Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
 
 
 
 
  6 */
  7
  8#ifndef EFX_NIC_H
  9#define EFX_NIC_H
 10
 11#include "nic_common.h"
 
 
 12#include "efx.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 13
 14enum {
 15	PHY_TYPE_NONE = 0,
 16	PHY_TYPE_TXC43128 = 1,
 17	PHY_TYPE_88E1111 = 2,
 18	PHY_TYPE_SFX7101 = 3,
 19	PHY_TYPE_QT2022C2 = 4,
 20	PHY_TYPE_PM8358 = 6,
 21	PHY_TYPE_SFT9001A = 8,
 22	PHY_TYPE_QT2025C = 9,
 23	PHY_TYPE_SFT9001B = 10,
 24};
 25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 26enum {
 27	EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
 28	EF10_STAT_port_tx_packets,
 29	EF10_STAT_port_tx_pause,
 30	EF10_STAT_port_tx_control,
 31	EF10_STAT_port_tx_unicast,
 32	EF10_STAT_port_tx_multicast,
 33	EF10_STAT_port_tx_broadcast,
 34	EF10_STAT_port_tx_lt64,
 35	EF10_STAT_port_tx_64,
 36	EF10_STAT_port_tx_65_to_127,
 37	EF10_STAT_port_tx_128_to_255,
 38	EF10_STAT_port_tx_256_to_511,
 39	EF10_STAT_port_tx_512_to_1023,
 40	EF10_STAT_port_tx_1024_to_15xx,
 41	EF10_STAT_port_tx_15xx_to_jumbo,
 42	EF10_STAT_port_rx_bytes,
 43	EF10_STAT_port_rx_bytes_minus_good_bytes,
 44	EF10_STAT_port_rx_good_bytes,
 45	EF10_STAT_port_rx_bad_bytes,
 46	EF10_STAT_port_rx_packets,
 47	EF10_STAT_port_rx_good,
 48	EF10_STAT_port_rx_bad,
 49	EF10_STAT_port_rx_pause,
 50	EF10_STAT_port_rx_control,
 51	EF10_STAT_port_rx_unicast,
 52	EF10_STAT_port_rx_multicast,
 53	EF10_STAT_port_rx_broadcast,
 54	EF10_STAT_port_rx_lt64,
 55	EF10_STAT_port_rx_64,
 56	EF10_STAT_port_rx_65_to_127,
 57	EF10_STAT_port_rx_128_to_255,
 58	EF10_STAT_port_rx_256_to_511,
 59	EF10_STAT_port_rx_512_to_1023,
 60	EF10_STAT_port_rx_1024_to_15xx,
 61	EF10_STAT_port_rx_15xx_to_jumbo,
 62	EF10_STAT_port_rx_gtjumbo,
 63	EF10_STAT_port_rx_bad_gtjumbo,
 64	EF10_STAT_port_rx_overflow,
 65	EF10_STAT_port_rx_align_error,
 66	EF10_STAT_port_rx_length_error,
 67	EF10_STAT_port_rx_nodesc_drops,
 68	EF10_STAT_port_rx_pm_trunc_bb_overflow,
 69	EF10_STAT_port_rx_pm_discard_bb_overflow,
 70	EF10_STAT_port_rx_pm_trunc_vfifo_full,
 71	EF10_STAT_port_rx_pm_discard_vfifo_full,
 72	EF10_STAT_port_rx_pm_trunc_qbb,
 73	EF10_STAT_port_rx_pm_discard_qbb,
 74	EF10_STAT_port_rx_pm_discard_mapping,
 75	EF10_STAT_port_rx_dp_q_disabled_packets,
 76	EF10_STAT_port_rx_dp_di_dropped_packets,
 77	EF10_STAT_port_rx_dp_streaming_packets,
 78	EF10_STAT_port_rx_dp_hlb_fetch,
 79	EF10_STAT_port_rx_dp_hlb_wait,
 80	EF10_STAT_rx_unicast,
 81	EF10_STAT_rx_unicast_bytes,
 82	EF10_STAT_rx_multicast,
 83	EF10_STAT_rx_multicast_bytes,
 84	EF10_STAT_rx_broadcast,
 85	EF10_STAT_rx_broadcast_bytes,
 86	EF10_STAT_rx_bad,
 87	EF10_STAT_rx_bad_bytes,
 88	EF10_STAT_rx_overflow,
 89	EF10_STAT_tx_unicast,
 90	EF10_STAT_tx_unicast_bytes,
 91	EF10_STAT_tx_multicast,
 92	EF10_STAT_tx_multicast_bytes,
 93	EF10_STAT_tx_broadcast,
 94	EF10_STAT_tx_broadcast_bytes,
 95	EF10_STAT_tx_bad,
 96	EF10_STAT_tx_bad_bytes,
 97	EF10_STAT_tx_overflow,
 98	EF10_STAT_V1_COUNT,
 99	EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT,
100	EF10_STAT_fec_corrected_errors,
101	EF10_STAT_fec_corrected_symbols_lane0,
102	EF10_STAT_fec_corrected_symbols_lane1,
103	EF10_STAT_fec_corrected_symbols_lane2,
104	EF10_STAT_fec_corrected_symbols_lane3,
105	EF10_STAT_ctpio_vi_busy_fallback,
106	EF10_STAT_ctpio_long_write_success,
107	EF10_STAT_ctpio_missing_dbell_fail,
108	EF10_STAT_ctpio_overflow_fail,
109	EF10_STAT_ctpio_underflow_fail,
110	EF10_STAT_ctpio_timeout_fail,
111	EF10_STAT_ctpio_noncontig_wr_fail,
112	EF10_STAT_ctpio_frm_clobber_fail,
113	EF10_STAT_ctpio_invalid_wr_fail,
114	EF10_STAT_ctpio_vi_clobber_fallback,
115	EF10_STAT_ctpio_unqualified_fallback,
116	EF10_STAT_ctpio_runt_fallback,
117	EF10_STAT_ctpio_success,
118	EF10_STAT_ctpio_fallback,
119	EF10_STAT_ctpio_poison,
120	EF10_STAT_ctpio_erase,
121	EF10_STAT_COUNT
122};
123
124/* Maximum number of TX PIO buffers we may allocate to a function.
125 * This matches the total number of buffers on each SFC9100-family
126 * controller.
127 */
128#define EF10_TX_PIOBUF_COUNT 16
129
130/**
131 * struct efx_ef10_nic_data - EF10 architecture NIC state
132 * @mcdi_buf: DMA buffer for MCDI
133 * @warm_boot_count: Last seen MC warm boot count
134 * @vi_base: Absolute index of first VI in this function
135 * @n_allocated_vis: Number of VIs allocated to this function
 
 
 
 
136 * @n_piobufs: Number of PIO buffers allocated to this function
137 * @wc_membase: Base address of write-combining mapping of the memory BAR
138 * @pio_write_base: Base address for writing PIO buffers
139 * @pio_write_vi_base: Relative VI number for @pio_write_base
140 * @piobuf_handle: Handle of each PIO buffer allocated
141 * @piobuf_size: size of a single PIO buffer
142 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
143 *	reboot
144 * @mc_stats: Scratch buffer for converting statistics to the kernel's format
145 * @stats: Hardware statistics
146 * @workaround_35388: Flag: firmware supports workaround for bug 35388
147 * @workaround_26807: Flag: firmware supports workaround for bug 26807
148 * @workaround_61265: Flag: firmware supports workaround for bug 61265
149 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
150 *	after MC reboot
151 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
152 *	%MC_CMD_GET_CAPABILITIES response)
153 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
154 * %MC_CMD_GET_CAPABILITIES response)
155 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
156 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
 
157 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
158 * @pf_index: The number for this PF, or the parent PF if this is a VF
159#ifdef CONFIG_SFC_SRIOV
160 * @vf: Pointer to VF data structure
161#endif
162 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
163 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
164 * @vlan_lock: Lock to serialize access to vlan_list.
165 * @udp_tunnels: UDP tunnel port numbers and types.
166 * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
167 *	@udp_tunnels to hardware and thus the push must be re-done.
168 * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
169 */
170struct efx_ef10_nic_data {
171	struct efx_buffer mcdi_buf;
172	u16 warm_boot_count;
173	unsigned int vi_base;
174	unsigned int n_allocated_vis;
 
 
 
175	unsigned int n_piobufs;
176	void __iomem *wc_membase, *pio_write_base;
177	unsigned int pio_write_vi_base;
178	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
179	u16 piobuf_size;
180	bool must_restore_piobufs;
181	__le64 *mc_stats;
182	u64 stats[EF10_STAT_COUNT];
183	bool workaround_35388;
184	bool workaround_26807;
185	bool workaround_61265;
186	bool must_check_datapath_caps;
187	u32 datapath_caps;
188	u32 datapath_caps2;
189	unsigned int rx_dpcpu_fw_id;
190	unsigned int tx_dpcpu_fw_id;
 
191	bool must_probe_vswitching;
192	unsigned int pf_index;
193	u8 port_id[ETH_ALEN];
194#ifdef CONFIG_SFC_SRIOV
195	unsigned int vf_index;
196	struct ef10_vf *vf;
197#endif
198	u8 vport_mac[ETH_ALEN];
199	struct list_head vlan_list;
200	struct mutex vlan_lock;
201	struct efx_udp_tunnel udp_tunnels[16];
202	bool udp_tunnels_dirty;
203	struct mutex udp_tunnels_lock;
204	u64 licensed_features;
205};
206
207/* TSOv2 */
208int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
209			 bool *data_mapped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
 
 
211extern const struct efx_nic_type efx_hunt_a0_nic_type;
212extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
214#endif /* EFX_NIC_H */
v4.17
 
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2006-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#ifndef EFX_NIC_H
 12#define EFX_NIC_H
 13
 14#include <linux/net_tstamp.h>
 15#include <linux/i2c-algo-bit.h>
 16#include "net_driver.h"
 17#include "efx.h"
 18#include "mcdi.h"
 19
 20enum {
 21	/* Revisions 0-2 were Falcon A0, A1 and B0 respectively.
 22	 * They are not supported by this driver but these revision numbers
 23	 * form part of the ethtool API for register dumping.
 24	 */
 25	EFX_REV_SIENA_A0 = 3,
 26	EFX_REV_HUNT_A0 = 4,
 27};
 28
 29static inline int efx_nic_rev(struct efx_nic *efx)
 30{
 31	return efx->type->revision;
 32}
 33
 34u32 efx_farch_fpga_ver(struct efx_nic *efx);
 35
 36/* Read the current event from the event queue */
 37static inline efx_qword_t *efx_event(struct efx_channel *channel,
 38				     unsigned int index)
 39{
 40	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
 41		(index & channel->eventq_mask);
 42}
 43
 44/* See if an event is present
 45 *
 46 * We check both the high and low dword of the event for all ones.  We
 47 * wrote all ones when we cleared the event, and no valid event can
 48 * have all ones in either its high or low dwords.  This approach is
 49 * robust against reordering.
 50 *
 51 * Note that using a single 64-bit comparison is incorrect; even
 52 * though the CPU read will be atomic, the DMA write may not be.
 53 */
 54static inline int efx_event_present(efx_qword_t *event)
 55{
 56	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
 57		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
 58}
 59
 60/* Returns a pointer to the specified transmit descriptor in the TX
 61 * descriptor queue belonging to the specified channel.
 62 */
 63static inline efx_qword_t *
 64efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
 65{
 66	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
 67}
 68
 69/* Get partner of a TX queue, seen as part of the same net core queue */
 70static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
 71{
 72	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 73		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
 74	else
 75		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
 76}
 77
 78/* Report whether this TX queue would be empty for the given write_count.
 79 * May return false negative.
 80 */
 81static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
 82					 unsigned int write_count)
 83{
 84	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
 85
 86	if (empty_read_count == 0)
 87		return false;
 88
 89	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
 90}
 91
 92/* Report whether the NIC considers this TX queue empty, using
 93 * packet_write_count (the write count recorded for the last completable
 94 * doorbell push).  May return false negative.  EF10 only, which is OK
 95 * because only EF10 supports PIO.
 96 */
 97static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue)
 98{
 99	EFX_WARN_ON_ONCE_PARANOID(!tx_queue->efx->type->option_descriptors);
100	return __efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count);
101}
102
103/* Decide whether we can use TX PIO, ie. write packet data directly into
104 * a buffer on the device.  This can reduce latency at the expense of
105 * throughput, so we only do this if both hardware and software TX rings
106 * are empty.  This also ensures that only one packet at a time can be
107 * using the PIO buffer.
108 */
109static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
110{
111	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
112
113	return tx_queue->piobuf && efx_nic_tx_is_empty(tx_queue) &&
114	       efx_nic_tx_is_empty(partner);
115}
116
117/* Decide whether to push a TX descriptor to the NIC vs merely writing
118 * the doorbell.  This can reduce latency when we are adding a single
119 * descriptor to an empty queue, but is otherwise pointless.  Further,
120 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
121 * triggered if we don't check this.
122 * We use the write_count used for the last doorbell push, to get the
123 * NIC's view of the tx queue.
124 */
125static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
126					    unsigned int write_count)
127{
128	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
129
130	tx_queue->empty_read_count = 0;
131	return was_empty && tx_queue->write_count - write_count == 1;
132}
133
134/* Returns a pointer to the specified descriptor in the RX descriptor queue */
135static inline efx_qword_t *
136efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
137{
138	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
139}
140
141enum {
142	PHY_TYPE_NONE = 0,
143	PHY_TYPE_TXC43128 = 1,
144	PHY_TYPE_88E1111 = 2,
145	PHY_TYPE_SFX7101 = 3,
146	PHY_TYPE_QT2022C2 = 4,
147	PHY_TYPE_PM8358 = 6,
148	PHY_TYPE_SFT9001A = 8,
149	PHY_TYPE_QT2025C = 9,
150	PHY_TYPE_SFT9001B = 10,
151};
152
153/* Alignment of PCIe DMA boundaries (4KB) */
154#define EFX_PAGE_SIZE	4096
155/* Size and alignment of buffer table entries (same) */
156#define EFX_BUF_SIZE	EFX_PAGE_SIZE
157
158/* NIC-generic software stats */
159enum {
160	GENERIC_STAT_rx_noskb_drops,
161	GENERIC_STAT_rx_nodesc_trunc,
162	GENERIC_STAT_COUNT
163};
164
165enum {
166	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
167	SIENA_STAT_tx_good_bytes,
168	SIENA_STAT_tx_bad_bytes,
169	SIENA_STAT_tx_packets,
170	SIENA_STAT_tx_bad,
171	SIENA_STAT_tx_pause,
172	SIENA_STAT_tx_control,
173	SIENA_STAT_tx_unicast,
174	SIENA_STAT_tx_multicast,
175	SIENA_STAT_tx_broadcast,
176	SIENA_STAT_tx_lt64,
177	SIENA_STAT_tx_64,
178	SIENA_STAT_tx_65_to_127,
179	SIENA_STAT_tx_128_to_255,
180	SIENA_STAT_tx_256_to_511,
181	SIENA_STAT_tx_512_to_1023,
182	SIENA_STAT_tx_1024_to_15xx,
183	SIENA_STAT_tx_15xx_to_jumbo,
184	SIENA_STAT_tx_gtjumbo,
185	SIENA_STAT_tx_collision,
186	SIENA_STAT_tx_single_collision,
187	SIENA_STAT_tx_multiple_collision,
188	SIENA_STAT_tx_excessive_collision,
189	SIENA_STAT_tx_deferred,
190	SIENA_STAT_tx_late_collision,
191	SIENA_STAT_tx_excessive_deferred,
192	SIENA_STAT_tx_non_tcpudp,
193	SIENA_STAT_tx_mac_src_error,
194	SIENA_STAT_tx_ip_src_error,
195	SIENA_STAT_rx_bytes,
196	SIENA_STAT_rx_good_bytes,
197	SIENA_STAT_rx_bad_bytes,
198	SIENA_STAT_rx_packets,
199	SIENA_STAT_rx_good,
200	SIENA_STAT_rx_bad,
201	SIENA_STAT_rx_pause,
202	SIENA_STAT_rx_control,
203	SIENA_STAT_rx_unicast,
204	SIENA_STAT_rx_multicast,
205	SIENA_STAT_rx_broadcast,
206	SIENA_STAT_rx_lt64,
207	SIENA_STAT_rx_64,
208	SIENA_STAT_rx_65_to_127,
209	SIENA_STAT_rx_128_to_255,
210	SIENA_STAT_rx_256_to_511,
211	SIENA_STAT_rx_512_to_1023,
212	SIENA_STAT_rx_1024_to_15xx,
213	SIENA_STAT_rx_15xx_to_jumbo,
214	SIENA_STAT_rx_gtjumbo,
215	SIENA_STAT_rx_bad_gtjumbo,
216	SIENA_STAT_rx_overflow,
217	SIENA_STAT_rx_false_carrier,
218	SIENA_STAT_rx_symbol_error,
219	SIENA_STAT_rx_align_error,
220	SIENA_STAT_rx_length_error,
221	SIENA_STAT_rx_internal_error,
222	SIENA_STAT_rx_nodesc_drop_cnt,
223	SIENA_STAT_COUNT
224};
225
226/**
227 * struct siena_nic_data - Siena NIC state
228 * @efx: Pointer back to main interface structure
229 * @wol_filter_id: Wake-on-LAN packet filter id
230 * @stats: Hardware statistics
231 * @vf: Array of &struct siena_vf objects
232 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
233 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
234 * @local_addr_list: List of local addresses. Protected by %local_lock.
235 * @local_page_list: List of DMA addressable pages used to broadcast
236 *	%local_addr_list. Protected by %local_lock.
237 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
238 * @peer_work: Work item to broadcast peer addresses to VMs.
239 */
240struct siena_nic_data {
241	struct efx_nic *efx;
242	int wol_filter_id;
243	u64 stats[SIENA_STAT_COUNT];
244#ifdef CONFIG_SFC_SRIOV
245	struct siena_vf *vf;
246	struct efx_channel *vfdi_channel;
247	unsigned vf_buftbl_base;
248	struct efx_buffer vfdi_status;
249	struct list_head local_addr_list;
250	struct list_head local_page_list;
251	struct mutex local_lock;
252	struct work_struct peer_work;
253#endif
254};
255
256enum {
257	EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
258	EF10_STAT_port_tx_packets,
259	EF10_STAT_port_tx_pause,
260	EF10_STAT_port_tx_control,
261	EF10_STAT_port_tx_unicast,
262	EF10_STAT_port_tx_multicast,
263	EF10_STAT_port_tx_broadcast,
264	EF10_STAT_port_tx_lt64,
265	EF10_STAT_port_tx_64,
266	EF10_STAT_port_tx_65_to_127,
267	EF10_STAT_port_tx_128_to_255,
268	EF10_STAT_port_tx_256_to_511,
269	EF10_STAT_port_tx_512_to_1023,
270	EF10_STAT_port_tx_1024_to_15xx,
271	EF10_STAT_port_tx_15xx_to_jumbo,
272	EF10_STAT_port_rx_bytes,
273	EF10_STAT_port_rx_bytes_minus_good_bytes,
274	EF10_STAT_port_rx_good_bytes,
275	EF10_STAT_port_rx_bad_bytes,
276	EF10_STAT_port_rx_packets,
277	EF10_STAT_port_rx_good,
278	EF10_STAT_port_rx_bad,
279	EF10_STAT_port_rx_pause,
280	EF10_STAT_port_rx_control,
281	EF10_STAT_port_rx_unicast,
282	EF10_STAT_port_rx_multicast,
283	EF10_STAT_port_rx_broadcast,
284	EF10_STAT_port_rx_lt64,
285	EF10_STAT_port_rx_64,
286	EF10_STAT_port_rx_65_to_127,
287	EF10_STAT_port_rx_128_to_255,
288	EF10_STAT_port_rx_256_to_511,
289	EF10_STAT_port_rx_512_to_1023,
290	EF10_STAT_port_rx_1024_to_15xx,
291	EF10_STAT_port_rx_15xx_to_jumbo,
292	EF10_STAT_port_rx_gtjumbo,
293	EF10_STAT_port_rx_bad_gtjumbo,
294	EF10_STAT_port_rx_overflow,
295	EF10_STAT_port_rx_align_error,
296	EF10_STAT_port_rx_length_error,
297	EF10_STAT_port_rx_nodesc_drops,
298	EF10_STAT_port_rx_pm_trunc_bb_overflow,
299	EF10_STAT_port_rx_pm_discard_bb_overflow,
300	EF10_STAT_port_rx_pm_trunc_vfifo_full,
301	EF10_STAT_port_rx_pm_discard_vfifo_full,
302	EF10_STAT_port_rx_pm_trunc_qbb,
303	EF10_STAT_port_rx_pm_discard_qbb,
304	EF10_STAT_port_rx_pm_discard_mapping,
305	EF10_STAT_port_rx_dp_q_disabled_packets,
306	EF10_STAT_port_rx_dp_di_dropped_packets,
307	EF10_STAT_port_rx_dp_streaming_packets,
308	EF10_STAT_port_rx_dp_hlb_fetch,
309	EF10_STAT_port_rx_dp_hlb_wait,
310	EF10_STAT_rx_unicast,
311	EF10_STAT_rx_unicast_bytes,
312	EF10_STAT_rx_multicast,
313	EF10_STAT_rx_multicast_bytes,
314	EF10_STAT_rx_broadcast,
315	EF10_STAT_rx_broadcast_bytes,
316	EF10_STAT_rx_bad,
317	EF10_STAT_rx_bad_bytes,
318	EF10_STAT_rx_overflow,
319	EF10_STAT_tx_unicast,
320	EF10_STAT_tx_unicast_bytes,
321	EF10_STAT_tx_multicast,
322	EF10_STAT_tx_multicast_bytes,
323	EF10_STAT_tx_broadcast,
324	EF10_STAT_tx_broadcast_bytes,
325	EF10_STAT_tx_bad,
326	EF10_STAT_tx_bad_bytes,
327	EF10_STAT_tx_overflow,
328	EF10_STAT_V1_COUNT,
329	EF10_STAT_fec_uncorrected_errors = EF10_STAT_V1_COUNT,
330	EF10_STAT_fec_corrected_errors,
331	EF10_STAT_fec_corrected_symbols_lane0,
332	EF10_STAT_fec_corrected_symbols_lane1,
333	EF10_STAT_fec_corrected_symbols_lane2,
334	EF10_STAT_fec_corrected_symbols_lane3,
335	EF10_STAT_ctpio_vi_busy_fallback,
336	EF10_STAT_ctpio_long_write_success,
337	EF10_STAT_ctpio_missing_dbell_fail,
338	EF10_STAT_ctpio_overflow_fail,
339	EF10_STAT_ctpio_underflow_fail,
340	EF10_STAT_ctpio_timeout_fail,
341	EF10_STAT_ctpio_noncontig_wr_fail,
342	EF10_STAT_ctpio_frm_clobber_fail,
343	EF10_STAT_ctpio_invalid_wr_fail,
344	EF10_STAT_ctpio_vi_clobber_fallback,
345	EF10_STAT_ctpio_unqualified_fallback,
346	EF10_STAT_ctpio_runt_fallback,
347	EF10_STAT_ctpio_success,
348	EF10_STAT_ctpio_fallback,
349	EF10_STAT_ctpio_poison,
350	EF10_STAT_ctpio_erase,
351	EF10_STAT_COUNT
352};
353
354/* Maximum number of TX PIO buffers we may allocate to a function.
355 * This matches the total number of buffers on each SFC9100-family
356 * controller.
357 */
358#define EF10_TX_PIOBUF_COUNT 16
359
360/**
361 * struct efx_ef10_nic_data - EF10 architecture NIC state
362 * @mcdi_buf: DMA buffer for MCDI
363 * @warm_boot_count: Last seen MC warm boot count
364 * @vi_base: Absolute index of first VI in this function
365 * @n_allocated_vis: Number of VIs allocated to this function
366 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
367 * @must_restore_rss_contexts: Flag: RSS contexts have yet to be restored after
368 *	MC reboot
369 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
370 * @n_piobufs: Number of PIO buffers allocated to this function
371 * @wc_membase: Base address of write-combining mapping of the memory BAR
372 * @pio_write_base: Base address for writing PIO buffers
373 * @pio_write_vi_base: Relative VI number for @pio_write_base
374 * @piobuf_handle: Handle of each PIO buffer allocated
375 * @piobuf_size: size of a single PIO buffer
376 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
377 *	reboot
378 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
379 * @stats: Hardware statistics
380 * @workaround_35388: Flag: firmware supports workaround for bug 35388
381 * @workaround_26807: Flag: firmware supports workaround for bug 26807
382 * @workaround_61265: Flag: firmware supports workaround for bug 61265
383 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
384 *	after MC reboot
385 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
386 *	%MC_CMD_GET_CAPABILITIES response)
387 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
388 * %MC_CMD_GET_CAPABILITIES response)
389 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
390 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
391 * @vport_id: The function's vport ID, only relevant for PFs
392 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
393 * @pf_index: The number for this PF, or the parent PF if this is a VF
394#ifdef CONFIG_SFC_SRIOV
395 * @vf: Pointer to VF data structure
396#endif
397 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
398 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
399 * @vlan_lock: Lock to serialize access to vlan_list.
400 * @udp_tunnels: UDP tunnel port numbers and types.
401 * @udp_tunnels_dirty: flag indicating a reboot occurred while pushing
402 *	@udp_tunnels to hardware and thus the push must be re-done.
403 * @udp_tunnels_lock: Serialises writes to @udp_tunnels and @udp_tunnels_dirty.
404 */
405struct efx_ef10_nic_data {
406	struct efx_buffer mcdi_buf;
407	u16 warm_boot_count;
408	unsigned int vi_base;
409	unsigned int n_allocated_vis;
410	bool must_realloc_vis;
411	bool must_restore_rss_contexts;
412	bool must_restore_filters;
413	unsigned int n_piobufs;
414	void __iomem *wc_membase, *pio_write_base;
415	unsigned int pio_write_vi_base;
416	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
417	u16 piobuf_size;
418	bool must_restore_piobufs;
419	bool rx_rss_context_exclusive;
420	u64 stats[EF10_STAT_COUNT];
421	bool workaround_35388;
422	bool workaround_26807;
423	bool workaround_61265;
424	bool must_check_datapath_caps;
425	u32 datapath_caps;
426	u32 datapath_caps2;
427	unsigned int rx_dpcpu_fw_id;
428	unsigned int tx_dpcpu_fw_id;
429	unsigned int vport_id;
430	bool must_probe_vswitching;
431	unsigned int pf_index;
432	u8 port_id[ETH_ALEN];
433#ifdef CONFIG_SFC_SRIOV
434	unsigned int vf_index;
435	struct ef10_vf *vf;
436#endif
437	u8 vport_mac[ETH_ALEN];
438	struct list_head vlan_list;
439	struct mutex vlan_lock;
440	struct efx_udp_tunnel udp_tunnels[16];
441	bool udp_tunnels_dirty;
442	struct mutex udp_tunnels_lock;
443	u64 licensed_features;
444};
445
446int efx_init_sriov(void);
447void efx_fini_sriov(void);
448
449struct ethtool_ts_info;
450int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
451void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
452struct efx_channel *efx_ptp_channel(struct efx_nic *efx);
453void efx_ptp_remove(struct efx_nic *efx);
454int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
455int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
456void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
457bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
458int efx_ptp_get_mode(struct efx_nic *efx);
459int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
460			unsigned int new_mode);
461int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
462void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
463size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
464size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
465void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
466void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
467				   struct sk_buff *skb);
468static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
469					       struct sk_buff *skb)
470{
471	if (channel->sync_events_state == SYNC_EVENTS_VALID)
472		__efx_rx_skb_attach_timestamp(channel, skb);
473}
474void efx_ptp_start_datapath(struct efx_nic *efx);
475void efx_ptp_stop_datapath(struct efx_nic *efx);
476bool efx_ptp_use_mac_tx_timestamps(struct efx_nic *efx);
477ktime_t efx_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue);
478
479extern const struct efx_nic_type falcon_a1_nic_type;
480extern const struct efx_nic_type falcon_b0_nic_type;
481extern const struct efx_nic_type siena_a0_nic_type;
482extern const struct efx_nic_type efx_hunt_a0_nic_type;
483extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
484
485/**************************************************************************
486 *
487 * Externs
488 *
489 **************************************************************************
490 */
491
492int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
493
494/* TX data path */
495static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
496{
497	return tx_queue->efx->type->tx_probe(tx_queue);
498}
499static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
500{
501	tx_queue->efx->type->tx_init(tx_queue);
502}
503static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
504{
505	tx_queue->efx->type->tx_remove(tx_queue);
506}
507static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
508{
509	tx_queue->efx->type->tx_write(tx_queue);
510}
511
512/* RX data path */
513static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
514{
515	return rx_queue->efx->type->rx_probe(rx_queue);
516}
517static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
518{
519	rx_queue->efx->type->rx_init(rx_queue);
520}
521static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
522{
523	rx_queue->efx->type->rx_remove(rx_queue);
524}
525static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
526{
527	rx_queue->efx->type->rx_write(rx_queue);
528}
529static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
530{
531	rx_queue->efx->type->rx_defer_refill(rx_queue);
532}
533
534/* Event data path */
535static inline int efx_nic_probe_eventq(struct efx_channel *channel)
536{
537	return channel->efx->type->ev_probe(channel);
538}
539static inline int efx_nic_init_eventq(struct efx_channel *channel)
540{
541	return channel->efx->type->ev_init(channel);
542}
543static inline void efx_nic_fini_eventq(struct efx_channel *channel)
544{
545	channel->efx->type->ev_fini(channel);
546}
547static inline void efx_nic_remove_eventq(struct efx_channel *channel)
548{
549	channel->efx->type->ev_remove(channel);
550}
551static inline int
552efx_nic_process_eventq(struct efx_channel *channel, int quota)
553{
554	return channel->efx->type->ev_process(channel, quota);
555}
556static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
557{
558	channel->efx->type->ev_read_ack(channel);
559}
560void efx_nic_event_test_start(struct efx_channel *channel);
561
562/* Falcon/Siena queue operations */
563int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
564void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
565void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
566void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
567void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
568unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
569				    dma_addr_t dma_addr, unsigned int len);
570int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
571void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
572void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
573void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
574void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
575void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
576int efx_farch_ev_probe(struct efx_channel *channel);
577int efx_farch_ev_init(struct efx_channel *channel);
578void efx_farch_ev_fini(struct efx_channel *channel);
579void efx_farch_ev_remove(struct efx_channel *channel);
580int efx_farch_ev_process(struct efx_channel *channel, int quota);
581void efx_farch_ev_read_ack(struct efx_channel *channel);
582void efx_farch_ev_test_generate(struct efx_channel *channel);
583
584/* Falcon/Siena filter operations */
585int efx_farch_filter_table_probe(struct efx_nic *efx);
586void efx_farch_filter_table_restore(struct efx_nic *efx);
587void efx_farch_filter_table_remove(struct efx_nic *efx);
588void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
589s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
590			    bool replace);
591int efx_farch_filter_remove_safe(struct efx_nic *efx,
592				 enum efx_filter_priority priority,
593				 u32 filter_id);
594int efx_farch_filter_get_safe(struct efx_nic *efx,
595			      enum efx_filter_priority priority, u32 filter_id,
596			      struct efx_filter_spec *);
597int efx_farch_filter_clear_rx(struct efx_nic *efx,
598			      enum efx_filter_priority priority);
599u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
600				   enum efx_filter_priority priority);
601u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
602s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
603				enum efx_filter_priority priority, u32 *buf,
604				u32 size);
605#ifdef CONFIG_RFS_ACCEL
606bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
607				     unsigned int index);
608#endif
609void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
610
611bool efx_nic_event_present(struct efx_channel *channel);
612
613/* Some statistics are computed as A - B where A and B each increase
614 * linearly with some hardware counter(s) and the counters are read
615 * asynchronously.  If the counters contributing to B are always read
616 * after those contributing to A, the computed value may be lower than
617 * the true value by some variable amount, and may decrease between
618 * subsequent computations.
619 *
620 * We should never allow statistics to decrease or to exceed the true
621 * value.  Since the computed value will never be greater than the
622 * true value, we can achieve this by only storing the computed value
623 * when it increases.
624 */
625static inline void efx_update_diff_stat(u64 *stat, u64 diff)
626{
627	if ((s64)(diff - *stat) > 0)
628		*stat = diff;
629}
630
631/* Interrupts */
632int efx_nic_init_interrupt(struct efx_nic *efx);
633int efx_nic_irq_test_start(struct efx_nic *efx);
634void efx_nic_fini_interrupt(struct efx_nic *efx);
635
636/* Falcon/Siena interrupts */
637void efx_farch_irq_enable_master(struct efx_nic *efx);
638int efx_farch_irq_test_generate(struct efx_nic *efx);
639void efx_farch_irq_disable_master(struct efx_nic *efx);
640irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
641irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
642irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
643
644static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
645{
646	return READ_ONCE(channel->event_test_cpu);
647}
648static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
649{
650	return READ_ONCE(efx->last_irq_cpu);
651}
652
653/* Global Resources */
654int efx_nic_flush_queues(struct efx_nic *efx);
655void siena_prepare_flush(struct efx_nic *efx);
656int efx_farch_fini_dmaq(struct efx_nic *efx);
657void efx_farch_finish_flr(struct efx_nic *efx);
658void siena_finish_flush(struct efx_nic *efx);
659void falcon_start_nic_stats(struct efx_nic *efx);
660void falcon_stop_nic_stats(struct efx_nic *efx);
661int falcon_reset_xaui(struct efx_nic *efx);
662void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
663void efx_farch_init_common(struct efx_nic *efx);
664void efx_ef10_handle_drain_event(struct efx_nic *efx);
665void efx_farch_rx_push_indir_table(struct efx_nic *efx);
666void efx_farch_rx_pull_indir_table(struct efx_nic *efx);
667
668int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
669			 unsigned int len, gfp_t gfp_flags);
670void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
671
672/* Tests */
673struct efx_farch_register_test {
674	unsigned address;
675	efx_oword_t mask;
676};
677int efx_farch_test_registers(struct efx_nic *efx,
678			     const struct efx_farch_register_test *regs,
679			     size_t n_regs);
680
681size_t efx_nic_get_regs_len(struct efx_nic *efx);
682void efx_nic_get_regs(struct efx_nic *efx, void *buf);
683
684size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
685			      const unsigned long *mask, u8 *names);
686void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
687			  const unsigned long *mask, u64 *stats,
688			  const void *dma_buf, bool accumulate);
689void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
690
691#define EFX_MAX_FLUSH_TIME 5000
692
693void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
694			      efx_qword_t *event);
695
696#endif /* EFX_NIC_H */