 * usb_deregister_bus - deregisters the USB host controller
923 * @bus: pointer to the bus to deregister
924 *
925 * Context: task context, might sleep.
926 *
927 * Recycles the bus number, and unlinks the controller from usbcore data
928 * structures so that it won't be seen by scanning the bus list.
929 */
930static void usb_deregister_bus (struct usb_bus *bus)
931{
932 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
933
934 /*
935 * NOTE: make sure that all the devices are removed by the
936 * controller code, as well as having it call this when cleaning
937 * itself up
938 */
939 mutex_lock(&usb_bus_idr_lock);
940 idr_remove(&usb_bus_idr, bus->busnum);
941 mutex_unlock(&usb_bus_idr_lock);
942
943 usb_notify_remove_bus(bus);
944}
945
946/**
947 * register_root_hub - called by usb_add_hcd() to register a root hub
948 * @hcd: host controller for this root hub
949 *
950 * This function registers the root hub with the USB subsystem. It sets up
951 * the device properly in the device tree and then calls usb_new_device()
952 * to register the usb device. It also assigns the root hub's USB address
953 * (always 1).
954 *
955 * Return: 0 if successful. A negative error code otherwise.
956 */
957static int register_root_hub(struct usb_hcd *hcd)
958{
959 struct device *parent_dev = hcd->self.controller;
960 struct usb_device *usb_dev = hcd->self.root_hub;
961 struct usb_device_descriptor *descr;
962 const int devnum = 1;
963 int retval;
964
965 usb_dev->devnum = devnum;
966 usb_dev->bus->devnum_next = devnum + 1;
967 set_bit (devnum, usb_dev->bus->devmap.devicemap);
968 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
969
970 mutex_lock(&usb_bus_idr_lock);
971
972 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
973 descr = usb_get_device_descriptor(usb_dev);
974 if (IS_ERR(descr)) {
975 retval = PTR_ERR(descr);
976 mutex_unlock(&usb_bus_idr_lock);
977 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
978 dev_name(&usb_dev->dev), retval);
979 return retval;
980 }
981 usb_dev->descriptor = *descr;
982 kfree(descr);
983
984 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
985 retval = usb_get_bos_descriptor(usb_dev);
986 if (!retval) {
987 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
988 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
989 mutex_unlock(&usb_bus_idr_lock);
990 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
991 dev_name(&usb_dev->dev), retval);
992 return retval;
993 }
994 }
995
996 retval = usb_new_device (usb_dev);
997 if (retval) {
998 dev_err (parent_dev, "can't register root hub for %s, %d\n",
999 dev_name(&usb_dev->dev), retval);
1000 } else {
1001 spin_lock_irq (&hcd_root_hub_lock);
1002 hcd->rh_registered = 1;
1003 spin_unlock_irq (&hcd_root_hub_lock);
1004
1005 /* Did the HC die before the root hub was registered? */
1006 if (HCD_DEAD(hcd))
1007 usb_hc_died (hcd); /* This time clean up */
1008 }
1009 mutex_unlock(&usb_bus_idr_lock);
1010
1011 return retval;
1012}
1013
1014/*
1015 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1016 * @bus: the bus which the root hub belongs to
1017 * @portnum: the port which is being resumed
1018 *
1019 * HCDs should call this function when they know that a resume signal is
1020 * being sent to a root-hub port. The root hub will be prevented from
1021 * going into autosuspend until usb_hcd_end_port_resume() is called.
1022 *
1023 * The bus's private lock must be held by the caller.
1024 */
1025void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1026{
1027 unsigned bit = 1 << portnum;
1028
1029 if (!(bus->resuming_ports & bit)) {
1030 bus->resuming_ports |= bit;
1031 pm_runtime_get_noresume(&bus->root_hub->dev);
1032 }
1033}
1034EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1035
1036/*
1037 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1038 * @bus: the bus which the root hub belongs to
1039 * @portnum: the port which is being resumed
1040 *
1041 * HCDs should call this function when they know that a resume signal has
1042 * stopped being sent to a root-hub port. The root hub will be allowed to
1043 * autosuspend again.
1044 *
1045 * The bus's private lock must be held by the caller.
1046 */
1047void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1048{
1049 unsigned bit = 1 << portnum;
1050
1051 if (bus->resuming_ports & bit) {
1052 bus->resuming_ports &= ~bit;
1053 pm_runtime_put_noidle(&bus->root_hub->dev);
1054 }
1055}
1056EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1057
1058/*-------------------------------------------------------------------------*/
1059
1060/**
1061 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1062 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1063 * @is_input: true iff the transaction sends data to the host
1064 * @isoc: true for isochronous transactions, false for interrupt ones
1065 * @bytecount: how many bytes in the transaction.
1066 *
1067 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1068 *
1069 * Note:
1070 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1071 * scheduled in software, this function is only used for such scheduling.
1072 */
1073long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1074{
1075 unsigned long tmp;
1076
1077 switch (speed) {
1078 case USB_SPEED_LOW: /* INTR only */
1079 if (is_input) {
1080 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1081 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1082 } else {
1083 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1084 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1085 }
1086 case USB_SPEED_FULL: /* ISOC or INTR */
1087 if (isoc) {
1088 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1089 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1090 } else {
1091 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1092 return 9107L + BW_HOST_DELAY + tmp;
1093 }
1094 case USB_SPEED_HIGH: /* ISOC or INTR */
1095 /* FIXME adjust for input vs output */
1096 if (isoc)
1097 tmp = HS_NSECS_ISO (bytecount);
1098 else
1099 tmp = HS_NSECS (bytecount);
1100 return tmp;
1101 default:
1102 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1103 return -1;
1104 }
1105}
1106EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1107
1108
1109/*-------------------------------------------------------------------------*/
1110
1111/*
1112 * Generic HC operations.
1113 */
1114
1115/*-------------------------------------------------------------------------*/
1116
1117/**
1118 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1119 * @hcd: host controller to which @urb was submitted
1120 * @urb: URB being submitted
1121 *
1122 * Host controller drivers should call this routine in their enqueue()
1123 * method. The HCD's private spinlock must be held and interrupts must
1124 * be disabled. The actions carried out here are required for URB
1125 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1126 *
1127 * Return: 0 for no error, otherwise a negative error code (in which case
1128 * the enqueue() method must fail). If no error occurs but enqueue() fails
1129 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1130 * the private spinlock and returning.
1131 */
1132int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1133{
1134 int rc = 0;
1135
1136 spin_lock(&hcd_urb_list_lock);
1137
1138 /* Check that the URB isn't being killed */
1139 if (unlikely(atomic_read(&urb->reject))) {
1140 rc = -EPERM;
1141 goto done;
1142 }
1143
1144 if (unlikely(!urb->ep->enabled)) {
1145 rc = -ENOENT;
1146 goto done;
1147 }
1148
1149 if (unlikely(!urb->dev->can_submit)) {
1150 rc = -EHOSTUNREACH;
1151 goto done;
1152 }
1153
1154 /*
1155 * Check the host controller's state and add the URB to the
1156 * endpoint's queue.
1157 */
1158 if (HCD_RH_RUNNING(hcd)) {
1159 urb->unlinked = 0;
1160 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1161 } else {
1162 rc = -ESHUTDOWN;
1163 goto done;
1164 }
1165 done:
1166 spin_unlock(&hcd_urb_list_lock);
1167 return rc;
1168}
1169EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1170
1171/**
1172 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1173 * @hcd: host controller to which @urb was submitted
1174 * @urb: URB being checked for unlinkability
1175 * @status: error code to store in @urb if the unlink succeeds
1176 *
1177 * Host controller drivers should call this routine in their dequeue()
1178 * method. The HCD's private spinlock must be held and interrupts must
1179 * be disabled. The actions carried out here are required for making
1180 * sure than an unlink is valid.
1181 *
1182 * Return: 0 for no error, otherwise a negative error code (in which case
1183 * the dequeue() method must fail). The possible error codes are:
1184 *
1185 * -EIDRM: @urb was not submitted or has already completed.
1186 * The completion function may not have been called yet.
1187 *
1188 * -EBUSY: @urb has already been unlinked.
1189 */
1190int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1191 int status)
1192{
1193 struct list_head *tmp;
1194
1195 /* insist the urb is still queued */
1196 list_for_each(tmp, &urb->ep->urb_list) {
1197 if (tmp == &urb->urb_list)
1198 break;
1199 }
1200 if (tmp != &urb->urb_list)
1201 return -EIDRM;
1202
1203 /* Any status except -EINPROGRESS means something already started to
1204 * unlink this URB from the hardware. So there's no more work to do.
1205 */
1206 if (urb->unlinked)
1207 return -EBUSY;
1208 urb->unlinked = status;
1209 return 0;
1210}
1211EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1212
1213/**
1214 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being unlinked
1217 *
1218 * Host controller drivers should call this routine before calling
1219 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1220 * interrupts must be disabled. The actions carried out here are required
1221 * for URB completion.
1222 */
1223void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1224{
1225 /* clear all state linking urb to this dev (and hcd) */
1226 spin_lock(&hcd_urb_list_lock);
1227 list_del_init(&urb->urb_list);
1228 spin_unlock(&hcd_urb_list_lock);
1229}
1230EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1231
1232/*
1233 * Some usb host controllers can only perform dma using a small SRAM area,
1234 * or have restrictions on addressable DRAM.
1235 * The usb core itself is however optimized for host controllers that can dma
1236 * using regular system memory - like pci devices doing bus mastering.
1237 *
1238 * To support host controllers with limited dma capabilities we provide dma
1239 * bounce buffers. This feature can be enabled by initializing
1240 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1241 *
1242 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1243 * data for dma using the genalloc API.
1244 *
1245 * So, to summarize...
1246 *
1247 * - We need "local" memory, canonical example being
1248 * a small SRAM on a discrete controller being the
1249 * only memory that the controller can read ...
1250 * (a) "normal" kernel memory is no good, and
1251 * (b) there's not enough to share
1252 *
1253 * - So we use that, even though the primary requirement
1254 * is that the memory be "local" (hence addressable
1255 * by that device), not "coherent".
1256 *
1257 */
1258
1259static int hcd_alloc_coherent(struct usb_bus *bus,
1260 gfp_t mem_flags, dma_addr_t *dma_handle,
1261 void **vaddr_handle, size_t size,
1262 enum dma_data_direction dir)
1263{
1264 unsigned char *vaddr;
1265
1266 if (*vaddr_handle == NULL) {
1267 WARN_ON_ONCE(1);
1268 return -EFAULT;
1269 }
1270
1271 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1272 mem_flags, dma_handle);
1273 if (!vaddr)
1274 return -ENOMEM;
1275
1276 /*
1277 * Store the virtual address of the buffer at the end
1278 * of the allocated dma buffer. The size of the buffer
1279 * may be uneven so use unaligned functions instead
1280 * of just rounding up. It makes sense to optimize for
1281 * memory footprint over access speed since the amount
1282 * of memory available for dma may be limited.
1283 */
1284 put_unaligned((unsigned long)*vaddr_handle,
1285 (unsigned long *)(vaddr + size));
1286
1287 if (dir == DMA_TO_DEVICE)
1288 memcpy(vaddr, *vaddr_handle, size);
1289
1290 *vaddr_handle = vaddr;
1291 return 0;
1292}
1293
1294static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1295 void **vaddr_handle, size_t size,
1296 enum dma_data_direction dir)
1297{
1298 unsigned char *vaddr = *vaddr_handle;
1299
1300 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1301
1302 if (dir == DMA_FROM_DEVICE)
1303 memcpy(vaddr, *vaddr_handle, size);
1304
1305 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1306
1307 *vaddr_handle = vaddr;
1308 *dma_handle = 0;
1309}
1310
1311void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1312{
1313 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1314 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1315 dma_unmap_single(hcd->self.sysdev,
1316 urb->setup_dma,
1317 sizeof(struct usb_ctrlrequest),
1318 DMA_TO_DEVICE);
1319 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1320 hcd_free_coherent(urb->dev->bus,
1321 &urb->setup_dma,
1322 (void **) &urb->setup_packet,
1323 sizeof(struct usb_ctrlrequest),
1324 DMA_TO_DEVICE);
1325
1326 /* Make it safe to call this routine more than once */
1327 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1330
1331static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1332{
1333 if (hcd->driver->unmap_urb_for_dma)
1334 hcd->driver->unmap_urb_for_dma(hcd, urb);
1335 else
1336 usb_hcd_unmap_urb_for_dma(hcd, urb);
1337}
1338
1339void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1340{
1341 enum dma_data_direction dir;
1342
1343 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1344
1345 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1346 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347 (urb->transfer_flags & URB_DMA_MAP_SG))
1348 dma_unmap_sg(hcd->self.sysdev,
1349 urb->sg,
1350 urb->num_sgs,
1351 dir);
1352 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1353 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1354 dma_unmap_page(hcd->self.sysdev,
1355 urb->transfer_dma,
1356 urb->transfer_buffer_length,
1357 dir);
1358 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360 dma_unmap_single(hcd->self.sysdev,
1361 urb->transfer_dma,
1362 urb->transfer_buffer_length,
1363 dir);
1364 else if (urb->transfer_flags & URB_MAP_LOCAL)
1365 hcd_free_coherent(urb->dev->bus,
1366 &urb->transfer_dma,
1367 &urb->transfer_buffer,
1368 urb->transfer_buffer_length,
1369 dir);
1370
1371 /* Make it safe to call this routine more than once */
1372 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1373 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1374}
1375EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1376
1377static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1378 gfp_t mem_flags)
1379{
1380 if (hcd->driver->map_urb_for_dma)
1381 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1382 else
1383 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1384}
1385
1386int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1387 gfp_t mem_flags)
1388{
1389 enum dma_data_direction dir;
1390 int ret = 0;
1391
1392 /* Map the URB's buffers for DMA access.
1393 * Lower level HCD code should use *_dma exclusively,
1394 * unless it uses pio or talks to another transport,
1395 * or uses the provided scatter gather list for bulk.
1396 */
1397
1398 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1399 if (hcd->self.uses_pio_for_control)
1400 return ret;
1401 if (hcd->localmem_pool) {
1402 ret = hcd_alloc_coherent(
1403 urb->dev->bus, mem_flags,
1404 &urb->setup_dma,
1405 (void **)&urb->setup_packet,
1406 sizeof(struct usb_ctrlrequest),
1407 DMA_TO_DEVICE);
1408 if (ret)
1409 return ret;
1410 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1411 } else if (hcd_uses_dma(hcd)) {
1412 if (object_is_on_stack(urb->setup_packet)) {
1413 WARN_ONCE(1, "setup packet is on stack\n");
1414 return -EAGAIN;
1415 }
1416
1417 urb->setup_dma = dma_map_single(
1418 hcd->self.sysdev,
1419 urb->setup_packet,
1420 sizeof(struct usb_ctrlrequest),
1421 DMA_TO_DEVICE);
1422 if (dma_mapping_error(hcd->self.sysdev,
1423 urb->setup_dma))
1424 return -EAGAIN;
1425 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1426 }
1427 }
1428
1429 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1430 if (urb->transfer_buffer_length != 0
1431 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1432 if (hcd->localmem_pool) {
1433 ret = hcd_alloc_coherent(
1434 urb->dev->bus, mem_flags,
1435 &urb->transfer_dma,
1436 &urb->transfer_buffer,
1437 urb->transfer_buffer_length,
1438 dir);
1439 if (ret == 0)
1440 urb->transfer_flags |= URB_MAP_LOCAL;
1441 } else if (hcd_uses_dma(hcd)) {
1442 if (urb->num_sgs) {
1443 int n;
1444
1445 /* We don't support sg for isoc transfers ! */
1446 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1447 WARN_ON(1);
1448 return -EINVAL;
1449 }
1450
1451 n = dma_map_sg(
1452 hcd->self.sysdev,
1453 urb->sg,
1454 urb->num_sgs,
1455 dir);
1456 if (!n)
1457 ret = -EAGAIN;
1458 else
1459 urb->transfer_flags |= URB_DMA_MAP_SG;
1460 urb->num_mapped_sgs = n;
1461 if (n != urb->num_sgs)
1462 urb->transfer_flags |=
1463 URB_DMA_SG_COMBINED;
1464 } else if (urb->sg) {
1465 struct scatterlist *sg = urb->sg;
1466 urb->transfer_dma = dma_map_page(
1467 hcd->self.sysdev,
1468 sg_page(sg),
1469 sg->offset,
1470 urb->transfer_buffer_length,
1471 dir);
1472 if (dma_mapping_error(hcd->self.sysdev,
1473 urb->transfer_dma))
1474 ret = -EAGAIN;
1475 else
1476 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1477 } else if (object_is_on_stack(urb->transfer_buffer)) {
1478 WARN_ONCE(1, "transfer buffer is on stack\n");
1479 ret = -EAGAIN;
1480 } else {
1481 urb->transfer_dma = dma_map_single(
1482 hcd->self.sysdev,
1483 urb->transfer_buffer,
1484 urb->transfer_buffer_length,
1485 dir);
1486 if (dma_mapping_error(hcd->self.sysdev,
1487 urb->transfer_dma))
1488 ret = -EAGAIN;
1489 else
1490 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1491 }
1492 }
1493 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1494 URB_SETUP_MAP_LOCAL)))
1495 usb_hcd_unmap_urb_for_dma(hcd, urb);
1496 }
1497 return ret;
1498}
1499EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1500
1501/*-------------------------------------------------------------------------*/
1502
1503/* may be called in any context with a valid urb->dev usecount
1504 * caller surrenders "ownership" of urb
1505 * expects usb_submit_urb() to have sanity checked and conditioned all
1506 * inputs in the urb
1507 */
1508int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1509{
1510 int status;
1511 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1512
1513 /* increment urb's reference count as part of giving it to the HCD
1514 * (which will control it). HCD guarantees that it either returns
1515 * an error or calls giveback(), but not both.
1516 */
1517 usb_get_urb(urb);
1518 atomic_inc(&urb->use_count);
1519 atomic_inc(&urb->dev->urbnum);
1520 usbmon_urb_submit(&hcd->self, urb);
1521
1522 /* NOTE requirements on root-hub callers (usbfs and the hub
1523 * driver, for now): URBs' urb->transfer_buffer must be
1524 * valid and usb_buffer_{sync,unmap}() not be needed, since
1525 * they could clobber root hub response data. Also, control
1526 * URBs must be submitted in process context with interrupts
1527 * enabled.
1528 */
1529
1530 if (is_root_hub(urb->dev)) {
1531 status = rh_urb_enqueue(hcd, urb);
1532 } else {
1533 status = map_urb_for_dma(hcd, urb, mem_flags);
1534 if (likely(status == 0)) {
1535 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1536 if (unlikely(status))
1537 unmap_urb_for_dma(hcd, urb);
1538 }
1539 }
1540
1541 if (unlikely(status)) {
1542 usbmon_urb_submit_error(&hcd->self, urb, status);
1543 urb->hcpriv = NULL;
1544 INIT_LIST_HEAD(&urb->urb_list);
1545 atomic_dec(&urb->use_count);
1546 /*
1547 * Order the write of urb->use_count above before the read
1548 * of urb->reject below. Pairs with the memory barriers in
1549 * usb_kill_urb() and usb_poison_urb().
