Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS 64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115#define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157};
158
159/* usb 2.0 root hub device descriptor */
160static const u8 usb2_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178};
179
180/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
181
182/* usb 1.1 root hub device descriptor */
183static const u8 usb11_rh_dev_descriptor[18] = {
184 0x12, /* __u8 bLength; */
185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
186 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
187
188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
189 0x00, /* __u8 bDeviceSubClass; */
190 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
192
193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
194 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
196
197 0x03, /* __u8 iManufacturer; */
198 0x02, /* __u8 iProduct; */
199 0x01, /* __u8 iSerialNumber; */
200 0x01 /* __u8 bNumConfigurations; */
201};
202
203
204/*-------------------------------------------------------------------------*/
205
206/* Configuration descriptors for our root hubs */
207
208static const u8 fs_rh_config_descriptor[] = {
209
210 /* one configuration */
211 0x09, /* __u8 bLength; */
212 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
213 0x19, 0x00, /* __le16 wTotalLength; */
214 0x01, /* __u8 bNumInterfaces; (1) */
215 0x01, /* __u8 bConfigurationValue; */
216 0x00, /* __u8 iConfiguration; */
217 0xc0, /* __u8 bmAttributes;
218 Bit 7: must be set,
219 6: Self-powered,
220 5: Remote wakeup,
221 4..0: resvd */
222 0x00, /* __u8 MaxPower; */
223
224 /* USB 1.1:
225 * USB 2.0, single TT organization (mandatory):
226 * one interface, protocol 0
227 *
228 * USB 2.0, multiple TT organization (optional):
229 * two interfaces, protocols 1 (like single TT)
230 * and 2 (multiple TT mode) ... config is
231 * sometimes settable
232 * NOT IMPLEMENTED
233 */
234
235 /* one interface */
236 0x09, /* __u8 if_bLength; */
237 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
238 0x00, /* __u8 if_bInterfaceNumber; */
239 0x00, /* __u8 if_bAlternateSetting; */
240 0x01, /* __u8 if_bNumEndpoints; */
241 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
242 0x00, /* __u8 if_bInterfaceSubClass; */
243 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
244 0x00, /* __u8 if_iInterface; */
245
246 /* one endpoint (status change endpoint) */
247 0x07, /* __u8 ep_bLength; */
248 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
249 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
250 0x03, /* __u8 ep_bmAttributes; Interrupt */
251 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
252 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
253};
254
255static const u8 hs_rh_config_descriptor[] = {
256
257 /* one configuration */
258 0x09, /* __u8 bLength; */
259 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
260 0x19, 0x00, /* __le16 wTotalLength; */
261 0x01, /* __u8 bNumInterfaces; (1) */
262 0x01, /* __u8 bConfigurationValue; */
263 0x00, /* __u8 iConfiguration; */
264 0xc0, /* __u8 bmAttributes;
265 Bit 7: must be set,
266 6: Self-powered,
267 5: Remote wakeup,
268 4..0: resvd */
269 0x00, /* __u8 MaxPower; */
270
271 /* USB 1.1:
272 * USB 2.0, single TT organization (mandatory):
273 * one interface, protocol 0
274 *
275 * USB 2.0, multiple TT organization (optional):
276 * two interfaces, protocols 1 (like single TT)
277 * and 2 (multiple TT mode) ... config is
278 * sometimes settable
279 * NOT IMPLEMENTED
280 */
281
282 /* one interface */
283 0x09, /* __u8 if_bLength; */
284 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
285 0x00, /* __u8 if_bInterfaceNumber; */
286 0x00, /* __u8 if_bAlternateSetting; */
287 0x01, /* __u8 if_bNumEndpoints; */
288 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
289 0x00, /* __u8 if_bInterfaceSubClass; */
290 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
291 0x00, /* __u8 if_iInterface; */
292
293 /* one endpoint (status change endpoint) */
294 0x07, /* __u8 ep_bLength; */
295 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
296 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
297 0x03, /* __u8 ep_bmAttributes; Interrupt */
298 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
299 * see hub.c:hub_configure() for details. */
300 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
301 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
302};
303
304static const u8 ss_rh_config_descriptor[] = {
305 /* one configuration */
306 0x09, /* __u8 bLength; */
307 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
308 0x1f, 0x00, /* __le16 wTotalLength; */
309 0x01, /* __u8 bNumInterfaces; (1) */
310 0x01, /* __u8 bConfigurationValue; */
311 0x00, /* __u8 iConfiguration; */
312 0xc0, /* __u8 bmAttributes;
313 Bit 7: must be set,
314 6: Self-powered,
315 5: Remote wakeup,
316 4..0: resvd */
317 0x00, /* __u8 MaxPower; */
318
319 /* one interface */
320 0x09, /* __u8 if_bLength; */
321 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
322 0x00, /* __u8 if_bInterfaceNumber; */
323 0x00, /* __u8 if_bAlternateSetting; */
324 0x01, /* __u8 if_bNumEndpoints; */
325 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
326 0x00, /* __u8 if_bInterfaceSubClass; */
327 0x00, /* __u8 if_bInterfaceProtocol; */
328 0x00, /* __u8 if_iInterface; */
329
330 /* one endpoint (status change endpoint) */
331 0x07, /* __u8 ep_bLength; */
332 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
333 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
334 0x03, /* __u8 ep_bmAttributes; Interrupt */
335 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
336 * see hub.c:hub_configure() for details. */
337 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
338 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
339
340 /* one SuperSpeed endpoint companion descriptor */
341 0x06, /* __u8 ss_bLength */
342 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
343 /* Companion */
344 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
345 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
346 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
347};
348
349/* authorized_default behaviour:
350 * -1 is authorized for all devices (leftover from wireless USB)
351 * 0 is unauthorized for all devices
352 * 1 is authorized for all devices
353 * 2 is authorized for internal devices
354 */
355#define USB_AUTHORIZE_WIRED -1
356#define USB_AUTHORIZE_NONE 0
357#define USB_AUTHORIZE_ALL 1
358#define USB_AUTHORIZE_INTERNAL 2
359
360static int authorized_default = USB_AUTHORIZE_WIRED;
361module_param(authorized_default, int, S_IRUGO|S_IWUSR);
362MODULE_PARM_DESC(authorized_default,
363 "Default USB device authorization: 0 is not authorized, 1 is "
364 "authorized, 2 is authorized for internal devices, -1 is "
365 "authorized (default, same as 1)");
366/*-------------------------------------------------------------------------*/
367
368/**
369 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
370 * @s: Null-terminated ASCII (actually ISO-8859-1) string
371 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
372 * @len: Length (in bytes; may be odd) of descriptor buffer.
373 *
374 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
375 * whichever is less.
376 *
377 * Note:
378 * USB String descriptors can contain at most 126 characters; input
379 * strings longer than that are truncated.
380 */
381static unsigned
382ascii2desc(char const *s, u8 *buf, unsigned len)
383{
384 unsigned n, t = 2 + 2*strlen(s);
385
386 if (t > 254)
387 t = 254; /* Longest possible UTF string descriptor */
388 if (len > t)
389 len = t;
390
391 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
392
393 n = len;
394 while (n--) {
395 *buf++ = t;
396 if (!n--)
397 break;
398 *buf++ = t >> 8;
399 t = (unsigned char)*s++;
400 }
401 return len;
402}
403
404/**
405 * rh_string() - provides string descriptors for root hub
406 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
407 * @hcd: the host controller for this root hub
408 * @data: buffer for output packet
409 * @len: length of the provided buffer
410 *
411 * Produces either a manufacturer, product or serial number string for the
412 * virtual root hub device.
413 *
414 * Return: The number of bytes filled in: the length of the descriptor or
415 * of the provided buffer, whichever is less.
416 */
417static unsigned
418rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
419{
420 char buf[100];
421 char const *s;
422 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
423
424 /* language ids */
425 switch (id) {
426 case 0:
427 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
428 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
429 if (len > 4)
430 len = 4;
431 memcpy(data, langids, len);
432 return len;
433 case 1:
434 /* Serial number */
435 s = hcd->self.bus_name;
436 break;
437 case 2:
438 /* Product name */
439 s = hcd->product_desc;
440 break;
441 case 3:
442 /* Manufacturer */
443 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
444 init_utsname()->release, hcd->driver->description);
445 s = buf;
446 break;
447 default:
448 /* Can't happen; caller guarantees it */
449 return 0;
450 }
451
452 return ascii2desc(s, data, len);
453}
454
455
456/* Root hub control transfers execute synchronously */
457static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
458{
459 struct usb_ctrlrequest *cmd;
460 u16 typeReq, wValue, wIndex, wLength;
461 u8 *ubuf = urb->transfer_buffer;
462 unsigned len = 0;
463 int status;
464 u8 patch_wakeup = 0;
465 u8 patch_protocol = 0;
466 u16 tbuf_size;
467 u8 *tbuf = NULL;
468 const u8 *bufp;
469
470 might_sleep();
471
472 spin_lock_irq(&hcd_root_hub_lock);
473 status = usb_hcd_link_urb_to_ep(hcd, urb);
474 spin_unlock_irq(&hcd_root_hub_lock);
475 if (status)
476 return status;
477 urb->hcpriv = hcd; /* Indicate it's queued */
478
479 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
480 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
481 wValue = le16_to_cpu (cmd->wValue);
482 wIndex = le16_to_cpu (cmd->wIndex);
483 wLength = le16_to_cpu (cmd->wLength);
484
485 if (wLength > urb->transfer_buffer_length)
486 goto error;
487
488 /*
489 * tbuf should be at least as big as the
490 * USB hub descriptor.
491 */
492 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
493 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
494 if (!tbuf) {
495 status = -ENOMEM;
496 goto err_alloc;
497 }
498
499 bufp = tbuf;
500
501
502 urb->actual_length = 0;
503 switch (typeReq) {
504
505 /* DEVICE REQUESTS */
506
507 /* The root hub's remote wakeup enable bit is implemented using
508 * driver model wakeup flags. If this system supports wakeup
509 * through USB, userspace may change the default "allow wakeup"
510 * policy through sysfs or these calls.
511 *
512 * Most root hubs support wakeup from downstream devices, for
513 * runtime power management (disabling USB clocks and reducing
514 * VBUS power usage). However, not all of them do so; silicon,
515 * board, and BIOS bugs here are not uncommon, so these can't
516 * be treated quite like external hubs.
517 *
518 * Likewise, not all root hubs will pass wakeup events upstream,
519 * to wake up the whole system. So don't assume root hub and
520 * controller capabilities are identical.
521 */
522
523 case DeviceRequest | USB_REQ_GET_STATUS:
524 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
525 << USB_DEVICE_REMOTE_WAKEUP)
526 | (1 << USB_DEVICE_SELF_POWERED);
527 tbuf[1] = 0;
528 len = 2;
529 break;
530 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
531 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
532 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
533 else
534 goto error;
535 break;
536 case DeviceOutRequest | USB_REQ_SET_FEATURE:
537 if (device_can_wakeup(&hcd->self.root_hub->dev)
538 && wValue == USB_DEVICE_REMOTE_WAKEUP)
539 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
540 else
541 goto error;
542 break;
543 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
544 tbuf[0] = 1;
545 len = 1;
546 fallthrough;
547 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
548 break;
549 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
550 switch (wValue & 0xff00) {
551 case USB_DT_DEVICE << 8:
552 switch (hcd->speed) {
553 case HCD_USB32:
554 case HCD_USB31:
555 bufp = usb31_rh_dev_descriptor;
556 break;
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB2:
561 bufp = usb2_rh_dev_descriptor;
562 break;
563 case HCD_USB11:
564 bufp = usb11_rh_dev_descriptor;
565 break;
566 default:
567 goto error;
568 }
569 len = 18;
570 if (hcd->has_tt)
571 patch_protocol = 1;
572 break;
573 case USB_DT_CONFIG << 8:
574 switch (hcd->speed) {
575 case HCD_USB32:
576 case HCD_USB31:
577 case HCD_USB3:
578 bufp = ss_rh_config_descriptor;
579 len = sizeof ss_rh_config_descriptor;
580 break;
581 case HCD_USB2:
582 bufp = hs_rh_config_descriptor;
583 len = sizeof hs_rh_config_descriptor;
584 break;
585 case HCD_USB11:
586 bufp = fs_rh_config_descriptor;
587 len = sizeof fs_rh_config_descriptor;
588 break;
589 default:
590 goto error;
591 }
592 if (device_can_wakeup(&hcd->self.root_hub->dev))
593 patch_wakeup = 1;
594 break;
595 case USB_DT_STRING << 8:
596 if ((wValue & 0xff) < 4)
597 urb->actual_length = rh_string(wValue & 0xff,
598 hcd, ubuf, wLength);
599 else /* unsupported IDs --> "protocol stall" */
600 goto error;
601 break;
602 case USB_DT_BOS << 8:
603 goto nongeneric;
604 default:
605 goto error;
606 }
607 break;
608 case DeviceRequest | USB_REQ_GET_INTERFACE:
609 tbuf[0] = 0;
610 len = 1;
611 fallthrough;
612 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
613 break;
614 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
615 /* wValue == urb->dev->devaddr */
616 dev_dbg (hcd->self.controller, "root hub device address %d\n",
617 wValue);
618 break;
619
620 /* INTERFACE REQUESTS (no defined feature/status flags) */
621
622 /* ENDPOINT REQUESTS */
623
624 case EndpointRequest | USB_REQ_GET_STATUS:
625 /* ENDPOINT_HALT flag */
626 tbuf[0] = 0;
627 tbuf[1] = 0;
628 len = 2;
629 fallthrough;
630 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
631 case EndpointOutRequest | USB_REQ_SET_FEATURE:
632 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
633 break;
634
635 /* CLASS REQUESTS (and errors) */
636
637 default:
638nongeneric:
639 /* non-generic request */
640 switch (typeReq) {
641 case GetHubStatus:
642 len = 4;
643 break;
644 case GetPortStatus:
645 if (wValue == HUB_PORT_STATUS)
646 len = 4;
647 else
648 /* other port status types return 8 bytes */
649 len = 8;
650 break;
651 case GetHubDescriptor:
652 len = sizeof (struct usb_hub_descriptor);
653 break;
654 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
655 /* len is returned by hub_control */
656 break;
657 }
658 status = hcd->driver->hub_control (hcd,
659 typeReq, wValue, wIndex,
660 tbuf, wLength);
661
662 if (typeReq == GetHubDescriptor)
663 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
664 (struct usb_hub_descriptor *)tbuf);
665 break;
666error:
667 /* "protocol stall" on error */
668 status = -EPIPE;
669 }
670
671 if (status < 0) {
672 len = 0;
673 if (status != -EPIPE) {
674 dev_dbg (hcd->self.controller,
675 "CTRL: TypeReq=0x%x val=0x%x "
676 "idx=0x%x len=%d ==> %d\n",
677 typeReq, wValue, wIndex,
678 wLength, status);
679 }
680 } else if (status > 0) {
681 /* hub_control may return the length of data copied. */
682 len = status;
683 status = 0;
684 }
685 if (len) {
686 if (urb->transfer_buffer_length < len)
687 len = urb->transfer_buffer_length;
688 urb->actual_length = len;
689 /* always USB_DIR_IN, toward host */
690 memcpy (ubuf, bufp, len);
691
692 /* report whether RH hardware supports remote wakeup */
693 if (patch_wakeup &&
694 len > offsetof (struct usb_config_descriptor,
695 bmAttributes))
696 ((struct usb_config_descriptor *)ubuf)->bmAttributes
697 |= USB_CONFIG_ATT_WAKEUP;
698
699 /* report whether RH hardware has an integrated TT */
700 if (patch_protocol &&
701 len > offsetof(struct usb_device_descriptor,
702 bDeviceProtocol))
703 ((struct usb_device_descriptor *) ubuf)->
704 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
705 }
706
707 kfree(tbuf);
708 err_alloc:
709
710 /* any errors get returned through the urb completion */
711 spin_lock_irq(&hcd_root_hub_lock);
712 usb_hcd_unlink_urb_from_ep(hcd, urb);
713 usb_hcd_giveback_urb(hcd, urb, status);
714 spin_unlock_irq(&hcd_root_hub_lock);
715 return 0;
716}
717
718/*-------------------------------------------------------------------------*/
719
720/*
721 * Root Hub interrupt transfers are polled using a timer if the
722 * driver requests it; otherwise the driver is responsible for
723 * calling usb_hcd_poll_rh_status() when an event occurs.
724 *
725 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
726 */
727void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728{
729 struct urb *urb;
730 int length;
731 int status;
732 unsigned long flags;
733 char buffer[6]; /* Any root hubs with > 31 ports? */
734
735 if (unlikely(!hcd->rh_pollable))
736 return;
737 if (!hcd->uses_new_polling && !hcd->status_urb)
738 return;
739
740 length = hcd->driver->hub_status_data(hcd, buffer);
741 if (length > 0) {
742
743 /* try to complete the status urb */
744 spin_lock_irqsave(&hcd_root_hub_lock, flags);
745 urb = hcd->status_urb;
746 if (urb) {
747 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
748 hcd->status_urb = NULL;
749 if (urb->transfer_buffer_length >= length) {
750 status = 0;
751 } else {
752 status = -EOVERFLOW;
753 length = urb->transfer_buffer_length;
754 }
755 urb->actual_length = length;
756 memcpy(urb->transfer_buffer, buffer, length);
757
758 usb_hcd_unlink_urb_from_ep(hcd, urb);
759 usb_hcd_giveback_urb(hcd, urb, status);
760 } else {
761 length = 0;
762 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
763 }
764 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
765 }
766
767 /* The USB 2.0 spec says 256 ms. This is close enough and won't
768 * exceed that limit if HZ is 100. The math is more clunky than
769 * maybe expected, this is to make sure that all timers for USB devices
770 * fire at the same time to give the CPU a break in between */
771 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
772 (length == 0 && hcd->status_urb != NULL))
773 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
774}
775EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
776
777/* timer callback */
778static void rh_timer_func (struct timer_list *t)
779{
780 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
781
782 usb_hcd_poll_rh_status(_hcd);
783}
784
785/*-------------------------------------------------------------------------*/
786
787static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
788{
789 int retval;
790 unsigned long flags;
791 unsigned len = 1 + (urb->dev->maxchild / 8);
792
793 spin_lock_irqsave (&hcd_root_hub_lock, flags);
794 if (hcd->status_urb || urb->transfer_buffer_length < len) {
795 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
796 retval = -EINVAL;
797 goto done;
798 }
799
800 retval = usb_hcd_link_urb_to_ep(hcd, urb);
801 if (retval)
802 goto done;
803
804 hcd->status_urb = urb;
805 urb->hcpriv = hcd; /* indicate it's queued */
806 if (!hcd->uses_new_polling)
807 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
808
809 /* If a status change has already occurred, report it ASAP */
810 else if (HCD_POLL_PENDING(hcd))
811 mod_timer(&hcd->rh_timer, jiffies);
812 retval = 0;
813 done:
814 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
815 return retval;
816}
817
818static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
819{
820 if (usb_endpoint_xfer_int(&urb->ep->desc))
821 return rh_queue_status (hcd, urb);
822 if (usb_endpoint_xfer_control(&urb->ep->desc))
823 return rh_call_control (hcd, urb);
824 return -EINVAL;
825}
826
827/*-------------------------------------------------------------------------*/
828
829/* Unlinks of root-hub control URBs are legal, but they don't do anything
830 * since these URBs always execute synchronously.
831 */
832static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
833{
834 unsigned long flags;
835 int rc;
836
837 spin_lock_irqsave(&hcd_root_hub_lock, flags);
838 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
839 if (rc)
840 goto done;
841
842 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
843 ; /* Do nothing */
844
845 } else { /* Status URB */
846 if (!hcd->uses_new_polling)
847 del_timer (&hcd->rh_timer);
848 if (urb == hcd->status_urb) {
849 hcd->status_urb = NULL;
850 usb_hcd_unlink_urb_from_ep(hcd, urb);
851 usb_hcd_giveback_urb(hcd, urb, status);
852 }
853 }
854 done:
855 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
856 return rc;
857}
858
859
860/*-------------------------------------------------------------------------*/
861
862/**
863 * usb_bus_init - shared initialization code
864 * @bus: the bus structure being initialized
865 *
866 * This code is used to initialize a usb_bus structure, memory for which is
867 * separately managed.
868 */
869static void usb_bus_init (struct usb_bus *bus)
870{
871 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
872
873 bus->devnum_next = 1;
874
875 bus->root_hub = NULL;
876 bus->busnum = -1;
877 bus->bandwidth_allocated = 0;
878 bus->bandwidth_int_reqs = 0;
879 bus->bandwidth_isoc_reqs = 0;
880 mutex_init(&bus->devnum_next_mutex);
881}
882
883/*-------------------------------------------------------------------------*/
884
885/**
886 * usb_register_bus - registers the USB host controller with the usb core
887 * @bus: pointer to the bus to register
888 *
889 * Context: task context, might sleep.
890 *
891 * Assigns a bus number, and links the controller into usbcore data
892 * structures so that it can be seen by scanning the bus list.
893 *
894 * Return: 0 if successful. A negative error code otherwise.
895 */
896static int usb_register_bus(struct usb_bus *bus)
897{
898 int result = -E2BIG;
899 int busnum;
900
901 mutex_lock(&usb_bus_idr_lock);
902 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
903 if (busnum < 0) {
904 pr_err("%s: failed to get bus number\n", usbcore_name);
905 goto error_find_busnum;
906 }
907 bus->busnum = busnum;
908 mutex_unlock(&usb_bus_idr_lock);
909
910 usb_notify_add_bus(bus);
911
912 dev_info (bus->controller, "new USB bus registered, assigned bus "
913 "number %d\n", bus->busnum);
914 return 0;
915
916error_find_busnum:
917 mutex_unlock(&usb_bus_idr_lock);
918 return result;
919}
920
921/**
922 * usb_deregister_bus - deregisters the USB host controller
923 * @bus: pointer to the bus to deregister
924 *
925 * Context: task context, might sleep.
926 *
927 * Recycles the bus number, and unlinks the controller from usbcore data
928 * structures so that it won't be seen by scanning the bus list.
929 */
930static void usb_deregister_bus (struct usb_bus *bus)
931{
932 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
933
934 /*
935 * NOTE: make sure that all the devices are removed by the
936 * controller code, as well as having it call this when cleaning
937 * itself up
938 */
939 mutex_lock(&usb_bus_idr_lock);
940 idr_remove(&usb_bus_idr, bus->busnum);
941 mutex_unlock(&usb_bus_idr_lock);
942
943 usb_notify_remove_bus(bus);
944}
945
946/**
947 * register_root_hub - called by usb_add_hcd() to register a root hub
948 * @hcd: host controller for this root hub
949 *
950 * This function registers the root hub with the USB subsystem. It sets up
951 * the device properly in the device tree and then calls usb_new_device()
952 * to register the usb device. It also assigns the root hub's USB address
953 * (always 1).
954 *
955 * Return: 0 if successful. A negative error code otherwise.
956 */
957static int register_root_hub(struct usb_hcd *hcd)
958{
959 struct device *parent_dev = hcd->self.controller;
960 struct usb_device *usb_dev = hcd->self.root_hub;
961 struct usb_device_descriptor *descr;
962 const int devnum = 1;
963 int retval;
964
965 usb_dev->devnum = devnum;
966 usb_dev->bus->devnum_next = devnum + 1;
967 set_bit (devnum, usb_dev->bus->devmap.devicemap);
968 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
969
970 mutex_lock(&usb_bus_idr_lock);
971
972 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
973 descr = usb_get_device_descriptor(usb_dev);
974 if (IS_ERR(descr)) {
975 retval = PTR_ERR(descr);
976 mutex_unlock(&usb_bus_idr_lock);
977 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
978 dev_name(&usb_dev->dev), retval);
979 return retval;
980 }
981 usb_dev->descriptor = *descr;
982 kfree(descr);
983
984 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
985 retval = usb_get_bos_descriptor(usb_dev);
986 if (!retval) {
987 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
988 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
989 mutex_unlock(&usb_bus_idr_lock);
990 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
991 dev_name(&usb_dev->dev), retval);
992 return retval;
993 }
994 }
995
996 retval = usb_new_device (usb_dev);
997 if (retval) {
998 dev_err (parent_dev, "can't register root hub for %s, %d\n",
999 dev_name(&usb_dev->dev), retval);
1000 } else {
1001 spin_lock_irq (&hcd_root_hub_lock);
1002 hcd->rh_registered = 1;
1003 spin_unlock_irq (&hcd_root_hub_lock);
1004
1005 /* Did the HC die before the root hub was registered? */
1006 if (HCD_DEAD(hcd))
1007 usb_hc_died (hcd); /* This time clean up */
1008 }
1009 mutex_unlock(&usb_bus_idr_lock);
1010
1011 return retval;
1012}
1013
1014/*
1015 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1016 * @bus: the bus which the root hub belongs to
1017 * @portnum: the port which is being resumed
1018 *
1019 * HCDs should call this function when they know that a resume signal is
1020 * being sent to a root-hub port. The root hub will be prevented from
1021 * going into autosuspend until usb_hcd_end_port_resume() is called.
1022 *
1023 * The bus's private lock must be held by the caller.
1024 */
1025void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1026{
1027 unsigned bit = 1 << portnum;
1028
1029 if (!(bus->resuming_ports & bit)) {
1030 bus->resuming_ports |= bit;
1031 pm_runtime_get_noresume(&bus->root_hub->dev);
1032 }
1033}
1034EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1035
1036/*
1037 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1038 * @bus: the bus which the root hub belongs to
1039 * @portnum: the port which is being resumed
1040 *
1041 * HCDs should call this function when they know that a resume signal has
1042 * stopped being sent to a root-hub port. The root hub will be allowed to
1043 * autosuspend again.
1044 *
1045 * The bus's private lock must be held by the caller.
1046 */
1047void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1048{
1049 unsigned bit = 1 << portnum;
1050
1051 if (bus->resuming_ports & bit) {
1052 bus->resuming_ports &= ~bit;
1053 pm_runtime_put_noidle(&bus->root_hub->dev);
1054 }
1055}
1056EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1057
1058/*-------------------------------------------------------------------------*/
1059
1060/**
1061 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1062 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1063 * @is_input: true iff the transaction sends data to the host
1064 * @isoc: true for isochronous transactions, false for interrupt ones
1065 * @bytecount: how many bytes in the transaction.
1066 *
1067 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1068 *
1069 * Note:
1070 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1071 * scheduled in software, this function is only used for such scheduling.
1072 */
1073long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1074{
1075 unsigned long tmp;
1076
1077 switch (speed) {
1078 case USB_SPEED_LOW: /* INTR only */
1079 if (is_input) {
1080 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1081 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1082 } else {
1083 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1084 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1085 }
1086 case USB_SPEED_FULL: /* ISOC or INTR */
1087 if (isoc) {
1088 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1089 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1090 } else {
1091 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1092 return 9107L + BW_HOST_DELAY + tmp;
1093 }
1094 case USB_SPEED_HIGH: /* ISOC or INTR */
1095 /* FIXME adjust for input vs output */
1096 if (isoc)
1097 tmp = HS_NSECS_ISO (bytecount);
1098 else
1099 tmp = HS_NSECS (bytecount);
1100 return tmp;
1101 default:
1102 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1103 return -1;
1104 }
1105}
1106EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1107
1108
1109/*-------------------------------------------------------------------------*/
1110
1111/*
1112 * Generic HC operations.
1113 */
1114
1115/*-------------------------------------------------------------------------*/
1116
1117/**
1118 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1119 * @hcd: host controller to which @urb was submitted
1120 * @urb: URB being submitted
1121 *
1122 * Host controller drivers should call this routine in their enqueue()
1123 * method. The HCD's private spinlock must be held and interrupts must
1124 * be disabled. The actions carried out here are required for URB
1125 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1126 *
1127 * Return: 0 for no error, otherwise a negative error code (in which case
1128 * the enqueue() method must fail). If no error occurs but enqueue() fails
1129 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1130 * the private spinlock and returning.
1131 */
1132int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1133{
1134 int rc = 0;
1135
1136 spin_lock(&hcd_urb_list_lock);
1137
1138 /* Check that the URB isn't being killed */
1139 if (unlikely(atomic_read(&urb->reject))) {
1140 rc = -EPERM;
1141 goto done;
1142 }
1143
1144 if (unlikely(!urb->ep->enabled)) {
1145 rc = -ENOENT;
1146 goto done;
1147 }
1148
1149 if (unlikely(!urb->dev->can_submit)) {
1150 rc = -EHOSTUNREACH;
1151 goto done;
1152 }
1153
1154 /*
1155 * Check the host controller's state and add the URB to the
1156 * endpoint's queue.
1157 */
1158 if (HCD_RH_RUNNING(hcd)) {
1159 urb->unlinked = 0;
1160 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1161 } else {
1162 rc = -ESHUTDOWN;
1163 goto done;
1164 }
1165 done:
1166 spin_unlock(&hcd_urb_list_lock);
1167 return rc;
1168}
1169EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1170
1171/**
1172 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1173 * @hcd: host controller to which @urb was submitted
1174 * @urb: URB being checked for unlinkability
1175 * @status: error code to store in @urb if the unlink succeeds
1176 *
1177 * Host controller drivers should call this routine in their dequeue()
1178 * method. The HCD's private spinlock must be held and interrupts must
1179 * be disabled. The actions carried out here are required for making
1180 * sure than an unlink is valid.
1181 *
1182 * Return: 0 for no error, otherwise a negative error code (in which case
1183 * the dequeue() method must fail). The possible error codes are:
1184 *
1185 * -EIDRM: @urb was not submitted or has already completed.
1186 * The completion function may not have been called yet.
1187 *
1188 * -EBUSY: @urb has already been unlinked.
1189 */
1190int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1191 int status)
1192{
1193 struct list_head *tmp;
1194
1195 /* insist the urb is still queued */
1196 list_for_each(tmp, &urb->ep->urb_list) {
1197 if (tmp == &urb->urb_list)
1198 break;
1199 }
1200 if (tmp != &urb->urb_list)
1201 return -EIDRM;
1202
1203 /* Any status except -EINPROGRESS means something already started to
1204 * unlink this URB from the hardware. So there's no more work to do.
1205 */
1206 if (urb->unlinked)
1207 return -EBUSY;
1208 urb->unlinked = status;
1209 return 0;
1210}
1211EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1212
1213/**
1214 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1215 * @hcd: host controller to which @urb was submitted
1216 * @urb: URB being unlinked
1217 *
1218 * Host controller drivers should call this routine before calling
1219 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1220 * interrupts must be disabled. The actions carried out here are required
1221 * for URB completion.
1222 */
1223void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1224{
1225 /* clear all state linking urb to this dev (and hcd) */
1226 spin_lock(&hcd_urb_list_lock);
1227 list_del_init(&urb->urb_list);
1228 spin_unlock(&hcd_urb_list_lock);
1229}
1230EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1231
1232/*
1233 * Some usb host controllers can only perform dma using a small SRAM area,
1234 * or have restrictions on addressable DRAM.
1235 * The usb core itself is however optimized for host controllers that can dma
1236 * using regular system memory - like pci devices doing bus mastering.
1237 *
1238 * To support host controllers with limited dma capabilities we provide dma
1239 * bounce buffers. This feature can be enabled by initializing
1240 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1241 *
1242 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1243 * data for dma using the genalloc API.
1244 *
1245 * So, to summarize...
1246 *
1247 * - We need "local" memory, canonical example being
1248 * a small SRAM on a discrete controller being the
1249 * only memory that the controller can read ...
1250 * (a) "normal" kernel memory is no good, and
1251 * (b) there's not enough to share
1252 *
1253 * - So we use that, even though the primary requirement
1254 * is that the memory be "local" (hence addressable
1255 * by that device), not "coherent".
1256 *
1257 */
1258
1259static int hcd_alloc_coherent(struct usb_bus *bus,
1260 gfp_t mem_flags, dma_addr_t *dma_handle,
1261 void **vaddr_handle, size_t size,
1262 enum dma_data_direction dir)
1263{
1264 unsigned char *vaddr;
1265
1266 if (*vaddr_handle == NULL) {
1267 WARN_ON_ONCE(1);
1268 return -EFAULT;
1269 }
1270
1271 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1272 mem_flags, dma_handle);
1273 if (!vaddr)
1274 return -ENOMEM;
1275
1276 /*
1277 * Store the virtual address of the buffer at the end
1278 * of the allocated dma buffer. The size of the buffer
1279 * may be uneven so use unaligned functions instead
1280 * of just rounding up. It makes sense to optimize for
1281 * memory footprint over access speed since the amount
1282 * of memory available for dma may be limited.
1283 */
1284 put_unaligned((unsigned long)*vaddr_handle,
1285 (unsigned long *)(vaddr + size));
1286
1287 if (dir == DMA_TO_DEVICE)
1288 memcpy(vaddr, *vaddr_handle, size);
1289
1290 *vaddr_handle = vaddr;
1291 return 0;
1292}
1293
1294static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1295 void **vaddr_handle, size_t size,
1296 enum dma_data_direction dir)
1297{
1298 unsigned char *vaddr = *vaddr_handle;
1299
1300 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1301
1302 if (dir == DMA_FROM_DEVICE)
1303 memcpy(vaddr, *vaddr_handle, size);
1304
1305 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1306
1307 *vaddr_handle = vaddr;
1308 *dma_handle = 0;
1309}
1310
1311void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1312{
1313 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1314 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1315 dma_unmap_single(hcd->self.sysdev,
1316 urb->setup_dma,
1317 sizeof(struct usb_ctrlrequest),
1318 DMA_TO_DEVICE);
1319 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1320 hcd_free_coherent(urb->dev->bus,
1321 &urb->setup_dma,
1322 (void **) &urb->setup_packet,
1323 sizeof(struct usb_ctrlrequest),
1324 DMA_TO_DEVICE);
1325
1326 /* Make it safe to call this routine more than once */
1327 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1330
1331static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1332{
1333 if (hcd->driver->unmap_urb_for_dma)
1334 hcd->driver->unmap_urb_for_dma(hcd, urb);
1335 else
1336 usb_hcd_unmap_urb_for_dma(hcd, urb);
1337}
1338
1339void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1340{
1341 enum dma_data_direction dir;
1342
1343 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1344
1345 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1346 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347 (urb->transfer_flags & URB_DMA_MAP_SG))
1348 dma_unmap_sg(hcd->self.sysdev,
1349 urb->sg,
1350 urb->num_sgs,
1351 dir);
1352 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1353 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1354 dma_unmap_page(hcd->self.sysdev,
1355 urb->transfer_dma,
1356 urb->transfer_buffer_length,
1357 dir);
1358 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360 dma_unmap_single(hcd->self.sysdev,
1361 urb->transfer_dma,
1362 urb->transfer_buffer_length,
1363 dir);
1364 else if (urb->transfer_flags & URB_MAP_LOCAL)
1365 hcd_free_coherent(urb->dev->bus,
1366 &urb->transfer_dma,
1367 &urb->transfer_buffer,
1368 urb->transfer_buffer_length,
1369 dir);
1370
1371 /* Make it safe to call this routine more than once */
1372 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1373 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1374}
1375EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1376
1377static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1378 gfp_t mem_flags)
1379{
1380 if (hcd->driver->map_urb_for_dma)
1381 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1382 else
1383 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1384}
1385
1386int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1387 gfp_t mem_flags)
1388{
1389 enum dma_data_direction dir;
1390 int ret = 0;
1391
1392 /* Map the URB's buffers for DMA access.
1393 * Lower level HCD code should use *_dma exclusively,
1394 * unless it uses pio or talks to another transport,
1395 * or uses the provided scatter gather list for bulk.
1396 */
1397
1398 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1399 if (hcd->self.uses_pio_for_control)
1400 return ret;
1401 if (hcd->localmem_pool) {
1402 ret = hcd_alloc_coherent(
1403 urb->dev->bus, mem_flags,
1404 &urb->setup_dma,
1405 (void **)&urb->setup_packet,
1406 sizeof(struct usb_ctrlrequest),
1407 DMA_TO_DEVICE);
1408 if (ret)
1409 return ret;
1410 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1411 } else if (hcd_uses_dma(hcd)) {
1412 if (object_is_on_stack(urb->setup_packet)) {
1413 WARN_ONCE(1, "setup packet is on stack\n");
1414 return -EAGAIN;
1415 }
1416
1417 urb->setup_dma = dma_map_single(
1418 hcd->self.sysdev,
1419 urb->setup_packet,
1420 sizeof(struct usb_ctrlrequest),
1421 DMA_TO_DEVICE);
1422 if (dma_mapping_error(hcd->self.sysdev,
1423 urb->setup_dma))
1424 return -EAGAIN;
1425 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1426 }
1427 }
1428
1429 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1430 if (urb->transfer_buffer_length != 0
1431 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1432 if (hcd->localmem_pool) {
1433 ret = hcd_alloc_coherent(
1434 urb->dev->bus, mem_flags,
1435 &urb->transfer_dma,
1436 &urb->transfer_buffer,
1437 urb->transfer_buffer_length,
1438 dir);
1439 if (ret == 0)
1440 urb->transfer_flags |= URB_MAP_LOCAL;
1441 } else if (hcd_uses_dma(hcd)) {
1442 if (urb->num_sgs) {
1443 int n;
1444
1445 /* We don't support sg for isoc transfers ! */
1446 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1447 WARN_ON(1);
1448 return -EINVAL;
1449 }
1450
1451 n = dma_map_sg(
1452 hcd->self.sysdev,
1453 urb->sg,
1454 urb->num_sgs,
1455 dir);
1456 if (!n)
1457 ret = -EAGAIN;
1458 else
1459 urb->transfer_flags |= URB_DMA_MAP_SG;
1460 urb->num_mapped_sgs = n;
1461 if (n != urb->num_sgs)
1462 urb->transfer_flags |=
1463 URB_DMA_SG_COMBINED;
1464 } else if (urb->sg) {
1465 struct scatterlist *sg = urb->sg;
1466 urb->transfer_dma = dma_map_page(
1467 hcd->self.sysdev,
1468 sg_page(sg),
1469 sg->offset,
1470 urb->transfer_buffer_length,
1471 dir);
1472 if (dma_mapping_error(hcd->self.sysdev,
1473 urb->transfer_dma))
1474 ret = -EAGAIN;
1475 else
1476 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1477 } else if (object_is_on_stack(urb->transfer_buffer)) {
1478 WARN_ONCE(1, "transfer buffer is on stack\n");
1479 ret = -EAGAIN;
1480 } else {
1481 urb->transfer_dma = dma_map_single(
1482 hcd->self.sysdev,
1483 urb->transfer_buffer,
1484 urb->transfer_buffer_length,
1485 dir);
1486 if (dma_mapping_error(hcd->self.sysdev,
1487 urb->transfer_dma))
1488 ret = -EAGAIN;
1489 else
1490 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1491 }
1492 }
1493 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1494 URB_SETUP_MAP_LOCAL)))
1495 usb_hcd_unmap_urb_for_dma(hcd, urb);
1496 }
1497 return ret;
1498}
1499EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1500
1501/*-------------------------------------------------------------------------*/
1502
1503/* may be called in any context with a valid urb->dev usecount
1504 * caller surrenders "ownership" of urb
1505 * expects usb_submit_urb() to have sanity checked and conditioned all
1506 * inputs in the urb
1507 */
1508int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1509{
1510 int status;
1511 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1512
1513 /* increment urb's reference count as part of giving it to the HCD
1514 * (which will control it). HCD guarantees that it either returns
1515 * an error or calls giveback(), but not both.
1516 */
1517 usb_get_urb(urb);
1518 atomic_inc(&urb->use_count);
1519 atomic_inc(&urb->dev->urbnum);
1520 usbmon_urb_submit(&hcd->self, urb);
1521
1522 /* NOTE requirements on root-hub callers (usbfs and the hub
1523 * driver, for now): URBs' urb->transfer_buffer must be
1524 * valid and usb_buffer_{sync,unmap}() not be needed, since
1525 * they could clobber root hub response data. Also, control
1526 * URBs must be submitted in process context with interrupts
1527 * enabled.
1528 */
1529
1530 if (is_root_hub(urb->dev)) {
1531 status = rh_urb_enqueue(hcd, urb);
1532 } else {
1533 status = map_urb_for_dma(hcd, urb, mem_flags);
1534 if (likely(status == 0)) {
1535 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1536 if (unlikely(status))
1537 unmap_urb_for_dma(hcd, urb);
1538 }
1539 }
1540
1541 if (unlikely(status)) {
1542 usbmon_urb_submit_error(&hcd->self, urb, status);
1543 urb->hcpriv = NULL;
1544 INIT_LIST_HEAD(&urb->urb_list);
1545 atomic_dec(&urb->use_count);
1546 /*
1547 * Order the write of urb->use_count above before the read
1548 * of urb->reject below. Pairs with the memory barriers in
1549 * usb_kill_urb() and usb_poison_urb().
1550 */
1551 smp_mb__after_atomic();
1552
1553 atomic_dec(&urb->dev->urbnum);
1554 if (atomic_read(&urb->reject))
1555 wake_up(&usb_kill_urb_queue);
1556 usb_put_urb(urb);
1557 }
1558 return status;
1559}
1560
1561/*-------------------------------------------------------------------------*/
1562
1563/* this makes the hcd giveback() the urb more quickly, by kicking it
1564 * off hardware queues (which may take a while) and returning it as
1565 * soon as practical. we've already set up the urb's return status,
1566 * but we can't know if the callback completed already.
1567 */
1568static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1569{
1570 int value;
1571
1572 if (is_root_hub(urb->dev))
1573 value = usb_rh_urb_dequeue(hcd, urb, status);
1574 else {
1575
1576 /* The only reason an HCD might fail this call is if
1577 * it has not yet fully queued the urb to begin with.
1578 * Such failures should be harmless. */
1579 value = hcd->driver->urb_dequeue(hcd, urb, status);
1580 }
1581 return value;
1582}
1583
1584/*
1585 * called in any context
1586 *
1587 * caller guarantees urb won't be recycled till both unlink()
1588 * and the urb's completion function return
1589 */
1590int usb_hcd_unlink_urb (struct urb *urb, int status)
1591{
1592 struct usb_hcd *hcd;
1593 struct usb_device *udev = urb->dev;
1594 int retval = -EIDRM;
1595 unsigned long flags;
1596
1597 /* Prevent the device and bus from going away while
1598 * the unlink is carried out. If they are already gone
1599 * then urb->use_count must be 0, since disconnected
1600 * devices can't have any active URBs.
1601 */
1602 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1603 if (atomic_read(&urb->use_count) > 0) {
1604 retval = 0;
1605 usb_get_dev(udev);
1606 }
1607 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1608 if (retval == 0) {
1609 hcd = bus_to_hcd(urb->dev->bus);
1610 retval = unlink1(hcd, urb, status);
1611 if (retval == 0)
1612 retval = -EINPROGRESS;
1613 else if (retval != -EIDRM && retval != -EBUSY)
1614 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1615 urb, retval);
1616 usb_put_dev(udev);
1617 }
1618 return retval;
1619}
1620
1621/*-------------------------------------------------------------------------*/
1622
1623static void __usb_hcd_giveback_urb(struct urb *urb)
1624{
1625 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1626 struct usb_anchor *anchor = urb->anchor;
1627 int status = urb->unlinked;
1628
1629 urb->hcpriv = NULL;
1630 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1631 urb->actual_length < urb->transfer_buffer_length &&
1632 !status))
1633 status = -EREMOTEIO;
1634
1635 unmap_urb_for_dma(hcd, urb);
1636 usbmon_urb_complete(&hcd->self, urb, status);
1637 usb_anchor_suspend_wakeups(anchor);
1638 usb_unanchor_urb(urb);
1639 if (likely(status == 0))
1640 usb_led_activity(USB_LED_EVENT_HOST);
1641
1642 /* pass ownership to the completion handler */
1643 urb->status = status;
1644 /*
1645 * This function can be called in task context inside another remote
1646 * coverage collection section, but kcov doesn't support that kind of
1647 * recursion yet. Only collect coverage in softirq context for now.
1648 */
1649 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1650 urb->complete(urb);
1651 kcov_remote_stop_softirq();
1652
1653 usb_anchor_resume_wakeups(anchor);
1654 atomic_dec(&urb->use_count);
1655 /*
1656 * Order the write of urb->use_count above before the read
1657 * of urb->reject below. Pairs with the memory barriers in
1658 * usb_kill_urb() and usb_poison_urb().
1659 */
1660 smp_mb__after_atomic();
1661
1662 if (unlikely(atomic_read(&urb->reject)))
1663 wake_up(&usb_kill_urb_queue);
1664 usb_put_urb(urb);
1665}
1666
1667static void usb_giveback_urb_bh(struct tasklet_struct *t)
1668{
1669 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1670 struct list_head local_list;
1671
1672 spin_lock_irq(&bh->lock);
1673 bh->running = true;
1674 list_replace_init(&bh->head, &local_list);
1675 spin_unlock_irq(&bh->lock);
1676
1677 while (!list_empty(&local_list)) {
1678 struct urb *urb;
1679
1680 urb = list_entry(local_list.next, struct urb, urb_list);
1681 list_del_init(&urb->urb_list);
1682 bh->completing_ep = urb->ep;
1683 __usb_hcd_giveback_urb(urb);
1684 bh->completing_ep = NULL;
1685 }
1686
1687 /*
1688 * giveback new URBs next time to prevent this function
1689 * from not exiting for a long time.
1690 */
1691 spin_lock_irq(&bh->lock);
1692 if (!list_empty(&bh->head)) {
1693 if (bh->high_prio)
1694 tasklet_hi_schedule(&bh->bh);
1695 else
1696 tasklet_schedule(&bh->bh);
1697 }
1698 bh->running = false;
1699 spin_unlock_irq(&bh->lock);
1700}
1701
1702/**
1703 * usb_hcd_giveback_urb - return URB from HCD to device driver
1704 * @hcd: host controller returning the URB
1705 * @urb: urb being returned to the USB device driver.
1706 * @status: completion status code for the URB.
1707 *
1708 * Context: atomic. The completion callback is invoked in caller's context.
1709 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1710 * context (except for URBs submitted to the root hub which always complete in
1711 * caller's context).
1712 *
1713 * This hands the URB from HCD to its USB device driver, using its
1714 * completion function. The HCD has freed all per-urb resources
1715 * (and is done using urb->hcpriv). It also released all HCD locks;
1716 * the device driver won't cause problems if it frees, modifies,
1717 * or resubmits this URB.
1718 *
1719 * If @urb was unlinked, the value of @status will be overridden by
1720 * @urb->unlinked. Erroneous short transfers are detected in case
1721 * the HCD hasn't checked for them.
1722 */
1723void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1724{
1725 struct giveback_urb_bh *bh;
1726 bool running;
1727
1728 /* pass status to tasklet via unlinked */
1729 if (likely(!urb->unlinked))
1730 urb->unlinked = status;
1731
1732 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1733 __usb_hcd_giveback_urb(urb);
1734 return;
1735 }
1736
1737 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1738 bh = &hcd->high_prio_bh;
1739 else
1740 bh = &hcd->low_prio_bh;
1741
1742 spin_lock(&bh->lock);
1743 list_add_tail(&urb->urb_list, &bh->head);
1744 running = bh->running;
1745 spin_unlock(&bh->lock);
1746
1747 if (running)
1748 ;
1749 else if (bh->high_prio)
1750 tasklet_hi_schedule(&bh->bh);
1751 else
1752 tasklet_schedule(&bh->bh);
1753}
1754EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1755
1756/*-------------------------------------------------------------------------*/
1757
1758/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1759 * queue to drain completely. The caller must first insure that no more
1760 * URBs can be submitted for this endpoint.
1761 */
1762void usb_hcd_flush_endpoint(struct usb_device *udev,
1763 struct usb_host_endpoint *ep)
1764{
1765 struct usb_hcd *hcd;
1766 struct urb *urb;
1767
1768 if (!ep)
1769 return;
1770 might_sleep();
1771 hcd = bus_to_hcd(udev->bus);
1772
1773 /* No more submits can occur */
1774 spin_lock_irq(&hcd_urb_list_lock);
1775rescan:
1776 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1777 int is_in;
1778
1779 if (urb->unlinked)
1780 continue;
1781 usb_get_urb (urb);
1782 is_in = usb_urb_dir_in(urb);
1783 spin_unlock(&hcd_urb_list_lock);
1784
1785 /* kick hcd */
1786 unlink1(hcd, urb, -ESHUTDOWN);
1787 dev_dbg (hcd->self.controller,
1788 "shutdown urb %pK ep%d%s-%s\n",
1789 urb, usb_endpoint_num(&ep->desc),
1790 is_in ? "in" : "out",
1791 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1792 usb_put_urb (urb);
1793
1794 /* list contents may have changed */
1795 spin_lock(&hcd_urb_list_lock);
1796 goto rescan;
1797 }
1798 spin_unlock_irq(&hcd_urb_list_lock);
1799
1800 /* Wait until the endpoint queue is completely empty */
1801 while (!list_empty (&ep->urb_list)) {
1802 spin_lock_irq(&hcd_urb_list_lock);
1803
1804 /* The list may have changed while we acquired the spinlock */
1805 urb = NULL;
1806 if (!list_empty (&ep->urb_list)) {
1807 urb = list_entry (ep->urb_list.prev, struct urb,
1808 urb_list);
1809 usb_get_urb (urb);
1810 }
1811 spin_unlock_irq(&hcd_urb_list_lock);
1812
1813 if (urb) {
1814 usb_kill_urb (urb);
1815 usb_put_urb (urb);
1816 }
1817 }
1818}
1819
1820/**
1821 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1822 * the bus bandwidth
1823 * @udev: target &usb_device
1824 * @new_config: new configuration to install
1825 * @cur_alt: the current alternate interface setting
1826 * @new_alt: alternate interface setting that is being installed
1827 *
1828 * To change configurations, pass in the new configuration in new_config,
1829 * and pass NULL for cur_alt and new_alt.
1830 *
1831 * To reset a device's configuration (put the device in the ADDRESSED state),
1832 * pass in NULL for new_config, cur_alt, and new_alt.
1833 *
1834 * To change alternate interface settings, pass in NULL for new_config,
1835 * pass in the current alternate interface setting in cur_alt,
1836 * and pass in the new alternate interface setting in new_alt.
1837 *
1838 * Return: An error if the requested bandwidth change exceeds the
1839 * bus bandwidth or host controller internal resources.
1840 */
1841int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1842 struct usb_host_config *new_config,
1843 struct usb_host_interface *cur_alt,
1844 struct usb_host_interface *new_alt)
1845{
1846 int num_intfs, i, j;
1847 struct usb_host_interface *alt = NULL;
1848 int ret = 0;
1849 struct usb_hcd *hcd;
1850 struct usb_host_endpoint *ep;
1851
1852 hcd = bus_to_hcd(udev->bus);
1853 if (!hcd->driver->check_bandwidth)
1854 return 0;
1855
1856 /* Configuration is being removed - set configuration 0 */
1857 if (!new_config && !cur_alt) {
1858 for (i = 1; i < 16; ++i) {
1859 ep = udev->ep_out[i];
1860 if (ep)
1861 hcd->driver->drop_endpoint(hcd, udev, ep);
1862 ep = udev->ep_in[i];
1863 if (ep)
1864 hcd->driver->drop_endpoint(hcd, udev, ep);
1865 }
1866 hcd->driver->check_bandwidth(hcd, udev);
1867 return 0;
1868 }
1869 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1870 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1871 * of the bus. There will always be bandwidth for endpoint 0, so it's
1872 * ok to exclude it.
1873 */
1874 if (new_config) {
1875 num_intfs = new_config->desc.bNumInterfaces;
1876 /* Remove endpoints (except endpoint 0, which is always on the
1877 * schedule) from the old config from the schedule
1878 */
1879 for (i = 1; i < 16; ++i) {
1880 ep = udev->ep_out[i];
1881 if (ep) {
1882 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1883 if (ret < 0)
1884 goto reset;
1885 }
1886 ep = udev->ep_in[i];
1887 if (ep) {
1888 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1889 if (ret < 0)
1890 goto reset;
1891 }
1892 }
1893 for (i = 0; i < num_intfs; ++i) {
1894 struct usb_host_interface *first_alt;
1895 int iface_num;
1896
1897 first_alt = &new_config->intf_cache[i]->altsetting[0];
1898 iface_num = first_alt->desc.bInterfaceNumber;
1899 /* Set up endpoints for alternate interface setting 0 */
1900 alt = usb_find_alt_setting(new_config, iface_num, 0);
1901 if (!alt)
1902 /* No alt setting 0? Pick the first setting. */
1903 alt = first_alt;
1904
1905 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1906 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1907 if (ret < 0)
1908 goto reset;
1909 }
1910 }
1911 }
1912 if (cur_alt && new_alt) {
1913 struct usb_interface *iface = usb_ifnum_to_if(udev,
1914 cur_alt->desc.bInterfaceNumber);
1915
1916 if (!iface)
1917 return -EINVAL;
1918 if (iface->resetting_device) {
1919 /*
1920 * The USB core just reset the device, so the xHCI host
1921 * and the device will think alt setting 0 is installed.
1922 * However, the USB core will pass in the alternate
1923 * setting installed before the reset as cur_alt. Dig
1924 * out the alternate setting 0 structure, or the first
1925 * alternate setting if a broken device doesn't have alt
1926 * setting 0.
1927 */
1928 cur_alt = usb_altnum_to_altsetting(iface, 0);
1929 if (!cur_alt)
1930 cur_alt = &iface->altsetting[0];
1931 }
1932
1933 /* Drop all the endpoints in the current alt setting */
1934 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1935 ret = hcd->driver->drop_endpoint(hcd, udev,
1936 &cur_alt->endpoint[i]);
1937 if (ret < 0)
1938 goto reset;
1939 }
1940 /* Add all the endpoints in the new alt setting */
1941 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1942 ret = hcd->driver->add_endpoint(hcd, udev,
1943 &new_alt->endpoint[i]);
1944 if (ret < 0)
1945 goto reset;
1946 }
1947 }
1948 ret = hcd->driver->check_bandwidth(hcd, udev);
1949reset:
1950 if (ret < 0)
1951 hcd->driver->reset_bandwidth(hcd, udev);
1952 return ret;
1953}
1954
1955/* Disables the endpoint: synchronizes with the hcd to make sure all
1956 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1957 * have been called previously. Use for set_configuration, set_interface,
1958 * driver removal, physical disconnect.
1959 *
1960 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1961 * type, maxpacket size, toggle, halt status, and scheduling.
1962 */
1963void usb_hcd_disable_endpoint(struct usb_device *udev,
1964 struct usb_host_endpoint *ep)
1965{
1966 struct usb_hcd *hcd;
1967
1968 might_sleep();
1969 hcd = bus_to_hcd(udev->bus);
1970 if (hcd->driver->endpoint_disable)
1971 hcd->driver->endpoint_disable(hcd, ep);
1972}
1973
1974/**
1975 * usb_hcd_reset_endpoint - reset host endpoint state
1976 * @udev: USB device.
1977 * @ep: the endpoint to reset.
1978 *
1979 * Resets any host endpoint state such as the toggle bit, sequence
1980 * number and current window.
1981 */
1982void usb_hcd_reset_endpoint(struct usb_device *udev,
1983 struct usb_host_endpoint *ep)
1984{
1985 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1986
1987 if (hcd->driver->endpoint_reset)
1988 hcd->driver->endpoint_reset(hcd, ep);
1989 else {
1990 int epnum = usb_endpoint_num(&ep->desc);
1991 int is_out = usb_endpoint_dir_out(&ep->desc);
1992 int is_control = usb_endpoint_xfer_control(&ep->desc);
1993
1994 usb_settoggle(udev, epnum, is_out, 0);
1995 if (is_control)
1996 usb_settoggle(udev, epnum, !is_out, 0);
1997 }
1998}
1999
2000/**
2001 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2002 * @interface: alternate setting that includes all endpoints.
2003 * @eps: array of endpoints that need streams.
2004 * @num_eps: number of endpoints in the array.
2005 * @num_streams: number of streams to allocate.
2006 * @mem_flags: flags hcd should use to allocate memory.
2007 *
2008 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2009 * Drivers may queue multiple transfers to different stream IDs, which may
2010 * complete in a different order than they were queued.
2011 *
2012 * Return: On success, the number of allocated streams. On failure, a negative
2013 * error code.
2014 */
2015int usb_alloc_streams(struct usb_interface *interface,
2016 struct usb_host_endpoint **eps, unsigned int num_eps,
2017 unsigned int num_streams, gfp_t mem_flags)
2018{
2019 struct usb_hcd *hcd;
2020 struct usb_device *dev;
2021 int i, ret;
2022
2023 dev = interface_to_usbdev(interface);
2024 hcd = bus_to_hcd(dev->bus);
2025 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2026 return -EINVAL;
2027 if (dev->speed < USB_SPEED_SUPER)
2028 return -EINVAL;
2029 if (dev->state < USB_STATE_CONFIGURED)
2030 return -ENODEV;
2031
2032 for (i = 0; i < num_eps; i++) {
2033 /* Streams only apply to bulk endpoints. */
2034 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2035 return -EINVAL;
2036 /* Re-alloc is not allowed */
2037 if (eps[i]->streams)
2038 return -EINVAL;
2039 }
2040
2041 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2042 num_streams, mem_flags);
2043 if (ret < 0)
2044 return ret;
2045
2046 for (i = 0; i < num_eps; i++)
2047 eps[i]->streams = ret;
2048
2049 return ret;
2050}
2051EXPORT_SYMBOL_GPL(usb_alloc_streams);
2052
2053/**
2054 * usb_free_streams - free bulk endpoint stream IDs.
2055 * @interface: alternate setting that includes all endpoints.
2056 * @eps: array of endpoints to remove streams from.
2057 * @num_eps: number of endpoints in the array.
2058 * @mem_flags: flags hcd should use to allocate memory.
2059 *
2060 * Reverts a group of bulk endpoints back to not using stream IDs.
2061 * Can fail if we are given bad arguments, or HCD is broken.
2062 *
2063 * Return: 0 on success. On failure, a negative error code.
2064 */
2065int usb_free_streams(struct usb_interface *interface,
2066 struct usb_host_endpoint **eps, unsigned int num_eps,
2067 gfp_t mem_flags)
2068{
2069 struct usb_hcd *hcd;
2070 struct usb_device *dev;
2071 int i, ret;
2072
2073 dev = interface_to_usbdev(interface);
2074 hcd = bus_to_hcd(dev->bus);
2075 if (dev->speed < USB_SPEED_SUPER)
2076 return -EINVAL;
2077
2078 /* Double-free is not allowed */
2079 for (i = 0; i < num_eps; i++)
2080 if (!eps[i] || !eps[i]->streams)
2081 return -EINVAL;
2082
2083 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2084 if (ret < 0)
2085 return ret;
2086
2087 for (i = 0; i < num_eps; i++)
2088 eps[i]->streams = 0;
2089
2090 return ret;
2091}
2092EXPORT_SYMBOL_GPL(usb_free_streams);
2093
2094/* Protect against drivers that try to unlink URBs after the device
2095 * is gone, by waiting until all unlinks for @udev are finished.
2096 * Since we don't currently track URBs by device, simply wait until
2097 * nothing is running in the locked region of usb_hcd_unlink_urb().
2098 */
2099void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2100{
2101 spin_lock_irq(&hcd_urb_unlink_lock);
2102 spin_unlock_irq(&hcd_urb_unlink_lock);
2103}
2104
2105/*-------------------------------------------------------------------------*/
2106
2107/* called in any context */
2108int usb_hcd_get_frame_number (struct usb_device *udev)
2109{
2110 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2111
2112 if (!HCD_RH_RUNNING(hcd))
2113 return -ESHUTDOWN;
2114 return hcd->driver->get_frame_number (hcd);
2115}
2116
2117/*-------------------------------------------------------------------------*/
2118#ifdef CONFIG_USB_HCD_TEST_MODE
2119
2120static void usb_ehset_completion(struct urb *urb)
2121{
2122 struct completion *done = urb->context;
2123
2124 complete(done);
2125}
2126/*
2127 * Allocate and initialize a control URB. This request will be used by the
2128 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2129 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2130 * Return NULL if failed.
2131 */
2132static struct urb *request_single_step_set_feature_urb(
2133 struct usb_device *udev,
2134 void *dr,
2135 void *buf,
2136 struct completion *done)
2137{
2138 struct urb *urb;
2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2140
2141 urb = usb_alloc_urb(0, GFP_KERNEL);
2142 if (!urb)
2143 return NULL;
2144
2145 urb->pipe = usb_rcvctrlpipe(udev, 0);
2146
2147 urb->ep = &udev->ep0;
2148 urb->dev = udev;
2149 urb->setup_packet = (void *)dr;
2150 urb->transfer_buffer = buf;
2151 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2152 urb->complete = usb_ehset_completion;
2153 urb->status = -EINPROGRESS;
2154 urb->actual_length = 0;
2155 urb->transfer_flags = URB_DIR_IN;
2156 usb_get_urb(urb);
2157 atomic_inc(&urb->use_count);
2158 atomic_inc(&urb->dev->urbnum);
2159 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2160 usb_put_urb(urb);
2161 usb_free_urb(urb);
2162 return NULL;
2163 }
2164
2165 urb->context = done;
2166 return urb;
2167}
2168
2169int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2170{
2171 int retval = -ENOMEM;
2172 struct usb_ctrlrequest *dr;
2173 struct urb *urb;
2174 struct usb_device *udev;
2175 struct usb_device_descriptor *buf;
2176 DECLARE_COMPLETION_ONSTACK(done);
2177
2178 /* Obtain udev of the rhub's child port */
2179 udev = usb_hub_find_child(hcd->self.root_hub, port);
2180 if (!udev) {
2181 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2182 return -ENODEV;
2183 }
2184 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2185 if (!buf)
2186 return -ENOMEM;
2187
2188 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2189 if (!dr) {
2190 kfree(buf);
2191 return -ENOMEM;
2192 }
2193
2194 /* Fill Setup packet for GetDescriptor */
2195 dr->bRequestType = USB_DIR_IN;
2196 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2197 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2198 dr->wIndex = 0;
2199 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2200 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2201 if (!urb)
2202 goto cleanup;
2203
2204 /* Submit just the SETUP stage */
2205 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2206 if (retval)
2207 goto out1;
2208 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2209 usb_kill_urb(urb);
2210 retval = -ETIMEDOUT;
2211 dev_err(hcd->self.controller,
2212 "%s SETUP stage timed out on ep0\n", __func__);
2213 goto out1;
2214 }
2215 msleep(15 * 1000);
2216
2217 /* Complete remaining DATA and STATUS stages using the same URB */
2218 urb->status = -EINPROGRESS;
2219 usb_get_urb(urb);
2220 atomic_inc(&urb->use_count);
2221 atomic_inc(&urb->dev->urbnum);
2222 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2223 if (!retval && !wait_for_completion_timeout(&done,
2224 msecs_to_jiffies(2000))) {
2225 usb_kill_urb(urb);
2226 retval = -ETIMEDOUT;
2227 dev_err(hcd->self.controller,
2228 "%s IN stage timed out on ep0\n", __func__);
2229 }
2230out1:
2231 usb_free_urb(urb);
2232cleanup:
2233 kfree(dr);
2234 kfree(buf);
2235 return retval;
2236}
2237EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2238#endif /* CONFIG_USB_HCD_TEST_MODE */
2239
2240/*-------------------------------------------------------------------------*/
2241
2242#ifdef CONFIG_PM
2243
2244int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2245{
2246 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2247 int status;
2248 int old_state = hcd->state;
2249
2250 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2251 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2252 rhdev->do_remote_wakeup);
2253 if (HCD_DEAD(hcd)) {
2254 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2255 return 0;
2256 }
2257
2258 if (!hcd->driver->bus_suspend) {
2259 status = -ENOENT;
2260 } else {
2261 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2262 hcd->state = HC_STATE_QUIESCING;
2263 status = hcd->driver->bus_suspend(hcd);
2264 }
2265 if (status == 0) {
2266 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2267 hcd->state = HC_STATE_SUSPENDED;
2268
2269 if (!PMSG_IS_AUTO(msg))
2270 usb_phy_roothub_suspend(hcd->self.sysdev,
2271 hcd->phy_roothub);
2272
2273 /* Did we race with a root-hub wakeup event? */
2274 if (rhdev->do_remote_wakeup) {
2275 char buffer[6];
2276
2277 status = hcd->driver->hub_status_data(hcd, buffer);
2278 if (status != 0) {
2279 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2280 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2281 status = -EBUSY;
2282 }
2283 }
2284 } else {
2285 spin_lock_irq(&hcd_root_hub_lock);
2286 if (!HCD_DEAD(hcd)) {
2287 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2288 hcd->state = old_state;
2289 }
2290 spin_unlock_irq(&hcd_root_hub_lock);
2291 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2292 "suspend", status);
2293 }
2294 return status;
2295}
2296
2297int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2298{
2299 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2300 int status;
2301 int old_state = hcd->state;
2302
2303 dev_dbg(&rhdev->dev, "usb %sresume\n",
2304 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2305 if (HCD_DEAD(hcd)) {
2306 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2307 return 0;
2308 }
2309
2310 if (!PMSG_IS_AUTO(msg)) {
2311 status = usb_phy_roothub_resume(hcd->self.sysdev,
2312 hcd->phy_roothub);
2313 if (status)
2314 return status;
2315 }
2316
2317 if (!hcd->driver->bus_resume)
2318 return -ENOENT;
2319 if (HCD_RH_RUNNING(hcd))
2320 return 0;
2321
2322 hcd->state = HC_STATE_RESUMING;
2323 status = hcd->driver->bus_resume(hcd);
2324 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2325 if (status == 0)
2326 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2327
2328 if (status == 0) {
2329 struct usb_device *udev;
2330 int port1;
2331
2332 spin_lock_irq(&hcd_root_hub_lock);
2333 if (!HCD_DEAD(hcd)) {
2334 usb_set_device_state(rhdev, rhdev->actconfig
2335 ? USB_STATE_CONFIGURED
2336 : USB_STATE_ADDRESS);
2337 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2338 hcd->state = HC_STATE_RUNNING;
2339 }
2340 spin_unlock_irq(&hcd_root_hub_lock);
2341
2342 /*
2343 * Check whether any of the enabled ports on the root hub are
2344 * unsuspended. If they are then a TRSMRCY delay is needed
2345 * (this is what the USB-2 spec calls a "global resume").
2346 * Otherwise we can skip the delay.
2347 */
2348 usb_hub_for_each_child(rhdev, port1, udev) {
2349 if (udev->state != USB_STATE_NOTATTACHED &&
2350 !udev->port_is_suspended) {
2351 usleep_range(10000, 11000); /* TRSMRCY */
2352 break;
2353 }
2354 }
2355 } else {
2356 hcd->state = old_state;
2357 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2358 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2359 "resume", status);
2360 if (status != -ESHUTDOWN)
2361 usb_hc_died(hcd);
2362 }
2363 return status;
2364}
2365
2366/* Workqueue routine for root-hub remote wakeup */
2367static void hcd_resume_work(struct work_struct *work)
2368{
2369 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2370 struct usb_device *udev = hcd->self.root_hub;
2371
2372 usb_remote_wakeup(udev);
2373}
2374
2375/**
2376 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2377 * @hcd: host controller for this root hub
2378 *
2379 * The USB host controller calls this function when its root hub is
2380 * suspended (with the remote wakeup feature enabled) and a remote
2381 * wakeup request is received. The routine submits a workqueue request
2382 * to resume the root hub (that is, manage its downstream ports again).
2383 */
2384void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2385{
2386 unsigned long flags;
2387
2388 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2389 if (hcd->rh_registered) {
2390 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2391 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2392 queue_work(pm_wq, &hcd->wakeup_work);
2393 }
2394 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2395}
2396EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2397
2398#endif /* CONFIG_PM */
2399
2400/*-------------------------------------------------------------------------*/
2401
2402#ifdef CONFIG_USB_OTG
2403
2404/**
2405 * usb_bus_start_enum - start immediate enumeration (for OTG)
2406 * @bus: the bus (must use hcd framework)
2407 * @port_num: 1-based number of port; usually bus->otg_port
2408 * Context: atomic
2409 *
2410 * Starts enumeration, with an immediate reset followed later by
2411 * hub_wq identifying and possibly configuring the device.
2412 * This is needed by OTG controller drivers, where it helps meet
2413 * HNP protocol timing requirements for starting a port reset.
2414 *
2415 * Return: 0 if successful.
2416 */
2417int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2418{
2419 struct usb_hcd *hcd;
2420 int status = -EOPNOTSUPP;
2421
2422 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2423 * boards with root hubs hooked up to internal devices (instead of
2424 * just the OTG port) may need more attention to resetting...
2425 */
2426 hcd = bus_to_hcd(bus);
2427 if (port_num && hcd->driver->start_port_reset)
2428 status = hcd->driver->start_port_reset(hcd, port_num);
2429
2430 /* allocate hub_wq shortly after (first) root port reset finishes;
2431 * it may issue others, until at least 50 msecs have passed.
2432 */
2433 if (status == 0)
2434 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2435 return status;
2436}
2437EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2438
2439#endif
2440
2441/*-------------------------------------------------------------------------*/
2442
2443/**
2444 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2445 * @irq: the IRQ being raised
2446 * @__hcd: pointer to the HCD whose IRQ is being signaled
2447 *
2448 * If the controller isn't HALTed, calls the driver's irq handler.
2449 * Checks whether the controller is now dead.
2450 *
2451 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2452 */
2453irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2454{
2455 struct usb_hcd *hcd = __hcd;
2456 irqreturn_t rc;
2457
2458 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2459 rc = IRQ_NONE;
2460 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2461 rc = IRQ_NONE;
2462 else
2463 rc = IRQ_HANDLED;
2464
2465 return rc;
2466}
2467EXPORT_SYMBOL_GPL(usb_hcd_irq);
2468
2469/*-------------------------------------------------------------------------*/
2470
2471/* Workqueue routine for when the root-hub has died. */
2472static void hcd_died_work(struct work_struct *work)
2473{
2474 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2475 static char *env[] = {
2476 "ERROR=DEAD",
2477 NULL
2478 };
2479
2480 /* Notify user space that the host controller has died */
2481 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2482}
2483
2484/**
2485 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2486 * @hcd: pointer to the HCD representing the controller
2487 *
2488 * This is called by bus glue to report a USB host controller that died
2489 * while operations may still have been pending. It's called automatically
2490 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2491 *
2492 * Only call this function with the primary HCD.
2493 */
2494void usb_hc_died (struct usb_hcd *hcd)
2495{
2496 unsigned long flags;
2497
2498 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2499
2500 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2501 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2502 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2503 if (hcd->rh_registered) {
2504 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2505
2506 /* make hub_wq clean up old urbs and devices */
2507 usb_set_device_state (hcd->self.root_hub,
2508 USB_STATE_NOTATTACHED);
2509 usb_kick_hub_wq(hcd->self.root_hub);
2510 }
2511 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2512 hcd = hcd->shared_hcd;
2513 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2514 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2515 if (hcd->rh_registered) {
2516 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2517
2518 /* make hub_wq clean up old urbs and devices */
2519 usb_set_device_state(hcd->self.root_hub,
2520 USB_STATE_NOTATTACHED);
2521 usb_kick_hub_wq(hcd->self.root_hub);
2522 }
2523 }
2524
2525 /* Handle the case where this function gets called with a shared HCD */
2526 if (usb_hcd_is_primary_hcd(hcd))
2527 schedule_work(&hcd->died_work);
2528 else
2529 schedule_work(&hcd->primary_hcd->died_work);
2530
2531 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2532 /* Make sure that the other roothub is also deallocated. */
2533}
2534EXPORT_SYMBOL_GPL (usb_hc_died);
2535
2536/*-------------------------------------------------------------------------*/
2537
2538static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2539{
2540
2541 spin_lock_init(&bh->lock);
2542 INIT_LIST_HEAD(&bh->head);
2543 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2544}
2545
2546struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2547 struct device *sysdev, struct device *dev, const char *bus_name,
2548 struct usb_hcd *primary_hcd)
2549{
2550 struct usb_hcd *hcd;
2551
2552 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2553 if (!hcd)
2554 return NULL;
2555 if (primary_hcd == NULL) {
2556 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2557 GFP_KERNEL);
2558 if (!hcd->address0_mutex) {
2559 kfree(hcd);
2560 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2561 return NULL;
2562 }
2563 mutex_init(hcd->address0_mutex);
2564 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2565 GFP_KERNEL);
2566 if (!hcd->bandwidth_mutex) {
2567 kfree(hcd->address0_mutex);
2568 kfree(hcd);
2569 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2570 return NULL;
2571 }
2572 mutex_init(hcd->bandwidth_mutex);
2573 dev_set_drvdata(dev, hcd);
2574 } else {
2575 mutex_lock(&usb_port_peer_mutex);
2576 hcd->address0_mutex = primary_hcd->address0_mutex;
2577 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2578 hcd->primary_hcd = primary_hcd;
2579 primary_hcd->primary_hcd = primary_hcd;
2580 hcd->shared_hcd = primary_hcd;
2581 primary_hcd->shared_hcd = hcd;
2582 mutex_unlock(&usb_port_peer_mutex);
2583 }
2584
2585 kref_init(&hcd->kref);
2586
2587 usb_bus_init(&hcd->self);
2588 hcd->self.controller = dev;
2589 hcd->self.sysdev = sysdev;
2590 hcd->self.bus_name = bus_name;
2591
2592 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2593#ifdef CONFIG_PM
2594 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2595#endif
2596
2597 INIT_WORK(&hcd->died_work, hcd_died_work);
2598
2599 hcd->driver = driver;
2600 hcd->speed = driver->flags & HCD_MASK;
2601 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2602 "USB Host Controller";
2603 return hcd;
2604}
2605EXPORT_SYMBOL_GPL(__usb_create_hcd);
2606
2607/**
2608 * usb_create_shared_hcd - create and initialize an HCD structure
2609 * @driver: HC driver that will use this hcd
2610 * @dev: device for this HC, stored in hcd->self.controller
2611 * @bus_name: value to store in hcd->self.bus_name
2612 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2613 * PCI device. Only allocate certain resources for the primary HCD
2614 *
2615 * Context: task context, might sleep.
2616 *
2617 * Allocate a struct usb_hcd, with extra space at the end for the
2618 * HC driver's private data. Initialize the generic members of the
2619 * hcd structure.
2620 *
2621 * Return: On success, a pointer to the created and initialized HCD structure.
2622 * On failure (e.g. if memory is unavailable), %NULL.
2623 */
2624struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2625 struct device *dev, const char *bus_name,
2626 struct usb_hcd *primary_hcd)
2627{
2628 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2629}
2630EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2631
2632/**
2633 * usb_create_hcd - create and initialize an HCD structure
2634 * @driver: HC driver that will use this hcd
2635 * @dev: device for this HC, stored in hcd->self.controller
2636 * @bus_name: value to store in hcd->self.bus_name
2637 *
2638 * Context: task context, might sleep.
2639 *
2640 * Allocate a struct usb_hcd, with extra space at the end for the
2641 * HC driver's private data. Initialize the generic members of the
2642 * hcd structure.
2643 *
2644 * Return: On success, a pointer to the created and initialized HCD
2645 * structure. On failure (e.g. if memory is unavailable), %NULL.
2646 */
2647struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2648 struct device *dev, const char *bus_name)
2649{
2650 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2651}
2652EXPORT_SYMBOL_GPL(usb_create_hcd);
2653
2654/*
2655 * Roothubs that share one PCI device must also share the bandwidth mutex.
2656 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2657 * deallocated.
2658 *
2659 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2660 * freed. When hcd_release() is called for either hcd in a peer set,
2661 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2662 */
2663static void hcd_release(struct kref *kref)
2664{
2665 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2666
2667 mutex_lock(&usb_port_peer_mutex);
2668 if (hcd->shared_hcd) {
2669 struct usb_hcd *peer = hcd->shared_hcd;
2670
2671 peer->shared_hcd = NULL;
2672 peer->primary_hcd = NULL;
2673 } else {
2674 kfree(hcd->address0_mutex);
2675 kfree(hcd->bandwidth_mutex);
2676 }
2677 mutex_unlock(&usb_port_peer_mutex);
2678 kfree(hcd);
2679}
2680
2681struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2682{
2683 if (hcd)
2684 kref_get (&hcd->kref);
2685 return hcd;
2686}
2687EXPORT_SYMBOL_GPL(usb_get_hcd);
2688
2689void usb_put_hcd (struct usb_hcd *hcd)
2690{
2691 if (hcd)
2692 kref_put (&hcd->kref, hcd_release);
2693}
2694EXPORT_SYMBOL_GPL(usb_put_hcd);
2695
2696int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2697{
2698 if (!hcd->primary_hcd)
2699 return 1;
2700 return hcd == hcd->primary_hcd;
2701}
2702EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2703
2704int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2705{
2706 if (!hcd->driver->find_raw_port_number)
2707 return port1;
2708
2709 return hcd->driver->find_raw_port_number(hcd, port1);
2710}
2711
2712static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2713 unsigned int irqnum, unsigned long irqflags)
2714{
2715 int retval;
2716
2717 if (hcd->driver->irq) {
2718
2719 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2720 hcd->driver->description, hcd->self.busnum);
2721 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2722 hcd->irq_descr, hcd);
2723 if (retval != 0) {
2724 dev_err(hcd->self.controller,
2725 "request interrupt %d failed\n",
2726 irqnum);
2727 return retval;
2728 }
2729 hcd->irq = irqnum;
2730 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2731 (hcd->driver->flags & HCD_MEMORY) ?
2732 "io mem" : "io port",
2733 (unsigned long long)hcd->rsrc_start);
2734 } else {
2735 hcd->irq = 0;
2736 if (hcd->rsrc_start)
2737 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2738 (hcd->driver->flags & HCD_MEMORY) ?
2739 "io mem" : "io port",
2740 (unsigned long long)hcd->rsrc_start);
2741 }
2742 return 0;
2743}
2744
2745/*
2746 * Before we free this root hub, flush in-flight peering attempts
2747 * and disable peer lookups
2748 */
2749static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2750{
2751 struct usb_device *rhdev;
2752
2753 mutex_lock(&usb_port_peer_mutex);
2754 rhdev = hcd->self.root_hub;
2755 hcd->self.root_hub = NULL;
2756 mutex_unlock(&usb_port_peer_mutex);
2757 usb_put_dev(rhdev);
2758}
2759
2760/**
2761 * usb_stop_hcd - Halt the HCD
2762 * @hcd: the usb_hcd that has to be halted
2763 *
2764 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2765 */
2766static void usb_stop_hcd(struct usb_hcd *hcd)
2767{
2768 hcd->rh_pollable = 0;
2769 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2770 del_timer_sync(&hcd->rh_timer);
2771
2772 hcd->driver->stop(hcd);
2773 hcd->state = HC_STATE_HALT;
2774
2775 /* In case the HCD restarted the timer, stop it again. */
2776 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2777 del_timer_sync(&hcd->rh_timer);
2778}
2779
2780/**
2781 * usb_add_hcd - finish generic HCD structure initialization and register
2782 * @hcd: the usb_hcd structure to initialize
2783 * @irqnum: Interrupt line to allocate
2784 * @irqflags: Interrupt type flags
2785 *
2786 * Finish the remaining parts of generic HCD initialization: allocate the
2787 * buffers of consistent memory, register the bus, request the IRQ line,
2788 * and call the driver's reset() and start() routines.
2789 */
2790int usb_add_hcd(struct usb_hcd *hcd,
2791 unsigned int irqnum, unsigned long irqflags)
2792{
2793 int retval;
2794 struct usb_device *rhdev;
2795 struct usb_hcd *shared_hcd;
2796
2797 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2798 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2799 if (IS_ERR(hcd->phy_roothub))
2800 return PTR_ERR(hcd->phy_roothub);
2801
2802 retval = usb_phy_roothub_init(hcd->phy_roothub);
2803 if (retval)
2804 return retval;
2805
2806 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2807 PHY_MODE_USB_HOST_SS);
2808 if (retval)
2809 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2810 PHY_MODE_USB_HOST);
2811 if (retval)
2812 goto err_usb_phy_roothub_power_on;
2813
2814 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2815 if (retval)
2816 goto err_usb_phy_roothub_power_on;
2817 }
2818
2819 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2820
2821 switch (authorized_default) {
2822 case USB_AUTHORIZE_NONE:
2823 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2824 break;
2825
2826 case USB_AUTHORIZE_INTERNAL:
2827 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2828 break;
2829
2830 case USB_AUTHORIZE_ALL:
2831 case USB_AUTHORIZE_WIRED:
2832 default:
2833 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2834 break;
2835 }
2836
2837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2838
2839 /* per default all interfaces are authorized */
2840 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2841
2842 /* HC is in reset state, but accessible. Now do the one-time init,
2843 * bottom up so that hcds can customize the root hubs before hub_wq
2844 * starts talking to them. (Note, bus id is assigned early too.)
2845 */
2846 retval = hcd_buffer_create(hcd);
2847 if (retval != 0) {
2848 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2849 goto err_create_buf;
2850 }
2851
2852 retval = usb_register_bus(&hcd->self);
2853 if (retval < 0)
2854 goto err_register_bus;
2855
2856 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2857 if (rhdev == NULL) {
2858 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2859 retval = -ENOMEM;
2860 goto err_allocate_root_hub;
2861 }
2862 mutex_lock(&usb_port_peer_mutex);
2863 hcd->self.root_hub = rhdev;
2864 mutex_unlock(&usb_port_peer_mutex);
2865
2866 rhdev->rx_lanes = 1;
2867 rhdev->tx_lanes = 1;
2868 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2869
2870 switch (hcd->speed) {
2871 case HCD_USB11:
2872 rhdev->speed = USB_SPEED_FULL;
2873 break;
2874 case HCD_USB2:
2875 rhdev->speed = USB_SPEED_HIGH;
2876 break;
2877 case HCD_USB3:
2878 rhdev->speed = USB_SPEED_SUPER;
2879 break;
2880 case HCD_USB32:
2881 rhdev->rx_lanes = 2;
2882 rhdev->tx_lanes = 2;
2883 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2884 rhdev->speed = USB_SPEED_SUPER_PLUS;
2885 break;
2886 case HCD_USB31:
2887 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2888 rhdev->speed = USB_SPEED_SUPER_PLUS;
2889 break;
2890 default:
2891 retval = -EINVAL;
2892 goto err_set_rh_speed;
2893 }
2894
2895 /* wakeup flag init defaults to "everything works" for root hubs,
2896 * but drivers can override it in reset() if needed, along with
2897 * recording the overall controller's system wakeup capability.
2898 */
2899 device_set_wakeup_capable(&rhdev->dev, 1);
2900
2901 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2902 * registered. But since the controller can die at any time,
2903 * let's initialize the flag before touching the hardware.
2904 */
2905 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2906
2907 /* "reset" is misnamed; its role is now one-time init. the controller
2908 * should already have been reset (and boot firmware kicked off etc).
2909 */
2910 if (hcd->driver->reset) {
2911 retval = hcd->driver->reset(hcd);
2912 if (retval < 0) {
2913 dev_err(hcd->self.controller, "can't setup: %d\n",
2914 retval);
2915 goto err_hcd_driver_setup;
2916 }
2917 }
2918 hcd->rh_pollable = 1;
2919
2920 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2921 if (retval)
2922 goto err_hcd_driver_setup;
2923
2924 /* NOTE: root hub and controller capabilities may not be the same */
2925 if (device_can_wakeup(hcd->self.controller)
2926 && device_can_wakeup(&hcd->self.root_hub->dev))
2927 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2928
2929 /* initialize tasklets */
2930 init_giveback_urb_bh(&hcd->high_prio_bh);
2931 hcd->high_prio_bh.high_prio = true;
2932 init_giveback_urb_bh(&hcd->low_prio_bh);
2933
2934 /* enable irqs just before we start the controller,
2935 * if the BIOS provides legacy PCI irqs.
2936 */
2937 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2938 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2939 if (retval)
2940 goto err_request_irq;
2941 }
2942
2943 hcd->state = HC_STATE_RUNNING;
2944 retval = hcd->driver->start(hcd);
2945 if (retval < 0) {
2946 dev_err(hcd->self.controller, "startup error %d\n", retval);
2947 goto err_hcd_driver_start;
2948 }
2949
2950 /* starting here, usbcore will pay attention to the shared HCD roothub */
2951 shared_hcd = hcd->shared_hcd;
2952 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2953 retval = register_root_hub(shared_hcd);
2954 if (retval != 0)
2955 goto err_register_root_hub;
2956
2957 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2958 usb_hcd_poll_rh_status(shared_hcd);
2959 }
2960
2961 /* starting here, usbcore will pay attention to this root hub */
2962 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2963 retval = register_root_hub(hcd);
2964 if (retval != 0)
2965 goto err_register_root_hub;
2966
2967 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2968 usb_hcd_poll_rh_status(hcd);
2969 }
2970
2971 return retval;
2972
2973err_register_root_hub:
2974 usb_stop_hcd(hcd);
2975err_hcd_driver_start:
2976 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2977 free_irq(irqnum, hcd);
2978err_request_irq:
2979err_hcd_driver_setup:
2980err_set_rh_speed:
2981 usb_put_invalidate_rhdev(hcd);
2982err_allocate_root_hub:
2983 usb_deregister_bus(&hcd->self);
2984err_register_bus:
2985 hcd_buffer_destroy(hcd);
2986err_create_buf:
2987 usb_phy_roothub_power_off(hcd->phy_roothub);
2988err_usb_phy_roothub_power_on:
2989 usb_phy_roothub_exit(hcd->phy_roothub);
2990
2991 return retval;
2992}
2993EXPORT_SYMBOL_GPL(usb_add_hcd);
2994
2995/**
2996 * usb_remove_hcd - shutdown processing for generic HCDs
2997 * @hcd: the usb_hcd structure to remove
2998 *
2999 * Context: task context, might sleep.
3000 *
3001 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3002 * invoking the HCD's stop() method.
3003 */
3004void usb_remove_hcd(struct usb_hcd *hcd)
3005{
3006 struct usb_device *rhdev;
3007 bool rh_registered;
3008
3009 if (!hcd) {
3010 pr_debug("%s: hcd is NULL\n", __func__);
3011 return;
3012 }
3013 rhdev = hcd->self.root_hub;
3014
3015 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3016
3017 usb_get_dev(rhdev);
3018 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3019 if (HC_IS_RUNNING (hcd->state))
3020 hcd->state = HC_STATE_QUIESCING;
3021
3022 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3023 spin_lock_irq (&hcd_root_hub_lock);
3024 rh_registered = hcd->rh_registered;
3025 hcd->rh_registered = 0;
3026 spin_unlock_irq (&hcd_root_hub_lock);
3027
3028#ifdef CONFIG_PM
3029 cancel_work_sync(&hcd->wakeup_work);
3030#endif
3031 cancel_work_sync(&hcd->died_work);
3032
3033 mutex_lock(&usb_bus_idr_lock);
3034 if (rh_registered)
3035 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3036 mutex_unlock(&usb_bus_idr_lock);
3037
3038 /*
3039 * tasklet_kill() isn't needed here because:
3040 * - driver's disconnect() called from usb_disconnect() should
3041 * make sure its URBs are completed during the disconnect()
3042 * callback
3043 *
3044 * - it is too late to run complete() here since driver may have
3045 * been removed already now
3046 */
3047
3048 /* Prevent any more root-hub status calls from the timer.
3049 * The HCD might still restart the timer (if a port status change
3050 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3051 * the hub_status_data() callback.
3052 */
3053 usb_stop_hcd(hcd);
3054
3055 if (usb_hcd_is_primary_hcd(hcd)) {
3056 if (hcd->irq > 0)
3057 free_irq(hcd->irq, hcd);
3058 }
3059
3060 usb_deregister_bus(&hcd->self);
3061 hcd_buffer_destroy(hcd);
3062
3063 usb_phy_roothub_power_off(hcd->phy_roothub);
3064 usb_phy_roothub_exit(hcd->phy_roothub);
3065
3066 usb_put_invalidate_rhdev(hcd);
3067 hcd->flags = 0;
3068}
3069EXPORT_SYMBOL_GPL(usb_remove_hcd);
3070
3071void
3072usb_hcd_platform_shutdown(struct platform_device *dev)
3073{
3074 struct usb_hcd *hcd = platform_get_drvdata(dev);
3075
3076 /* No need for pm_runtime_put(), we're shutting down */
3077 pm_runtime_get_sync(&dev->dev);
3078
3079 if (hcd->driver->shutdown)
3080 hcd->driver->shutdown(hcd);
3081}
3082EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3083
3084int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3085 dma_addr_t dma, size_t size)
3086{
3087 int err;
3088 void *local_mem;
3089
3090 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3091 dev_to_node(hcd->self.sysdev),
3092 dev_name(hcd->self.sysdev));
3093 if (IS_ERR(hcd->localmem_pool))
3094 return PTR_ERR(hcd->localmem_pool);
3095
3096 /*
3097 * if a physical SRAM address was passed, map it, otherwise
3098 * allocate system memory as a buffer.
3099 */
3100 if (phys_addr)
3101 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3102 size, MEMREMAP_WC);
3103 else
3104 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3105 GFP_KERNEL,
3106 DMA_ATTR_WRITE_COMBINE);
3107
3108 if (IS_ERR_OR_NULL(local_mem)) {
3109 if (!local_mem)
3110 return -ENOMEM;
3111
3112 return PTR_ERR(local_mem);
3113 }
3114
3115 /*
3116 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3117 * It's not backed by system memory and thus there's no kernel mapping
3118 * for it.
3119 */
3120 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3121 dma, size, dev_to_node(hcd->self.sysdev));
3122 if (err < 0) {
3123 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3124 err);
3125 return err;
3126 }
3127
3128 return 0;
3129}
3130EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3131
3132/*-------------------------------------------------------------------------*/
3133
3134#if IS_ENABLED(CONFIG_USB_MON)
3135
3136const struct usb_mon_operations *mon_ops;
3137
3138/*
3139 * The registration is unlocked.
3140 * We do it this way because we do not want to lock in hot paths.
3141 *
3142 * Notice that the code is minimally error-proof. Because usbmon needs
3143 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3144 */
3145
3146int usb_mon_register(const struct usb_mon_operations *ops)
3147{
3148
3149 if (mon_ops)
3150 return -EBUSY;
3151
3152 mon_ops = ops;
3153 mb();
3154 return 0;
3155}
3156EXPORT_SYMBOL_GPL (usb_mon_register);
3157
3158void usb_mon_deregister (void)
3159{
3160
3161 if (mon_ops == NULL) {
3162 printk(KERN_ERR "USB: monitor was not registered\n");
3163 return;
3164 }
3165 mon_ops = NULL;
3166 mb();
3167}
3168EXPORT_SYMBOL_GPL (usb_mon_deregister);
3169
3170#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/usb.h>
46#include <linux/usb/hcd.h>
47#include <linux/usb/phy.h>
48
49#include "usb.h"
50
51
52/*-------------------------------------------------------------------------*/
53
54/*
55 * USB Host Controller Driver framework
56 *
57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
58 * HCD-specific behaviors/bugs.
59 *
60 * This does error checks, tracks devices and urbs, and delegates to a
61 * "hc_driver" only for code (and data) that really needs to know about
62 * hardware differences. That includes root hub registers, i/o queues,
63 * and so on ... but as little else as possible.
64 *
65 * Shared code includes most of the "root hub" code (these are emulated,
66 * though each HC's hardware works differently) and PCI glue, plus request
67 * tracking overhead. The HCD code should only block on spinlocks or on
68 * hardware handshaking; blocking on software events (such as other kernel
69 * threads releasing resources, or completing actions) is all generic.
70 *
71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
73 * only by the hub driver ... and that neither should be seen or used by
74 * usb client device drivers.
75 *
76 * Contributors of ideas or unattributed patches include: David Brownell,
77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
78 *
79 * HISTORY:
80 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
81 * associated cleanup. "usb_hcd" still != "usb_bus".
82 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
83 */
84
85/*-------------------------------------------------------------------------*/
86
87/* Keep track of which host controller drivers are loaded */
88unsigned long usb_hcds_loaded;
89EXPORT_SYMBOL_GPL(usb_hcds_loaded);
90
91/* host controllers we manage */
92LIST_HEAD (usb_bus_list);
93EXPORT_SYMBOL_GPL (usb_bus_list);
94
95/* used when allocating bus numbers */
96#define USB_MAXBUS 64
97static DECLARE_BITMAP(busmap, USB_MAXBUS);
98
99/* used when updating list of hcds */
100DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103/* used for controlling access to virtual root hubs */
104static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106/* used when updating an endpoint's URB list */
107static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109/* used to protect against unlinking URBs after the device is gone */
110static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111
112/* wait queue for synchronous unlinks */
113DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114
115static inline int is_root_hub(struct usb_device *udev)
116{
117 return (udev->parent == NULL);
118}
119
120/*-------------------------------------------------------------------------*/
121
122/*
123 * Sharable chunks of root hub code.
124 */
125
126/*-------------------------------------------------------------------------*/
127#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129
130/* usb 3.0 root hub device descriptor */
131static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149};
150
151/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
152static const u8 usb25_rh_dev_descriptor[18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170};
171
172/* usb 2.0 root hub device descriptor */
173static const u8 usb2_rh_dev_descriptor[18] = {
174 0x12, /* __u8 bLength; */
175 0x01, /* __u8 bDescriptorType; Device */
176 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
177
178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
179 0x00, /* __u8 bDeviceSubClass; */
180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
181 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
182
183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
186
187 0x03, /* __u8 iManufacturer; */
188 0x02, /* __u8 iProduct; */
189 0x01, /* __u8 iSerialNumber; */
190 0x01 /* __u8 bNumConfigurations; */
191};
192
193/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
194
195/* usb 1.1 root hub device descriptor */
196static const u8 usb11_rh_dev_descriptor[18] = {
197 0x12, /* __u8 bLength; */
198 0x01, /* __u8 bDescriptorType; Device */
199 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
200
201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
202 0x00, /* __u8 bDeviceSubClass; */
203 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
205
206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
207 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
209
210 0x03, /* __u8 iManufacturer; */
211 0x02, /* __u8 iProduct; */
212 0x01, /* __u8 iSerialNumber; */
213 0x01 /* __u8 bNumConfigurations; */
214};
215
216
217/*-------------------------------------------------------------------------*/
218
219/* Configuration descriptors for our root hubs */
220
221static const u8 fs_rh_config_descriptor[] = {
222
223 /* one configuration */
224 0x09, /* __u8 bLength; */
225 0x02, /* __u8 bDescriptorType; Configuration */
226 0x19, 0x00, /* __le16 wTotalLength; */
227 0x01, /* __u8 bNumInterfaces; (1) */
228 0x01, /* __u8 bConfigurationValue; */
229 0x00, /* __u8 iConfiguration; */
230 0xc0, /* __u8 bmAttributes;
231 Bit 7: must be set,
232 6: Self-powered,
233 5: Remote wakeup,
234 4..0: resvd */
235 0x00, /* __u8 MaxPower; */
236
237 /* USB 1.1:
238 * USB 2.0, single TT organization (mandatory):
239 * one interface, protocol 0
240 *
241 * USB 2.0, multiple TT organization (optional):
242 * two interfaces, protocols 1 (like single TT)
243 * and 2 (multiple TT mode) ... config is
244 * sometimes settable
245 * NOT IMPLEMENTED
246 */
247
248 /* one interface */
249 0x09, /* __u8 if_bLength; */
250 0x04, /* __u8 if_bDescriptorType; Interface */
251 0x00, /* __u8 if_bInterfaceNumber; */
252 0x00, /* __u8 if_bAlternateSetting; */
253 0x01, /* __u8 if_bNumEndpoints; */
254 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
255 0x00, /* __u8 if_bInterfaceSubClass; */
256 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
257 0x00, /* __u8 if_iInterface; */
258
259 /* one endpoint (status change endpoint) */
260 0x07, /* __u8 ep_bLength; */
261 0x05, /* __u8 ep_bDescriptorType; Endpoint */
262 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
263 0x03, /* __u8 ep_bmAttributes; Interrupt */
264 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
265 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
266};
267
268static const u8 hs_rh_config_descriptor[] = {
269
270 /* one configuration */
271 0x09, /* __u8 bLength; */
272 0x02, /* __u8 bDescriptorType; Configuration */
273 0x19, 0x00, /* __le16 wTotalLength; */
274 0x01, /* __u8 bNumInterfaces; (1) */
275 0x01, /* __u8 bConfigurationValue; */
276 0x00, /* __u8 iConfiguration; */
277 0xc0, /* __u8 bmAttributes;
278 Bit 7: must be set,
279 6: Self-powered,
280 5: Remote wakeup,
281 4..0: resvd */
282 0x00, /* __u8 MaxPower; */
283
284 /* USB 1.1:
285 * USB 2.0, single TT organization (mandatory):
286 * one interface, protocol 0
287 *
288 * USB 2.0, multiple TT organization (optional):
289 * two interfaces, protocols 1 (like single TT)
290 * and 2 (multiple TT mode) ... config is
291 * sometimes settable
292 * NOT IMPLEMENTED
293 */
294
295 /* one interface */
296 0x09, /* __u8 if_bLength; */
297 0x04, /* __u8 if_bDescriptorType; Interface */
298 0x00, /* __u8 if_bInterfaceNumber; */
299 0x00, /* __u8 if_bAlternateSetting; */
300 0x01, /* __u8 if_bNumEndpoints; */
301 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
302 0x00, /* __u8 if_bInterfaceSubClass; */
303 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
304 0x00, /* __u8 if_iInterface; */
305
306 /* one endpoint (status change endpoint) */
307 0x07, /* __u8 ep_bLength; */
308 0x05, /* __u8 ep_bDescriptorType; Endpoint */
309 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
310 0x03, /* __u8 ep_bmAttributes; Interrupt */
311 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
312 * see hub.c:hub_configure() for details. */
313 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
314 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
315};
316
317static const u8 ss_rh_config_descriptor[] = {
318 /* one configuration */
319 0x09, /* __u8 bLength; */
320 0x02, /* __u8 bDescriptorType; Configuration */
321 0x1f, 0x00, /* __le16 wTotalLength; */
322 0x01, /* __u8 bNumInterfaces; (1) */
323 0x01, /* __u8 bConfigurationValue; */
324 0x00, /* __u8 iConfiguration; */
325 0xc0, /* __u8 bmAttributes;
326 Bit 7: must be set,
327 6: Self-powered,
328 5: Remote wakeup,
329 4..0: resvd */
330 0x00, /* __u8 MaxPower; */
331
332 /* one interface */
333 0x09, /* __u8 if_bLength; */
334 0x04, /* __u8 if_bDescriptorType; Interface */
335 0x00, /* __u8 if_bInterfaceNumber; */
336 0x00, /* __u8 if_bAlternateSetting; */
337 0x01, /* __u8 if_bNumEndpoints; */
338 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
339 0x00, /* __u8 if_bInterfaceSubClass; */
340 0x00, /* __u8 if_bInterfaceProtocol; */
341 0x00, /* __u8 if_iInterface; */
342
343 /* one endpoint (status change endpoint) */
344 0x07, /* __u8 ep_bLength; */
345 0x05, /* __u8 ep_bDescriptorType; Endpoint */
346 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
347 0x03, /* __u8 ep_bmAttributes; Interrupt */
348 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
349 * see hub.c:hub_configure() for details. */
350 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
351 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
352
353 /* one SuperSpeed endpoint companion descriptor */
354 0x06, /* __u8 ss_bLength */
355 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
356 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
357 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
358 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
359};
360
361/* authorized_default behaviour:
362 * -1 is authorized for all devices except wireless (old behaviour)
363 * 0 is unauthorized for all devices
364 * 1 is authorized for all devices
365 */
366static int authorized_default = -1;
367module_param(authorized_default, int, S_IRUGO|S_IWUSR);
368MODULE_PARM_DESC(authorized_default,
369 "Default USB device authorization: 0 is not authorized, 1 is "
370 "authorized, -1 is authorized except for wireless USB (default, "
371 "old behaviour");
372/*-------------------------------------------------------------------------*/
373
374/**
375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
376 * @s: Null-terminated ASCII (actually ISO-8859-1) string
377 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
378 * @len: Length (in bytes; may be odd) of descriptor buffer.
379 *
380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
381 * whichever is less.
382 *
383 * Note:
384 * USB String descriptors can contain at most 126 characters; input
385 * strings longer than that are truncated.
386 */
387static unsigned
388ascii2desc(char const *s, u8 *buf, unsigned len)
389{
390 unsigned n, t = 2 + 2*strlen(s);
391
392 if (t > 254)
393 t = 254; /* Longest possible UTF string descriptor */
394 if (len > t)
395 len = t;
396
397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
398
399 n = len;
400 while (n--) {
401 *buf++ = t;
402 if (!n--)
403 break;
404 *buf++ = t >> 8;
405 t = (unsigned char)*s++;
406 }
407 return len;
408}
409
410/**
411 * rh_string() - provides string descriptors for root hub
412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
413 * @hcd: the host controller for this root hub
414 * @data: buffer for output packet
415 * @len: length of the provided buffer
416 *
417 * Produces either a manufacturer, product or serial number string for the
418 * virtual root hub device.
419 *
420 * Return: The number of bytes filled in: the length of the descriptor or
421 * of the provided buffer, whichever is less.
422 */
423static unsigned
424rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
425{
426 char buf[100];
427 char const *s;
428 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
429
430 /* language ids */
431 switch (id) {
432 case 0:
433 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
434 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
435 if (len > 4)
436 len = 4;
437 memcpy(data, langids, len);
438 return len;
439 case 1:
440 /* Serial number */
441 s = hcd->self.bus_name;
442 break;
443 case 2:
444 /* Product name */
445 s = hcd->product_desc;
446 break;
447 case 3:
448 /* Manufacturer */
449 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
450 init_utsname()->release, hcd->driver->description);
451 s = buf;
452 break;
453 default:
454 /* Can't happen; caller guarantees it */
455 return 0;
456 }
457
458 return ascii2desc(s, data, len);
459}
460
461
462/* Root hub control transfers execute synchronously */
463static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
464{
465 struct usb_ctrlrequest *cmd;
466 u16 typeReq, wValue, wIndex, wLength;
467 u8 *ubuf = urb->transfer_buffer;
468 unsigned len = 0;
469 int status;
470 u8 patch_wakeup = 0;
471 u8 patch_protocol = 0;
472 u16 tbuf_size;
473 u8 *tbuf = NULL;
474 const u8 *bufp;
475
476 might_sleep();
477
478 spin_lock_irq(&hcd_root_hub_lock);
479 status = usb_hcd_link_urb_to_ep(hcd, urb);
480 spin_unlock_irq(&hcd_root_hub_lock);
481 if (status)
482 return status;
483 urb->hcpriv = hcd; /* Indicate it's queued */
484
485 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
486 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
487 wValue = le16_to_cpu (cmd->wValue);
488 wIndex = le16_to_cpu (cmd->wIndex);
489 wLength = le16_to_cpu (cmd->wLength);
490
491 if (wLength > urb->transfer_buffer_length)
492 goto error;
493
494 /*
495 * tbuf should be at least as big as the
496 * USB hub descriptor.
497 */
498 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
499 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
500 if (!tbuf)
501 return -ENOMEM;
502
503 bufp = tbuf;
504
505
506 urb->actual_length = 0;
507 switch (typeReq) {
508
509 /* DEVICE REQUESTS */
510
511 /* The root hub's remote wakeup enable bit is implemented using
512 * driver model wakeup flags. If this system supports wakeup
513 * through USB, userspace may change the default "allow wakeup"
514 * policy through sysfs or these calls.
515 *
516 * Most root hubs support wakeup from downstream devices, for
517 * runtime power management (disabling USB clocks and reducing
518 * VBUS power usage). However, not all of them do so; silicon,
519 * board, and BIOS bugs here are not uncommon, so these can't
520 * be treated quite like external hubs.
521 *
522 * Likewise, not all root hubs will pass wakeup events upstream,
523 * to wake up the whole system. So don't assume root hub and
524 * controller capabilities are identical.
525 */
526
527 case DeviceRequest | USB_REQ_GET_STATUS:
528 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
529 << USB_DEVICE_REMOTE_WAKEUP)
530 | (1 << USB_DEVICE_SELF_POWERED);
531 tbuf[1] = 0;
532 len = 2;
533 break;
534 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
535 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
536 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
537 else
538 goto error;
539 break;
540 case DeviceOutRequest | USB_REQ_SET_FEATURE:
541 if (device_can_wakeup(&hcd->self.root_hub->dev)
542 && wValue == USB_DEVICE_REMOTE_WAKEUP)
543 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
544 else
545 goto error;
546 break;
547 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
548 tbuf[0] = 1;
549 len = 1;
550 /* FALLTHROUGH */
551 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
552 break;
553 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
554 switch (wValue & 0xff00) {
555 case USB_DT_DEVICE << 8:
556 switch (hcd->speed) {
557 case HCD_USB3:
558 bufp = usb3_rh_dev_descriptor;
559 break;
560 case HCD_USB25:
561 bufp = usb25_rh_dev_descriptor;
562 break;
563 case HCD_USB2:
564 bufp = usb2_rh_dev_descriptor;
565 break;
566 case HCD_USB11:
567 bufp = usb11_rh_dev_descriptor;
568 break;
569 default:
570 goto error;
571 }
572 len = 18;
573 if (hcd->has_tt)
574 patch_protocol = 1;
575 break;
576 case USB_DT_CONFIG << 8:
577 switch (hcd->speed) {
578 case HCD_USB3:
579 bufp = ss_rh_config_descriptor;
580 len = sizeof ss_rh_config_descriptor;
581 break;
582 case HCD_USB25:
583 case HCD_USB2:
584 bufp = hs_rh_config_descriptor;
585 len = sizeof hs_rh_config_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = fs_rh_config_descriptor;
589 len = sizeof fs_rh_config_descriptor;
590 break;
591 default:
592 goto error;
593 }
594 if (device_can_wakeup(&hcd->self.root_hub->dev))
595 patch_wakeup = 1;
596 break;
597 case USB_DT_STRING << 8:
598 if ((wValue & 0xff) < 4)
599 urb->actual_length = rh_string(wValue & 0xff,
600 hcd, ubuf, wLength);
601 else /* unsupported IDs --> "protocol stall" */
602 goto error;
603 break;
604 case USB_DT_BOS << 8:
605 goto nongeneric;
606 default:
607 goto error;
608 }
609 break;
610 case DeviceRequest | USB_REQ_GET_INTERFACE:
611 tbuf[0] = 0;
612 len = 1;
613 /* FALLTHROUGH */
614 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
615 break;
616 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
617 /* wValue == urb->dev->devaddr */
618 dev_dbg (hcd->self.controller, "root hub device address %d\n",
619 wValue);
620 break;
621
622 /* INTERFACE REQUESTS (no defined feature/status flags) */
623
624 /* ENDPOINT REQUESTS */
625
626 case EndpointRequest | USB_REQ_GET_STATUS:
627 /* ENDPOINT_HALT flag */
628 tbuf[0] = 0;
629 tbuf[1] = 0;
630 len = 2;
631 /* FALLTHROUGH */
632 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
633 case EndpointOutRequest | USB_REQ_SET_FEATURE:
634 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
635 break;
636
637 /* CLASS REQUESTS (and errors) */
638
639 default:
640nongeneric:
641 /* non-generic request */
642 switch (typeReq) {
643 case GetHubStatus:
644 case GetPortStatus:
645 len = 4;
646 break;
647 case GetHubDescriptor:
648 len = sizeof (struct usb_hub_descriptor);
649 break;
650 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
651 /* len is returned by hub_control */
652 break;
653 }
654 status = hcd->driver->hub_control (hcd,
655 typeReq, wValue, wIndex,
656 tbuf, wLength);
657
658 if (typeReq == GetHubDescriptor)
659 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
660 (struct usb_hub_descriptor *)tbuf);
661 break;
662error:
663 /* "protocol stall" on error */
664 status = -EPIPE;
665 }
666
667 if (status < 0) {
668 len = 0;
669 if (status != -EPIPE) {
670 dev_dbg (hcd->self.controller,
671 "CTRL: TypeReq=0x%x val=0x%x "
672 "idx=0x%x len=%d ==> %d\n",
673 typeReq, wValue, wIndex,
674 wLength, status);
675 }
676 } else if (status > 0) {
677 /* hub_control may return the length of data copied. */
678 len = status;
679 status = 0;
680 }
681 if (len) {
682 if (urb->transfer_buffer_length < len)
683 len = urb->transfer_buffer_length;
684 urb->actual_length = len;
685 /* always USB_DIR_IN, toward host */
686 memcpy (ubuf, bufp, len);
687
688 /* report whether RH hardware supports remote wakeup */
689 if (patch_wakeup &&
690 len > offsetof (struct usb_config_descriptor,
691 bmAttributes))
692 ((struct usb_config_descriptor *)ubuf)->bmAttributes
693 |= USB_CONFIG_ATT_WAKEUP;
694
695 /* report whether RH hardware has an integrated TT */
696 if (patch_protocol &&
697 len > offsetof(struct usb_device_descriptor,
698 bDeviceProtocol))
699 ((struct usb_device_descriptor *) ubuf)->
700 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
701 }
702
703 kfree(tbuf);
704
705 /* any errors get returned through the urb completion */
706 spin_lock_irq(&hcd_root_hub_lock);
707 usb_hcd_unlink_urb_from_ep(hcd, urb);
708 usb_hcd_giveback_urb(hcd, urb, status);
709 spin_unlock_irq(&hcd_root_hub_lock);
710 return 0;
711}
712
713/*-------------------------------------------------------------------------*/
714
715/*
716 * Root Hub interrupt transfers are polled using a timer if the
717 * driver requests it; otherwise the driver is responsible for
718 * calling usb_hcd_poll_rh_status() when an event occurs.
719 *
720 * Completions are called in_interrupt(), but they may or may not
721 * be in_irq().
722 */
723void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
724{
725 struct urb *urb;
726 int length;
727 unsigned long flags;
728 char buffer[6]; /* Any root hubs with > 31 ports? */
729
730 if (unlikely(!hcd->rh_pollable))
731 return;
732 if (!hcd->uses_new_polling && !hcd->status_urb)
733 return;
734
735 length = hcd->driver->hub_status_data(hcd, buffer);
736 if (length > 0) {
737
738 /* try to complete the status urb */
739 spin_lock_irqsave(&hcd_root_hub_lock, flags);
740 urb = hcd->status_urb;
741 if (urb) {
742 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
743 hcd->status_urb = NULL;
744 urb->actual_length = length;
745 memcpy(urb->transfer_buffer, buffer, length);
746
747 usb_hcd_unlink_urb_from_ep(hcd, urb);
748 usb_hcd_giveback_urb(hcd, urb, 0);
749 } else {
750 length = 0;
751 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
752 }
753 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
754 }
755
756 /* The USB 2.0 spec says 256 ms. This is close enough and won't
757 * exceed that limit if HZ is 100. The math is more clunky than
758 * maybe expected, this is to make sure that all timers for USB devices
759 * fire at the same time to give the CPU a break in between */
760 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
761 (length == 0 && hcd->status_urb != NULL))
762 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
763}
764EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
765
766/* timer callback */
767static void rh_timer_func (unsigned long _hcd)
768{
769 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
770}
771
772/*-------------------------------------------------------------------------*/
773
774static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
775{
776 int retval;
777 unsigned long flags;
778 unsigned len = 1 + (urb->dev->maxchild / 8);
779
780 spin_lock_irqsave (&hcd_root_hub_lock, flags);
781 if (hcd->status_urb || urb->transfer_buffer_length < len) {
782 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
783 retval = -EINVAL;
784 goto done;
785 }
786
787 retval = usb_hcd_link_urb_to_ep(hcd, urb);
788 if (retval)
789 goto done;
790
791 hcd->status_urb = urb;
792 urb->hcpriv = hcd; /* indicate it's queued */
793 if (!hcd->uses_new_polling)
794 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795
796 /* If a status change has already occurred, report it ASAP */
797 else if (HCD_POLL_PENDING(hcd))
798 mod_timer(&hcd->rh_timer, jiffies);
799 retval = 0;
800 done:
801 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
802 return retval;
803}
804
805static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
806{
807 if (usb_endpoint_xfer_int(&urb->ep->desc))
808 return rh_queue_status (hcd, urb);
809 if (usb_endpoint_xfer_control(&urb->ep->desc))
810 return rh_call_control (hcd, urb);
811 return -EINVAL;
812}
813
814/*-------------------------------------------------------------------------*/
815
816/* Unlinks of root-hub control URBs are legal, but they don't do anything
817 * since these URBs always execute synchronously.
818 */
819static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
820{
821 unsigned long flags;
822 int rc;
823
824 spin_lock_irqsave(&hcd_root_hub_lock, flags);
825 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
826 if (rc)
827 goto done;
828
829 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
830 ; /* Do nothing */
831
832 } else { /* Status URB */
833 if (!hcd->uses_new_polling)
834 del_timer (&hcd->rh_timer);
835 if (urb == hcd->status_urb) {
836 hcd->status_urb = NULL;
837 usb_hcd_unlink_urb_from_ep(hcd, urb);
838 usb_hcd_giveback_urb(hcd, urb, status);
839 }
840 }
841 done:
842 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
843 return rc;
844}
845
846
847
848/*
849 * Show & store the current value of authorized_default
850 */
851static ssize_t authorized_default_show(struct device *dev,
852 struct device_attribute *attr, char *buf)
853{
854 struct usb_device *rh_usb_dev = to_usb_device(dev);
855 struct usb_bus *usb_bus = rh_usb_dev->bus;
856 struct usb_hcd *usb_hcd;
857
858 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
859 return -ENODEV;
860 usb_hcd = bus_to_hcd(usb_bus);
861 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
862}
863
864static ssize_t authorized_default_store(struct device *dev,
865 struct device_attribute *attr,
866 const char *buf, size_t size)
867{
868 ssize_t result;
869 unsigned val;
870 struct usb_device *rh_usb_dev = to_usb_device(dev);
871 struct usb_bus *usb_bus = rh_usb_dev->bus;
872 struct usb_hcd *usb_hcd;
873
874 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
875 return -ENODEV;
876 usb_hcd = bus_to_hcd(usb_bus);
877 result = sscanf(buf, "%u\n", &val);
878 if (result == 1) {
879 usb_hcd->authorized_default = val ? 1 : 0;
880 result = size;
881 } else {
882 result = -EINVAL;
883 }
884 return result;
885}
886static DEVICE_ATTR_RW(authorized_default);
887
888/* Group all the USB bus attributes */
889static struct attribute *usb_bus_attrs[] = {
890 &dev_attr_authorized_default.attr,
891 NULL,
892};
893
894static struct attribute_group usb_bus_attr_group = {
895 .name = NULL, /* we want them in the same directory */
896 .attrs = usb_bus_attrs,
897};
898
899
900
901/*-------------------------------------------------------------------------*/
902
903/**
904 * usb_bus_init - shared initialization code
905 * @bus: the bus structure being initialized
906 *
907 * This code is used to initialize a usb_bus structure, memory for which is
908 * separately managed.
909 */
910static void usb_bus_init (struct usb_bus *bus)
911{
912 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
913
914 bus->devnum_next = 1;
915
916 bus->root_hub = NULL;
917 bus->busnum = -1;
918 bus->bandwidth_allocated = 0;
919 bus->bandwidth_int_reqs = 0;
920 bus->bandwidth_isoc_reqs = 0;
921
922 INIT_LIST_HEAD (&bus->bus_list);
923}
924
925/*-------------------------------------------------------------------------*/
926
927/**
928 * usb_register_bus - registers the USB host controller with the usb core
929 * @bus: pointer to the bus to register
930 * Context: !in_interrupt()
931 *
932 * Assigns a bus number, and links the controller into usbcore data
933 * structures so that it can be seen by scanning the bus list.
934 *
935 * Return: 0 if successful. A negative error code otherwise.
936 */
937static int usb_register_bus(struct usb_bus *bus)
938{
939 int result = -E2BIG;
940 int busnum;
941
942 mutex_lock(&usb_bus_list_lock);
943 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
944 if (busnum >= USB_MAXBUS) {
945 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
946 goto error_find_busnum;
947 }
948 set_bit(busnum, busmap);
949 bus->busnum = busnum;
950
951 /* Add it to the local list of buses */
952 list_add (&bus->bus_list, &usb_bus_list);
953 mutex_unlock(&usb_bus_list_lock);
954
955 usb_notify_add_bus(bus);
956
957 dev_info (bus->controller, "new USB bus registered, assigned bus "
958 "number %d\n", bus->busnum);
959 return 0;
960
961error_find_busnum:
962 mutex_unlock(&usb_bus_list_lock);
963 return result;
964}
965
966/**
967 * usb_deregister_bus - deregisters the USB host controller
968 * @bus: pointer to the bus to deregister
969 * Context: !in_interrupt()
970 *
971 * Recycles the bus number, and unlinks the controller from usbcore data
972 * structures so that it won't be seen by scanning the bus list.
973 */
974static void usb_deregister_bus (struct usb_bus *bus)
975{
976 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
977
978 /*
979 * NOTE: make sure that all the devices are removed by the
980 * controller code, as well as having it call this when cleaning
981 * itself up
982 */
983 mutex_lock(&usb_bus_list_lock);
984 list_del (&bus->bus_list);
985 mutex_unlock(&usb_bus_list_lock);
986
987 usb_notify_remove_bus(bus);
988
989 clear_bit(bus->busnum, busmap);
990}
991
992/**
993 * register_root_hub - called by usb_add_hcd() to register a root hub
994 * @hcd: host controller for this root hub
995 *
996 * This function registers the root hub with the USB subsystem. It sets up
997 * the device properly in the device tree and then calls usb_new_device()
998 * to register the usb device. It also assigns the root hub's USB address
999 * (always 1).
1000 *
1001 * Return: 0 if successful. A negative error code otherwise.
1002 */
1003static int register_root_hub(struct usb_hcd *hcd)
1004{
1005 struct device *parent_dev = hcd->self.controller;
1006 struct usb_device *usb_dev = hcd->self.root_hub;
1007 const int devnum = 1;
1008 int retval;
1009
1010 usb_dev->devnum = devnum;
1011 usb_dev->bus->devnum_next = devnum + 1;
1012 memset (&usb_dev->bus->devmap.devicemap, 0,
1013 sizeof usb_dev->bus->devmap.devicemap);
1014 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1015 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1016
1017 mutex_lock(&usb_bus_list_lock);
1018
1019 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1020 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1021 if (retval != sizeof usb_dev->descriptor) {
1022 mutex_unlock(&usb_bus_list_lock);
1023 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1024 dev_name(&usb_dev->dev), retval);
1025 return (retval < 0) ? retval : -EMSGSIZE;
1026 }
1027 if (usb_dev->speed == USB_SPEED_SUPER) {
1028 retval = usb_get_bos_descriptor(usb_dev);
1029 if (retval < 0) {
1030 mutex_unlock(&usb_bus_list_lock);
1031 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1032 dev_name(&usb_dev->dev), retval);
1033 return retval;
1034 }
1035 }
1036
1037 retval = usb_new_device (usb_dev);
1038 if (retval) {
1039 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1040 dev_name(&usb_dev->dev), retval);
1041 } else {
1042 spin_lock_irq (&hcd_root_hub_lock);
1043 hcd->rh_registered = 1;
1044 spin_unlock_irq (&hcd_root_hub_lock);
1045
1046 /* Did the HC die before the root hub was registered? */
1047 if (HCD_DEAD(hcd))
1048 usb_hc_died (hcd); /* This time clean up */
1049 }
1050 mutex_unlock(&usb_bus_list_lock);
1051
1052 return retval;
1053}
1054
1055/*
1056 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1057 * @bus: the bus which the root hub belongs to
1058 * @portnum: the port which is being resumed
1059 *
1060 * HCDs should call this function when they know that a resume signal is
1061 * being sent to a root-hub port. The root hub will be prevented from
1062 * going into autosuspend until usb_hcd_end_port_resume() is called.
1063 *
1064 * The bus's private lock must be held by the caller.
1065 */
1066void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1067{
1068 unsigned bit = 1 << portnum;
1069
1070 if (!(bus->resuming_ports & bit)) {
1071 bus->resuming_ports |= bit;
1072 pm_runtime_get_noresume(&bus->root_hub->dev);
1073 }
1074}
1075EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1076
1077/*
1078 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1079 * @bus: the bus which the root hub belongs to
1080 * @portnum: the port which is being resumed
1081 *
1082 * HCDs should call this function when they know that a resume signal has
1083 * stopped being sent to a root-hub port. The root hub will be allowed to
1084 * autosuspend again.
1085 *
1086 * The bus's private lock must be held by the caller.
1087 */
1088void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1089{
1090 unsigned bit = 1 << portnum;
1091
1092 if (bus->resuming_ports & bit) {
1093 bus->resuming_ports &= ~bit;
1094 pm_runtime_put_noidle(&bus->root_hub->dev);
1095 }
1096}
1097EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1098
1099/*-------------------------------------------------------------------------*/
1100
1101/**
1102 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1103 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1104 * @is_input: true iff the transaction sends data to the host
1105 * @isoc: true for isochronous transactions, false for interrupt ones
1106 * @bytecount: how many bytes in the transaction.
1107 *
1108 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1109 *
1110 * Note:
1111 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1112 * scheduled in software, this function is only used for such scheduling.
1113 */
1114long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1115{
1116 unsigned long tmp;
1117
1118 switch (speed) {
1119 case USB_SPEED_LOW: /* INTR only */
1120 if (is_input) {
1121 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1122 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1123 } else {
1124 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1125 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1126 }
1127 case USB_SPEED_FULL: /* ISOC or INTR */
1128 if (isoc) {
1129 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1130 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1131 } else {
1132 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1133 return 9107L + BW_HOST_DELAY + tmp;
1134 }
1135 case USB_SPEED_HIGH: /* ISOC or INTR */
1136 /* FIXME adjust for input vs output */
1137 if (isoc)
1138 tmp = HS_NSECS_ISO (bytecount);
1139 else
1140 tmp = HS_NSECS (bytecount);
1141 return tmp;
1142 default:
1143 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1144 return -1;
1145 }
1146}
1147EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1148
1149
1150/*-------------------------------------------------------------------------*/
1151
1152/*
1153 * Generic HC operations.
1154 */
1155
1156/*-------------------------------------------------------------------------*/
1157
1158/**
1159 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1160 * @hcd: host controller to which @urb was submitted
1161 * @urb: URB being submitted
1162 *
1163 * Host controller drivers should call this routine in their enqueue()
1164 * method. The HCD's private spinlock must be held and interrupts must
1165 * be disabled. The actions carried out here are required for URB
1166 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1167 *
1168 * Return: 0 for no error, otherwise a negative error code (in which case
1169 * the enqueue() method must fail). If no error occurs but enqueue() fails
1170 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1171 * the private spinlock and returning.
1172 */
1173int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1174{
1175 int rc = 0;
1176
1177 spin_lock(&hcd_urb_list_lock);
1178
1179 /* Check that the URB isn't being killed */
1180 if (unlikely(atomic_read(&urb->reject))) {
1181 rc = -EPERM;
1182 goto done;
1183 }
1184
1185 if (unlikely(!urb->ep->enabled)) {
1186 rc = -ENOENT;
1187 goto done;
1188 }
1189
1190 if (unlikely(!urb->dev->can_submit)) {
1191 rc = -EHOSTUNREACH;
1192 goto done;
1193 }
1194
1195 /*
1196 * Check the host controller's state and add the URB to the
1197 * endpoint's queue.
1198 */
1199 if (HCD_RH_RUNNING(hcd)) {
1200 urb->unlinked = 0;
1201 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1202 } else {
1203 rc = -ESHUTDOWN;
1204 goto done;
1205 }
1206 done:
1207 spin_unlock(&hcd_urb_list_lock);
1208 return rc;
1209}
1210EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1211
1212/**
1213 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1214 * @hcd: host controller to which @urb was submitted
1215 * @urb: URB being checked for unlinkability
1216 * @status: error code to store in @urb if the unlink succeeds
1217 *
1218 * Host controller drivers should call this routine in their dequeue()
1219 * method. The HCD's private spinlock must be held and interrupts must
1220 * be disabled. The actions carried out here are required for making
1221 * sure than an unlink is valid.
1222 *
1223 * Return: 0 for no error, otherwise a negative error code (in which case
1224 * the dequeue() method must fail). The possible error codes are:
1225 *
1226 * -EIDRM: @urb was not submitted or has already completed.
1227 * The completion function may not have been called yet.
1228 *
1229 * -EBUSY: @urb has already been unlinked.
1230 */
1231int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1232 int status)
1233{
1234 struct list_head *tmp;
1235
1236 /* insist the urb is still queued */
1237 list_for_each(tmp, &urb->ep->urb_list) {
1238 if (tmp == &urb->urb_list)
1239 break;
1240 }
1241 if (tmp != &urb->urb_list)
1242 return -EIDRM;
1243
1244 /* Any status except -EINPROGRESS means something already started to
1245 * unlink this URB from the hardware. So there's no more work to do.
1246 */
1247 if (urb->unlinked)
1248 return -EBUSY;
1249 urb->unlinked = status;
1250 return 0;
1251}
1252EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1253
1254/**
1255 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1256 * @hcd: host controller to which @urb was submitted
1257 * @urb: URB being unlinked
1258 *
1259 * Host controller drivers should call this routine before calling
1260 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1261 * interrupts must be disabled. The actions carried out here are required
1262 * for URB completion.
1263 */
1264void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1265{
1266 /* clear all state linking urb to this dev (and hcd) */
1267 spin_lock(&hcd_urb_list_lock);
1268 list_del_init(&urb->urb_list);
1269 spin_unlock(&hcd_urb_list_lock);
1270}
1271EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1272
1273/*
1274 * Some usb host controllers can only perform dma using a small SRAM area.
1275 * The usb core itself is however optimized for host controllers that can dma
1276 * using regular system memory - like pci devices doing bus mastering.
1277 *
1278 * To support host controllers with limited dma capabilites we provide dma
1279 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1280 * For this to work properly the host controller code must first use the
1281 * function dma_declare_coherent_memory() to point out which memory area
1282 * that should be used for dma allocations.
1283 *
1284 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1285 * dma using dma_alloc_coherent() which in turn allocates from the memory
1286 * area pointed out with dma_declare_coherent_memory().
1287 *
1288 * So, to summarize...
1289 *
1290 * - We need "local" memory, canonical example being
1291 * a small SRAM on a discrete controller being the
1292 * only memory that the controller can read ...
1293 * (a) "normal" kernel memory is no good, and
1294 * (b) there's not enough to share
1295 *
1296 * - The only *portable* hook for such stuff in the
1297 * DMA framework is dma_declare_coherent_memory()
1298 *
1299 * - So we use that, even though the primary requirement
1300 * is that the memory be "local" (hence addressable
1301 * by that device), not "coherent".
1302 *
1303 */
1304
1305static int hcd_alloc_coherent(struct usb_bus *bus,
1306 gfp_t mem_flags, dma_addr_t *dma_handle,
1307 void **vaddr_handle, size_t size,
1308 enum dma_data_direction dir)
1309{
1310 unsigned char *vaddr;
1311
1312 if (*vaddr_handle == NULL) {
1313 WARN_ON_ONCE(1);
1314 return -EFAULT;
1315 }
1316
1317 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1318 mem_flags, dma_handle);
1319 if (!vaddr)
1320 return -ENOMEM;
1321
1322 /*
1323 * Store the virtual address of the buffer at the end
1324 * of the allocated dma buffer. The size of the buffer
1325 * may be uneven so use unaligned functions instead
1326 * of just rounding up. It makes sense to optimize for
1327 * memory footprint over access speed since the amount
1328 * of memory available for dma may be limited.
1329 */
1330 put_unaligned((unsigned long)*vaddr_handle,
1331 (unsigned long *)(vaddr + size));
1332
1333 if (dir == DMA_TO_DEVICE)
1334 memcpy(vaddr, *vaddr_handle, size);
1335
1336 *vaddr_handle = vaddr;
1337 return 0;
1338}
1339
1340static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1341 void **vaddr_handle, size_t size,
1342 enum dma_data_direction dir)
1343{
1344 unsigned char *vaddr = *vaddr_handle;
1345
1346 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1347
1348 if (dir == DMA_FROM_DEVICE)
1349 memcpy(vaddr, *vaddr_handle, size);
1350
1351 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1352
1353 *vaddr_handle = vaddr;
1354 *dma_handle = 0;
1355}
1356
1357void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1358{
1359 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1360 dma_unmap_single(hcd->self.controller,
1361 urb->setup_dma,
1362 sizeof(struct usb_ctrlrequest),
1363 DMA_TO_DEVICE);
1364 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1365 hcd_free_coherent(urb->dev->bus,
1366 &urb->setup_dma,
1367 (void **) &urb->setup_packet,
1368 sizeof(struct usb_ctrlrequest),
1369 DMA_TO_DEVICE);
1370
1371 /* Make it safe to call this routine more than once */
1372 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1373}
1374EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1375
1376static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1377{
1378 if (hcd->driver->unmap_urb_for_dma)
1379 hcd->driver->unmap_urb_for_dma(hcd, urb);
1380 else
1381 usb_hcd_unmap_urb_for_dma(hcd, urb);
1382}
1383
1384void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1385{
1386 enum dma_data_direction dir;
1387
1388 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1389
1390 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1391 if (urb->transfer_flags & URB_DMA_MAP_SG)
1392 dma_unmap_sg(hcd->self.controller,
1393 urb->sg,
1394 urb->num_sgs,
1395 dir);
1396 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1397 dma_unmap_page(hcd->self.controller,
1398 urb->transfer_dma,
1399 urb->transfer_buffer_length,
1400 dir);
1401 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1402 dma_unmap_single(hcd->self.controller,
1403 urb->transfer_dma,
1404 urb->transfer_buffer_length,
1405 dir);
1406 else if (urb->transfer_flags & URB_MAP_LOCAL)
1407 hcd_free_coherent(urb->dev->bus,
1408 &urb->transfer_dma,
1409 &urb->transfer_buffer,
1410 urb->transfer_buffer_length,
1411 dir);
1412
1413 /* Make it safe to call this routine more than once */
1414 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1415 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1416}
1417EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1418
1419static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1420 gfp_t mem_flags)
1421{
1422 if (hcd->driver->map_urb_for_dma)
1423 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1424 else
1425 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1426}
1427
1428int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1429 gfp_t mem_flags)
1430{
1431 enum dma_data_direction dir;
1432 int ret = 0;
1433
1434 /* Map the URB's buffers for DMA access.
1435 * Lower level HCD code should use *_dma exclusively,
1436 * unless it uses pio or talks to another transport,
1437 * or uses the provided scatter gather list for bulk.
1438 */
1439
1440 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1441 if (hcd->self.uses_pio_for_control)
1442 return ret;
1443 if (hcd->self.uses_dma) {
1444 urb->setup_dma = dma_map_single(
1445 hcd->self.controller,
1446 urb->setup_packet,
1447 sizeof(struct usb_ctrlrequest),
1448 DMA_TO_DEVICE);
1449 if (dma_mapping_error(hcd->self.controller,
1450 urb->setup_dma))
1451 return -EAGAIN;
1452 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1453 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1454 ret = hcd_alloc_coherent(
1455 urb->dev->bus, mem_flags,
1456 &urb->setup_dma,
1457 (void **)&urb->setup_packet,
1458 sizeof(struct usb_ctrlrequest),
1459 DMA_TO_DEVICE);
1460 if (ret)
1461 return ret;
1462 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1463 }
1464 }
1465
1466 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1467 if (urb->transfer_buffer_length != 0
1468 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1469 if (hcd->self.uses_dma) {
1470 if (urb->num_sgs) {
1471 int n;
1472
1473 /* We don't support sg for isoc transfers ! */
1474 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1475 WARN_ON(1);
1476 return -EINVAL;
1477 }
1478
1479 n = dma_map_sg(
1480 hcd->self.controller,
1481 urb->sg,
1482 urb->num_sgs,
1483 dir);
1484 if (n <= 0)
1485 ret = -EAGAIN;
1486 else
1487 urb->transfer_flags |= URB_DMA_MAP_SG;
1488 urb->num_mapped_sgs = n;
1489 if (n != urb->num_sgs)
1490 urb->transfer_flags |=
1491 URB_DMA_SG_COMBINED;
1492 } else if (urb->sg) {
1493 struct scatterlist *sg = urb->sg;
1494 urb->transfer_dma = dma_map_page(
1495 hcd->self.controller,
1496 sg_page(sg),
1497 sg->offset,
1498 urb->transfer_buffer_length,
1499 dir);
1500 if (dma_mapping_error(hcd->self.controller,
1501 urb->transfer_dma))
1502 ret = -EAGAIN;
1503 else
1504 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1505 } else {
1506 urb->transfer_dma = dma_map_single(
1507 hcd->self.controller,
1508 urb->transfer_buffer,
1509 urb->transfer_buffer_length,
1510 dir);
1511 if (dma_mapping_error(hcd->self.controller,
1512 urb->transfer_dma))
1513 ret = -EAGAIN;
1514 else
1515 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1516 }
1517 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1518 ret = hcd_alloc_coherent(
1519 urb->dev->bus, mem_flags,
1520 &urb->transfer_dma,
1521 &urb->transfer_buffer,
1522 urb->transfer_buffer_length,
1523 dir);
1524 if (ret == 0)
1525 urb->transfer_flags |= URB_MAP_LOCAL;
1526 }
1527 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1528 URB_SETUP_MAP_LOCAL)))
1529 usb_hcd_unmap_urb_for_dma(hcd, urb);
1530 }
1531 return ret;
1532}
1533EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1534
1535/*-------------------------------------------------------------------------*/
1536
1537/* may be called in any context with a valid urb->dev usecount
1538 * caller surrenders "ownership" of urb
1539 * expects usb_submit_urb() to have sanity checked and conditioned all
1540 * inputs in the urb
1541 */
1542int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1543{
1544 int status;
1545 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1546
1547 /* increment urb's reference count as part of giving it to the HCD
1548 * (which will control it). HCD guarantees that it either returns
1549 * an error or calls giveback(), but not both.
1550 */
1551 usb_get_urb(urb);
1552 atomic_inc(&urb->use_count);
1553 atomic_inc(&urb->dev->urbnum);
1554 usbmon_urb_submit(&hcd->self, urb);
1555
1556 /* NOTE requirements on root-hub callers (usbfs and the hub
1557 * driver, for now): URBs' urb->transfer_buffer must be
1558 * valid and usb_buffer_{sync,unmap}() not be needed, since
1559 * they could clobber root hub response data. Also, control
1560 * URBs must be submitted in process context with interrupts
1561 * enabled.
1562 */
1563
1564 if (is_root_hub(urb->dev)) {
1565 status = rh_urb_enqueue(hcd, urb);
1566 } else {
1567 status = map_urb_for_dma(hcd, urb, mem_flags);
1568 if (likely(status == 0)) {
1569 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1570 if (unlikely(status))
1571 unmap_urb_for_dma(hcd, urb);
1572 }
1573 }
1574
1575 if (unlikely(status)) {
1576 usbmon_urb_submit_error(&hcd->self, urb, status);
1577 urb->hcpriv = NULL;
1578 INIT_LIST_HEAD(&urb->urb_list);
1579 atomic_dec(&urb->use_count);
1580 atomic_dec(&urb->dev->urbnum);
1581 if (atomic_read(&urb->reject))
1582 wake_up(&usb_kill_urb_queue);
1583 usb_put_urb(urb);
1584 }
1585 return status;
1586}
1587
1588/*-------------------------------------------------------------------------*/
1589
1590/* this makes the hcd giveback() the urb more quickly, by kicking it
1591 * off hardware queues (which may take a while) and returning it as
1592 * soon as practical. we've already set up the urb's return status,
1593 * but we can't know if the callback completed already.
1594 */
1595static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1596{
1597 int value;
1598
1599 if (is_root_hub(urb->dev))
1600 value = usb_rh_urb_dequeue(hcd, urb, status);
1601 else {
1602
1603 /* The only reason an HCD might fail this call is if
1604 * it has not yet fully queued the urb to begin with.
1605 * Such failures should be harmless. */
1606 value = hcd->driver->urb_dequeue(hcd, urb, status);
1607 }
1608 return value;
1609}
1610
1611/*
1612 * called in any context
1613 *
1614 * caller guarantees urb won't be recycled till both unlink()
1615 * and the urb's completion function return
1616 */
1617int usb_hcd_unlink_urb (struct urb *urb, int status)
1618{
1619 struct usb_hcd *hcd;
1620 int retval = -EIDRM;
1621 unsigned long flags;
1622
1623 /* Prevent the device and bus from going away while
1624 * the unlink is carried out. If they are already gone
1625 * then urb->use_count must be 0, since disconnected
1626 * devices can't have any active URBs.
1627 */
1628 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1629 if (atomic_read(&urb->use_count) > 0) {
1630 retval = 0;
1631 usb_get_dev(urb->dev);
1632 }
1633 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1634 if (retval == 0) {
1635 hcd = bus_to_hcd(urb->dev->bus);
1636 retval = unlink1(hcd, urb, status);
1637 usb_put_dev(urb->dev);
1638 }
1639
1640 if (retval == 0)
1641 retval = -EINPROGRESS;
1642 else if (retval != -EIDRM && retval != -EBUSY)
1643 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1644 urb, retval);
1645 return retval;
1646}
1647
1648/*-------------------------------------------------------------------------*/
1649
1650static void __usb_hcd_giveback_urb(struct urb *urb)
1651{
1652 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1653 struct usb_anchor *anchor = urb->anchor;
1654 int status = urb->unlinked;
1655 unsigned long flags;
1656
1657 urb->hcpriv = NULL;
1658 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1659 urb->actual_length < urb->transfer_buffer_length &&
1660 !status))
1661 status = -EREMOTEIO;
1662
1663 unmap_urb_for_dma(hcd, urb);
1664 usbmon_urb_complete(&hcd->self, urb, status);
1665 usb_anchor_suspend_wakeups(anchor);
1666 usb_unanchor_urb(urb);
1667
1668 /* pass ownership to the completion handler */
1669 urb->status = status;
1670
1671 /*
1672 * We disable local IRQs here avoid possible deadlock because
1673 * drivers may call spin_lock() to hold lock which might be
1674 * acquired in one hard interrupt handler.
1675 *
1676 * The local_irq_save()/local_irq_restore() around complete()
1677 * will be removed if current USB drivers have been cleaned up
1678 * and no one may trigger the above deadlock situation when
1679 * running complete() in tasklet.
1680 */
1681 local_irq_save(flags);
1682 urb->complete(urb);
1683 local_irq_restore(flags);
1684
1685 usb_anchor_resume_wakeups(anchor);
1686 atomic_dec(&urb->use_count);
1687 if (unlikely(atomic_read(&urb->reject)))
1688 wake_up(&usb_kill_urb_queue);
1689 usb_put_urb(urb);
1690}
1691
1692static void usb_giveback_urb_bh(unsigned long param)
1693{
1694 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1695 struct list_head local_list;
1696
1697 spin_lock_irq(&bh->lock);
1698 bh->running = true;
1699 restart:
1700 list_replace_init(&bh->head, &local_list);
1701 spin_unlock_irq(&bh->lock);
1702
1703 while (!list_empty(&local_list)) {
1704 struct urb *urb;
1705
1706 urb = list_entry(local_list.next, struct urb, urb_list);
1707 list_del_init(&urb->urb_list);
1708 bh->completing_ep = urb->ep;
1709 __usb_hcd_giveback_urb(urb);
1710 bh->completing_ep = NULL;
1711 }
1712
1713 /* check if there are new URBs to giveback */
1714 spin_lock_irq(&bh->lock);
1715 if (!list_empty(&bh->head))
1716 goto restart;
1717 bh->running = false;
1718 spin_unlock_irq(&bh->lock);
1719}
1720
1721/**
1722 * usb_hcd_giveback_urb - return URB from HCD to device driver
1723 * @hcd: host controller returning the URB
1724 * @urb: urb being returned to the USB device driver.
1725 * @status: completion status code for the URB.
1726 * Context: in_interrupt()
1727 *
1728 * This hands the URB from HCD to its USB device driver, using its
1729 * completion function. The HCD has freed all per-urb resources
1730 * (and is done using urb->hcpriv). It also released all HCD locks;
1731 * the device driver won't cause problems if it frees, modifies,
1732 * or resubmits this URB.
1733 *
1734 * If @urb was unlinked, the value of @status will be overridden by
1735 * @urb->unlinked. Erroneous short transfers are detected in case
1736 * the HCD hasn't checked for them.
1737 */
1738void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1739{
1740 struct giveback_urb_bh *bh;
1741 bool running, high_prio_bh;
1742
1743 /* pass status to tasklet via unlinked */
1744 if (likely(!urb->unlinked))
1745 urb->unlinked = status;
1746
1747 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1748 __usb_hcd_giveback_urb(urb);
1749 return;
1750 }
1751
1752 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1753 bh = &hcd->high_prio_bh;
1754 high_prio_bh = true;
1755 } else {
1756 bh = &hcd->low_prio_bh;
1757 high_prio_bh = false;
1758 }
1759
1760 spin_lock(&bh->lock);
1761 list_add_tail(&urb->urb_list, &bh->head);
1762 running = bh->running;
1763 spin_unlock(&bh->lock);
1764
1765 if (running)
1766 ;
1767 else if (high_prio_bh)
1768 tasklet_hi_schedule(&bh->bh);
1769 else
1770 tasklet_schedule(&bh->bh);
1771}
1772EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1773
1774/*-------------------------------------------------------------------------*/
1775
1776/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1777 * queue to drain completely. The caller must first insure that no more
1778 * URBs can be submitted for this endpoint.
1779 */
1780void usb_hcd_flush_endpoint(struct usb_device *udev,
1781 struct usb_host_endpoint *ep)
1782{
1783 struct usb_hcd *hcd;
1784 struct urb *urb;
1785
1786 if (!ep)
1787 return;
1788 might_sleep();
1789 hcd = bus_to_hcd(udev->bus);
1790
1791 /* No more submits can occur */
1792 spin_lock_irq(&hcd_urb_list_lock);
1793rescan:
1794 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1795 int is_in;
1796
1797 if (urb->unlinked)
1798 continue;
1799 usb_get_urb (urb);
1800 is_in = usb_urb_dir_in(urb);
1801 spin_unlock(&hcd_urb_list_lock);
1802
1803 /* kick hcd */
1804 unlink1(hcd, urb, -ESHUTDOWN);
1805 dev_dbg (hcd->self.controller,
1806 "shutdown urb %p ep%d%s%s\n",
1807 urb, usb_endpoint_num(&ep->desc),
1808 is_in ? "in" : "out",
1809 ({ char *s;
1810
1811 switch (usb_endpoint_type(&ep->desc)) {
1812 case USB_ENDPOINT_XFER_CONTROL:
1813 s = ""; break;
1814 case USB_ENDPOINT_XFER_BULK:
1815 s = "-bulk"; break;
1816 case USB_ENDPOINT_XFER_INT:
1817 s = "-intr"; break;
1818 default:
1819 s = "-iso"; break;
1820 };
1821 s;
1822 }));
1823 usb_put_urb (urb);
1824
1825 /* list contents may have changed */
1826 spin_lock(&hcd_urb_list_lock);
1827 goto rescan;
1828 }
1829 spin_unlock_irq(&hcd_urb_list_lock);
1830
1831 /* Wait until the endpoint queue is completely empty */
1832 while (!list_empty (&ep->urb_list)) {
1833 spin_lock_irq(&hcd_urb_list_lock);
1834
1835 /* The list may have changed while we acquired the spinlock */
1836 urb = NULL;
1837 if (!list_empty (&ep->urb_list)) {
1838 urb = list_entry (ep->urb_list.prev, struct urb,
1839 urb_list);
1840 usb_get_urb (urb);
1841 }
1842 spin_unlock_irq(&hcd_urb_list_lock);
1843
1844 if (urb) {
1845 usb_kill_urb (urb);
1846 usb_put_urb (urb);
1847 }
1848 }
1849}
1850
1851/**
1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1853 * the bus bandwidth
1854 * @udev: target &usb_device
1855 * @new_config: new configuration to install
1856 * @cur_alt: the current alternate interface setting
1857 * @new_alt: alternate interface setting that is being installed
1858 *
1859 * To change configurations, pass in the new configuration in new_config,
1860 * and pass NULL for cur_alt and new_alt.
1861 *
1862 * To reset a device's configuration (put the device in the ADDRESSED state),
1863 * pass in NULL for new_config, cur_alt, and new_alt.
1864 *
1865 * To change alternate interface settings, pass in NULL for new_config,
1866 * pass in the current alternate interface setting in cur_alt,
1867 * and pass in the new alternate interface setting in new_alt.
1868 *
1869 * Return: An error if the requested bandwidth change exceeds the
1870 * bus bandwidth or host controller internal resources.
1871 */
1872int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1873 struct usb_host_config *new_config,
1874 struct usb_host_interface *cur_alt,
1875 struct usb_host_interface *new_alt)
1876{
1877 int num_intfs, i, j;
1878 struct usb_host_interface *alt = NULL;
1879 int ret = 0;
1880 struct usb_hcd *hcd;
1881 struct usb_host_endpoint *ep;
1882
1883 hcd = bus_to_hcd(udev->bus);
1884 if (!hcd->driver->check_bandwidth)
1885 return 0;
1886
1887 /* Configuration is being removed - set configuration 0 */
1888 if (!new_config && !cur_alt) {
1889 for (i = 1; i < 16; ++i) {
1890 ep = udev->ep_out[i];
1891 if (ep)
1892 hcd->driver->drop_endpoint(hcd, udev, ep);
1893 ep = udev->ep_in[i];
1894 if (ep)
1895 hcd->driver->drop_endpoint(hcd, udev, ep);
1896 }
1897 hcd->driver->check_bandwidth(hcd, udev);
1898 return 0;
1899 }
1900 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1901 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1902 * of the bus. There will always be bandwidth for endpoint 0, so it's
1903 * ok to exclude it.
1904 */
1905 if (new_config) {
1906 num_intfs = new_config->desc.bNumInterfaces;
1907 /* Remove endpoints (except endpoint 0, which is always on the
1908 * schedule) from the old config from the schedule
1909 */
1910 for (i = 1; i < 16; ++i) {
1911 ep = udev->ep_out[i];
1912 if (ep) {
1913 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1914 if (ret < 0)
1915 goto reset;
1916 }
1917 ep = udev->ep_in[i];
1918 if (ep) {
1919 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920 if (ret < 0)
1921 goto reset;
1922 }
1923 }
1924 for (i = 0; i < num_intfs; ++i) {
1925 struct usb_host_interface *first_alt;
1926 int iface_num;
1927
1928 first_alt = &new_config->intf_cache[i]->altsetting[0];
1929 iface_num = first_alt->desc.bInterfaceNumber;
1930 /* Set up endpoints for alternate interface setting 0 */
1931 alt = usb_find_alt_setting(new_config, iface_num, 0);
1932 if (!alt)
1933 /* No alt setting 0? Pick the first setting. */
1934 alt = first_alt;
1935
1936 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1937 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1938 if (ret < 0)
1939 goto reset;
1940 }
1941 }
1942 }
1943 if (cur_alt && new_alt) {
1944 struct usb_interface *iface = usb_ifnum_to_if(udev,
1945 cur_alt->desc.bInterfaceNumber);
1946
1947 if (!iface)
1948 return -EINVAL;
1949 if (iface->resetting_device) {
1950 /*
1951 * The USB core just reset the device, so the xHCI host
1952 * and the device will think alt setting 0 is installed.
1953 * However, the USB core will pass in the alternate
1954 * setting installed before the reset as cur_alt. Dig
1955 * out the alternate setting 0 structure, or the first
1956 * alternate setting if a broken device doesn't have alt
1957 * setting 0.
1958 */
1959 cur_alt = usb_altnum_to_altsetting(iface, 0);
1960 if (!cur_alt)
1961 cur_alt = &iface->altsetting[0];
1962 }
1963
1964 /* Drop all the endpoints in the current alt setting */
1965 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1966 ret = hcd->driver->drop_endpoint(hcd, udev,
1967 &cur_alt->endpoint[i]);
1968 if (ret < 0)
1969 goto reset;
1970 }
1971 /* Add all the endpoints in the new alt setting */
1972 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1973 ret = hcd->driver->add_endpoint(hcd, udev,
1974 &new_alt->endpoint[i]);
1975 if (ret < 0)
1976 goto reset;
1977 }
1978 }
1979 ret = hcd->driver->check_bandwidth(hcd, udev);
1980reset:
1981 if (ret < 0)
1982 hcd->driver->reset_bandwidth(hcd, udev);
1983 return ret;
1984}
1985
1986/* Disables the endpoint: synchronizes with the hcd to make sure all
1987 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1988 * have been called previously. Use for set_configuration, set_interface,
1989 * driver removal, physical disconnect.
1990 *
1991 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1992 * type, maxpacket size, toggle, halt status, and scheduling.
1993 */
1994void usb_hcd_disable_endpoint(struct usb_device *udev,
1995 struct usb_host_endpoint *ep)
1996{
1997 struct usb_hcd *hcd;
1998
1999 might_sleep();
2000 hcd = bus_to_hcd(udev->bus);
2001 if (hcd->driver->endpoint_disable)
2002 hcd->driver->endpoint_disable(hcd, ep);
2003}
2004
2005/**
2006 * usb_hcd_reset_endpoint - reset host endpoint state
2007 * @udev: USB device.
2008 * @ep: the endpoint to reset.
2009 *
2010 * Resets any host endpoint state such as the toggle bit, sequence
2011 * number and current window.
2012 */
2013void usb_hcd_reset_endpoint(struct usb_device *udev,
2014 struct usb_host_endpoint *ep)
2015{
2016 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2017
2018 if (hcd->driver->endpoint_reset)
2019 hcd->driver->endpoint_reset(hcd, ep);
2020 else {
2021 int epnum = usb_endpoint_num(&ep->desc);
2022 int is_out = usb_endpoint_dir_out(&ep->desc);
2023 int is_control = usb_endpoint_xfer_control(&ep->desc);
2024
2025 usb_settoggle(udev, epnum, is_out, 0);
2026 if (is_control)
2027 usb_settoggle(udev, epnum, !is_out, 0);
2028 }
2029}
2030
2031/**
2032 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2033 * @interface: alternate setting that includes all endpoints.
2034 * @eps: array of endpoints that need streams.
2035 * @num_eps: number of endpoints in the array.
2036 * @num_streams: number of streams to allocate.
2037 * @mem_flags: flags hcd should use to allocate memory.
2038 *
2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2040 * Drivers may queue multiple transfers to different stream IDs, which may
2041 * complete in a different order than they were queued.
2042 *
2043 * Return: On success, the number of allocated streams. On failure, a negative
2044 * error code.
2045 */
2046int usb_alloc_streams(struct usb_interface *interface,
2047 struct usb_host_endpoint **eps, unsigned int num_eps,
2048 unsigned int num_streams, gfp_t mem_flags)
2049{
2050 struct usb_hcd *hcd;
2051 struct usb_device *dev;
2052 int i, ret;
2053
2054 dev = interface_to_usbdev(interface);
2055 hcd = bus_to_hcd(dev->bus);
2056 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2057 return -EINVAL;
2058 if (dev->speed != USB_SPEED_SUPER)
2059 return -EINVAL;
2060
2061 for (i = 0; i < num_eps; i++) {
2062 /* Streams only apply to bulk endpoints. */
2063 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2064 return -EINVAL;
2065 /* Re-alloc is not allowed */
2066 if (eps[i]->streams)
2067 return -EINVAL;
2068 }
2069
2070 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2071 num_streams, mem_flags);
2072 if (ret < 0)
2073 return ret;
2074
2075 for (i = 0; i < num_eps; i++)
2076 eps[i]->streams = ret;
2077
2078 return ret;
2079}
2080EXPORT_SYMBOL_GPL(usb_alloc_streams);
2081
2082/**
2083 * usb_free_streams - free bulk endpoint stream IDs.
2084 * @interface: alternate setting that includes all endpoints.
2085 * @eps: array of endpoints to remove streams from.
2086 * @num_eps: number of endpoints in the array.
2087 * @mem_flags: flags hcd should use to allocate memory.
2088 *
2089 * Reverts a group of bulk endpoints back to not using stream IDs.
2090 * Can fail if we are given bad arguments, or HCD is broken.
2091 *
2092 * Return: 0 on success. On failure, a negative error code.
2093 */
2094int usb_free_streams(struct usb_interface *interface,
2095 struct usb_host_endpoint **eps, unsigned int num_eps,
2096 gfp_t mem_flags)
2097{
2098 struct usb_hcd *hcd;
2099 struct usb_device *dev;
2100 int i, ret;
2101
2102 dev = interface_to_usbdev(interface);
2103 hcd = bus_to_hcd(dev->bus);
2104 if (dev->speed != USB_SPEED_SUPER)
2105 return -EINVAL;
2106
2107 /* Double-free is not allowed */
2108 for (i = 0; i < num_eps; i++)
2109 if (!eps[i] || !eps[i]->streams)
2110 return -EINVAL;
2111
2112 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2113 if (ret < 0)
2114 return ret;
2115
2116 for (i = 0; i < num_eps; i++)
2117 eps[i]->streams = 0;
2118
2119 return ret;
2120}
2121EXPORT_SYMBOL_GPL(usb_free_streams);
2122
2123/* Protect against drivers that try to unlink URBs after the device
2124 * is gone, by waiting until all unlinks for @udev are finished.
2125 * Since we don't currently track URBs by device, simply wait until
2126 * nothing is running in the locked region of usb_hcd_unlink_urb().
2127 */
2128void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2129{
2130 spin_lock_irq(&hcd_urb_unlink_lock);
2131 spin_unlock_irq(&hcd_urb_unlink_lock);
2132}
2133
2134/*-------------------------------------------------------------------------*/
2135
2136/* called in any context */
2137int usb_hcd_get_frame_number (struct usb_device *udev)
2138{
2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2140
2141 if (!HCD_RH_RUNNING(hcd))
2142 return -ESHUTDOWN;
2143 return hcd->driver->get_frame_number (hcd);
2144}
2145
2146/*-------------------------------------------------------------------------*/
2147
2148#ifdef CONFIG_PM
2149
2150int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2151{
2152 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2153 int status;
2154 int old_state = hcd->state;
2155
2156 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2157 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2158 rhdev->do_remote_wakeup);
2159 if (HCD_DEAD(hcd)) {
2160 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2161 return 0;
2162 }
2163
2164 if (!hcd->driver->bus_suspend) {
2165 status = -ENOENT;
2166 } else {
2167 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2168 hcd->state = HC_STATE_QUIESCING;
2169 status = hcd->driver->bus_suspend(hcd);
2170 }
2171 if (status == 0) {
2172 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2173 hcd->state = HC_STATE_SUSPENDED;
2174
2175 /* Did we race with a root-hub wakeup event? */
2176 if (rhdev->do_remote_wakeup) {
2177 char buffer[6];
2178
2179 status = hcd->driver->hub_status_data(hcd, buffer);
2180 if (status != 0) {
2181 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2182 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2183 status = -EBUSY;
2184 }
2185 }
2186 } else {
2187 spin_lock_irq(&hcd_root_hub_lock);
2188 if (!HCD_DEAD(hcd)) {
2189 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2190 hcd->state = old_state;
2191 }
2192 spin_unlock_irq(&hcd_root_hub_lock);
2193 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2194 "suspend", status);
2195 }
2196 return status;
2197}
2198
2199int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2200{
2201 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2202 int status;
2203 int old_state = hcd->state;
2204
2205 dev_dbg(&rhdev->dev, "usb %sresume\n",
2206 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2207 if (HCD_DEAD(hcd)) {
2208 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2209 return 0;
2210 }
2211 if (!hcd->driver->bus_resume)
2212 return -ENOENT;
2213 if (HCD_RH_RUNNING(hcd))
2214 return 0;
2215
2216 hcd->state = HC_STATE_RESUMING;
2217 status = hcd->driver->bus_resume(hcd);
2218 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2219 if (status == 0) {
2220 struct usb_device *udev;
2221 int port1;
2222
2223 spin_lock_irq(&hcd_root_hub_lock);
2224 if (!HCD_DEAD(hcd)) {
2225 usb_set_device_state(rhdev, rhdev->actconfig
2226 ? USB_STATE_CONFIGURED
2227 : USB_STATE_ADDRESS);
2228 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2229 hcd->state = HC_STATE_RUNNING;
2230 }
2231 spin_unlock_irq(&hcd_root_hub_lock);
2232
2233 /*
2234 * Check whether any of the enabled ports on the root hub are
2235 * unsuspended. If they are then a TRSMRCY delay is needed
2236 * (this is what the USB-2 spec calls a "global resume").
2237 * Otherwise we can skip the delay.
2238 */
2239 usb_hub_for_each_child(rhdev, port1, udev) {
2240 if (udev->state != USB_STATE_NOTATTACHED &&
2241 !udev->port_is_suspended) {
2242 usleep_range(10000, 11000); /* TRSMRCY */
2243 break;
2244 }
2245 }
2246 } else {
2247 hcd->state = old_state;
2248 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2249 "resume", status);
2250 if (status != -ESHUTDOWN)
2251 usb_hc_died(hcd);
2252 }
2253 return status;
2254}
2255
2256#endif /* CONFIG_PM */
2257
2258#ifdef CONFIG_PM_RUNTIME
2259
2260/* Workqueue routine for root-hub remote wakeup */
2261static void hcd_resume_work(struct work_struct *work)
2262{
2263 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2264 struct usb_device *udev = hcd->self.root_hub;
2265
2266 usb_lock_device(udev);
2267 usb_remote_wakeup(udev);
2268 usb_unlock_device(udev);
2269}
2270
2271/**
2272 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2273 * @hcd: host controller for this root hub
2274 *
2275 * The USB host controller calls this function when its root hub is
2276 * suspended (with the remote wakeup feature enabled) and a remote
2277 * wakeup request is received. The routine submits a workqueue request
2278 * to resume the root hub (that is, manage its downstream ports again).
2279 */
2280void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2281{
2282 unsigned long flags;
2283
2284 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2285 if (hcd->rh_registered) {
2286 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2287 queue_work(pm_wq, &hcd->wakeup_work);
2288 }
2289 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2290}
2291EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2292
2293#endif /* CONFIG_PM_RUNTIME */
2294
2295/*-------------------------------------------------------------------------*/
2296
2297#ifdef CONFIG_USB_OTG
2298
2299/**
2300 * usb_bus_start_enum - start immediate enumeration (for OTG)
2301 * @bus: the bus (must use hcd framework)
2302 * @port_num: 1-based number of port; usually bus->otg_port
2303 * Context: in_interrupt()
2304 *
2305 * Starts enumeration, with an immediate reset followed later by
2306 * khubd identifying and possibly configuring the device.
2307 * This is needed by OTG controller drivers, where it helps meet
2308 * HNP protocol timing requirements for starting a port reset.
2309 *
2310 * Return: 0 if successful.
2311 */
2312int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2313{
2314 struct usb_hcd *hcd;
2315 int status = -EOPNOTSUPP;
2316
2317 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2318 * boards with root hubs hooked up to internal devices (instead of
2319 * just the OTG port) may need more attention to resetting...
2320 */
2321 hcd = container_of (bus, struct usb_hcd, self);
2322 if (port_num && hcd->driver->start_port_reset)
2323 status = hcd->driver->start_port_reset(hcd, port_num);
2324
2325 /* run khubd shortly after (first) root port reset finishes;
2326 * it may issue others, until at least 50 msecs have passed.
2327 */
2328 if (status == 0)
2329 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2330 return status;
2331}
2332EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2333
2334#endif
2335
2336/*-------------------------------------------------------------------------*/
2337
2338/**
2339 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2340 * @irq: the IRQ being raised
2341 * @__hcd: pointer to the HCD whose IRQ is being signaled
2342 *
2343 * If the controller isn't HALTed, calls the driver's irq handler.
2344 * Checks whether the controller is now dead.
2345 *
2346 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347 */
2348irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2349{
2350 struct usb_hcd *hcd = __hcd;
2351 irqreturn_t rc;
2352
2353 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2354 rc = IRQ_NONE;
2355 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2356 rc = IRQ_NONE;
2357 else
2358 rc = IRQ_HANDLED;
2359
2360 return rc;
2361}
2362EXPORT_SYMBOL_GPL(usb_hcd_irq);
2363
2364/*-------------------------------------------------------------------------*/
2365
2366/**
2367 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2368 * @hcd: pointer to the HCD representing the controller
2369 *
2370 * This is called by bus glue to report a USB host controller that died
2371 * while operations may still have been pending. It's called automatically
2372 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2373 *
2374 * Only call this function with the primary HCD.
2375 */
2376void usb_hc_died (struct usb_hcd *hcd)
2377{
2378 unsigned long flags;
2379
2380 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2381
2382 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2383 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2384 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2385 if (hcd->rh_registered) {
2386 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388 /* make khubd clean up old urbs and devices */
2389 usb_set_device_state (hcd->self.root_hub,
2390 USB_STATE_NOTATTACHED);
2391 usb_kick_khubd (hcd->self.root_hub);
2392 }
2393 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2394 hcd = hcd->shared_hcd;
2395 if (hcd->rh_registered) {
2396 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2397
2398 /* make khubd clean up old urbs and devices */
2399 usb_set_device_state(hcd->self.root_hub,
2400 USB_STATE_NOTATTACHED);
2401 usb_kick_khubd(hcd->self.root_hub);
2402 }
2403 }
2404 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2405 /* Make sure that the other roothub is also deallocated. */
2406}
2407EXPORT_SYMBOL_GPL (usb_hc_died);
2408
2409/*-------------------------------------------------------------------------*/
2410
2411static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2412{
2413
2414 spin_lock_init(&bh->lock);
2415 INIT_LIST_HEAD(&bh->head);
2416 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2417}
2418
2419/**
2420 * usb_create_shared_hcd - create and initialize an HCD structure
2421 * @driver: HC driver that will use this hcd
2422 * @dev: device for this HC, stored in hcd->self.controller
2423 * @bus_name: value to store in hcd->self.bus_name
2424 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2425 * PCI device. Only allocate certain resources for the primary HCD
2426 * Context: !in_interrupt()
2427 *
2428 * Allocate a struct usb_hcd, with extra space at the end for the
2429 * HC driver's private data. Initialize the generic members of the
2430 * hcd structure.
2431 *
2432 * Return: On success, a pointer to the created and initialized HCD structure.
2433 * On failure (e.g. if memory is unavailable), %NULL.
2434 */
2435struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2436 struct device *dev, const char *bus_name,
2437 struct usb_hcd *primary_hcd)
2438{
2439 struct usb_hcd *hcd;
2440
2441 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2442 if (!hcd) {
2443 dev_dbg (dev, "hcd alloc failed\n");
2444 return NULL;
2445 }
2446 if (primary_hcd == NULL) {
2447 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2448 GFP_KERNEL);
2449 if (!hcd->bandwidth_mutex) {
2450 kfree(hcd);
2451 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2452 return NULL;
2453 }
2454 mutex_init(hcd->bandwidth_mutex);
2455 dev_set_drvdata(dev, hcd);
2456 } else {
2457 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2458 hcd->primary_hcd = primary_hcd;
2459 primary_hcd->primary_hcd = primary_hcd;
2460 hcd->shared_hcd = primary_hcd;
2461 primary_hcd->shared_hcd = hcd;
2462 }
2463
2464 kref_init(&hcd->kref);
2465
2466 usb_bus_init(&hcd->self);
2467 hcd->self.controller = dev;
2468 hcd->self.bus_name = bus_name;
2469 hcd->self.uses_dma = (dev->dma_mask != NULL);
2470
2471 init_timer(&hcd->rh_timer);
2472 hcd->rh_timer.function = rh_timer_func;
2473 hcd->rh_timer.data = (unsigned long) hcd;
2474#ifdef CONFIG_PM_RUNTIME
2475 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2476#endif
2477
2478 hcd->driver = driver;
2479 hcd->speed = driver->flags & HCD_MASK;
2480 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2481 "USB Host Controller";
2482 return hcd;
2483}
2484EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2485
2486/**
2487 * usb_create_hcd - create and initialize an HCD structure
2488 * @driver: HC driver that will use this hcd
2489 * @dev: device for this HC, stored in hcd->self.controller
2490 * @bus_name: value to store in hcd->self.bus_name
2491 * Context: !in_interrupt()
2492 *
2493 * Allocate a struct usb_hcd, with extra space at the end for the
2494 * HC driver's private data. Initialize the generic members of the
2495 * hcd structure.
2496 *
2497 * Return: On success, a pointer to the created and initialized HCD
2498 * structure. On failure (e.g. if memory is unavailable), %NULL.
2499 */
2500struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2501 struct device *dev, const char *bus_name)
2502{
2503 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2504}
2505EXPORT_SYMBOL_GPL(usb_create_hcd);
2506
2507/*
2508 * Roothubs that share one PCI device must also share the bandwidth mutex.
2509 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2510 * deallocated.
2511 *
2512 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2513 * freed. When hcd_release() is called for the non-primary HCD, set the
2514 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2515 * freed shortly).
2516 */
2517static void hcd_release (struct kref *kref)
2518{
2519 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2520
2521 if (usb_hcd_is_primary_hcd(hcd))
2522 kfree(hcd->bandwidth_mutex);
2523 else
2524 hcd->shared_hcd->shared_hcd = NULL;
2525 kfree(hcd);
2526}
2527
2528struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2529{
2530 if (hcd)
2531 kref_get (&hcd->kref);
2532 return hcd;
2533}
2534EXPORT_SYMBOL_GPL(usb_get_hcd);
2535
2536void usb_put_hcd (struct usb_hcd *hcd)
2537{
2538 if (hcd)
2539 kref_put (&hcd->kref, hcd_release);
2540}
2541EXPORT_SYMBOL_GPL(usb_put_hcd);
2542
2543int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2544{
2545 if (!hcd->primary_hcd)
2546 return 1;
2547 return hcd == hcd->primary_hcd;
2548}
2549EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2550
2551int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2552{
2553 if (!hcd->driver->find_raw_port_number)
2554 return port1;
2555
2556 return hcd->driver->find_raw_port_number(hcd, port1);
2557}
2558
2559static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2560 unsigned int irqnum, unsigned long irqflags)
2561{
2562 int retval;
2563
2564 if (hcd->driver->irq) {
2565
2566 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2567 hcd->driver->description, hcd->self.busnum);
2568 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2569 hcd->irq_descr, hcd);
2570 if (retval != 0) {
2571 dev_err(hcd->self.controller,
2572 "request interrupt %d failed\n",
2573 irqnum);
2574 return retval;
2575 }
2576 hcd->irq = irqnum;
2577 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2578 (hcd->driver->flags & HCD_MEMORY) ?
2579 "io mem" : "io base",
2580 (unsigned long long)hcd->rsrc_start);
2581 } else {
2582 hcd->irq = 0;
2583 if (hcd->rsrc_start)
2584 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2585 (hcd->driver->flags & HCD_MEMORY) ?
2586 "io mem" : "io base",
2587 (unsigned long long)hcd->rsrc_start);
2588 }
2589 return 0;
2590}
2591
2592/**
2593 * usb_add_hcd - finish generic HCD structure initialization and register
2594 * @hcd: the usb_hcd structure to initialize
2595 * @irqnum: Interrupt line to allocate
2596 * @irqflags: Interrupt type flags
2597 *
2598 * Finish the remaining parts of generic HCD initialization: allocate the
2599 * buffers of consistent memory, register the bus, request the IRQ line,
2600 * and call the driver's reset() and start() routines.
2601 */
2602int usb_add_hcd(struct usb_hcd *hcd,
2603 unsigned int irqnum, unsigned long irqflags)
2604{
2605 int retval;
2606 struct usb_device *rhdev;
2607
2608 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) {
2609 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2610
2611 if (IS_ERR(phy)) {
2612 retval = PTR_ERR(phy);
2613 if (retval == -EPROBE_DEFER)
2614 return retval;
2615 } else {
2616 retval = usb_phy_init(phy);
2617 if (retval) {
2618 usb_put_phy(phy);
2619 return retval;
2620 }
2621 hcd->phy = phy;
2622 hcd->remove_phy = 1;
2623 }
2624 }
2625
2626 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2627
2628 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2629 if (authorized_default < 0 || authorized_default > 1)
2630 hcd->authorized_default = hcd->wireless ? 0 : 1;
2631 else
2632 hcd->authorized_default = authorized_default;
2633 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2634
2635 /* HC is in reset state, but accessible. Now do the one-time init,
2636 * bottom up so that hcds can customize the root hubs before khubd
2637 * starts talking to them. (Note, bus id is assigned early too.)
2638 */
2639 if ((retval = hcd_buffer_create(hcd)) != 0) {
2640 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2641 goto err_remove_phy;
2642 }
2643
2644 if ((retval = usb_register_bus(&hcd->self)) < 0)
2645 goto err_register_bus;
2646
2647 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2648 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2649 retval = -ENOMEM;
2650 goto err_allocate_root_hub;
2651 }
2652 hcd->self.root_hub = rhdev;
2653
2654 switch (hcd->speed) {
2655 case HCD_USB11:
2656 rhdev->speed = USB_SPEED_FULL;
2657 break;
2658 case HCD_USB2:
2659 rhdev->speed = USB_SPEED_HIGH;
2660 break;
2661 case HCD_USB25:
2662 rhdev->speed = USB_SPEED_WIRELESS;
2663 break;
2664 case HCD_USB3:
2665 rhdev->speed = USB_SPEED_SUPER;
2666 break;
2667 default:
2668 retval = -EINVAL;
2669 goto err_set_rh_speed;
2670 }
2671
2672 /* wakeup flag init defaults to "everything works" for root hubs,
2673 * but drivers can override it in reset() if needed, along with
2674 * recording the overall controller's system wakeup capability.
2675 */
2676 device_set_wakeup_capable(&rhdev->dev, 1);
2677
2678 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2679 * registered. But since the controller can die at any time,
2680 * let's initialize the flag before touching the hardware.
2681 */
2682 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2683
2684 /* "reset" is misnamed; its role is now one-time init. the controller
2685 * should already have been reset (and boot firmware kicked off etc).
2686 */
2687 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2688 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2689 goto err_hcd_driver_setup;
2690 }
2691 hcd->rh_pollable = 1;
2692
2693 /* NOTE: root hub and controller capabilities may not be the same */
2694 if (device_can_wakeup(hcd->self.controller)
2695 && device_can_wakeup(&hcd->self.root_hub->dev))
2696 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2697
2698 /* initialize tasklets */
2699 init_giveback_urb_bh(&hcd->high_prio_bh);
2700 init_giveback_urb_bh(&hcd->low_prio_bh);
2701
2702 /* enable irqs just before we start the controller,
2703 * if the BIOS provides legacy PCI irqs.
2704 */
2705 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2706 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2707 if (retval)
2708 goto err_request_irq;
2709 }
2710
2711 hcd->state = HC_STATE_RUNNING;
2712 retval = hcd->driver->start(hcd);
2713 if (retval < 0) {
2714 dev_err(hcd->self.controller, "startup error %d\n", retval);
2715 goto err_hcd_driver_start;
2716 }
2717
2718 /* starting here, usbcore will pay attention to this root hub */
2719 if ((retval = register_root_hub(hcd)) != 0)
2720 goto err_register_root_hub;
2721
2722 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2723 if (retval < 0) {
2724 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2725 retval);
2726 goto error_create_attr_group;
2727 }
2728 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2729 usb_hcd_poll_rh_status(hcd);
2730
2731 return retval;
2732
2733error_create_attr_group:
2734 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2735 if (HC_IS_RUNNING(hcd->state))
2736 hcd->state = HC_STATE_QUIESCING;
2737 spin_lock_irq(&hcd_root_hub_lock);
2738 hcd->rh_registered = 0;
2739 spin_unlock_irq(&hcd_root_hub_lock);
2740
2741#ifdef CONFIG_PM_RUNTIME
2742 cancel_work_sync(&hcd->wakeup_work);
2743#endif
2744 mutex_lock(&usb_bus_list_lock);
2745 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2746 mutex_unlock(&usb_bus_list_lock);
2747err_register_root_hub:
2748 hcd->rh_pollable = 0;
2749 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2750 del_timer_sync(&hcd->rh_timer);
2751 hcd->driver->stop(hcd);
2752 hcd->state = HC_STATE_HALT;
2753 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2754 del_timer_sync(&hcd->rh_timer);
2755err_hcd_driver_start:
2756 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2757 free_irq(irqnum, hcd);
2758err_request_irq:
2759err_hcd_driver_setup:
2760err_set_rh_speed:
2761 usb_put_dev(hcd->self.root_hub);
2762err_allocate_root_hub:
2763 usb_deregister_bus(&hcd->self);
2764err_register_bus:
2765 hcd_buffer_destroy(hcd);
2766err_remove_phy:
2767 if (hcd->remove_phy && hcd->phy) {
2768 usb_phy_shutdown(hcd->phy);
2769 usb_put_phy(hcd->phy);
2770 hcd->phy = NULL;
2771 }
2772 return retval;
2773}
2774EXPORT_SYMBOL_GPL(usb_add_hcd);
2775
2776/**
2777 * usb_remove_hcd - shutdown processing for generic HCDs
2778 * @hcd: the usb_hcd structure to remove
2779 * Context: !in_interrupt()
2780 *
2781 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2782 * invoking the HCD's stop() method.
2783 */
2784void usb_remove_hcd(struct usb_hcd *hcd)
2785{
2786 struct usb_device *rhdev = hcd->self.root_hub;
2787
2788 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2789
2790 usb_get_dev(rhdev);
2791 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2792
2793 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2794 if (HC_IS_RUNNING (hcd->state))
2795 hcd->state = HC_STATE_QUIESCING;
2796
2797 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2798 spin_lock_irq (&hcd_root_hub_lock);
2799 hcd->rh_registered = 0;
2800 spin_unlock_irq (&hcd_root_hub_lock);
2801
2802#ifdef CONFIG_PM_RUNTIME
2803 cancel_work_sync(&hcd->wakeup_work);
2804#endif
2805
2806 mutex_lock(&usb_bus_list_lock);
2807 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2808 mutex_unlock(&usb_bus_list_lock);
2809
2810 /*
2811 * tasklet_kill() isn't needed here because:
2812 * - driver's disconnect() called from usb_disconnect() should
2813 * make sure its URBs are completed during the disconnect()
2814 * callback
2815 *
2816 * - it is too late to run complete() here since driver may have
2817 * been removed already now
2818 */
2819
2820 /* Prevent any more root-hub status calls from the timer.
2821 * The HCD might still restart the timer (if a port status change
2822 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2823 * the hub_status_data() callback.
2824 */
2825 hcd->rh_pollable = 0;
2826 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2827 del_timer_sync(&hcd->rh_timer);
2828
2829 hcd->driver->stop(hcd);
2830 hcd->state = HC_STATE_HALT;
2831
2832 /* In case the HCD restarted the timer, stop it again. */
2833 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2834 del_timer_sync(&hcd->rh_timer);
2835
2836 if (usb_hcd_is_primary_hcd(hcd)) {
2837 if (hcd->irq > 0)
2838 free_irq(hcd->irq, hcd);
2839 }
2840
2841 usb_put_dev(hcd->self.root_hub);
2842 usb_deregister_bus(&hcd->self);
2843 hcd_buffer_destroy(hcd);
2844 if (hcd->remove_phy && hcd->phy) {
2845 usb_phy_shutdown(hcd->phy);
2846 usb_put_phy(hcd->phy);
2847 hcd->phy = NULL;
2848 }
2849}
2850EXPORT_SYMBOL_GPL(usb_remove_hcd);
2851
2852void
2853usb_hcd_platform_shutdown(struct platform_device *dev)
2854{
2855 struct usb_hcd *hcd = platform_get_drvdata(dev);
2856
2857 if (hcd->driver->shutdown)
2858 hcd->driver->shutdown(hcd);
2859}
2860EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2861
2862/*-------------------------------------------------------------------------*/
2863
2864#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2865
2866struct usb_mon_operations *mon_ops;
2867
2868/*
2869 * The registration is unlocked.
2870 * We do it this way because we do not want to lock in hot paths.
2871 *
2872 * Notice that the code is minimally error-proof. Because usbmon needs
2873 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2874 */
2875
2876int usb_mon_register (struct usb_mon_operations *ops)
2877{
2878
2879 if (mon_ops)
2880 return -EBUSY;
2881
2882 mon_ops = ops;
2883 mb();
2884 return 0;
2885}
2886EXPORT_SYMBOL_GPL (usb_mon_register);
2887
2888void usb_mon_deregister (void)
2889{
2890
2891 if (mon_ops == NULL) {
2892 printk(KERN_ERR "USB: monitor was not registered\n");
2893 return;
2894 }
2895 mon_ops = NULL;
2896 mb();
2897}
2898EXPORT_SYMBOL_GPL (usb_mon_deregister);
2899
2900#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */