Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
5 */
6
7#include "net_driver.h"
8#include "rx_common.h"
9#include "tx_common.h"
10#include "ef10_regs.h"
11#include "io.h"
12#include "mcdi.h"
13#include "mcdi_pcol.h"
14#include "mcdi_port.h"
15#include "mcdi_port_common.h"
16#include "mcdi_functions.h"
17#include "nic.h"
18#include "mcdi_filters.h"
19#include "workarounds.h"
20#include "selftest.h"
21#include "ef10_sriov.h"
22#include <linux/in.h>
23#include <linux/jhash.h>
24#include <linux/wait.h>
25#include <linux/workqueue.h>
26#include <net/udp_tunnel.h>
27
28/* Hardware control for EF10 architecture including 'Huntington'. */
29
30#define EFX_EF10_DRVGEN_EV 7
31enum {
32 EFX_EF10_TEST = 1,
33 EFX_EF10_REFILL,
34};
35
36/* VLAN list entry */
37struct efx_ef10_vlan {
38 struct list_head list;
39 u16 vid;
40};
41
42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
44
45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
46{
47 efx_dword_t reg;
48
49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
52}
53
54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
57 */
58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
59{
60 switch (efx->pci_dev->device) {
61 case 0x0b03: /* SFC9250 PF */
62 return 0;
63 default:
64 return 2;
65 }
66}
67
68/* All VFs use BAR 0/1 for memory */
69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
70{
71 return 0;
72}
73
74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
75{
76 int bar;
77
78 bar = efx->type->mem_bar(efx);
79 return resource_size(&efx->pci_dev->resource[bar]);
80}
81
82static bool efx_ef10_is_vf(struct efx_nic *efx)
83{
84 return efx->type->is_vf;
85}
86
87#ifdef CONFIG_SFC_SRIOV
88static int efx_ef10_get_vf_index(struct efx_nic *efx)
89{
90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 struct efx_ef10_nic_data *nic_data = efx->nic_data;
92 size_t outlen;
93 int rc;
94
95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 sizeof(outbuf), &outlen);
97 if (rc)
98 return rc;
99 if (outlen < sizeof(outbuf))
100 return -EIO;
101
102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
103 return 0;
104}
105#endif
106
107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
108{
109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
111 size_t outlen;
112 int rc;
113
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
115
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 outbuf, sizeof(outbuf), &outlen);
118 if (rc)
119 return rc;
120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 netif_err(efx, drv, efx->net_dev,
122 "unable to read datapath firmware capabilities\n");
123 return -EIO;
124 }
125
126 nic_data->datapath_caps =
127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
128
129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 GET_CAPABILITIES_V2_OUT_FLAGS2);
132 nic_data->piobuf_size = MCDI_WORD(outbuf,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
134 } else {
135 nic_data->datapath_caps2 = 0;
136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
137 }
138
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
140 */
141 nic_data->rx_dpcpu_fw_id =
142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 nic_data->tx_dpcpu_fw_id =
144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
145
146 if (!(nic_data->datapath_caps &
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 netif_err(efx, probe, efx->net_dev,
149 "current firmware does not support an RX prefix\n");
150 return -ENODEV;
151 }
152
153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 u8 vi_window_mode = MCDI_BYTE(outbuf,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
156
157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
158 if (rc)
159 return rc;
160 } else {
161 /* keep default VI stride */
162 netif_dbg(efx, probe, efx->net_dev,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
164 efx->vi_stride);
165 }
166
167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 efx->num_mac_stats = MCDI_WORD(outbuf,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 netif_dbg(efx, probe, efx->net_dev,
171 "firmware reports num_mac_stats = %u\n",
172 efx->num_mac_stats);
173 } else {
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx, probe, efx->net_dev,
176 "firmware did not report num_mac_stats, assuming %u\n",
177 efx->num_mac_stats);
178 }
179
180 return 0;
181}
182
183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
184{
185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
188 size_t outlen;
189 int rc;
190
191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 outbuf, sizeof(outbuf), &outlen);
195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
196 return;
197
198 nic_data->licensed_features = MCDI_QWORD(outbuf,
199 LICENSING_V3_OUT_LICENSED_FEATURES);
200}
201
202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
203{
204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
205 int rc;
206
207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 outbuf, sizeof(outbuf), NULL);
209 if (rc)
210 return rc;
211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 return rc > 0 ? rc : -ERANGE;
213}
214
215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
216{
217 struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 unsigned int implemented;
219 unsigned int enabled;
220 int rc;
221
222 nic_data->workaround_35388 = false;
223 nic_data->workaround_61265 = false;
224
225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
226
227 if (rc == -ENOSYS) {
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
229 rc = 0;
230 } else if (rc == 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 nic_data->workaround_61265 = true;
234
235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 nic_data->workaround_35388 = true;
237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 /* Workaround is implemented but not enabled.
239 * Try to enable it.
240 */
241 rc = efx_mcdi_set_workaround(efx,
242 MC_CMD_WORKAROUND_BUG35388,
243 true, NULL);
244 if (rc == 0)
245 nic_data->workaround_35388 = true;
246 /* If we failed to set the workaround just carry on. */
247 rc = 0;
248 }
249 }
250
251 netif_dbg(efx, probe, efx->net_dev,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data->workaround_35388 ? "en" : "dis");
254 netif_dbg(efx, probe, efx->net_dev,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data->workaround_61265 ? "en" : "dis");
257
258 return rc;
259}
260
261static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 const efx_dword_t *data)
263{
264 unsigned int max_count;
265
266 if (EFX_EF10_WORKAROUND_61265(efx)) {
267 efx->timer_quantum_ns = MCDI_DWORD(data,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 efx->timer_max_ns = MCDI_DWORD(data,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 efx->timer_quantum_ns = MCDI_DWORD(data,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 max_count = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
277 } else {
278 efx->timer_quantum_ns = MCDI_DWORD(data,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 max_count = MCDI_DWORD(data,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
283 }
284
285 netif_dbg(efx, probe, efx->net_dev,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx->timer_quantum_ns, efx->timer_max_ns);
288}
289
290static int efx_ef10_get_timer_config(struct efx_nic *efx)
291{
292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
293 int rc;
294
295 rc = efx_ef10_get_timer_workarounds(efx);
296 if (rc)
297 return rc;
298
299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 outbuf, sizeof(outbuf), NULL);
301
302 if (rc == 0) {
303 efx_ef10_process_timer_config(efx, outbuf);
304 } else if (rc == -ENOSYS || rc == -EPERM) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum;
307
308 rc = efx_ef10_get_sysclk_freq(efx);
309 if (rc < 0)
310 return rc;
311
312 quantum = 1536000 / rc; /* 1536 cycles */
313 efx->timer_quantum_ns = quantum;
314 efx->timer_max_ns = efx->type->timer_period_max * quantum;
315 rc = 0;
316 } else {
317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
319 NULL, 0, rc);
320 }
321
322 return rc;
323}
324
325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
326{
327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
328 size_t outlen;
329 int rc;
330
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
332
333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 outbuf, sizeof(outbuf), &outlen);
335 if (rc)
336 return rc;
337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
338 return -EIO;
339
340 ether_addr_copy(mac_address,
341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
342 return 0;
343}
344
345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
346{
347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
349 size_t outlen;
350 int num_addrs, rc;
351
352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 EVB_PORT_ID_ASSIGNED);
354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
356
357 if (rc)
358 return rc;
359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
360 return -EIO;
361
362 num_addrs = MCDI_DWORD(outbuf,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
364
365 WARN_ON(num_addrs != 1);
366
367 ether_addr_copy(mac_address,
368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
369
370 return 0;
371}
372
373static ssize_t link_control_flag_show(struct device *dev,
374 struct device_attribute *attr,
375 char *buf)
376{
377 struct efx_nic *efx = dev_get_drvdata(dev);
378
379 return sprintf(buf, "%d\n",
380 ((efx->mcdi->fn_flags) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
382 ? 1 : 0);
383}
384
385static ssize_t primary_flag_show(struct device *dev,
386 struct device_attribute *attr,
387 char *buf)
388{
389 struct efx_nic *efx = dev_get_drvdata(dev);
390
391 return sprintf(buf, "%d\n",
392 ((efx->mcdi->fn_flags) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
394 ? 1 : 0);
395}
396
397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
398{
399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 struct efx_ef10_vlan *vlan;
401
402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
403
404 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 if (vlan->vid == vid)
406 return vlan;
407 }
408
409 return NULL;
410}
411
412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
413{
414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 struct efx_ef10_vlan *vlan;
416 int rc;
417
418 mutex_lock(&nic_data->vlan_lock);
419
420 vlan = efx_ef10_find_vlan(efx, vid);
421 if (vlan) {
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
424 */
425 if (vid == 0)
426 goto done_unlock;
427 netif_warn(efx, drv, efx->net_dev,
428 "VLAN %u already added\n", vid);
429 rc = -EALREADY;
430 goto fail_exist;
431 }
432
433 rc = -ENOMEM;
434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
435 if (!vlan)
436 goto fail_alloc;
437
438 vlan->vid = vid;
439
440 list_add_tail(&vlan->list, &nic_data->vlan_list);
441
442 if (efx->filter_state) {
443 mutex_lock(&efx->mac_lock);
444 down_write(&efx->filter_sem);
445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 up_write(&efx->filter_sem);
447 mutex_unlock(&efx->mac_lock);
448 if (rc)
449 goto fail_filter_add_vlan;
450 }
451
452done_unlock:
453 mutex_unlock(&nic_data->vlan_lock);
454 return 0;
455
456fail_filter_add_vlan:
457 list_del(&vlan->list);
458 kfree(vlan);
459fail_alloc:
460fail_exist:
461 mutex_unlock(&nic_data->vlan_lock);
462 return rc;
463}
464
465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 struct efx_ef10_vlan *vlan)
467{
468 struct efx_ef10_nic_data *nic_data = efx->nic_data;
469
470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
471
472 if (efx->filter_state) {
473 down_write(&efx->filter_sem);
474 efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 up_write(&efx->filter_sem);
476 }
477
478 list_del(&vlan->list);
479 kfree(vlan);
480}
481
482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
483{
484 struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 struct efx_ef10_vlan *vlan;
486 int rc = 0;
487
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
490 * untagged traffic.
491 */
492 if (vid == 0)
493 return 0;
494
495 mutex_lock(&nic_data->vlan_lock);
496
497 vlan = efx_ef10_find_vlan(efx, vid);
498 if (!vlan) {
499 netif_err(efx, drv, efx->net_dev,
500 "VLAN %u to be deleted not found\n", vid);
501 rc = -ENOENT;
502 } else {
503 efx_ef10_del_vlan_internal(efx, vlan);
504 }
505
506 mutex_unlock(&nic_data->vlan_lock);
507
508 return rc;
509}
510
511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
512{
513 struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 struct efx_ef10_vlan *vlan, *next_vlan;
515
516 mutex_lock(&nic_data->vlan_lock);
517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 efx_ef10_del_vlan_internal(efx, vlan);
519 mutex_unlock(&nic_data->vlan_lock);
520}
521
522static DEVICE_ATTR_RO(link_control_flag);
523static DEVICE_ATTR_RO(primary_flag);
524
525static int efx_ef10_probe(struct efx_nic *efx)
526{
527 struct efx_ef10_nic_data *nic_data;
528 int i, rc;
529
530 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
531 if (!nic_data)
532 return -ENOMEM;
533 efx->nic_data = nic_data;
534
535 /* we assume later that we can copy from this buffer in dwords */
536 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
537
538 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
539 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
540 if (rc)
541 goto fail1;
542
543 /* Get the MC's warm boot count. In case it's rebooting right
544 * now, be prepared to retry.
545 */
546 i = 0;
547 for (;;) {
548 rc = efx_ef10_get_warm_boot_count(efx);
549 if (rc >= 0)
550 break;
551 if (++i == 5)
552 goto fail2;
553 ssleep(1);
554 }
555 nic_data->warm_boot_count = rc;
556
557 /* In case we're recovering from a crash (kexec), we want to
558 * cancel any outstanding request by the previous user of this
559 * function. We send a special message using the least
560 * significant bits of the 'high' (doorbell) register.
561 */
562 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
563
564 rc = efx_mcdi_init(efx);
565 if (rc)
566 goto fail2;
567
568 mutex_init(&nic_data->udp_tunnels_lock);
569 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
570 nic_data->udp_tunnels[i].type =
571 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
572
573 /* Reset (most) configuration for this function */
574 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
575 if (rc)
576 goto fail3;
577
578 /* Enable event logging */
579 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
580 if (rc)
581 goto fail3;
582
583 rc = device_create_file(&efx->pci_dev->dev,
584 &dev_attr_link_control_flag);
585 if (rc)
586 goto fail3;
587
588 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
589 if (rc)
590 goto fail4;
591
592 rc = efx_get_pf_index(efx, &nic_data->pf_index);
593 if (rc)
594 goto fail5;
595
596 rc = efx_ef10_init_datapath_caps(efx);
597 if (rc < 0)
598 goto fail5;
599
600 efx_ef10_read_licensed_features(efx);
601
602 /* We can have one VI for each vi_stride-byte region.
603 * However, until we use TX option descriptors we need up to four
604 * TX queues per channel for different checksumming combinations.
605 */
606 if (nic_data->datapath_caps &
607 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
608 efx->tx_queues_per_channel = 4;
609 else
610 efx->tx_queues_per_channel = 2;
611 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
612 if (!efx->max_vis) {
613 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
614 rc = -EIO;
615 goto fail5;
616 }
617 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
618 efx->max_vis / efx->tx_queues_per_channel);
619 efx->max_tx_channels = efx->max_channels;
620 if (WARN_ON(efx->max_channels == 0)) {
621 rc = -EIO;
622 goto fail5;
623 }
624
625 efx->rx_packet_len_offset =
626 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
627
628 if (nic_data->datapath_caps &
629 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
630 efx->net_dev->hw_features |= NETIF_F_RXFCS;
631
632 rc = efx_mcdi_port_get_number(efx);
633 if (rc < 0)
634 goto fail5;
635 efx->port_num = rc;
636
637 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
638 if (rc)
639 goto fail5;
640
641 rc = efx_ef10_get_timer_config(efx);
642 if (rc < 0)
643 goto fail5;
644
645 rc = efx_mcdi_mon_probe(efx);
646 if (rc && rc != -EPERM)
647 goto fail5;
648
649 efx_ptp_defer_probe_with_channel(efx);
650
651#ifdef CONFIG_SFC_SRIOV
652 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
653 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
654 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
655
656 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
657 } else
658#endif
659 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
660
661 INIT_LIST_HEAD(&nic_data->vlan_list);
662 mutex_init(&nic_data->vlan_lock);
663
664 /* Add unspecified VID to support VLAN filtering being disabled */
665 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
666 if (rc)
667 goto fail_add_vid_unspec;
668
669 /* If VLAN filtering is enabled, we need VID 0 to get untagged
670 * traffic. It is added automatically if 8021q module is loaded,
671 * but we can't rely on it since module may be not loaded.
672 */
673 rc = efx_ef10_add_vlan(efx, 0);
674 if (rc)
675 goto fail_add_vid_0;
676
677 if (nic_data->datapath_caps &
678 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
679 efx->mcdi->fn_flags &
680 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
681 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
682
683 return 0;
684
685fail_add_vid_0:
686 efx_ef10_cleanup_vlans(efx);
687fail_add_vid_unspec:
688 mutex_destroy(&nic_data->vlan_lock);
689 efx_ptp_remove(efx);
690 efx_mcdi_mon_remove(efx);
691fail5:
692 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
693fail4:
694 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
695fail3:
696 efx_mcdi_detach(efx);
697
698 mutex_lock(&nic_data->udp_tunnels_lock);
699 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
700 (void)efx_ef10_set_udp_tnl_ports(efx, true);
701 mutex_unlock(&nic_data->udp_tunnels_lock);
702 mutex_destroy(&nic_data->udp_tunnels_lock);
703
704 efx_mcdi_fini(efx);
705fail2:
706 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
707fail1:
708 kfree(nic_data);
709 efx->nic_data = NULL;
710 return rc;
711}
712
713#ifdef EFX_USE_PIO
714
715static void efx_ef10_free_piobufs(struct efx_nic *efx)
716{
717 struct efx_ef10_nic_data *nic_data = efx->nic_data;
718 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
719 unsigned int i;
720 int rc;
721
722 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
723
724 for (i = 0; i < nic_data->n_piobufs; i++) {
725 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
726 nic_data->piobuf_handle[i]);
727 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
728 NULL, 0, NULL);
729 WARN_ON(rc);
730 }
731
732 nic_data->n_piobufs = 0;
733}
734
735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
736{
737 struct efx_ef10_nic_data *nic_data = efx->nic_data;
738 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
739 unsigned int i;
740 size_t outlen;
741 int rc = 0;
742
743 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
744
745 for (i = 0; i < n; i++) {
746 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
747 outbuf, sizeof(outbuf), &outlen);
748 if (rc) {
749 /* Don't display the MC error if we didn't have space
750 * for a VF.
751 */
752 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
753 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
754 0, outbuf, outlen, rc);
755 break;
756 }
757 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
758 rc = -EIO;
759 break;
760 }
761 nic_data->piobuf_handle[i] =
762 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
763 netif_dbg(efx, probe, efx->net_dev,
764 "allocated PIO buffer %u handle %x\n", i,
765 nic_data->piobuf_handle[i]);
766 }
767
768 nic_data->n_piobufs = i;
769 if (rc)
770 efx_ef10_free_piobufs(efx);
771 return rc;
772}
773
774static int efx_ef10_link_piobufs(struct efx_nic *efx)
775{
776 struct efx_ef10_nic_data *nic_data = efx->nic_data;
777 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
778 struct efx_channel *channel;
779 struct efx_tx_queue *tx_queue;
780 unsigned int offset, index;
781 int rc;
782
783 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
784 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
785
786 /* Link a buffer to each VI in the write-combining mapping */
787 for (index = 0; index < nic_data->n_piobufs; ++index) {
788 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
789 nic_data->piobuf_handle[index]);
790 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
791 nic_data->pio_write_vi_base + index);
792 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
793 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
794 NULL, 0, NULL);
795 if (rc) {
796 netif_err(efx, drv, efx->net_dev,
797 "failed to link VI %u to PIO buffer %u (%d)\n",
798 nic_data->pio_write_vi_base + index, index,
799 rc);
800 goto fail;
801 }
802 netif_dbg(efx, probe, efx->net_dev,
803 "linked VI %u to PIO buffer %u\n",
804 nic_data->pio_write_vi_base + index, index);
805 }
806
807 /* Link a buffer to each TX queue */
808 efx_for_each_channel(channel, efx) {
809 /* Extra channels, even those with TXQs (PTP), do not require
810 * PIO resources.
811 */
812 if (!channel->type->want_pio ||
813 channel->channel >= efx->xdp_channel_offset)
814 continue;
815
816 efx_for_each_channel_tx_queue(tx_queue, channel) {
817 /* We assign the PIO buffers to queues in
818 * reverse order to allow for the following
819 * special case.
820 */
821 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
822 tx_queue->channel->channel - 1) *
823 efx_piobuf_size);
824 index = offset / nic_data->piobuf_size;
825 offset = offset % nic_data->piobuf_size;
826
827 /* When the host page size is 4K, the first
828 * host page in the WC mapping may be within
829 * the same VI page as the last TX queue. We
830 * can only link one buffer to each VI.
831 */
832 if (tx_queue->queue == nic_data->pio_write_vi_base) {
833 BUG_ON(index != 0);
834 rc = 0;
835 } else {
836 MCDI_SET_DWORD(inbuf,
837 LINK_PIOBUF_IN_PIOBUF_HANDLE,
838 nic_data->piobuf_handle[index]);
839 MCDI_SET_DWORD(inbuf,
840 LINK_PIOBUF_IN_TXQ_INSTANCE,
841 tx_queue->queue);
842 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
843 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
844 NULL, 0, NULL);
845 }
846
847 if (rc) {
848 /* This is non-fatal; the TX path just
849 * won't use PIO for this queue
850 */
851 netif_err(efx, drv, efx->net_dev,
852 "failed to link VI %u to PIO buffer %u (%d)\n",
853 tx_queue->queue, index, rc);
854 tx_queue->piobuf = NULL;
855 } else {
856 tx_queue->piobuf =
857 nic_data->pio_write_base +
858 index * efx->vi_stride + offset;
859 tx_queue->piobuf_offset = offset;
860 netif_dbg(efx, probe, efx->net_dev,
861 "linked VI %u to PIO buffer %u offset %x addr %p\n",
862 tx_queue->queue, index,
863 tx_queue->piobuf_offset,
864 tx_queue->piobuf);
865 }
866 }
867 }
868
869 return 0;
870
871fail:
872 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
873 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
874 */
875 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
876 while (index--) {
877 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
878 nic_data->pio_write_vi_base + index);
879 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
880 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
881 NULL, 0, NULL);
882 }
883 return rc;
884}
885
886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
887{
888 struct efx_channel *channel;
889 struct efx_tx_queue *tx_queue;
890
891 /* All our existing PIO buffers went away */
892 efx_for_each_channel(channel, efx)
893 efx_for_each_channel_tx_queue(tx_queue, channel)
894 tx_queue->piobuf = NULL;
895}
896
897#else /* !EFX_USE_PIO */
898
899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
900{
901 return n == 0 ? 0 : -ENOBUFS;
902}
903
904static int efx_ef10_link_piobufs(struct efx_nic *efx)
905{
906 return 0;
907}
908
909static void efx_ef10_free_piobufs(struct efx_nic *efx)
910{
911}
912
913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
914{
915}
916
917#endif /* EFX_USE_PIO */
918
919static void efx_ef10_remove(struct efx_nic *efx)
920{
921 struct efx_ef10_nic_data *nic_data = efx->nic_data;
922 int rc;
923
924#ifdef CONFIG_SFC_SRIOV
925 struct efx_ef10_nic_data *nic_data_pf;
926 struct pci_dev *pci_dev_pf;
927 struct efx_nic *efx_pf;
928 struct ef10_vf *vf;
929
930 if (efx->pci_dev->is_virtfn) {
931 pci_dev_pf = efx->pci_dev->physfn;
932 if (pci_dev_pf) {
933 efx_pf = pci_get_drvdata(pci_dev_pf);
934 nic_data_pf = efx_pf->nic_data;
935 vf = nic_data_pf->vf + nic_data->vf_index;
936 vf->efx = NULL;
937 } else
938 netif_info(efx, drv, efx->net_dev,
939 "Could not get the PF id from VF\n");
940 }
941#endif
942
943 efx_ef10_cleanup_vlans(efx);
944 mutex_destroy(&nic_data->vlan_lock);
945
946 efx_ptp_remove(efx);
947
948 efx_mcdi_mon_remove(efx);
949
950 efx_mcdi_rx_free_indir_table(efx);
951
952 if (nic_data->wc_membase)
953 iounmap(nic_data->wc_membase);
954
955 rc = efx_mcdi_free_vis(efx);
956 WARN_ON(rc != 0);
957
958 if (!nic_data->must_restore_piobufs)
959 efx_ef10_free_piobufs(efx);
960
961 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
962 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
963
964 efx_mcdi_detach(efx);
965
966 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
967 mutex_lock(&nic_data->udp_tunnels_lock);
968 (void)efx_ef10_set_udp_tnl_ports(efx, true);
969 mutex_unlock(&nic_data->udp_tunnels_lock);
970
971 mutex_destroy(&nic_data->udp_tunnels_lock);
972
973 efx_mcdi_fini(efx);
974 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
975 kfree(nic_data);
976}
977
978static int efx_ef10_probe_pf(struct efx_nic *efx)
979{
980 return efx_ef10_probe(efx);
981}
982
983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
984 u32 *port_flags, u32 *vadaptor_flags,
985 unsigned int *vlan_tags)
986{
987 struct efx_ef10_nic_data *nic_data = efx->nic_data;
988 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
989 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
990 size_t outlen;
991 int rc;
992
993 if (nic_data->datapath_caps &
994 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
995 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
996 port_id);
997
998 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
999 outbuf, sizeof(outbuf), &outlen);
1000 if (rc)
1001 return rc;
1002
1003 if (outlen < sizeof(outbuf)) {
1004 rc = -EIO;
1005 return rc;
1006 }
1007 }
1008
1009 if (port_flags)
1010 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011 if (vadaptor_flags)
1012 *vadaptor_flags =
1013 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014 if (vlan_tags)
1015 *vlan_tags =
1016 MCDI_DWORD(outbuf,
1017 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019 return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028 NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037 NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041 unsigned int port_id, const u8 *mac)
1042{
1043 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049 sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053 unsigned int port_id, const u8 *mac)
1054{
1055 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061 sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067 int rc;
1068 struct pci_dev *pci_dev_pf;
1069
1070 /* If the parent PF has no VF data structure, it doesn't know about this
1071 * VF so fail probe. The VF needs to be re-created. This can happen
1072 * if the PF driver was unloaded while any VF was assigned to a guest
1073 * (using Xen, only).
1074 */
1075 pci_dev_pf = efx->pci_dev->physfn;
1076 if (pci_dev_pf) {
1077 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080 if (!nic_data_pf->vf) {
1081 netif_info(efx, drv, efx->net_dev,
1082 "The VF cannot link to its parent PF; "
1083 "please destroy and re-create the VF\n");
1084 return -EBUSY;
1085 }
1086 }
1087
1088 rc = efx_ef10_probe(efx);
1089 if (rc)
1090 return rc;
1091
1092 rc = efx_ef10_get_vf_index(efx);
1093 if (rc)
1094 goto fail;
1095
1096 if (efx->pci_dev->is_virtfn) {
1097 if (efx->pci_dev->physfn) {
1098 struct efx_nic *efx_pf =
1099 pci_get_drvdata(efx->pci_dev->physfn);
1100 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103 nic_data_p->vf[nic_data->vf_index].efx = efx;
1104 nic_data_p->vf[nic_data->vf_index].pci_dev =
1105 efx->pci_dev;
1106 } else
1107 netif_info(efx, drv, efx->net_dev,
1108 "Could not get the PF id from VF\n");
1109 }
1110
1111 return 0;
1112
1113fail:
1114 efx_ef10_remove(efx);
1115 return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120 return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125 unsigned int min_vis, unsigned int max_vis)
1126{
1127 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130 &nic_data->n_allocated_vis);
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139 efx_separate_tx_channels ? 2 : 1);
1140 unsigned int channel_vis, pio_write_vi_base, max_vis;
1141 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142 unsigned int uc_mem_map_size, wc_mem_map_size;
1143 void __iomem *membase;
1144 int rc;
1145
1146 channel_vis = max(efx->n_channels,
1147 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148 efx->tx_queues_per_channel) +
1149 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150 if (efx->max_vis && efx->max_vis < channel_vis) {
1151 netif_dbg(efx, drv, efx->net_dev,
1152 "Reducing channel VIs from %u to %u\n",
1153 channel_vis, efx->max_vis);
1154 channel_vis = efx->max_vis;
1155 }
1156
1157#ifdef EFX_USE_PIO
1158 /* Try to allocate PIO buffers if wanted and if the full
1159 * number of PIO buffers would be sufficient to allocate one
1160 * copy-buffer per TX channel. Failure is non-fatal, as there
1161 * are only a small number of PIO buffers shared between all
1162 * functions of the controller.
1163 */
1164 if (efx_piobuf_size != 0 &&
1165 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166 efx->n_tx_channels) {
1167 unsigned int n_piobufs =
1168 DIV_ROUND_UP(efx->n_tx_channels,
1169 nic_data->piobuf_size / efx_piobuf_size);
1170
1171 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172 if (rc == -ENOSPC)
1173 netif_dbg(efx, probe, efx->net_dev,
1174 "out of PIO buffers; cannot allocate more\n");
1175 else if (rc == -EPERM)
1176 netif_dbg(efx, probe, efx->net_dev,
1177 "not permitted to allocate PIO buffers\n");
1178 else if (rc)
1179 netif_err(efx, probe, efx->net_dev,
1180 "failed to allocate PIO buffers (%d)\n", rc);
1181 else
1182 netif_dbg(efx, probe, efx->net_dev,
1183 "allocated %u PIO buffers\n", n_piobufs);
1184 }
1185#else
1186 nic_data->n_piobufs = 0;
1187#endif
1188
1189 /* PIO buffers should be mapped with write-combining enabled,
1190 * and we want to make single UC and WC mappings rather than
1191 * several of each (in fact that's the only option if host
1192 * page size is >4K). So we may allocate some extra VIs just
1193 * for writing PIO buffers through.
1194 *
1195 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196 * first 4K of the next VI. Then the WC mapping begins with
1197 * the remainder of this last VI.
1198 */
1199 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200 ER_DZ_TX_PIOBUF);
1201 if (nic_data->n_piobufs) {
1202 /* pio_write_vi_base rounds down to give the number of complete
1203 * VIs inside the UC mapping.
1204 */
1205 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207 nic_data->n_piobufs) *
1208 efx->vi_stride) -
1209 uc_mem_map_size);
1210 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211 } else {
1212 pio_write_vi_base = 0;
1213 wc_mem_map_size = 0;
1214 max_vis = channel_vis;
1215 }
1216
1217 /* In case the last attached driver failed to free VIs, do it now */
1218 rc = efx_mcdi_free_vis(efx);
1219 if (rc != 0)
1220 return rc;
1221
1222 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223 if (rc != 0)
1224 return rc;
1225
1226 if (nic_data->n_allocated_vis < channel_vis) {
1227 netif_info(efx, drv, efx->net_dev,
1228 "Could not allocate enough VIs to satisfy RSS"
1229 " requirements. Performance may not be optimal.\n");
1230 /* We didn't get the VIs to populate our channels.
1231 * We could keep what we got but then we'd have more
1232 * interrupts than we need.
1233 * Instead calculate new max_channels and restart
1234 */
1235 efx->max_channels = nic_data->n_allocated_vis;
1236 efx->max_tx_channels =
1237 nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239 efx_mcdi_free_vis(efx);
1240 return -EAGAIN;
1241 }
1242
1243 /* If we didn't get enough VIs to map all the PIO buffers, free the
1244 * PIO buffers
1245 */
1246 if (nic_data->n_piobufs &&
1247 nic_data->n_allocated_vis <
1248 pio_write_vi_base + nic_data->n_piobufs) {
1249 netif_dbg(efx, probe, efx->net_dev,
1250 "%u VIs are not sufficient to map %u PIO buffers\n",
1251 nic_data->n_allocated_vis, nic_data->n_piobufs);
1252 efx_ef10_free_piobufs(efx);
1253 }
1254
1255 /* Shrink the original UC mapping of the memory BAR */
1256 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257 if (!membase) {
1258 netif_err(efx, probe, efx->net_dev,
1259 "could not shrink memory BAR to %x\n",
1260 uc_mem_map_size);
1261 return -ENOMEM;
1262 }
1263 iounmap(efx->membase);
1264 efx->membase = membase;
1265
1266 /* Set up the WC mapping if needed */
1267 if (wc_mem_map_size) {
1268 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269 uc_mem_map_size,
1270 wc_mem_map_size);
1271 if (!nic_data->wc_membase) {
1272 netif_err(efx, probe, efx->net_dev,
1273 "could not allocate WC mapping of size %x\n",
1274 wc_mem_map_size);
1275 return -ENOMEM;
1276 }
1277 nic_data->pio_write_vi_base = pio_write_vi_base;
1278 nic_data->pio_write_base =
1279 nic_data->wc_membase +
1280 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281 uc_mem_map_size);
1282
1283 rc = efx_ef10_link_piobufs(efx);
1284 if (rc)
1285 efx_ef10_free_piobufs(efx);
1286 }
1287
1288 netif_dbg(efx, probe, efx->net_dev,
1289 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290 &efx->membase_phys, efx->membase, uc_mem_map_size,
1291 nic_data->wc_membase, wc_mem_map_size);
1292
1293 return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300 spin_lock_bh(&efx->stats_lock);
1301 kfree(nic_data->mc_stats);
1302 nic_data->mc_stats = NULL;
1303 spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309 struct net_device *net_dev = efx->net_dev;
1310 netdev_features_t tun_feats, tso_feats;
1311 int rc;
1312
1313 if (nic_data->must_check_datapath_caps) {
1314 rc = efx_ef10_init_datapath_caps(efx);
1315 if (rc)
1316 return rc;
1317 nic_data->must_check_datapath_caps = false;
1318 }
1319
1320 if (efx->must_realloc_vis) {
1321 /* We cannot let the number of VIs change now */
1322 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323 nic_data->n_allocated_vis);
1324 if (rc)
1325 return rc;
1326 efx->must_realloc_vis = false;
1327 }
1328
1329 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330 GFP_KERNEL);
1331 if (!nic_data->mc_stats)
1332 return -ENOMEM;
1333
1334 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336 if (rc == 0) {
1337 rc = efx_ef10_link_piobufs(efx);
1338 if (rc)
1339 efx_ef10_free_piobufs(efx);
1340 }
1341
1342 /* Log an error on failure, but this is non-fatal.
1343 * Permission errors are less important - we've presumably
1344 * had the PIO buffer licence removed.
1345 */
1346 if (rc == -EPERM)
1347 netif_dbg(efx, drv, efx->net_dev,
1348 "not permitted to restore PIO buffers\n");
1349 else if (rc)
1350 netif_err(efx, drv, efx->net_dev,
1351 "failed to restore PIO buffers (%d)\n", rc);
1352 nic_data->must_restore_piobufs = false;
1353 }
1354
1355 /* encap features might change during reset if fw variant changed */
1356 if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357 net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358 else
1359 net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361 tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363 tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365 if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366 /* If this is first nic_init, or if it is a reset and a new fw
1367 * variant has added new features, enable them by default.
1368 * If the features are not new, maintain their current value.
1369 */
1370 if (!(net_dev->hw_features & tun_feats))
1371 net_dev->features |= tun_feats;
1372 net_dev->hw_enc_features |= tun_feats | tso_feats;
1373 net_dev->hw_features |= tun_feats;
1374 } else {
1375 net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376 net_dev->hw_features &= ~tun_feats;
1377 net_dev->features &= ~tun_feats;
1378 }
1379
1380 /* don't fail init if RSS setup doesn't work */
1381 rc = efx->type->rx_push_rss_config(efx, false,
1382 efx->rss_context.rx_indir_table, NULL);
1383
1384 return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391 unsigned int i;
1392#endif
1393
1394 /* All our allocations have been reset */
1395 efx->must_realloc_vis = true;
1396 efx_mcdi_filter_table_reset_mc_allocations(efx);
1397 nic_data->must_restore_piobufs = true;
1398 efx_ef10_forget_old_piobufs(efx);
1399 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401 /* Driver-created vswitches and vports must be re-created */
1402 nic_data->must_probe_vswitching = true;
1403 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405 if (nic_data->vf)
1406 for (i = 0; i < efx->vf_count; i++)
1407 nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413 if (reason == RESET_TYPE_MC_FAILURE)
1414 return RESET_TYPE_DATAPATH;
1415
1416 return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421 enum {
1422 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423 ETH_RESET_SHARED_SHIFT),
1424 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427 ETH_RESET_SHARED_SHIFT)
1428 };
1429
1430 /* We assume for now that our PCI function is permitted to
1431 * reset everything.
1432 */
1433
1434 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435 *flags &= ~EF10_RESET_MC;
1436 return RESET_TYPE_WORLD;
1437 }
1438
1439 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440 *flags &= ~EF10_RESET_PORT;
1441 return RESET_TYPE_ALL;
1442 }
1443
1444 /* no invisible reset implemented */
1445
1446 return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451 int rc = efx_mcdi_reset(efx, reset_type);
1452
1453 /* Unprivileged functions return -EPERM, but need to return success
1454 * here so that the datapath is brought back up.
1455 */
1456 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457 rc = 0;
1458
1459 /* If it was a port reset, trigger reallocation of MC resources.
1460 * Note that on an MC reset nothing needs to be done now because we'll
1461 * detect the MC reset later and handle it then.
1462 * For an FLR, we never get an MC reset event, but the MC has reset all
1463 * resources assigned to us, so we have to trigger reallocation now.
1464 */
1465 if ((reset_type == RESET_TYPE_ALL ||
1466 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467 efx_ef10_table_reset_mc_allocations(efx);
1468 return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name) \
1472 [EF10_STAT_ ## ext_name] = \
1473 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1475 [EF10_STAT_ ## int_name] = \
1476 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name) \
1478 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498 EF10_OTHER_STAT(port_rx_good_bytes),
1499 EF10_OTHER_STAT(port_rx_bad_bytes),
1500 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523 EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1579 (1ULL << EF10_STAT_port_tx_packets) | \
1580 (1ULL << EF10_STAT_port_tx_pause) | \
1581 (1ULL << EF10_STAT_port_tx_unicast) | \
1582 (1ULL << EF10_STAT_port_tx_multicast) | \
1583 (1ULL << EF10_STAT_port_tx_broadcast) | \
1584 (1ULL << EF10_STAT_port_rx_bytes) | \
1585 (1ULL << \
1586 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1588 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1589 (1ULL << EF10_STAT_port_rx_packets) | \
1590 (1ULL << EF10_STAT_port_rx_good) | \
1591 (1ULL << EF10_STAT_port_rx_bad) | \
1592 (1ULL << EF10_STAT_port_rx_pause) | \
1593 (1ULL << EF10_STAT_port_rx_control) | \
1594 (1ULL << EF10_STAT_port_rx_unicast) | \
1595 (1ULL << EF10_STAT_port_rx_multicast) | \
1596 (1ULL << EF10_STAT_port_rx_broadcast) | \
1597 (1ULL << EF10_STAT_port_rx_lt64) | \
1598 (1ULL << EF10_STAT_port_rx_64) | \
1599 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1600 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1601 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1602 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1606 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607 (1ULL << EF10_STAT_port_rx_overflow) | \
1608 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1610 (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1618 (1ULL << EF10_STAT_port_tx_lt64) | \
1619 (1ULL << EF10_STAT_port_tx_64) | \
1620 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC. For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632 (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK ( \
1638 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1639 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1640 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1641 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1642 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1643 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1644 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1645 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1646 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1647 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1648 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1649 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK ( \
1657 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1658 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1659 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1660 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1661 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1662 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK ( \
1670 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1671 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1672 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1673 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1674 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1675 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1676 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1677 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1678 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1679 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1680 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1681 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1682 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1683 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1684 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1685 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693 if (!(efx->mcdi->fn_flags &
1694 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695 return 0;
1696
1697 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699 /* 8000 series have everything even at 40G */
1700 if (nic_data->datapath_caps2 &
1701 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703 } else {
1704 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705 }
1706
1707 if (nic_data->datapath_caps &
1708 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711 return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717 u64 raw_mask[2];
1718
1719 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721 /* Only show vadaptor stats when EVB capability is present */
1722 if (nic_data->datapath_caps &
1723 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726 } else {
1727 raw_mask[1] = 0;
1728 }
1729 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731 raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733 /* CTPIO stats appear in V3. Only show them on devices that actually
1734 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735 * and we may be reporting the stats for the underlying port.
1736 */
1737 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738 (nic_data->datapath_caps2 &
1739 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744 mask[0] = raw_mask[0];
1745 mask[1] = raw_mask[1];
1746#else
1747 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748 mask[0] = raw_mask[0] & 0xffffffff;
1749 mask[1] = raw_mask[0] >> 32;
1750 mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758 efx_ef10_get_stat_mask(efx, mask);
1759 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760 mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764 struct ethtool_fec_stats *fec_stats)
1765{
1766 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768 u64 *stats = nic_data->stats;
1769
1770 efx_ef10_get_stat_mask(efx, mask);
1771 if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772 fec_stats->corrected_blocks.total =
1773 stats[EF10_STAT_fec_corrected_errors];
1774 if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775 fec_stats->uncorrectable_blocks.total =
1776 stats[EF10_STAT_fec_uncorrected_errors];
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780 struct rtnl_link_stats64 *core_stats)
1781{
1782 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784 u64 *stats = nic_data->stats;
1785 size_t stats_count = 0, index;
1786
1787 efx_ef10_get_stat_mask(efx, mask);
1788
1789 if (full_stats) {
1790 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791 if (efx_ef10_stat_desc[index].name) {
1792 *full_stats++ = stats[index];
1793 ++stats_count;
1794 }
1795 }
1796 }
1797
1798 if (!core_stats)
1799 return stats_count;
1800
1801 if (nic_data->datapath_caps &
1802 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803 /* Use vadaptor stats. */
1804 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805 stats[EF10_STAT_rx_multicast] +
1806 stats[EF10_STAT_rx_broadcast];
1807 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808 stats[EF10_STAT_tx_multicast] +
1809 stats[EF10_STAT_tx_broadcast];
1810 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811 stats[EF10_STAT_rx_multicast_bytes] +
1812 stats[EF10_STAT_rx_broadcast_bytes];
1813 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814 stats[EF10_STAT_tx_multicast_bytes] +
1815 stats[EF10_STAT_tx_broadcast_bytes];
1816 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817 stats[GENERIC_STAT_rx_noskb_drops];
1818 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821 core_stats->rx_errors = core_stats->rx_crc_errors;
1822 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823 } else {
1824 /* Use port stats. */
1825 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831 stats[GENERIC_STAT_rx_noskb_drops];
1832 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833 core_stats->rx_length_errors =
1834 stats[EF10_STAT_port_rx_gtjumbo] +
1835 stats[EF10_STAT_port_rx_length_error];
1836 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837 core_stats->rx_frame_errors =
1838 stats[EF10_STAT_port_rx_align_error];
1839 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840 core_stats->rx_errors = (core_stats->rx_length_errors +
1841 core_stats->rx_crc_errors +
1842 core_stats->rx_frame_errors);
1843 }
1844
1845 return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849 struct rtnl_link_stats64 *core_stats)
1850{
1851 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1853 u64 *stats = nic_data->stats;
1854
1855 efx_ef10_get_stat_mask(efx, mask);
1856
1857 /* If NIC was fini'd (probably resetting), then we can't read
1858 * updated stats right now.
1859 */
1860 if (nic_data->mc_stats) {
1861 efx_nic_copy_stats(efx, nic_data->mc_stats);
1862 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863 mask, stats, nic_data->mc_stats, false);
1864 }
1865
1866 /* Update derived statistics */
1867 efx_nic_fix_nodesc_drop_stat(efx,
1868 &stats[EF10_STAT_port_rx_nodesc_drops]);
1869 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872 * Here we calculate port_rx_good_bytes.
1873 */
1874 stats[EF10_STAT_port_rx_good_bytes] =
1875 stats[EF10_STAT_port_rx_bytes] -
1876 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1879 * MC Firmware are done such that we should not see an increase in
1880 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881 * does mean that the stat can decrease at times. Here we do not
1882 * update the stat unless it has increased or has gone to zero
1883 * (In the case of the NIC rebooting).
1884 * Please see Bug 33781 for a discussion of why things work this way.
1885 */
1886 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888 efx_update_sw_stats(efx, stats);
1889
1890 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894 __must_hold(&efx->stats_lock)
1895{
1896 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899 __le64 generation_start, generation_end;
1900 u64 *stats = nic_data->stats;
1901 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902 struct efx_buffer stats_buf;
1903 __le64 *dma_stats;
1904 int rc;
1905
1906 spin_unlock_bh(&efx->stats_lock);
1907
1908 efx_ef10_get_stat_mask(efx, mask);
1909
1910 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911 if (rc) {
1912 spin_lock_bh(&efx->stats_lock);
1913 return rc;
1914 }
1915
1916 dma_stats = stats_buf.addr;
1917 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921 MAC_STATS_IN_DMA, 1);
1922 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926 NULL, 0, NULL);
1927 spin_lock_bh(&efx->stats_lock);
1928 if (rc) {
1929 /* Expect ENOENT if DMA queues have not been set up */
1930 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932 sizeof(inbuf), NULL, 0, rc);
1933 goto out;
1934 }
1935
1936 generation_end = dma_stats[efx->num_mac_stats - 1];
1937 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938 WARN_ON_ONCE(1);
1939 goto out;
1940 }
1941 rmb();
1942 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943 stats, stats_buf.addr, false);
1944 rmb();
1945 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946 if (generation_end != generation_start) {
1947 rc = -EAGAIN;
1948 goto out;
1949 }
1950
1951 efx_update_sw_stats(efx, stats);
1952out:
1953 /* releasing a DMA coherent buffer with BH disabled can panic */
1954 spin_unlock_bh(&efx->stats_lock);
1955 efx_nic_free_buffer(efx, &stats_buf);
1956 spin_lock_bh(&efx->stats_lock);
1957 return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961 struct rtnl_link_stats64 *core_stats)
1962{
1963 if (efx_ef10_try_update_nic_stats_vf(efx))
1964 return 0;
1965
1966 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970 struct rtnl_link_stats64 *core_stats)
1971{
1972 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974 /* In atomic context, cannot update HW stats. Just update the
1975 * software stats and return so the caller can continue.
1976 */
1977 efx_update_sw_stats(efx, nic_data->stats);
1978 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983 struct efx_nic *efx = channel->efx;
1984 unsigned int mode, usecs;
1985 efx_dword_t timer_cmd;
1986
1987 if (channel->irq_moderation_us) {
1988 mode = 3;
1989 usecs = channel->irq_moderation_us;
1990 } else {
1991 mode = 0;
1992 usecs = 0;
1993 }
1994
1995 if (EFX_EF10_WORKAROUND_61265(efx)) {
1996 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997 unsigned int ns = usecs * 1000;
1998
1999 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000 channel->channel);
2001 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006 inbuf, sizeof(inbuf), 0, NULL, 0);
2007 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011 EFE_DD_EVQ_IND_TIMER_FLAGS,
2012 ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015 channel->channel);
2016 } else {
2017 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020 ERF_DZ_TC_TIMER_VAL, ticks,
2021 ERF_FZ_TC_TMR_REL_VAL, ticks);
2022 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023 channel->channel);
2024 }
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028 struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032 return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037 wol->supported = 0;
2038 wol->wolopts = 0;
2039 memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044 if (type != 0)
2045 return -EINVAL;
2046 return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050 const efx_dword_t *hdr, size_t hdr_len,
2051 const efx_dword_t *sdu, size_t sdu_len)
2052{
2053 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054 u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056 memcpy(pdu, hdr, hdr_len);
2057 memcpy(pdu + hdr_len, sdu, sdu_len);
2058 wmb();
2059
2060 /* The hardware provides 'low' and 'high' (doorbell) registers
2061 * for passing the 64-bit address of an MCDI request to
2062 * firmware. However the dwords are swapped by firmware. The
2063 * least significant bits of the doorbell are then 0 for all
2064 * MCDI requests due to alignment.
2065 */
2066 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067 ER_DZ_MC_DB_LWRD);
2068 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069 ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077 rmb();
2078 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083 size_t offset, size_t outlen)
2084{
2085 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086 const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088 memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095 /* All our allocations have been reset */
2096 efx_ef10_table_reset_mc_allocations(efx);
2097
2098 /* The datapath firmware might have been changed */
2099 nic_data->must_check_datapath_caps = true;
2100
2101 /* MAC statistics have been cleared on the NIC; clear the local
2102 * statistic that we update with efx_update_diff_stat().
2103 */
2104 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110 int rc;
2111
2112 rc = efx_ef10_get_warm_boot_count(efx);
2113 if (rc < 0) {
2114 /* The firmware is presumably in the process of
2115 * rebooting. However, we are supposed to report each
2116 * reboot just once, so we must only do that once we
2117 * can read and store the updated warm boot count.
2118 */
2119 return 0;
2120 }
2121
2122 if (rc == nic_data->warm_boot_count)
2123 return 0;
2124
2125 nic_data->warm_boot_count = rc;
2126 efx_ef10_mcdi_reboot_detected(efx);
2127
2128 return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt. This routine schedules event
2134 * queue processing. No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140 struct efx_msi_context *context = dev_id;
2141 struct efx_nic *efx = context->efx;
2142
2143 netif_vdbg(efx, intr, efx->net_dev,
2144 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147 /* Note test interrupts */
2148 if (context->index == efx->irq_level)
2149 efx->last_irq_cpu = raw_smp_processor_id();
2150
2151 /* Schedule processing of the channel */
2152 efx_schedule_channel_irq(efx->channel[context->index]);
2153 }
2154
2155 return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160 struct efx_nic *efx = dev_id;
2161 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162 struct efx_channel *channel;
2163 efx_dword_t reg;
2164 u32 queues;
2165
2166 /* Read the ISR which also ACKs the interrupts */
2167 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2168 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170 if (queues == 0)
2171 return IRQ_NONE;
2172
2173 if (likely(soft_enabled)) {
2174 /* Note test interrupts */
2175 if (queues & (1U << efx->irq_level))
2176 efx->last_irq_cpu = raw_smp_processor_id();
2177
2178 efx_for_each_channel(channel, efx) {
2179 if (queues & 1)
2180 efx_schedule_channel_irq(channel);
2181 queues >>= 1;
2182 }
2183 }
2184
2185 netif_vdbg(efx, intr, efx->net_dev,
2186 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189 return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197 NULL) == 0)
2198 return -ENOTSUPP;
2199
2200 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204 inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209 /* low two bits of label are what we want for type */
2210 BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211 tx_queue->type = tx_queue->label & 3;
2212 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213 (tx_queue->ptr_mask + 1) *
2214 sizeof(efx_qword_t),
2215 GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220 const efx_qword_t *txd)
2221{
2222 unsigned int write_ptr;
2223 efx_oword_t reg;
2224
2225 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227 reg.qword[0] = *txd;
2228 efx_writeo_page(tx_queue->efx, ®,
2229 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235 bool *data_mapped)
2236{
2237 struct efx_tx_buffer *buffer;
2238 u16 inner_ipv4_id = 0;
2239 u16 outer_ipv4_id = 0;
2240 struct tcphdr *tcp;
2241 struct iphdr *ip;
2242 u16 ip_tot_len;
2243 u32 seqnum;
2244 u32 mss;
2245
2246 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248 mss = skb_shinfo(skb)->gso_size;
2249
2250 if (unlikely(mss < 4)) {
2251 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252 return -EINVAL;
2253 }
2254
2255 if (skb->encapsulation) {
2256 if (!tx_queue->tso_encap)
2257 return -EINVAL;
2258 ip = ip_hdr(skb);
2259 if (ip->version == 4)
2260 outer_ipv4_id = ntohs(ip->id);
2261
2262 ip = inner_ip_hdr(skb);
2263 tcp = inner_tcp_hdr(skb);
2264 } else {
2265 ip = ip_hdr(skb);
2266 tcp = tcp_hdr(skb);
2267 }
2268
2269 /* 8000-series EF10 hardware requires that IP Total Length be
2270 * greater than or equal to the value it will have in each segment
2271 * (which is at most mss + 208 + TCP header length), but also less
2272 * than (0x10000 - inner_network_header). Otherwise the TCP
2273 * checksum calculation will be broken for encapsulated packets.
2274 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275 * first requirement unless the MSS is ridiculously large (which
2276 * should be impossible as the driver max MTU is 9216); it is
2277 * guaranteed to satisfy the second as we only attempt TSO if
2278 * inner_network_header <= 208.
2279 */
2280 ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281 EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282 (tcp->doff << 2u) > ip_tot_len);
2283
2284 if (ip->version == 4) {
2285 ip->tot_len = htons(ip_tot_len);
2286 ip->check = 0;
2287 inner_ipv4_id = ntohs(ip->id);
2288 } else {
2289 ((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2290 }
2291
2292 seqnum = ntohl(tcp->seq);
2293
2294 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296 buffer->flags = EFX_TX_BUF_OPTION;
2297 buffer->len = 0;
2298 buffer->unmap_len = 0;
2299 EFX_POPULATE_QWORD_5(buffer->option,
2300 ESF_DZ_TX_DESC_IS_OPT, 1,
2301 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302 ESF_DZ_TX_TSO_OPTION_TYPE,
2303 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304 ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306 );
2307 ++tx_queue->insert_count;
2308
2309 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311 buffer->flags = EFX_TX_BUF_OPTION;
2312 buffer->len = 0;
2313 buffer->unmap_len = 0;
2314 EFX_POPULATE_QWORD_5(buffer->option,
2315 ESF_DZ_TX_DESC_IS_OPT, 1,
2316 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317 ESF_DZ_TX_TSO_OPTION_TYPE,
2318 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319 ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320 ESF_DZ_TX_TSO_TCP_MSS, mss
2321 );
2322 ++tx_queue->insert_count;
2323
2324 return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330 u32 tso_versions = 0;
2331
2332 if (nic_data->datapath_caps &
2333 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334 tso_versions |= BIT(1);
2335 if (nic_data->datapath_caps2 &
2336 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337 tso_versions |= BIT(2);
2338 return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343 bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344 bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
2345 struct efx_channel *channel = tx_queue->channel;
2346 struct efx_nic *efx = tx_queue->efx;
2347 struct efx_ef10_nic_data *nic_data;
2348 efx_qword_t *txd;
2349 int rc;
2350
2351 nic_data = efx->nic_data;
2352
2353 /* Only attempt to enable TX timestamping if we have the license for it,
2354 * otherwise TXQ init will fail
2355 */
2356 if (!(nic_data->licensed_features &
2357 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358 tx_queue->timestamping = false;
2359 /* Disable sync events on this channel. */
2360 if (efx->type->ptp_set_ts_sync_events)
2361 efx->type->ptp_set_ts_sync_events(efx, false, false);
2362 }
2363
2364 /* TSOv2 is a limited resource that can only be configured on a limited
2365 * number of queues. TSO without checksum offload is not really a thing,
2366 * so we only enable it for those queues.
2367 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368 * for XDP tx.
2369 */
2370 if (efx_has_cap(efx, TX_TSO_V2)) {
2371 if ((csum_offload || inner_csum) &&
2372 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373 tx_queue->tso_version = 2;
2374 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375 channel->channel);
2376 }
2377 } else if (efx_has_cap(efx, TX_TSO)) {
2378 tx_queue->tso_version = 1;
2379 }
2380
2381 rc = efx_mcdi_tx_init(tx_queue);
2382 if (rc)
2383 goto fail;
2384
2385 /* A previous user of this TX queue might have set us up the
2386 * bomb by writing a descriptor to the TX push collector but
2387 * not the doorbell. (Each collector belongs to a port, not a
2388 * queue or function, so cannot easily be reset.) We must
2389 * attempt to push a no-op descriptor in its place.
2390 */
2391 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392 tx_queue->insert_count = 1;
2393 txd = efx_tx_desc(tx_queue, 0);
2394 EFX_POPULATE_QWORD_7(*txd,
2395 ESF_DZ_TX_DESC_IS_OPT, true,
2396 ESF_DZ_TX_OPTION_TYPE,
2397 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400 ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401 ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403 tx_queue->write_count = 1;
2404
2405 if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406 tx_queue->tso_encap = true;
2407
2408 wmb();
2409 efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411 return;
2412
2413fail:
2414 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415 tx_queue->queue);
2416}
2417
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421 unsigned int write_ptr;
2422 efx_dword_t reg;
2423
2424 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426 efx_writed_page(tx_queue->efx, ®,
2427 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433 dma_addr_t dma_addr, unsigned int len)
2434{
2435 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436 /* If we need to break across multiple descriptors we should
2437 * stop at a page boundary. This assumes the length limit is
2438 * greater than the page size.
2439 */
2440 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444 }
2445
2446 return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451 unsigned int old_write_count = tx_queue->write_count;
2452 struct efx_tx_buffer *buffer;
2453 unsigned int write_ptr;
2454 efx_qword_t *txd;
2455
2456 tx_queue->xmit_pending = false;
2457 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458 return;
2459
2460 do {
2461 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462 buffer = &tx_queue->buffer[write_ptr];
2463 txd = efx_tx_desc(tx_queue, write_ptr);
2464 ++tx_queue->write_count;
2465
2466 /* Create TX descriptor ring entry */
2467 if (buffer->flags & EFX_TX_BUF_OPTION) {
2468 *txd = buffer->option;
2469 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470 /* PIO descriptor */
2471 tx_queue->packet_write_count = tx_queue->write_count;
2472 } else {
2473 tx_queue->packet_write_count = tx_queue->write_count;
2474 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475 EFX_POPULATE_QWORD_3(
2476 *txd,
2477 ESF_DZ_TX_KER_CONT,
2478 buffer->flags & EFX_TX_BUF_CONT,
2479 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481 }
2482 } while (tx_queue->write_count != tx_queue->insert_count);
2483
2484 wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487 txd = efx_tx_desc(tx_queue,
2488 old_write_count & tx_queue->ptr_mask);
2489 efx_ef10_push_tx_desc(tx_queue, txd);
2490 ++tx_queue->pushes;
2491 } else {
2492 efx_ef10_notify_tx_desc(tx_queue);
2493 }
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2497{
2498 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499 unsigned int enabled, implemented;
2500 bool want_workaround_26807;
2501 int rc;
2502
2503 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504 if (rc == -ENOSYS) {
2505 /* GET_WORKAROUNDS was implemented before this workaround,
2506 * thus it must be unavailable in this firmware.
2507 */
2508 nic_data->workaround_26807 = false;
2509 return 0;
2510 }
2511 if (rc)
2512 return rc;
2513 want_workaround_26807 =
2514 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515 nic_data->workaround_26807 =
2516 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518 if (want_workaround_26807 && !nic_data->workaround_26807) {
2519 unsigned int flags;
2520
2521 rc = efx_mcdi_set_workaround(efx,
2522 MC_CMD_WORKAROUND_BUG26807,
2523 true, &flags);
2524 if (!rc) {
2525 if (flags &
2526 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527 netif_info(efx, drv, efx->net_dev,
2528 "other functions on NIC have been reset\n");
2529
2530 /* With MCFW v4.6.x and earlier, the
2531 * boot count will have incremented,
2532 * so re-read the warm_boot_count
2533 * value now to ensure this function
2534 * doesn't think it has changed next
2535 * time it checks.
2536 */
2537 rc = efx_ef10_get_warm_boot_count(efx);
2538 if (rc >= 0) {
2539 nic_data->warm_boot_count = rc;
2540 rc = 0;
2541 }
2542 }
2543 nic_data->workaround_26807 = true;
2544 } else if (rc == -EPERM) {
2545 rc = 0;
2546 }
2547 }
2548 return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2552{
2553 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554 int rc = efx_ef10_probe_multicast_chaining(efx);
2555 struct efx_mcdi_filter_vlan *vlan;
2556
2557 if (rc)
2558 return rc;
2559 down_write(&efx->filter_sem);
2560 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
2562 if (rc)
2563 goto out_unlock;
2564
2565 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2567 if (rc)
2568 goto fail_add_vlan;
2569 }
2570 goto out_unlock;
2571
2572fail_add_vlan:
2573 efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575 up_write(&efx->filter_sem);
2576 return rc;
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2580{
2581 down_write(&efx->filter_sem);
2582 efx_mcdi_filter_table_remove(efx);
2583 up_write(&efx->filter_sem);
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590 struct efx_rx_buffer *rx_buf;
2591 efx_qword_t *rxd;
2592
2593 rxd = efx_rx_desc(rx_queue, index);
2594 rx_buf = efx_rx_buffer(rx_queue, index);
2595 EFX_POPULATE_QWORD_2(*rxd,
2596 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602 struct efx_nic *efx = rx_queue->efx;
2603 unsigned int write_count;
2604 efx_dword_t reg;
2605
2606 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607 write_count = rx_queue->added_count & ~7;
2608 if (rx_queue->notified_count == write_count)
2609 return;
2610
2611 do
2612 efx_ef10_build_rx_desc(
2613 rx_queue,
2614 rx_queue->notified_count & rx_queue->ptr_mask);
2615 while (++rx_queue->notified_count != write_count);
2616
2617 wmb();
2618 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619 write_count & rx_queue->ptr_mask);
2620 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2621 efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630 efx_qword_t event;
2631
2632 EFX_POPULATE_QWORD_2(event,
2633 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639 * already swapped the data to little-endian order.
2640 */
2641 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642 sizeof(efx_qword_t));
2643
2644 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645 inbuf, sizeof(inbuf), 0,
2646 efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651 int rc, efx_dword_t *outbuf,
2652 size_t outlen_actual)
2653{
2654 /* nothing to do */
2655}
2656
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
2659 struct efx_nic *efx = channel->efx;
2660 struct efx_ef10_nic_data *nic_data;
2661 bool use_v2, cut_thru;
2662
2663 nic_data = efx->nic_data;
2664 use_v2 = nic_data->datapath_caps2 &
2665 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666 cut_thru = !(nic_data->datapath_caps &
2667 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668 return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672 unsigned int rx_queue_label)
2673{
2674 struct efx_nic *efx = rx_queue->efx;
2675
2676 netif_info(efx, hw, efx->net_dev,
2677 "rx event arrived on queue %d labeled as queue %u\n",
2678 efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685 unsigned int actual, unsigned int expected)
2686{
2687 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688 struct efx_nic *efx = rx_queue->efx;
2689
2690 netif_info(efx, hw, efx->net_dev,
2691 "dropped %d events (index=%d expected=%d)\n",
2692 dropped, actual, expected);
2693
2694 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700 unsigned int rx_desc_ptr;
2701
2702 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703 "scattered RX aborted (dropping %u buffers)\n",
2704 rx_queue->scatter_n);
2705
2706 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709 0, EFX_RX_PKT_DISCARD);
2710
2711 rx_queue->removed_count += rx_queue->scatter_n;
2712 rx_queue->scatter_n = 0;
2713 rx_queue->scatter_len = 0;
2714 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718 unsigned int n_packets,
2719 unsigned int rx_encap_hdr,
2720 unsigned int rx_l3_class,
2721 unsigned int rx_l4_class,
2722 const efx_qword_t *event)
2723{
2724 struct efx_nic *efx = channel->efx;
2725 bool handled = false;
2726
2727 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729 if (!efx->loopback_selftest)
2730 channel->n_rx_eth_crc_err += n_packets;
2731 return EFX_RX_PKT_DISCARD;
2732 }
2733 handled = true;
2734 }
2735 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741 netdev_WARN(efx->net_dev,
2742 "invalid class for RX_IPCKSUM_ERR: event="
2743 EFX_QWORD_FMT "\n",
2744 EFX_QWORD_VAL(*event));
2745 if (!efx->loopback_selftest)
2746 *(rx_encap_hdr ?
2747 &channel->n_rx_outer_ip_hdr_chksum_err :
2748 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749 return 0;
2750 }
2751 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757 netdev_WARN(efx->net_dev,
2758 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759 EFX_QWORD_FMT "\n",
2760 EFX_QWORD_VAL(*event));
2761 if (!efx->loopback_selftest)
2762 *(rx_encap_hdr ?
2763 &channel->n_rx_outer_tcp_udp_chksum_err :
2764 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765 return 0;
2766 }
2767 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768 if (unlikely(!rx_encap_hdr))
2769 netdev_WARN(efx->net_dev,
2770 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771 EFX_QWORD_FMT "\n",
2772 EFX_QWORD_VAL(*event));
2773 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777 netdev_WARN(efx->net_dev,
2778 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779 EFX_QWORD_FMT "\n",
2780 EFX_QWORD_VAL(*event));
2781 if (!efx->loopback_selftest)
2782 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783 return 0;
2784 }
2785 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786 if (unlikely(!rx_encap_hdr))
2787 netdev_WARN(efx->net_dev,
2788 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789 EFX_QWORD_FMT "\n",
2790 EFX_QWORD_VAL(*event));
2791 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795 netdev_WARN(efx->net_dev,
2796 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797 EFX_QWORD_FMT "\n",
2798 EFX_QWORD_VAL(*event));
2799 if (!efx->loopback_selftest)
2800 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801 return 0;
2802 }
2803
2804 WARN_ON(!handled); /* No error bits were recognised */
2805 return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809 const efx_qword_t *event)
2810{
2811 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813 unsigned int n_descs, n_packets, i;
2814 struct efx_nic *efx = channel->efx;
2815 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816 struct efx_rx_queue *rx_queue;
2817 efx_qword_t errors;
2818 bool rx_cont;
2819 u16 flags = 0;
2820
2821 if (unlikely(READ_ONCE(efx->reset_pending)))
2822 return 0;
2823
2824 /* Basic packet information */
2825 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831 rx_encap_hdr =
2832 nic_data->datapath_caps &
2833 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835 ESE_EZ_ENCAP_HDR_NONE;
2836
2837 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839 EFX_QWORD_FMT "\n",
2840 EFX_QWORD_VAL(*event));
2841
2842 rx_queue = efx_channel_get_rx_queue(channel);
2843
2844 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850 if (n_descs != rx_queue->scatter_n + 1) {
2851 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853 /* detect rx abort */
2854 if (unlikely(n_descs == rx_queue->scatter_n)) {
2855 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856 netdev_WARN(efx->net_dev,
2857 "invalid RX abort: scatter_n=%u event="
2858 EFX_QWORD_FMT "\n",
2859 rx_queue->scatter_n,
2860 EFX_QWORD_VAL(*event));
2861 efx_ef10_handle_rx_abort(rx_queue);
2862 return 0;
2863 }
2864
2865 /* Check that RX completion merging is valid, i.e.
2866 * the current firmware supports it and this is a
2867 * non-scattered packet.
2868 */
2869 if (!(nic_data->datapath_caps &
2870 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871 rx_queue->scatter_n != 0 || rx_cont) {
2872 efx_ef10_handle_rx_bad_lbits(
2873 rx_queue, next_ptr_lbits,
2874 (rx_queue->removed_count +
2875 rx_queue->scatter_n + 1) &
2876 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877 return 0;
2878 }
2879
2880 /* Merged completion for multiple non-scattered packets */
2881 rx_queue->scatter_n = 1;
2882 rx_queue->scatter_len = 0;
2883 n_packets = n_descs;
2884 ++channel->n_rx_merge_events;
2885 channel->n_rx_merge_packets += n_packets;
2886 flags |= EFX_RX_PKT_PREFIX_LEN;
2887 } else {
2888 ++rx_queue->scatter_n;
2889 rx_queue->scatter_len += rx_bytes;
2890 if (rx_cont)
2891 return 0;
2892 n_packets = 1;
2893 }
2894
2895 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896 ESF_DZ_RX_IPCKSUM_ERR, 1,
2897 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900 EFX_AND_QWORD(errors, *event, errors);
2901 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903 rx_encap_hdr,
2904 rx_l3_class, rx_l4_class,
2905 event);
2906 } else {
2907 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910 switch (rx_encap_hdr) {
2911 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913 if (tcpudp)
2914 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915 break;
2916 case ESE_EZ_ENCAP_HDR_GRE:
2917 case ESE_EZ_ENCAP_HDR_NONE:
2918 if (tcpudp)
2919 flags |= EFX_RX_PKT_CSUMMED;
2920 break;
2921 default:
2922 netdev_WARN(efx->net_dev,
2923 "unknown encapsulation type: event="
2924 EFX_QWORD_FMT "\n",
2925 EFX_QWORD_VAL(*event));
2926 }
2927 }
2928
2929 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930 flags |= EFX_RX_PKT_TCP;
2931
2932 channel->irq_mod_score += 2 * n_packets;
2933
2934 /* Handle received packet(s) */
2935 for (i = 0; i < n_packets; i++) {
2936 efx_rx_packet(rx_queue,
2937 rx_queue->removed_count & rx_queue->ptr_mask,
2938 rx_queue->scatter_n, rx_queue->scatter_len,
2939 flags);
2940 rx_queue->removed_count += rx_queue->scatter_n;
2941 }
2942
2943 rx_queue->scatter_n = 0;
2944 rx_queue->scatter_len = 0;
2945
2946 return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951 u32 tstamp;
2952
2953 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954 tstamp <<= 16;
2955 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957 return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963 struct efx_nic *efx = channel->efx;
2964 struct efx_tx_queue *tx_queue;
2965 unsigned int tx_ev_desc_ptr;
2966 unsigned int tx_ev_q_label;
2967 unsigned int tx_ev_type;
2968 int work_done;
2969 u64 ts_part;
2970
2971 if (unlikely(READ_ONCE(efx->reset_pending)))
2972 return 0;
2973
2974 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975 return 0;
2976
2977 /* Get the transmit queue */
2978 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979 tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2980
2981 if (!tx_queue->timestamping) {
2982 /* Transmit completion */
2983 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984 return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2985 }
2986
2987 /* Transmit timestamps are only available for 8XXX series. They result
2988 * in up to three events per packet. These occur in order, and are:
2989 * - the normal completion event (may be omitted)
2990 * - the low part of the timestamp
2991 * - the high part of the timestamp
2992 *
2993 * It's possible for multiple completion events to appear before the
2994 * corresponding timestamps. So we can for example get:
2995 * COMP N
2996 * COMP N+1
2997 * TS_LO N
2998 * TS_HI N
2999 * TS_LO N+1
3000 * TS_HI N+1
3001 *
3002 * In addition it's also possible for the adjacent completions to be
3003 * merged, so we may not see COMP N above. As such, the completion
3004 * events are not very useful here.
3005 *
3006 * Each part of the timestamp is itself split across two 16 bit
3007 * fields in the event.
3008 */
3009 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010 work_done = 0;
3011
3012 switch (tx_ev_type) {
3013 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014 /* Ignore this event - see above. */
3015 break;
3016
3017 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018 ts_part = efx_ef10_extract_event_ts(event);
3019 tx_queue->completed_timestamp_minor = ts_part;
3020 break;
3021
3022 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023 ts_part = efx_ef10_extract_event_ts(event);
3024 tx_queue->completed_timestamp_major = ts_part;
3025
3026 efx_xmit_done_single(tx_queue);
3027 work_done = 1;
3028 break;
3029
3030 default:
3031 netif_err(efx, hw, efx->net_dev,
3032 "channel %d unknown tx event type %d (data "
3033 EFX_QWORD_FMT ")\n",
3034 channel->channel, tx_ev_type,
3035 EFX_QWORD_VAL(*event));
3036 break;
3037 }
3038
3039 return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045 struct efx_nic *efx = channel->efx;
3046 int subcode;
3047
3048 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050 switch (subcode) {
3051 case ESE_DZ_DRV_TIMER_EV:
3052 case ESE_DZ_DRV_WAKE_UP_EV:
3053 break;
3054 case ESE_DZ_DRV_START_UP_EV:
3055 /* event queue init complete. ok. */
3056 break;
3057 default:
3058 netif_err(efx, hw, efx->net_dev,
3059 "channel %d unknown driver event type %d"
3060 " (data " EFX_QWORD_FMT ")\n",
3061 channel->channel, subcode,
3062 EFX_QWORD_VAL(*event));
3063
3064 }
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068 efx_qword_t *event)
3069{
3070 struct efx_nic *efx = channel->efx;
3071 u32 subcode;
3072
3073 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075 switch (subcode) {
3076 case EFX_EF10_TEST:
3077 channel->event_test_cpu = raw_smp_processor_id();
3078 break;
3079 case EFX_EF10_REFILL:
3080 /* The queue must be empty, so we won't receive any rx
3081 * events, so efx_process_channel() won't refill the
3082 * queue. Refill it here
3083 */
3084 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085 break;
3086 default:
3087 netif_err(efx, hw, efx->net_dev,
3088 "channel %d unknown driver event type %u"
3089 " (data " EFX_QWORD_FMT ")\n",
3090 channel->channel, (unsigned) subcode,
3091 EFX_QWORD_VAL(*event));
3092 }
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099 struct efx_nic *efx = channel->efx;
3100 efx_qword_t event, *p_event;
3101 unsigned int read_ptr;
3102 int spent_tx = 0;
3103 int spent = 0;
3104 int ev_code;
3105
3106 if (quota <= 0)
3107 return spent;
3108
3109 read_ptr = channel->eventq_read_ptr;
3110
3111 for (;;) {
3112 p_event = efx_event(channel, read_ptr);
3113 event = *p_event;
3114
3115 if (!efx_event_present(&event))
3116 break;
3117
3118 EFX_SET_QWORD(*p_event);
3119
3120 ++read_ptr;
3121
3122 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124 netif_vdbg(efx, drv, efx->net_dev,
3125 "processing event on %d " EFX_QWORD_FMT "\n",
3126 channel->channel, EFX_QWORD_VAL(event));
3127
3128 switch (ev_code) {
3129 case ESE_DZ_EV_CODE_MCDI_EV:
3130 efx_mcdi_process_event(channel, &event);
3131 break;
3132 case ESE_DZ_EV_CODE_RX_EV:
3133 spent += efx_ef10_handle_rx_event(channel, &event);
3134 if (spent >= quota) {
3135 /* XXX can we split a merged event to
3136 * avoid going over-quota?
3137 */
3138 spent = quota;
3139 goto out;
3140 }
3141 break;
3142 case ESE_DZ_EV_CODE_TX_EV:
3143 spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144 if (spent_tx >= EFX_NAPI_MAX_TX) {
3145 spent = quota;
3146 goto out;
3147 }
3148 break;
3149 case ESE_DZ_EV_CODE_DRIVER_EV:
3150 efx_ef10_handle_driver_event(channel, &event);
3151 if (++spent == quota)
3152 goto out;
3153 break;
3154 case EFX_EF10_DRVGEN_EV:
3155 efx_ef10_handle_driver_generated_event(channel, &event);
3156 break;
3157 default:
3158 netif_err(efx, hw, efx->net_dev,
3159 "channel %d unknown event type %d"
3160 " (data " EFX_QWORD_FMT ")\n",
3161 channel->channel, ev_code,
3162 EFX_QWORD_VAL(event));
3163 }
3164 }
3165
3166out:
3167 channel->eventq_read_ptr = read_ptr;
3168 return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173 struct efx_nic *efx = channel->efx;
3174 efx_dword_t rptr;
3175
3176 if (EFX_EF10_WORKAROUND_35388(efx)) {
3177 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184 ERF_DD_EVQ_IND_RPTR,
3185 (channel->eventq_read_ptr &
3186 channel->eventq_mask) >>
3187 ERF_DD_EVQ_IND_RPTR_WIDTH);
3188 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189 channel->channel);
3190 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192 ERF_DD_EVQ_IND_RPTR,
3193 channel->eventq_read_ptr &
3194 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196 channel->channel);
3197 } else {
3198 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199 channel->eventq_read_ptr &
3200 channel->eventq_mask);
3201 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202 }
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208 struct efx_nic *efx = channel->efx;
3209 efx_qword_t event;
3210 int rc;
3211
3212 EFX_POPULATE_QWORD_2(event,
3213 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219 * already swapped the data to little-endian order.
3220 */
3221 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222 sizeof(efx_qword_t));
3223
3224 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225 NULL, 0, NULL);
3226 if (rc != 0)
3227 goto fail;
3228
3229 return;
3230
3231fail:
3232 WARN_ON(true);
3233 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238 atomic_set(&efx->active_queues, 0);
3239}
3240
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242{
3243 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244 u8 mac_old[ETH_ALEN];
3245 int rc, rc2;
3246
3247 /* Only reconfigure a PF-created vport */
3248 if (is_zero_ether_addr(nic_data->vport_mac))
3249 return 0;
3250
3251 efx_device_detach_sync(efx);
3252 efx_net_stop(efx->net_dev);
3253 efx_ef10_filter_table_remove(efx);
3254
3255 rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256 if (rc)
3257 goto restore_filters;
3258
3259 ether_addr_copy(mac_old, nic_data->vport_mac);
3260 rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261 nic_data->vport_mac);
3262 if (rc)
3263 goto restore_vadaptor;
3264
3265 rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266 efx->net_dev->dev_addr);
3267 if (!rc) {
3268 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269 } else {
3270 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271 if (rc2) {
3272 /* Failed to add original MAC, so clear vport_mac */
3273 eth_zero_addr(nic_data->vport_mac);
3274 goto reset_nic;
3275 }
3276 }
3277
3278restore_vadaptor:
3279 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280 if (rc2)
3281 goto reset_nic;
3282restore_filters:
3283 rc2 = efx_ef10_filter_table_probe(efx);
3284 if (rc2)
3285 goto reset_nic;
3286
3287 rc2 = efx_net_open(efx->net_dev);
3288 if (rc2)
3289 goto reset_nic;
3290
3291 efx_device_attach_if_not_resetting(efx);
3292
3293 return rc;
3294
3295reset_nic:
3296 netif_err(efx, drv, efx->net_dev,
3297 "Failed to restore when changing MAC address - scheduling reset\n");
3298 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300 return rc ? rc : rc2;
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
3304{
3305 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306 bool was_enabled = efx->port_enabled;
3307 int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310 /* If this function is a VF and we have access to the parent PF,
3311 * then use the PF control path to attempt to change the VF MAC address.
3312 */
3313 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314 struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316 u8 mac[ETH_ALEN];
3317
3318 /* net_dev->dev_addr can be zeroed by efx_net_stop in
3319 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
3320 */
3321 ether_addr_copy(mac, efx->net_dev->dev_addr);
3322
3323 rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324 if (!rc)
3325 return 0;
3326
3327 netif_dbg(efx, drv, efx->net_dev,
3328 "Updating VF mac via PF failed (%d), setting directly\n",
3329 rc);
3330 }
3331#endif
3332
3333 efx_device_detach_sync(efx);
3334 efx_net_stop(efx->net_dev);
3335
3336 mutex_lock(&efx->mac_lock);
3337 efx_ef10_filter_table_remove(efx);
3338
3339 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340 efx->net_dev->dev_addr);
3341 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342 efx->vport_id);
3343 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344 sizeof(inbuf), NULL, 0, NULL);
3345
3346 efx_ef10_filter_table_probe(efx);
3347 mutex_unlock(&efx->mac_lock);
3348
3349 if (was_enabled)
3350 efx_net_open(efx->net_dev);
3351 efx_device_attach_if_not_resetting(efx);
3352
3353 if (rc == -EPERM) {
3354 netif_err(efx, drv, efx->net_dev,
3355 "Cannot change MAC address; use sfboot to enable"
3356 " mac-spoofing on this interface\n");
3357 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359 * fall-back to the method of changing the MAC address on the
3360 * vport. This only applies to PFs because such versions of
3361 * MCFW do not support VFs.
3362 */
3363 rc = efx_ef10_vport_set_mac_address(efx);
3364 } else if (rc) {
3365 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366 sizeof(inbuf), NULL, 0, rc);
3367 }
3368
3369 return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373{
3374 WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376 efx_mcdi_filter_sync_rx_mode(efx);
3377
3378 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379 return efx_mcdi_set_mtu(efx);
3380 return efx_mcdi_set_mac(efx);
3381}
3382
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389 NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398 int rc;
3399 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400 size_t outlen;
3401 u32 result;
3402
3403 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404 outbuf, sizeof(outbuf), &outlen);
3405 if (rc != 0)
3406 return rc;
3407
3408 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409 return -EIO;
3410
3411 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412 switch (result) {
3413 case MC_CMD_POLL_BIST_PASSED:
3414 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415 return 0;
3416 case MC_CMD_POLL_BIST_TIMEOUT:
3417 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418 return -EIO;
3419 case MC_CMD_POLL_BIST_FAILED:
3420 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421 return -EIO;
3422 default:
3423 netif_err(efx, hw, efx->net_dev,
3424 "BIST returned unknown result %u", result);
3425 return -EIO;
3426 }
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431 int rc;
3432
3433 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435 rc = efx_ef10_start_bist(efx, bist_type);
3436 if (rc != 0)
3437 return rc;
3438
3439 return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445 int rc, rc2;
3446
3447 efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450 NULL, 0, NULL, 0, NULL);
3451 if (rc != 0)
3452 goto out;
3453
3454 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460 if (rc == -EPERM)
3461 rc = 0;
3462 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463 return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469 u16 type, type_mask;
3470 u8 port;
3471 const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3476 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3477 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3478 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3479 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3480 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3481 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3482 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3483 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3484 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3485 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3486 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3487 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3488 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3489 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3490 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3491 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3492 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497 struct efx_mcdi_mtd_partition *part,
3498 unsigned int type,
3499 unsigned long *found)
3500{
3501 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503 const struct efx_ef10_nvram_type_info *info;
3504 size_t size, erase_size, outlen;
3505 int type_idx = 0;
3506 bool protected;
3507 int rc;
3508
3509 for (type_idx = 0; ; type_idx++) {
3510 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3511 return -ENODEV;
3512 info = efx_ef10_nvram_types + type_idx;
3513 if ((type & ~info->type_mask) == info->type)
3514 break;
3515 }
3516 if (info->port != efx_port_num(efx))
3517 return -ENODEV;
3518
3519 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520 if (rc)
3521 return rc;
3522 if (protected &&
3523 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525 /* Hide protected partitions that don't provide defaults. */
3526 return -ENODEV;
3527
3528 if (protected)
3529 /* Protected partitions are read only. */
3530 erase_size = 0;
3531
3532 /* If we've already exposed a partition of this type, hide this
3533 * duplicate. All operations on MTDs are keyed by the type anyway,
3534 * so we can't act on the duplicate.
3535 */
3536 if (__test_and_set_bit(type_idx, found))
3537 return -EEXIST;
3538
3539 part->nvram_type = type;
3540
3541 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543 outbuf, sizeof(outbuf), &outlen);
3544 if (rc)
3545 return rc;
3546 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547 return -EIO;
3548 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550 part->fw_subtype = MCDI_DWORD(outbuf,
3551 NVRAM_METADATA_OUT_SUBTYPE);
3552
3553 part->common.dev_type_name = "EF10 NVRAM manager";
3554 part->common.type_name = info->name;
3555
3556 part->common.mtd.type = MTD_NORFLASH;
3557 part->common.mtd.flags = MTD_CAP_NORFLASH;
3558 part->common.mtd.size = size;
3559 part->common.mtd.erasesize = erase_size;
3560 /* sfc_status is read-only */
3561 if (!erase_size)
3562 part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564 return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571 struct efx_mcdi_mtd_partition *parts;
3572 size_t outlen, n_parts_total, i, n_parts;
3573 unsigned int type;
3574 int rc;
3575
3576 ASSERT_RTNL();
3577
3578 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580 outbuf, sizeof(outbuf), &outlen);
3581 if (rc)
3582 return rc;
3583 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584 return -EIO;
3585
3586 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587 if (n_parts_total >
3588 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589 return -EIO;
3590
3591 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592 if (!parts)
3593 return -ENOMEM;
3594
3595 n_parts = 0;
3596 for (i = 0; i < n_parts_total; i++) {
3597 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598 i);
3599 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600 found);
3601 if (rc == -EEXIST || rc == -ENODEV)
3602 continue;
3603 if (rc)
3604 goto fail;
3605 n_parts++;
3606 }
3607
3608 if (!n_parts) {
3609 kfree(parts);
3610 return 0;
3611 }
3612
3613 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615 if (rc)
3616 kfree(parts);
3617 return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628 u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631 bool temp)
3632{
3633 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634 int rc;
3635
3636 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637 channel->sync_events_state == SYNC_EVENTS_VALID ||
3638 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639 return 0;
3640 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645 channel->channel);
3646
3647 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648 inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650 if (rc != 0)
3651 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652 SYNC_EVENTS_DISABLED;
3653
3654 return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658 bool temp)
3659{
3660 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661 int rc;
3662
3663 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665 return 0;
3666 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668 return 0;
3669 }
3670 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671 SYNC_EVENTS_DISABLED;
3672
3673 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678 channel->channel);
3679
3680 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681 inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683 return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687 bool temp)
3688{
3689 int (*set)(struct efx_channel *channel, bool temp);
3690 struct efx_channel *channel;
3691
3692 set = en ?
3693 efx_ef10_rx_enable_timestamping :
3694 efx_ef10_rx_disable_timestamping;
3695
3696 channel = efx_ptp_channel(efx);
3697 if (channel) {
3698 int rc = set(channel, temp);
3699 if (en && rc != 0) {
3700 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701 return rc;
3702 }
3703 }
3704
3705 return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709 struct kernel_hwtstamp_config *init)
3710{
3711 return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715 struct kernel_hwtstamp_config *init)
3716{
3717 int rc;
3718
3719 switch (init->rx_filter) {
3720 case HWTSTAMP_FILTER_NONE:
3721 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722 /* if TX timestamping is still requested then leave PTP on */
3723 return efx_ptp_change_mode(efx,
3724 init->tx_type != HWTSTAMP_TX_OFF, 0);
3725 case HWTSTAMP_FILTER_ALL:
3726 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738 case HWTSTAMP_FILTER_NTP_ALL:
3739 init->rx_filter = HWTSTAMP_FILTER_ALL;
3740 rc = efx_ptp_change_mode(efx, true, 0);
3741 if (!rc)
3742 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743 if (rc)
3744 efx_ptp_change_mode(efx, false, 0);
3745 return rc;
3746 default:
3747 return -ERANGE;
3748 }
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752 struct netdev_phys_item_id *ppid)
3753{
3754 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756 if (!is_valid_ether_addr(nic_data->port_id))
3757 return -EOPNOTSUPP;
3758
3759 ppid->id_len = ETH_ALEN;
3760 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762 return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767 if (proto != htons(ETH_P_8021Q))
3768 return -EINVAL;
3769
3770 return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775 if (proto != htons(ETH_P_8021Q))
3776 return -EINVAL;
3777
3778 return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791 bool will_reset = false;
3792 size_t num_entries = 0;
3793 size_t inlen, outlen;
3794 size_t i;
3795 int rc;
3796 efx_dword_t flags_and_num_entries;
3797
3798 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800 nic_data->udp_tunnels_dirty = false;
3801
3802 if (!(nic_data->datapath_caps &
3803 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804 efx_device_attach_if_not_resetting(efx);
3805 return 0;
3806 }
3807
3808 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812 if (nic_data->udp_tunnels[i].type !=
3813 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814 efx_dword_t entry;
3815
3816 EFX_POPULATE_DWORD_2(entry,
3817 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818 ntohs(nic_data->udp_tunnels[i].port),
3819 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820 nic_data->udp_tunnels[i].type);
3821 *_MCDI_ARRAY_DWORD(inbuf,
3822 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823 num_entries++) = entry;
3824 }
3825 }
3826
3827 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829 EFX_WORD_1_LBN);
3830 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831 EFX_WORD_1_WIDTH);
3832 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834 !!unloading,
3835 EFX_WORD_1, num_entries);
3836 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837 flags_and_num_entries;
3838
3839 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843 if (rc == -EIO) {
3844 /* Most likely the MC rebooted due to another function also
3845 * setting its tunnel port list. Mark the tunnel port list as
3846 * dirty, so it will be pushed upon coming up from the reboot.
3847 */
3848 nic_data->udp_tunnels_dirty = true;
3849 return 0;
3850 }
3851
3852 if (rc) {
3853 /* expected not available on unprivileged functions */
3854 if (rc != -EPERM)
3855 netif_warn(efx, drv, efx->net_dev,
3856 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859 netif_info(efx, drv, efx->net_dev,
3860 "Rebooting MC due to UDP tunnel port list change\n");
3861 will_reset = true;
3862 if (unloading)
3863 /* Delay for the MC reset to complete. This will make
3864 * unloading other functions a bit smoother. This is a
3865 * race, but the other unload will work whichever way
3866 * it goes, this just avoids an unnecessary error
3867 * message.
3868 */
3869 msleep(100);
3870 }
3871 if (!will_reset && !unloading) {
3872 /* The caller will have detached, relying on the MC reset to
3873 * trigger a re-attach. Since there won't be an MC reset, we
3874 * have to do the attach ourselves.
3875 */
3876 efx_device_attach_if_not_resetting(efx);
3877 }
3878
3879 return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885 int rc = 0;
3886
3887 mutex_lock(&nic_data->udp_tunnels_lock);
3888 if (nic_data->udp_tunnels_dirty) {
3889 /* Make sure all TX are stopped while we modify the table, else
3890 * we might race against an efx_features_check().
3891 */
3892 efx_device_detach_sync(efx);
3893 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894 }
3895 mutex_unlock(&nic_data->udp_tunnels_lock);
3896 return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900 unsigned int table, unsigned int entry,
3901 struct udp_tunnel_info *ti)
3902{
3903 struct efx_nic *efx = efx_netdev_priv(dev);
3904 struct efx_ef10_nic_data *nic_data;
3905 int efx_tunnel_type, rc;
3906
3907 if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909 else
3910 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3911
3912 nic_data = efx->nic_data;
3913 if (!(nic_data->datapath_caps &
3914 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915 return -EOPNOTSUPP;
3916
3917 mutex_lock(&nic_data->udp_tunnels_lock);
3918 /* Make sure all TX are stopped while we add to the table, else we
3919 * might race against an efx_features_check().
3920 */
3921 efx_device_detach_sync(efx);
3922 nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923 nic_data->udp_tunnels[entry].port = ti->port;
3924 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925 mutex_unlock(&nic_data->udp_tunnels_lock);
3926
3927 return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table. However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938 size_t i;
3939
3940 if (!(nic_data->datapath_caps &
3941 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942 return false;
3943
3944 if (nic_data->udp_tunnels_dirty)
3945 /* SW table may not match HW state, so just assume we can't
3946 * use any UDP tunnel offloads.
3947 */
3948 return false;
3949
3950 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951 if (nic_data->udp_tunnels[i].type !=
3952 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953 nic_data->udp_tunnels[i].port == port)
3954 return true;
3955
3956 return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960 unsigned int table, unsigned int entry,
3961 struct udp_tunnel_info *ti)
3962{
3963 struct efx_nic *efx = efx_netdev_priv(dev);
3964 struct efx_ef10_nic_data *nic_data;
3965 int rc;
3966
3967 nic_data = efx->nic_data;
3968
3969 mutex_lock(&nic_data->udp_tunnels_lock);
3970 /* Make sure all TX are stopped while we remove from the table, else we
3971 * might race against an efx_features_check().
3972 */
3973 efx_device_detach_sync(efx);
3974 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975 nic_data->udp_tunnels[entry].port = 0;
3976 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977 mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979 return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983 .set_port = efx_ef10_udp_tnl_set_port,
3984 .unset_port = efx_ef10_udp_tnl_unset_port,
3985 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986 .tables = {
3987 {
3988 .n_entries = 16,
3989 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990 UDP_TUNNEL_TYPE_GENEVE,
3991 },
3992 },
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version. Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999 size_t len)
4000{
4001 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003 return scnprintf(buf, len, " rx%x tx%x",
4004 nic_data->rx_dpcpu_fw_id,
4005 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009 u8 flag,
4010 u32 offset)
4011{
4012 const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014 switch (offset) {
4015 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016 return nic_data->datapath_caps & BIT_ULL(flag);
4017 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018 return nic_data->datapath_caps2 & BIT_ULL(flag);
4019 default:
4020 return 0;
4021 }
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026 unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028 /* There is no difference between PFs and VFs. The side is based on
4029 * the maximum link speed of a given NIC.
4030 */
4031 switch (efx->pci_dev->device & 0xfff) {
4032 case 0x0903: /* Farmingdale can do up to 10G */
4033 break;
4034 case 0x0923: /* Greenport can do up to 40G */
4035 case 0x0a03: /* Medford can do up to 40G */
4036 ret *= 4;
4037 break;
4038 default: /* Medford2 can do up to 100G */
4039 ret *= 10;
4040 }
4041
4042 if (IS_ENABLED(CONFIG_PPC64))
4043 ret *= 4;
4044
4045 return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES \
4049 (NETIF_F_IP_CSUM | \
4050 NETIF_F_HW_VLAN_CTAG_FILTER | \
4051 NETIF_F_IPV6_CSUM | \
4052 NETIF_F_RXHASH | \
4053 NETIF_F_NTUPLE | \
4054 NETIF_F_SG | \
4055 NETIF_F_RXCSUM | \
4056 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059 .is_vf = true,
4060 .mem_bar = efx_ef10_vf_mem_bar,
4061 .mem_map_size = efx_ef10_mem_map_size,
4062 .probe = efx_ef10_probe_vf,
4063 .remove = efx_ef10_remove,
4064 .dimension_resources = efx_ef10_dimension_resources,
4065 .init = efx_ef10_init_nic,
4066 .fini = efx_ef10_fini_nic,
4067 .map_reset_reason = efx_ef10_map_reset_reason,
4068 .map_reset_flags = efx_ef10_map_reset_flags,
4069 .reset = efx_ef10_reset,
4070 .probe_port = efx_mcdi_port_probe,
4071 .remove_port = efx_mcdi_port_remove,
4072 .fini_dmaq = efx_fini_dmaq,
4073 .prepare_flr = efx_ef10_prepare_flr,
4074 .finish_flr = efx_port_dummy_op_void,
4075 .describe_stats = efx_ef10_describe_stats,
4076 .update_stats = efx_ef10_update_stats_vf,
4077 .update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078 .start_stats = efx_port_dummy_op_void,
4079 .pull_stats = efx_port_dummy_op_void,
4080 .stop_stats = efx_port_dummy_op_void,
4081 .push_irq_moderation = efx_ef10_push_irq_moderation,
4082 .reconfigure_mac = efx_ef10_mac_reconfigure,
4083 .check_mac_fault = efx_mcdi_mac_check_fault,
4084 .reconfigure_port = efx_mcdi_port_reconfigure,
4085 .get_wol = efx_ef10_get_wol_vf,
4086 .set_wol = efx_ef10_set_wol_vf,
4087 .resume_wol = efx_port_dummy_op_void,
4088 .mcdi_request = efx_ef10_mcdi_request,
4089 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090 .mcdi_read_response = efx_ef10_mcdi_read_response,
4091 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093 .irq_enable_master = efx_port_dummy_op_void,
4094 .irq_test_generate = efx_ef10_irq_test_generate,
4095 .irq_disable_non_ev = efx_port_dummy_op_void,
4096 .irq_handle_msi = efx_ef10_msi_interrupt,
4097 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4098 .tx_probe = efx_ef10_tx_probe,
4099 .tx_init = efx_ef10_tx_init,
4100 .tx_remove = efx_mcdi_tx_remove,
4101 .tx_write = efx_ef10_tx_write,
4102 .tx_limit_len = efx_ef10_tx_limit_len,
4103 .tx_enqueue = __efx_enqueue_skb,
4104 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106 .rx_probe = efx_mcdi_rx_probe,
4107 .rx_init = efx_mcdi_rx_init,
4108 .rx_remove = efx_mcdi_rx_remove,
4109 .rx_write = efx_ef10_rx_write,
4110 .rx_defer_refill = efx_ef10_rx_defer_refill,
4111 .rx_packet = __efx_rx_packet,
4112 .ev_probe = efx_mcdi_ev_probe,
4113 .ev_init = efx_ef10_ev_init,
4114 .ev_fini = efx_mcdi_ev_fini,
4115 .ev_remove = efx_mcdi_ev_remove,
4116 .ev_process = efx_ef10_ev_process,
4117 .ev_read_ack = efx_ef10_ev_read_ack,
4118 .ev_test_generate = efx_ef10_ev_test_generate,
4119 .filter_table_probe = efx_ef10_filter_table_probe,
4120 .filter_table_restore = efx_mcdi_filter_table_restore,
4121 .filter_table_remove = efx_ef10_filter_table_remove,
4122 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123 .filter_insert = efx_mcdi_filter_insert,
4124 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4125 .filter_get_safe = efx_mcdi_filter_get_safe,
4126 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4127 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134 .mtd_probe = efx_port_dummy_op_int,
4135#endif
4136 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4142 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4143 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4144#endif
4145 .get_mac_address = efx_ef10_get_mac_address_vf,
4146 .set_mac_address = efx_ef10_set_mac_address,
4147
4148 .get_phys_port_id = efx_ef10_get_phys_port_id,
4149 .revision = EFX_REV_HUNT_A0,
4150 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154 .can_rx_scatter = true,
4155 .always_rx_scatter = true,
4156 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4157 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158 .offload_features = EF10_OFFLOAD_FEATURES,
4159 .mcdi_max_ver = 2,
4160 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162 1 << HWTSTAMP_FILTER_ALL,
4163 .rx_hash_key_size = 40,
4164 .check_caps = ef10_check_caps,
4165 .print_additional_fwver = efx_ef10_print_additional_fwver,
4166 .sensor_event = efx_mcdi_sensor_event,
4167 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171 .is_vf = false,
4172 .mem_bar = efx_ef10_pf_mem_bar,
4173 .mem_map_size = efx_ef10_mem_map_size,
4174 .probe = efx_ef10_probe_pf,
4175 .remove = efx_ef10_remove,
4176 .dimension_resources = efx_ef10_dimension_resources,
4177 .init = efx_ef10_init_nic,
4178 .fini = efx_ef10_fini_nic,
4179 .map_reset_reason = efx_ef10_map_reset_reason,
4180 .map_reset_flags = efx_ef10_map_reset_flags,
4181 .reset = efx_ef10_reset,
4182 .probe_port = efx_mcdi_port_probe,
4183 .remove_port = efx_mcdi_port_remove,
4184 .fini_dmaq = efx_fini_dmaq,
4185 .prepare_flr = efx_ef10_prepare_flr,
4186 .finish_flr = efx_port_dummy_op_void,
4187 .describe_stats = efx_ef10_describe_stats,
4188 .update_stats = efx_ef10_update_stats_pf,
4189 .start_stats = efx_mcdi_mac_start_stats,
4190 .pull_stats = efx_mcdi_mac_pull_stats,
4191 .stop_stats = efx_mcdi_mac_stop_stats,
4192 .push_irq_moderation = efx_ef10_push_irq_moderation,
4193 .reconfigure_mac = efx_ef10_mac_reconfigure,
4194 .check_mac_fault = efx_mcdi_mac_check_fault,
4195 .reconfigure_port = efx_mcdi_port_reconfigure,
4196 .get_wol = efx_ef10_get_wol,
4197 .set_wol = efx_ef10_set_wol,
4198 .resume_wol = efx_port_dummy_op_void,
4199 .get_fec_stats = efx_ef10_get_fec_stats,
4200 .test_chip = efx_ef10_test_chip,
4201 .test_nvram = efx_mcdi_nvram_test_all,
4202 .mcdi_request = efx_ef10_mcdi_request,
4203 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204 .mcdi_read_response = efx_ef10_mcdi_read_response,
4205 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207 .irq_enable_master = efx_port_dummy_op_void,
4208 .irq_test_generate = efx_ef10_irq_test_generate,
4209 .irq_disable_non_ev = efx_port_dummy_op_void,
4210 .irq_handle_msi = efx_ef10_msi_interrupt,
4211 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4212 .tx_probe = efx_ef10_tx_probe,
4213 .tx_init = efx_ef10_tx_init,
4214 .tx_remove = efx_mcdi_tx_remove,
4215 .tx_write = efx_ef10_tx_write,
4216 .tx_limit_len = efx_ef10_tx_limit_len,
4217 .tx_enqueue = __efx_enqueue_skb,
4218 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223 .rx_probe = efx_mcdi_rx_probe,
4224 .rx_init = efx_mcdi_rx_init,
4225 .rx_remove = efx_mcdi_rx_remove,
4226 .rx_write = efx_ef10_rx_write,
4227 .rx_defer_refill = efx_ef10_rx_defer_refill,
4228 .rx_packet = __efx_rx_packet,
4229 .ev_probe = efx_mcdi_ev_probe,
4230 .ev_init = efx_ef10_ev_init,
4231 .ev_fini = efx_mcdi_ev_fini,
4232 .ev_remove = efx_mcdi_ev_remove,
4233 .ev_process = efx_ef10_ev_process,
4234 .ev_read_ack = efx_ef10_ev_read_ack,
4235 .ev_test_generate = efx_ef10_ev_test_generate,
4236 .filter_table_probe = efx_ef10_filter_table_probe,
4237 .filter_table_restore = efx_mcdi_filter_table_restore,
4238 .filter_table_remove = efx_ef10_filter_table_remove,
4239 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240 .filter_insert = efx_mcdi_filter_insert,
4241 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4242 .filter_get_safe = efx_mcdi_filter_get_safe,
4243 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4244 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251 .mtd_probe = efx_ef10_mtd_probe,
4252 .mtd_rename = efx_mcdi_mtd_rename,
4253 .mtd_read = efx_mcdi_mtd_read,
4254 .mtd_erase = efx_mcdi_mtd_erase,
4255 .mtd_write = efx_mcdi_mtd_write,
4256 .mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4264 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4265#ifdef CONFIG_SFC_SRIOV
4266 .sriov_configure = efx_ef10_sriov_configure,
4267 .sriov_init = efx_ef10_sriov_init,
4268 .sriov_fini = efx_ef10_sriov_fini,
4269 .sriov_wanted = efx_ef10_sriov_wanted,
4270 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4276 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4277 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279 .get_mac_address = efx_ef10_get_mac_address_pf,
4280 .set_mac_address = efx_ef10_set_mac_address,
4281 .tso_versions = efx_ef10_tso_versions,
4282
4283 .get_phys_port_id = efx_ef10_get_phys_port_id,
4284 .revision = EFX_REV_HUNT_A0,
4285 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289 .can_rx_scatter = true,
4290 .always_rx_scatter = true,
4291 .option_descriptors = true,
4292 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4293 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294 .offload_features = EF10_OFFLOAD_FEATURES,
4295 .mcdi_max_ver = 2,
4296 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298 1 << HWTSTAMP_FILTER_ALL,
4299 .rx_hash_key_size = 40,
4300 .check_caps = ef10_check_caps,
4301 .print_additional_fwver = efx_ef10_print_additional_fwver,
4302 .sensor_event = efx_mcdi_sensor_event,
4303 .rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include "selftest.h"
18#include "ef10_sriov.h"
19#include <linux/in.h>
20#include <linux/jhash.h>
21#include <linux/wait.h>
22#include <linux/workqueue.h>
23
24/* Hardware control for EF10 architecture including 'Huntington'. */
25
26#define EFX_EF10_DRVGEN_EV 7
27enum {
28 EFX_EF10_TEST = 1,
29 EFX_EF10_REFILL,
30};
31/* The maximum size of a shared RSS context */
32/* TODO: this should really be from the mcdi protocol export */
33#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
34
35/* The filter table(s) are managed by firmware and we have write-only
36 * access. When removing filters we must identify them to the
37 * firmware by a 64-bit handle, but this is too wide for Linux kernel
38 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
39 * be able to tell in advance whether a requested insertion will
40 * replace an existing filter. Therefore we maintain a software hash
41 * table, which should be at least as large as the hardware hash
42 * table.
43 *
44 * Huntington has a single 8K filter table shared between all filter
45 * types and both ports.
46 */
47#define HUNT_FILTER_TBL_ROWS 8192
48
49#define EFX_EF10_FILTER_ID_INVALID 0xffff
50
51#define EFX_EF10_FILTER_DEV_UC_MAX 32
52#define EFX_EF10_FILTER_DEV_MC_MAX 256
53
54/* VLAN list entry */
55struct efx_ef10_vlan {
56 struct list_head list;
57 u16 vid;
58};
59
60enum efx_ef10_default_filters {
61 EFX_EF10_BCAST,
62 EFX_EF10_UCDEF,
63 EFX_EF10_MCDEF,
64 EFX_EF10_VXLAN4_UCDEF,
65 EFX_EF10_VXLAN4_MCDEF,
66 EFX_EF10_VXLAN6_UCDEF,
67 EFX_EF10_VXLAN6_MCDEF,
68 EFX_EF10_NVGRE4_UCDEF,
69 EFX_EF10_NVGRE4_MCDEF,
70 EFX_EF10_NVGRE6_UCDEF,
71 EFX_EF10_NVGRE6_MCDEF,
72 EFX_EF10_GENEVE4_UCDEF,
73 EFX_EF10_GENEVE4_MCDEF,
74 EFX_EF10_GENEVE6_UCDEF,
75 EFX_EF10_GENEVE6_MCDEF,
76
77 EFX_EF10_NUM_DEFAULT_FILTERS
78};
79
80/* Per-VLAN filters information */
81struct efx_ef10_filter_vlan {
82 struct list_head list;
83 u16 vid;
84 u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
85 u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
86 u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
87};
88
89struct efx_ef10_dev_addr {
90 u8 addr[ETH_ALEN];
91};
92
93struct efx_ef10_filter_table {
94/* The MCDI match masks supported by this fw & hw, in order of priority */
95 u32 rx_match_mcdi_flags[
96 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
97 unsigned int rx_match_count;
98
99 struct rw_semaphore lock; /* Protects entries */
100 struct {
101 unsigned long spec; /* pointer to spec plus flag bits */
102/* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
103/* unused flag 1UL */
104#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
105#define EFX_EF10_FILTER_FLAGS 3UL
106 u64 handle; /* firmware handle */
107 } *entry;
108/* Shadow of net_device address lists, guarded by mac_lock */
109 struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
110 struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
111 int dev_uc_count;
112 int dev_mc_count;
113 bool uc_promisc;
114 bool mc_promisc;
115/* Whether in multicast promiscuous mode when last changed */
116 bool mc_promisc_last;
117 bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
118 bool vlan_filter;
119 struct list_head vlan_list;
120};
121
122/* An arbitrary search limit for the software hash table */
123#define EFX_EF10_FILTER_SEARCH_LIMIT 200
124
125static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
126static void efx_ef10_filter_table_remove(struct efx_nic *efx);
127static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
128static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
129 struct efx_ef10_filter_vlan *vlan);
130static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
131static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
132
133static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
134{
135 WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
136 return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
137}
138
139static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
140{
141 return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
142}
143
144static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
145{
146 return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
147}
148
149static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
150{
151 efx_dword_t reg;
152
153 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
154 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
155 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
156}
157
158/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
159 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
160 * bar; PFs use BAR 0/1 for memory.
161 */
162static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
163{
164 switch (efx->pci_dev->device) {
165 case 0x0b03: /* SFC9250 PF */
166 return 0;
167 default:
168 return 2;
169 }
170}
171
172/* All VFs use BAR 0/1 for memory */
173static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
174{
175 return 0;
176}
177
178static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
179{
180 int bar;
181
182 bar = efx->type->mem_bar(efx);
183 return resource_size(&efx->pci_dev->resource[bar]);
184}
185
186static bool efx_ef10_is_vf(struct efx_nic *efx)
187{
188 return efx->type->is_vf;
189}
190
191static int efx_ef10_get_pf_index(struct efx_nic *efx)
192{
193 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
194 struct efx_ef10_nic_data *nic_data = efx->nic_data;
195 size_t outlen;
196 int rc;
197
198 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
199 sizeof(outbuf), &outlen);
200 if (rc)
201 return rc;
202 if (outlen < sizeof(outbuf))
203 return -EIO;
204
205 nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
206 return 0;
207}
208
209#ifdef CONFIG_SFC_SRIOV
210static int efx_ef10_get_vf_index(struct efx_nic *efx)
211{
212 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
213 struct efx_ef10_nic_data *nic_data = efx->nic_data;
214 size_t outlen;
215 int rc;
216
217 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
218 sizeof(outbuf), &outlen);
219 if (rc)
220 return rc;
221 if (outlen < sizeof(outbuf))
222 return -EIO;
223
224 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
225 return 0;
226}
227#endif
228
229static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
230{
231 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
232 struct efx_ef10_nic_data *nic_data = efx->nic_data;
233 size_t outlen;
234 int rc;
235
236 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
237
238 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
239 outbuf, sizeof(outbuf), &outlen);
240 if (rc)
241 return rc;
242 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
243 netif_err(efx, drv, efx->net_dev,
244 "unable to read datapath firmware capabilities\n");
245 return -EIO;
246 }
247
248 nic_data->datapath_caps =
249 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
250
251 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
252 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
253 GET_CAPABILITIES_V2_OUT_FLAGS2);
254 nic_data->piobuf_size = MCDI_WORD(outbuf,
255 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
256 } else {
257 nic_data->datapath_caps2 = 0;
258 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
259 }
260
261 /* record the DPCPU firmware IDs to determine VEB vswitching support.
262 */
263 nic_data->rx_dpcpu_fw_id =
264 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
265 nic_data->tx_dpcpu_fw_id =
266 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
267
268 if (!(nic_data->datapath_caps &
269 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
270 netif_err(efx, probe, efx->net_dev,
271 "current firmware does not support an RX prefix\n");
272 return -ENODEV;
273 }
274
275 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
276 u8 vi_window_mode = MCDI_BYTE(outbuf,
277 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
278
279 switch (vi_window_mode) {
280 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
281 efx->vi_stride = 8192;
282 break;
283 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
284 efx->vi_stride = 16384;
285 break;
286 case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
287 efx->vi_stride = 65536;
288 break;
289 default:
290 netif_err(efx, probe, efx->net_dev,
291 "Unrecognised VI window mode %d\n",
292 vi_window_mode);
293 return -EIO;
294 }
295 netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
296 efx->vi_stride);
297 } else {
298 /* keep default VI stride */
299 netif_dbg(efx, probe, efx->net_dev,
300 "firmware did not report VI window mode, assuming vi_stride = %u\n",
301 efx->vi_stride);
302 }
303
304 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
305 efx->num_mac_stats = MCDI_WORD(outbuf,
306 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
307 netif_dbg(efx, probe, efx->net_dev,
308 "firmware reports num_mac_stats = %u\n",
309 efx->num_mac_stats);
310 } else {
311 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
312 netif_dbg(efx, probe, efx->net_dev,
313 "firmware did not report num_mac_stats, assuming %u\n",
314 efx->num_mac_stats);
315 }
316
317 return 0;
318}
319
320static void efx_ef10_read_licensed_features(struct efx_nic *efx)
321{
322 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
323 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
324 struct efx_ef10_nic_data *nic_data = efx->nic_data;
325 size_t outlen;
326 int rc;
327
328 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
329 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
330 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
331 outbuf, sizeof(outbuf), &outlen);
332 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
333 return;
334
335 nic_data->licensed_features = MCDI_QWORD(outbuf,
336 LICENSING_V3_OUT_LICENSED_FEATURES);
337}
338
339static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
340{
341 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
342 int rc;
343
344 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
345 outbuf, sizeof(outbuf), NULL);
346 if (rc)
347 return rc;
348 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
349 return rc > 0 ? rc : -ERANGE;
350}
351
352static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
353{
354 struct efx_ef10_nic_data *nic_data = efx->nic_data;
355 unsigned int implemented;
356 unsigned int enabled;
357 int rc;
358
359 nic_data->workaround_35388 = false;
360 nic_data->workaround_61265 = false;
361
362 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
363
364 if (rc == -ENOSYS) {
365 /* Firmware without GET_WORKAROUNDS - not a problem. */
366 rc = 0;
367 } else if (rc == 0) {
368 /* Bug61265 workaround is always enabled if implemented. */
369 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
370 nic_data->workaround_61265 = true;
371
372 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
373 nic_data->workaround_35388 = true;
374 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
375 /* Workaround is implemented but not enabled.
376 * Try to enable it.
377 */
378 rc = efx_mcdi_set_workaround(efx,
379 MC_CMD_WORKAROUND_BUG35388,
380 true, NULL);
381 if (rc == 0)
382 nic_data->workaround_35388 = true;
383 /* If we failed to set the workaround just carry on. */
384 rc = 0;
385 }
386 }
387
388 netif_dbg(efx, probe, efx->net_dev,
389 "workaround for bug 35388 is %sabled\n",
390 nic_data->workaround_35388 ? "en" : "dis");
391 netif_dbg(efx, probe, efx->net_dev,
392 "workaround for bug 61265 is %sabled\n",
393 nic_data->workaround_61265 ? "en" : "dis");
394
395 return rc;
396}
397
398static void efx_ef10_process_timer_config(struct efx_nic *efx,
399 const efx_dword_t *data)
400{
401 unsigned int max_count;
402
403 if (EFX_EF10_WORKAROUND_61265(efx)) {
404 efx->timer_quantum_ns = MCDI_DWORD(data,
405 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
406 efx->timer_max_ns = MCDI_DWORD(data,
407 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
408 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
409 efx->timer_quantum_ns = MCDI_DWORD(data,
410 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
411 max_count = MCDI_DWORD(data,
412 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
413 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
414 } else {
415 efx->timer_quantum_ns = MCDI_DWORD(data,
416 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
417 max_count = MCDI_DWORD(data,
418 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
419 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
420 }
421
422 netif_dbg(efx, probe, efx->net_dev,
423 "got timer properties from MC: quantum %u ns; max %u ns\n",
424 efx->timer_quantum_ns, efx->timer_max_ns);
425}
426
427static int efx_ef10_get_timer_config(struct efx_nic *efx)
428{
429 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
430 int rc;
431
432 rc = efx_ef10_get_timer_workarounds(efx);
433 if (rc)
434 return rc;
435
436 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
437 outbuf, sizeof(outbuf), NULL);
438
439 if (rc == 0) {
440 efx_ef10_process_timer_config(efx, outbuf);
441 } else if (rc == -ENOSYS || rc == -EPERM) {
442 /* Not available - fall back to Huntington defaults. */
443 unsigned int quantum;
444
445 rc = efx_ef10_get_sysclk_freq(efx);
446 if (rc < 0)
447 return rc;
448
449 quantum = 1536000 / rc; /* 1536 cycles */
450 efx->timer_quantum_ns = quantum;
451 efx->timer_max_ns = efx->type->timer_period_max * quantum;
452 rc = 0;
453 } else {
454 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
455 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
456 NULL, 0, rc);
457 }
458
459 return rc;
460}
461
462static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
463{
464 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
465 size_t outlen;
466 int rc;
467
468 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
469
470 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
471 outbuf, sizeof(outbuf), &outlen);
472 if (rc)
473 return rc;
474 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
475 return -EIO;
476
477 ether_addr_copy(mac_address,
478 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
479 return 0;
480}
481
482static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
483{
484 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
485 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
486 size_t outlen;
487 int num_addrs, rc;
488
489 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
490 EVB_PORT_ID_ASSIGNED);
491 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
492 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
493
494 if (rc)
495 return rc;
496 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
497 return -EIO;
498
499 num_addrs = MCDI_DWORD(outbuf,
500 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
501
502 WARN_ON(num_addrs != 1);
503
504 ether_addr_copy(mac_address,
505 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
506
507 return 0;
508}
509
510static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
511 struct device_attribute *attr,
512 char *buf)
513{
514 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
515
516 return sprintf(buf, "%d\n",
517 ((efx->mcdi->fn_flags) &
518 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
519 ? 1 : 0);
520}
521
522static ssize_t efx_ef10_show_primary_flag(struct device *dev,
523 struct device_attribute *attr,
524 char *buf)
525{
526 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
527
528 return sprintf(buf, "%d\n",
529 ((efx->mcdi->fn_flags) &
530 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
531 ? 1 : 0);
532}
533
534static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
535{
536 struct efx_ef10_nic_data *nic_data = efx->nic_data;
537 struct efx_ef10_vlan *vlan;
538
539 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
540
541 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
542 if (vlan->vid == vid)
543 return vlan;
544 }
545
546 return NULL;
547}
548
549static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
550{
551 struct efx_ef10_nic_data *nic_data = efx->nic_data;
552 struct efx_ef10_vlan *vlan;
553 int rc;
554
555 mutex_lock(&nic_data->vlan_lock);
556
557 vlan = efx_ef10_find_vlan(efx, vid);
558 if (vlan) {
559 /* We add VID 0 on init. 8021q adds it on module init
560 * for all interfaces with VLAN filtring feature.
561 */
562 if (vid == 0)
563 goto done_unlock;
564 netif_warn(efx, drv, efx->net_dev,
565 "VLAN %u already added\n", vid);
566 rc = -EALREADY;
567 goto fail_exist;
568 }
569
570 rc = -ENOMEM;
571 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
572 if (!vlan)
573 goto fail_alloc;
574
575 vlan->vid = vid;
576
577 list_add_tail(&vlan->list, &nic_data->vlan_list);
578
579 if (efx->filter_state) {
580 mutex_lock(&efx->mac_lock);
581 down_write(&efx->filter_sem);
582 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
583 up_write(&efx->filter_sem);
584 mutex_unlock(&efx->mac_lock);
585 if (rc)
586 goto fail_filter_add_vlan;
587 }
588
589done_unlock:
590 mutex_unlock(&nic_data->vlan_lock);
591 return 0;
592
593fail_filter_add_vlan:
594 list_del(&vlan->list);
595 kfree(vlan);
596fail_alloc:
597fail_exist:
598 mutex_unlock(&nic_data->vlan_lock);
599 return rc;
600}
601
602static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
603 struct efx_ef10_vlan *vlan)
604{
605 struct efx_ef10_nic_data *nic_data = efx->nic_data;
606
607 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
608
609 if (efx->filter_state) {
610 down_write(&efx->filter_sem);
611 efx_ef10_filter_del_vlan(efx, vlan->vid);
612 up_write(&efx->filter_sem);
613 }
614
615 list_del(&vlan->list);
616 kfree(vlan);
617}
618
619static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
620{
621 struct efx_ef10_nic_data *nic_data = efx->nic_data;
622 struct efx_ef10_vlan *vlan;
623 int rc = 0;
624
625 /* 8021q removes VID 0 on module unload for all interfaces
626 * with VLAN filtering feature. We need to keep it to receive
627 * untagged traffic.
628 */
629 if (vid == 0)
630 return 0;
631
632 mutex_lock(&nic_data->vlan_lock);
633
634 vlan = efx_ef10_find_vlan(efx, vid);
635 if (!vlan) {
636 netif_err(efx, drv, efx->net_dev,
637 "VLAN %u to be deleted not found\n", vid);
638 rc = -ENOENT;
639 } else {
640 efx_ef10_del_vlan_internal(efx, vlan);
641 }
642
643 mutex_unlock(&nic_data->vlan_lock);
644
645 return rc;
646}
647
648static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
649{
650 struct efx_ef10_nic_data *nic_data = efx->nic_data;
651 struct efx_ef10_vlan *vlan, *next_vlan;
652
653 mutex_lock(&nic_data->vlan_lock);
654 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
655 efx_ef10_del_vlan_internal(efx, vlan);
656 mutex_unlock(&nic_data->vlan_lock);
657}
658
659static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
660 NULL);
661static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
662
663static int efx_ef10_probe(struct efx_nic *efx)
664{
665 struct efx_ef10_nic_data *nic_data;
666 int i, rc;
667
668 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
669 if (!nic_data)
670 return -ENOMEM;
671 efx->nic_data = nic_data;
672
673 /* we assume later that we can copy from this buffer in dwords */
674 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
675
676 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
677 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
678 if (rc)
679 goto fail1;
680
681 /* Get the MC's warm boot count. In case it's rebooting right
682 * now, be prepared to retry.
683 */
684 i = 0;
685 for (;;) {
686 rc = efx_ef10_get_warm_boot_count(efx);
687 if (rc >= 0)
688 break;
689 if (++i == 5)
690 goto fail2;
691 ssleep(1);
692 }
693 nic_data->warm_boot_count = rc;
694
695 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
696
697 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
698
699 /* In case we're recovering from a crash (kexec), we want to
700 * cancel any outstanding request by the previous user of this
701 * function. We send a special message using the least
702 * significant bits of the 'high' (doorbell) register.
703 */
704 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
705
706 rc = efx_mcdi_init(efx);
707 if (rc)
708 goto fail2;
709
710 mutex_init(&nic_data->udp_tunnels_lock);
711
712 /* Reset (most) configuration for this function */
713 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
714 if (rc)
715 goto fail3;
716
717 /* Enable event logging */
718 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
719 if (rc)
720 goto fail3;
721
722 rc = device_create_file(&efx->pci_dev->dev,
723 &dev_attr_link_control_flag);
724 if (rc)
725 goto fail3;
726
727 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
728 if (rc)
729 goto fail4;
730
731 rc = efx_ef10_get_pf_index(efx);
732 if (rc)
733 goto fail5;
734
735 rc = efx_ef10_init_datapath_caps(efx);
736 if (rc < 0)
737 goto fail5;
738
739 efx_ef10_read_licensed_features(efx);
740
741 /* We can have one VI for each vi_stride-byte region.
742 * However, until we use TX option descriptors we need two TX queues
743 * per channel.
744 */
745 efx->max_channels = min_t(unsigned int,
746 EFX_MAX_CHANNELS,
747 efx_ef10_mem_map_size(efx) /
748 (efx->vi_stride * EFX_TXQ_TYPES));
749 efx->max_tx_channels = efx->max_channels;
750 if (WARN_ON(efx->max_channels == 0)) {
751 rc = -EIO;
752 goto fail5;
753 }
754
755 efx->rx_packet_len_offset =
756 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
757
758 if (nic_data->datapath_caps &
759 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
760 efx->net_dev->hw_features |= NETIF_F_RXFCS;
761
762 rc = efx_mcdi_port_get_number(efx);
763 if (rc < 0)
764 goto fail5;
765 efx->port_num = rc;
766
767 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
768 if (rc)
769 goto fail5;
770
771 rc = efx_ef10_get_timer_config(efx);
772 if (rc < 0)
773 goto fail5;
774
775 rc = efx_mcdi_mon_probe(efx);
776 if (rc && rc != -EPERM)
777 goto fail5;
778
779 efx_ptp_defer_probe_with_channel(efx);
780
781#ifdef CONFIG_SFC_SRIOV
782 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
783 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
784 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
785
786 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
787 } else
788#endif
789 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
790
791 INIT_LIST_HEAD(&nic_data->vlan_list);
792 mutex_init(&nic_data->vlan_lock);
793
794 /* Add unspecified VID to support VLAN filtering being disabled */
795 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
796 if (rc)
797 goto fail_add_vid_unspec;
798
799 /* If VLAN filtering is enabled, we need VID 0 to get untagged
800 * traffic. It is added automatically if 8021q module is loaded,
801 * but we can't rely on it since module may be not loaded.
802 */
803 rc = efx_ef10_add_vlan(efx, 0);
804 if (rc)
805 goto fail_add_vid_0;
806
807 return 0;
808
809fail_add_vid_0:
810 efx_ef10_cleanup_vlans(efx);
811fail_add_vid_unspec:
812 mutex_destroy(&nic_data->vlan_lock);
813 efx_ptp_remove(efx);
814 efx_mcdi_mon_remove(efx);
815fail5:
816 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
817fail4:
818 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
819fail3:
820 efx_mcdi_detach(efx);
821
822 mutex_lock(&nic_data->udp_tunnels_lock);
823 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
824 (void)efx_ef10_set_udp_tnl_ports(efx, true);
825 mutex_unlock(&nic_data->udp_tunnels_lock);
826 mutex_destroy(&nic_data->udp_tunnels_lock);
827
828 efx_mcdi_fini(efx);
829fail2:
830 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
831fail1:
832 kfree(nic_data);
833 efx->nic_data = NULL;
834 return rc;
835}
836
837static int efx_ef10_free_vis(struct efx_nic *efx)
838{
839 MCDI_DECLARE_BUF_ERR(outbuf);
840 size_t outlen;
841 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
842 outbuf, sizeof(outbuf), &outlen);
843
844 /* -EALREADY means nothing to free, so ignore */
845 if (rc == -EALREADY)
846 rc = 0;
847 if (rc)
848 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
849 rc);
850 return rc;
851}
852
853#ifdef EFX_USE_PIO
854
855static void efx_ef10_free_piobufs(struct efx_nic *efx)
856{
857 struct efx_ef10_nic_data *nic_data = efx->nic_data;
858 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
859 unsigned int i;
860 int rc;
861
862 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
863
864 for (i = 0; i < nic_data->n_piobufs; i++) {
865 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
866 nic_data->piobuf_handle[i]);
867 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
868 NULL, 0, NULL);
869 WARN_ON(rc);
870 }
871
872 nic_data->n_piobufs = 0;
873}
874
875static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
876{
877 struct efx_ef10_nic_data *nic_data = efx->nic_data;
878 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
879 unsigned int i;
880 size_t outlen;
881 int rc = 0;
882
883 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
884
885 for (i = 0; i < n; i++) {
886 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
887 outbuf, sizeof(outbuf), &outlen);
888 if (rc) {
889 /* Don't display the MC error if we didn't have space
890 * for a VF.
891 */
892 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
893 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
894 0, outbuf, outlen, rc);
895 break;
896 }
897 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
898 rc = -EIO;
899 break;
900 }
901 nic_data->piobuf_handle[i] =
902 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
903 netif_dbg(efx, probe, efx->net_dev,
904 "allocated PIO buffer %u handle %x\n", i,
905 nic_data->piobuf_handle[i]);
906 }
907
908 nic_data->n_piobufs = i;
909 if (rc)
910 efx_ef10_free_piobufs(efx);
911 return rc;
912}
913
914static int efx_ef10_link_piobufs(struct efx_nic *efx)
915{
916 struct efx_ef10_nic_data *nic_data = efx->nic_data;
917 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
918 struct efx_channel *channel;
919 struct efx_tx_queue *tx_queue;
920 unsigned int offset, index;
921 int rc;
922
923 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
924 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
925
926 /* Link a buffer to each VI in the write-combining mapping */
927 for (index = 0; index < nic_data->n_piobufs; ++index) {
928 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
929 nic_data->piobuf_handle[index]);
930 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
931 nic_data->pio_write_vi_base + index);
932 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
933 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
934 NULL, 0, NULL);
935 if (rc) {
936 netif_err(efx, drv, efx->net_dev,
937 "failed to link VI %u to PIO buffer %u (%d)\n",
938 nic_data->pio_write_vi_base + index, index,
939 rc);
940 goto fail;
941 }
942 netif_dbg(efx, probe, efx->net_dev,
943 "linked VI %u to PIO buffer %u\n",
944 nic_data->pio_write_vi_base + index, index);
945 }
946
947 /* Link a buffer to each TX queue */
948 efx_for_each_channel(channel, efx) {
949 /* Extra channels, even those with TXQs (PTP), do not require
950 * PIO resources.
951 */
952 if (!channel->type->want_pio)
953 continue;
954 efx_for_each_channel_tx_queue(tx_queue, channel) {
955 /* We assign the PIO buffers to queues in
956 * reverse order to allow for the following
957 * special case.
958 */
959 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
960 tx_queue->channel->channel - 1) *
961 efx_piobuf_size);
962 index = offset / nic_data->piobuf_size;
963 offset = offset % nic_data->piobuf_size;
964
965 /* When the host page size is 4K, the first
966 * host page in the WC mapping may be within
967 * the same VI page as the last TX queue. We
968 * can only link one buffer to each VI.
969 */
970 if (tx_queue->queue == nic_data->pio_write_vi_base) {
971 BUG_ON(index != 0);
972 rc = 0;
973 } else {
974 MCDI_SET_DWORD(inbuf,
975 LINK_PIOBUF_IN_PIOBUF_HANDLE,
976 nic_data->piobuf_handle[index]);
977 MCDI_SET_DWORD(inbuf,
978 LINK_PIOBUF_IN_TXQ_INSTANCE,
979 tx_queue->queue);
980 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
981 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
982 NULL, 0, NULL);
983 }
984
985 if (rc) {
986 /* This is non-fatal; the TX path just
987 * won't use PIO for this queue
988 */
989 netif_err(efx, drv, efx->net_dev,
990 "failed to link VI %u to PIO buffer %u (%d)\n",
991 tx_queue->queue, index, rc);
992 tx_queue->piobuf = NULL;
993 } else {
994 tx_queue->piobuf =
995 nic_data->pio_write_base +
996 index * efx->vi_stride + offset;
997 tx_queue->piobuf_offset = offset;
998 netif_dbg(efx, probe, efx->net_dev,
999 "linked VI %u to PIO buffer %u offset %x addr %p\n",
1000 tx_queue->queue, index,
1001 tx_queue->piobuf_offset,
1002 tx_queue->piobuf);
1003 }
1004 }
1005 }
1006
1007 return 0;
1008
1009fail:
1010 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
1011 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1012 */
1013 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1014 while (index--) {
1015 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1016 nic_data->pio_write_vi_base + index);
1017 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1018 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1019 NULL, 0, NULL);
1020 }
1021 return rc;
1022}
1023
1024static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1025{
1026 struct efx_channel *channel;
1027 struct efx_tx_queue *tx_queue;
1028
1029 /* All our existing PIO buffers went away */
1030 efx_for_each_channel(channel, efx)
1031 efx_for_each_channel_tx_queue(tx_queue, channel)
1032 tx_queue->piobuf = NULL;
1033}
1034
1035#else /* !EFX_USE_PIO */
1036
1037static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1038{
1039 return n == 0 ? 0 : -ENOBUFS;
1040}
1041
1042static int efx_ef10_link_piobufs(struct efx_nic *efx)
1043{
1044 return 0;
1045}
1046
1047static void efx_ef10_free_piobufs(struct efx_nic *efx)
1048{
1049}
1050
1051static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1052{
1053}
1054
1055#endif /* EFX_USE_PIO */
1056
1057static void efx_ef10_remove(struct efx_nic *efx)
1058{
1059 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1060 int rc;
1061
1062#ifdef CONFIG_SFC_SRIOV
1063 struct efx_ef10_nic_data *nic_data_pf;
1064 struct pci_dev *pci_dev_pf;
1065 struct efx_nic *efx_pf;
1066 struct ef10_vf *vf;
1067
1068 if (efx->pci_dev->is_virtfn) {
1069 pci_dev_pf = efx->pci_dev->physfn;
1070 if (pci_dev_pf) {
1071 efx_pf = pci_get_drvdata(pci_dev_pf);
1072 nic_data_pf = efx_pf->nic_data;
1073 vf = nic_data_pf->vf + nic_data->vf_index;
1074 vf->efx = NULL;
1075 } else
1076 netif_info(efx, drv, efx->net_dev,
1077 "Could not get the PF id from VF\n");
1078 }
1079#endif
1080
1081 efx_ef10_cleanup_vlans(efx);
1082 mutex_destroy(&nic_data->vlan_lock);
1083
1084 efx_ptp_remove(efx);
1085
1086 efx_mcdi_mon_remove(efx);
1087
1088 efx_ef10_rx_free_indir_table(efx);
1089
1090 if (nic_data->wc_membase)
1091 iounmap(nic_data->wc_membase);
1092
1093 rc = efx_ef10_free_vis(efx);
1094 WARN_ON(rc != 0);
1095
1096 if (!nic_data->must_restore_piobufs)
1097 efx_ef10_free_piobufs(efx);
1098
1099 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1100 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1101
1102 efx_mcdi_detach(efx);
1103
1104 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1105 mutex_lock(&nic_data->udp_tunnels_lock);
1106 (void)efx_ef10_set_udp_tnl_ports(efx, true);
1107 mutex_unlock(&nic_data->udp_tunnels_lock);
1108
1109 mutex_destroy(&nic_data->udp_tunnels_lock);
1110
1111 efx_mcdi_fini(efx);
1112 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1113 kfree(nic_data);
1114}
1115
1116static int efx_ef10_probe_pf(struct efx_nic *efx)
1117{
1118 return efx_ef10_probe(efx);
1119}
1120
1121int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1122 u32 *port_flags, u32 *vadaptor_flags,
1123 unsigned int *vlan_tags)
1124{
1125 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1126 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1127 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1128 size_t outlen;
1129 int rc;
1130
1131 if (nic_data->datapath_caps &
1132 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1133 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1134 port_id);
1135
1136 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1137 outbuf, sizeof(outbuf), &outlen);
1138 if (rc)
1139 return rc;
1140
1141 if (outlen < sizeof(outbuf)) {
1142 rc = -EIO;
1143 return rc;
1144 }
1145 }
1146
1147 if (port_flags)
1148 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1149 if (vadaptor_flags)
1150 *vadaptor_flags =
1151 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1152 if (vlan_tags)
1153 *vlan_tags =
1154 MCDI_DWORD(outbuf,
1155 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1156
1157 return 0;
1158}
1159
1160int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1161{
1162 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1163
1164 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1165 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1166 NULL, 0, NULL);
1167}
1168
1169int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1170{
1171 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1172
1173 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1174 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1175 NULL, 0, NULL);
1176}
1177
1178int efx_ef10_vport_add_mac(struct efx_nic *efx,
1179 unsigned int port_id, u8 *mac)
1180{
1181 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1182
1183 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1184 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1185
1186 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1187 sizeof(inbuf), NULL, 0, NULL);
1188}
1189
1190int efx_ef10_vport_del_mac(struct efx_nic *efx,
1191 unsigned int port_id, u8 *mac)
1192{
1193 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1194
1195 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1196 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1197
1198 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1199 sizeof(inbuf), NULL, 0, NULL);
1200}
1201
1202#ifdef CONFIG_SFC_SRIOV
1203static int efx_ef10_probe_vf(struct efx_nic *efx)
1204{
1205 int rc;
1206 struct pci_dev *pci_dev_pf;
1207
1208 /* If the parent PF has no VF data structure, it doesn't know about this
1209 * VF so fail probe. The VF needs to be re-created. This can happen
1210 * if the PF driver is unloaded while the VF is assigned to a guest.
1211 */
1212 pci_dev_pf = efx->pci_dev->physfn;
1213 if (pci_dev_pf) {
1214 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1215 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1216
1217 if (!nic_data_pf->vf) {
1218 netif_info(efx, drv, efx->net_dev,
1219 "The VF cannot link to its parent PF; "
1220 "please destroy and re-create the VF\n");
1221 return -EBUSY;
1222 }
1223 }
1224
1225 rc = efx_ef10_probe(efx);
1226 if (rc)
1227 return rc;
1228
1229 rc = efx_ef10_get_vf_index(efx);
1230 if (rc)
1231 goto fail;
1232
1233 if (efx->pci_dev->is_virtfn) {
1234 if (efx->pci_dev->physfn) {
1235 struct efx_nic *efx_pf =
1236 pci_get_drvdata(efx->pci_dev->physfn);
1237 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1238 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1239
1240 nic_data_p->vf[nic_data->vf_index].efx = efx;
1241 nic_data_p->vf[nic_data->vf_index].pci_dev =
1242 efx->pci_dev;
1243 } else
1244 netif_info(efx, drv, efx->net_dev,
1245 "Could not get the PF id from VF\n");
1246 }
1247
1248 return 0;
1249
1250fail:
1251 efx_ef10_remove(efx);
1252 return rc;
1253}
1254#else
1255static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1256{
1257 return 0;
1258}
1259#endif
1260
1261static int efx_ef10_alloc_vis(struct efx_nic *efx,
1262 unsigned int min_vis, unsigned int max_vis)
1263{
1264 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1265 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1266 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1267 size_t outlen;
1268 int rc;
1269
1270 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1271 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1272 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1273 outbuf, sizeof(outbuf), &outlen);
1274 if (rc != 0)
1275 return rc;
1276
1277 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1278 return -EIO;
1279
1280 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1281 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1282
1283 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1284 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1285 return 0;
1286}
1287
1288/* Note that the failure path of this function does not free
1289 * resources, as this will be done by efx_ef10_remove().
1290 */
1291static int efx_ef10_dimension_resources(struct efx_nic *efx)
1292{
1293 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1294 unsigned int uc_mem_map_size, wc_mem_map_size;
1295 unsigned int min_vis = max(EFX_TXQ_TYPES,
1296 efx_separate_tx_channels ? 2 : 1);
1297 unsigned int channel_vis, pio_write_vi_base, max_vis;
1298 void __iomem *membase;
1299 int rc;
1300
1301 channel_vis = max(efx->n_channels,
1302 (efx->n_tx_channels + efx->n_extra_tx_channels) *
1303 EFX_TXQ_TYPES);
1304
1305#ifdef EFX_USE_PIO
1306 /* Try to allocate PIO buffers if wanted and if the full
1307 * number of PIO buffers would be sufficient to allocate one
1308 * copy-buffer per TX channel. Failure is non-fatal, as there
1309 * are only a small number of PIO buffers shared between all
1310 * functions of the controller.
1311 */
1312 if (efx_piobuf_size != 0 &&
1313 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1314 efx->n_tx_channels) {
1315 unsigned int n_piobufs =
1316 DIV_ROUND_UP(efx->n_tx_channels,
1317 nic_data->piobuf_size / efx_piobuf_size);
1318
1319 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1320 if (rc == -ENOSPC)
1321 netif_dbg(efx, probe, efx->net_dev,
1322 "out of PIO buffers; cannot allocate more\n");
1323 else if (rc == -EPERM)
1324 netif_dbg(efx, probe, efx->net_dev,
1325 "not permitted to allocate PIO buffers\n");
1326 else if (rc)
1327 netif_err(efx, probe, efx->net_dev,
1328 "failed to allocate PIO buffers (%d)\n", rc);
1329 else
1330 netif_dbg(efx, probe, efx->net_dev,
1331 "allocated %u PIO buffers\n", n_piobufs);
1332 }
1333#else
1334 nic_data->n_piobufs = 0;
1335#endif
1336
1337 /* PIO buffers should be mapped with write-combining enabled,
1338 * and we want to make single UC and WC mappings rather than
1339 * several of each (in fact that's the only option if host
1340 * page size is >4K). So we may allocate some extra VIs just
1341 * for writing PIO buffers through.
1342 *
1343 * The UC mapping contains (channel_vis - 1) complete VIs and the
1344 * first 4K of the next VI. Then the WC mapping begins with
1345 * the remainder of this last VI.
1346 */
1347 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1348 ER_DZ_TX_PIOBUF);
1349 if (nic_data->n_piobufs) {
1350 /* pio_write_vi_base rounds down to give the number of complete
1351 * VIs inside the UC mapping.
1352 */
1353 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1354 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1355 nic_data->n_piobufs) *
1356 efx->vi_stride) -
1357 uc_mem_map_size);
1358 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1359 } else {
1360 pio_write_vi_base = 0;
1361 wc_mem_map_size = 0;
1362 max_vis = channel_vis;
1363 }
1364
1365 /* In case the last attached driver failed to free VIs, do it now */
1366 rc = efx_ef10_free_vis(efx);
1367 if (rc != 0)
1368 return rc;
1369
1370 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1371 if (rc != 0)
1372 return rc;
1373
1374 if (nic_data->n_allocated_vis < channel_vis) {
1375 netif_info(efx, drv, efx->net_dev,
1376 "Could not allocate enough VIs to satisfy RSS"
1377 " requirements. Performance may not be optimal.\n");
1378 /* We didn't get the VIs to populate our channels.
1379 * We could keep what we got but then we'd have more
1380 * interrupts than we need.
1381 * Instead calculate new max_channels and restart
1382 */
1383 efx->max_channels = nic_data->n_allocated_vis;
1384 efx->max_tx_channels =
1385 nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1386
1387 efx_ef10_free_vis(efx);
1388 return -EAGAIN;
1389 }
1390
1391 /* If we didn't get enough VIs to map all the PIO buffers, free the
1392 * PIO buffers
1393 */
1394 if (nic_data->n_piobufs &&
1395 nic_data->n_allocated_vis <
1396 pio_write_vi_base + nic_data->n_piobufs) {
1397 netif_dbg(efx, probe, efx->net_dev,
1398 "%u VIs are not sufficient to map %u PIO buffers\n",
1399 nic_data->n_allocated_vis, nic_data->n_piobufs);
1400 efx_ef10_free_piobufs(efx);
1401 }
1402
1403 /* Shrink the original UC mapping of the memory BAR */
1404 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1405 if (!membase) {
1406 netif_err(efx, probe, efx->net_dev,
1407 "could not shrink memory BAR to %x\n",
1408 uc_mem_map_size);
1409 return -ENOMEM;
1410 }
1411 iounmap(efx->membase);
1412 efx->membase = membase;
1413
1414 /* Set up the WC mapping if needed */
1415 if (wc_mem_map_size) {
1416 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1417 uc_mem_map_size,
1418 wc_mem_map_size);
1419 if (!nic_data->wc_membase) {
1420 netif_err(efx, probe, efx->net_dev,
1421 "could not allocate WC mapping of size %x\n",
1422 wc_mem_map_size);
1423 return -ENOMEM;
1424 }
1425 nic_data->pio_write_vi_base = pio_write_vi_base;
1426 nic_data->pio_write_base =
1427 nic_data->wc_membase +
1428 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1429 uc_mem_map_size);
1430
1431 rc = efx_ef10_link_piobufs(efx);
1432 if (rc)
1433 efx_ef10_free_piobufs(efx);
1434 }
1435
1436 netif_dbg(efx, probe, efx->net_dev,
1437 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1438 &efx->membase_phys, efx->membase, uc_mem_map_size,
1439 nic_data->wc_membase, wc_mem_map_size);
1440
1441 return 0;
1442}
1443
1444static int efx_ef10_init_nic(struct efx_nic *efx)
1445{
1446 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1447 int rc;
1448
1449 if (nic_data->must_check_datapath_caps) {
1450 rc = efx_ef10_init_datapath_caps(efx);
1451 if (rc)
1452 return rc;
1453 nic_data->must_check_datapath_caps = false;
1454 }
1455
1456 if (nic_data->must_realloc_vis) {
1457 /* We cannot let the number of VIs change now */
1458 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1459 nic_data->n_allocated_vis);
1460 if (rc)
1461 return rc;
1462 nic_data->must_realloc_vis = false;
1463 }
1464
1465 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1466 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1467 if (rc == 0) {
1468 rc = efx_ef10_link_piobufs(efx);
1469 if (rc)
1470 efx_ef10_free_piobufs(efx);
1471 }
1472
1473 /* Log an error on failure, but this is non-fatal.
1474 * Permission errors are less important - we've presumably
1475 * had the PIO buffer licence removed.
1476 */
1477 if (rc == -EPERM)
1478 netif_dbg(efx, drv, efx->net_dev,
1479 "not permitted to restore PIO buffers\n");
1480 else if (rc)
1481 netif_err(efx, drv, efx->net_dev,
1482 "failed to restore PIO buffers (%d)\n", rc);
1483 nic_data->must_restore_piobufs = false;
1484 }
1485
1486 /* don't fail init if RSS setup doesn't work */
1487 rc = efx->type->rx_push_rss_config(efx, false,
1488 efx->rss_context.rx_indir_table, NULL);
1489
1490 return 0;
1491}
1492
1493static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1494{
1495 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1496#ifdef CONFIG_SFC_SRIOV
1497 unsigned int i;
1498#endif
1499
1500 /* All our allocations have been reset */
1501 nic_data->must_realloc_vis = true;
1502 nic_data->must_restore_rss_contexts = true;
1503 nic_data->must_restore_filters = true;
1504 nic_data->must_restore_piobufs = true;
1505 efx_ef10_forget_old_piobufs(efx);
1506 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
1507
1508 /* Driver-created vswitches and vports must be re-created */
1509 nic_data->must_probe_vswitching = true;
1510 nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1511#ifdef CONFIG_SFC_SRIOV
1512 if (nic_data->vf)
1513 for (i = 0; i < efx->vf_count; i++)
1514 nic_data->vf[i].vport_id = 0;
1515#endif
1516}
1517
1518static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1519{
1520 if (reason == RESET_TYPE_MC_FAILURE)
1521 return RESET_TYPE_DATAPATH;
1522
1523 return efx_mcdi_map_reset_reason(reason);
1524}
1525
1526static int efx_ef10_map_reset_flags(u32 *flags)
1527{
1528 enum {
1529 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1530 ETH_RESET_SHARED_SHIFT),
1531 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1532 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1533 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1534 ETH_RESET_SHARED_SHIFT)
1535 };
1536
1537 /* We assume for now that our PCI function is permitted to
1538 * reset everything.
1539 */
1540
1541 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1542 *flags &= ~EF10_RESET_MC;
1543 return RESET_TYPE_WORLD;
1544 }
1545
1546 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1547 *flags &= ~EF10_RESET_PORT;
1548 return RESET_TYPE_ALL;
1549 }
1550
1551 /* no invisible reset implemented */
1552
1553 return -EINVAL;
1554}
1555
1556static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1557{
1558 int rc = efx_mcdi_reset(efx, reset_type);
1559
1560 /* Unprivileged functions return -EPERM, but need to return success
1561 * here so that the datapath is brought back up.
1562 */
1563 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1564 rc = 0;
1565
1566 /* If it was a port reset, trigger reallocation of MC resources.
1567 * Note that on an MC reset nothing needs to be done now because we'll
1568 * detect the MC reset later and handle it then.
1569 * For an FLR, we never get an MC reset event, but the MC has reset all
1570 * resources assigned to us, so we have to trigger reallocation now.
1571 */
1572 if ((reset_type == RESET_TYPE_ALL ||
1573 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1574 efx_ef10_reset_mc_allocations(efx);
1575 return rc;
1576}
1577
1578#define EF10_DMA_STAT(ext_name, mcdi_name) \
1579 [EF10_STAT_ ## ext_name] = \
1580 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1582 [EF10_STAT_ ## int_name] = \
1583 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1584#define EF10_OTHER_STAT(ext_name) \
1585 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1586#define GENERIC_SW_STAT(ext_name) \
1587 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1588
1589static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1590 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1591 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1592 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1593 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1594 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1595 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1596 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1597 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1598 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1599 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1600 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1601 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1602 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1603 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1604 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1605 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1606 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1607 EF10_OTHER_STAT(port_rx_good_bytes),
1608 EF10_OTHER_STAT(port_rx_bad_bytes),
1609 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1610 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1611 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1612 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1613 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1614 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1615 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1616 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1617 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1618 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1619 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1620 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1621 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1622 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1623 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1624 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1625 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1626 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1627 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1628 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1629 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1630 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1631 GENERIC_SW_STAT(rx_nodesc_trunc),
1632 GENERIC_SW_STAT(rx_noskb_drops),
1633 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1634 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1635 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1636 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1637 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1638 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1639 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1640 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1641 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1642 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1643 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1644 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1645 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1646 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1647 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1648 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1649 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1650 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1651 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1652 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1653 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1654 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1655 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1656 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1657 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1658 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1659 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1660 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1661 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1662 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1663 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1664 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1665 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1666 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1667 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1668 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1669 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1670 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1671 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1672 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1673 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1674 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1675 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1676 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1677 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1678 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1679 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1680 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1681 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1682 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1683 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1684 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1685};
1686
1687#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1688 (1ULL << EF10_STAT_port_tx_packets) | \
1689 (1ULL << EF10_STAT_port_tx_pause) | \
1690 (1ULL << EF10_STAT_port_tx_unicast) | \
1691 (1ULL << EF10_STAT_port_tx_multicast) | \
1692 (1ULL << EF10_STAT_port_tx_broadcast) | \
1693 (1ULL << EF10_STAT_port_rx_bytes) | \
1694 (1ULL << \
1695 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1696 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1697 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1698 (1ULL << EF10_STAT_port_rx_packets) | \
1699 (1ULL << EF10_STAT_port_rx_good) | \
1700 (1ULL << EF10_STAT_port_rx_bad) | \
1701 (1ULL << EF10_STAT_port_rx_pause) | \
1702 (1ULL << EF10_STAT_port_rx_control) | \
1703 (1ULL << EF10_STAT_port_rx_unicast) | \
1704 (1ULL << EF10_STAT_port_rx_multicast) | \
1705 (1ULL << EF10_STAT_port_rx_broadcast) | \
1706 (1ULL << EF10_STAT_port_rx_lt64) | \
1707 (1ULL << EF10_STAT_port_rx_64) | \
1708 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1709 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1710 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1711 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1712 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1713 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1714 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1715 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1716 (1ULL << EF10_STAT_port_rx_overflow) | \
1717 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1718 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1719 (1ULL << GENERIC_STAT_rx_noskb_drops))
1720
1721/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1722 * For a 10G/40G switchable port we do not expose these because they might
1723 * not include all the packets they should.
1724 * On 8000 series NICs these statistics are always provided.
1725 */
1726#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1727 (1ULL << EF10_STAT_port_tx_lt64) | \
1728 (1ULL << EF10_STAT_port_tx_64) | \
1729 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1730 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1731 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1732 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1733 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1734 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1735
1736/* These statistics are only provided by the 40G MAC. For a 10G/40G
1737 * switchable port we do expose these because the errors will otherwise
1738 * be silent.
1739 */
1740#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1741 (1ULL << EF10_STAT_port_rx_length_error))
1742
1743/* These statistics are only provided if the firmware supports the
1744 * capability PM_AND_RXDP_COUNTERS.
1745 */
1746#define HUNT_PM_AND_RXDP_STAT_MASK ( \
1747 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1748 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1749 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1750 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1751 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1752 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1753 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1754 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1755 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1756 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1757 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1758 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1759
1760/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1761 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1762 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1763 * These bits are in the second u64 of the raw mask.
1764 */
1765#define EF10_FEC_STAT_MASK ( \
1766 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1767 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1768 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1769 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1770 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1771 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1772
1773/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1774 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1775 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1776 * These bits are in the second u64 of the raw mask.
1777 */
1778#define EF10_CTPIO_STAT_MASK ( \
1779 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1780 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1781 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1782 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1783 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1784 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1785 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1786 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1787 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1788 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1789 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1790 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1791 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1792 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1793 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1794 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1795
1796static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1797{
1798 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1799 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1800 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1801
1802 if (!(efx->mcdi->fn_flags &
1803 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1804 return 0;
1805
1806 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1807 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1808 /* 8000 series have everything even at 40G */
1809 if (nic_data->datapath_caps2 &
1810 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1811 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1812 } else {
1813 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1814 }
1815
1816 if (nic_data->datapath_caps &
1817 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1818 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1819
1820 return raw_mask;
1821}
1822
1823static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1824{
1825 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1826 u64 raw_mask[2];
1827
1828 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1829
1830 /* Only show vadaptor stats when EVB capability is present */
1831 if (nic_data->datapath_caps &
1832 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1833 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1834 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1835 } else {
1836 raw_mask[1] = 0;
1837 }
1838 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1839 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1840 raw_mask[1] |= EF10_FEC_STAT_MASK;
1841
1842 /* CTPIO stats appear in V3. Only show them on devices that actually
1843 * support CTPIO. Although this driver doesn't use CTPIO others might,
1844 * and we may be reporting the stats for the underlying port.
1845 */
1846 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1847 (nic_data->datapath_caps2 &
1848 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1849 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1850
1851#if BITS_PER_LONG == 64
1852 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1853 mask[0] = raw_mask[0];
1854 mask[1] = raw_mask[1];
1855#else
1856 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1857 mask[0] = raw_mask[0] & 0xffffffff;
1858 mask[1] = raw_mask[0] >> 32;
1859 mask[2] = raw_mask[1] & 0xffffffff;
1860#endif
1861}
1862
1863static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1864{
1865 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1866
1867 efx_ef10_get_stat_mask(efx, mask);
1868 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1869 mask, names);
1870}
1871
1872static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1873 struct rtnl_link_stats64 *core_stats)
1874{
1875 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1876 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1877 u64 *stats = nic_data->stats;
1878 size_t stats_count = 0, index;
1879
1880 efx_ef10_get_stat_mask(efx, mask);
1881
1882 if (full_stats) {
1883 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1884 if (efx_ef10_stat_desc[index].name) {
1885 *full_stats++ = stats[index];
1886 ++stats_count;
1887 }
1888 }
1889 }
1890
1891 if (!core_stats)
1892 return stats_count;
1893
1894 if (nic_data->datapath_caps &
1895 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1896 /* Use vadaptor stats. */
1897 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1898 stats[EF10_STAT_rx_multicast] +
1899 stats[EF10_STAT_rx_broadcast];
1900 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1901 stats[EF10_STAT_tx_multicast] +
1902 stats[EF10_STAT_tx_broadcast];
1903 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1904 stats[EF10_STAT_rx_multicast_bytes] +
1905 stats[EF10_STAT_rx_broadcast_bytes];
1906 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1907 stats[EF10_STAT_tx_multicast_bytes] +
1908 stats[EF10_STAT_tx_broadcast_bytes];
1909 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1910 stats[GENERIC_STAT_rx_noskb_drops];
1911 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1912 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1913 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1914 core_stats->rx_errors = core_stats->rx_crc_errors;
1915 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1916 } else {
1917 /* Use port stats. */
1918 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1919 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1920 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1921 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1922 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1923 stats[GENERIC_STAT_rx_nodesc_trunc] +
1924 stats[GENERIC_STAT_rx_noskb_drops];
1925 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1926 core_stats->rx_length_errors =
1927 stats[EF10_STAT_port_rx_gtjumbo] +
1928 stats[EF10_STAT_port_rx_length_error];
1929 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1930 core_stats->rx_frame_errors =
1931 stats[EF10_STAT_port_rx_align_error];
1932 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1933 core_stats->rx_errors = (core_stats->rx_length_errors +
1934 core_stats->rx_crc_errors +
1935 core_stats->rx_frame_errors);
1936 }
1937
1938 return stats_count;
1939}
1940
1941static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1942{
1943 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1944 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1945 __le64 generation_start, generation_end;
1946 u64 *stats = nic_data->stats;
1947 __le64 *dma_stats;
1948
1949 efx_ef10_get_stat_mask(efx, mask);
1950
1951 dma_stats = efx->stats_buffer.addr;
1952
1953 generation_end = dma_stats[efx->num_mac_stats - 1];
1954 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1955 return 0;
1956 rmb();
1957 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1958 stats, efx->stats_buffer.addr, false);
1959 rmb();
1960 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1961 if (generation_end != generation_start)
1962 return -EAGAIN;
1963
1964 /* Update derived statistics */
1965 efx_nic_fix_nodesc_drop_stat(efx,
1966 &stats[EF10_STAT_port_rx_nodesc_drops]);
1967 stats[EF10_STAT_port_rx_good_bytes] =
1968 stats[EF10_STAT_port_rx_bytes] -
1969 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1970 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1971 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1972 efx_update_sw_stats(efx, stats);
1973 return 0;
1974}
1975
1976
1977static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1978 struct rtnl_link_stats64 *core_stats)
1979{
1980 int retry;
1981
1982 /* If we're unlucky enough to read statistics during the DMA, wait
1983 * up to 10ms for it to finish (typically takes <500us)
1984 */
1985 for (retry = 0; retry < 100; ++retry) {
1986 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1987 break;
1988 udelay(100);
1989 }
1990
1991 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1992}
1993
1994static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1995{
1996 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1997 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1998 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1999 __le64 generation_start, generation_end;
2000 u64 *stats = nic_data->stats;
2001 u32 dma_len = efx->num_mac_stats * sizeof(u64);
2002 struct efx_buffer stats_buf;
2003 __le64 *dma_stats;
2004 int rc;
2005
2006 spin_unlock_bh(&efx->stats_lock);
2007
2008 if (in_interrupt()) {
2009 /* If in atomic context, cannot update stats. Just update the
2010 * software stats and return so the caller can continue.
2011 */
2012 spin_lock_bh(&efx->stats_lock);
2013 efx_update_sw_stats(efx, stats);
2014 return 0;
2015 }
2016
2017 efx_ef10_get_stat_mask(efx, mask);
2018
2019 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2020 if (rc) {
2021 spin_lock_bh(&efx->stats_lock);
2022 return rc;
2023 }
2024
2025 dma_stats = stats_buf.addr;
2026 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2027
2028 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2029 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2030 MAC_STATS_IN_DMA, 1);
2031 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2032 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2033
2034 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2035 NULL, 0, NULL);
2036 spin_lock_bh(&efx->stats_lock);
2037 if (rc) {
2038 /* Expect ENOENT if DMA queues have not been set up */
2039 if (rc != -ENOENT || atomic_read(&efx->active_queues))
2040 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2041 sizeof(inbuf), NULL, 0, rc);
2042 goto out;
2043 }
2044
2045 generation_end = dma_stats[efx->num_mac_stats - 1];
2046 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2047 WARN_ON_ONCE(1);
2048 goto out;
2049 }
2050 rmb();
2051 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2052 stats, stats_buf.addr, false);
2053 rmb();
2054 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2055 if (generation_end != generation_start) {
2056 rc = -EAGAIN;
2057 goto out;
2058 }
2059
2060 efx_update_sw_stats(efx, stats);
2061out:
2062 efx_nic_free_buffer(efx, &stats_buf);
2063 return rc;
2064}
2065
2066static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2067 struct rtnl_link_stats64 *core_stats)
2068{
2069 if (efx_ef10_try_update_nic_stats_vf(efx))
2070 return 0;
2071
2072 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2073}
2074
2075static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2076{
2077 struct efx_nic *efx = channel->efx;
2078 unsigned int mode, usecs;
2079 efx_dword_t timer_cmd;
2080
2081 if (channel->irq_moderation_us) {
2082 mode = 3;
2083 usecs = channel->irq_moderation_us;
2084 } else {
2085 mode = 0;
2086 usecs = 0;
2087 }
2088
2089 if (EFX_EF10_WORKAROUND_61265(efx)) {
2090 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2091 unsigned int ns = usecs * 1000;
2092
2093 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2094 channel->channel);
2095 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2096 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2097 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2098
2099 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2100 inbuf, sizeof(inbuf), 0, NULL, 0);
2101 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
2102 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2103
2104 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2105 EFE_DD_EVQ_IND_TIMER_FLAGS,
2106 ERF_DD_EVQ_IND_TIMER_MODE, mode,
2107 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2108 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2109 channel->channel);
2110 } else {
2111 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2112
2113 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2114 ERF_DZ_TC_TIMER_VAL, ticks,
2115 ERF_FZ_TC_TMR_REL_VAL, ticks);
2116 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2117 channel->channel);
2118 }
2119}
2120
2121static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2122 struct ethtool_wolinfo *wol) {}
2123
2124static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2125{
2126 return -EOPNOTSUPP;
2127}
2128
2129static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2130{
2131 wol->supported = 0;
2132 wol->wolopts = 0;
2133 memset(&wol->sopass, 0, sizeof(wol->sopass));
2134}
2135
2136static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2137{
2138 if (type != 0)
2139 return -EINVAL;
2140 return 0;
2141}
2142
2143static void efx_ef10_mcdi_request(struct efx_nic *efx,
2144 const efx_dword_t *hdr, size_t hdr_len,
2145 const efx_dword_t *sdu, size_t sdu_len)
2146{
2147 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2148 u8 *pdu = nic_data->mcdi_buf.addr;
2149
2150 memcpy(pdu, hdr, hdr_len);
2151 memcpy(pdu + hdr_len, sdu, sdu_len);
2152 wmb();
2153
2154 /* The hardware provides 'low' and 'high' (doorbell) registers
2155 * for passing the 64-bit address of an MCDI request to
2156 * firmware. However the dwords are swapped by firmware. The
2157 * least significant bits of the doorbell are then 0 for all
2158 * MCDI requests due to alignment.
2159 */
2160 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2161 ER_DZ_MC_DB_LWRD);
2162 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2163 ER_DZ_MC_DB_HWRD);
2164}
2165
2166static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2167{
2168 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2169 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2170
2171 rmb();
2172 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2173}
2174
2175static void
2176efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2177 size_t offset, size_t outlen)
2178{
2179 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2180 const u8 *pdu = nic_data->mcdi_buf.addr;
2181
2182 memcpy(outbuf, pdu + offset, outlen);
2183}
2184
2185static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2186{
2187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2188
2189 /* All our allocations have been reset */
2190 efx_ef10_reset_mc_allocations(efx);
2191
2192 /* The datapath firmware might have been changed */
2193 nic_data->must_check_datapath_caps = true;
2194
2195 /* MAC statistics have been cleared on the NIC; clear the local
2196 * statistic that we update with efx_update_diff_stat().
2197 */
2198 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2199}
2200
2201static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2202{
2203 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2204 int rc;
2205
2206 rc = efx_ef10_get_warm_boot_count(efx);
2207 if (rc < 0) {
2208 /* The firmware is presumably in the process of
2209 * rebooting. However, we are supposed to report each
2210 * reboot just once, so we must only do that once we
2211 * can read and store the updated warm boot count.
2212 */
2213 return 0;
2214 }
2215
2216 if (rc == nic_data->warm_boot_count)
2217 return 0;
2218
2219 nic_data->warm_boot_count = rc;
2220 efx_ef10_mcdi_reboot_detected(efx);
2221
2222 return -EIO;
2223}
2224
2225/* Handle an MSI interrupt
2226 *
2227 * Handle an MSI hardware interrupt. This routine schedules event
2228 * queue processing. No interrupt acknowledgement cycle is necessary.
2229 * Also, we never need to check that the interrupt is for us, since
2230 * MSI interrupts cannot be shared.
2231 */
2232static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2233{
2234 struct efx_msi_context *context = dev_id;
2235 struct efx_nic *efx = context->efx;
2236
2237 netif_vdbg(efx, intr, efx->net_dev,
2238 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2239
2240 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2241 /* Note test interrupts */
2242 if (context->index == efx->irq_level)
2243 efx->last_irq_cpu = raw_smp_processor_id();
2244
2245 /* Schedule processing of the channel */
2246 efx_schedule_channel_irq(efx->channel[context->index]);
2247 }
2248
2249 return IRQ_HANDLED;
2250}
2251
2252static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2253{
2254 struct efx_nic *efx = dev_id;
2255 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2256 struct efx_channel *channel;
2257 efx_dword_t reg;
2258 u32 queues;
2259
2260 /* Read the ISR which also ACKs the interrupts */
2261 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2262 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2263
2264 if (queues == 0)
2265 return IRQ_NONE;
2266
2267 if (likely(soft_enabled)) {
2268 /* Note test interrupts */
2269 if (queues & (1U << efx->irq_level))
2270 efx->last_irq_cpu = raw_smp_processor_id();
2271
2272 efx_for_each_channel(channel, efx) {
2273 if (queues & 1)
2274 efx_schedule_channel_irq(channel);
2275 queues >>= 1;
2276 }
2277 }
2278
2279 netif_vdbg(efx, intr, efx->net_dev,
2280 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2281 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2282
2283 return IRQ_HANDLED;
2284}
2285
2286static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2287{
2288 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2289
2290 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2291 NULL) == 0)
2292 return -ENOTSUPP;
2293
2294 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2295
2296 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2297 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2298 inbuf, sizeof(inbuf), NULL, 0, NULL);
2299}
2300
2301static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2302{
2303 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2304 (tx_queue->ptr_mask + 1) *
2305 sizeof(efx_qword_t),
2306 GFP_KERNEL);
2307}
2308
2309/* This writes to the TX_DESC_WPTR and also pushes data */
2310static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2311 const efx_qword_t *txd)
2312{
2313 unsigned int write_ptr;
2314 efx_oword_t reg;
2315
2316 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2317 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2318 reg.qword[0] = *txd;
2319 efx_writeo_page(tx_queue->efx, ®,
2320 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2321}
2322
2323/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2324 */
2325static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2326 struct sk_buff *skb,
2327 bool *data_mapped)
2328{
2329 struct efx_tx_buffer *buffer;
2330 struct tcphdr *tcp;
2331 struct iphdr *ip;
2332
2333 u16 ipv4_id;
2334 u32 seqnum;
2335 u32 mss;
2336
2337 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2338
2339 mss = skb_shinfo(skb)->gso_size;
2340
2341 if (unlikely(mss < 4)) {
2342 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2343 return -EINVAL;
2344 }
2345
2346 ip = ip_hdr(skb);
2347 if (ip->version == 4) {
2348 /* Modify IPv4 header if needed. */
2349 ip->tot_len = 0;
2350 ip->check = 0;
2351 ipv4_id = ntohs(ip->id);
2352 } else {
2353 /* Modify IPv6 header if needed. */
2354 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2355
2356 ipv6->payload_len = 0;
2357 ipv4_id = 0;
2358 }
2359
2360 tcp = tcp_hdr(skb);
2361 seqnum = ntohl(tcp->seq);
2362
2363 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2364
2365 buffer->flags = EFX_TX_BUF_OPTION;
2366 buffer->len = 0;
2367 buffer->unmap_len = 0;
2368 EFX_POPULATE_QWORD_5(buffer->option,
2369 ESF_DZ_TX_DESC_IS_OPT, 1,
2370 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2371 ESF_DZ_TX_TSO_OPTION_TYPE,
2372 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2373 ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2374 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2375 );
2376 ++tx_queue->insert_count;
2377
2378 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2379
2380 buffer->flags = EFX_TX_BUF_OPTION;
2381 buffer->len = 0;
2382 buffer->unmap_len = 0;
2383 EFX_POPULATE_QWORD_4(buffer->option,
2384 ESF_DZ_TX_DESC_IS_OPT, 1,
2385 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2386 ESF_DZ_TX_TSO_OPTION_TYPE,
2387 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2388 ESF_DZ_TX_TSO_TCP_MSS, mss
2389 );
2390 ++tx_queue->insert_count;
2391
2392 return 0;
2393}
2394
2395static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2396{
2397 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2398 u32 tso_versions = 0;
2399
2400 if (nic_data->datapath_caps &
2401 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2402 tso_versions |= BIT(1);
2403 if (nic_data->datapath_caps2 &
2404 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2405 tso_versions |= BIT(2);
2406 return tso_versions;
2407}
2408
2409static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2410{
2411 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2412 EFX_BUF_SIZE));
2413 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2414 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2415 struct efx_channel *channel = tx_queue->channel;
2416 struct efx_nic *efx = tx_queue->efx;
2417 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2418 bool tso_v2 = false;
2419 size_t inlen;
2420 dma_addr_t dma_addr;
2421 efx_qword_t *txd;
2422 int rc;
2423 int i;
2424 BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2425
2426 /* Only attempt to enable TX timestamping if we have the license for it,
2427 * otherwise TXQ init will fail
2428 */
2429 if (!(nic_data->licensed_features &
2430 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2431 tx_queue->timestamping = false;
2432 /* Disable sync events on this channel. */
2433 if (efx->type->ptp_set_ts_sync_events)
2434 efx->type->ptp_set_ts_sync_events(efx, false, false);
2435 }
2436
2437 /* TSOv2 is a limited resource that can only be configured on a limited
2438 * number of queues. TSO without checksum offload is not really a thing,
2439 * so we only enable it for those queues.
2440 * TSOv2 cannot be used with Hardware timestamping.
2441 */
2442 if (csum_offload && (nic_data->datapath_caps2 &
2443 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2444 !tx_queue->timestamping) {
2445 tso_v2 = true;
2446 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2447 channel->channel);
2448 }
2449
2450 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2451 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2452 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2453 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2454 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2455 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2456
2457 dma_addr = tx_queue->txd.buf.dma_addr;
2458
2459 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2460 tx_queue->queue, entries, (u64)dma_addr);
2461
2462 for (i = 0; i < entries; ++i) {
2463 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2464 dma_addr += EFX_BUF_SIZE;
2465 }
2466
2467 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2468
2469 do {
2470 MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2471 /* This flag was removed from mcdi_pcol.h for
2472 * the non-_EXT version of INIT_TXQ. However,
2473 * firmware still honours it.
2474 */
2475 INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2476 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2477 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2478 INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2479 tx_queue->timestamping);
2480
2481 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2482 NULL, 0, NULL);
2483 if (rc == -ENOSPC && tso_v2) {
2484 /* Retry without TSOv2 if we're short on contexts. */
2485 tso_v2 = false;
2486 netif_warn(efx, probe, efx->net_dev,
2487 "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2488 } else if (rc) {
2489 efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2490 MC_CMD_INIT_TXQ_EXT_IN_LEN,
2491 NULL, 0, rc);
2492 goto fail;
2493 }
2494 } while (rc);
2495
2496 /* A previous user of this TX queue might have set us up the
2497 * bomb by writing a descriptor to the TX push collector but
2498 * not the doorbell. (Each collector belongs to a port, not a
2499 * queue or function, so cannot easily be reset.) We must
2500 * attempt to push a no-op descriptor in its place.
2501 */
2502 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2503 tx_queue->insert_count = 1;
2504 txd = efx_tx_desc(tx_queue, 0);
2505 EFX_POPULATE_QWORD_5(*txd,
2506 ESF_DZ_TX_DESC_IS_OPT, true,
2507 ESF_DZ_TX_OPTION_TYPE,
2508 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2509 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2510 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2511 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2512 tx_queue->write_count = 1;
2513
2514 if (tso_v2) {
2515 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2516 tx_queue->tso_version = 2;
2517 } else if (nic_data->datapath_caps &
2518 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2519 tx_queue->tso_version = 1;
2520 }
2521
2522 wmb();
2523 efx_ef10_push_tx_desc(tx_queue, txd);
2524
2525 return;
2526
2527fail:
2528 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2529 tx_queue->queue);
2530}
2531
2532static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2533{
2534 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2535 MCDI_DECLARE_BUF_ERR(outbuf);
2536 struct efx_nic *efx = tx_queue->efx;
2537 size_t outlen;
2538 int rc;
2539
2540 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2541 tx_queue->queue);
2542
2543 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2544 outbuf, sizeof(outbuf), &outlen);
2545
2546 if (rc && rc != -EALREADY)
2547 goto fail;
2548
2549 return;
2550
2551fail:
2552 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2553 outbuf, outlen, rc);
2554}
2555
2556static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2557{
2558 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2559}
2560
2561/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2562static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2563{
2564 unsigned int write_ptr;
2565 efx_dword_t reg;
2566
2567 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2568 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2569 efx_writed_page(tx_queue->efx, ®,
2570 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2571}
2572
2573#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2574
2575static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2576 dma_addr_t dma_addr, unsigned int len)
2577{
2578 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2579 /* If we need to break across multiple descriptors we should
2580 * stop at a page boundary. This assumes the length limit is
2581 * greater than the page size.
2582 */
2583 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2584
2585 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2586 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2587 }
2588
2589 return len;
2590}
2591
2592static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2593{
2594 unsigned int old_write_count = tx_queue->write_count;
2595 struct efx_tx_buffer *buffer;
2596 unsigned int write_ptr;
2597 efx_qword_t *txd;
2598
2599 tx_queue->xmit_more_available = false;
2600 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2601 return;
2602
2603 do {
2604 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2605 buffer = &tx_queue->buffer[write_ptr];
2606 txd = efx_tx_desc(tx_queue, write_ptr);
2607 ++tx_queue->write_count;
2608
2609 /* Create TX descriptor ring entry */
2610 if (buffer->flags & EFX_TX_BUF_OPTION) {
2611 *txd = buffer->option;
2612 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2613 /* PIO descriptor */
2614 tx_queue->packet_write_count = tx_queue->write_count;
2615 } else {
2616 tx_queue->packet_write_count = tx_queue->write_count;
2617 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2618 EFX_POPULATE_QWORD_3(
2619 *txd,
2620 ESF_DZ_TX_KER_CONT,
2621 buffer->flags & EFX_TX_BUF_CONT,
2622 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2623 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2624 }
2625 } while (tx_queue->write_count != tx_queue->insert_count);
2626
2627 wmb(); /* Ensure descriptors are written before they are fetched */
2628
2629 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2630 txd = efx_tx_desc(tx_queue,
2631 old_write_count & tx_queue->ptr_mask);
2632 efx_ef10_push_tx_desc(tx_queue, txd);
2633 ++tx_queue->pushes;
2634 } else {
2635 efx_ef10_notify_tx_desc(tx_queue);
2636 }
2637}
2638
2639#define RSS_MODE_HASH_ADDRS (1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2640 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2641#define RSS_MODE_HASH_PORTS (1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2642 1 << RSS_MODE_HASH_DST_PORT_LBN)
2643#define RSS_CONTEXT_FLAGS_DEFAULT (1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2644 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2645 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2646 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2647 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2648 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2649 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2650 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2651 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2652 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2653
2654static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2655{
2656 /* Firmware had a bug (sfc bug 61952) where it would not actually
2657 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2658 * This meant that it would always contain whatever was previously
2659 * in the MCDI buffer. Fortunately, all firmware versions with
2660 * this bug have the same default flags value for a newly-allocated
2661 * RSS context, and the only time we want to get the flags is just
2662 * after allocating. Moreover, the response has a 32-bit hole
2663 * where the context ID would be in the request, so we can use an
2664 * overlength buffer in the request and pre-fill the flags field
2665 * with what we believe the default to be. Thus if the firmware
2666 * has the bug, it will leave our pre-filled value in the flags
2667 * field of the response, and we will get the right answer.
2668 *
2669 * However, this does mean that this function should NOT be used if
2670 * the RSS context flags might not be their defaults - it is ONLY
2671 * reliably correct for a newly-allocated RSS context.
2672 */
2673 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2674 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2675 size_t outlen;
2676 int rc;
2677
2678 /* Check we have a hole for the context ID */
2679 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2680 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2681 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2682 RSS_CONTEXT_FLAGS_DEFAULT);
2683 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2684 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2685 if (rc == 0) {
2686 if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2687 rc = -EIO;
2688 else
2689 *flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2690 }
2691 return rc;
2692}
2693
2694/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2695 * If we fail, we just leave the RSS context at its default hash settings,
2696 * which is safe but may slightly reduce performance.
2697 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2698 * just need to set the UDP ports flags (for both IP versions).
2699 */
2700static void efx_ef10_set_rss_flags(struct efx_nic *efx,
2701 struct efx_rss_context *ctx)
2702{
2703 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2704 u32 flags;
2705
2706 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2707
2708 if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0)
2709 return;
2710 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID,
2711 ctx->context_id);
2712 flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2713 flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2714 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2715 if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2716 NULL, 0, NULL))
2717 /* Succeeded, so UDP 4-tuple is now enabled */
2718 ctx->rx_hash_udp_4tuple = true;
2719}
2720
2721static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive,
2722 struct efx_rss_context *ctx,
2723 unsigned *context_size)
2724{
2725 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2726 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2727 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2728 size_t outlen;
2729 int rc;
2730 u32 alloc_type = exclusive ?
2731 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2732 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2733 unsigned rss_spread = exclusive ?
2734 efx->rss_spread :
2735 min(rounddown_pow_of_two(efx->rss_spread),
2736 EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2737
2738 if (!exclusive && rss_spread == 1) {
2739 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2740 if (context_size)
2741 *context_size = 1;
2742 return 0;
2743 }
2744
2745 if (nic_data->datapath_caps &
2746 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2747 return -EOPNOTSUPP;
2748
2749 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2750 nic_data->vport_id);
2751 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2752 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2753
2754 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2755 outbuf, sizeof(outbuf), &outlen);
2756 if (rc != 0)
2757 return rc;
2758
2759 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2760 return -EIO;
2761
2762 ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2763
2764 if (context_size)
2765 *context_size = rss_spread;
2766
2767 if (nic_data->datapath_caps &
2768 1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2769 efx_ef10_set_rss_flags(efx, ctx);
2770
2771 return 0;
2772}
2773
2774static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2775{
2776 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2777
2778 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2779 context);
2780 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2781 NULL, 0, NULL);
2782}
2783
2784static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2785 const u32 *rx_indir_table, const u8 *key)
2786{
2787 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2788 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2789 int i, rc;
2790
2791 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2792 context);
2793 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
2794 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2795
2796 /* This iterates over the length of efx->rss_context.rx_indir_table, but
2797 * copies bytes from rx_indir_table. That's because the latter is a
2798 * pointer rather than an array, but should have the same length.
2799 * The efx->rss_context.rx_hash_key loop below is similar.
2800 */
2801 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i)
2802 MCDI_PTR(tablebuf,
2803 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2804 (u8) rx_indir_table[i];
2805
2806 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2807 sizeof(tablebuf), NULL, 0, NULL);
2808 if (rc != 0)
2809 return rc;
2810
2811 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2812 context);
2813 BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) !=
2814 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2815 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i)
2816 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2817
2818 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2819 sizeof(keybuf), NULL, 0, NULL);
2820}
2821
2822static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2823{
2824 int rc;
2825
2826 if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) {
2827 rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id);
2828 WARN_ON(rc != 0);
2829 }
2830 efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2831}
2832
2833static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2834 unsigned *context_size)
2835{
2836 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2837 int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context,
2838 context_size);
2839
2840 if (rc != 0)
2841 return rc;
2842
2843 nic_data->rx_rss_context_exclusive = false;
2844 efx_set_default_rx_indir_table(efx, &efx->rss_context);
2845 return 0;
2846}
2847
2848static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2849 const u32 *rx_indir_table,
2850 const u8 *key)
2851{
2852 u32 old_rx_rss_context = efx->rss_context.context_id;
2853 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2854 int rc;
2855
2856 if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID ||
2857 !nic_data->rx_rss_context_exclusive) {
2858 rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context,
2859 NULL);
2860 if (rc == -EOPNOTSUPP)
2861 return rc;
2862 else if (rc != 0)
2863 goto fail1;
2864 }
2865
2866 rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id,
2867 rx_indir_table, key);
2868 if (rc != 0)
2869 goto fail2;
2870
2871 if (efx->rss_context.context_id != old_rx_rss_context &&
2872 old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2873 WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0);
2874 nic_data->rx_rss_context_exclusive = true;
2875 if (rx_indir_table != efx->rss_context.rx_indir_table)
2876 memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
2877 sizeof(efx->rss_context.rx_indir_table));
2878 if (key != efx->rss_context.rx_hash_key)
2879 memcpy(efx->rss_context.rx_hash_key, key,
2880 efx->type->rx_hash_key_size);
2881
2882 return 0;
2883
2884fail2:
2885 if (old_rx_rss_context != efx->rss_context.context_id) {
2886 WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0);
2887 efx->rss_context.context_id = old_rx_rss_context;
2888 }
2889fail1:
2890 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2891 return rc;
2892}
2893
2894static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx,
2895 struct efx_rss_context *ctx,
2896 const u32 *rx_indir_table,
2897 const u8 *key)
2898{
2899 int rc;
2900
2901 WARN_ON(!mutex_is_locked(&efx->rss_lock));
2902
2903 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
2904 rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL);
2905 if (rc)
2906 return rc;
2907 }
2908
2909 if (!rx_indir_table) /* Delete this context */
2910 return efx_ef10_free_rss_context(efx, ctx->context_id);
2911
2912 rc = efx_ef10_populate_rss_table(efx, ctx->context_id,
2913 rx_indir_table, key);
2914 if (rc)
2915 return rc;
2916
2917 memcpy(ctx->rx_indir_table, rx_indir_table,
2918 sizeof(efx->rss_context.rx_indir_table));
2919 memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size);
2920
2921 return 0;
2922}
2923
2924static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx,
2925 struct efx_rss_context *ctx)
2926{
2927 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2928 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2929 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2930 size_t outlen;
2931 int rc, i;
2932
2933 WARN_ON(!mutex_is_locked(&efx->rss_lock));
2934
2935 BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2936 MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2937
2938 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)
2939 return -ENOENT;
2940
2941 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2942 ctx->context_id);
2943 BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) !=
2944 MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2945 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2946 tablebuf, sizeof(tablebuf), &outlen);
2947 if (rc != 0)
2948 return rc;
2949
2950 if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2951 return -EIO;
2952
2953 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
2954 ctx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2955 RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2956
2957 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2958 ctx->context_id);
2959 BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) !=
2960 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2961 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2962 keybuf, sizeof(keybuf), &outlen);
2963 if (rc != 0)
2964 return rc;
2965
2966 if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2967 return -EIO;
2968
2969 for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i)
2970 ctx->rx_hash_key[i] = MCDI_PTR(
2971 keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2972
2973 return 0;
2974}
2975
2976static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2977{
2978 int rc;
2979
2980 mutex_lock(&efx->rss_lock);
2981 rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context);
2982 mutex_unlock(&efx->rss_lock);
2983 return rc;
2984}
2985
2986static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx)
2987{
2988 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2989 struct efx_rss_context *ctx;
2990 int rc;
2991
2992 WARN_ON(!mutex_is_locked(&efx->rss_lock));
2993
2994 if (!nic_data->must_restore_rss_contexts)
2995 return;
2996
2997 list_for_each_entry(ctx, &efx->rss_context.list, list) {
2998 /* previous NIC RSS context is gone */
2999 ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
3000 /* so try to allocate a new one */
3001 rc = efx_ef10_rx_push_rss_context_config(efx, ctx,
3002 ctx->rx_indir_table,
3003 ctx->rx_hash_key);
3004 if (rc)
3005 netif_warn(efx, probe, efx->net_dev,
3006 "failed to restore RSS context %u, rc=%d"
3007 "; RSS filters may fail to be applied\n",
3008 ctx->user_id, rc);
3009 }
3010 nic_data->must_restore_rss_contexts = false;
3011}
3012
3013static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
3014 const u32 *rx_indir_table,
3015 const u8 *key)
3016{
3017 int rc;
3018
3019 if (efx->rss_spread == 1)
3020 return 0;
3021
3022 if (!key)
3023 key = efx->rss_context.rx_hash_key;
3024
3025 rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
3026
3027 if (rc == -ENOBUFS && !user) {
3028 unsigned context_size;
3029 bool mismatch = false;
3030 size_t i;
3031
3032 for (i = 0;
3033 i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch;
3034 i++)
3035 mismatch = rx_indir_table[i] !=
3036 ethtool_rxfh_indir_default(i, efx->rss_spread);
3037
3038 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
3039 if (rc == 0) {
3040 if (context_size != efx->rss_spread)
3041 netif_warn(efx, probe, efx->net_dev,
3042 "Could not allocate an exclusive RSS"
3043 " context; allocated a shared one of"
3044 " different size."
3045 " Wanted %u, got %u.\n",
3046 efx->rss_spread, context_size);
3047 else if (mismatch)
3048 netif_warn(efx, probe, efx->net_dev,
3049 "Could not allocate an exclusive RSS"
3050 " context; allocated a shared one but"
3051 " could not apply custom"
3052 " indirection.\n");
3053 else
3054 netif_info(efx, probe, efx->net_dev,
3055 "Could not allocate an exclusive RSS"
3056 " context; allocated a shared one.\n");
3057 }
3058 }
3059 return rc;
3060}
3061
3062static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
3063 const u32 *rx_indir_table
3064 __attribute__ ((unused)),
3065 const u8 *key
3066 __attribute__ ((unused)))
3067{
3068 if (user)
3069 return -EOPNOTSUPP;
3070 if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID)
3071 return 0;
3072 return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3073}
3074
3075static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3076{
3077 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3078 (rx_queue->ptr_mask + 1) *
3079 sizeof(efx_qword_t),
3080 GFP_KERNEL);
3081}
3082
3083static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3084{
3085 MCDI_DECLARE_BUF(inbuf,
3086 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3087 EFX_BUF_SIZE));
3088 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3089 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3090 struct efx_nic *efx = rx_queue->efx;
3091 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3092 size_t inlen;
3093 dma_addr_t dma_addr;
3094 int rc;
3095 int i;
3096 BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3097
3098 rx_queue->scatter_n = 0;
3099 rx_queue->scatter_len = 0;
3100
3101 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3102 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3103 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3104 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3105 efx_rx_queue_index(rx_queue));
3106 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3107 INIT_RXQ_IN_FLAG_PREFIX, 1,
3108 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3109 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3110 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3111
3112 dma_addr = rx_queue->rxd.buf.dma_addr;
3113
3114 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3115 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3116
3117 for (i = 0; i < entries; ++i) {
3118 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3119 dma_addr += EFX_BUF_SIZE;
3120 }
3121
3122 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3123
3124 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3125 NULL, 0, NULL);
3126 if (rc)
3127 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3128 efx_rx_queue_index(rx_queue));
3129}
3130
3131static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3132{
3133 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3134 MCDI_DECLARE_BUF_ERR(outbuf);
3135 struct efx_nic *efx = rx_queue->efx;
3136 size_t outlen;
3137 int rc;
3138
3139 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3140 efx_rx_queue_index(rx_queue));
3141
3142 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3143 outbuf, sizeof(outbuf), &outlen);
3144
3145 if (rc && rc != -EALREADY)
3146 goto fail;
3147
3148 return;
3149
3150fail:
3151 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3152 outbuf, outlen, rc);
3153}
3154
3155static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3156{
3157 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3158}
3159
3160/* This creates an entry in the RX descriptor queue */
3161static inline void
3162efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3163{
3164 struct efx_rx_buffer *rx_buf;
3165 efx_qword_t *rxd;
3166
3167 rxd = efx_rx_desc(rx_queue, index);
3168 rx_buf = efx_rx_buffer(rx_queue, index);
3169 EFX_POPULATE_QWORD_2(*rxd,
3170 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3171 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3172}
3173
3174static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3175{
3176 struct efx_nic *efx = rx_queue->efx;
3177 unsigned int write_count;
3178 efx_dword_t reg;
3179
3180 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3181 write_count = rx_queue->added_count & ~7;
3182 if (rx_queue->notified_count == write_count)
3183 return;
3184
3185 do
3186 efx_ef10_build_rx_desc(
3187 rx_queue,
3188 rx_queue->notified_count & rx_queue->ptr_mask);
3189 while (++rx_queue->notified_count != write_count);
3190
3191 wmb();
3192 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3193 write_count & rx_queue->ptr_mask);
3194 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
3195 efx_rx_queue_index(rx_queue));
3196}
3197
3198static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3199
3200static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3201{
3202 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3203 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3204 efx_qword_t event;
3205
3206 EFX_POPULATE_QWORD_2(event,
3207 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3208 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3209
3210 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3211
3212 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3213 * already swapped the data to little-endian order.
3214 */
3215 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3216 sizeof(efx_qword_t));
3217
3218 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3219 inbuf, sizeof(inbuf), 0,
3220 efx_ef10_rx_defer_refill_complete, 0);
3221}
3222
3223static void
3224efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3225 int rc, efx_dword_t *outbuf,
3226 size_t outlen_actual)
3227{
3228 /* nothing to do */
3229}
3230
3231static int efx_ef10_ev_probe(struct efx_channel *channel)
3232{
3233 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3234 (channel->eventq_mask + 1) *
3235 sizeof(efx_qword_t),
3236 GFP_KERNEL);
3237}
3238
3239static void efx_ef10_ev_fini(struct efx_channel *channel)
3240{
3241 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3242 MCDI_DECLARE_BUF_ERR(outbuf);
3243 struct efx_nic *efx = channel->efx;
3244 size_t outlen;
3245 int rc;
3246
3247 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3248
3249 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3250 outbuf, sizeof(outbuf), &outlen);
3251
3252 if (rc && rc != -EALREADY)
3253 goto fail;
3254
3255 return;
3256
3257fail:
3258 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3259 outbuf, outlen, rc);
3260}
3261
3262static int efx_ef10_ev_init(struct efx_channel *channel)
3263{
3264 MCDI_DECLARE_BUF(inbuf,
3265 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3266 EFX_BUF_SIZE));
3267 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3268 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3269 struct efx_nic *efx = channel->efx;
3270 struct efx_ef10_nic_data *nic_data;
3271 size_t inlen, outlen;
3272 unsigned int enabled, implemented;
3273 dma_addr_t dma_addr;
3274 int rc;
3275 int i;
3276
3277 nic_data = efx->nic_data;
3278
3279 /* Fill event queue with all ones (i.e. empty events) */
3280 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3281
3282 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3283 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3284 /* INIT_EVQ expects index in vector table, not absolute */
3285 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3286 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3287 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3288 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3289 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3290 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3291 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3292 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3293
3294 if (nic_data->datapath_caps2 &
3295 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3296 /* Use the new generic approach to specifying event queue
3297 * configuration, requesting lower latency or higher throughput.
3298 * The options that actually get used appear in the output.
3299 */
3300 MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3301 INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3302 INIT_EVQ_V2_IN_FLAG_TYPE,
3303 MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3304 } else {
3305 bool cut_thru = !(nic_data->datapath_caps &
3306 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3307
3308 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3309 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3310 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3311 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3312 INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3313 }
3314
3315 dma_addr = channel->eventq.buf.dma_addr;
3316 for (i = 0; i < entries; ++i) {
3317 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3318 dma_addr += EFX_BUF_SIZE;
3319 }
3320
3321 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3322
3323 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3324 outbuf, sizeof(outbuf), &outlen);
3325
3326 if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3327 netif_dbg(efx, drv, efx->net_dev,
3328 "Channel %d using event queue flags %08x\n",
3329 channel->channel,
3330 MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3331
3332 /* IRQ return is ignored */
3333 if (channel->channel || rc)
3334 return rc;
3335
3336 /* Successfully created event queue on channel 0 */
3337 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3338 if (rc == -ENOSYS) {
3339 /* GET_WORKAROUNDS was implemented before this workaround,
3340 * thus it must be unavailable in this firmware.
3341 */
3342 nic_data->workaround_26807 = false;
3343 rc = 0;
3344 } else if (rc) {
3345 goto fail;
3346 } else {
3347 nic_data->workaround_26807 =
3348 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3349
3350 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3351 !nic_data->workaround_26807) {
3352 unsigned int flags;
3353
3354 rc = efx_mcdi_set_workaround(efx,
3355 MC_CMD_WORKAROUND_BUG26807,
3356 true, &flags);
3357
3358 if (!rc) {
3359 if (flags &
3360 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3361 netif_info(efx, drv, efx->net_dev,
3362 "other functions on NIC have been reset\n");
3363
3364 /* With MCFW v4.6.x and earlier, the
3365 * boot count will have incremented,
3366 * so re-read the warm_boot_count
3367 * value now to ensure this function
3368 * doesn't think it has changed next
3369 * time it checks.
3370 */
3371 rc = efx_ef10_get_warm_boot_count(efx);
3372 if (rc >= 0) {
3373 nic_data->warm_boot_count = rc;
3374 rc = 0;
3375 }
3376 }
3377 nic_data->workaround_26807 = true;
3378 } else if (rc == -EPERM) {
3379 rc = 0;
3380 }
3381 }
3382 }
3383
3384 if (!rc)
3385 return 0;
3386
3387fail:
3388 efx_ef10_ev_fini(channel);
3389 return rc;
3390}
3391
3392static void efx_ef10_ev_remove(struct efx_channel *channel)
3393{
3394 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3395}
3396
3397static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3398 unsigned int rx_queue_label)
3399{
3400 struct efx_nic *efx = rx_queue->efx;
3401
3402 netif_info(efx, hw, efx->net_dev,
3403 "rx event arrived on queue %d labeled as queue %u\n",
3404 efx_rx_queue_index(rx_queue), rx_queue_label);
3405
3406 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3407}
3408
3409static void
3410efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3411 unsigned int actual, unsigned int expected)
3412{
3413 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3414 struct efx_nic *efx = rx_queue->efx;
3415
3416 netif_info(efx, hw, efx->net_dev,
3417 "dropped %d events (index=%d expected=%d)\n",
3418 dropped, actual, expected);
3419
3420 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3421}
3422
3423/* partially received RX was aborted. clean up. */
3424static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3425{
3426 unsigned int rx_desc_ptr;
3427
3428 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3429 "scattered RX aborted (dropping %u buffers)\n",
3430 rx_queue->scatter_n);
3431
3432 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3433
3434 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3435 0, EFX_RX_PKT_DISCARD);
3436
3437 rx_queue->removed_count += rx_queue->scatter_n;
3438 rx_queue->scatter_n = 0;
3439 rx_queue->scatter_len = 0;
3440 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3441}
3442
3443static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3444 unsigned int n_packets,
3445 unsigned int rx_encap_hdr,
3446 unsigned int rx_l3_class,
3447 unsigned int rx_l4_class,
3448 const efx_qword_t *event)
3449{
3450 struct efx_nic *efx = channel->efx;
3451 bool handled = false;
3452
3453 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3454 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3455 if (!efx->loopback_selftest)
3456 channel->n_rx_eth_crc_err += n_packets;
3457 return EFX_RX_PKT_DISCARD;
3458 }
3459 handled = true;
3460 }
3461 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3462 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3463 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3464 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3465 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3466 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3467 netdev_WARN(efx->net_dev,
3468 "invalid class for RX_IPCKSUM_ERR: event="
3469 EFX_QWORD_FMT "\n",
3470 EFX_QWORD_VAL(*event));
3471 if (!efx->loopback_selftest)
3472 *(rx_encap_hdr ?
3473 &channel->n_rx_outer_ip_hdr_chksum_err :
3474 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3475 return 0;
3476 }
3477 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3478 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3479 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3480 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3481 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3482 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3483 netdev_WARN(efx->net_dev,
3484 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3485 EFX_QWORD_FMT "\n",
3486 EFX_QWORD_VAL(*event));
3487 if (!efx->loopback_selftest)
3488 *(rx_encap_hdr ?
3489 &channel->n_rx_outer_tcp_udp_chksum_err :
3490 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3491 return 0;
3492 }
3493 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3494 if (unlikely(!rx_encap_hdr))
3495 netdev_WARN(efx->net_dev,
3496 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3497 EFX_QWORD_FMT "\n",
3498 EFX_QWORD_VAL(*event));
3499 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3500 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3501 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3502 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3503 netdev_WARN(efx->net_dev,
3504 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3505 EFX_QWORD_FMT "\n",
3506 EFX_QWORD_VAL(*event));
3507 if (!efx->loopback_selftest)
3508 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3509 return 0;
3510 }
3511 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3512 if (unlikely(!rx_encap_hdr))
3513 netdev_WARN(efx->net_dev,
3514 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3515 EFX_QWORD_FMT "\n",
3516 EFX_QWORD_VAL(*event));
3517 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3518 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3519 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3520 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3521 netdev_WARN(efx->net_dev,
3522 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3523 EFX_QWORD_FMT "\n",
3524 EFX_QWORD_VAL(*event));
3525 if (!efx->loopback_selftest)
3526 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3527 return 0;
3528 }
3529
3530 WARN_ON(!handled); /* No error bits were recognised */
3531 return 0;
3532}
3533
3534static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3535 const efx_qword_t *event)
3536{
3537 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3538 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3539 unsigned int n_descs, n_packets, i;
3540 struct efx_nic *efx = channel->efx;
3541 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3542 struct efx_rx_queue *rx_queue;
3543 efx_qword_t errors;
3544 bool rx_cont;
3545 u16 flags = 0;
3546
3547 if (unlikely(READ_ONCE(efx->reset_pending)))
3548 return 0;
3549
3550 /* Basic packet information */
3551 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3552 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3553 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3554 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3555 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3556 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3557 rx_encap_hdr =
3558 nic_data->datapath_caps &
3559 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3560 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3561 ESE_EZ_ENCAP_HDR_NONE;
3562
3563 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3564 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3565 EFX_QWORD_FMT "\n",
3566 EFX_QWORD_VAL(*event));
3567
3568 rx_queue = efx_channel_get_rx_queue(channel);
3569
3570 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3571 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3572
3573 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3574 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3575
3576 if (n_descs != rx_queue->scatter_n + 1) {
3577 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3578
3579 /* detect rx abort */
3580 if (unlikely(n_descs == rx_queue->scatter_n)) {
3581 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3582 netdev_WARN(efx->net_dev,
3583 "invalid RX abort: scatter_n=%u event="
3584 EFX_QWORD_FMT "\n",
3585 rx_queue->scatter_n,
3586 EFX_QWORD_VAL(*event));
3587 efx_ef10_handle_rx_abort(rx_queue);
3588 return 0;
3589 }
3590
3591 /* Check that RX completion merging is valid, i.e.
3592 * the current firmware supports it and this is a
3593 * non-scattered packet.
3594 */
3595 if (!(nic_data->datapath_caps &
3596 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3597 rx_queue->scatter_n != 0 || rx_cont) {
3598 efx_ef10_handle_rx_bad_lbits(
3599 rx_queue, next_ptr_lbits,
3600 (rx_queue->removed_count +
3601 rx_queue->scatter_n + 1) &
3602 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3603 return 0;
3604 }
3605
3606 /* Merged completion for multiple non-scattered packets */
3607 rx_queue->scatter_n = 1;
3608 rx_queue->scatter_len = 0;
3609 n_packets = n_descs;
3610 ++channel->n_rx_merge_events;
3611 channel->n_rx_merge_packets += n_packets;
3612 flags |= EFX_RX_PKT_PREFIX_LEN;
3613 } else {
3614 ++rx_queue->scatter_n;
3615 rx_queue->scatter_len += rx_bytes;
3616 if (rx_cont)
3617 return 0;
3618 n_packets = 1;
3619 }
3620
3621 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3622 ESF_DZ_RX_IPCKSUM_ERR, 1,
3623 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3624 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3625 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3626 EFX_AND_QWORD(errors, *event, errors);
3627 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3628 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3629 rx_encap_hdr,
3630 rx_l3_class, rx_l4_class,
3631 event);
3632 } else {
3633 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3634 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3635
3636 switch (rx_encap_hdr) {
3637 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3638 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3639 if (tcpudp)
3640 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3641 break;
3642 case ESE_EZ_ENCAP_HDR_GRE:
3643 case ESE_EZ_ENCAP_HDR_NONE:
3644 if (tcpudp)
3645 flags |= EFX_RX_PKT_CSUMMED;
3646 break;
3647 default:
3648 netdev_WARN(efx->net_dev,
3649 "unknown encapsulation type: event="
3650 EFX_QWORD_FMT "\n",
3651 EFX_QWORD_VAL(*event));
3652 }
3653 }
3654
3655 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3656 flags |= EFX_RX_PKT_TCP;
3657
3658 channel->irq_mod_score += 2 * n_packets;
3659
3660 /* Handle received packet(s) */
3661 for (i = 0; i < n_packets; i++) {
3662 efx_rx_packet(rx_queue,
3663 rx_queue->removed_count & rx_queue->ptr_mask,
3664 rx_queue->scatter_n, rx_queue->scatter_len,
3665 flags);
3666 rx_queue->removed_count += rx_queue->scatter_n;
3667 }
3668
3669 rx_queue->scatter_n = 0;
3670 rx_queue->scatter_len = 0;
3671
3672 return n_packets;
3673}
3674
3675static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3676{
3677 u32 tstamp;
3678
3679 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3680 tstamp <<= 16;
3681 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3682
3683 return tstamp;
3684}
3685
3686static void
3687efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3688{
3689 struct efx_nic *efx = channel->efx;
3690 struct efx_tx_queue *tx_queue;
3691 unsigned int tx_ev_desc_ptr;
3692 unsigned int tx_ev_q_label;
3693 unsigned int tx_ev_type;
3694 u64 ts_part;
3695
3696 if (unlikely(READ_ONCE(efx->reset_pending)))
3697 return;
3698
3699 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3700 return;
3701
3702 /* Get the transmit queue */
3703 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3704 tx_queue = efx_channel_get_tx_queue(channel,
3705 tx_ev_q_label % EFX_TXQ_TYPES);
3706
3707 if (!tx_queue->timestamping) {
3708 /* Transmit completion */
3709 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3710 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3711 return;
3712 }
3713
3714 /* Transmit timestamps are only available for 8XXX series. They result
3715 * in three events per packet. These occur in order, and are:
3716 * - the normal completion event
3717 * - the low part of the timestamp
3718 * - the high part of the timestamp
3719 *
3720 * Each part of the timestamp is itself split across two 16 bit
3721 * fields in the event.
3722 */
3723 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3724
3725 switch (tx_ev_type) {
3726 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3727 /* In case of Queue flush or FLR, we might have received
3728 * the previous TX completion event but not the Timestamp
3729 * events.
3730 */
3731 if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3732 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3733
3734 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3735 ESF_DZ_TX_DESCR_INDX);
3736 tx_queue->completed_desc_ptr =
3737 tx_ev_desc_ptr & tx_queue->ptr_mask;
3738 break;
3739
3740 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3741 ts_part = efx_ef10_extract_event_ts(event);
3742 tx_queue->completed_timestamp_minor = ts_part;
3743 break;
3744
3745 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3746 ts_part = efx_ef10_extract_event_ts(event);
3747 tx_queue->completed_timestamp_major = ts_part;
3748
3749 efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3750 tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3751 break;
3752
3753 default:
3754 netif_err(efx, hw, efx->net_dev,
3755 "channel %d unknown tx event type %d (data "
3756 EFX_QWORD_FMT ")\n",
3757 channel->channel, tx_ev_type,
3758 EFX_QWORD_VAL(*event));
3759 break;
3760 }
3761}
3762
3763static void
3764efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3765{
3766 struct efx_nic *efx = channel->efx;
3767 int subcode;
3768
3769 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3770
3771 switch (subcode) {
3772 case ESE_DZ_DRV_TIMER_EV:
3773 case ESE_DZ_DRV_WAKE_UP_EV:
3774 break;
3775 case ESE_DZ_DRV_START_UP_EV:
3776 /* event queue init complete. ok. */
3777 break;
3778 default:
3779 netif_err(efx, hw, efx->net_dev,
3780 "channel %d unknown driver event type %d"
3781 " (data " EFX_QWORD_FMT ")\n",
3782 channel->channel, subcode,
3783 EFX_QWORD_VAL(*event));
3784
3785 }
3786}
3787
3788static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3789 efx_qword_t *event)
3790{
3791 struct efx_nic *efx = channel->efx;
3792 u32 subcode;
3793
3794 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3795
3796 switch (subcode) {
3797 case EFX_EF10_TEST:
3798 channel->event_test_cpu = raw_smp_processor_id();
3799 break;
3800 case EFX_EF10_REFILL:
3801 /* The queue must be empty, so we won't receive any rx
3802 * events, so efx_process_channel() won't refill the
3803 * queue. Refill it here
3804 */
3805 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3806 break;
3807 default:
3808 netif_err(efx, hw, efx->net_dev,
3809 "channel %d unknown driver event type %u"
3810 " (data " EFX_QWORD_FMT ")\n",
3811 channel->channel, (unsigned) subcode,
3812 EFX_QWORD_VAL(*event));
3813 }
3814}
3815
3816static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3817{
3818 struct efx_nic *efx = channel->efx;
3819 efx_qword_t event, *p_event;
3820 unsigned int read_ptr;
3821 int ev_code;
3822 int spent = 0;
3823
3824 if (quota <= 0)
3825 return spent;
3826
3827 read_ptr = channel->eventq_read_ptr;
3828
3829 for (;;) {
3830 p_event = efx_event(channel, read_ptr);
3831 event = *p_event;
3832
3833 if (!efx_event_present(&event))
3834 break;
3835
3836 EFX_SET_QWORD(*p_event);
3837
3838 ++read_ptr;
3839
3840 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3841
3842 netif_vdbg(efx, drv, efx->net_dev,
3843 "processing event on %d " EFX_QWORD_FMT "\n",
3844 channel->channel, EFX_QWORD_VAL(event));
3845
3846 switch (ev_code) {
3847 case ESE_DZ_EV_CODE_MCDI_EV:
3848 efx_mcdi_process_event(channel, &event);
3849 break;
3850 case ESE_DZ_EV_CODE_RX_EV:
3851 spent += efx_ef10_handle_rx_event(channel, &event);
3852 if (spent >= quota) {
3853 /* XXX can we split a merged event to
3854 * avoid going over-quota?
3855 */
3856 spent = quota;
3857 goto out;
3858 }
3859 break;
3860 case ESE_DZ_EV_CODE_TX_EV:
3861 efx_ef10_handle_tx_event(channel, &event);
3862 break;
3863 case ESE_DZ_EV_CODE_DRIVER_EV:
3864 efx_ef10_handle_driver_event(channel, &event);
3865 if (++spent == quota)
3866 goto out;
3867 break;
3868 case EFX_EF10_DRVGEN_EV:
3869 efx_ef10_handle_driver_generated_event(channel, &event);
3870 break;
3871 default:
3872 netif_err(efx, hw, efx->net_dev,
3873 "channel %d unknown event type %d"
3874 " (data " EFX_QWORD_FMT ")\n",
3875 channel->channel, ev_code,
3876 EFX_QWORD_VAL(event));
3877 }
3878 }
3879
3880out:
3881 channel->eventq_read_ptr = read_ptr;
3882 return spent;
3883}
3884
3885static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3886{
3887 struct efx_nic *efx = channel->efx;
3888 efx_dword_t rptr;
3889
3890 if (EFX_EF10_WORKAROUND_35388(efx)) {
3891 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3892 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3893 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3894 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3895
3896 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3897 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3898 ERF_DD_EVQ_IND_RPTR,
3899 (channel->eventq_read_ptr &
3900 channel->eventq_mask) >>
3901 ERF_DD_EVQ_IND_RPTR_WIDTH);
3902 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3903 channel->channel);
3904 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3905 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3906 ERF_DD_EVQ_IND_RPTR,
3907 channel->eventq_read_ptr &
3908 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3909 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3910 channel->channel);
3911 } else {
3912 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3913 channel->eventq_read_ptr &
3914 channel->eventq_mask);
3915 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3916 }
3917}
3918
3919static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3920{
3921 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3922 struct efx_nic *efx = channel->efx;
3923 efx_qword_t event;
3924 int rc;
3925
3926 EFX_POPULATE_QWORD_2(event,
3927 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3928 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3929
3930 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3931
3932 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3933 * already swapped the data to little-endian order.
3934 */
3935 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3936 sizeof(efx_qword_t));
3937
3938 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3939 NULL, 0, NULL);
3940 if (rc != 0)
3941 goto fail;
3942
3943 return;
3944
3945fail:
3946 WARN_ON(true);
3947 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3948}
3949
3950void efx_ef10_handle_drain_event(struct efx_nic *efx)
3951{
3952 if (atomic_dec_and_test(&efx->active_queues))
3953 wake_up(&efx->flush_wq);
3954
3955 WARN_ON(atomic_read(&efx->active_queues) < 0);
3956}
3957
3958static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3959{
3960 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3961 struct efx_channel *channel;
3962 struct efx_tx_queue *tx_queue;
3963 struct efx_rx_queue *rx_queue;
3964 int pending;
3965
3966 /* If the MC has just rebooted, the TX/RX queues will have already been
3967 * torn down, but efx->active_queues needs to be set to zero.
3968 */
3969 if (nic_data->must_realloc_vis) {
3970 atomic_set(&efx->active_queues, 0);
3971 return 0;
3972 }
3973
3974 /* Do not attempt to write to the NIC during EEH recovery */
3975 if (efx->state != STATE_RECOVERY) {
3976 efx_for_each_channel(channel, efx) {
3977 efx_for_each_channel_rx_queue(rx_queue, channel)
3978 efx_ef10_rx_fini(rx_queue);
3979 efx_for_each_channel_tx_queue(tx_queue, channel)
3980 efx_ef10_tx_fini(tx_queue);
3981 }
3982
3983 wait_event_timeout(efx->flush_wq,
3984 atomic_read(&efx->active_queues) == 0,
3985 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3986 pending = atomic_read(&efx->active_queues);
3987 if (pending) {
3988 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3989 pending);
3990 return -ETIMEDOUT;
3991 }
3992 }
3993
3994 return 0;
3995}
3996
3997static void efx_ef10_prepare_flr(struct efx_nic *efx)
3998{
3999 atomic_set(&efx->active_queues, 0);
4000}
4001
4002/* Decide whether a filter should be exclusive or else should allow
4003 * delivery to additional recipients. Currently we decide that
4004 * filters for specific local unicast MAC and IP addresses are
4005 * exclusive.
4006 */
4007static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
4008{
4009 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
4010 !is_multicast_ether_addr(spec->loc_mac))
4011 return true;
4012
4013 if ((spec->match_flags &
4014 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
4015 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
4016 if (spec->ether_type == htons(ETH_P_IP) &&
4017 !ipv4_is_multicast(spec->loc_host[0]))
4018 return true;
4019 if (spec->ether_type == htons(ETH_P_IPV6) &&
4020 ((const u8 *)spec->loc_host)[0] != 0xff)
4021 return true;
4022 }
4023
4024 return false;
4025}
4026
4027static struct efx_filter_spec *
4028efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
4029 unsigned int filter_idx)
4030{
4031 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
4032 ~EFX_EF10_FILTER_FLAGS);
4033}
4034
4035static unsigned int
4036efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
4037 unsigned int filter_idx)
4038{
4039 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4040}
4041
4042static void
4043efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4044 unsigned int filter_idx,
4045 const struct efx_filter_spec *spec,
4046 unsigned int flags)
4047{
4048 table->entry[filter_idx].spec = (unsigned long)spec | flags;
4049}
4050
4051static void
4052efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4053 const struct efx_filter_spec *spec,
4054 efx_dword_t *inbuf)
4055{
4056 enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4057 u32 match_fields = 0, uc_match, mc_match;
4058
4059 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4060 efx_ef10_filter_is_exclusive(spec) ?
4061 MC_CMD_FILTER_OP_IN_OP_INSERT :
4062 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4063
4064 /* Convert match flags and values. Unlike almost
4065 * everything else in MCDI, these fields are in
4066 * network byte order.
4067 */
4068#define COPY_VALUE(value, mcdi_field) \
4069 do { \
4070 match_fields |= \
4071 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
4072 mcdi_field ## _LBN; \
4073 BUILD_BUG_ON( \
4074 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4075 sizeof(value)); \
4076 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
4077 &value, sizeof(value)); \
4078 } while (0)
4079#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
4080 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
4081 COPY_VALUE(spec->gen_field, mcdi_field); \
4082 }
4083 /* Handle encap filters first. They will always be mismatch
4084 * (unknown UC or MC) filters
4085 */
4086 if (encap_type) {
4087 /* ether_type and outer_ip_proto need to be variables
4088 * because COPY_VALUE wants to memcpy them
4089 */
4090 __be16 ether_type =
4091 htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4092 ETH_P_IPV6 : ETH_P_IP);
4093 u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4094 u8 outer_ip_proto;
4095
4096 switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4097 case EFX_ENCAP_TYPE_VXLAN:
4098 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4099 /* fallthrough */
4100 case EFX_ENCAP_TYPE_GENEVE:
4101 COPY_VALUE(ether_type, ETHER_TYPE);
4102 outer_ip_proto = IPPROTO_UDP;
4103 COPY_VALUE(outer_ip_proto, IP_PROTO);
4104 /* We always need to set the type field, even
4105 * though we're not matching on the TNI.
4106 */
4107 MCDI_POPULATE_DWORD_1(inbuf,
4108 FILTER_OP_EXT_IN_VNI_OR_VSID,
4109 FILTER_OP_EXT_IN_VNI_TYPE,
4110 vni_type);
4111 break;
4112 case EFX_ENCAP_TYPE_NVGRE:
4113 COPY_VALUE(ether_type, ETHER_TYPE);
4114 outer_ip_proto = IPPROTO_GRE;
4115 COPY_VALUE(outer_ip_proto, IP_PROTO);
4116 break;
4117 default:
4118 WARN_ON(1);
4119 }
4120
4121 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4122 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4123 } else {
4124 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4125 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4126 }
4127
4128 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4129 match_fields |=
4130 is_multicast_ether_addr(spec->loc_mac) ?
4131 1 << mc_match :
4132 1 << uc_match;
4133 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4134 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4135 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4136 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4137 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4138 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4139 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4140 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4141 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4142 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4143#undef COPY_FIELD
4144#undef COPY_VALUE
4145 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4146 match_fields);
4147}
4148
4149static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4150 const struct efx_filter_spec *spec,
4151 efx_dword_t *inbuf, u64 handle,
4152 struct efx_rss_context *ctx,
4153 bool replacing)
4154{
4155 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4156 u32 flags = spec->flags;
4157
4158 memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4159
4160 /* If RSS filter, caller better have given us an RSS context */
4161 if (flags & EFX_FILTER_FLAG_RX_RSS) {
4162 /* We don't have the ability to return an error, so we'll just
4163 * log a warning and disable RSS for the filter.
4164 */
4165 if (WARN_ON_ONCE(!ctx))
4166 flags &= ~EFX_FILTER_FLAG_RX_RSS;
4167 else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID))
4168 flags &= ~EFX_FILTER_FLAG_RX_RSS;
4169 }
4170
4171 if (replacing) {
4172 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4173 MC_CMD_FILTER_OP_IN_OP_REPLACE);
4174 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4175 } else {
4176 efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4177 }
4178
4179 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4180 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4181 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4182 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4183 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4184 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4185 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4186 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4187 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4188 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4189 0 : spec->dmaq_id);
4190 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4191 (flags & EFX_FILTER_FLAG_RX_RSS) ?
4192 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4193 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4194 if (flags & EFX_FILTER_FLAG_RX_RSS)
4195 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id);
4196}
4197
4198static int efx_ef10_filter_push(struct efx_nic *efx,
4199 const struct efx_filter_spec *spec, u64 *handle,
4200 struct efx_rss_context *ctx, bool replacing)
4201{
4202 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4203 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4204 int rc;
4205
4206 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing);
4207 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4208 outbuf, sizeof(outbuf), NULL);
4209 if (rc == 0)
4210 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4211 if (rc == -ENOSPC)
4212 rc = -EBUSY; /* to match efx_farch_filter_insert() */
4213 return rc;
4214}
4215
4216static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4217{
4218 enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4219 unsigned int match_flags = spec->match_flags;
4220 unsigned int uc_match, mc_match;
4221 u32 mcdi_flags = 0;
4222
4223#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) { \
4224 unsigned int old_match_flags = match_flags; \
4225 match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \
4226 if (match_flags != old_match_flags) \
4227 mcdi_flags |= \
4228 (1 << ((encap) ? \
4229 MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4230 mcdi_field ## _LBN : \
4231 MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4232 mcdi_field ## _LBN)); \
4233 }
4234 /* inner or outer based on encap type */
4235 MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4236 MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4237 MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4238 MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4239 MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4240 MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4241 MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4242 MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4243 /* always outer */
4244 MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4245 MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4246#undef MAP_FILTER_TO_MCDI_FLAG
4247
4248 /* special handling for encap type, and mismatch */
4249 if (encap_type) {
4250 match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4251 mcdi_flags |=
4252 (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4253 mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4254
4255 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4256 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4257 } else {
4258 uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4259 mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4260 }
4261
4262 if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4263 match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4264 mcdi_flags |=
4265 is_multicast_ether_addr(spec->loc_mac) ?
4266 1 << mc_match :
4267 1 << uc_match;
4268 }
4269
4270 /* Did we map them all? */
4271 WARN_ON_ONCE(match_flags);
4272
4273 return mcdi_flags;
4274}
4275
4276static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4277 const struct efx_filter_spec *spec)
4278{
4279 u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4280 unsigned int match_pri;
4281
4282 for (match_pri = 0;
4283 match_pri < table->rx_match_count;
4284 match_pri++)
4285 if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4286 return match_pri;
4287
4288 return -EPROTONOSUPPORT;
4289}
4290
4291static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4292 struct efx_filter_spec *spec,
4293 bool replace_equal)
4294{
4295 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4296 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4297 struct efx_ef10_filter_table *table;
4298 struct efx_filter_spec *saved_spec;
4299 struct efx_rss_context *ctx = NULL;
4300 unsigned int match_pri, hash;
4301 unsigned int priv_flags;
4302 bool rss_locked = false;
4303 bool replacing = false;
4304 unsigned int depth, i;
4305 int ins_index = -1;
4306 DEFINE_WAIT(wait);
4307 bool is_mc_recip;
4308 s32 rc;
4309
4310 down_read(&efx->filter_sem);
4311 table = efx->filter_state;
4312 down_write(&table->lock);
4313
4314 /* For now, only support RX filters */
4315 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4316 EFX_FILTER_FLAG_RX) {
4317 rc = -EINVAL;
4318 goto out_unlock;
4319 }
4320
4321 rc = efx_ef10_filter_pri(table, spec);
4322 if (rc < 0)
4323 goto out_unlock;
4324 match_pri = rc;
4325
4326 hash = efx_filter_spec_hash(spec);
4327 is_mc_recip = efx_filter_is_mc_recipient(spec);
4328 if (is_mc_recip)
4329 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4330
4331 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
4332 mutex_lock(&efx->rss_lock);
4333 rss_locked = true;
4334 if (spec->rss_context)
4335 ctx = efx_find_rss_context_entry(efx, spec->rss_context);
4336 else
4337 ctx = &efx->rss_context;
4338 if (!ctx) {
4339 rc = -ENOENT;
4340 goto out_unlock;
4341 }
4342 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
4343 rc = -EOPNOTSUPP;
4344 goto out_unlock;
4345 }
4346 }
4347
4348 /* Find any existing filters with the same match tuple or
4349 * else a free slot to insert at.
4350 */
4351 for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4352 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4353 saved_spec = efx_ef10_filter_entry_spec(table, i);
4354
4355 if (!saved_spec) {
4356 if (ins_index < 0)
4357 ins_index = i;
4358 } else if (efx_filter_spec_equal(spec, saved_spec)) {
4359 if (spec->priority < saved_spec->priority &&
4360 spec->priority != EFX_FILTER_PRI_AUTO) {
4361 rc = -EPERM;
4362 goto out_unlock;
4363 }
4364 if (!is_mc_recip) {
4365 /* This is the only one */
4366 if (spec->priority ==
4367 saved_spec->priority &&
4368 !replace_equal) {
4369 rc = -EEXIST;
4370 goto out_unlock;
4371 }
4372 ins_index = i;
4373 break;
4374 } else if (spec->priority >
4375 saved_spec->priority ||
4376 (spec->priority ==
4377 saved_spec->priority &&
4378 replace_equal)) {
4379 if (ins_index < 0)
4380 ins_index = i;
4381 else
4382 __set_bit(depth, mc_rem_map);
4383 }
4384 }
4385 }
4386
4387 /* Once we reach the maximum search depth, use the first suitable
4388 * slot, or return -EBUSY if there was none
4389 */
4390 if (ins_index < 0) {
4391 rc = -EBUSY;
4392 goto out_unlock;
4393 }
4394
4395 /* Create a software table entry if necessary. */
4396 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4397 if (saved_spec) {
4398 if (spec->priority == EFX_FILTER_PRI_AUTO &&
4399 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4400 /* Just make sure it won't be removed */
4401 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4402 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4403 table->entry[ins_index].spec &=
4404 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4405 rc = ins_index;
4406 goto out_unlock;
4407 }
4408 replacing = true;
4409 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4410 } else {
4411 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4412 if (!saved_spec) {
4413 rc = -ENOMEM;
4414 goto out_unlock;
4415 }
4416 *saved_spec = *spec;
4417 priv_flags = 0;
4418 }
4419 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4420
4421 /* Actually insert the filter on the HW */
4422 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4423 ctx, replacing);
4424
4425 if (rc == -EINVAL && nic_data->must_realloc_vis)
4426 /* The MC rebooted under us, causing it to reject our filter
4427 * insertion as pointing to an invalid VI (spec->dmaq_id).
4428 */
4429 rc = -EAGAIN;
4430
4431 /* Finalise the software table entry */
4432 if (rc == 0) {
4433 if (replacing) {
4434 /* Update the fields that may differ */
4435 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4436 saved_spec->flags |=
4437 EFX_FILTER_FLAG_RX_OVER_AUTO;
4438 saved_spec->priority = spec->priority;
4439 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4440 saved_spec->flags |= spec->flags;
4441 saved_spec->rss_context = spec->rss_context;
4442 saved_spec->dmaq_id = spec->dmaq_id;
4443 }
4444 } else if (!replacing) {
4445 kfree(saved_spec);
4446 saved_spec = NULL;
4447 } else {
4448 /* We failed to replace, so the old filter is still present.
4449 * Roll back the software table to reflect this. In fact the
4450 * efx_ef10_filter_set_entry() call below will do the right
4451 * thing, so nothing extra is needed here.
4452 */
4453 }
4454 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4455
4456 /* Remove and finalise entries for lower-priority multicast
4457 * recipients
4458 */
4459 if (is_mc_recip) {
4460 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4461 unsigned int depth, i;
4462
4463 memset(inbuf, 0, sizeof(inbuf));
4464
4465 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4466 if (!test_bit(depth, mc_rem_map))
4467 continue;
4468
4469 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4470 saved_spec = efx_ef10_filter_entry_spec(table, i);
4471 priv_flags = efx_ef10_filter_entry_flags(table, i);
4472
4473 if (rc == 0) {
4474 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4475 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4476 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4477 table->entry[i].handle);
4478 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4479 inbuf, sizeof(inbuf),
4480 NULL, 0, NULL);
4481 }
4482
4483 if (rc == 0) {
4484 kfree(saved_spec);
4485 saved_spec = NULL;
4486 priv_flags = 0;
4487 }
4488 efx_ef10_filter_set_entry(table, i, saved_spec,
4489 priv_flags);
4490 }
4491 }
4492
4493 /* If successful, return the inserted filter ID */
4494 if (rc == 0)
4495 rc = efx_ef10_make_filter_id(match_pri, ins_index);
4496
4497out_unlock:
4498 if (rss_locked)
4499 mutex_unlock(&efx->rss_lock);
4500 up_write(&table->lock);
4501 up_read(&efx->filter_sem);
4502 return rc;
4503}
4504
4505static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4506{
4507 /* no need to do anything here on EF10 */
4508}
4509
4510/* Remove a filter.
4511 * If !by_index, remove by ID
4512 * If by_index, remove by index
4513 * Filter ID may come from userland and must be range-checked.
4514 * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4515 * for write.
4516 */
4517static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4518 unsigned int priority_mask,
4519 u32 filter_id, bool by_index)
4520{
4521 unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4522 struct efx_ef10_filter_table *table = efx->filter_state;
4523 MCDI_DECLARE_BUF(inbuf,
4524 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4525 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4526 struct efx_filter_spec *spec;
4527 DEFINE_WAIT(wait);
4528 int rc;
4529
4530 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4531 if (!spec ||
4532 (!by_index &&
4533 efx_ef10_filter_pri(table, spec) !=
4534 efx_ef10_filter_get_unsafe_pri(filter_id)))
4535 return -ENOENT;
4536
4537 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4538 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4539 /* Just remove flags */
4540 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4541 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4542 return 0;
4543 }
4544
4545 if (!(priority_mask & (1U << spec->priority)))
4546 return -ENOENT;
4547
4548 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4549 /* Reset to an automatic filter */
4550
4551 struct efx_filter_spec new_spec = *spec;
4552
4553 new_spec.priority = EFX_FILTER_PRI_AUTO;
4554 new_spec.flags = (EFX_FILTER_FLAG_RX |
4555 (efx_rss_active(&efx->rss_context) ?
4556 EFX_FILTER_FLAG_RX_RSS : 0));
4557 new_spec.dmaq_id = 0;
4558 new_spec.rss_context = 0;
4559 rc = efx_ef10_filter_push(efx, &new_spec,
4560 &table->entry[filter_idx].handle,
4561 &efx->rss_context,
4562 true);
4563
4564 if (rc == 0)
4565 *spec = new_spec;
4566 } else {
4567 /* Really remove the filter */
4568
4569 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4570 efx_ef10_filter_is_exclusive(spec) ?
4571 MC_CMD_FILTER_OP_IN_OP_REMOVE :
4572 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4573 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4574 table->entry[filter_idx].handle);
4575 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4576 inbuf, sizeof(inbuf), NULL, 0, NULL);
4577
4578 if ((rc == 0) || (rc == -ENOENT)) {
4579 /* Filter removed OK or didn't actually exist */
4580 kfree(spec);
4581 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4582 } else {
4583 efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4584 MC_CMD_FILTER_OP_EXT_IN_LEN,
4585 NULL, 0, rc);
4586 }
4587 }
4588
4589 return rc;
4590}
4591
4592static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4593 enum efx_filter_priority priority,
4594 u32 filter_id)
4595{
4596 struct efx_ef10_filter_table *table;
4597 int rc;
4598
4599 down_read(&efx->filter_sem);
4600 table = efx->filter_state;
4601 down_write(&table->lock);
4602 rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4603 false);
4604 up_write(&table->lock);
4605 up_read(&efx->filter_sem);
4606 return rc;
4607}
4608
4609/* Caller must hold efx->filter_sem for read */
4610static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4611 enum efx_filter_priority priority,
4612 u32 filter_id)
4613{
4614 struct efx_ef10_filter_table *table = efx->filter_state;
4615
4616 if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4617 return;
4618
4619 down_write(&table->lock);
4620 efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4621 true);
4622 up_write(&table->lock);
4623}
4624
4625static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4626 enum efx_filter_priority priority,
4627 u32 filter_id, struct efx_filter_spec *spec)
4628{
4629 unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4630 const struct efx_filter_spec *saved_spec;
4631 struct efx_ef10_filter_table *table;
4632 int rc;
4633
4634 down_read(&efx->filter_sem);
4635 table = efx->filter_state;
4636 down_read(&table->lock);
4637 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4638 if (saved_spec && saved_spec->priority == priority &&
4639 efx_ef10_filter_pri(table, saved_spec) ==
4640 efx_ef10_filter_get_unsafe_pri(filter_id)) {
4641 *spec = *saved_spec;
4642 rc = 0;
4643 } else {
4644 rc = -ENOENT;
4645 }
4646 up_read(&table->lock);
4647 up_read(&efx->filter_sem);
4648 return rc;
4649}
4650
4651static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4652 enum efx_filter_priority priority)
4653{
4654 struct efx_ef10_filter_table *table;
4655 unsigned int priority_mask;
4656 unsigned int i;
4657 int rc;
4658
4659 priority_mask = (((1U << (priority + 1)) - 1) &
4660 ~(1U << EFX_FILTER_PRI_AUTO));
4661
4662 down_read(&efx->filter_sem);
4663 table = efx->filter_state;
4664 down_write(&table->lock);
4665 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4666 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4667 i, true);
4668 if (rc && rc != -ENOENT)
4669 break;
4670 rc = 0;
4671 }
4672
4673 up_write(&table->lock);
4674 up_read(&efx->filter_sem);
4675 return rc;
4676}
4677
4678static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4679 enum efx_filter_priority priority)
4680{
4681 struct efx_ef10_filter_table *table;
4682 unsigned int filter_idx;
4683 s32 count = 0;
4684
4685 down_read(&efx->filter_sem);
4686 table = efx->filter_state;
4687 down_read(&table->lock);
4688 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4689 if (table->entry[filter_idx].spec &&
4690 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4691 priority)
4692 ++count;
4693 }
4694 up_read(&table->lock);
4695 up_read(&efx->filter_sem);
4696 return count;
4697}
4698
4699static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4700{
4701 struct efx_ef10_filter_table *table = efx->filter_state;
4702
4703 return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4704}
4705
4706static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4707 enum efx_filter_priority priority,
4708 u32 *buf, u32 size)
4709{
4710 struct efx_ef10_filter_table *table;
4711 struct efx_filter_spec *spec;
4712 unsigned int filter_idx;
4713 s32 count = 0;
4714
4715 down_read(&efx->filter_sem);
4716 table = efx->filter_state;
4717 down_read(&table->lock);
4718
4719 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4720 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4721 if (spec && spec->priority == priority) {
4722 if (count == size) {
4723 count = -EMSGSIZE;
4724 break;
4725 }
4726 buf[count++] =
4727 efx_ef10_make_filter_id(
4728 efx_ef10_filter_pri(table, spec),
4729 filter_idx);
4730 }
4731 }
4732 up_read(&table->lock);
4733 up_read(&efx->filter_sem);
4734 return count;
4735}
4736
4737#ifdef CONFIG_RFS_ACCEL
4738
4739static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4740 unsigned int filter_idx)
4741{
4742 struct efx_filter_spec *spec, saved_spec;
4743 struct efx_ef10_filter_table *table;
4744 struct efx_arfs_rule *rule = NULL;
4745 bool ret = true, force = false;
4746 u16 arfs_id;
4747
4748 down_read(&efx->filter_sem);
4749 table = efx->filter_state;
4750 down_write(&table->lock);
4751 spec = efx_ef10_filter_entry_spec(table, filter_idx);
4752
4753 if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
4754 goto out_unlock;
4755
4756 spin_lock_bh(&efx->rps_hash_lock);
4757 if (!efx->rps_hash_table) {
4758 /* In the absence of the table, we always return 0 to ARFS. */
4759 arfs_id = 0;
4760 } else {
4761 rule = efx_rps_hash_find(efx, spec);
4762 if (!rule)
4763 /* ARFS table doesn't know of this filter, so remove it */
4764 goto expire;
4765 arfs_id = rule->arfs_id;
4766 ret = efx_rps_check_rule(rule, filter_idx, &force);
4767 if (force)
4768 goto expire;
4769 if (!ret) {
4770 spin_unlock_bh(&efx->rps_hash_lock);
4771 goto out_unlock;
4772 }
4773 }
4774 if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
4775 ret = false;
4776 else if (rule)
4777 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
4778expire:
4779 saved_spec = *spec; /* remove operation will kfree spec */
4780 spin_unlock_bh(&efx->rps_hash_lock);
4781 /* At this point (since we dropped the lock), another thread might queue
4782 * up a fresh insertion request (but the actual insertion will be held
4783 * up by our possession of the filter table lock). In that case, it
4784 * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4785 * the rule is not removed by efx_rps_hash_del() below.
4786 */
4787 if (ret)
4788 ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
4789 filter_idx, true) == 0;
4790 /* While we can't safely dereference rule (we dropped the lock), we can
4791 * still test it for NULL.
4792 */
4793 if (ret && rule) {
4794 /* Expiring, so remove entry from ARFS table */
4795 spin_lock_bh(&efx->rps_hash_lock);
4796 efx_rps_hash_del(efx, &saved_spec);
4797 spin_unlock_bh(&efx->rps_hash_lock);
4798 }
4799out_unlock:
4800 up_write(&table->lock);
4801 up_read(&efx->filter_sem);
4802 return ret;
4803}
4804
4805#endif /* CONFIG_RFS_ACCEL */
4806
4807static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4808{
4809 int match_flags = 0;
4810
4811#define MAP_FLAG(gen_flag, mcdi_field) do { \
4812 u32 old_mcdi_flags = mcdi_flags; \
4813 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ## \
4814 mcdi_field ## _LBN); \
4815 if (mcdi_flags != old_mcdi_flags) \
4816 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
4817 } while (0)
4818
4819 if (encap) {
4820 /* encap filters must specify encap type */
4821 match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4822 /* and imply ethertype and ip proto */
4823 mcdi_flags &=
4824 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4825 mcdi_flags &=
4826 ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4827 /* VLAN tags refer to the outer packet */
4828 MAP_FLAG(INNER_VID, INNER_VLAN);
4829 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4830 /* everything else refers to the inner packet */
4831 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4832 MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4833 MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4834 MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4835 MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4836 MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4837 MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4838 MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4839 MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4840 MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4841 } else {
4842 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4843 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4844 MAP_FLAG(REM_HOST, SRC_IP);
4845 MAP_FLAG(LOC_HOST, DST_IP);
4846 MAP_FLAG(REM_MAC, SRC_MAC);
4847 MAP_FLAG(REM_PORT, SRC_PORT);
4848 MAP_FLAG(LOC_MAC, DST_MAC);
4849 MAP_FLAG(LOC_PORT, DST_PORT);
4850 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4851 MAP_FLAG(INNER_VID, INNER_VLAN);
4852 MAP_FLAG(OUTER_VID, OUTER_VLAN);
4853 MAP_FLAG(IP_PROTO, IP_PROTO);
4854 }
4855#undef MAP_FLAG
4856
4857 /* Did we map them all? */
4858 if (mcdi_flags)
4859 return -EINVAL;
4860
4861 return match_flags;
4862}
4863
4864static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4865{
4866 struct efx_ef10_filter_table *table = efx->filter_state;
4867 struct efx_ef10_filter_vlan *vlan, *next_vlan;
4868
4869 /* See comment in efx_ef10_filter_table_remove() */
4870 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4871 return;
4872
4873 if (!table)
4874 return;
4875
4876 list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4877 efx_ef10_filter_del_vlan_internal(efx, vlan);
4878}
4879
4880static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4881 bool encap,
4882 enum efx_filter_match_flags match_flags)
4883{
4884 unsigned int match_pri;
4885 int mf;
4886
4887 for (match_pri = 0;
4888 match_pri < table->rx_match_count;
4889 match_pri++) {
4890 mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4891 table->rx_match_mcdi_flags[match_pri]);
4892 if (mf == match_flags)
4893 return true;
4894 }
4895
4896 return false;
4897}
4898
4899static int
4900efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4901 struct efx_ef10_filter_table *table,
4902 bool encap)
4903{
4904 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4905 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4906 unsigned int pd_match_pri, pd_match_count;
4907 size_t outlen;
4908 int rc;
4909
4910 /* Find out which RX filter types are supported, and their priorities */
4911 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4912 encap ?
4913 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4914 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4915 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4916 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4917 &outlen);
4918 if (rc)
4919 return rc;
4920
4921 pd_match_count = MCDI_VAR_ARRAY_LEN(
4922 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4923
4924 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4925 u32 mcdi_flags =
4926 MCDI_ARRAY_DWORD(
4927 outbuf,
4928 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4929 pd_match_pri);
4930 rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4931 if (rc < 0) {
4932 netif_dbg(efx, probe, efx->net_dev,
4933 "%s: fw flags %#x pri %u not supported in driver\n",
4934 __func__, mcdi_flags, pd_match_pri);
4935 } else {
4936 netif_dbg(efx, probe, efx->net_dev,
4937 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4938 __func__, mcdi_flags, pd_match_pri,
4939 rc, table->rx_match_count);
4940 table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4941 table->rx_match_count++;
4942 }
4943 }
4944
4945 return 0;
4946}
4947
4948static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4949{
4950 struct efx_ef10_nic_data *nic_data = efx->nic_data;
4951 struct net_device *net_dev = efx->net_dev;
4952 struct efx_ef10_filter_table *table;
4953 struct efx_ef10_vlan *vlan;
4954 int rc;
4955
4956 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4957 return -EINVAL;
4958
4959 if (efx->filter_state) /* already probed */
4960 return 0;
4961
4962 table = kzalloc(sizeof(*table), GFP_KERNEL);
4963 if (!table)
4964 return -ENOMEM;
4965
4966 table->rx_match_count = 0;
4967 rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4968 if (rc)
4969 goto fail;
4970 if (nic_data->datapath_caps &
4971 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4972 rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4973 if (rc)
4974 goto fail;
4975 if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4976 !(efx_ef10_filter_match_supported(table, false,
4977 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4978 efx_ef10_filter_match_supported(table, false,
4979 (EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4980 netif_info(efx, probe, net_dev,
4981 "VLAN filters are not supported in this firmware variant\n");
4982 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4983 efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4984 net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4985 }
4986
4987 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4988 if (!table->entry) {
4989 rc = -ENOMEM;
4990 goto fail;
4991 }
4992
4993 table->mc_promisc_last = false;
4994 table->vlan_filter =
4995 !!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4996 INIT_LIST_HEAD(&table->vlan_list);
4997 init_rwsem(&table->lock);
4998
4999 efx->filter_state = table;
5000
5001 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5002 rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5003 if (rc)
5004 goto fail_add_vlan;
5005 }
5006
5007 return 0;
5008
5009fail_add_vlan:
5010 efx_ef10_filter_cleanup_vlans(efx);
5011 efx->filter_state = NULL;
5012fail:
5013 kfree(table);
5014 return rc;
5015}
5016
5017/* Caller must hold efx->filter_sem for read if race against
5018 * efx_ef10_filter_table_remove() is possible
5019 */
5020static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5021{
5022 struct efx_ef10_filter_table *table = efx->filter_state;
5023 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5024 unsigned int invalid_filters = 0, failed = 0;
5025 struct efx_ef10_filter_vlan *vlan;
5026 struct efx_filter_spec *spec;
5027 struct efx_rss_context *ctx;
5028 unsigned int filter_idx;
5029 u32 mcdi_flags;
5030 int match_pri;
5031 int rc, i;
5032
5033 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5034
5035 if (!nic_data->must_restore_filters)
5036 return;
5037
5038 if (!table)
5039 return;
5040
5041 down_write(&table->lock);
5042 mutex_lock(&efx->rss_lock);
5043
5044 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5045 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5046 if (!spec)
5047 continue;
5048
5049 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5050 match_pri = 0;
5051 while (match_pri < table->rx_match_count &&
5052 table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5053 ++match_pri;
5054 if (match_pri >= table->rx_match_count) {
5055 invalid_filters++;
5056 goto not_restored;
5057 }
5058 if (spec->rss_context)
5059 ctx = efx_find_rss_context_entry(efx, spec->rss_context);
5060 else
5061 ctx = &efx->rss_context;
5062 if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
5063 if (!ctx) {
5064 netif_warn(efx, drv, efx->net_dev,
5065 "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5066 spec->rss_context);
5067 invalid_filters++;
5068 goto not_restored;
5069 }
5070 if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
5071 netif_warn(efx, drv, efx->net_dev,
5072 "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5073 spec->rss_context);
5074 invalid_filters++;
5075 goto not_restored;
5076 }
5077 }
5078
5079 rc = efx_ef10_filter_push(efx, spec,
5080 &table->entry[filter_idx].handle,
5081 ctx, false);
5082 if (rc)
5083 failed++;
5084
5085 if (rc) {
5086not_restored:
5087 list_for_each_entry(vlan, &table->vlan_list, list)
5088 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5089 if (vlan->default_filters[i] == filter_idx)
5090 vlan->default_filters[i] =
5091 EFX_EF10_FILTER_ID_INVALID;
5092
5093 kfree(spec);
5094 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5095 }
5096 }
5097
5098 mutex_unlock(&efx->rss_lock);
5099 up_write(&table->lock);
5100
5101 /* This can happen validly if the MC's capabilities have changed, so
5102 * is not an error.
5103 */
5104 if (invalid_filters)
5105 netif_dbg(efx, drv, efx->net_dev,
5106 "Did not restore %u filters that are now unsupported.\n",
5107 invalid_filters);
5108
5109 if (failed)
5110 netif_err(efx, hw, efx->net_dev,
5111 "unable to restore %u filters\n", failed);
5112 else
5113 nic_data->must_restore_filters = false;
5114}
5115
5116static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5117{
5118 struct efx_ef10_filter_table *table = efx->filter_state;
5119 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5120 struct efx_filter_spec *spec;
5121 unsigned int filter_idx;
5122 int rc;
5123
5124 efx_ef10_filter_cleanup_vlans(efx);
5125 efx->filter_state = NULL;
5126 /* If we were called without locking, then it's not safe to free
5127 * the table as others might be using it. So we just WARN, leak
5128 * the memory, and potentially get an inconsistent filter table
5129 * state.
5130 * This should never actually happen.
5131 */
5132 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5133 return;
5134
5135 if (!table)
5136 return;
5137
5138 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5139 spec = efx_ef10_filter_entry_spec(table, filter_idx);
5140 if (!spec)
5141 continue;
5142
5143 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5144 efx_ef10_filter_is_exclusive(spec) ?
5145 MC_CMD_FILTER_OP_IN_OP_REMOVE :
5146 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5147 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5148 table->entry[filter_idx].handle);
5149 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5150 sizeof(inbuf), NULL, 0, NULL);
5151 if (rc)
5152 netif_info(efx, drv, efx->net_dev,
5153 "%s: filter %04x remove failed\n",
5154 __func__, filter_idx);
5155 kfree(spec);
5156 }
5157
5158 vfree(table->entry);
5159 kfree(table);
5160}
5161
5162static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5163{
5164 struct efx_ef10_filter_table *table = efx->filter_state;
5165 unsigned int filter_idx;
5166
5167 efx_rwsem_assert_write_locked(&table->lock);
5168
5169 if (*id != EFX_EF10_FILTER_ID_INVALID) {
5170 filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5171 if (!table->entry[filter_idx].spec)
5172 netif_dbg(efx, drv, efx->net_dev,
5173 "marked null spec old %04x:%04x\n", *id,
5174 filter_idx);
5175 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5176 *id = EFX_EF10_FILTER_ID_INVALID;
5177 }
5178}
5179
5180/* Mark old per-VLAN filters that may need to be removed */
5181static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5182 struct efx_ef10_filter_vlan *vlan)
5183{
5184 struct efx_ef10_filter_table *table = efx->filter_state;
5185 unsigned int i;
5186
5187 for (i = 0; i < table->dev_uc_count; i++)
5188 efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5189 for (i = 0; i < table->dev_mc_count; i++)
5190 efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5191 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5192 efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5193}
5194
5195/* Mark old filters that may need to be removed.
5196 * Caller must hold efx->filter_sem for read if race against
5197 * efx_ef10_filter_table_remove() is possible
5198 */
5199static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5200{
5201 struct efx_ef10_filter_table *table = efx->filter_state;
5202 struct efx_ef10_filter_vlan *vlan;
5203
5204 down_write(&table->lock);
5205 list_for_each_entry(vlan, &table->vlan_list, list)
5206 _efx_ef10_filter_vlan_mark_old(efx, vlan);
5207 up_write(&table->lock);
5208}
5209
5210static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5211{
5212 struct efx_ef10_filter_table *table = efx->filter_state;
5213 struct net_device *net_dev = efx->net_dev;
5214 struct netdev_hw_addr *uc;
5215 unsigned int i;
5216
5217 table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5218 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5219 i = 1;
5220 netdev_for_each_uc_addr(uc, net_dev) {
5221 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5222 table->uc_promisc = true;
5223 break;
5224 }
5225 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5226 i++;
5227 }
5228
5229 table->dev_uc_count = i;
5230}
5231
5232static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5233{
5234 struct efx_ef10_filter_table *table = efx->filter_state;
5235 struct net_device *net_dev = efx->net_dev;
5236 struct netdev_hw_addr *mc;
5237 unsigned int i;
5238
5239 table->mc_overflow = false;
5240 table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5241
5242 i = 0;
5243 netdev_for_each_mc_addr(mc, net_dev) {
5244 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5245 table->mc_promisc = true;
5246 table->mc_overflow = true;
5247 break;
5248 }
5249 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5250 i++;
5251 }
5252
5253 table->dev_mc_count = i;
5254}
5255
5256static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5257 struct efx_ef10_filter_vlan *vlan,
5258 bool multicast, bool rollback)
5259{
5260 struct efx_ef10_filter_table *table = efx->filter_state;
5261 struct efx_ef10_dev_addr *addr_list;
5262 enum efx_filter_flags filter_flags;
5263 struct efx_filter_spec spec;
5264 u8 baddr[ETH_ALEN];
5265 unsigned int i, j;
5266 int addr_count;
5267 u16 *ids;
5268 int rc;
5269
5270 if (multicast) {
5271 addr_list = table->dev_mc_list;
5272 addr_count = table->dev_mc_count;
5273 ids = vlan->mc;
5274 } else {
5275 addr_list = table->dev_uc_list;
5276 addr_count = table->dev_uc_count;
5277 ids = vlan->uc;
5278 }
5279
5280 filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5281
5282 /* Insert/renew filters */
5283 for (i = 0; i < addr_count; i++) {
5284 EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5285 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5286 efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5287 rc = efx_ef10_filter_insert(efx, &spec, true);
5288 if (rc < 0) {
5289 if (rollback) {
5290 netif_info(efx, drv, efx->net_dev,
5291 "efx_ef10_filter_insert failed rc=%d\n",
5292 rc);
5293 /* Fall back to promiscuous */
5294 for (j = 0; j < i; j++) {
5295 efx_ef10_filter_remove_unsafe(
5296 efx, EFX_FILTER_PRI_AUTO,
5297 ids[j]);
5298 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5299 }
5300 return rc;
5301 } else {
5302 /* keep invalid ID, and carry on */
5303 }
5304 } else {
5305 ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5306 }
5307 }
5308
5309 if (multicast && rollback) {
5310 /* Also need an Ethernet broadcast filter */
5311 EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5312 EFX_EF10_FILTER_ID_INVALID);
5313 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5314 eth_broadcast_addr(baddr);
5315 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5316 rc = efx_ef10_filter_insert(efx, &spec, true);
5317 if (rc < 0) {
5318 netif_warn(efx, drv, efx->net_dev,
5319 "Broadcast filter insert failed rc=%d\n", rc);
5320 /* Fall back to promiscuous */
5321 for (j = 0; j < i; j++) {
5322 efx_ef10_filter_remove_unsafe(
5323 efx, EFX_FILTER_PRI_AUTO,
5324 ids[j]);
5325 ids[j] = EFX_EF10_FILTER_ID_INVALID;
5326 }
5327 return rc;
5328 } else {
5329 vlan->default_filters[EFX_EF10_BCAST] =
5330 efx_ef10_filter_get_unsafe_id(rc);
5331 }
5332 }
5333
5334 return 0;
5335}
5336
5337static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5338 struct efx_ef10_filter_vlan *vlan,
5339 enum efx_encap_type encap_type,
5340 bool multicast, bool rollback)
5341{
5342 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5343 enum efx_filter_flags filter_flags;
5344 struct efx_filter_spec spec;
5345 u8 baddr[ETH_ALEN];
5346 int rc;
5347 u16 *id;
5348
5349 filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5350
5351 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5352
5353 if (multicast)
5354 efx_filter_set_mc_def(&spec);
5355 else
5356 efx_filter_set_uc_def(&spec);
5357
5358 if (encap_type) {
5359 if (nic_data->datapath_caps &
5360 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5361 efx_filter_set_encap_type(&spec, encap_type);
5362 else
5363 /* don't insert encap filters on non-supporting
5364 * platforms. ID will be left as INVALID.
5365 */
5366 return 0;
5367 }
5368
5369 if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5370 efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5371
5372 rc = efx_ef10_filter_insert(efx, &spec, true);
5373 if (rc < 0) {
5374 const char *um = multicast ? "Multicast" : "Unicast";
5375 const char *encap_name = "";
5376 const char *encap_ipv = "";
5377
5378 if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5379 EFX_ENCAP_TYPE_VXLAN)
5380 encap_name = "VXLAN ";
5381 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5382 EFX_ENCAP_TYPE_NVGRE)
5383 encap_name = "NVGRE ";
5384 else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5385 EFX_ENCAP_TYPE_GENEVE)
5386 encap_name = "GENEVE ";
5387 if (encap_type & EFX_ENCAP_FLAG_IPV6)
5388 encap_ipv = "IPv6 ";
5389 else if (encap_type)
5390 encap_ipv = "IPv4 ";
5391
5392 /* unprivileged functions can't insert mismatch filters
5393 * for encapsulated or unicast traffic, so downgrade
5394 * those warnings to debug.
5395 */
5396 netif_cond_dbg(efx, drv, efx->net_dev,
5397 rc == -EPERM && (encap_type || !multicast), warn,
5398 "%s%s%s mismatch filter insert failed rc=%d\n",
5399 encap_name, encap_ipv, um, rc);
5400 } else if (multicast) {
5401 /* mapping from encap types to default filter IDs (multicast) */
5402 static enum efx_ef10_default_filters map[] = {
5403 [EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5404 [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5405 [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5406 [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5407 [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5408 EFX_EF10_VXLAN6_MCDEF,
5409 [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5410 EFX_EF10_NVGRE6_MCDEF,
5411 [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5412 EFX_EF10_GENEVE6_MCDEF,
5413 };
5414
5415 /* quick bounds check (BCAST result impossible) */
5416 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5417 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5418 WARN_ON(1);
5419 return -EINVAL;
5420 }
5421 /* then follow map */
5422 id = &vlan->default_filters[map[encap_type]];
5423
5424 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5425 *id = efx_ef10_filter_get_unsafe_id(rc);
5426 if (!nic_data->workaround_26807 && !encap_type) {
5427 /* Also need an Ethernet broadcast filter */
5428 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5429 filter_flags, 0);
5430 eth_broadcast_addr(baddr);
5431 efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5432 rc = efx_ef10_filter_insert(efx, &spec, true);
5433 if (rc < 0) {
5434 netif_warn(efx, drv, efx->net_dev,
5435 "Broadcast filter insert failed rc=%d\n",
5436 rc);
5437 if (rollback) {
5438 /* Roll back the mc_def filter */
5439 efx_ef10_filter_remove_unsafe(
5440 efx, EFX_FILTER_PRI_AUTO,
5441 *id);
5442 *id = EFX_EF10_FILTER_ID_INVALID;
5443 return rc;
5444 }
5445 } else {
5446 EFX_WARN_ON_PARANOID(
5447 vlan->default_filters[EFX_EF10_BCAST] !=
5448 EFX_EF10_FILTER_ID_INVALID);
5449 vlan->default_filters[EFX_EF10_BCAST] =
5450 efx_ef10_filter_get_unsafe_id(rc);
5451 }
5452 }
5453 rc = 0;
5454 } else {
5455 /* mapping from encap types to default filter IDs (unicast) */
5456 static enum efx_ef10_default_filters map[] = {
5457 [EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5458 [EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5459 [EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5460 [EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5461 [EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5462 EFX_EF10_VXLAN6_UCDEF,
5463 [EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5464 EFX_EF10_NVGRE6_UCDEF,
5465 [EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5466 EFX_EF10_GENEVE6_UCDEF,
5467 };
5468
5469 /* quick bounds check (BCAST result impossible) */
5470 BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5471 if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5472 WARN_ON(1);
5473 return -EINVAL;
5474 }
5475 /* then follow map */
5476 id = &vlan->default_filters[map[encap_type]];
5477 EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5478 *id = rc;
5479 rc = 0;
5480 }
5481 return rc;
5482}
5483
5484/* Remove filters that weren't renewed. */
5485static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5486{
5487 struct efx_ef10_filter_table *table = efx->filter_state;
5488 int remove_failed = 0;
5489 int remove_noent = 0;
5490 int rc;
5491 int i;
5492
5493 down_write(&table->lock);
5494 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5495 if (READ_ONCE(table->entry[i].spec) &
5496 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5497 rc = efx_ef10_filter_remove_internal(efx,
5498 1U << EFX_FILTER_PRI_AUTO, i, true);
5499 if (rc == -ENOENT)
5500 remove_noent++;
5501 else if (rc)
5502 remove_failed++;
5503 }
5504 }
5505 up_write(&table->lock);
5506
5507 if (remove_failed)
5508 netif_info(efx, drv, efx->net_dev,
5509 "%s: failed to remove %d filters\n",
5510 __func__, remove_failed);
5511 if (remove_noent)
5512 netif_info(efx, drv, efx->net_dev,
5513 "%s: failed to remove %d non-existent filters\n",
5514 __func__, remove_noent);
5515}
5516
5517static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5518{
5519 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5520 u8 mac_old[ETH_ALEN];
5521 int rc, rc2;
5522
5523 /* Only reconfigure a PF-created vport */
5524 if (is_zero_ether_addr(nic_data->vport_mac))
5525 return 0;
5526
5527 efx_device_detach_sync(efx);
5528 efx_net_stop(efx->net_dev);
5529 down_write(&efx->filter_sem);
5530 efx_ef10_filter_table_remove(efx);
5531 up_write(&efx->filter_sem);
5532
5533 rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5534 if (rc)
5535 goto restore_filters;
5536
5537 ether_addr_copy(mac_old, nic_data->vport_mac);
5538 rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5539 nic_data->vport_mac);
5540 if (rc)
5541 goto restore_vadaptor;
5542
5543 rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5544 efx->net_dev->dev_addr);
5545 if (!rc) {
5546 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5547 } else {
5548 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5549 if (rc2) {
5550 /* Failed to add original MAC, so clear vport_mac */
5551 eth_zero_addr(nic_data->vport_mac);
5552 goto reset_nic;
5553 }
5554 }
5555
5556restore_vadaptor:
5557 rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5558 if (rc2)
5559 goto reset_nic;
5560restore_filters:
5561 down_write(&efx->filter_sem);
5562 rc2 = efx_ef10_filter_table_probe(efx);
5563 up_write(&efx->filter_sem);
5564 if (rc2)
5565 goto reset_nic;
5566
5567 rc2 = efx_net_open(efx->net_dev);
5568 if (rc2)
5569 goto reset_nic;
5570
5571 efx_device_attach_if_not_resetting(efx);
5572
5573 return rc;
5574
5575reset_nic:
5576 netif_err(efx, drv, efx->net_dev,
5577 "Failed to restore when changing MAC address - scheduling reset\n");
5578 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5579
5580 return rc ? rc : rc2;
5581}
5582
5583/* Caller must hold efx->filter_sem for read if race against
5584 * efx_ef10_filter_table_remove() is possible
5585 */
5586static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5587 struct efx_ef10_filter_vlan *vlan)
5588{
5589 struct efx_ef10_filter_table *table = efx->filter_state;
5590 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5591
5592 /* Do not install unspecified VID if VLAN filtering is enabled.
5593 * Do not install all specified VIDs if VLAN filtering is disabled.
5594 */
5595 if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5596 return;
5597
5598 /* Insert/renew unicast filters */
5599 if (table->uc_promisc) {
5600 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5601 false, false);
5602 efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5603 } else {
5604 /* If any of the filters failed to insert, fall back to
5605 * promiscuous mode - add in the uc_def filter. But keep
5606 * our individual unicast filters.
5607 */
5608 if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5609 efx_ef10_filter_insert_def(efx, vlan,
5610 EFX_ENCAP_TYPE_NONE,
5611 false, false);
5612 }
5613 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5614 false, false);
5615 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5616 EFX_ENCAP_FLAG_IPV6,
5617 false, false);
5618 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5619 false, false);
5620 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5621 EFX_ENCAP_FLAG_IPV6,
5622 false, false);
5623 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5624 false, false);
5625 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5626 EFX_ENCAP_FLAG_IPV6,
5627 false, false);
5628
5629 /* Insert/renew multicast filters */
5630 /* If changing promiscuous state with cascaded multicast filters, remove
5631 * old filters first, so that packets are dropped rather than duplicated
5632 */
5633 if (nic_data->workaround_26807 &&
5634 table->mc_promisc_last != table->mc_promisc)
5635 efx_ef10_filter_remove_old(efx);
5636 if (table->mc_promisc) {
5637 if (nic_data->workaround_26807) {
5638 /* If we failed to insert promiscuous filters, rollback
5639 * and fall back to individual multicast filters
5640 */
5641 if (efx_ef10_filter_insert_def(efx, vlan,
5642 EFX_ENCAP_TYPE_NONE,
5643 true, true)) {
5644 /* Changing promisc state, so remove old filters */
5645 efx_ef10_filter_remove_old(efx);
5646 efx_ef10_filter_insert_addr_list(efx, vlan,
5647 true, false);
5648 }
5649 } else {
5650 /* If we failed to insert promiscuous filters, don't
5651 * rollback. Regardless, also insert the mc_list,
5652 * unless it's incomplete due to overflow
5653 */
5654 efx_ef10_filter_insert_def(efx, vlan,
5655 EFX_ENCAP_TYPE_NONE,
5656 true, false);
5657 if (!table->mc_overflow)
5658 efx_ef10_filter_insert_addr_list(efx, vlan,
5659 true, false);
5660 }
5661 } else {
5662 /* If any filters failed to insert, rollback and fall back to
5663 * promiscuous mode - mc_def filter and maybe broadcast. If
5664 * that fails, roll back again and insert as many of our
5665 * individual multicast filters as we can.
5666 */
5667 if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5668 /* Changing promisc state, so remove old filters */
5669 if (nic_data->workaround_26807)
5670 efx_ef10_filter_remove_old(efx);
5671 if (efx_ef10_filter_insert_def(efx, vlan,
5672 EFX_ENCAP_TYPE_NONE,
5673 true, true))
5674 efx_ef10_filter_insert_addr_list(efx, vlan,
5675 true, false);
5676 }
5677 }
5678 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5679 true, false);
5680 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5681 EFX_ENCAP_FLAG_IPV6,
5682 true, false);
5683 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5684 true, false);
5685 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5686 EFX_ENCAP_FLAG_IPV6,
5687 true, false);
5688 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5689 true, false);
5690 efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5691 EFX_ENCAP_FLAG_IPV6,
5692 true, false);
5693}
5694
5695/* Caller must hold efx->filter_sem for read if race against
5696 * efx_ef10_filter_table_remove() is possible
5697 */
5698static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5699{
5700 struct efx_ef10_filter_table *table = efx->filter_state;
5701 struct net_device *net_dev = efx->net_dev;
5702 struct efx_ef10_filter_vlan *vlan;
5703 bool vlan_filter;
5704
5705 if (!efx_dev_registered(efx))
5706 return;
5707
5708 if (!table)
5709 return;
5710
5711 efx_ef10_filter_mark_old(efx);
5712
5713 /* Copy/convert the address lists; add the primary station
5714 * address and broadcast address
5715 */
5716 netif_addr_lock_bh(net_dev);
5717 efx_ef10_filter_uc_addr_list(efx);
5718 efx_ef10_filter_mc_addr_list(efx);
5719 netif_addr_unlock_bh(net_dev);
5720
5721 /* If VLAN filtering changes, all old filters are finally removed.
5722 * Do it in advance to avoid conflicts for unicast untagged and
5723 * VLAN 0 tagged filters.
5724 */
5725 vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5726 if (table->vlan_filter != vlan_filter) {
5727 table->vlan_filter = vlan_filter;
5728 efx_ef10_filter_remove_old(efx);
5729 }
5730
5731 list_for_each_entry(vlan, &table->vlan_list, list)
5732 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5733
5734 efx_ef10_filter_remove_old(efx);
5735 table->mc_promisc_last = table->mc_promisc;
5736}
5737
5738static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5739{
5740 struct efx_ef10_filter_table *table = efx->filter_state;
5741 struct efx_ef10_filter_vlan *vlan;
5742
5743 WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5744
5745 list_for_each_entry(vlan, &table->vlan_list, list) {
5746 if (vlan->vid == vid)
5747 return vlan;
5748 }
5749
5750 return NULL;
5751}
5752
5753static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5754{
5755 struct efx_ef10_filter_table *table = efx->filter_state;
5756 struct efx_ef10_filter_vlan *vlan;
5757 unsigned int i;
5758
5759 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5760 return -EINVAL;
5761
5762 vlan = efx_ef10_filter_find_vlan(efx, vid);
5763 if (WARN_ON(vlan)) {
5764 netif_err(efx, drv, efx->net_dev,
5765 "VLAN %u already added\n", vid);
5766 return -EALREADY;
5767 }
5768
5769 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5770 if (!vlan)
5771 return -ENOMEM;
5772
5773 vlan->vid = vid;
5774
5775 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5776 vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5777 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5778 vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5779 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5780 vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5781
5782 list_add_tail(&vlan->list, &table->vlan_list);
5783
5784 if (efx_dev_registered(efx))
5785 efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5786
5787 return 0;
5788}
5789
5790static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5791 struct efx_ef10_filter_vlan *vlan)
5792{
5793 unsigned int i;
5794
5795 /* See comment in efx_ef10_filter_table_remove() */
5796 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5797 return;
5798
5799 list_del(&vlan->list);
5800
5801 for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5802 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5803 vlan->uc[i]);
5804 for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5805 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5806 vlan->mc[i]);
5807 for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5808 if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5809 efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5810 vlan->default_filters[i]);
5811
5812 kfree(vlan);
5813}
5814
5815static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5816{
5817 struct efx_ef10_filter_vlan *vlan;
5818
5819 /* See comment in efx_ef10_filter_table_remove() */
5820 if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5821 return;
5822
5823 vlan = efx_ef10_filter_find_vlan(efx, vid);
5824 if (!vlan) {
5825 netif_err(efx, drv, efx->net_dev,
5826 "VLAN %u not found in filter state\n", vid);
5827 return;
5828 }
5829
5830 efx_ef10_filter_del_vlan_internal(efx, vlan);
5831}
5832
5833static int efx_ef10_set_mac_address(struct efx_nic *efx)
5834{
5835 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5836 struct efx_ef10_nic_data *nic_data = efx->nic_data;
5837 bool was_enabled = efx->port_enabled;
5838 int rc;
5839
5840 efx_device_detach_sync(efx);
5841 efx_net_stop(efx->net_dev);
5842
5843 mutex_lock(&efx->mac_lock);
5844 down_write(&efx->filter_sem);
5845 efx_ef10_filter_table_remove(efx);
5846
5847 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5848 efx->net_dev->dev_addr);
5849 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5850 nic_data->vport_id);
5851 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5852 sizeof(inbuf), NULL, 0, NULL);
5853
5854 efx_ef10_filter_table_probe(efx);
5855 up_write(&efx->filter_sem);
5856 mutex_unlock(&efx->mac_lock);
5857
5858 if (was_enabled)
5859 efx_net_open(efx->net_dev);
5860 efx_device_attach_if_not_resetting(efx);
5861
5862#ifdef CONFIG_SFC_SRIOV
5863 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5864 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5865
5866 if (rc == -EPERM) {
5867 struct efx_nic *efx_pf;
5868
5869 /* Switch to PF and change MAC address on vport */
5870 efx_pf = pci_get_drvdata(pci_dev_pf);
5871
5872 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5873 nic_data->vf_index,
5874 efx->net_dev->dev_addr);
5875 } else if (!rc) {
5876 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5877 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5878 unsigned int i;
5879
5880 /* MAC address successfully changed by VF (with MAC
5881 * spoofing) so update the parent PF if possible.
5882 */
5883 for (i = 0; i < efx_pf->vf_count; ++i) {
5884 struct ef10_vf *vf = nic_data->vf + i;
5885
5886 if (vf->efx == efx) {
5887 ether_addr_copy(vf->mac,
5888 efx->net_dev->dev_addr);
5889 return 0;
5890 }
5891 }
5892 }
5893 } else
5894#endif
5895 if (rc == -EPERM) {
5896 netif_err(efx, drv, efx->net_dev,
5897 "Cannot change MAC address; use sfboot to enable"
5898 " mac-spoofing on this interface\n");
5899 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5900 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5901 * fall-back to the method of changing the MAC address on the
5902 * vport. This only applies to PFs because such versions of
5903 * MCFW do not support VFs.
5904 */
5905 rc = efx_ef10_vport_set_mac_address(efx);
5906 } else if (rc) {
5907 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5908 sizeof(inbuf), NULL, 0, rc);
5909 }
5910
5911 return rc;
5912}
5913
5914static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5915{
5916 efx_ef10_filter_sync_rx_mode(efx);
5917
5918 return efx_mcdi_set_mac(efx);
5919}
5920
5921static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5922{
5923 efx_ef10_filter_sync_rx_mode(efx);
5924
5925 return 0;
5926}
5927
5928static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5929{
5930 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5931
5932 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5933 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5934 NULL, 0, NULL);
5935}
5936
5937/* MC BISTs follow a different poll mechanism to phy BISTs.
5938 * The BIST is done in the poll handler on the MC, and the MCDI command
5939 * will block until the BIST is done.
5940 */
5941static int efx_ef10_poll_bist(struct efx_nic *efx)
5942{
5943 int rc;
5944 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5945 size_t outlen;
5946 u32 result;
5947
5948 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5949 outbuf, sizeof(outbuf), &outlen);
5950 if (rc != 0)
5951 return rc;
5952
5953 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5954 return -EIO;
5955
5956 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5957 switch (result) {
5958 case MC_CMD_POLL_BIST_PASSED:
5959 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5960 return 0;
5961 case MC_CMD_POLL_BIST_TIMEOUT:
5962 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5963 return -EIO;
5964 case MC_CMD_POLL_BIST_FAILED:
5965 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5966 return -EIO;
5967 default:
5968 netif_err(efx, hw, efx->net_dev,
5969 "BIST returned unknown result %u", result);
5970 return -EIO;
5971 }
5972}
5973
5974static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5975{
5976 int rc;
5977
5978 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5979
5980 rc = efx_ef10_start_bist(efx, bist_type);
5981 if (rc != 0)
5982 return rc;
5983
5984 return efx_ef10_poll_bist(efx);
5985}
5986
5987static int
5988efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5989{
5990 int rc, rc2;
5991
5992 efx_reset_down(efx, RESET_TYPE_WORLD);
5993
5994 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5995 NULL, 0, NULL, 0, NULL);
5996 if (rc != 0)
5997 goto out;
5998
5999 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
6000 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6001
6002 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6003
6004out:
6005 if (rc == -EPERM)
6006 rc = 0;
6007 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6008 return rc ? rc : rc2;
6009}
6010
6011#ifdef CONFIG_SFC_MTD
6012
6013struct efx_ef10_nvram_type_info {
6014 u16 type, type_mask;
6015 u8 port;
6016 const char *name;
6017};
6018
6019static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6020 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
6021 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
6022 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
6023 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
6024 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
6025 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
6026 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
6027 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
6028 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
6029 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
6030 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
6031};
6032
6033static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6034 struct efx_mcdi_mtd_partition *part,
6035 unsigned int type)
6036{
6037 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6038 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6039 const struct efx_ef10_nvram_type_info *info;
6040 size_t size, erase_size, outlen;
6041 bool protected;
6042 int rc;
6043
6044 for (info = efx_ef10_nvram_types; ; info++) {
6045 if (info ==
6046 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
6047 return -ENODEV;
6048 if ((type & ~info->type_mask) == info->type)
6049 break;
6050 }
6051 if (info->port != efx_port_num(efx))
6052 return -ENODEV;
6053
6054 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6055 if (rc)
6056 return rc;
6057 if (protected)
6058 return -ENODEV; /* hide it */
6059
6060 part->nvram_type = type;
6061
6062 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6063 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6064 outbuf, sizeof(outbuf), &outlen);
6065 if (rc)
6066 return rc;
6067 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6068 return -EIO;
6069 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6070 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6071 part->fw_subtype = MCDI_DWORD(outbuf,
6072 NVRAM_METADATA_OUT_SUBTYPE);
6073
6074 part->common.dev_type_name = "EF10 NVRAM manager";
6075 part->common.type_name = info->name;
6076
6077 part->common.mtd.type = MTD_NORFLASH;
6078 part->common.mtd.flags = MTD_CAP_NORFLASH;
6079 part->common.mtd.size = size;
6080 part->common.mtd.erasesize = erase_size;
6081
6082 return 0;
6083}
6084
6085static int efx_ef10_mtd_probe(struct efx_nic *efx)
6086{
6087 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
6088 struct efx_mcdi_mtd_partition *parts;
6089 size_t outlen, n_parts_total, i, n_parts;
6090 unsigned int type;
6091 int rc;
6092
6093 ASSERT_RTNL();
6094
6095 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6096 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6097 outbuf, sizeof(outbuf), &outlen);
6098 if (rc)
6099 return rc;
6100 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6101 return -EIO;
6102
6103 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6104 if (n_parts_total >
6105 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6106 return -EIO;
6107
6108 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6109 if (!parts)
6110 return -ENOMEM;
6111
6112 n_parts = 0;
6113 for (i = 0; i < n_parts_total; i++) {
6114 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6115 i);
6116 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
6117 if (rc == 0)
6118 n_parts++;
6119 else if (rc != -ENODEV)
6120 goto fail;
6121 }
6122
6123 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6124fail:
6125 if (rc)
6126 kfree(parts);
6127 return rc;
6128}
6129
6130#endif /* CONFIG_SFC_MTD */
6131
6132static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6133{
6134 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6135}
6136
6137static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6138 u32 host_time) {}
6139
6140static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6141 bool temp)
6142{
6143 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6144 int rc;
6145
6146 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6147 channel->sync_events_state == SYNC_EVENTS_VALID ||
6148 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6149 return 0;
6150 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6151
6152 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6153 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6154 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6155 channel->channel);
6156
6157 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6158 inbuf, sizeof(inbuf), NULL, 0, NULL);
6159
6160 if (rc != 0)
6161 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6162 SYNC_EVENTS_DISABLED;
6163
6164 return rc;
6165}
6166
6167static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6168 bool temp)
6169{
6170 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6171 int rc;
6172
6173 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6174 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6175 return 0;
6176 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6177 channel->sync_events_state = SYNC_EVENTS_DISABLED;
6178 return 0;
6179 }
6180 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6181 SYNC_EVENTS_DISABLED;
6182
6183 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6184 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6185 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6186 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6187 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6188 channel->channel);
6189
6190 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6191 inbuf, sizeof(inbuf), NULL, 0, NULL);
6192
6193 return rc;
6194}
6195
6196static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6197 bool temp)
6198{
6199 int (*set)(struct efx_channel *channel, bool temp);
6200 struct efx_channel *channel;
6201
6202 set = en ?
6203 efx_ef10_rx_enable_timestamping :
6204 efx_ef10_rx_disable_timestamping;
6205
6206 channel = efx_ptp_channel(efx);
6207 if (channel) {
6208 int rc = set(channel, temp);
6209 if (en && rc != 0) {
6210 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6211 return rc;
6212 }
6213 }
6214
6215 return 0;
6216}
6217
6218static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6219 struct hwtstamp_config *init)
6220{
6221 return -EOPNOTSUPP;
6222}
6223
6224static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6225 struct hwtstamp_config *init)
6226{
6227 int rc;
6228
6229 switch (init->rx_filter) {
6230 case HWTSTAMP_FILTER_NONE:
6231 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6232 /* if TX timestamping is still requested then leave PTP on */
6233 return efx_ptp_change_mode(efx,
6234 init->tx_type != HWTSTAMP_TX_OFF, 0);
6235 case HWTSTAMP_FILTER_ALL:
6236 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6237 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6238 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6239 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6240 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6241 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6242 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6243 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6244 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6245 case HWTSTAMP_FILTER_PTP_V2_EVENT:
6246 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6247 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6248 case HWTSTAMP_FILTER_NTP_ALL:
6249 init->rx_filter = HWTSTAMP_FILTER_ALL;
6250 rc = efx_ptp_change_mode(efx, true, 0);
6251 if (!rc)
6252 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6253 if (rc)
6254 efx_ptp_change_mode(efx, false, 0);
6255 return rc;
6256 default:
6257 return -ERANGE;
6258 }
6259}
6260
6261static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6262 struct netdev_phys_item_id *ppid)
6263{
6264 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6265
6266 if (!is_valid_ether_addr(nic_data->port_id))
6267 return -EOPNOTSUPP;
6268
6269 ppid->id_len = ETH_ALEN;
6270 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6271
6272 return 0;
6273}
6274
6275static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6276{
6277 if (proto != htons(ETH_P_8021Q))
6278 return -EINVAL;
6279
6280 return efx_ef10_add_vlan(efx, vid);
6281}
6282
6283static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6284{
6285 if (proto != htons(ETH_P_8021Q))
6286 return -EINVAL;
6287
6288 return efx_ef10_del_vlan(efx, vid);
6289}
6290
6291/* We rely on the MCDI wiping out our TX rings if it made any changes to the
6292 * ports table, ensuring that any TSO descriptors that were made on a now-
6293 * removed tunnel port will be blown away and won't break things when we try
6294 * to transmit them using the new ports table.
6295 */
6296static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6297{
6298 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6299 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6300 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6301 bool will_reset = false;
6302 size_t num_entries = 0;
6303 size_t inlen, outlen;
6304 size_t i;
6305 int rc;
6306 efx_dword_t flags_and_num_entries;
6307
6308 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6309
6310 nic_data->udp_tunnels_dirty = false;
6311
6312 if (!(nic_data->datapath_caps &
6313 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6314 efx_device_attach_if_not_resetting(efx);
6315 return 0;
6316 }
6317
6318 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6319 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6320
6321 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6322 if (nic_data->udp_tunnels[i].count &&
6323 nic_data->udp_tunnels[i].port) {
6324 efx_dword_t entry;
6325
6326 EFX_POPULATE_DWORD_2(entry,
6327 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6328 ntohs(nic_data->udp_tunnels[i].port),
6329 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6330 nic_data->udp_tunnels[i].type);
6331 *_MCDI_ARRAY_DWORD(inbuf,
6332 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6333 num_entries++) = entry;
6334 }
6335 }
6336
6337 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6338 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6339 EFX_WORD_1_LBN);
6340 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6341 EFX_WORD_1_WIDTH);
6342 EFX_POPULATE_DWORD_2(flags_and_num_entries,
6343 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6344 !!unloading,
6345 EFX_WORD_1, num_entries);
6346 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6347 flags_and_num_entries;
6348
6349 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6350
6351 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6352 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6353 if (rc == -EIO) {
6354 /* Most likely the MC rebooted due to another function also
6355 * setting its tunnel port list. Mark the tunnel port list as
6356 * dirty, so it will be pushed upon coming up from the reboot.
6357 */
6358 nic_data->udp_tunnels_dirty = true;
6359 return 0;
6360 }
6361
6362 if (rc) {
6363 /* expected not available on unprivileged functions */
6364 if (rc != -EPERM)
6365 netif_warn(efx, drv, efx->net_dev,
6366 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6367 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6368 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6369 netif_info(efx, drv, efx->net_dev,
6370 "Rebooting MC due to UDP tunnel port list change\n");
6371 will_reset = true;
6372 if (unloading)
6373 /* Delay for the MC reset to complete. This will make
6374 * unloading other functions a bit smoother. This is a
6375 * race, but the other unload will work whichever way
6376 * it goes, this just avoids an unnecessary error
6377 * message.
6378 */
6379 msleep(100);
6380 }
6381 if (!will_reset && !unloading) {
6382 /* The caller will have detached, relying on the MC reset to
6383 * trigger a re-attach. Since there won't be an MC reset, we
6384 * have to do the attach ourselves.
6385 */
6386 efx_device_attach_if_not_resetting(efx);
6387 }
6388
6389 return rc;
6390}
6391
6392static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6393{
6394 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6395 int rc = 0;
6396
6397 mutex_lock(&nic_data->udp_tunnels_lock);
6398 if (nic_data->udp_tunnels_dirty) {
6399 /* Make sure all TX are stopped while we modify the table, else
6400 * we might race against an efx_features_check().
6401 */
6402 efx_device_detach_sync(efx);
6403 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6404 }
6405 mutex_unlock(&nic_data->udp_tunnels_lock);
6406 return rc;
6407}
6408
6409static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6410 __be16 port)
6411{
6412 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6413 size_t i;
6414
6415 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6416 if (!nic_data->udp_tunnels[i].count)
6417 continue;
6418 if (nic_data->udp_tunnels[i].port == port)
6419 return &nic_data->udp_tunnels[i];
6420 }
6421 return NULL;
6422}
6423
6424static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6425 struct efx_udp_tunnel tnl)
6426{
6427 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6428 struct efx_udp_tunnel *match;
6429 char typebuf[8];
6430 size_t i;
6431 int rc;
6432
6433 if (!(nic_data->datapath_caps &
6434 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6435 return 0;
6436
6437 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6438 netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6439 typebuf, ntohs(tnl.port));
6440
6441 mutex_lock(&nic_data->udp_tunnels_lock);
6442 /* Make sure all TX are stopped while we add to the table, else we
6443 * might race against an efx_features_check().
6444 */
6445 efx_device_detach_sync(efx);
6446
6447 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6448 if (match != NULL) {
6449 if (match->type == tnl.type) {
6450 netif_dbg(efx, drv, efx->net_dev,
6451 "Referencing existing tunnel entry\n");
6452 match->count++;
6453 /* No need to cause an MCDI update */
6454 rc = 0;
6455 goto unlock_out;
6456 }
6457 efx_get_udp_tunnel_type_name(match->type,
6458 typebuf, sizeof(typebuf));
6459 netif_dbg(efx, drv, efx->net_dev,
6460 "UDP port %d is already in use by %s\n",
6461 ntohs(tnl.port), typebuf);
6462 rc = -EEXIST;
6463 goto unlock_out;
6464 }
6465
6466 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6467 if (!nic_data->udp_tunnels[i].count) {
6468 nic_data->udp_tunnels[i] = tnl;
6469 nic_data->udp_tunnels[i].count = 1;
6470 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6471 goto unlock_out;
6472 }
6473
6474 netif_dbg(efx, drv, efx->net_dev,
6475 "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6476 typebuf, ntohs(tnl.port));
6477
6478 rc = -ENOMEM;
6479
6480unlock_out:
6481 mutex_unlock(&nic_data->udp_tunnels_lock);
6482 return rc;
6483}
6484
6485/* Called under the TX lock with the TX queue running, hence no-one can be
6486 * in the middle of updating the UDP tunnels table. However, they could
6487 * have tried and failed the MCDI, in which case they'll have set the dirty
6488 * flag before dropping their locks.
6489 */
6490static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6491{
6492 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6493
6494 if (!(nic_data->datapath_caps &
6495 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6496 return false;
6497
6498 if (nic_data->udp_tunnels_dirty)
6499 /* SW table may not match HW state, so just assume we can't
6500 * use any UDP tunnel offloads.
6501 */
6502 return false;
6503
6504 return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
6505}
6506
6507static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6508 struct efx_udp_tunnel tnl)
6509{
6510 struct efx_ef10_nic_data *nic_data = efx->nic_data;
6511 struct efx_udp_tunnel *match;
6512 char typebuf[8];
6513 int rc;
6514
6515 if (!(nic_data->datapath_caps &
6516 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6517 return 0;
6518
6519 efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6520 netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6521 typebuf, ntohs(tnl.port));
6522
6523 mutex_lock(&nic_data->udp_tunnels_lock);
6524 /* Make sure all TX are stopped while we remove from the table, else we
6525 * might race against an efx_features_check().
6526 */
6527 efx_device_detach_sync(efx);
6528
6529 match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6530 if (match != NULL) {
6531 if (match->type == tnl.type) {
6532 if (--match->count) {
6533 /* Port is still in use, so nothing to do */
6534 netif_dbg(efx, drv, efx->net_dev,
6535 "UDP tunnel port %d remains active\n",
6536 ntohs(tnl.port));
6537 rc = 0;
6538 goto out_unlock;
6539 }
6540 rc = efx_ef10_set_udp_tnl_ports(efx, false);
6541 goto out_unlock;
6542 }
6543 efx_get_udp_tunnel_type_name(match->type,
6544 typebuf, sizeof(typebuf));
6545 netif_warn(efx, drv, efx->net_dev,
6546 "UDP port %d is actually in use by %s, not removing\n",
6547 ntohs(tnl.port), typebuf);
6548 }
6549 rc = -ENOENT;
6550
6551out_unlock:
6552 mutex_unlock(&nic_data->udp_tunnels_lock);
6553 return rc;
6554}
6555
6556#define EF10_OFFLOAD_FEATURES \
6557 (NETIF_F_IP_CSUM | \
6558 NETIF_F_HW_VLAN_CTAG_FILTER | \
6559 NETIF_F_IPV6_CSUM | \
6560 NETIF_F_RXHASH | \
6561 NETIF_F_NTUPLE)
6562
6563const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6564 .is_vf = true,
6565 .mem_bar = efx_ef10_vf_mem_bar,
6566 .mem_map_size = efx_ef10_mem_map_size,
6567 .probe = efx_ef10_probe_vf,
6568 .remove = efx_ef10_remove,
6569 .dimension_resources = efx_ef10_dimension_resources,
6570 .init = efx_ef10_init_nic,
6571 .fini = efx_port_dummy_op_void,
6572 .map_reset_reason = efx_ef10_map_reset_reason,
6573 .map_reset_flags = efx_ef10_map_reset_flags,
6574 .reset = efx_ef10_reset,
6575 .probe_port = efx_mcdi_port_probe,
6576 .remove_port = efx_mcdi_port_remove,
6577 .fini_dmaq = efx_ef10_fini_dmaq,
6578 .prepare_flr = efx_ef10_prepare_flr,
6579 .finish_flr = efx_port_dummy_op_void,
6580 .describe_stats = efx_ef10_describe_stats,
6581 .update_stats = efx_ef10_update_stats_vf,
6582 .start_stats = efx_port_dummy_op_void,
6583 .pull_stats = efx_port_dummy_op_void,
6584 .stop_stats = efx_port_dummy_op_void,
6585 .set_id_led = efx_mcdi_set_id_led,
6586 .push_irq_moderation = efx_ef10_push_irq_moderation,
6587 .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6588 .check_mac_fault = efx_mcdi_mac_check_fault,
6589 .reconfigure_port = efx_mcdi_port_reconfigure,
6590 .get_wol = efx_ef10_get_wol_vf,
6591 .set_wol = efx_ef10_set_wol_vf,
6592 .resume_wol = efx_port_dummy_op_void,
6593 .mcdi_request = efx_ef10_mcdi_request,
6594 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6595 .mcdi_read_response = efx_ef10_mcdi_read_response,
6596 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6597 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6598 .irq_enable_master = efx_port_dummy_op_void,
6599 .irq_test_generate = efx_ef10_irq_test_generate,
6600 .irq_disable_non_ev = efx_port_dummy_op_void,
6601 .irq_handle_msi = efx_ef10_msi_interrupt,
6602 .irq_handle_legacy = efx_ef10_legacy_interrupt,
6603 .tx_probe = efx_ef10_tx_probe,
6604 .tx_init = efx_ef10_tx_init,
6605 .tx_remove = efx_ef10_tx_remove,
6606 .tx_write = efx_ef10_tx_write,
6607 .tx_limit_len = efx_ef10_tx_limit_len,
6608 .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6609 .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6610 .rx_probe = efx_ef10_rx_probe,
6611 .rx_init = efx_ef10_rx_init,
6612 .rx_remove = efx_ef10_rx_remove,
6613 .rx_write = efx_ef10_rx_write,
6614 .rx_defer_refill = efx_ef10_rx_defer_refill,
6615 .ev_probe = efx_ef10_ev_probe,
6616 .ev_init = efx_ef10_ev_init,
6617 .ev_fini = efx_ef10_ev_fini,
6618 .ev_remove = efx_ef10_ev_remove,
6619 .ev_process = efx_ef10_ev_process,
6620 .ev_read_ack = efx_ef10_ev_read_ack,
6621 .ev_test_generate = efx_ef10_ev_test_generate,
6622 .filter_table_probe = efx_ef10_filter_table_probe,
6623 .filter_table_restore = efx_ef10_filter_table_restore,
6624 .filter_table_remove = efx_ef10_filter_table_remove,
6625 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6626 .filter_insert = efx_ef10_filter_insert,
6627 .filter_remove_safe = efx_ef10_filter_remove_safe,
6628 .filter_get_safe = efx_ef10_filter_get_safe,
6629 .filter_clear_rx = efx_ef10_filter_clear_rx,
6630 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6631 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6632 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6633#ifdef CONFIG_RFS_ACCEL
6634 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6635#endif
6636#ifdef CONFIG_SFC_MTD
6637 .mtd_probe = efx_port_dummy_op_int,
6638#endif
6639 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6640 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6641 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6642 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6643#ifdef CONFIG_SFC_SRIOV
6644 .vswitching_probe = efx_ef10_vswitching_probe_vf,
6645 .vswitching_restore = efx_ef10_vswitching_restore_vf,
6646 .vswitching_remove = efx_ef10_vswitching_remove_vf,
6647#endif
6648 .get_mac_address = efx_ef10_get_mac_address_vf,
6649 .set_mac_address = efx_ef10_set_mac_address,
6650
6651 .get_phys_port_id = efx_ef10_get_phys_port_id,
6652 .revision = EFX_REV_HUNT_A0,
6653 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6654 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6655 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6656 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6657 .can_rx_scatter = true,
6658 .always_rx_scatter = true,
6659 .min_interrupt_mode = EFX_INT_MODE_MSIX,
6660 .max_interrupt_mode = EFX_INT_MODE_MSIX,
6661 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6662 .offload_features = EF10_OFFLOAD_FEATURES,
6663 .mcdi_max_ver = 2,
6664 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6665 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6666 1 << HWTSTAMP_FILTER_ALL,
6667 .rx_hash_key_size = 40,
6668};
6669
6670const struct efx_nic_type efx_hunt_a0_nic_type = {
6671 .is_vf = false,
6672 .mem_bar = efx_ef10_pf_mem_bar,
6673 .mem_map_size = efx_ef10_mem_map_size,
6674 .probe = efx_ef10_probe_pf,
6675 .remove = efx_ef10_remove,
6676 .dimension_resources = efx_ef10_dimension_resources,
6677 .init = efx_ef10_init_nic,
6678 .fini = efx_port_dummy_op_void,
6679 .map_reset_reason = efx_ef10_map_reset_reason,
6680 .map_reset_flags = efx_ef10_map_reset_flags,
6681 .reset = efx_ef10_reset,
6682 .probe_port = efx_mcdi_port_probe,
6683 .remove_port = efx_mcdi_port_remove,
6684 .fini_dmaq = efx_ef10_fini_dmaq,
6685 .prepare_flr = efx_ef10_prepare_flr,
6686 .finish_flr = efx_port_dummy_op_void,
6687 .describe_stats = efx_ef10_describe_stats,
6688 .update_stats = efx_ef10_update_stats_pf,
6689 .start_stats = efx_mcdi_mac_start_stats,
6690 .pull_stats = efx_mcdi_mac_pull_stats,
6691 .stop_stats = efx_mcdi_mac_stop_stats,
6692 .set_id_led = efx_mcdi_set_id_led,
6693 .push_irq_moderation = efx_ef10_push_irq_moderation,
6694 .reconfigure_mac = efx_ef10_mac_reconfigure,
6695 .check_mac_fault = efx_mcdi_mac_check_fault,
6696 .reconfigure_port = efx_mcdi_port_reconfigure,
6697 .get_wol = efx_ef10_get_wol,
6698 .set_wol = efx_ef10_set_wol,
6699 .resume_wol = efx_port_dummy_op_void,
6700 .test_chip = efx_ef10_test_chip,
6701 .test_nvram = efx_mcdi_nvram_test_all,
6702 .mcdi_request = efx_ef10_mcdi_request,
6703 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
6704 .mcdi_read_response = efx_ef10_mcdi_read_response,
6705 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6706 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6707 .irq_enable_master = efx_port_dummy_op_void,
6708 .irq_test_generate = efx_ef10_irq_test_generate,
6709 .irq_disable_non_ev = efx_port_dummy_op_void,
6710 .irq_handle_msi = efx_ef10_msi_interrupt,
6711 .irq_handle_legacy = efx_ef10_legacy_interrupt,
6712 .tx_probe = efx_ef10_tx_probe,
6713 .tx_init = efx_ef10_tx_init,
6714 .tx_remove = efx_ef10_tx_remove,
6715 .tx_write = efx_ef10_tx_write,
6716 .tx_limit_len = efx_ef10_tx_limit_len,
6717 .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6718 .rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6719 .rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config,
6720 .rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config,
6721 .rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts,
6722 .rx_probe = efx_ef10_rx_probe,
6723 .rx_init = efx_ef10_rx_init,
6724 .rx_remove = efx_ef10_rx_remove,
6725 .rx_write = efx_ef10_rx_write,
6726 .rx_defer_refill = efx_ef10_rx_defer_refill,
6727 .ev_probe = efx_ef10_ev_probe,
6728 .ev_init = efx_ef10_ev_init,
6729 .ev_fini = efx_ef10_ev_fini,
6730 .ev_remove = efx_ef10_ev_remove,
6731 .ev_process = efx_ef10_ev_process,
6732 .ev_read_ack = efx_ef10_ev_read_ack,
6733 .ev_test_generate = efx_ef10_ev_test_generate,
6734 .filter_table_probe = efx_ef10_filter_table_probe,
6735 .filter_table_restore = efx_ef10_filter_table_restore,
6736 .filter_table_remove = efx_ef10_filter_table_remove,
6737 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6738 .filter_insert = efx_ef10_filter_insert,
6739 .filter_remove_safe = efx_ef10_filter_remove_safe,
6740 .filter_get_safe = efx_ef10_filter_get_safe,
6741 .filter_clear_rx = efx_ef10_filter_clear_rx,
6742 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
6743 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6744 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6745#ifdef CONFIG_RFS_ACCEL
6746 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6747#endif
6748#ifdef CONFIG_SFC_MTD
6749 .mtd_probe = efx_ef10_mtd_probe,
6750 .mtd_rename = efx_mcdi_mtd_rename,
6751 .mtd_read = efx_mcdi_mtd_read,
6752 .mtd_erase = efx_mcdi_mtd_erase,
6753 .mtd_write = efx_mcdi_mtd_write,
6754 .mtd_sync = efx_mcdi_mtd_sync,
6755#endif
6756 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
6757 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6758 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6759 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6760 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6761 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6762 .udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6763 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6764 .udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6765#ifdef CONFIG_SFC_SRIOV
6766 .sriov_configure = efx_ef10_sriov_configure,
6767 .sriov_init = efx_ef10_sriov_init,
6768 .sriov_fini = efx_ef10_sriov_fini,
6769 .sriov_wanted = efx_ef10_sriov_wanted,
6770 .sriov_reset = efx_ef10_sriov_reset,
6771 .sriov_flr = efx_ef10_sriov_flr,
6772 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6773 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6774 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6775 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6776 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6777 .vswitching_probe = efx_ef10_vswitching_probe_pf,
6778 .vswitching_restore = efx_ef10_vswitching_restore_pf,
6779 .vswitching_remove = efx_ef10_vswitching_remove_pf,
6780#endif
6781 .get_mac_address = efx_ef10_get_mac_address_pf,
6782 .set_mac_address = efx_ef10_set_mac_address,
6783 .tso_versions = efx_ef10_tso_versions,
6784
6785 .get_phys_port_id = efx_ef10_get_phys_port_id,
6786 .revision = EFX_REV_HUNT_A0,
6787 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6788 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6789 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6790 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6791 .can_rx_scatter = true,
6792 .always_rx_scatter = true,
6793 .option_descriptors = true,
6794 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
6795 .max_interrupt_mode = EFX_INT_MODE_MSIX,
6796 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6797 .offload_features = EF10_OFFLOAD_FEATURES,
6798 .mcdi_max_ver = 2,
6799 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6800 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6801 1 << HWTSTAMP_FILTER_ALL,
6802 .rx_hash_key_size = 40,
6803};