1550 */
1551 smp_mb__after_atomic();
1552
1553 atomic_dec(&urb->dev->urbnum);
1554 if (atomic_read(&urb->reject))
1555 wake_up(&usb_kill_urb_queue);
1556 usb_put_urb(urb);
1557 }
1558 return status;
1559}
1560
1561/*-------------------------------------------------------------------------*/
1562
1563/* this makes the hcd giveback() the urb more quickly, by kicking it
1564 * off hardware queues (which may take a while) and returning it as
1565 * soon as practical. we've already set up the urb's return status,
1566 * but we can't know if the callback completed already.
1567 */
1568static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1569{
1570 int value;
1571
1572 if (is_root_hub(urb->dev))
1573 value = usb_rh_urb_dequeue(hcd, urb, status);
1574 else {
1575
1576 /* The only reason an HCD might fail this call is if
1577 * it has not yet fully queued the urb to begin with.
1578 * Such failures should be harmless. */
1579 value = hcd->driver->urb_dequeue(hcd, urb, status);
1580 }
1581 return value;
1582}
1583
1584/*
1585 * called in any context
1586 *
1587 * caller guarantees urb won't be recycled till both unlink()
1588 * and the urb's completion function return
1589 */
1590int usb_hcd_unlink_urb (struct urb *urb, int status)
1591{
1592 struct usb_hcd *hcd;
1593 struct usb_device *udev = urb->dev;
1594 int retval = -EIDRM;
1595 unsigned long flags;
1596
1597 /* Prevent the device and bus from going away while
1598 * the unlink is carried out. If they are already gone
1599 * then urb->use_count must be 0, since disconnected
1600 * devices can't have any active URBs.
1601 */
1602 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1603 if (atomic_read(&urb->use_count) > 0) {
1604 retval = 0;
1605 usb_get_dev(udev);
1606 }
1607 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1608 if (retval == 0) {
1609 hcd = bus_to_hcd(urb->dev->bus);
1610 retval = unlink1(hcd, urb, status);
1611 if (retval == 0)
1612 retval = -EINPROGRESS;
1613 else if (retval != -EIDRM && retval != -EBUSY)
1614 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1615 urb, retval);
1616 usb_put_dev(udev);
1617 }
1618 return retval;
1619}
1620
1621/*-------------------------------------------------------------------------*/
1622
1623static void __usb_hcd_giveback_urb(struct urb *urb)
1624{
1625 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1626 struct usb_anchor *anchor = urb->anchor;
1627 int status = urb->unlinked;
1628
1629 urb->hcpriv = NULL;
1630 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1631 urb->actual_length < urb->transfer_buffer_length &&
1632 !status))
1633 status = -EREMOTEIO;
1634
1635 unmap_urb_for_dma(hcd, urb);
1636 usbmon_urb_complete(&hcd->self, urb, status);
1637 usb_anchor_suspend_wakeups(anchor);
1638 usb_unanchor_urb(urb);
1639 if (likely(status == 0))
1640 usb_led_activity(USB_LED_EVENT_HOST);
1641
1642 /* pass ownership to the completion handler */
1643 urb->status = status;
1644 /*
1645 * This function can be called in task context inside another remote
1646 * coverage collection section, but kcov doesn't support that kind of
1647 * recursion yet. Only collect coverage in softirq context for now.
1648 */
1649 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650 urb->complete(urb);
1651 kcov_remote_stop_softirq();
1652
1653 usb_anchor_resume_wakeups(anchor);
1654 atomic_dec(&urb->use_count);
1655 /*
1656 * Order the write of urb->use_count above before the read
1657 * of urb->reject below. Pairs with the memory barriers in
1658 * usb_kill_urb() and usb_poison_urb().
1659 */
1660 smp_mb__after_atomic();
1661
1662 if (unlikely(atomic_read(&urb->reject)))
1663 wake_up(&usb_kill_urb_queue);
1664 usb_put_urb(urb);
1665}
1666
1667static void usb_giveback_urb_bh(struct tasklet_struct *t)
1668{
1669 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1670 struct list_head local_list;
1671
1672 spin_lock_irq(&bh->lock);
1673 bh->running = true;
1674 list_replace_init(&bh->head, &local_list);
1675 spin_unlock_irq(&bh->lock);
1676
1677 while (!list_empty(&local_list)) {
1678 struct urb *urb;
1679
1680 urb = list_entry(local_list.next, struct urb, urb_list);
1681 list_del_init(&urb->urb_list);
1682 bh->completing_ep = urb->ep;
1683 __usb_hcd_giveback_urb(urb);
1684 bh->completing_ep = NULL;
1685 }
1686
1687 /*
1688 * giveback new URBs next time to prevent this function
1689 * from not exiting for a long time.
1690 */
1691 spin_lock_irq(&bh->lock);
1692 if (!list_empty(&bh->head)) {
1693 if (bh->high_prio)
1694 tasklet_hi_schedule(&bh->bh);
1695 else
1696 tasklet_schedule(&bh->bh);
1697 }
1698 bh->running = false;
1699 spin_unlock_irq(&bh->lock);
1700}
1701
1702/**
1703 * usb_hcd_giveback_urb - return URB from HCD to device driver
1704 * @hcd: host controller returning the URB
1705 * @urb: urb being returned to the USB device driver.
1706 * @status: completion status code for the URB.
1707 *
1708 * Context: atomic. The completion callback is invoked in caller's context.
1709 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1710 * context (except for URBs submitted to the root hub which always complete in
1711 * caller's context).
1712 *
1713 * This hands the URB from HCD to its USB device driver, using its
1714 * completion function. The HCD has freed all per-urb resources
1715 * (and is done using urb->hcpriv). It also released all HCD locks;
1716 * the device driver won't cause problems if it frees, modifies,
1717 * or resubmits this URB.
1718 *
1719 * If @urb was unlinked, the value of @status will be overridden by
1720 * @urb->unlinked. Erroneous short transfers are detected in case
1721 * the HCD hasn't checked for them.
1722 */
1723void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1724{
1725 struct giveback_urb_bh *bh;
1726 bool running;
1727
1728 /* pass status to tasklet via unlinked */
1729 if (likely(!urb->unlinked))
1730 urb->unlinked = status;
1731
1732 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1733 __usb_hcd_giveback_urb(urb);
1734 return;
1735 }
1736
1737 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1738 bh = &hcd->high_prio_bh;
1739 else
1740 bh = &hcd->low_prio_bh;
1741
1742 spin_lock(&bh->lock);
1743 list_add_tail(&urb->urb_list, &bh->head);
1744 running = bh->running;
1745 spin_unlock(&bh->lock);
1746
1747 if (running)
1748 ;
1749 else if (bh->high_prio)
1750 tasklet_hi_schedule(&bh->bh);
1751 else
1752 tasklet_schedule(&bh->bh);
1753}
1754EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1755
1756/*-------------------------------------------------------------------------*/
1757
1758/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1759 * queue to drain completely. The caller must first insure that no more
1760 * URBs can be submitted for this endpoint.
1761 */
1762void usb_hcd_flush_endpoint(struct usb_device *udev,
1763 struct usb_host_endpoint *ep)
1764{
1765 struct usb_hcd *hcd;
1766 struct urb *urb;
1767
1768 if (!ep)
1769 return;
1770 might_sleep();
1771 hcd = bus_to_hcd(udev->bus);
1772
1773 /* No more submits can occur */
1774 spin_lock_irq(&hcd_urb_list_lock);
1775rescan:
1776 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1777 int is_in;
1778
1779 if (urb->unlinked)
1780 continue;
1781 usb_get_urb (urb);
1782 is_in = usb_urb_dir_in(urb);
1783 spin_unlock(&hcd_urb_list_lock);
1784
1785 /* kick hcd */
1786 unlink1(hcd, urb, -ESHUTDOWN);
1787 dev_dbg (hcd->self.controller,
1788 "shutdown urb %pK ep%d%s-%s\n",
1789 urb, usb_endpoint_num(&ep->desc),
1790 is_in ? "in" : "out",
1791 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1792 usb_put_urb (urb);
1793
1794 /* list contents may have changed */
1795 spin_lock(&hcd_urb_list_lock);
1796 goto rescan;
1797 }
1798 spin_unlock_irq(&hcd_urb_list_lock);
1799
1800 /* Wait until the endpoint queue is completely empty */
1801 while (!list_empty (&ep->urb_list)) {
1802 spin_lock_irq(&hcd_urb_list_lock);
1803
1804 /* The list may have changed while we acquired the spinlock */
1805 urb = NULL;
1806 if (!list_empty (&ep->urb_list)) {
1807 urb = list_entry (ep->urb_list.prev, struct urb,
1808 urb_list);
1809 usb_get_urb (urb);
1810 }
1811 spin_unlock_irq(&hcd_urb_list_lock);
1812
1813 if (urb) {
1814 usb_kill_urb (urb);
1815 usb_put_urb (urb);
1816 }
1817 }
1818}
1819
1820/**
1821 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1822 * the bus bandwidth
1823 * @udev: target &usb_device
1824 * @new_config: new configuration to install
1825 * @cur_alt: the current alternate interface setting
1826 * @new_alt: alternate interface setting that is being installed
1827 *
1828 * To change configurations, pass in the new configuration in new_config,
1829 * and pass NULL for cur_alt and new_alt.
1830 *
1831 * To reset a device's configuration (put the device in the ADDRESSED state),
1832 * pass in NULL for new_config, cur_alt, and new_alt.
1833 *
1834 * To change alternate interface settings, pass in NULL for new_config,
1835 * pass in the current alternate interface setting in cur_alt,
1836 * and pass in the new alternate interface setting in new_alt.
1837 *
1838 * Return: An error if the requested bandwidth change exceeds the
1839 * bus bandwidth or host controller internal resources.
1840 */
1841int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1842 struct usb_host_config *new_config,
1843 struct usb_host_interface *cur_alt,
1844 struct usb_host_interface *new_alt)
1845{
1846 int num_intfs, i, j;
1847 struct usb_host_interface *alt = NULL;
1848 int ret = 0;
1849 struct usb_hcd *hcd;
1850 struct usb_host_endpoint *ep;
1851
1852 hcd = bus_to_hcd(udev->bus);
1853 if (!hcd->driver->check_bandwidth)
1854 return 0;
1855
1856 /* Configuration is being removed - set configuration 0 */
1857 if (!new_config && !cur_alt) {
1858 for (i = 1; i < 16; ++i) {
1859 ep = udev->ep_out[i];
1860 if (ep)
1861 hcd->driver->drop_endpoint(hcd, udev, ep);
1862 ep = udev->ep_in[i];
1863 if (ep)
1864 hcd->driver->drop_endpoint(hcd, udev, ep);
1865 }
1866 hcd->driver->check_bandwidth(hcd, udev);
1867 return 0;
1868 }
1869 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1870 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1871 * of the bus. There will always be bandwidth for endpoint 0, so it's
1872 * ok to exclude it.
1873 */
1874 if (new_config) {
1875 num_intfs = new_config->desc.bNumInterfaces;
1876 /* Remove endpoints (except endpoint 0, which is always on the
1877 * schedule) from the old config from the schedule
1878 */
1879 for (i = 1; i < 16; ++i) {
1880 ep = udev->ep_out[i];
1881 if (ep) {
1882 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1883 if (ret < 0)
1884 goto reset;
1885 }
1886 ep = udev->ep_in[i];
1887 if (ep) {
1888 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1889 if (ret < 0)
1890 goto reset;
1891 }
1892 }
1893 for (i = 0; i < num_intfs; ++i) {
1894 struct usb_host_interface *first_alt;
1895 int iface_num;
1896
1897 first_alt = &new_config->intf_cache[i]->altsetting[0];
1898 iface_num = first_alt->desc.bInterfaceNumber;
1899 /* Set up endpoints for alternate interface setting 0 */
1900 alt = usb_find_alt_setting(new_config, iface_num, 0);
1901 if (!alt)
1902 /* No alt setting 0? Pick the first setting. */
1903 alt = first_alt;
1904
1905 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1906 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1907 if (ret < 0)
1908 goto reset;
1909 }
1910 }
1911 }
1912 if (cur_alt && new_alt) {
1913 struct usb_interface *iface = usb_ifnum_to_if(udev,
1914 cur_alt->desc.bInterfaceNumber);
1915
1916 if (!iface)
1917 return -EINVAL;
1918 if (iface->resetting_device) {
1919 /*
1920 * The USB core just reset the device, so the xHCI host
1921 * and the device will think alt setting 0 is installed.
1922 * However, the USB core will pass in the alternate
1923 * setting installed before the reset as cur_alt. Dig
1924 * out the alternate setting 0 structure, or the first
1925 * alternate setting if a broken device doesn't have alt
1926 * setting 0.
1927 */
1928 cur_alt = usb_altnum_to_altsetting(iface, 0);
1929 if (!cur_alt)
1930 cur_alt = &iface->altsetting[0];
1931 }
1932
1933 /* Drop all the endpoints in the current alt setting */
1934 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1935 ret = hcd->driver->drop_endpoint(hcd, udev,
1936 &cur_alt->endpoint[i]);
1937 if (ret < 0)
1938 goto reset;
1939 }
1940 /* Add all the endpoints in the new alt setting */
1941 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1942 ret = hcd->driver->add_endpoint(hcd, udev,
1943 &new_alt->endpoint[i]);
1944 if (ret < 0)
1945 goto reset;
1946 }
1947 }
1948 ret = hcd->driver->check_bandwidth(hcd, udev);
1949reset:
1950 if (ret < 0)
1951 hcd->driver->reset_bandwidth(hcd, udev);
1952 return ret;
1953}
1954
1955/* Disables the endpoint: synchronizes with the hcd to make sure all
1956 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1957 * have been called previously. Use for set_configuration, set_interface,
1958 * driver removal, physical disconnect.
1959 *
1960 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1961 * type, maxpacket size, toggle, halt status, and scheduling.
1962 */
1963void usb_hcd_disable_endpoint(struct usb_device *udev,
1964 struct usb_host_endpoint *ep)
1965{
1966 struct usb_hcd *hcd;
1967
1968 might_sleep();
1969 hcd = bus_to_hcd(udev->bus);
1970 if (hcd->driver->endpoint_disable)
1971 hcd->driver->endpoint_disable(hcd, ep);
1972}
1973
1974/**
1975 * usb_hcd_reset_endpoint - reset host endpoint state
1976 * @udev: USB device.
1977 * @ep: the endpoint to reset.
1978 *
1979 * Resets any host endpoint state such as the toggle bit, sequence
1980 * number and current window.
1981 */
1982void usb_hcd_reset_endpoint(struct usb_device *udev,
1983 struct usb_host_endpoint *ep)
1984{
1985 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1986
1987 if (hcd->driver->endpoint_reset)
1988 hcd->driver->endpoint_reset(hcd, ep);
1989 else {
1990 int epnum = usb_endpoint_num(&ep->desc);
1991 int is_out = usb_endpoint_dir_out(&ep->desc);
1992 int is_control = usb_endpoint_xfer_control(&ep->desc);
1993
1994 usb_settoggle(udev, epnum, is_out, 0);
1995 if (is_control)
1996 usb_settoggle(udev, epnum, !is_out, 0);
1997 }
1998}
1999
2000/**
2001 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2002 * @interface: alternate setting that includes all endpoints.
2003 * @eps: array of endpoints that need streams.
2004 * @num_eps: number of endpoints in the array.
2005 * @num_streams: number of streams to allocate.
2006 * @mem_flags: flags hcd should use to allocate memory.
2007 *
2008 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2009 * Drivers may queue multiple transfers to different stream IDs, which may
2010 * complete in a different order than they were queued.
2011 *
2012 * Return: On success, the number of allocated streams. On failure, a negative
2013 * error code.
2014 */
2015int usb_alloc_streams(struct usb_interface *interface,
2016 struct usb_host_endpoint **eps, unsigned int num_eps,
2017 unsigned int num_streams, gfp_t mem_flags)
2018{
2019 struct usb_hcd *hcd;
2020 struct usb_device *dev;
2021 int i, ret;
2022
2023 dev = interface_to_usbdev(interface);
2024 hcd = bus_to_hcd(dev->bus);
2025 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2026 return -EINVAL;
2027 if (dev->speed < USB_SPEED_SUPER)
2028 return -EINVAL;
2029 if (dev->state < USB_STATE_CONFIGURED)
2030 return -ENODEV;
2031
2032 for (i = 0; i < num_eps; i++) {
2033 /* Streams only apply to bulk endpoints. */
2034 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2035 return -EINVAL;
2036 /* Re-alloc is not allowed */
2037 if (eps[i]->streams)
2038 return -EINVAL;
2039 }
2040
2041 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2042 num_streams, mem_flags);
2043 if (ret < 0)
2044 return ret;
2045
2046 for (i = 0; i < num_eps; i++)
2047 eps[i]->streams = ret;
2048
2049 return ret;
2050}
2051EXPORT_SYMBOL_GPL(usb_alloc_streams);
2052
2053/**
2054 * usb_free_streams - free bulk endpoint stream IDs.
2055 * @interface: alternate setting that includes all endpoints.
2056 * @eps: array of endpoints to remove streams from.
2057 * @num_eps: number of endpoints in the array.
2058 * @mem_flags: flags hcd should use to allocate memory.
2059 *
2060 * Reverts a group of bulk endpoints back to not using stream IDs.
2061 * Can fail if we are given bad arguments, or HCD is broken.
2062 *
2063 * Return: 0 on success. On failure, a negative error code.
2064 */
2065int usb_free_streams(struct usb_interface *interface,
2066 struct usb_host_endpoint **eps, unsigned int num_eps,
2067 gfp_t mem_flags)
2068{
2069 struct usb_hcd *hcd;
2070 struct usb_device *dev;
2071 int i, ret;
2072
2073 dev = interface_to_usbdev(interface);
2074 hcd = bus_to_hcd(dev->bus);
2075 if (dev->speed < USB_SPEED_SUPER)
2076 return -EINVAL;
2077
2078 /* Double-free is not allowed */
2079 for (i = 0; i < num_eps; i++)
2080 if (!eps[i] || !eps[i]->streams)
2081 return -EINVAL;
2082
2083 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2084 if (ret < 0)
2085 return ret;
2086
2087 for (i = 0; i < num_eps; i++)
2088 eps[i]->streams = 0;
2089
2090 return ret;
2091}
2092EXPORT_SYMBOL_GPL(usb_free_streams);
2093
2094/* Protect against drivers that try to unlink URBs after the device
2095 * is gone, by waiting until all unlinks for @udev are finished.
2096 * Since we don't currently track URBs by device, simply wait until
2097 * nothing is running in the locked region of usb_hcd_unlink_urb().
2098 */
2099void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2100{
2101 spin_lock_irq(&hcd_urb_unlink_lock);
2102 spin_unlock_irq(&hcd_urb_unlink_lock);
2103}
2104
2105/*-------------------------------------------------------------------------*/
2106
2107/* called in any context */
2108int usb_hcd_get_frame_number (struct usb_device *udev)
2109{
2110 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2111
2112 if (!HCD_RH_RUNNING(hcd))
2113 return -ESHUTDOWN;
2114 return hcd->driver->get_frame_number (hcd);
2115}
2116
2117/*-------------------------------------------------------------------------*/
2118#ifdef CONFIG_USB_HCD_TEST_MODE
2119
2120static void usb_ehset_completion(struct urb *urb)
2121{
2122 struct completion *done = urb->context;
2123
2124 complete(done);
2125}
2126/*
2127 * Allocate and initialize a control URB. This request will be used by the
2128 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2129 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2130 * Return NULL if failed.
2131 */
2132static struct urb *request_single_step_set_feature_urb(
2133 struct usb_device *udev,
2134 void *dr,
2135 void *buf,
2136 struct completion *done)
2137{
2138 struct urb *urb;
2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2140
2141 urb = usb_alloc_urb(0, GFP_KERNEL);
2142 if (!urb)
2143 return NULL;
2144
2145 urb->pipe = usb_rcvctrlpipe(udev, 0);
2146
2147 urb->ep = &udev->ep0;
2148 urb->dev = udev;
2149 urb->setup_packet = (void *)dr;
2150 urb->transfer_buffer = buf;
2151 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2152 urb->complete = usb_ehset_completion;
2153 urb->status = -EINPROGRESS;
2154 urb->actual_length = 0;
2155 urb->transfer_flags = URB_DIR_IN;
2156 usb_get_urb(urb);
2157 atomic_inc(&urb->use_count);
2158 atomic_inc(&urb->dev->urbnum);
2159 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2160 usb_put_urb(urb);
2161 usb_free_urb(urb);
2162 return NULL;
2163 }
2164
2165 urb->context = done;
2166 return urb;
2167}
2168
2169int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2170{
2171 int retval = -ENOMEM;
2172 struct usb_ctrlrequest *dr;
2173 struct urb *urb;
2174 struct usb_device *udev;
2175 struct usb_device_descriptor *buf;
2176 DECLARE_COMPLETION_ONSTACK(done);
2177
2178 /* Obtain udev of the rhub's child port */
2179 udev = usb_hub_find_child(hcd->self.root_hub, port);
2180 if (!udev) {
2181 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2182 return -ENODEV;
2183 }
2184 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2185 if (!buf)
2186 return -ENOMEM;
2187
2188 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2189 if (!dr) {
2190 kfree(buf);
2191 return -ENOMEM;
2192 }
2193
2194 /* Fill Setup packet for GetDescriptor */
2195 dr->bRequestType = USB_DIR_IN;
2196 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2197 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2198 dr->wIndex = 0;
2199 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2200 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2201 if (!urb)
2202 goto cleanup;
2203
2204 /* Submit just the SETUP stage */
2205 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2206 if (retval)
2207 goto out1;
2208 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2209 usb_kill_urb(urb);
2210 retval = -ETIMEDOUT;
2211 dev_err(hcd->self.controller,
2212 "%s SETUP stage timed out on ep0\n", __func__);
2213 goto out1;
2214 }
2215 msleep(15 * 1000);
2216
2217 /* Complete remaining DATA and STATUS stages using the same URB */
2218 urb->status = -EINPROGRESS;
2219 usb_get_urb(urb);
2220 atomic_inc(&urb->use_count);
2221 atomic_inc(&urb->dev->urbnum);
2222 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2223 if (!retval && !wait_for_completion_timeout(&done,
2224 msecs_to_jiffies(2000))) {
2225 usb_kill_urb(urb);
2226 retval = -ETIMEDOUT;
2227 dev_err(hcd->self.controller,
2228 "%s IN stage timed out on ep0\n", __func__);
2229 }
2230out1:
2231 usb_free_urb(urb);
2232cleanup:
2233 kfree(dr);
2234 kfree(buf);
2235 return retval;
2236}
2237EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2238#endif /* CONFIG_USB_HCD_TEST_MODE */
2239
2240/*-------------------------------------------------------------------------*/
2241
2242#ifdef CONFIG_PM
2243
2244int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2245{
2246 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2247 int status;
2248 int old_state = hcd->state;
2249
2250 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2251 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2252 rhdev->do_remote_wakeup);
2253 if (HCD_DEAD(hcd)) {
2254 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2255 return 0;
2256 }
2257
2258 if (!hcd->driver->bus_suspend) {
2259 status = -ENOENT;
2260 } else {
2261 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2262 hcd->state = HC_STATE_QUIESCING;
2263 status = hcd->driver->bus_suspend(hcd);
2264 }
2265 if (status == 0) {
2266 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2267 hcd->state = HC_STATE_SUSPENDED;
2268
2269 if (!PMSG_IS_AUTO(msg))
2270 usb_phy_roothub_suspend(hcd->self.sysdev,
2271 hcd->phy_roothub);
2272
2273 /* Did we race with a root-hub wakeup event? */
2274 if (rhdev->do_remote_wakeup) {
2275 char buffer[6];
2276
2277 status = hcd->driver->hub_status_data(hcd, buffer);
2278 if (status != 0) {
2279 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2280 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2281 status = -EBUSY;
2282 }
2283 }
2284 } else {
2285 spin_lock_irq(&hcd_root_hub_lock);
2286 if (!HCD_DEAD(hcd)) {
2287 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2288 hcd->state = old_state;
2289 }
2290 spin_unlock_irq(&hcd_root_hub_lock);
2291 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2292 "suspend", status);
2293 }
2294 return status;
2295}
2296
2297int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2298{
2299 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2300 int status;
2301 int old_state = hcd->state;
2302
2303 dev_dbg(&rhdev->dev, "usb %sresume\n",
2304 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2305 if (HCD_DEAD(hcd)) {
2306 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2307 return 0;
2308 }
2309
2310 if (!PMSG_IS_AUTO(msg)) {
2311 status = usb_phy_roothub_resume(hcd->self.sysdev,
2312 hcd->phy_roothub);
2313 if (status)
2314 return status;
2315 }
2316
2317 if (!hcd->driver->bus_resume)
2318 return -ENOENT;
2319 if (HCD_RH_RUNNING(hcd))
2320 return 0;
2321
2322 hcd->state = HC_STATE_RESUMING;
2323 status = hcd->driver->bus_resume(hcd);
2324 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2325 if (status == 0)
2326 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2327
2328 if (status == 0) {
2329 struct usb_device *udev;
2330 int port1;
2331
2332 spin_lock_irq(&hcd_root_hub_lock);
2333 if (!HCD_DEAD(hcd)) {
2334 usb_set_device_state(rhdev, rhdev->actconfig
2335 ? USB_STATE_CONFIGURED
2336 : USB_STATE_ADDRESS);
2337 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2338 hcd->state = HC_STATE_RUNNING;
2339 }
2340 spin_unlock_irq(&hcd_root_hub_lock);
2341
2342 /*
2343 * Check whether any of the enabled ports on the root hub are
2344 * unsuspended. If they are then a TRSMRCY delay is needed
2345 * (this is what the USB-2 spec calls a "global resume").
2346 * Otherwise we can skip the delay.
2347 */
2348 usb_hub_for_each_child(rhdev, port1, udev) {
2349 if (udev->state != USB_STATE_NOTATTACHED &&
2350 !udev->port_is_suspended) {
2351 usleep_range(10000, 11000); /* TRSMRCY */
2352 break;
2353 }
2354 }
2355 } else {
2356 hcd->state = old_state;
2357 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2358 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2359 "resume", status);
2360 if (status != -ESHUTDOWN)
2361 usb_hc_died(hcd);
2362 }
2363 return status;
2364}
2365
2366/* Workqueue routine for root-hub remote wakeup */
2367static void hcd_resume_work(struct work_struct *work)
2368{
2369 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2370 struct usb_device *udev = hcd->self.root_hub;
2371
2372 usb_remote_wakeup(udev);
2373}
2374
2375/**
2376 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2377 * @hcd: host controller for this root hub
2378 *
2379 * The USB host controller calls this function when its root hub is
2380 * suspended (with the remote wakeup feature enabled) and a remote
2381 * wakeup request is received. The routine submits a workqueue request
2382 * to resume the root hub (that is, manage its downstream ports again).
2383 */
2384void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2385{
2386 unsigned long flags;
2387
2388 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2389 if (hcd->rh_registered) {
2390 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2391 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2392 queue_work(pm_wq, &hcd->wakeup_work);
2393 }
2394 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2395}
2396EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2397
2398#endif /* CONFIG_PM */
2399
2400/*-------------------------------------------------------------------------*/
2401
2402#ifdef CONFIG_USB_OTG
2403
2404/**
2405 * usb_bus_start_enum - start immediate enumeration (for OTG)
2406 * @bus: the bus (must use hcd framework)
2407 * @port_num: 1-based number of port; usually bus->otg_port
2408 * Context: atomic
2409 *
2410 * Starts enumeration, with an immediate reset followed later by
2411 * hub_wq identifying and possibly configuring the device.
2412 * This is needed by OTG controller drivers, where it helps meet
2413 * HNP protocol timing requirements for starting a port reset.
2414 *
2415 * Return: 0 if successful.
2416 */
2417int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2418{
2419 struct usb_hcd *hcd;
2420 int status = -EOPNOTSUPP;
2421
2422 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2423 * boards with root hubs hooked up to internal devices (instead of
2424 * just the OTG port) may need more attention to resetting...
2425 */
2426 hcd = bus_to_hcd(bus);
2427 if (port_num && hcd->driver->start_port_reset)
2428 status = hcd->driver->start_port_reset(hcd, port_num);
2429
2430 /* allocate hub_wq shortly after (first) root port reset finishes;
2431 * it may issue others, until at least 50 msecs have passed.
2432 */
2433 if (status == 0)
2434 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2435 return status;
2436}
2437EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2438
2439#endif
2440
2441/*-------------------------------------------------------------------------*/
2442
2443/**
2444 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2445 * @irq: the IRQ being raised
2446 * @__hcd: pointer to the HCD whose IRQ is being signaled
2447 *
2448 * If the controller isn't HALTed, calls the driver's irq handler.
2449 * Checks whether the controller is now dead.
2450 *
2451 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2452 */
2453irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2454{
2455 struct usb_hcd *hcd = __hcd;
2456 irqreturn_t rc;
2457
2458 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2459 rc = IRQ_NONE;
2460 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2461 rc = IRQ_NONE;
2462 else
2463 rc = IRQ_HANDLED;
2464
2465 return rc;
2466}
2467EXPORT_SYMBOL_GPL(usb_hcd_irq);
2468
2469/*-------------------------------------------------------------------------*/
2470
2471/* Workqueue routine for when the root-hub has died. */
2472static void hcd_died_work(struct work_struct *work)
2473{
2474 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2475 static char *env[] = {
2476 "ERROR=DEAD",
2477 NULL
2478 };
2479
2480 /* Notify user space that the host controller has died */
2481 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2482}
2483
2484/**
2485 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2486 * @hcd: pointer to the HCD representing the controller
2487 *
2488 * This is called by bus glue to report a USB host controller that died
2489 * while operations may still have been pending. It's called automatically
2490 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2491 *
2492 * Only call this function with the primary HCD.
2493 */
2494void usb_hc_died (struct usb_hcd *hcd)
2495{
2496 unsigned long flags;
2497
2498 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2499
2500 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2501 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2502 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2503 if (hcd->rh_registered) {
2504 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2505
2506 /* make hub_wq clean up old urbs and devices */
2507 usb_set_device_state (hcd->self.root_hub,
2508 USB_STATE_NOTATTACHED);
2509 usb_kick_hub_wq(hcd->self.root_hub);
2510 }
2511 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2512 hcd = hcd->shared_hcd;
2513 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2514 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2515 if (hcd->rh_registered) {
2516 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2517
2518 /* make hub_wq clean up old urbs and devices */
2519 usb_set_device_state(hcd->self.root_hub,
2520 USB_STATE_NOTATTACHED);
2521 usb_kick_hub_wq(hcd->self.root_hub);
2522 }
2523 }
2524
2525 /* Handle the case where this function gets called with a shared HCD */
2526 if (usb_hcd_is_primary_hcd(hcd))
2527 schedule_work(&hcd->died_work);
2528 else
2529 schedule_work(&hcd->primary_hcd->died_work);
2530
2531 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2532 /* Make sure that the other roothub is also deallocated. */
2533}
2534EXPORT_SYMBOL_GPL (usb_hc_died);
2535
2536/*-------------------------------------------------------------------------*/
2537
2538static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2539{
2540
2541 spin_lock_init(&bh->lock);
2542 INIT_LIST_HEAD(&bh->head);
2543 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2544}
2545
2546struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2547 struct device *sysdev, struct device *dev, const char *bus_name,
2548 struct usb_hcd *primary_hcd)
2549{
2550 struct usb_hcd *hcd;
2551
2552 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2553 if (!hcd)
2554 return NULL;
2555 if (primary_hcd == NULL) {
2556 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2557 GFP_KERNEL);
2558 if (!hcd->address0_mutex) {
2559 kfree(hcd);
2560 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2561 return NULL;
2562 }
2563 mutex_init(hcd->address0_mutex);
2564 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2565 GFP_KERNEL);
2566 if (!hcd->bandwidth_mutex) {
2567 kfree(hcd->address0_mutex);
2568 kfree(hcd);
2569 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2570 return NULL;
2571 }
2572 mutex_init(hcd->bandwidth_mutex);
2573 dev_set_drvdata(dev, hcd);
2574 } else {
2575 mutex_lock(&usb_port_peer_mutex);
2576 hcd->address0_mutex = primary_hcd->address0_mutex;
2577 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2578 hcd->primary_hcd = primary_hcd;
2579 primary_hcd->primary_hcd = primary_hcd;
2580 hcd->shared_hcd = primary_hcd;
2581 primary_hcd->shared_hcd = hcd;
2582 mutex_unlock(&usb_port_peer_mutex);
2583 }
2584
2585 kref_init(&hcd->kref);
2586
2587 usb_bus_init(&hcd->self);
2588 hcd->self.controller = dev;
2589 hcd->self.sysdev = sysdev;
2590 hcd->self.bus_name = bus_name;
2591
2592 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2593#ifdef CONFIG_PM
2594 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2595#endif
2596
2597 INIT_WORK(&hcd->died_work, hcd_died_work);
2598
2599 hcd->driver = driver;
2600 hcd->speed = driver->flags & HCD_MASK;
2601 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2602 "USB Host Controller";
2603 return hcd;
2604}
2605EXPORT_SYMBOL_GPL(__usb_create_hcd);
2606
2607/**
2608 * usb_create_shared_hcd - create and initialize an HCD structure
2609 * @driver: HC driver that will use this hcd
2610 * @dev: device for this HC, stored in hcd->self.controller
2611 * @bus_name: value to store in hcd->self.bus_name
2612 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2613 * PCI device. Only allocate certain resources for the primary HCD
2614 *
2615 * Context: task context, might sleep.
2616 *
2617 * Allocate a struct usb_hcd, with extra space at the end for the
2618 * HC driver's private data. Initialize the generic members of the
2619 * hcd structure.
2620 *
2621 * Return: On success, a pointer to the created and initialized HCD structure.
2622 * On failure (e.g. if memory is unavailable), %NULL.
2623 */
2624struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2625 struct device *dev, const char *bus_name,
2626 struct usb_hcd *primary_hcd)
2627{
2628 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2629}
2630EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2631
2632/**
2633 * usb_create_hcd - create and initialize an HCD structure
2634 * @driver: HC driver that will use this hcd
2635 * @dev: device for this HC, stored in hcd->self.controller
2636 * @bus_name: value to store in hcd->self.bus_name
2637 *
2638 * Context: task context, might sleep.
2639 *
2640 * Allocate a struct usb_hcd, with extra space at the end for the
2641 * HC driver's private data. Initialize the generic members of the
2642 * hcd structure.
2643 *
2644 * Return: On success, a pointer to the created and initialized HCD
2645 * structure. On failure (e.g. if memory is unavailable), %NULL.
2646 */
2647struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2648 struct device *dev, const char *bus_name)
2649{
2650 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2651}
2652EXPORT_SYMBOL_GPL(usb_create_hcd);
2653
2654/*
2655 * Roothubs that share one PCI device must also share the bandwidth mutex.
2656 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2657 * deallocated.
2658 *
2659 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2660 * freed. When hcd_release() is called for either hcd in a peer set,
2661 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2662 */
2663static void hcd_release(struct kref *kref)
2664{
2665 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2666
2667 mutex_lock(&usb_port_peer_mutex);
2668 if (hcd->shared_hcd) {
2669 struct usb_hcd *peer = hcd->shared_hcd;
2670
2671 peer->shared_hcd = NULL;
2672 peer->primary_hcd = NULL;
2673 } else {
2674 kfree(hcd->address0_mutex);
2675 kfree(hcd->bandwidth_mutex);
2676 }
2677 mutex_unlock(&usb_port_peer_mutex);
2678 kfree(hcd);
2679}
2680
2681struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2682{
2683 if (hcd)
2684 kref_get (&hcd->kref);
2685 return hcd;
2686}
2687EXPORT_SYMBOL_GPL(usb_get_hcd);
2688
2689void usb_put_hcd (struct usb_hcd *hcd)
2690{
2691 if (hcd)
2692 kref_put (&hcd->kref, hcd_release);
2693}
2694EXPORT_SYMBOL_GPL(usb_put_hcd);
2695
2696int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2697{
2698 if (!hcd->primary_hcd)
2699 return 1;
2700 return hcd == hcd->primary_hcd;
2701}
2702EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2703
2704int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2705{
2706 if (!hcd->driver->find_raw_port_number)
2707 return port1;
2708
2709 return hcd->driver->find_raw_port_number(hcd, port1);
2710}
2711
2712static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2713 unsigned int irqnum, unsigned long irqflags)
2714{
2715 int retval;
2716
2717 if (hcd->driver->irq) {
2718
2719 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2720 hcd->driver->description, hcd->self.busnum);
2721 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2722 hcd->irq_descr, hcd);
2723 if (retval != 0) {
2724 dev_err(hcd->self.controller,
2725 "request interrupt %d failed\n",
2726 irqnum);
2727 return retval;
2728 }
2729 hcd->irq = irqnum;
2730 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2731 (hcd->driver->flags & HCD_MEMORY) ?
2732 "io mem" : "io port",
2733 (unsigned long long)hcd->rsrc_start);
2734 } else {
2735 hcd->irq = 0;
2736 if (hcd->rsrc_start)
2737 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2738 (hcd->driver->flags & HCD_MEMORY) ?
2739 "io mem" : "io port",
2740 (unsigned long long)hcd->rsrc_start);
2741 }
2742 return 0;
2743}
2744
2745/*
2746 * Before we free this root hub, flush in-flight peering attempts
2747 * and disable peer lookups
2748 */
2749static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2750{
2751 struct usb_device *rhdev;
2752
2753 mutex_lock(&usb_port_peer_mutex);
2754 rhdev = hcd->self.root_hub;
2755 hcd->self.root_hub = NULL;
2756 mutex_unlock(&usb_port_peer_mutex);
2757 usb_put_dev(rhdev);
2758}
2759
2760/**
2761 * usb_stop_hcd - Halt the HCD
2762 * @hcd: the usb_hcd that has to be halted
2763 *
2764 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2765 */
2766static void usb_stop_hcd(struct usb_hcd *hcd)
2767{
2768 hcd->rh_pollable = 0;
2769 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2770 del_timer_sync(&hcd->rh_timer);
2771
2772 hcd->driver->stop(hcd);
2773 hcd->state = HC_STATE_HALT;
2774
2775 /* In case the HCD restarted the timer, stop it again. */
2776 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2777 del_timer_sync(&hcd->rh_timer);
2778}
2779
2780/**
2781 * usb_add_hcd - finish generic HCD structure initialization and register
2782 * @hcd: the usb_hcd structure to initialize
2783 * @irqnum: Interrupt line to allocate
2784 * @irqflags: Interrupt type flags
2785 *
2786 * Finish the remaining parts of generic HCD initialization: allocate the
2787 * buffers of consistent memory, register the bus, request the IRQ line,
2788 * and call the driver's reset() and start() routines.
2789 */
2790int usb_add_hcd(struct usb_hcd *hcd,
2791 unsigned int irqnum, unsigned long irqflags)
2792{
2793 int retval;
2794 struct usb_device *rhdev;
2795 struct usb_hcd *shared_hcd;
2796
2797 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2798 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2799 if (IS_ERR(hcd->phy_roothub))
2800 return PTR_ERR(hcd->phy_roothub);
2801
2802 retval = usb_phy_roothub_init(hcd->phy_roothub);
2803 if (retval)
2804 return retval;
2805
2806 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2807 PHY_MODE_USB_HOST_SS);
2808 if (retval)
2809 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2810 PHY_MODE_USB_HOST);
2811 if (retval)
2812 goto err_usb_phy_roothub_power_on;
2813
2814 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2815 if (retval)
2816 goto err_usb_phy_roothub_power_on;
2817 }
2818
2819 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2820
2821 switch (authorized_default) {
2822 case USB_AUTHORIZE_NONE:
2823 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2824 break;
2825
2826 case USB_AUTHORIZE_INTERNAL:
2827 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2828 break;
2829
2830 case USB_AUTHORIZE_ALL:
2831 case USB_AUTHORIZE_WIRED:
2832 default:
2833 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2834 break;
2835 }
2836
2837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2838
2839 /* per default all interfaces are authorized */
2840 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2841
2842 /* HC is in reset state, but accessible. Now do the one-time init,
2843 * bottom up so that hcds can customize the root hubs before hub_wq
2844 * starts talking to them. (Note, bus id is assigned early too.)
2845 */
2846 retval = hcd_buffer_create(hcd);
2847 if (retval != 0) {
2848 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2849 goto err_create_buf;
2850 }
2851
2852 retval = usb_register_bus(&hcd->self);
2853 if (retval < 0)
2854 goto err_register_bus;
2855
2856 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2857 if (rhdev == NULL) {
2858 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2859 retval = -ENOMEM;
2860 goto err_allocate_root_hub;
2861 }
2862 mutex_lock(&usb_port_peer_mutex);
2863 hcd->self.root_hub = rhdev;
2864 mutex_unlock(&usb_port_peer_mutex);
2865
2866 rhdev->rx_lanes = 1;
2867 rhdev->tx_lanes = 1;
2868 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2869
2870 switch (hcd->speed) {
2871 case HCD_USB11:
2872 rhdev->speed = USB_SPEED_FULL;
2873 break;
2874 case HCD_USB2:
2875 rhdev->speed = USB_SPEED_HIGH;
2876 break;
2877 case HCD_USB3:
2878 rhdev->speed = USB_SPEED_SUPER;
2879 break;
2880 case HCD_USB32:
2881 rhdev->rx_lanes = 2;
2882 rhdev->tx_lanes = 2;
2883 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2884 rhdev->speed = USB_SPEED_SUPER_PLUS;
2885 break;
2886 case HCD_USB31:
2887 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2888 rhdev->speed = USB_SPEED_SUPER_PLUS;
2889 break;
2890 default:
2891 retval = -EINVAL;
2892 goto err_set_rh_speed;
2893 }
2894
2895 /* wakeup flag init defaults to "everything works" for root hubs,
2896 * but drivers can override it in reset() if needed, along with
2897 * recording the overall controller's system wakeup capability.
2898 */
2899 device_set_wakeup_capable(&rhdev->dev, 1);
2900
2901 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2902 * registered. But since the controller can die at any time,
2903 * let's initialize the flag before touching the hardware.
2904 */
2905 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2906
2907 /* "reset" is misnamed; its role is now one-time init. the controller
2908 * should already have been reset (and boot firmware kicked off etc).
2909 */
2910 if (hcd->driver->reset) {
2911 retval = hcd->driver->reset(hcd);
2912 if (retval < 0) {
2913 dev_err(hcd->self.controller, "can't setup: %d\n",
2914 retval);
2915 goto err_hcd_driver_setup;
2916 }
2917 }
2918 hcd->rh_pollable = 1;
2919
2920 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2921 if (retval)
2922 goto err_hcd_driver_setup;
2923
2924 /* NOTE: root hub and controller capabilities may not be the same */
2925 if (device_can_wakeup(hcd->self.controller)
2926 && device_can_wakeup(&hcd->self.root_hub->dev))
2927 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2928
2929 /* initialize tasklets */
2930 init_giveback_urb_bh(&hcd->high_prio_bh);
2931 hcd->high_prio_bh.high_prio = true;
2932 init_giveback_urb_bh(&hcd->low_prio_bh);
2933
2934 /* enable irqs just before we start the controller,
2935 * if the BIOS provides legacy PCI irqs.
2936 */
2937 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2938 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2939 if (retval)
2940 goto err_request_irq;
2941 }
2942
2943 hcd->state = HC_STATE_RUNNING;
2944 retval = hcd->driver->start(hcd);
2945 if (retval < 0) {
2946 dev_err(hcd->self.controller, "startup error %d\n", retval);
2947 goto err_hcd_driver_start;
2948 }
2949
2950 /* starting here, usbcore will pay attention to the shared HCD roothub */
2951 shared_hcd = hcd->shared_hcd;
2952 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2953 retval = register_root_hub(shared_hcd);
2954 if (retval != 0)
2955 goto err_register_root_hub;
2956
2957 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2958 usb_hcd_poll_rh_status(shared_hcd);
2959 }
2960
2961 /* starting here, usbcore will pay attention to this root hub */
2962 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2963 retval = register_root_hub(hcd);
2964 if (retval != 0)
2965 goto err_register_root_hub;
2966
2967 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2968 usb_hcd_poll_rh_status(hcd);
2969 }
2970
2971 return retval;
2972
2973err_register_root_hub:
2974 usb_stop_hcd(hcd);
2975err_hcd_driver_start:
2976 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2977 free_irq(irqnum, hcd);
2978err_request_irq:
2979err_hcd_driver_setup:
2980err_set_rh_speed:
2981 usb_put_invalidate_rhdev(hcd);
2982err_allocate_root_hub:
2983 usb_deregister_bus(&hcd->self);
2984err_register_bus:
2985 hcd_buffer_destroy(hcd);
2986err_create_buf:
2987 usb_phy_roothub_power_off(hcd->phy_roothub);
2988err_usb_phy_roothub_power_on:
2989 usb_phy_roothub_exit(hcd->phy_roothub);
2990
2991 return retval;
2992}
2993EXPORT_SYMBOL_GPL(usb_add_hcd);
2994
2995/**
2996 * usb_remove_hcd - shutdown processing for generic HCDs
2997 * @hcd: the usb_hcd structure to remove
2998 *
2999 * Context: task context, might sleep.
3000 *
3001 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3002 * invoking the HCD's stop() method.
3003 */
3004void usb_remove_hcd(struct usb_hcd *hcd)
3005{
3006 struct usb_device *rhdev;
3007 bool rh_registered;
3008
3009 if (!hcd) {
3010 pr_debug("%s: hcd is NULL\n", __func__);
3011 return;
3012 }
3013 rhdev = hcd->self.root_hub;
3014
3015 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3016
3017 usb_get_dev(rhdev);
3018 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3019 if (HC_IS_RUNNING (hcd->state))
3020 hcd->state = HC_STATE_QUIESCING;
3021
3022 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3023 spin_lock_irq (&hcd_root_hub_lock);
3024 rh_registered = hcd->rh_registered;
3025 hcd->rh_registered = 0;
3026 spin_unlock_irq (&hcd_root_hub_lock);
3027
3028#ifdef CONFIG_PM
3029 cancel_work_sync(&hcd->wakeup_work);
3030#endif
3031 cancel_work_sync(&hcd->died_work);
3032
3033 mutex_lock(&usb_bus_idr_lock);
3034 if (rh_registered)
3035 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3036 mutex_unlock(&usb_bus_idr_lock);
3037
3038 /*
3039 * tasklet_kill() isn't needed here because:
3040 * - driver's disconnect() called from usb_disconnect() should
3041 * make sure its URBs are completed during the disconnect()
3042 * callback
3043 *
3044 * - it is too late to run complete() here since driver may have
3045 * been removed already now
3046 */
3047
3048 /* Prevent any more root-hub status calls from the timer.
3049 * The HCD might still restart the timer (if a port status change
3050 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3051 * the hub_status_data() callback.
3052 */
3053 usb_stop_hcd(hcd);
3054
3055 if (usb_hcd_is_primary_hcd(hcd)) {
3056 if (hcd->irq > 0)
3057 free_irq(hcd->irq, hcd);
3058 }
3059
3060 usb_deregister_bus(&hcd->self);
3061 hcd_buffer_destroy(hcd);
3062
3063 usb_phy_roothub_power_off(hcd->phy_roothub);
3064 usb_phy_roothub_exit(hcd->phy_roothub);
3065
3066 usb_put_invalidate_rhdev(hcd);
3067 hcd->flags = 0;
3068}
3069EXPORT_SYMBOL_GPL(usb_remove_hcd);
3070
3071void
3072usb_hcd_platform_shutdown(struct platform_device *dev)
3073{
3074 struct usb_hcd *hcd = platform_get_drvdata(dev);
3075
3076 /* No need for pm_runtime_put(), we're shutting down */
3077 pm_runtime_get_sync(&dev->dev);
3078
3079 if (hcd->driver->shutdown)
3080 hcd->driver->shutdown(hcd);
3081}
3082EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3083
3084int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3085 dma_addr_t dma, size_t size)
3086{
3087 int err;
3088 void *local_mem;
3089
3090 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3091 dev_to_node(hcd->self.sysdev),
3092 dev_name(hcd->self.sysdev));
3093 if (IS_ERR(hcd->localmem_pool))
3094 return PTR_ERR(hcd->localmem_pool);
3095
3096 /*
3097 * if a physical SRAM address was passed, map it, otherwise
3098 * allocate system memory as a buffer.
3099 */
3100 if (phys_addr)
3101 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3102 size, MEMREMAP_WC);
3103 else
3104 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3105 GFP_KERNEL,
3106 DMA_ATTR_WRITE_COMBINE);
3107
3108 if (IS_ERR_OR_NULL(local_mem)) {
3109 if (!local_mem)
3110 return -ENOMEM;
3111
3112 return PTR_ERR(local_mem);
3113 }
3114
3115 /*
3116 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3117 * It's not backed by system memory and thus there's no kernel mapping
3118 * for it.
3119 */
3120 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3121 dma, size, dev_to_node(hcd->self.sysdev));
3122 if (err < 0) {
3123 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3124 err);
3125 return err;
3126 }
3127
3128 return 0;
3129}
3130EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3131
3132/*-------------------------------------------------------------------------*/
3133
3134#if IS_ENABLED(CONFIG_USB_MON)
3135
3136const struct usb_mon_operations *mon_ops;
3137
3138/*
3139 * The registration is unlocked.
3140 * We do it this way because we do not want to lock in hot paths.
3141 *
3142 * Notice that the code is minimally error-proof. Because usbmon needs
3143 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3144 */
3145
3146int usb_mon_register(const struct usb_mon_operations *ops)
3147{
3148
3149 if (mon_ops)
3150 return -EBUSY;
3151
3152 mon_ops = ops;
3153 mb();
3154 return 0;
3155}
3156EXPORT_SYMBOL_GPL (usb_mon_register);
3157
3158void usb_mon_deregister (void)
3159{
3160
3161 if (mon_ops == NULL) {
3162 printk(KERN_ERR "USB: monitor was not registered\n");
3163 return;
3164 }
3165 mon_ops = NULL;
3166 mb();
3167}
3168EXPORT_SYMBOL_GPL (usb_mon_deregister);
3169
3170#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49#include <linux/usb/otg.h>
50
51#include "usb.h"
52
53
54/*-------------------------------------------------------------------------*/
55
56/*
57 * USB Host Controller Driver framework
58 *
59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60 * HCD-specific behaviors/bugs.
61 *
62 * This does error checks, tracks devices and urbs, and delegates to a
63 * "hc_driver" only for code (and data) that really needs to know about
64 * hardware differences. That includes root hub registers, i/o queues,
65 * and so on ... but as little else as possible.
66 *
67 * Shared code includes most of the "root hub" code (these are emulated,
68 * though each HC's hardware works differently) and PCI glue, plus request
69 * tracking overhead. The HCD code should only block on spinlocks or on
70 * hardware handshaking; blocking on software events (such as other kernel
71 * threads releasing resources, or completing actions) is all generic.
72 *
73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75 * only by the hub driver ... and that neither should be seen or used by
76 * usb client device drivers.
77 *
78 * Contributors of ideas or unattributed patches include: David Brownell,
79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80 *
81 * HISTORY:
82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
83 * associated cleanup. "usb_hcd" still != "usb_bus".
84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
85 */
86
87/*-------------------------------------------------------------------------*/
88
89/* Keep track of which host controller drivers are loaded */
90unsigned long usb_hcds_loaded;
91EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93/* host controllers we manage */
94DEFINE_IDR (usb_bus_idr);
95EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97/* used when allocating bus numbers */
98#define USB_MAXBUS 64
99
100/* used when updating list of hcds */
101DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104/* used for controlling access to virtual root hubs */
105static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107/* used when updating an endpoint's URB list */
108static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110/* used to protect against unlinking URBs after the device is gone */
111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113/* wait queue for synchronous unlinks */
114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116static inline int is_root_hub(struct usb_device *udev)
117{
118 return (udev->parent == NULL);
119}
120
121/*-------------------------------------------------------------------------*/
122
123/*
124 * Sharable chunks of root hub code.
125 */
126
127/*-------------------------------------------------------------------------*/
128#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131/* usb 3.1 root hub device descriptor */
132static const u8 usb31_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150};
151
152/* usb 3.0 root hub device descriptor */
153static const u8 usb3_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171};
172
173/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174static const u8 usb25_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192};
193
194/* usb 2.0 root hub device descriptor */
195static const u8 usb2_rh_dev_descriptor[18] = {
196 0x12, /* __u8 bLength; */
197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
199
200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
201 0x00, /* __u8 bDeviceSubClass; */
202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
204
205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
208
209 0x03, /* __u8 iManufacturer; */
210 0x02, /* __u8 iProduct; */
211 0x01, /* __u8 iSerialNumber; */
212 0x01 /* __u8 bNumConfigurations; */
213};
214
215/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217/* usb 1.1 root hub device descriptor */
218static const u8 usb11_rh_dev_descriptor[18] = {
219 0x12, /* __u8 bLength; */
220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
222
223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
224 0x00, /* __u8 bDeviceSubClass; */
225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
227
228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
231
232 0x03, /* __u8 iManufacturer; */
233 0x02, /* __u8 iProduct; */
234 0x01, /* __u8 iSerialNumber; */
235 0x01 /* __u8 bNumConfigurations; */
236};
237
238
239/*-------------------------------------------------------------------------*/
240
241/* Configuration descriptors for our root hubs */
242
243static const u8 fs_rh_config_descriptor[] = {
244
245 /* one configuration */
246 0x09, /* __u8 bLength; */
247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 0x19, 0x00, /* __le16 wTotalLength; */
249 0x01, /* __u8 bNumInterfaces; (1) */
250 0x01, /* __u8 bConfigurationValue; */
251 0x00, /* __u8 iConfiguration; */
252 0xc0, /* __u8 bmAttributes;
253 Bit 7: must be set,
254 6: Self-powered,
255 5: Remote wakeup,
256 4..0: resvd */
257 0x00, /* __u8 MaxPower; */
258
259 /* USB 1.1:
260 * USB 2.0, single TT organization (mandatory):
261 * one interface, protocol 0
262 *
263 * USB 2.0, multiple TT organization (optional):
264 * two interfaces, protocols 1 (like single TT)
265 * and 2 (multiple TT mode) ... config is
266 * sometimes settable
267 * NOT IMPLEMENTED
268 */
269
270 /* one interface */
271 0x09, /* __u8 if_bLength; */
272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
273 0x00, /* __u8 if_bInterfaceNumber; */
274 0x00, /* __u8 if_bAlternateSetting; */
275 0x01, /* __u8 if_bNumEndpoints; */
276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
277 0x00, /* __u8 if_bInterfaceSubClass; */
278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
279 0x00, /* __u8 if_iInterface; */
280
281 /* one endpoint (status change endpoint) */
282 0x07, /* __u8 ep_bLength; */
283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
285 0x03, /* __u8 ep_bmAttributes; Interrupt */
286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
288};
289
290static const u8 hs_rh_config_descriptor[] = {
291
292 /* one configuration */
293 0x09, /* __u8 bLength; */
294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 0x19, 0x00, /* __le16 wTotalLength; */
296 0x01, /* __u8 bNumInterfaces; (1) */
297 0x01, /* __u8 bConfigurationValue; */
298 0x00, /* __u8 iConfiguration; */
299 0xc0, /* __u8 bmAttributes;
300 Bit 7: must be set,
301 6: Self-powered,
302 5: Remote wakeup,
303 4..0: resvd */
304 0x00, /* __u8 MaxPower; */
305
306 /* USB 1.1:
307 * USB 2.0, single TT organization (mandatory):
308 * one interface, protocol 0
309 *
310 * USB 2.0, multiple TT organization (optional):
311 * two interfaces, protocols 1 (like single TT)
312 * and 2 (multiple TT mode) ... config is
313 * sometimes settable
314 * NOT IMPLEMENTED
315 */
316
317 /* one interface */
318 0x09, /* __u8 if_bLength; */
319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 0x00, /* __u8 if_bInterfaceNumber; */
321 0x00, /* __u8 if_bAlternateSetting; */
322 0x01, /* __u8 if_bNumEndpoints; */
323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
324 0x00, /* __u8 if_bInterfaceSubClass; */
325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
326 0x00, /* __u8 if_iInterface; */
327
328 /* one endpoint (status change endpoint) */
329 0x07, /* __u8 ep_bLength; */
330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
332 0x03, /* __u8 ep_bmAttributes; Interrupt */
333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 * see hub.c:hub_configure() for details. */
335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
337};
338
339static const u8 ss_rh_config_descriptor[] = {
340 /* one configuration */
341 0x09, /* __u8 bLength; */
342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 0x1f, 0x00, /* __le16 wTotalLength; */
344 0x01, /* __u8 bNumInterfaces; (1) */
345 0x01, /* __u8 bConfigurationValue; */
346 0x00, /* __u8 iConfiguration; */
347 0xc0, /* __u8 bmAttributes;
348 Bit 7: must be set,
349 6: Self-powered,
350 5: Remote wakeup,
351 4..0: resvd */
352 0x00, /* __u8 MaxPower; */
353
354 /* one interface */
355 0x09, /* __u8 if_bLength; */
356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 0x00, /* __u8 if_bInterfaceNumber; */
358 0x00, /* __u8 if_bAlternateSetting; */
359 0x01, /* __u8 if_bNumEndpoints; */
360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
361 0x00, /* __u8 if_bInterfaceSubClass; */
362 0x00, /* __u8 if_bInterfaceProtocol; */
363 0x00, /* __u8 if_iInterface; */
364
365 /* one endpoint (status change endpoint) */
366 0x07, /* __u8 ep_bLength; */
367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
369 0x03, /* __u8 ep_bmAttributes; Interrupt */
370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 * see hub.c:hub_configure() for details. */
372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
374
375 /* one SuperSpeed endpoint companion descriptor */
376 0x06, /* __u8 ss_bLength */
377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 /* Companion */
379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382};
383
384/* authorized_default behaviour:
385 * -1 is authorized for all devices except wireless (old behaviour)
386 * 0 is unauthorized for all devices
387 * 1 is authorized for all devices
388 */
389static int authorized_default = -1;
390module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391MODULE_PARM_DESC(authorized_default,
392 "Default USB device authorization: 0 is not authorized, 1 is "
393 "authorized, -1 is authorized except for wireless USB (default, "
394 "old behaviour");
395/*-------------------------------------------------------------------------*/
396
397/**
398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401 * @len: Length (in bytes; may be odd) of descriptor buffer.
402 *
403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404 * whichever is less.
405 *
406 * Note:
407 * USB String descriptors can contain at most 126 characters; input
408 * strings longer than that are truncated.
409 */
410static unsigned
411ascii2desc(char const *s, u8 *buf, unsigned len)
412{
413 unsigned n, t = 2 + 2*strlen(s);
414
415 if (t > 254)
416 t = 254; /* Longest possible UTF string descriptor */
417 if (len > t)
418 len = t;
419
420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
421
422 n = len;
423 while (n--) {
424 *buf++ = t;
425 if (!n--)
426 break;
427 *buf++ = t >> 8;
428 t = (unsigned char)*s++;
429 }
430 return len;
431}
432
433/**
434 * rh_string() - provides string descriptors for root hub
435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436 * @hcd: the host controller for this root hub
437 * @data: buffer for output packet
438 * @len: length of the provided buffer
439 *
440 * Produces either a manufacturer, product or serial number string for the
441 * virtual root hub device.
442 *
443 * Return: The number of bytes filled in: the length of the descriptor or
444 * of the provided buffer, whichever is less.
445 */
446static unsigned
447rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448{
449 char buf[100];
450 char const *s;
451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453 /* language ids */
454 switch (id) {
455 case 0:
456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 if (len > 4)
459 len = 4;
460 memcpy(data, langids, len);
461 return len;
462 case 1:
463 /* Serial number */
464 s = hcd->self.bus_name;
465 break;
466 case 2:
467 /* Product name */
468 s = hcd->product_desc;
469 break;
470 case 3:
471 /* Manufacturer */
472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 init_utsname()->release, hcd->driver->description);
474 s = buf;
475 break;
476 default:
477 /* Can't happen; caller guarantees it */
478 return 0;
479 }
480
481 return ascii2desc(s, data, len);
482}
483
484
485/* Root hub control transfers execute synchronously */
486static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487{
488 struct usb_ctrlrequest *cmd;
489 u16 typeReq, wValue, wIndex, wLength;
490 u8 *ubuf = urb->transfer_buffer;
491 unsigned len = 0;
492 int status;
493 u8 patch_wakeup = 0;
494 u8 patch_protocol = 0;
495 u16 tbuf_size;
496 u8 *tbuf = NULL;
497 const u8 *bufp;
498
499 might_sleep();
500
501 spin_lock_irq(&hcd_root_hub_lock);
502 status = usb_hcd_link_urb_to_ep(hcd, urb);
503 spin_unlock_irq(&hcd_root_hub_lock);
504 if (status)
505 return status;
506 urb->hcpriv = hcd; /* Indicate it's queued */
507
508 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
510 wValue = le16_to_cpu (cmd->wValue);
511 wIndex = le16_to_cpu (cmd->wIndex);
512 wLength = le16_to_cpu (cmd->wLength);
513
514 if (wLength > urb->transfer_buffer_length)
515 goto error;
516
517 /*
518 * tbuf should be at least as big as the
519 * USB hub descriptor.
520 */
521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 if (!tbuf) {
524 status = -ENOMEM;
525 goto err_alloc;
526 }
527
528 bufp = tbuf;
529
530
531 urb->actual_length = 0;
532 switch (typeReq) {
533
534 /* DEVICE REQUESTS */
535
536 /* The root hub's remote wakeup enable bit is implemented using
537 * driver model wakeup flags. If this system supports wakeup
538 * through USB, userspace may change the default "allow wakeup"
539 * policy through sysfs or these calls.
540 *
541 * Most root hubs support wakeup from downstream devices, for
542 * runtime power management (disabling USB clocks and reducing
543 * VBUS power usage). However, not all of them do so; silicon,
544 * board, and BIOS bugs here are not uncommon, so these can't
545 * be treated quite like external hubs.
546 *
547 * Likewise, not all root hubs will pass wakeup events upstream,
548 * to wake up the whole system. So don't assume root hub and
549 * controller capabilities are identical.
550 */
551
552 case DeviceRequest | USB_REQ_GET_STATUS:
553 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554 << USB_DEVICE_REMOTE_WAKEUP)
555 | (1 << USB_DEVICE_SELF_POWERED);
556 tbuf[1] = 0;
557 len = 2;
558 break;
559 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562 else
563 goto error;
564 break;
565 case DeviceOutRequest | USB_REQ_SET_FEATURE:
566 if (device_can_wakeup(&hcd->self.root_hub->dev)
567 && wValue == USB_DEVICE_REMOTE_WAKEUP)
568 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569 else
570 goto error;
571 break;
572 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573 tbuf[0] = 1;
574 len = 1;
575 /* FALLTHROUGH */
576 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577 break;
578 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579 switch (wValue & 0xff00) {
580 case USB_DT_DEVICE << 8:
581 switch (hcd->speed) {
582 case HCD_USB31:
583 bufp = usb31_rh_dev_descriptor;
584 break;
585 case HCD_USB3:
586 bufp = usb3_rh_dev_descriptor;
587 break;
588 case HCD_USB25:
589 bufp = usb25_rh_dev_descriptor;
590 break;
591 case HCD_USB2:
592 bufp = usb2_rh_dev_descriptor;
593 break;
594 case HCD_USB11:
595 bufp = usb11_rh_dev_descriptor;
596 break;
597 default:
598 goto error;
599 }
600 len = 18;
601 if (hcd->has_tt)
602 patch_protocol = 1;
603 break;
604 case USB_DT_CONFIG << 8:
605 switch (hcd->speed) {
606 case HCD_USB31:
607 case HCD_USB3:
608 bufp = ss_rh_config_descriptor;
609 len = sizeof ss_rh_config_descriptor;
610 break;
611 case HCD_USB25:
612 case HCD_USB2:
613 bufp = hs_rh_config_descriptor;
614 len = sizeof hs_rh_config_descriptor;
615 break;
616 case HCD_USB11:
617 bufp = fs_rh_config_descriptor;
618 len = sizeof fs_rh_config_descriptor;
619 break;
620 default:
621 goto error;
622 }
623 if (device_can_wakeup(&hcd->self.root_hub->dev))
624 patch_wakeup = 1;
625 break;
626 case USB_DT_STRING << 8:
627 if ((wValue & 0xff) < 4)
628 urb->actual_length = rh_string(wValue & 0xff,
629 hcd, ubuf, wLength);
630 else /* unsupported IDs --> "protocol stall" */
631 goto error;
632 break;
633 case USB_DT_BOS << 8:
634 goto nongeneric;
635 default:
636 goto error;
637 }
638 break;
639 case DeviceRequest | USB_REQ_GET_INTERFACE:
640 tbuf[0] = 0;
641 len = 1;
642 /* FALLTHROUGH */
643 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644 break;
645 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646 /* wValue == urb->dev->devaddr */
647 dev_dbg (hcd->self.controller, "root hub device address %d\n",
648 wValue);
649 break;
650
651 /* INTERFACE REQUESTS (no defined feature/status flags) */
652
653 /* ENDPOINT REQUESTS */
654
655 case EndpointRequest | USB_REQ_GET_STATUS:
656 /* ENDPOINT_HALT flag */
657 tbuf[0] = 0;
658 tbuf[1] = 0;
659 len = 2;
660 /* FALLTHROUGH */
661 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662 case EndpointOutRequest | USB_REQ_SET_FEATURE:
663 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664 break;
665
666 /* CLASS REQUESTS (and errors) */
667
668 default:
669nongeneric:
670 /* non-generic request */
671 switch (typeReq) {
672 case GetHubStatus:
673 len = 4;
674 break;
675 case GetPortStatus:
676 if (wValue == HUB_PORT_STATUS)
677 len = 4;
678 else
679 /* other port status types return 8 bytes */
680 len = 8;
681 break;
682 case GetHubDescriptor:
683 len = sizeof (struct usb_hub_descriptor);
684 break;
685 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686 /* len is returned by hub_control */
687 break;
688 }
689 status = hcd->driver->hub_control (hcd,
690 typeReq, wValue, wIndex,
691 tbuf, wLength);
692
693 if (typeReq == GetHubDescriptor)
694 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695 (struct usb_hub_descriptor *)tbuf);
696 break;
697error:
698 /* "protocol stall" on error */
699 status = -EPIPE;
700 }
701
702 if (status < 0) {
703 len = 0;
704 if (status != -EPIPE) {
705 dev_dbg (hcd->self.controller,
706 "CTRL: TypeReq=0x%x val=0x%x "
707 "idx=0x%x len=%d ==> %d\n",
708 typeReq, wValue, wIndex,
709 wLength, status);
710 }
711 } else if (status > 0) {
712 /* hub_control may return the length of data copied. */
713 len = status;
714 status = 0;
715 }
716 if (len) {
717 if (urb->transfer_buffer_length < len)
718 len = urb->transfer_buffer_length;
719 urb->actual_length = len;
720 /* always USB_DIR_IN, toward host */
721 memcpy (ubuf, bufp, len);
722
723 /* report whether RH hardware supports remote wakeup */
724 if (patch_wakeup &&
725 len > offsetof (struct usb_config_descriptor,
726 bmAttributes))
727 ((struct usb_config_descriptor *)ubuf)->bmAttributes
728 |= USB_CONFIG_ATT_WAKEUP;
729
730 /* report whether RH hardware has an integrated TT */
731 if (patch_protocol &&
732 len > offsetof(struct usb_device_descriptor,
733 bDeviceProtocol))
734 ((struct usb_device_descriptor *) ubuf)->
735 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736 }
737
738 kfree(tbuf);
739 err_alloc:
740
741 /* any errors get returned through the urb completion */
742 spin_lock_irq(&hcd_root_hub_lock);
743 usb_hcd_unlink_urb_from_ep(hcd, urb);
744 usb_hcd_giveback_urb(hcd, urb, status);
745 spin_unlock_irq(&hcd_root_hub_lock);
746 return 0;
747}
748
749/*-------------------------------------------------------------------------*/
750
751/*
752 * Root Hub interrupt transfers are polled using a timer if the
753 * driver requests it; otherwise the driver is responsible for
754 * calling usb_hcd_poll_rh_status() when an event occurs.
755 *
756 * Completions are called in_interrupt(), but they may or may not
757 * be in_irq().
758 */
759void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760{
761 struct urb *urb;
762 int length;
763 unsigned long flags;
764 char buffer[6]; /* Any root hubs with > 31 ports? */
765
766 if (unlikely(!hcd->rh_pollable))
767 return;
768 if (!hcd->uses_new_polling && !hcd->status_urb)
769 return;
770
771 length = hcd->driver->hub_status_data(hcd, buffer);
772 if (length > 0) {
773
774 /* try to complete the status urb */
775 spin_lock_irqsave(&hcd_root_hub_lock, flags);
776 urb = hcd->status_urb;
777 if (urb) {
778 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779 hcd->status_urb = NULL;
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, 0);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799}
800EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802/* timer callback */
803static void rh_timer_func (unsigned long _hcd)
804{
805 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
806}
807
808/*-------------------------------------------------------------------------*/
809
810static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
811{
812 int retval;
813 unsigned long flags;
814 unsigned len = 1 + (urb->dev->maxchild / 8);
815
816 spin_lock_irqsave (&hcd_root_hub_lock, flags);
817 if (hcd->status_urb || urb->transfer_buffer_length < len) {
818 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819 retval = -EINVAL;
820 goto done;
821 }
822
823 retval = usb_hcd_link_urb_to_ep(hcd, urb);
824 if (retval)
825 goto done;
826
827 hcd->status_urb = urb;
828 urb->hcpriv = hcd; /* indicate it's queued */
829 if (!hcd->uses_new_polling)
830 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831
832 /* If a status change has already occurred, report it ASAP */
833 else if (HCD_POLL_PENDING(hcd))
834 mod_timer(&hcd->rh_timer, jiffies);
835 retval = 0;
836 done:
837 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838 return retval;
839}
840
841static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842{
843 if (usb_endpoint_xfer_int(&urb->ep->desc))
844 return rh_queue_status (hcd, urb);
845 if (usb_endpoint_xfer_control(&urb->ep->desc))
846 return rh_call_control (hcd, urb);
847 return -EINVAL;
848}
849
850/*-------------------------------------------------------------------------*/
851
852/* Unlinks of root-hub control URBs are legal, but they don't do anything
853 * since these URBs always execute synchronously.
854 */
855static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
856{
857 unsigned long flags;
858 int rc;
859
860 spin_lock_irqsave(&hcd_root_hub_lock, flags);
861 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862 if (rc)
863 goto done;
864
865 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
866 ; /* Do nothing */
867
868 } else { /* Status URB */
869 if (!hcd->uses_new_polling)
870 del_timer (&hcd->rh_timer);
871 if (urb == hcd->status_urb) {
872 hcd->status_urb = NULL;
873 usb_hcd_unlink_urb_from_ep(hcd, urb);
874 usb_hcd_giveback_urb(hcd, urb, status);
875 }
876 }
877 done:
878 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879 return rc;
880}
881
882
883
884/*
885 * Show & store the current value of authorized_default
886 */
887static ssize_t authorized_default_show(struct device *dev,
888 struct device_attribute *attr, char *buf)
889{
890 struct usb_device *rh_usb_dev = to_usb_device(dev);
891 struct usb_bus *usb_bus = rh_usb_dev->bus;
892 struct usb_hcd *hcd;
893
894 hcd = bus_to_hcd(usb_bus);
895 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
896}
897
898static ssize_t authorized_default_store(struct device *dev,
899 struct device_attribute *attr,
900 const char *buf, size_t size)
901{
902 ssize_t result;
903 unsigned val;
904 struct usb_device *rh_usb_dev = to_usb_device(dev);
905 struct usb_bus *usb_bus = rh_usb_dev->bus;
906 struct usb_hcd *hcd;
907
908 hcd = bus_to_hcd(usb_bus);
909 result = sscanf(buf, "%u\n", &val);
910 if (result == 1) {
911 if (val)
912 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 else
914 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
915
916 result = size;
917 } else {
918 result = -EINVAL;
919 }
920 return result;
921}
922static DEVICE_ATTR_RW(authorized_default);
923
924/*
925 * interface_authorized_default_show - show default authorization status
926 * for USB interfaces
927 *
928 * note: interface_authorized_default is the default value
929 * for initializing the authorized attribute of interfaces
930 */
931static ssize_t interface_authorized_default_show(struct device *dev,
932 struct device_attribute *attr, char *buf)
933{
934 struct usb_device *usb_dev = to_usb_device(dev);
935 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936
937 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
938}
939
940/*
941 * interface_authorized_default_store - store default authorization status
942 * for USB interfaces
943 *
944 * note: interface_authorized_default is the default value
945 * for initializing the authorized attribute of interfaces
946 */
947static ssize_t interface_authorized_default_store(struct device *dev,
948 struct device_attribute *attr, const char *buf, size_t count)
949{
950 struct usb_device *usb_dev = to_usb_device(dev);
951 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952 int rc = count;
953 bool val;
954
955 if (strtobool(buf, &val) != 0)
956 return -EINVAL;
957
958 if (val)
959 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 else
961 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
962
963 return rc;
964}
965static DEVICE_ATTR_RW(interface_authorized_default);
966
967/* Group all the USB bus attributes */
968static struct attribute *usb_bus_attrs[] = {
969 &dev_attr_authorized_default.attr,
970 &dev_attr_interface_authorized_default.attr,
971 NULL,
972};
973
974static struct attribute_group usb_bus_attr_group = {
975 .name = NULL, /* we want them in the same directory */
976 .attrs = usb_bus_attrs,
977};
978
979
980
981/*-------------------------------------------------------------------------*/
982
983/**
984 * usb_bus_init - shared initialization code
985 * @bus: the bus structure being initialized
986 *
987 * This code is used to initialize a usb_bus structure, memory for which is
988 * separately managed.
989 */
990static void usb_bus_init (struct usb_bus *bus)
991{
992 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993
994 bus->devnum_next = 1;
995
996 bus->root_hub = NULL;
997 bus->busnum = -1;
998 bus->bandwidth_allocated = 0;
999 bus->bandwidth_int_reqs = 0;
1000 bus->bandwidth_isoc_reqs = 0;
1001 mutex_init(&bus->devnum_next_mutex);
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/**
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1010 *
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1013 *
1014 * Return: 0 if successful. A negative error code otherwise.
1015 */
1016static int usb_register_bus(struct usb_bus *bus)
1017{
1018 int result = -E2BIG;
1019 int busnum;
1020
1021 mutex_lock(&usb_bus_idr_lock);
1022 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 if (busnum < 0) {
1024 pr_err("%s: failed to get bus number\n", usbcore_name);
1025 goto error_find_busnum;
1026 }
1027 bus->busnum = busnum;
1028 mutex_unlock(&usb_bus_idr_lock);
1029
1030 usb_notify_add_bus(bus);
1031
1032 dev_info (bus->controller, "new USB bus registered, assigned bus "
1033 "number %d\n", bus->busnum);
1034 return 0;
1035
1036error_find_busnum:
1037 mutex_unlock(&usb_bus_idr_lock);
1038 return result;
1039}
1040
1041/**
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1045 *
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1048 */
1049static void usb_deregister_bus (struct usb_bus *bus)
1050{
1051 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052
1053 /*
1054 * NOTE: make sure that all the devices are removed by the
1055 * controller code, as well as having it call this when cleaning
1056 * itself up
1057 */
1058 mutex_lock(&usb_bus_idr_lock);
1059 idr_remove(&usb_bus_idr, bus->busnum);
1060 mutex_unlock(&usb_bus_idr_lock);
1061
1062 usb_notify_remove_bus(bus);
1063}
1064
1065/**
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1068 *
1069 * This function registers the root hub with the USB subsystem. It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device. It also assigns the root hub's USB address
1072 * (always 1).
1073 *
1074 * Return: 0 if successful. A negative error code otherwise.
1075 */
1076static int register_root_hub(struct usb_hcd *hcd)
1077{
1078 struct device *parent_dev = hcd->self.controller;
1079 struct usb_device *usb_dev = hcd->self.root_hub;
1080 const int devnum = 1;
1081 int retval;
1082
1083 usb_dev->devnum = devnum;
1084 usb_dev->bus->devnum_next = devnum + 1;
1085 memset (&usb_dev->bus->devmap.devicemap, 0,
1086 sizeof usb_dev->bus->devmap.devicemap);
1087 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089
1090 mutex_lock(&usb_bus_idr_lock);
1091
1092 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094 if (retval != sizeof usb_dev->descriptor) {
1095 mutex_unlock(&usb_bus_idr_lock);
1096 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097 dev_name(&usb_dev->dev), retval);
1098 return (retval < 0) ? retval : -EMSGSIZE;
1099 }
1100
1101 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102 retval = usb_get_bos_descriptor(usb_dev);
1103 if (!retval) {
1104 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106 mutex_unlock(&usb_bus_idr_lock);
1107 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108 dev_name(&usb_dev->dev), retval);
1109 return retval;
1110 }
1111 }
1112
1113 retval = usb_new_device (usb_dev);
1114 if (retval) {
1115 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116 dev_name(&usb_dev->dev), retval);
1117 } else {
1118 spin_lock_irq (&hcd_root_hub_lock);
1119 hcd->rh_registered = 1;
1120 spin_unlock_irq (&hcd_root_hub_lock);
1121
1122 /* Did the HC die before the root hub was registered? */
1123 if (HCD_DEAD(hcd))
1124 usb_hc_died (hcd); /* This time clean up */
1125 usb_dev->dev.of_node = parent_dev->of_node;
1126 }
1127 mutex_unlock(&usb_bus_idr_lock);
1128
1129 return retval;
1130}
1131
1132/*
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1136 *
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port. The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1140 *
1141 * The bus's private lock must be held by the caller.
1142 */
1143void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144{
1145 unsigned bit = 1 << portnum;
1146
1147 if (!(bus->resuming_ports & bit)) {
1148 bus->resuming_ports |= bit;
1149 pm_runtime_get_noresume(&bus->root_hub->dev);
1150 }
1151}
1152EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153
1154/*
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1158 *
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port. The root hub will be allowed to
1161 * autosuspend again.
1162 *
1163 * The bus's private lock must be held by the caller.
1164 */
1165void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166{
1167 unsigned bit = 1 << portnum;
1168
1169 if (bus->resuming_ports & bit) {
1170 bus->resuming_ports &= ~bit;
1171 pm_runtime_put_noidle(&bus->root_hub->dev);
1172 }
1173}
1174EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175
1176/*-------------------------------------------------------------------------*/
1177
1178/**
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1184 *
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 *
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1190 */
1191long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192{
1193 unsigned long tmp;
1194
1195 switch (speed) {
1196 case USB_SPEED_LOW: /* INTR only */
1197 if (is_input) {
1198 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 } else {
1201 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203 }
1204 case USB_SPEED_FULL: /* ISOC or INTR */
1205 if (isoc) {
1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 } else {
1209 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 return 9107L + BW_HOST_DELAY + tmp;
1211 }
1212 case USB_SPEED_HIGH: /* ISOC or INTR */
1213 /* FIXME adjust for input vs output */
1214 if (isoc)
1215 tmp = HS_NSECS_ISO (bytecount);
1216 else
1217 tmp = HS_NSECS (bytecount);
1218 return tmp;
1219 default:
1220 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 return -1;
1222 }
1223}
1224EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225
1226
1227/*-------------------------------------------------------------------------*/
1228
1229/*
1230 * Generic HC operations.
1231 */
1232
1233/*-------------------------------------------------------------------------*/
1234
1235/**
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1239 *
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method. The HCD's private spinlock must be held and interrupts must
1242 * be disabled. The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244 *
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail). If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1249 */
1250int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251{
1252 int rc = 0;
1253
1254 spin_lock(&hcd_urb_list_lock);
1255
1256 /* Check that the URB isn't being killed */
1257 if (unlikely(atomic_read(&urb->reject))) {
1258 rc = -EPERM;
1259 goto done;
1260 }
1261
1262 if (unlikely(!urb->ep->enabled)) {
1263 rc = -ENOENT;
1264 goto done;
1265 }
1266
1267 if (unlikely(!urb->dev->can_submit)) {
1268 rc = -EHOSTUNREACH;
1269 goto done;
1270 }
1271
1272 /*
1273 * Check the host controller's state and add the URB to the
1274 * endpoint's queue.
1275 */
1276 if (HCD_RH_RUNNING(hcd)) {
1277 urb->unlinked = 0;
1278 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 } else {
1280 rc = -ESHUTDOWN;
1281 goto done;
1282 }
1283 done:
1284 spin_unlock(&hcd_urb_list_lock);
1285 return rc;
1286}
1287EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288
1289/**
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1294 *
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method. The HCD's private spinlock must be held and interrupts must
1297 * be disabled. The actions carried out here are required for making
1298 * sure than an unlink is valid.
1299 *
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail). The possible error codes are:
1302 *
1303 * -EIDRM: @urb was not submitted or has already completed.
1304 * The completion function may not have been called yet.
1305 *
1306 * -EBUSY: @urb has already been unlinked.
1307 */
1308int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 int status)
1310{
1311 struct list_head *tmp;
1312
1313 /* insist the urb is still queued */
1314 list_for_each(tmp, &urb->ep->urb_list) {
1315 if (tmp == &urb->urb_list)
1316 break;
1317 }
1318 if (tmp != &urb->urb_list)
1319 return -EIDRM;
1320
1321 /* Any status except -EINPROGRESS means something already started to
1322 * unlink this URB from the hardware. So there's no more work to do.
1323 */
1324 if (urb->unlinked)
1325 return -EBUSY;
1326 urb->unlinked = status;
1327 return 0;
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330
1331/**
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1335 *
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1338 * interrupts must be disabled. The actions carried out here are required
1339 * for URB completion.
1340 */
1341void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342{
1343 /* clear all state linking urb to this dev (and hcd) */
1344 spin_lock(&hcd_urb_list_lock);
1345 list_del_init(&urb->urb_list);
1346 spin_unlock(&hcd_urb_list_lock);
1347}
1348EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349
1350/*
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1354 *
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1360 *
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1364 *
1365 * So, to summarize...
1366 *
1367 * - We need "local" memory, canonical example being
1368 * a small SRAM on a discrete controller being the
1369 * only memory that the controller can read ...
1370 * (a) "normal" kernel memory is no good, and
1371 * (b) there's not enough to share
1372 *
1373 * - The only *portable* hook for such stuff in the
1374 * DMA framework is dma_declare_coherent_memory()
1375 *
1376 * - So we use that, even though the primary requirement
1377 * is that the memory be "local" (hence addressable
1378 * by that device), not "coherent".
1379 *
1380 */
1381
1382static int hcd_alloc_coherent(struct usb_bus *bus,
1383 gfp_t mem_flags, dma_addr_t *dma_handle,
1384 void **vaddr_handle, size_t size,
1385 enum dma_data_direction dir)
1386{
1387 unsigned char *vaddr;
1388
1389 if (*vaddr_handle == NULL) {
1390 WARN_ON_ONCE(1);
1391 return -EFAULT;
1392 }
1393
1394 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 mem_flags, dma_handle);
1396 if (!vaddr)
1397 return -ENOMEM;
1398
1399 /*
1400 * Store the virtual address of the buffer at the end
1401 * of the allocated dma buffer. The size of the buffer
1402 * may be uneven so use unaligned functions instead
1403 * of just rounding up. It makes sense to optimize for
1404 * memory footprint over access speed since the amount
1405 * of memory available for dma may be limited.
1406 */
1407 put_unaligned((unsigned long)*vaddr_handle,
1408 (unsigned long *)(vaddr + size));
1409
1410 if (dir == DMA_TO_DEVICE)
1411 memcpy(vaddr, *vaddr_handle, size);
1412
1413 *vaddr_handle = vaddr;
1414 return 0;
1415}
1416
1417static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 void **vaddr_handle, size_t size,
1419 enum dma_data_direction dir)
1420{
1421 unsigned char *vaddr = *vaddr_handle;
1422
1423 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424
1425 if (dir == DMA_FROM_DEVICE)
1426 memcpy(vaddr, *vaddr_handle, size);
1427
1428 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429
1430 *vaddr_handle = vaddr;
1431 *dma_handle = 0;
1432}
1433
1434void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435{
1436 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 dma_unmap_single(hcd->self.controller,
1439 urb->setup_dma,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 hcd_free_coherent(urb->dev->bus,
1444 &urb->setup_dma,
1445 (void **) &urb->setup_packet,
1446 sizeof(struct usb_ctrlrequest),
1447 DMA_TO_DEVICE);
1448
1449 /* Make it safe to call this routine more than once */
1450 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451}
1452EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453
1454static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455{
1456 if (hcd->driver->unmap_urb_for_dma)
1457 hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 else
1459 usb_hcd_unmap_urb_for_dma(hcd, urb);
1460}
1461
1462void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463{
1464 enum dma_data_direction dir;
1465
1466 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467
1468 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 (urb->transfer_flags & URB_DMA_MAP_SG))
1471 dma_unmap_sg(hcd->self.controller,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 dma_unmap_page(hcd->self.controller,
1478 urb->transfer_dma,
1479 urb->transfer_buffer_length,
1480 dir);
1481 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 dma_unmap_single(hcd->self.controller,
1484 urb->transfer_dma,
1485 urb->transfer_buffer_length,
1486 dir);
1487 else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 hcd_free_coherent(urb->dev->bus,
1489 &urb->transfer_dma,
1490 &urb->transfer_buffer,
1491 urb->transfer_buffer_length,
1492 dir);
1493
1494 /* Make it safe to call this routine more than once */
1495 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497}
1498EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499
1500static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 gfp_t mem_flags)
1502{
1503 if (hcd->driver->map_urb_for_dma)
1504 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 else
1506 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507}
1508
1509int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 gfp_t mem_flags)
1511{
1512 enum dma_data_direction dir;
1513 int ret = 0;
1514
1515 /* Map the URB's buffers for DMA access.
1516 * Lower level HCD code should use *_dma exclusively,
1517 * unless it uses pio or talks to another transport,
1518 * or uses the provided scatter gather list for bulk.
1519 */
1520
1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 if (hcd->self.uses_pio_for_control)
1523 return ret;
1524 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 urb->setup_dma = dma_map_single(
1526 hcd->self.controller,
1527 urb->setup_packet,
1528 sizeof(struct usb_ctrlrequest),
1529 DMA_TO_DEVICE);
1530 if (dma_mapping_error(hcd->self.controller,
1531 urb->setup_dma))
1532 return -EAGAIN;
1533 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535 ret = hcd_alloc_coherent(
1536 urb->dev->bus, mem_flags,
1537 &urb->setup_dma,
1538 (void **)&urb->setup_packet,
1539 sizeof(struct usb_ctrlrequest),
1540 DMA_TO_DEVICE);
1541 if (ret)
1542 return ret;
1543 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1544 }
1545 }
1546
1547 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548 if (urb->transfer_buffer_length != 0
1549 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551 if (urb->num_sgs) {
1552 int n;
1553
1554 /* We don't support sg for isoc transfers ! */
1555 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556 WARN_ON(1);
1557 return -EINVAL;
1558 }
1559
1560 n = dma_map_sg(
1561 hcd->self.controller,
1562 urb->sg,
1563 urb->num_sgs,
1564 dir);
1565 if (n <= 0)
1566 ret = -EAGAIN;
1567 else
1568 urb->transfer_flags |= URB_DMA_MAP_SG;
1569 urb->num_mapped_sgs = n;
1570 if (n != urb->num_sgs)
1571 urb->transfer_flags |=
1572 URB_DMA_SG_COMBINED;
1573 } else if (urb->sg) {
1574 struct scatterlist *sg = urb->sg;
1575 urb->transfer_dma = dma_map_page(
1576 hcd->self.controller,
1577 sg_page(sg),
1578 sg->offset,
1579 urb->transfer_buffer_length,
1580 dir);
1581 if (dma_mapping_error(hcd->self.controller,
1582 urb->transfer_dma))
1583 ret = -EAGAIN;
1584 else
1585 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587 WARN_ONCE(1, "transfer buffer not dma capable\n");
1588 ret = -EAGAIN;
1589 } else {
1590 urb->transfer_dma = dma_map_single(
1591 hcd->self.controller,
1592 urb->transfer_buffer,
1593 urb->transfer_buffer_length,
1594 dir);
1595 if (dma_mapping_error(hcd->self.controller,
1596 urb->transfer_dma))
1597 ret = -EAGAIN;
1598 else
1599 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600 }
1601 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602 ret = hcd_alloc_coherent(
1603 urb->dev->bus, mem_flags,
1604 &urb->transfer_dma,
1605 &urb->transfer_buffer,
1606 urb->transfer_buffer_length,
1607 dir);
1608 if (ret == 0)
1609 urb->transfer_flags |= URB_MAP_LOCAL;
1610 }
1611 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612 URB_SETUP_MAP_LOCAL)))
1613 usb_hcd_unmap_urb_for_dma(hcd, urb);
1614 }
1615 return ret;
1616}
1617EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618
1619/*-------------------------------------------------------------------------*/
1620
1621/* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1625 */
1626int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627{
1628 int status;
1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1630
1631 /* increment urb's reference count as part of giving it to the HCD
1632 * (which will control it). HCD guarantees that it either returns
1633 * an error or calls giveback(), but not both.
1634 */
1635 usb_get_urb(urb);
1636 atomic_inc(&urb->use_count);
1637 atomic_inc(&urb->dev->urbnum);
1638 usbmon_urb_submit(&hcd->self, urb);
1639
1640 /* NOTE requirements on root-hub callers (usbfs and the hub
1641 * driver, for now): URBs' urb->transfer_buffer must be
1642 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 * they could clobber root hub response data. Also, control
1644 * URBs must be submitted in process context with interrupts
1645 * enabled.
1646 */
1647
1648 if (is_root_hub(urb->dev)) {
1649 status = rh_urb_enqueue(hcd, urb);
1650 } else {
1651 status = map_urb_for_dma(hcd, urb, mem_flags);
1652 if (likely(status == 0)) {
1653 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654 if (unlikely(status))
1655 unmap_urb_for_dma(hcd, urb);
1656 }
1657 }
1658
1659 if (unlikely(status)) {
1660 usbmon_urb_submit_error(&hcd->self, urb, status);
1661 urb->hcpriv = NULL;
1662 INIT_LIST_HEAD(&urb->urb_list);
1663 atomic_dec(&urb->use_count);
1664 atomic_dec(&urb->dev->urbnum);
1665 if (atomic_read(&urb->reject))
1666 wake_up(&usb_kill_urb_queue);
1667 usb_put_urb(urb);
1668 }
1669 return status;
1670}
1671
1672/*-------------------------------------------------------------------------*/
1673
1674/* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical. we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1678 */
1679static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680{
1681 int value;
1682
1683 if (is_root_hub(urb->dev))
1684 value = usb_rh_urb_dequeue(hcd, urb, status);
1685 else {
1686
1687 /* The only reason an HCD might fail this call is if
1688 * it has not yet fully queued the urb to begin with.
1689 * Such failures should be harmless. */
1690 value = hcd->driver->urb_dequeue(hcd, urb, status);
1691 }
1692 return value;
1693}
1694
1695/*
1696 * called in any context
1697 *
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1700 */
1701int usb_hcd_unlink_urb (struct urb *urb, int status)
1702{
1703 struct usb_hcd *hcd;
1704 struct usb_device *udev = urb->dev;
1705 int retval = -EIDRM;
1706 unsigned long flags;
1707
1708 /* Prevent the device and bus from going away while
1709 * the unlink is carried out. If they are already gone
1710 * then urb->use_count must be 0, since disconnected
1711 * devices can't have any active URBs.
1712 */
1713 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714 if (atomic_read(&urb->use_count) > 0) {
1715 retval = 0;
1716 usb_get_dev(udev);
1717 }
1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719 if (retval == 0) {
1720 hcd = bus_to_hcd(urb->dev->bus);
1721 retval = unlink1(hcd, urb, status);
1722 if (retval == 0)
1723 retval = -EINPROGRESS;
1724 else if (retval != -EIDRM && retval != -EBUSY)
1725 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1726 urb, retval);
1727 usb_put_dev(udev);
1728 }
1729 return retval;
1730}
1731
1732/*-------------------------------------------------------------------------*/
1733
1734static void __usb_hcd_giveback_urb(struct urb *urb)
1735{
1736 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737 struct usb_anchor *anchor = urb->anchor;
1738 int status = urb->unlinked;
1739 unsigned long flags;
1740
1741 urb->hcpriv = NULL;
1742 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743 urb->actual_length < urb->transfer_buffer_length &&
1744 !status))
1745 status = -EREMOTEIO;
1746
1747 unmap_urb_for_dma(hcd, urb);
1748 usbmon_urb_complete(&hcd->self, urb, status);
1749 usb_anchor_suspend_wakeups(anchor);
1750 usb_unanchor_urb(urb);
1751 if (likely(status == 0))
1752 usb_led_activity(USB_LED_EVENT_HOST);
1753
1754 /* pass ownership to the completion handler */
1755 urb->status = status;
1756
1757 /*
1758 * We disable local IRQs here avoid possible deadlock because
1759 * drivers may call spin_lock() to hold lock which might be
1760 * acquired in one hard interrupt handler.
1761 *
1762 * The local_irq_save()/local_irq_restore() around complete()
1763 * will be removed if current USB drivers have been cleaned up
1764 * and no one may trigger the above deadlock situation when
1765 * running complete() in tasklet.
1766 */
1767 local_irq_save(flags);
1768 urb->complete(urb);
1769 local_irq_restore(flags);
1770
1771 usb_anchor_resume_wakeups(anchor);
1772 atomic_dec(&urb->use_count);
1773 if (unlikely(atomic_read(&urb->reject)))
1774 wake_up(&usb_kill_urb_queue);
1775 usb_put_urb(urb);
1776}
1777
1778static void usb_giveback_urb_bh(unsigned long param)
1779{
1780 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781 struct list_head local_list;
1782
1783 spin_lock_irq(&bh->lock);
1784 bh->running = true;
1785 restart:
1786 list_replace_init(&bh->head, &local_list);
1787 spin_unlock_irq(&bh->lock);
1788
1789 while (!list_empty(&local_list)) {
1790 struct urb *urb;
1791
1792 urb = list_entry(local_list.next, struct urb, urb_list);
1793 list_del_init(&urb->urb_list);
1794 bh->completing_ep = urb->ep;
1795 __usb_hcd_giveback_urb(urb);
1796 bh->completing_ep = NULL;
1797 }
1798
1799 /* check if there are new URBs to giveback */
1800 spin_lock_irq(&bh->lock);
1801 if (!list_empty(&bh->head))
1802 goto restart;
1803 bh->running = false;
1804 spin_unlock_irq(&bh->lock);
1805}
1806
1807/**
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1813 *
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function. The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv). It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1819 *
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked. Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1823 */
1824void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825{
1826 struct giveback_urb_bh *bh;
1827 bool running, high_prio_bh;
1828
1829 /* pass status to tasklet via unlinked */
1830 if (likely(!urb->unlinked))
1831 urb->unlinked = status;
1832
1833 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834 __usb_hcd_giveback_urb(urb);
1835 return;
1836 }
1837
1838 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839 bh = &hcd->high_prio_bh;
1840 high_prio_bh = true;
1841 } else {
1842 bh = &hcd->low_prio_bh;
1843 high_prio_bh = false;
1844 }
1845
1846 spin_lock(&bh->lock);
1847 list_add_tail(&urb->urb_list, &bh->head);
1848 running = bh->running;
1849 spin_unlock(&bh->lock);
1850
1851 if (running)
1852 ;
1853 else if (high_prio_bh)
1854 tasklet_hi_schedule(&bh->bh);
1855 else
1856 tasklet_schedule(&bh->bh);
1857}
1858EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859
1860/*-------------------------------------------------------------------------*/
1861
1862/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely. The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1865 */
1866void usb_hcd_flush_endpoint(struct usb_device *udev,
1867 struct usb_host_endpoint *ep)
1868{
1869 struct usb_hcd *hcd;
1870 struct urb *urb;
1871
1872 if (!ep)
1873 return;
1874 might_sleep();
1875 hcd = bus_to_hcd(udev->bus);
1876
1877 /* No more submits can occur */
1878 spin_lock_irq(&hcd_urb_list_lock);
1879rescan:
1880 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1881 int is_in;
1882
1883 if (urb->unlinked)
1884 continue;
1885 usb_get_urb (urb);
1886 is_in = usb_urb_dir_in(urb);
1887 spin_unlock(&hcd_urb_list_lock);
1888
1889 /* kick hcd */
1890 unlink1(hcd, urb, -ESHUTDOWN);
1891 dev_dbg (hcd->self.controller,
1892 "shutdown urb %p ep%d%s%s\n",
1893 urb, usb_endpoint_num(&ep->desc),
1894 is_in ? "in" : "out",
1895 ({ char *s;
1896
1897 switch (usb_endpoint_type(&ep->desc)) {
1898 case USB_ENDPOINT_XFER_CONTROL:
1899 s = ""; break;
1900 case USB_ENDPOINT_XFER_BULK:
1901 s = "-bulk"; break;
1902 case USB_ENDPOINT_XFER_INT:
1903 s = "-intr"; break;
1904 default:
1905 s = "-iso"; break;
1906 };
1907 s;
1908 }));
1909 usb_put_urb (urb);
1910
1911 /* list contents may have changed */
1912 spin_lock(&hcd_urb_list_lock);
1913 goto rescan;
1914 }
1915 spin_unlock_irq(&hcd_urb_list_lock);
1916
1917 /* Wait until the endpoint queue is completely empty */
1918 while (!list_empty (&ep->urb_list)) {
1919 spin_lock_irq(&hcd_urb_list_lock);
1920
1921 /* The list may have changed while we acquired the spinlock */
1922 urb = NULL;
1923 if (!list_empty (&ep->urb_list)) {
1924 urb = list_entry (ep->urb_list.prev, struct urb,
1925 urb_list);
1926 usb_get_urb (urb);
1927 }
1928 spin_unlock_irq(&hcd_urb_list_lock);
1929
1930 if (urb) {
1931 usb_kill_urb (urb);
1932 usb_put_urb (urb);
1933 }
1934 }
1935}
1936
1937/**
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 * the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1944 *
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1947 *
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1950 *
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1954 *
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1957 */
1958int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959 struct usb_host_config *new_config,
1960 struct usb_host_interface *cur_alt,
1961 struct usb_host_interface *new_alt)
1962{
1963 int num_intfs, i, j;
1964 struct usb_host_interface *alt = NULL;
1965 int ret = 0;
1966 struct usb_hcd *hcd;
1967 struct usb_host_endpoint *ep;
1968
1969 hcd = bus_to_hcd(udev->bus);
1970 if (!hcd->driver->check_bandwidth)
1971 return 0;
1972
1973 /* Configuration is being removed - set configuration 0 */
1974 if (!new_config && !cur_alt) {
1975 for (i = 1; i < 16; ++i) {
1976 ep = udev->ep_out[i];
1977 if (ep)
1978 hcd->driver->drop_endpoint(hcd, udev, ep);
1979 ep = udev->ep_in[i];
1980 if (ep)
1981 hcd->driver->drop_endpoint(hcd, udev, ep);
1982 }
1983 hcd->driver->check_bandwidth(hcd, udev);
1984 return 0;
1985 }
1986 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1987 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 * of the bus. There will always be bandwidth for endpoint 0, so it's
1989 * ok to exclude it.
1990 */
1991 if (new_config) {
1992 num_intfs = new_config->desc.bNumInterfaces;
1993 /* Remove endpoints (except endpoint 0, which is always on the
1994 * schedule) from the old config from the schedule
1995 */
1996 for (i = 1; i < 16; ++i) {
1997 ep = udev->ep_out[i];
1998 if (ep) {
1999 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000 if (ret < 0)
2001 goto reset;
2002 }
2003 ep = udev->ep_in[i];
2004 if (ep) {
2005 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006 if (ret < 0)
2007 goto reset;
2008 }
2009 }
2010 for (i = 0; i < num_intfs; ++i) {
2011 struct usb_host_interface *first_alt;
2012 int iface_num;
2013
2014 first_alt = &new_config->intf_cache[i]->altsetting[0];
2015 iface_num = first_alt->desc.bInterfaceNumber;
2016 /* Set up endpoints for alternate interface setting 0 */
2017 alt = usb_find_alt_setting(new_config, iface_num, 0);
2018 if (!alt)
2019 /* No alt setting 0? Pick the first setting. */
2020 alt = first_alt;
2021
2022 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024 if (ret < 0)
2025 goto reset;
2026 }
2027 }
2028 }
2029 if (cur_alt && new_alt) {
2030 struct usb_interface *iface = usb_ifnum_to_if(udev,
2031 cur_alt->desc.bInterfaceNumber);
2032
2033 if (!iface)
2034 return -EINVAL;
2035 if (iface->resetting_device) {
2036 /*
2037 * The USB core just reset the device, so the xHCI host
2038 * and the device will think alt setting 0 is installed.
2039 * However, the USB core will pass in the alternate
2040 * setting installed before the reset as cur_alt. Dig
2041 * out the alternate setting 0 structure, or the first
2042 * alternate setting if a broken device doesn't have alt
2043 * setting 0.
2044 */
2045 cur_alt = usb_altnum_to_altsetting(iface, 0);
2046 if (!cur_alt)
2047 cur_alt = &iface->altsetting[0];
2048 }
2049
2050 /* Drop all the endpoints in the current alt setting */
2051 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052 ret = hcd->driver->drop_endpoint(hcd, udev,
2053 &cur_alt->endpoint[i]);
2054 if (ret < 0)
2055 goto reset;
2056 }
2057 /* Add all the endpoints in the new alt setting */
2058 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059 ret = hcd->driver->add_endpoint(hcd, udev,
2060 &new_alt->endpoint[i]);
2061 if (ret < 0)
2062 goto reset;
2063 }
2064 }
2065 ret = hcd->driver->check_bandwidth(hcd, udev);
2066reset:
2067 if (ret < 0)
2068 hcd->driver->reset_bandwidth(hcd, udev);
2069 return ret;
2070}
2071
2072/* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2074 * have been called previously. Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2076 *
2077 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2079 */
2080void usb_hcd_disable_endpoint(struct usb_device *udev,
2081 struct usb_host_endpoint *ep)
2082{
2083 struct usb_hcd *hcd;
2084
2085 might_sleep();
2086 hcd = bus_to_hcd(udev->bus);
2087 if (hcd->driver->endpoint_disable)
2088 hcd->driver->endpoint_disable(hcd, ep);
2089}
2090
2091/**
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep: the endpoint to reset.
2095 *
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2098 */
2099void usb_hcd_reset_endpoint(struct usb_device *udev,
2100 struct usb_host_endpoint *ep)
2101{
2102 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103
2104 if (hcd->driver->endpoint_reset)
2105 hcd->driver->endpoint_reset(hcd, ep);
2106 else {
2107 int epnum = usb_endpoint_num(&ep->desc);
2108 int is_out = usb_endpoint_dir_out(&ep->desc);
2109 int is_control = usb_endpoint_xfer_control(&ep->desc);
2110
2111 usb_settoggle(udev, epnum, is_out, 0);
2112 if (is_control)
2113 usb_settoggle(udev, epnum, !is_out, 0);
2114 }
2115}
2116
2117/**
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface: alternate setting that includes all endpoints.
2120 * @eps: array of endpoints that need streams.
2121 * @num_eps: number of endpoints in the array.
2122 * @num_streams: number of streams to allocate.
2123 * @mem_flags: flags hcd should use to allocate memory.
2124 *
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2128 *
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2131 */
2132int usb_alloc_streams(struct usb_interface *interface,
2133 struct usb_host_endpoint **eps, unsigned int num_eps,
2134 unsigned int num_streams, gfp_t mem_flags)
2135{
2136 struct usb_hcd *hcd;
2137 struct usb_device *dev;
2138 int i, ret;
2139
2140 dev = interface_to_usbdev(interface);
2141 hcd = bus_to_hcd(dev->bus);
2142 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143 return -EINVAL;
2144 if (dev->speed < USB_SPEED_SUPER)
2145 return -EINVAL;
2146 if (dev->state < USB_STATE_CONFIGURED)
2147 return -ENODEV;
2148
2149 for (i = 0; i < num_eps; i++) {
2150 /* Streams only apply to bulk endpoints. */
2151 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152 return -EINVAL;
2153 /* Re-alloc is not allowed */
2154 if (eps[i]->streams)
2155 return -EINVAL;
2156 }
2157
2158 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159 num_streams, mem_flags);
2160 if (ret < 0)
2161 return ret;
2162
2163 for (i = 0; i < num_eps; i++)
2164 eps[i]->streams = ret;
2165
2166 return ret;
2167}
2168EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169
2170/**
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface: alternate setting that includes all endpoints.
2173 * @eps: array of endpoints to remove streams from.
2174 * @num_eps: number of endpoints in the array.
2175 * @mem_flags: flags hcd should use to allocate memory.
2176 *
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2179 *
2180 * Return: 0 on success. On failure, a negative error code.
2181 */
2182int usb_free_streams(struct usb_interface *interface,
2183 struct usb_host_endpoint **eps, unsigned int num_eps,
2184 gfp_t mem_flags)
2185{
2186 struct usb_hcd *hcd;
2187 struct usb_device *dev;
2188 int i, ret;
2189
2190 dev = interface_to_usbdev(interface);
2191 hcd = bus_to_hcd(dev->bus);
2192 if (dev->speed < USB_SPEED_SUPER)
2193 return -EINVAL;
2194
2195 /* Double-free is not allowed */
2196 for (i = 0; i < num_eps; i++)
2197 if (!eps[i] || !eps[i]->streams)
2198 return -EINVAL;
2199
2200 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201 if (ret < 0)
2202 return ret;
2203
2204 for (i = 0; i < num_eps; i++)
2205 eps[i]->streams = 0;
2206
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(usb_free_streams);
2210
2211/* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2215 */
2216void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217{
2218 spin_lock_irq(&hcd_urb_unlink_lock);
2219 spin_unlock_irq(&hcd_urb_unlink_lock);
2220}
2221
2222/*-------------------------------------------------------------------------*/
2223
2224/* called in any context */
2225int usb_hcd_get_frame_number (struct usb_device *udev)
2226{
2227 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2228
2229 if (!HCD_RH_RUNNING(hcd))
2230 return -ESHUTDOWN;
2231 return hcd->driver->get_frame_number (hcd);
2232}
2233
2234/*-------------------------------------------------------------------------*/
2235
2236#ifdef CONFIG_PM
2237
2238int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239{
2240 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2241 int status;
2242 int old_state = hcd->state;
2243
2244 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246 rhdev->do_remote_wakeup);
2247 if (HCD_DEAD(hcd)) {
2248 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249 return 0;
2250 }
2251
2252 if (!hcd->driver->bus_suspend) {
2253 status = -ENOENT;
2254 } else {
2255 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256 hcd->state = HC_STATE_QUIESCING;
2257 status = hcd->driver->bus_suspend(hcd);
2258 }
2259 if (status == 0) {
2260 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261 hcd->state = HC_STATE_SUSPENDED;
2262
2263 /* Did we race with a root-hub wakeup event? */
2264 if (rhdev->do_remote_wakeup) {
2265 char buffer[6];
2266
2267 status = hcd->driver->hub_status_data(hcd, buffer);
2268 if (status != 0) {
2269 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271 status = -EBUSY;
2272 }
2273 }
2274 } else {
2275 spin_lock_irq(&hcd_root_hub_lock);
2276 if (!HCD_DEAD(hcd)) {
2277 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278 hcd->state = old_state;
2279 }
2280 spin_unlock_irq(&hcd_root_hub_lock);
2281 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282 "suspend", status);
2283 }
2284 return status;
2285}
2286
2287int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288{
2289 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2290 int status;
2291 int old_state = hcd->state;
2292
2293 dev_dbg(&rhdev->dev, "usb %sresume\n",
2294 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295 if (HCD_DEAD(hcd)) {
2296 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 return 0;
2298 }
2299 if (!hcd->driver->bus_resume)
2300 return -ENOENT;
2301 if (HCD_RH_RUNNING(hcd))
2302 return 0;
2303
2304 hcd->state = HC_STATE_RESUMING;
2305 status = hcd->driver->bus_resume(hcd);
2306 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307 if (status == 0) {
2308 struct usb_device *udev;
2309 int port1;
2310
2311 spin_lock_irq(&hcd_root_hub_lock);
2312 if (!HCD_DEAD(hcd)) {
2313 usb_set_device_state(rhdev, rhdev->actconfig
2314 ? USB_STATE_CONFIGURED
2315 : USB_STATE_ADDRESS);
2316 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317 hcd->state = HC_STATE_RUNNING;
2318 }
2319 spin_unlock_irq(&hcd_root_hub_lock);
2320
2321 /*
2322 * Check whether any of the enabled ports on the root hub are
2323 * unsuspended. If they are then a TRSMRCY delay is needed
2324 * (this is what the USB-2 spec calls a "global resume").
2325 * Otherwise we can skip the delay.
2326 */
2327 usb_hub_for_each_child(rhdev, port1, udev) {
2328 if (udev->state != USB_STATE_NOTATTACHED &&
2329 !udev->port_is_suspended) {
2330 usleep_range(10000, 11000); /* TRSMRCY */
2331 break;
2332 }
2333 }
2334 } else {
2335 hcd->state = old_state;
2336 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337 "resume", status);
2338 if (status != -ESHUTDOWN)
2339 usb_hc_died(hcd);
2340 }
2341 return status;
2342}
2343
2344/* Workqueue routine for root-hub remote wakeup */
2345static void hcd_resume_work(struct work_struct *work)
2346{
2347 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348 struct usb_device *udev = hcd->self.root_hub;
2349
2350 usb_remote_wakeup(udev);
2351}
2352
2353/**
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2356 *
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received. The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2361 */
2362void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363{
2364 unsigned long flags;
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 if (hcd->rh_registered) {
2368 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369 queue_work(pm_wq, &hcd->wakeup_work);
2370 }
2371 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372}
2373EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374
2375#endif /* CONFIG_PM */
2376
2377/*-------------------------------------------------------------------------*/
2378
2379#ifdef CONFIG_USB_OTG
2380
2381/**
2382 * usb_bus_start_enum - start immediate enumeration (for OTG)
2383 * @bus: the bus (must use hcd framework)
2384 * @port_num: 1-based number of port; usually bus->otg_port
2385 * Context: in_interrupt()
2386 *
2387 * Starts enumeration, with an immediate reset followed later by
2388 * hub_wq identifying and possibly configuring the device.
2389 * This is needed by OTG controller drivers, where it helps meet
2390 * HNP protocol timing requirements for starting a port reset.
2391 *
2392 * Return: 0 if successful.
2393 */
2394int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395{
2396 struct usb_hcd *hcd;
2397 int status = -EOPNOTSUPP;
2398
2399 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400 * boards with root hubs hooked up to internal devices (instead of
2401 * just the OTG port) may need more attention to resetting...
2402 */
2403 hcd = bus_to_hcd(bus);
2404 if (port_num && hcd->driver->start_port_reset)
2405 status = hcd->driver->start_port_reset(hcd, port_num);
2406
2407 /* allocate hub_wq shortly after (first) root port reset finishes;
2408 * it may issue others, until at least 50 msecs have passed.
2409 */
2410 if (status == 0)
2411 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412 return status;
2413}
2414EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415
2416#endif
2417
2418/*-------------------------------------------------------------------------*/
2419
2420/**
2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422 * @irq: the IRQ being raised
2423 * @__hcd: pointer to the HCD whose IRQ is being signaled
2424 *
2425 * If the controller isn't HALTed, calls the driver's irq handler.
2426 * Checks whether the controller is now dead.
2427 *
2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429 */
2430irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431{
2432 struct usb_hcd *hcd = __hcd;
2433 irqreturn_t rc;
2434
2435 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436 rc = IRQ_NONE;
2437 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438 rc = IRQ_NONE;
2439 else
2440 rc = IRQ_HANDLED;
2441
2442 return rc;
2443}
2444EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445
2446/*-------------------------------------------------------------------------*/
2447
2448/**
2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450 * @hcd: pointer to the HCD representing the controller
2451 *
2452 * This is called by bus glue to report a USB host controller that died
2453 * while operations may still have been pending. It's called automatically
2454 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455 *
2456 * Only call this function with the primary HCD.
2457 */
2458void usb_hc_died (struct usb_hcd *hcd)
2459{
2460 unsigned long flags;
2461
2462 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463
2464 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467 if (hcd->rh_registered) {
2468 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469
2470 /* make hub_wq clean up old urbs and devices */
2471 usb_set_device_state (hcd->self.root_hub,
2472 USB_STATE_NOTATTACHED);
2473 usb_kick_hub_wq(hcd->self.root_hub);
2474 }
2475 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476 hcd = hcd->shared_hcd;
2477 if (hcd->rh_registered) {
2478 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2479
2480 /* make hub_wq clean up old urbs and devices */
2481 usb_set_device_state(hcd->self.root_hub,
2482 USB_STATE_NOTATTACHED);
2483 usb_kick_hub_wq(hcd->self.root_hub);
2484 }
2485 }
2486 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487 /* Make sure that the other roothub is also deallocated. */
2488}
2489EXPORT_SYMBOL_GPL (usb_hc_died);
2490
2491/*-------------------------------------------------------------------------*/
2492
2493static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2494{
2495
2496 spin_lock_init(&bh->lock);
2497 INIT_LIST_HEAD(&bh->head);
2498 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2499}
2500
2501/**
2502 * usb_create_shared_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507 * PCI device. Only allocate certain resources for the primary HCD
2508 * Context: !in_interrupt()
2509 *
2510 * Allocate a struct usb_hcd, with extra space at the end for the
2511 * HC driver's private data. Initialize the generic members of the
2512 * hcd structure.
2513 *
2514 * Return: On success, a pointer to the created and initialized HCD structure.
2515 * On failure (e.g. if memory is unavailable), %NULL.
2516 */
2517struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518 struct device *dev, const char *bus_name,
2519 struct usb_hcd *primary_hcd)
2520{
2521 struct usb_hcd *hcd;
2522
2523 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2524 if (!hcd)
2525 return NULL;
2526 if (primary_hcd == NULL) {
2527 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528 GFP_KERNEL);
2529 if (!hcd->address0_mutex) {
2530 kfree(hcd);
2531 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532 return NULL;
2533 }
2534 mutex_init(hcd->address0_mutex);
2535 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536 GFP_KERNEL);
2537 if (!hcd->bandwidth_mutex) {
2538 kfree(hcd);
2539 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2540 return NULL;
2541 }
2542 mutex_init(hcd->bandwidth_mutex);
2543 dev_set_drvdata(dev, hcd);
2544 } else {
2545 mutex_lock(&usb_port_peer_mutex);
2546 hcd->address0_mutex = primary_hcd->address0_mutex;
2547 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2548 hcd->primary_hcd = primary_hcd;
2549 primary_hcd->primary_hcd = primary_hcd;
2550 hcd->shared_hcd = primary_hcd;
2551 primary_hcd->shared_hcd = hcd;
2552 mutex_unlock(&usb_port_peer_mutex);
2553 }
2554
2555 kref_init(&hcd->kref);
2556
2557 usb_bus_init(&hcd->self);
2558 hcd->self.controller = dev;
2559 hcd->self.bus_name = bus_name;
2560 hcd->self.uses_dma = (dev->dma_mask != NULL);
2561
2562 init_timer(&hcd->rh_timer);
2563 hcd->rh_timer.function = rh_timer_func;
2564 hcd->rh_timer.data = (unsigned long) hcd;
2565#ifdef CONFIG_PM
2566 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2567#endif
2568
2569 hcd->driver = driver;
2570 hcd->speed = driver->flags & HCD_MASK;
2571 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2572 "USB Host Controller";
2573 return hcd;
2574}
2575EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2576
2577/**
2578 * usb_create_hcd - create and initialize an HCD structure
2579 * @driver: HC driver that will use this hcd
2580 * @dev: device for this HC, stored in hcd->self.controller
2581 * @bus_name: value to store in hcd->self.bus_name
2582 * Context: !in_interrupt()
2583 *
2584 * Allocate a struct usb_hcd, with extra space at the end for the
2585 * HC driver's private data. Initialize the generic members of the
2586 * hcd structure.
2587 *
2588 * Return: On success, a pointer to the created and initialized HCD
2589 * structure. On failure (e.g. if memory is unavailable), %NULL.
2590 */
2591struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2592 struct device *dev, const char *bus_name)
2593{
2594 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2595}
2596EXPORT_SYMBOL_GPL(usb_create_hcd);
2597
2598/*
2599 * Roothubs that share one PCI device must also share the bandwidth mutex.
2600 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2601 * deallocated.
2602 *
2603 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2604 * freed. When hcd_release() is called for either hcd in a peer set,
2605 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2606 */
2607static void hcd_release(struct kref *kref)
2608{
2609 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2610
2611 mutex_lock(&usb_port_peer_mutex);
2612 if (hcd->shared_hcd) {
2613 struct usb_hcd *peer = hcd->shared_hcd;
2614
2615 peer->shared_hcd = NULL;
2616 peer->primary_hcd = NULL;
2617 } else {
2618 kfree(hcd->address0_mutex);
2619 kfree(hcd->bandwidth_mutex);
2620 }
2621 mutex_unlock(&usb_port_peer_mutex);
2622 kfree(hcd);
2623}
2624
2625struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2626{
2627 if (hcd)
2628 kref_get (&hcd->kref);
2629 return hcd;
2630}
2631EXPORT_SYMBOL_GPL(usb_get_hcd);
2632
2633void usb_put_hcd (struct usb_hcd *hcd)
2634{
2635 if (hcd)
2636 kref_put (&hcd->kref, hcd_release);
2637}
2638EXPORT_SYMBOL_GPL(usb_put_hcd);
2639
2640int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2641{
2642 if (!hcd->primary_hcd)
2643 return 1;
2644 return hcd == hcd->primary_hcd;
2645}
2646EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2647
2648int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2649{
2650 if (!hcd->driver->find_raw_port_number)
2651 return port1;
2652
2653 return hcd->driver->find_raw_port_number(hcd, port1);
2654}
2655
2656static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2657 unsigned int irqnum, unsigned long irqflags)
2658{
2659 int retval;
2660
2661 if (hcd->driver->irq) {
2662
2663 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2664 hcd->driver->description, hcd->self.busnum);
2665 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2666 hcd->irq_descr, hcd);
2667 if (retval != 0) {
2668 dev_err(hcd->self.controller,
2669 "request interrupt %d failed\n",
2670 irqnum);
2671 return retval;
2672 }
2673 hcd->irq = irqnum;
2674 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2675 (hcd->driver->flags & HCD_MEMORY) ?
2676 "io mem" : "io base",
2677 (unsigned long long)hcd->rsrc_start);
2678 } else {
2679 hcd->irq = 0;
2680 if (hcd->rsrc_start)
2681 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2682 (hcd->driver->flags & HCD_MEMORY) ?
2683 "io mem" : "io base",
2684 (unsigned long long)hcd->rsrc_start);
2685 }
2686 return 0;
2687}
2688
2689/*
2690 * Before we free this root hub, flush in-flight peering attempts
2691 * and disable peer lookups
2692 */
2693static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2694{
2695 struct usb_device *rhdev;
2696
2697 mutex_lock(&usb_port_peer_mutex);
2698 rhdev = hcd->self.root_hub;
2699 hcd->self.root_hub = NULL;
2700 mutex_unlock(&usb_port_peer_mutex);
2701 usb_put_dev(rhdev);
2702}
2703
2704/**
2705 * usb_add_hcd - finish generic HCD structure initialization and register
2706 * @hcd: the usb_hcd structure to initialize
2707 * @irqnum: Interrupt line to allocate
2708 * @irqflags: Interrupt type flags
2709 *
2710 * Finish the remaining parts of generic HCD initialization: allocate the
2711 * buffers of consistent memory, register the bus, request the IRQ line,
2712 * and call the driver's reset() and start() routines.
2713 */
2714int usb_add_hcd(struct usb_hcd *hcd,
2715 unsigned int irqnum, unsigned long irqflags)
2716{
2717 int retval;
2718 struct usb_device *rhdev;
2719
2720 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2721 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2722
2723 if (IS_ERR(phy)) {
2724 retval = PTR_ERR(phy);
2725 if (retval == -EPROBE_DEFER)
2726 return retval;
2727 } else {
2728 retval = usb_phy_init(phy);
2729 if (retval) {
2730 usb_put_phy(phy);
2731 return retval;
2732 }
2733 hcd->usb_phy = phy;
2734 hcd->remove_phy = 1;
2735 }
2736 }
2737
2738 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2739 struct phy *phy = phy_get(hcd->self.controller, "usb");
2740
2741 if (IS_ERR(phy)) {
2742 retval = PTR_ERR(phy);
2743 if (retval == -EPROBE_DEFER)
2744 goto err_phy;
2745 } else {
2746 retval = phy_init(phy);
2747 if (retval) {
2748 phy_put(phy);
2749 goto err_phy;
2750 }
2751 retval = phy_power_on(phy);
2752 if (retval) {
2753 phy_exit(phy);
2754 phy_put(phy);
2755 goto err_phy;
2756 }
2757 hcd->phy = phy;
2758 hcd->remove_phy = 1;
2759 }
2760 }
2761
2762 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2763
2764 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2765 if (authorized_default < 0 || authorized_default > 1) {
2766 if (hcd->wireless)
2767 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768 else
2769 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770 } else {
2771 if (authorized_default)
2772 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773 else
2774 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2775 }
2776 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2777
2778 /* per default all interfaces are authorized */
2779 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2780
2781 /* HC is in reset state, but accessible. Now do the one-time init,
2782 * bottom up so that hcds can customize the root hubs before hub_wq
2783 * starts talking to them. (Note, bus id is assigned early too.)
2784 */
2785 retval = hcd_buffer_create(hcd);
2786 if (retval != 0) {
2787 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2788 goto err_create_buf;
2789 }
2790
2791 retval = usb_register_bus(&hcd->self);
2792 if (retval < 0)
2793 goto err_register_bus;
2794
2795 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2796 if (rhdev == NULL) {
2797 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2798 retval = -ENOMEM;
2799 goto err_allocate_root_hub;
2800 }
2801 mutex_lock(&usb_port_peer_mutex);
2802 hcd->self.root_hub = rhdev;
2803 mutex_unlock(&usb_port_peer_mutex);
2804
2805 switch (hcd->speed) {
2806 case HCD_USB11:
2807 rhdev->speed = USB_SPEED_FULL;
2808 break;
2809 case HCD_USB2:
2810 rhdev->speed = USB_SPEED_HIGH;
2811 break;
2812 case HCD_USB25:
2813 rhdev->speed = USB_SPEED_WIRELESS;
2814 break;
2815 case HCD_USB3:
2816 rhdev->speed = USB_SPEED_SUPER;
2817 break;
2818 case HCD_USB31:
2819 rhdev->speed = USB_SPEED_SUPER_PLUS;
2820 break;
2821 default:
2822 retval = -EINVAL;
2823 goto err_set_rh_speed;
2824 }
2825
2826 /* wakeup flag init defaults to "everything works" for root hubs,
2827 * but drivers can override it in reset() if needed, along with
2828 * recording the overall controller's system wakeup capability.
2829 */
2830 device_set_wakeup_capable(&rhdev->dev, 1);
2831
2832 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2833 * registered. But since the controller can die at any time,
2834 * let's initialize the flag before touching the hardware.
2835 */
2836 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2837
2838 /* "reset" is misnamed; its role is now one-time init. the controller
2839 * should already have been reset (and boot firmware kicked off etc).
2840 */
2841 if (hcd->driver->reset) {
2842 retval = hcd->driver->reset(hcd);
2843 if (retval < 0) {
2844 dev_err(hcd->self.controller, "can't setup: %d\n",
2845 retval);
2846 goto err_hcd_driver_setup;
2847 }
2848 }
2849 hcd->rh_pollable = 1;
2850
2851 /* NOTE: root hub and controller capabilities may not be the same */
2852 if (device_can_wakeup(hcd->self.controller)
2853 && device_can_wakeup(&hcd->self.root_hub->dev))
2854 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2855
2856 /* initialize tasklets */
2857 init_giveback_urb_bh(&hcd->high_prio_bh);
2858 init_giveback_urb_bh(&hcd->low_prio_bh);
2859
2860 /* enable irqs just before we start the controller,
2861 * if the BIOS provides legacy PCI irqs.
2862 */
2863 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2864 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2865 if (retval)
2866 goto err_request_irq;
2867 }
2868
2869 hcd->state = HC_STATE_RUNNING;
2870 retval = hcd->driver->start(hcd);
2871 if (retval < 0) {
2872 dev_err(hcd->self.controller, "startup error %d\n", retval);
2873 goto err_hcd_driver_start;
2874 }
2875
2876 /* starting here, usbcore will pay attention to this root hub */
2877 retval = register_root_hub(hcd);
2878 if (retval != 0)
2879 goto err_register_root_hub;
2880
2881 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2882 if (retval < 0) {
2883 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2884 retval);
2885 goto error_create_attr_group;
2886 }
2887 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2888 usb_hcd_poll_rh_status(hcd);
2889
2890 return retval;
2891
2892error_create_attr_group:
2893 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2894 if (HC_IS_RUNNING(hcd->state))
2895 hcd->state = HC_STATE_QUIESCING;
2896 spin_lock_irq(&hcd_root_hub_lock);
2897 hcd->rh_registered = 0;
2898 spin_unlock_irq(&hcd_root_hub_lock);
2899
2900#ifdef CONFIG_PM
2901 cancel_work_sync(&hcd->wakeup_work);
2902#endif
2903 mutex_lock(&usb_bus_idr_lock);
2904 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2905 mutex_unlock(&usb_bus_idr_lock);
2906err_register_root_hub:
2907 hcd->rh_pollable = 0;
2908 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2909 del_timer_sync(&hcd->rh_timer);
2910 hcd->driver->stop(hcd);
2911 hcd->state = HC_STATE_HALT;
2912 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913 del_timer_sync(&hcd->rh_timer);
2914err_hcd_driver_start:
2915 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2916 free_irq(irqnum, hcd);
2917err_request_irq:
2918err_hcd_driver_setup:
2919err_set_rh_speed:
2920 usb_put_invalidate_rhdev(hcd);
2921err_allocate_root_hub:
2922 usb_deregister_bus(&hcd->self);
2923err_register_bus:
2924 hcd_buffer_destroy(hcd);
2925err_create_buf:
2926 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2927 phy_power_off(hcd->phy);
2928 phy_exit(hcd->phy);
2929 phy_put(hcd->phy);
2930 hcd->phy = NULL;
2931 }
2932err_phy:
2933 if (hcd->remove_phy && hcd->usb_phy) {
2934 usb_phy_shutdown(hcd->usb_phy);
2935 usb_put_phy(hcd->usb_phy);
2936 hcd->usb_phy = NULL;
2937 }
2938 return retval;
2939}
2940EXPORT_SYMBOL_GPL(usb_add_hcd);
2941
2942/**
2943 * usb_remove_hcd - shutdown processing for generic HCDs
2944 * @hcd: the usb_hcd structure to remove
2945 * Context: !in_interrupt()
2946 *
2947 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2948 * invoking the HCD's stop() method.
2949 */
2950void usb_remove_hcd(struct usb_hcd *hcd)
2951{
2952 struct usb_device *rhdev = hcd->self.root_hub;
2953
2954 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2955
2956 usb_get_dev(rhdev);
2957 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2958
2959 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2960 if (HC_IS_RUNNING (hcd->state))
2961 hcd->state = HC_STATE_QUIESCING;
2962
2963 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2964 spin_lock_irq (&hcd_root_hub_lock);
2965 hcd->rh_registered = 0;
2966 spin_unlock_irq (&hcd_root_hub_lock);
2967
2968#ifdef CONFIG_PM
2969 cancel_work_sync(&hcd->wakeup_work);
2970#endif
2971
2972 mutex_lock(&usb_bus_idr_lock);
2973 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2974 mutex_unlock(&usb_bus_idr_lock);
2975
2976 /*
2977 * tasklet_kill() isn't needed here because:
2978 * - driver's disconnect() called from usb_disconnect() should
2979 * make sure its URBs are completed during the disconnect()
2980 * callback
2981 *
2982 * - it is too late to run complete() here since driver may have
2983 * been removed already now
2984 */
2985
2986 /* Prevent any more root-hub status calls from the timer.
2987 * The HCD might still restart the timer (if a port status change
2988 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2989 * the hub_status_data() callback.
2990 */
2991 hcd->rh_pollable = 0;
2992 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2993 del_timer_sync(&hcd->rh_timer);
2994
2995 hcd->driver->stop(hcd);
2996 hcd->state = HC_STATE_HALT;
2997
2998 /* In case the HCD restarted the timer, stop it again. */
2999 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000 del_timer_sync(&hcd->rh_timer);
3001
3002 if (usb_hcd_is_primary_hcd(hcd)) {
3003 if (hcd->irq > 0)
3004 free_irq(hcd->irq, hcd);
3005 }
3006
3007 usb_deregister_bus(&hcd->self);
3008 hcd_buffer_destroy(hcd);
3009
3010 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3011 phy_power_off(hcd->phy);
3012 phy_exit(hcd->phy);
3013 phy_put(hcd->phy);
3014 hcd->phy = NULL;
3015 }
3016 if (hcd->remove_phy && hcd->usb_phy) {
3017 usb_phy_shutdown(hcd->usb_phy);
3018 usb_put_phy(hcd->usb_phy);
3019 hcd->usb_phy = NULL;
3020 }
3021
3022 usb_put_invalidate_rhdev(hcd);
3023}
3024EXPORT_SYMBOL_GPL(usb_remove_hcd);
3025
3026void
3027usb_hcd_platform_shutdown(struct platform_device *dev)
3028{
3029 struct usb_hcd *hcd = platform_get_drvdata(dev);
3030
3031 if (hcd->driver->shutdown)
3032 hcd->driver->shutdown(hcd);
3033}
3034EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3035
3036/*-------------------------------------------------------------------------*/
3037
3038#if IS_ENABLED(CONFIG_USB_MON)
3039
3040const struct usb_mon_operations *mon_ops;
3041
3042/*
3043 * The registration is unlocked.
3044 * We do it this way because we do not want to lock in hot paths.
3045 *
3046 * Notice that the code is minimally error-proof. Because usbmon needs
3047 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3048 */
3049
3050int usb_mon_register(const struct usb_mon_operations *ops)
3051{
3052
3053 if (mon_ops)
3054 return -EBUSY;
3055
3056 mon_ops = ops;
3057 mb();
3058 return 0;
3059}
3060EXPORT_SYMBOL_GPL (usb_mon_register);
3061
3062void usb_mon_deregister (void)
3063{
3064
3065 if (mon_ops == NULL) {
3066 printk(KERN_ERR "USB: monitor was not registered\n");
3067 return;
3068 }
3069 mon_ops = NULL;
3070 mb();
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_deregister);
3073
3074#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */