Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
 
 
 
 
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
  40};
  41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 528	int i, rc;
 529
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 
 
 
 
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, const u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, const u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
 
 
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
 
 
 
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300	spin_lock_bh(&efx->stats_lock);
1301	kfree(nic_data->mc_stats);
1302	nic_data->mc_stats = NULL;
1303	spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309	struct net_device *net_dev = efx->net_dev;
1310	netdev_features_t tun_feats, tso_feats;
1311	int rc;
1312
1313	if (nic_data->must_check_datapath_caps) {
1314		rc = efx_ef10_init_datapath_caps(efx);
1315		if (rc)
1316			return rc;
1317		nic_data->must_check_datapath_caps = false;
1318	}
1319
1320	if (efx->must_realloc_vis) {
1321		/* We cannot let the number of VIs change now */
1322		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323					nic_data->n_allocated_vis);
1324		if (rc)
1325			return rc;
1326		efx->must_realloc_vis = false;
1327	}
1328
1329	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330				     GFP_KERNEL);
1331	if (!nic_data->mc_stats)
1332		return -ENOMEM;
1333
1334	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336		if (rc == 0) {
1337			rc = efx_ef10_link_piobufs(efx);
1338			if (rc)
1339				efx_ef10_free_piobufs(efx);
1340		}
1341
1342		/* Log an error on failure, but this is non-fatal.
1343		 * Permission errors are less important - we've presumably
1344		 * had the PIO buffer licence removed.
1345		 */
1346		if (rc == -EPERM)
1347			netif_dbg(efx, drv, efx->net_dev,
1348				  "not permitted to restore PIO buffers\n");
1349		else if (rc)
1350			netif_err(efx, drv, efx->net_dev,
1351				  "failed to restore PIO buffers (%d)\n", rc);
1352		nic_data->must_restore_piobufs = false;
1353	}
1354
1355	/* encap features might change during reset if fw variant changed */
1356	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357		net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358	else
1359		net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361	tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362		    NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363	tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366		/* If this is first nic_init, or if it is a reset and a new fw
1367		 * variant has added new features, enable them by default.
1368		 * If the features are not new, maintain their current value.
1369		 */
1370		if (!(net_dev->hw_features & tun_feats))
1371			net_dev->features |= tun_feats;
1372		net_dev->hw_enc_features |= tun_feats | tso_feats;
1373		net_dev->hw_features |= tun_feats;
1374	} else {
1375		net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376		net_dev->hw_features &= ~tun_feats;
1377		net_dev->features &= ~tun_feats;
1378	}
1379
1380	/* don't fail init if RSS setup doesn't work */
1381	rc = efx->type->rx_push_rss_config(efx, false,
1382					   efx->rss_context.rx_indir_table, NULL);
1383
1384	return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391	unsigned int i;
1392#endif
1393
1394	/* All our allocations have been reset */
1395	efx->must_realloc_vis = true;
1396	efx_mcdi_filter_table_reset_mc_allocations(efx);
 
1397	nic_data->must_restore_piobufs = true;
1398	efx_ef10_forget_old_piobufs(efx);
1399	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401	/* Driver-created vswitches and vports must be re-created */
1402	nic_data->must_probe_vswitching = true;
1403	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405	if (nic_data->vf)
1406		for (i = 0; i < efx->vf_count; i++)
1407			nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413	if (reason == RESET_TYPE_MC_FAILURE)
1414		return RESET_TYPE_DATAPATH;
1415
1416	return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421	enum {
1422		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423				   ETH_RESET_SHARED_SHIFT),
1424		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427				 ETH_RESET_SHARED_SHIFT)
1428	};
1429
1430	/* We assume for now that our PCI function is permitted to
1431	 * reset everything.
1432	 */
1433
1434	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435		*flags &= ~EF10_RESET_MC;
1436		return RESET_TYPE_WORLD;
1437	}
1438
1439	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440		*flags &= ~EF10_RESET_PORT;
1441		return RESET_TYPE_ALL;
1442	}
1443
1444	/* no invisible reset implemented */
1445
1446	return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451	int rc = efx_mcdi_reset(efx, reset_type);
1452
1453	/* Unprivileged functions return -EPERM, but need to return success
1454	 * here so that the datapath is brought back up.
1455	 */
1456	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457		rc = 0;
1458
1459	/* If it was a port reset, trigger reallocation of MC resources.
1460	 * Note that on an MC reset nothing needs to be done now because we'll
1461	 * detect the MC reset later and handle it then.
1462	 * For an FLR, we never get an MC reset event, but the MC has reset all
1463	 * resources assigned to us, so we have to trigger reallocation now.
1464	 */
1465	if ((reset_type == RESET_TYPE_ALL ||
1466	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467		efx_ef10_table_reset_mc_allocations(efx);
1468	return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1472	[EF10_STAT_ ## ext_name] =				\
1473	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1475	[EF10_STAT_ ## int_name] =				\
1476	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name)				\
1478	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 
 
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498	EF10_OTHER_STAT(port_rx_good_bytes),
1499	EF10_OTHER_STAT(port_rx_bad_bytes),
1500	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1579			       (1ULL << EF10_STAT_port_tx_packets) |	\
1580			       (1ULL << EF10_STAT_port_tx_pause) |	\
1581			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1585			       (1ULL <<                                 \
1586				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1588			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1589			       (1ULL << EF10_STAT_port_rx_packets) |	\
1590			       (1ULL << EF10_STAT_port_rx_good) |	\
1591			       (1ULL << EF10_STAT_port_rx_bad) |	\
1592			       (1ULL << EF10_STAT_port_rx_pause) |	\
1593			       (1ULL << EF10_STAT_port_rx_control) |	\
1594			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1595			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1596			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1597			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1598			       (1ULL << EF10_STAT_port_rx_64) |		\
1599			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1600			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1601			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1602			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1606			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1608			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1610			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1618				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1619				 (1ULL << EF10_STAT_port_tx_64) |	\
1620				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632				  (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1638	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1639	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1640	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1641	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1642	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1643	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1644	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1645	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1646	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1647	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1648	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1649	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1658	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1659	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1660	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1661	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1662	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK (						\
1670	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1671	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1672	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1673	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1674	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1675	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1676	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1677	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1678	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1679	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1680	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1681	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1682	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1683	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1684	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1685	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693	if (!(efx->mcdi->fn_flags &
1694	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695		return 0;
1696
1697	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699		/* 8000 series have everything even at 40G */
1700		if (nic_data->datapath_caps2 &
1701		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703	} else {
1704		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705	}
1706
1707	if (nic_data->datapath_caps &
1708	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711	return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717	u64 raw_mask[2];
1718
1719	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721	/* Only show vadaptor stats when EVB capability is present */
1722	if (nic_data->datapath_caps &
1723	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726	} else {
1727		raw_mask[1] = 0;
1728	}
1729	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731		raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733	/* CTPIO stats appear in V3. Only show them on devices that actually
1734	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735	 * and we may be reporting the stats for the underlying port.
1736	 */
1737	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738	    (nic_data->datapath_caps2 &
1739	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744	mask[0] = raw_mask[0];
1745	mask[1] = raw_mask[1];
1746#else
1747	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748	mask[0] = raw_mask[0] & 0xffffffff;
1749	mask[1] = raw_mask[0] >> 32;
1750	mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758	efx_ef10_get_stat_mask(efx, mask);
1759	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760				      mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764				   struct ethtool_fec_stats *fec_stats)
1765{
1766	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768	u64 *stats = nic_data->stats;
1769
1770	efx_ef10_get_stat_mask(efx, mask);
1771	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772		fec_stats->corrected_blocks.total =
1773			stats[EF10_STAT_fec_corrected_errors];
1774	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775		fec_stats->uncorrectable_blocks.total =
1776			stats[EF10_STAT_fec_uncorrected_errors];
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780					   struct rtnl_link_stats64 *core_stats)
1781{
1782	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784	u64 *stats = nic_data->stats;
1785	size_t stats_count = 0, index;
1786
1787	efx_ef10_get_stat_mask(efx, mask);
1788
1789	if (full_stats) {
1790		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791			if (efx_ef10_stat_desc[index].name) {
1792				*full_stats++ = stats[index];
1793				++stats_count;
1794			}
1795		}
1796	}
1797
1798	if (!core_stats)
1799		return stats_count;
1800
1801	if (nic_data->datapath_caps &
1802			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803		/* Use vadaptor stats. */
1804		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805					 stats[EF10_STAT_rx_multicast] +
1806					 stats[EF10_STAT_rx_broadcast];
1807		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808					 stats[EF10_STAT_tx_multicast] +
1809					 stats[EF10_STAT_tx_broadcast];
1810		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811				       stats[EF10_STAT_rx_multicast_bytes] +
1812				       stats[EF10_STAT_rx_broadcast_bytes];
1813		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814				       stats[EF10_STAT_tx_multicast_bytes] +
1815				       stats[EF10_STAT_tx_broadcast_bytes];
1816		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817					 stats[GENERIC_STAT_rx_noskb_drops];
1818		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821		core_stats->rx_errors = core_stats->rx_crc_errors;
1822		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823	} else {
1824		/* Use port stats. */
1825		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831					 stats[GENERIC_STAT_rx_noskb_drops];
1832		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833		core_stats->rx_length_errors =
1834				stats[EF10_STAT_port_rx_gtjumbo] +
1835				stats[EF10_STAT_port_rx_length_error];
1836		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837		core_stats->rx_frame_errors =
1838				stats[EF10_STAT_port_rx_align_error];
1839		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840		core_stats->rx_errors = (core_stats->rx_length_errors +
1841					 core_stats->rx_crc_errors +
1842					 core_stats->rx_frame_errors);
1843	}
1844
1845	return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849				       struct rtnl_link_stats64 *core_stats)
1850{
1851	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 
1853	u64 *stats = nic_data->stats;
 
1854
1855	efx_ef10_get_stat_mask(efx, mask);
1856
1857	/* If NIC was fini'd (probably resetting), then we can't read
1858	 * updated stats right now.
1859	 */
1860	if (nic_data->mc_stats) {
1861		efx_nic_copy_stats(efx, nic_data->mc_stats);
1862		efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863				     mask, stats, nic_data->mc_stats, false);
1864	}
 
 
 
 
1865
1866	/* Update derived statistics */
1867	efx_nic_fix_nodesc_drop_stat(efx,
1868				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1869	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872	 * Here we calculate port_rx_good_bytes.
1873	 */
1874	stats[EF10_STAT_port_rx_good_bytes] =
1875		stats[EF10_STAT_port_rx_bytes] -
1876		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1879	 * MC Firmware are done such that we should not see an increase in
1880	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881	 * does mean that the stat can decrease at times. Here we do not
1882	 * update the stat unless it has increased or has gone to zero
1883	 * (In the case of the NIC rebooting).
1884	 * Please see Bug 33781 for a discussion of why things work this way.
1885	 */
1886	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888	efx_update_sw_stats(efx, stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889
1890	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894	__must_hold(&efx->stats_lock)
1895{
1896	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899	__le64 generation_start, generation_end;
1900	u64 *stats = nic_data->stats;
1901	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902	struct efx_buffer stats_buf;
1903	__le64 *dma_stats;
1904	int rc;
1905
1906	spin_unlock_bh(&efx->stats_lock);
1907
 
 
 
 
 
 
 
 
 
1908	efx_ef10_get_stat_mask(efx, mask);
1909
1910	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911	if (rc) {
1912		spin_lock_bh(&efx->stats_lock);
1913		return rc;
1914	}
1915
1916	dma_stats = stats_buf.addr;
1917	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921			      MAC_STATS_IN_DMA, 1);
1922	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926				NULL, 0, NULL);
1927	spin_lock_bh(&efx->stats_lock);
1928	if (rc) {
1929		/* Expect ENOENT if DMA queues have not been set up */
1930		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932					       sizeof(inbuf), NULL, 0, rc);
1933		goto out;
1934	}
1935
1936	generation_end = dma_stats[efx->num_mac_stats - 1];
1937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938		WARN_ON_ONCE(1);
1939		goto out;
1940	}
1941	rmb();
1942	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943			     stats, stats_buf.addr, false);
1944	rmb();
1945	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946	if (generation_end != generation_start) {
1947		rc = -EAGAIN;
1948		goto out;
1949	}
1950
1951	efx_update_sw_stats(efx, stats);
1952out:
1953	/* releasing a DMA coherent buffer with BH disabled can panic */
1954	spin_unlock_bh(&efx->stats_lock);
1955	efx_nic_free_buffer(efx, &stats_buf);
1956	spin_lock_bh(&efx->stats_lock);
1957	return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961				       struct rtnl_link_stats64 *core_stats)
1962{
1963	if (efx_ef10_try_update_nic_stats_vf(efx))
1964		return 0;
1965
1966	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970					      struct rtnl_link_stats64 *core_stats)
1971{
1972	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974	/* In atomic context, cannot update HW stats.  Just update the
1975	 * software stats and return so the caller can continue.
1976	 */
1977	efx_update_sw_stats(efx, nic_data->stats);
1978	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983	struct efx_nic *efx = channel->efx;
1984	unsigned int mode, usecs;
1985	efx_dword_t timer_cmd;
1986
1987	if (channel->irq_moderation_us) {
1988		mode = 3;
1989		usecs = channel->irq_moderation_us;
1990	} else {
1991		mode = 0;
1992		usecs = 0;
1993	}
1994
1995	if (EFX_EF10_WORKAROUND_61265(efx)) {
1996		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997		unsigned int ns = usecs * 1000;
1998
1999		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000			       channel->channel);
2001		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006				   inbuf, sizeof(inbuf), 0, NULL, 0);
2007	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2012				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015				channel->channel);
2016	} else {
2017		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020				     ERF_DZ_TC_TIMER_VAL, ticks,
2021				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2022		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023				channel->channel);
2024	}
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028				struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032	return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037	wol->supported = 0;
2038	wol->wolopts = 0;
2039	memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044	if (type != 0)
2045		return -EINVAL;
2046	return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050				  const efx_dword_t *hdr, size_t hdr_len,
2051				  const efx_dword_t *sdu, size_t sdu_len)
2052{
2053	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054	u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056	memcpy(pdu, hdr, hdr_len);
2057	memcpy(pdu + hdr_len, sdu, sdu_len);
2058	wmb();
2059
2060	/* The hardware provides 'low' and 'high' (doorbell) registers
2061	 * for passing the 64-bit address of an MCDI request to
2062	 * firmware.  However the dwords are swapped by firmware.  The
2063	 * least significant bits of the doorbell are then 0 for all
2064	 * MCDI requests due to alignment.
2065	 */
2066	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067		    ER_DZ_MC_DB_LWRD);
2068	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069		    ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077	rmb();
2078	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083			    size_t offset, size_t outlen)
2084{
2085	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086	const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088	memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095	/* All our allocations have been reset */
2096	efx_ef10_table_reset_mc_allocations(efx);
2097
2098	/* The datapath firmware might have been changed */
2099	nic_data->must_check_datapath_caps = true;
2100
2101	/* MAC statistics have been cleared on the NIC; clear the local
2102	 * statistic that we update with efx_update_diff_stat().
2103	 */
2104	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110	int rc;
2111
2112	rc = efx_ef10_get_warm_boot_count(efx);
2113	if (rc < 0) {
2114		/* The firmware is presumably in the process of
2115		 * rebooting.  However, we are supposed to report each
2116		 * reboot just once, so we must only do that once we
2117		 * can read and store the updated warm boot count.
2118		 */
2119		return 0;
2120	}
2121
2122	if (rc == nic_data->warm_boot_count)
2123		return 0;
2124
2125	nic_data->warm_boot_count = rc;
2126	efx_ef10_mcdi_reboot_detected(efx);
2127
2128	return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt.  This routine schedules event
2134 * queue processing.  No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140	struct efx_msi_context *context = dev_id;
2141	struct efx_nic *efx = context->efx;
2142
2143	netif_vdbg(efx, intr, efx->net_dev,
2144		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147		/* Note test interrupts */
2148		if (context->index == efx->irq_level)
2149			efx->last_irq_cpu = raw_smp_processor_id();
2150
2151		/* Schedule processing of the channel */
2152		efx_schedule_channel_irq(efx->channel[context->index]);
2153	}
2154
2155	return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160	struct efx_nic *efx = dev_id;
2161	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162	struct efx_channel *channel;
2163	efx_dword_t reg;
2164	u32 queues;
2165
2166	/* Read the ISR which also ACKs the interrupts */
2167	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2168	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170	if (queues == 0)
2171		return IRQ_NONE;
2172
2173	if (likely(soft_enabled)) {
2174		/* Note test interrupts */
2175		if (queues & (1U << efx->irq_level))
2176			efx->last_irq_cpu = raw_smp_processor_id();
2177
2178		efx_for_each_channel(channel, efx) {
2179			if (queues & 1)
2180				efx_schedule_channel_irq(channel);
2181			queues >>= 1;
2182		}
2183	}
2184
2185	netif_vdbg(efx, intr, efx->net_dev,
2186		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189	return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197				    NULL) == 0)
2198		return -ENOTSUPP;
2199
2200	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209	/* low two bits of label are what we want for type */
2210	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211	tx_queue->type = tx_queue->label & 3;
2212	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213				    (tx_queue->ptr_mask + 1) *
2214				    sizeof(efx_qword_t),
2215				    GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220					 const efx_qword_t *txd)
2221{
2222	unsigned int write_ptr;
2223	efx_oword_t reg;
2224
2225	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227	reg.qword[0] = *txd;
2228	efx_writeo_page(tx_queue->efx, &reg,
2229			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235			 bool *data_mapped)
 
2236{
2237	struct efx_tx_buffer *buffer;
2238	u16 inner_ipv4_id = 0;
2239	u16 outer_ipv4_id = 0;
2240	struct tcphdr *tcp;
2241	struct iphdr *ip;
2242	u16 ip_tot_len;
 
2243	u32 seqnum;
2244	u32 mss;
2245
2246	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248	mss = skb_shinfo(skb)->gso_size;
2249
2250	if (unlikely(mss < 4)) {
2251		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252		return -EINVAL;
2253	}
2254
2255	if (skb->encapsulation) {
2256		if (!tx_queue->tso_encap)
2257			return -EINVAL;
2258		ip = ip_hdr(skb);
2259		if (ip->version == 4)
2260			outer_ipv4_id = ntohs(ip->id);
2261
2262		ip = inner_ip_hdr(skb);
2263		tcp = inner_tcp_hdr(skb);
2264	} else {
2265		ip = ip_hdr(skb);
2266		tcp = tcp_hdr(skb);
2267	}
2268
2269	/* 8000-series EF10 hardware requires that IP Total Length be
2270	 * greater than or equal to the value it will have in each segment
2271	 * (which is at most mss + 208 + TCP header length), but also less
2272	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2273	 * checksum calculation will be broken for encapsulated packets.
2274	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275	 * first requirement unless the MSS is ridiculously large (which
2276	 * should be impossible as the driver max MTU is 9216); it is
2277	 * guaranteed to satisfy the second as we only attempt TSO if
2278	 * inner_network_header <= 208.
2279	 */
2280	ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282				  (tcp->doff << 2u) > ip_tot_len);
2283
2284	if (ip->version == 4) {
2285		ip->tot_len = htons(ip_tot_len);
 
2286		ip->check = 0;
2287		inner_ipv4_id = ntohs(ip->id);
2288	} else {
2289		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
 
 
 
 
2290	}
2291
 
2292	seqnum = ntohl(tcp->seq);
2293
2294	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296	buffer->flags = EFX_TX_BUF_OPTION;
2297	buffer->len = 0;
2298	buffer->unmap_len = 0;
2299	EFX_POPULATE_QWORD_5(buffer->option,
2300			ESF_DZ_TX_DESC_IS_OPT, 1,
2301			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302			ESF_DZ_TX_TSO_OPTION_TYPE,
2303			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306			);
2307	++tx_queue->insert_count;
2308
2309	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311	buffer->flags = EFX_TX_BUF_OPTION;
2312	buffer->len = 0;
2313	buffer->unmap_len = 0;
2314	EFX_POPULATE_QWORD_5(buffer->option,
2315			ESF_DZ_TX_DESC_IS_OPT, 1,
2316			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317			ESF_DZ_TX_TSO_OPTION_TYPE,
2318			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320			ESF_DZ_TX_TSO_TCP_MSS, mss
2321			);
2322	++tx_queue->insert_count;
2323
2324	return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330	u32 tso_versions = 0;
2331
2332	if (nic_data->datapath_caps &
2333	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334		tso_versions |= BIT(1);
2335	if (nic_data->datapath_caps2 &
2336	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337		tso_versions |= BIT(2);
2338	return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
 
 
2345	struct efx_channel *channel = tx_queue->channel;
2346	struct efx_nic *efx = tx_queue->efx;
2347	struct efx_ef10_nic_data *nic_data;
 
 
 
2348	efx_qword_t *txd;
2349	int rc;
2350
2351	nic_data = efx->nic_data;
2352
2353	/* Only attempt to enable TX timestamping if we have the license for it,
2354	 * otherwise TXQ init will fail
2355	 */
2356	if (!(nic_data->licensed_features &
2357	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358		tx_queue->timestamping = false;
2359		/* Disable sync events on this channel. */
2360		if (efx->type->ptp_set_ts_sync_events)
2361			efx->type->ptp_set_ts_sync_events(efx, false, false);
2362	}
2363
2364	/* TSOv2 is a limited resource that can only be configured on a limited
2365	 * number of queues. TSO without checksum offload is not really a thing,
2366	 * so we only enable it for those queues.
2367	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368	 * for XDP tx.
2369	 */
2370	if (efx_has_cap(efx, TX_TSO_V2)) {
2371		if ((csum_offload || inner_csum) &&
2372		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373			tx_queue->tso_version = 2;
2374			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375				  channel->channel);
2376		}
2377	} else if (efx_has_cap(efx, TX_TSO)) {
2378		tx_queue->tso_version = 1;
2379	}
2380
2381	rc = efx_mcdi_tx_init(tx_queue);
2382	if (rc)
2383		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384
2385	/* A previous user of this TX queue might have set us up the
2386	 * bomb by writing a descriptor to the TX push collector but
2387	 * not the doorbell.  (Each collector belongs to a port, not a
2388	 * queue or function, so cannot easily be reset.)  We must
2389	 * attempt to push a no-op descriptor in its place.
2390	 */
2391	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392	tx_queue->insert_count = 1;
2393	txd = efx_tx_desc(tx_queue, 0);
2394	EFX_POPULATE_QWORD_7(*txd,
2395			     ESF_DZ_TX_DESC_IS_OPT, true,
2396			     ESF_DZ_TX_OPTION_TYPE,
2397			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403	tx_queue->write_count = 1;
2404
2405	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406		tx_queue->tso_encap = true;
 
 
 
 
 
2407
2408	wmb();
2409	efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411	return;
2412
2413fail:
2414	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415		    tx_queue->queue);
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421	unsigned int write_ptr;
2422	efx_dword_t reg;
2423
2424	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426	efx_writed_page(tx_queue->efx, &reg,
2427			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433					  dma_addr_t dma_addr, unsigned int len)
2434{
2435	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436		/* If we need to break across multiple descriptors we should
2437		 * stop at a page boundary. This assumes the length limit is
2438		 * greater than the page size.
2439		 */
2440		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444	}
2445
2446	return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451	unsigned int old_write_count = tx_queue->write_count;
2452	struct efx_tx_buffer *buffer;
2453	unsigned int write_ptr;
2454	efx_qword_t *txd;
2455
2456	tx_queue->xmit_pending = false;
2457	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458		return;
2459
2460	do {
2461		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462		buffer = &tx_queue->buffer[write_ptr];
2463		txd = efx_tx_desc(tx_queue, write_ptr);
2464		++tx_queue->write_count;
2465
2466		/* Create TX descriptor ring entry */
2467		if (buffer->flags & EFX_TX_BUF_OPTION) {
2468			*txd = buffer->option;
2469			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470				/* PIO descriptor */
2471				tx_queue->packet_write_count = tx_queue->write_count;
2472		} else {
2473			tx_queue->packet_write_count = tx_queue->write_count;
2474			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475			EFX_POPULATE_QWORD_3(
2476				*txd,
2477				ESF_DZ_TX_KER_CONT,
2478				buffer->flags & EFX_TX_BUF_CONT,
2479				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481		}
2482	} while (tx_queue->write_count != tx_queue->insert_count);
2483
2484	wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487		txd = efx_tx_desc(tx_queue,
2488				  old_write_count & tx_queue->ptr_mask);
2489		efx_ef10_push_tx_desc(tx_queue, txd);
2490		++tx_queue->pushes;
2491	} else {
2492		efx_ef10_notify_tx_desc(tx_queue);
2493	}
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499	unsigned int enabled, implemented;
2500	bool want_workaround_26807;
2501	int rc;
2502
2503	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504	if (rc == -ENOSYS) {
2505		/* GET_WORKAROUNDS was implemented before this workaround,
2506		 * thus it must be unavailable in this firmware.
2507		 */
2508		nic_data->workaround_26807 = false;
 
 
 
 
 
2509		return 0;
2510	}
2511	if (rc)
 
 
 
 
 
 
 
 
 
 
 
 
2512		return rc;
2513	want_workaround_26807 =
2514		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515	nic_data->workaround_26807 =
2516		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518	if (want_workaround_26807 && !nic_data->workaround_26807) {
2519		unsigned int flags;
2520
2521		rc = efx_mcdi_set_workaround(efx,
2522					     MC_CMD_WORKAROUND_BUG26807,
2523					     true, &flags);
2524		if (!rc) {
2525			if (flags &
2526			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527				netif_info(efx, drv, efx->net_dev,
2528					   "other functions on NIC have been reset\n");
2529
2530				/* With MCFW v4.6.x and earlier, the
2531				 * boot count will have incremented,
2532				 * so re-read the warm_boot_count
2533				 * value now to ensure this function
2534				 * doesn't think it has changed next
2535				 * time it checks.
2536				 */
2537				rc = efx_ef10_get_warm_boot_count(efx);
2538				if (rc >= 0) {
2539					nic_data->warm_boot_count = rc;
2540					rc = 0;
2541				}
2542			}
2543			nic_data->workaround_26807 = true;
2544		} else if (rc == -EPERM) {
2545			rc = 0;
2546		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547	}
2548	return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
 
2552{
2553	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554	int rc = efx_ef10_probe_multicast_chaining(efx);
2555	struct efx_mcdi_filter_vlan *vlan;
2556
2557	if (rc)
2558		return rc;
2559	down_write(&efx->filter_sem);
2560	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562	if (rc)
2563		goto out_unlock;
2564
2565	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2567		if (rc)
2568			goto fail_add_vlan;
 
 
 
2569	}
2570	goto out_unlock;
 
2571
2572fail_add_vlan:
2573	efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575	up_write(&efx->filter_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2576	return rc;
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
 
 
 
 
2580{
2581	down_write(&efx->filter_sem);
2582	efx_mcdi_filter_table_remove(efx);
2583	up_write(&efx->filter_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590	struct efx_rx_buffer *rx_buf;
2591	efx_qword_t *rxd;
2592
2593	rxd = efx_rx_desc(rx_queue, index);
2594	rx_buf = efx_rx_buffer(rx_queue, index);
2595	EFX_POPULATE_QWORD_2(*rxd,
2596			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602	struct efx_nic *efx = rx_queue->efx;
2603	unsigned int write_count;
2604	efx_dword_t reg;
2605
2606	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607	write_count = rx_queue->added_count & ~7;
2608	if (rx_queue->notified_count == write_count)
2609		return;
2610
2611	do
2612		efx_ef10_build_rx_desc(
2613			rx_queue,
2614			rx_queue->notified_count & rx_queue->ptr_mask);
2615	while (++rx_queue->notified_count != write_count);
2616
2617	wmb();
2618	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619			     write_count & rx_queue->ptr_mask);
2620	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2621			efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630	efx_qword_t event;
2631
2632	EFX_POPULATE_QWORD_2(event,
2633			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639	 * already swapped the data to little-endian order.
2640	 */
2641	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642	       sizeof(efx_qword_t));
2643
2644	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645			   inbuf, sizeof(inbuf), 0,
2646			   efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651				  int rc, efx_dword_t *outbuf,
2652				  size_t outlen_actual)
2653{
2654	/* nothing to do */
2655}
2656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
 
 
 
 
 
2659	struct efx_nic *efx = channel->efx;
2660	struct efx_ef10_nic_data *nic_data;
2661	bool use_v2, cut_thru;
 
 
 
 
2662
2663	nic_data = efx->nic_data;
2664	use_v2 = nic_data->datapath_caps2 &
2665			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666	cut_thru = !(nic_data->datapath_caps &
2667			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672					   unsigned int rx_queue_label)
2673{
2674	struct efx_nic *efx = rx_queue->efx;
2675
2676	netif_info(efx, hw, efx->net_dev,
2677		   "rx event arrived on queue %d labeled as queue %u\n",
2678		   efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685			     unsigned int actual, unsigned int expected)
2686{
2687	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688	struct efx_nic *efx = rx_queue->efx;
2689
2690	netif_info(efx, hw, efx->net_dev,
2691		   "dropped %d events (index=%d expected=%d)\n",
2692		   dropped, actual, expected);
2693
2694	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700	unsigned int rx_desc_ptr;
2701
2702	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703		  "scattered RX aborted (dropping %u buffers)\n",
2704		  rx_queue->scatter_n);
2705
2706	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709		      0, EFX_RX_PKT_DISCARD);
2710
2711	rx_queue->removed_count += rx_queue->scatter_n;
2712	rx_queue->scatter_n = 0;
2713	rx_queue->scatter_len = 0;
2714	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718					   unsigned int n_packets,
2719					   unsigned int rx_encap_hdr,
2720					   unsigned int rx_l3_class,
2721					   unsigned int rx_l4_class,
2722					   const efx_qword_t *event)
2723{
2724	struct efx_nic *efx = channel->efx;
2725	bool handled = false;
2726
2727	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729			if (!efx->loopback_selftest)
2730				channel->n_rx_eth_crc_err += n_packets;
2731			return EFX_RX_PKT_DISCARD;
2732		}
2733		handled = true;
2734	}
2735	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741			netdev_WARN(efx->net_dev,
2742				    "invalid class for RX_IPCKSUM_ERR: event="
2743				    EFX_QWORD_FMT "\n",
2744				    EFX_QWORD_VAL(*event));
2745		if (!efx->loopback_selftest)
2746			*(rx_encap_hdr ?
2747			  &channel->n_rx_outer_ip_hdr_chksum_err :
2748			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749		return 0;
2750	}
2751	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757			netdev_WARN(efx->net_dev,
2758				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759				    EFX_QWORD_FMT "\n",
2760				    EFX_QWORD_VAL(*event));
2761		if (!efx->loopback_selftest)
2762			*(rx_encap_hdr ?
2763			  &channel->n_rx_outer_tcp_udp_chksum_err :
2764			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765		return 0;
2766	}
2767	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768		if (unlikely(!rx_encap_hdr))
2769			netdev_WARN(efx->net_dev,
2770				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771				    EFX_QWORD_FMT "\n",
2772				    EFX_QWORD_VAL(*event));
2773		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777			netdev_WARN(efx->net_dev,
2778				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779				    EFX_QWORD_FMT "\n",
2780				    EFX_QWORD_VAL(*event));
2781		if (!efx->loopback_selftest)
2782			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783		return 0;
2784	}
2785	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786		if (unlikely(!rx_encap_hdr))
2787			netdev_WARN(efx->net_dev,
2788				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789				    EFX_QWORD_FMT "\n",
2790				    EFX_QWORD_VAL(*event));
2791		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795			netdev_WARN(efx->net_dev,
2796				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797				    EFX_QWORD_FMT "\n",
2798				    EFX_QWORD_VAL(*event));
2799		if (!efx->loopback_selftest)
2800			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801		return 0;
2802	}
2803
2804	WARN_ON(!handled); /* No error bits were recognised */
2805	return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809				    const efx_qword_t *event)
2810{
2811	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813	unsigned int n_descs, n_packets, i;
2814	struct efx_nic *efx = channel->efx;
2815	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816	struct efx_rx_queue *rx_queue;
2817	efx_qword_t errors;
2818	bool rx_cont;
2819	u16 flags = 0;
2820
2821	if (unlikely(READ_ONCE(efx->reset_pending)))
2822		return 0;
2823
2824	/* Basic packet information */
2825	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831	rx_encap_hdr =
2832		nic_data->datapath_caps &
2833			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835		ESE_EZ_ENCAP_HDR_NONE;
2836
2837	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839			    EFX_QWORD_FMT "\n",
2840			    EFX_QWORD_VAL(*event));
2841
2842	rx_queue = efx_channel_get_rx_queue(channel);
2843
2844	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850	if (n_descs != rx_queue->scatter_n + 1) {
2851		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853		/* detect rx abort */
2854		if (unlikely(n_descs == rx_queue->scatter_n)) {
2855			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856				netdev_WARN(efx->net_dev,
2857					    "invalid RX abort: scatter_n=%u event="
2858					    EFX_QWORD_FMT "\n",
2859					    rx_queue->scatter_n,
2860					    EFX_QWORD_VAL(*event));
2861			efx_ef10_handle_rx_abort(rx_queue);
2862			return 0;
2863		}
2864
2865		/* Check that RX completion merging is valid, i.e.
2866		 * the current firmware supports it and this is a
2867		 * non-scattered packet.
2868		 */
2869		if (!(nic_data->datapath_caps &
2870		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871		    rx_queue->scatter_n != 0 || rx_cont) {
2872			efx_ef10_handle_rx_bad_lbits(
2873				rx_queue, next_ptr_lbits,
2874				(rx_queue->removed_count +
2875				 rx_queue->scatter_n + 1) &
2876				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877			return 0;
2878		}
2879
2880		/* Merged completion for multiple non-scattered packets */
2881		rx_queue->scatter_n = 1;
2882		rx_queue->scatter_len = 0;
2883		n_packets = n_descs;
2884		++channel->n_rx_merge_events;
2885		channel->n_rx_merge_packets += n_packets;
2886		flags |= EFX_RX_PKT_PREFIX_LEN;
2887	} else {
2888		++rx_queue->scatter_n;
2889		rx_queue->scatter_len += rx_bytes;
2890		if (rx_cont)
2891			return 0;
2892		n_packets = 1;
2893	}
2894
2895	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2897				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900	EFX_AND_QWORD(errors, *event, errors);
2901	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903							 rx_encap_hdr,
2904							 rx_l3_class, rx_l4_class,
2905							 event);
2906	} else {
2907		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910		switch (rx_encap_hdr) {
2911		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913			if (tcpudp)
2914				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915			break;
2916		case ESE_EZ_ENCAP_HDR_GRE:
2917		case ESE_EZ_ENCAP_HDR_NONE:
2918			if (tcpudp)
2919				flags |= EFX_RX_PKT_CSUMMED;
2920			break;
2921		default:
2922			netdev_WARN(efx->net_dev,
2923				    "unknown encapsulation type: event="
2924				    EFX_QWORD_FMT "\n",
2925				    EFX_QWORD_VAL(*event));
2926		}
2927	}
2928
2929	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930		flags |= EFX_RX_PKT_TCP;
2931
2932	channel->irq_mod_score += 2 * n_packets;
2933
2934	/* Handle received packet(s) */
2935	for (i = 0; i < n_packets; i++) {
2936		efx_rx_packet(rx_queue,
2937			      rx_queue->removed_count & rx_queue->ptr_mask,
2938			      rx_queue->scatter_n, rx_queue->scatter_len,
2939			      flags);
2940		rx_queue->removed_count += rx_queue->scatter_n;
2941	}
2942
2943	rx_queue->scatter_n = 0;
2944	rx_queue->scatter_len = 0;
2945
2946	return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951	u32 tstamp;
2952
2953	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954	tstamp <<= 16;
2955	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957	return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963	struct efx_nic *efx = channel->efx;
2964	struct efx_tx_queue *tx_queue;
2965	unsigned int tx_ev_desc_ptr;
2966	unsigned int tx_ev_q_label;
2967	unsigned int tx_ev_type;
2968	int work_done;
2969	u64 ts_part;
2970
2971	if (unlikely(READ_ONCE(efx->reset_pending)))
2972		return 0;
2973
2974	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975		return 0;
2976
2977	/* Get the transmit queue */
2978	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
 
2980
2981	if (!tx_queue->timestamping) {
2982		/* Transmit completion */
2983		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984		return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
 
2985	}
2986
2987	/* Transmit timestamps are only available for 8XXX series. They result
2988	 * in up to three events per packet. These occur in order, and are:
2989	 *  - the normal completion event (may be omitted)
2990	 *  - the low part of the timestamp
2991	 *  - the high part of the timestamp
2992	 *
2993	 * It's possible for multiple completion events to appear before the
2994	 * corresponding timestamps. So we can for example get:
2995	 *  COMP N
2996	 *  COMP N+1
2997	 *  TS_LO N
2998	 *  TS_HI N
2999	 *  TS_LO N+1
3000	 *  TS_HI N+1
3001	 *
3002	 * In addition it's also possible for the adjacent completions to be
3003	 * merged, so we may not see COMP N above. As such, the completion
3004	 * events are not very useful here.
3005	 *
3006	 * Each part of the timestamp is itself split across two 16 bit
3007	 * fields in the event.
3008	 */
3009	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010	work_done = 0;
3011
3012	switch (tx_ev_type) {
3013	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014		/* Ignore this event - see above. */
 
 
 
 
 
 
 
 
 
 
3015		break;
3016
3017	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018		ts_part = efx_ef10_extract_event_ts(event);
3019		tx_queue->completed_timestamp_minor = ts_part;
3020		break;
3021
3022	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023		ts_part = efx_ef10_extract_event_ts(event);
3024		tx_queue->completed_timestamp_major = ts_part;
3025
3026		efx_xmit_done_single(tx_queue);
3027		work_done = 1;
3028		break;
3029
3030	default:
3031		netif_err(efx, hw, efx->net_dev,
3032			  "channel %d unknown tx event type %d (data "
3033			  EFX_QWORD_FMT ")\n",
3034			  channel->channel, tx_ev_type,
3035			  EFX_QWORD_VAL(*event));
3036		break;
3037	}
3038
3039	return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045	struct efx_nic *efx = channel->efx;
3046	int subcode;
3047
3048	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050	switch (subcode) {
3051	case ESE_DZ_DRV_TIMER_EV:
3052	case ESE_DZ_DRV_WAKE_UP_EV:
3053		break;
3054	case ESE_DZ_DRV_START_UP_EV:
3055		/* event queue init complete. ok. */
3056		break;
3057	default:
3058		netif_err(efx, hw, efx->net_dev,
3059			  "channel %d unknown driver event type %d"
3060			  " (data " EFX_QWORD_FMT ")\n",
3061			  channel->channel, subcode,
3062			  EFX_QWORD_VAL(*event));
3063
3064	}
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068						   efx_qword_t *event)
3069{
3070	struct efx_nic *efx = channel->efx;
3071	u32 subcode;
3072
3073	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075	switch (subcode) {
3076	case EFX_EF10_TEST:
3077		channel->event_test_cpu = raw_smp_processor_id();
3078		break;
3079	case EFX_EF10_REFILL:
3080		/* The queue must be empty, so we won't receive any rx
3081		 * events, so efx_process_channel() won't refill the
3082		 * queue. Refill it here
3083		 */
3084		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085		break;
3086	default:
3087		netif_err(efx, hw, efx->net_dev,
3088			  "channel %d unknown driver event type %u"
3089			  " (data " EFX_QWORD_FMT ")\n",
3090			  channel->channel, (unsigned) subcode,
3091			  EFX_QWORD_VAL(*event));
3092	}
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099	struct efx_nic *efx = channel->efx;
3100	efx_qword_t event, *p_event;
3101	unsigned int read_ptr;
3102	int spent_tx = 0;
3103	int spent = 0;
3104	int ev_code;
 
3105
3106	if (quota <= 0)
3107		return spent;
3108
3109	read_ptr = channel->eventq_read_ptr;
3110
3111	for (;;) {
3112		p_event = efx_event(channel, read_ptr);
3113		event = *p_event;
3114
3115		if (!efx_event_present(&event))
3116			break;
3117
3118		EFX_SET_QWORD(*p_event);
3119
3120		++read_ptr;
3121
3122		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124		netif_vdbg(efx, drv, efx->net_dev,
3125			   "processing event on %d " EFX_QWORD_FMT "\n",
3126			   channel->channel, EFX_QWORD_VAL(event));
3127
3128		switch (ev_code) {
3129		case ESE_DZ_EV_CODE_MCDI_EV:
3130			efx_mcdi_process_event(channel, &event);
3131			break;
3132		case ESE_DZ_EV_CODE_RX_EV:
3133			spent += efx_ef10_handle_rx_event(channel, &event);
3134			if (spent >= quota) {
3135				/* XXX can we split a merged event to
3136				 * avoid going over-quota?
3137				 */
3138				spent = quota;
3139				goto out;
3140			}
3141			break;
3142		case ESE_DZ_EV_CODE_TX_EV:
3143			spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144			if (spent_tx >= EFX_NAPI_MAX_TX) {
3145				spent = quota;
3146				goto out;
3147			}
3148			break;
3149		case ESE_DZ_EV_CODE_DRIVER_EV:
3150			efx_ef10_handle_driver_event(channel, &event);
3151			if (++spent == quota)
3152				goto out;
3153			break;
3154		case EFX_EF10_DRVGEN_EV:
3155			efx_ef10_handle_driver_generated_event(channel, &event);
3156			break;
3157		default:
3158			netif_err(efx, hw, efx->net_dev,
3159				  "channel %d unknown event type %d"
3160				  " (data " EFX_QWORD_FMT ")\n",
3161				  channel->channel, ev_code,
3162				  EFX_QWORD_VAL(event));
3163		}
3164	}
3165
3166out:
3167	channel->eventq_read_ptr = read_ptr;
3168	return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173	struct efx_nic *efx = channel->efx;
3174	efx_dword_t rptr;
3175
3176	if (EFX_EF10_WORKAROUND_35388(efx)) {
3177		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184				     ERF_DD_EVQ_IND_RPTR,
3185				     (channel->eventq_read_ptr &
3186				      channel->eventq_mask) >>
3187				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3188		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189				channel->channel);
3190		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192				     ERF_DD_EVQ_IND_RPTR,
3193				     channel->eventq_read_ptr &
3194				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196				channel->channel);
3197	} else {
3198		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199				     channel->eventq_read_ptr &
3200				     channel->eventq_mask);
3201		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202	}
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208	struct efx_nic *efx = channel->efx;
3209	efx_qword_t event;
3210	int rc;
3211
3212	EFX_POPULATE_QWORD_2(event,
3213			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219	 * already swapped the data to little-endian order.
3220	 */
3221	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222	       sizeof(efx_qword_t));
3223
3224	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225			  NULL, 0, NULL);
3226	if (rc != 0)
3227		goto fail;
3228
3229	return;
3230
3231fail:
3232	WARN_ON(true);
3233	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238	atomic_set(&efx->active_queues, 0);
3239}
3240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242{
3243	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244	u8 mac_old[ETH_ALEN];
3245	int rc, rc2;
3246
3247	/* Only reconfigure a PF-created vport */
3248	if (is_zero_ether_addr(nic_data->vport_mac))
3249		return 0;
3250
3251	efx_device_detach_sync(efx);
3252	efx_net_stop(efx->net_dev);
 
3253	efx_ef10_filter_table_remove(efx);
 
3254
3255	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256	if (rc)
3257		goto restore_filters;
3258
3259	ether_addr_copy(mac_old, nic_data->vport_mac);
3260	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261				    nic_data->vport_mac);
3262	if (rc)
3263		goto restore_vadaptor;
3264
3265	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266				    efx->net_dev->dev_addr);
3267	if (!rc) {
3268		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269	} else {
3270		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271		if (rc2) {
3272			/* Failed to add original MAC, so clear vport_mac */
3273			eth_zero_addr(nic_data->vport_mac);
3274			goto reset_nic;
3275		}
3276	}
3277
3278restore_vadaptor:
3279	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280	if (rc2)
3281		goto reset_nic;
3282restore_filters:
 
3283	rc2 = efx_ef10_filter_table_probe(efx);
 
3284	if (rc2)
3285		goto reset_nic;
3286
3287	rc2 = efx_net_open(efx->net_dev);
3288	if (rc2)
3289		goto reset_nic;
3290
3291	efx_device_attach_if_not_resetting(efx);
3292
3293	return rc;
3294
3295reset_nic:
3296	netif_err(efx, drv, efx->net_dev,
3297		  "Failed to restore when changing MAC address - scheduling reset\n");
3298	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300	return rc ? rc : rc2;
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
 
 
 
 
3304{
3305	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306	bool was_enabled = efx->port_enabled;
3307	int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310	/* If this function is a VF and we have access to the parent PF,
3311	 * then use the PF control path to attempt to change the VF MAC address.
3312	 */
3313	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314		struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316		u8 mac[ETH_ALEN];
3317
3318		/* net_dev->dev_addr can be zeroed by efx_net_stop in
3319		 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
 
 
 
 
 
 
 
3320		 */
3321		ether_addr_copy(mac, efx->net_dev->dev_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3322
3323		rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324		if (!rc)
3325			return 0;
 
 
 
 
 
 
3326
3327		netif_dbg(efx, drv, efx->net_dev,
3328			  "Updating VF mac via PF failed (%d), setting directly\n",
3329			  rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3330	}
3331#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3332
3333	efx_device_detach_sync(efx);
3334	efx_net_stop(efx->net_dev);
3335
3336	mutex_lock(&efx->mac_lock);
 
3337	efx_ef10_filter_table_remove(efx);
3338
3339	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340			efx->net_dev->dev_addr);
3341	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342		       efx->vport_id);
3343	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344				sizeof(inbuf), NULL, 0, NULL);
3345
3346	efx_ef10_filter_table_probe(efx);
 
3347	mutex_unlock(&efx->mac_lock);
3348
3349	if (was_enabled)
3350		efx_net_open(efx->net_dev);
3351	efx_device_attach_if_not_resetting(efx);
3352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353	if (rc == -EPERM) {
3354		netif_err(efx, drv, efx->net_dev,
3355			  "Cannot change MAC address; use sfboot to enable"
3356			  " mac-spoofing on this interface\n");
3357	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359		 * fall-back to the method of changing the MAC address on the
3360		 * vport.  This only applies to PFs because such versions of
3361		 * MCFW do not support VFs.
3362		 */
3363		rc = efx_ef10_vport_set_mac_address(efx);
3364	} else if (rc) {
3365		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366				       sizeof(inbuf), NULL, 0, rc);
3367	}
3368
3369	return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373{
3374	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376	efx_mcdi_filter_sync_rx_mode(efx);
3377
3378	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379		return efx_mcdi_set_mtu(efx);
3380	return efx_mcdi_set_mac(efx);
3381}
3382
 
 
 
 
 
 
 
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389			    NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398	int rc;
3399	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400	size_t outlen;
3401	u32 result;
3402
3403	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404			   outbuf, sizeof(outbuf), &outlen);
3405	if (rc != 0)
3406		return rc;
3407
3408	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409		return -EIO;
3410
3411	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412	switch (result) {
3413	case MC_CMD_POLL_BIST_PASSED:
3414		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415		return 0;
3416	case MC_CMD_POLL_BIST_TIMEOUT:
3417		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418		return -EIO;
3419	case MC_CMD_POLL_BIST_FAILED:
3420		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421		return -EIO;
3422	default:
3423		netif_err(efx, hw, efx->net_dev,
3424			  "BIST returned unknown result %u", result);
3425		return -EIO;
3426	}
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431	int rc;
3432
3433	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435	rc = efx_ef10_start_bist(efx, bist_type);
3436	if (rc != 0)
3437		return rc;
3438
3439	return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445	int rc, rc2;
3446
3447	efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450			  NULL, 0, NULL, 0, NULL);
3451	if (rc != 0)
3452		goto out;
3453
3454	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460	if (rc == -EPERM)
3461		rc = 0;
3462	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463	return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469	u16 type, type_mask;
3470	u8 port;
3471	const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3476	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3477	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3478	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3479	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3480	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3481	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3482	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3483	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3484	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3485	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3486	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3487	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3488	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3489	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3490	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3491	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3492	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497					struct efx_mcdi_mtd_partition *part,
3498					unsigned int type,
3499					unsigned long *found)
3500{
3501	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503	const struct efx_ef10_nvram_type_info *info;
3504	size_t size, erase_size, outlen;
3505	int type_idx = 0;
3506	bool protected;
3507	int rc;
3508
3509	for (type_idx = 0; ; type_idx++) {
3510		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
 
3511			return -ENODEV;
3512		info = efx_ef10_nvram_types + type_idx;
3513		if ((type & ~info->type_mask) == info->type)
3514			break;
3515	}
3516	if (info->port != efx_port_num(efx))
3517		return -ENODEV;
3518
3519	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520	if (rc)
3521		return rc;
3522	if (protected &&
3523	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525		/* Hide protected partitions that don't provide defaults. */
3526		return -ENODEV;
3527
3528	if (protected)
3529		/* Protected partitions are read only. */
3530		erase_size = 0;
3531
3532	/* If we've already exposed a partition of this type, hide this
3533	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3534	 * so we can't act on the duplicate.
3535	 */
3536	if (__test_and_set_bit(type_idx, found))
3537		return -EEXIST;
3538
3539	part->nvram_type = type;
3540
3541	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543			  outbuf, sizeof(outbuf), &outlen);
3544	if (rc)
3545		return rc;
3546	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547		return -EIO;
3548	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550		part->fw_subtype = MCDI_DWORD(outbuf,
3551					      NVRAM_METADATA_OUT_SUBTYPE);
3552
3553	part->common.dev_type_name = "EF10 NVRAM manager";
3554	part->common.type_name = info->name;
3555
3556	part->common.mtd.type = MTD_NORFLASH;
3557	part->common.mtd.flags = MTD_CAP_NORFLASH;
3558	part->common.mtd.size = size;
3559	part->common.mtd.erasesize = erase_size;
3560	/* sfc_status is read-only */
3561	if (!erase_size)
3562		part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564	return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571	struct efx_mcdi_mtd_partition *parts;
3572	size_t outlen, n_parts_total, i, n_parts;
3573	unsigned int type;
3574	int rc;
3575
3576	ASSERT_RTNL();
3577
3578	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580			  outbuf, sizeof(outbuf), &outlen);
3581	if (rc)
3582		return rc;
3583	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584		return -EIO;
3585
3586	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587	if (n_parts_total >
3588	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589		return -EIO;
3590
3591	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592	if (!parts)
3593		return -ENOMEM;
3594
3595	n_parts = 0;
3596	for (i = 0; i < n_parts_total; i++) {
3597		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598					i);
3599		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600						  found);
3601		if (rc == -EEXIST || rc == -ENODEV)
3602			continue;
3603		if (rc)
3604			goto fail;
3605		n_parts++;
3606	}
3607
3608	if (!n_parts) {
3609		kfree(parts);
3610		return 0;
3611	}
3612
3613	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615	if (rc)
3616		kfree(parts);
3617	return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628					    u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631					   bool temp)
3632{
3633	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634	int rc;
3635
3636	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3638	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639		return 0;
3640	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645		       channel->channel);
3646
3647	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650	if (rc != 0)
3651		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652						    SYNC_EVENTS_DISABLED;
3653
3654	return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658					    bool temp)
3659{
3660	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661	int rc;
3662
3663	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665		return 0;
3666	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668		return 0;
3669	}
3670	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671					    SYNC_EVENTS_DISABLED;
3672
3673	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678		       channel->channel);
3679
3680	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683	return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687					   bool temp)
3688{
3689	int (*set)(struct efx_channel *channel, bool temp);
3690	struct efx_channel *channel;
3691
3692	set = en ?
3693	      efx_ef10_rx_enable_timestamping :
3694	      efx_ef10_rx_disable_timestamping;
3695
3696	channel = efx_ptp_channel(efx);
3697	if (channel) {
3698		int rc = set(channel, temp);
3699		if (en && rc != 0) {
3700			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701			return rc;
3702		}
3703	}
3704
3705	return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709					 struct kernel_hwtstamp_config *init)
3710{
3711	return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715				      struct kernel_hwtstamp_config *init)
3716{
3717	int rc;
3718
3719	switch (init->rx_filter) {
3720	case HWTSTAMP_FILTER_NONE:
3721		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722		/* if TX timestamping is still requested then leave PTP on */
3723		return efx_ptp_change_mode(efx,
3724					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3725	case HWTSTAMP_FILTER_ALL:
3726	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738	case HWTSTAMP_FILTER_NTP_ALL:
3739		init->rx_filter = HWTSTAMP_FILTER_ALL;
3740		rc = efx_ptp_change_mode(efx, true, 0);
3741		if (!rc)
3742			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743		if (rc)
3744			efx_ptp_change_mode(efx, false, 0);
3745		return rc;
3746	default:
3747		return -ERANGE;
3748	}
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752				     struct netdev_phys_item_id *ppid)
3753{
3754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756	if (!is_valid_ether_addr(nic_data->port_id))
3757		return -EOPNOTSUPP;
3758
3759	ppid->id_len = ETH_ALEN;
3760	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762	return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767	if (proto != htons(ETH_P_8021Q))
3768		return -EINVAL;
3769
3770	return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775	if (proto != htons(ETH_P_8021Q))
3776		return -EINVAL;
3777
3778	return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791	bool will_reset = false;
3792	size_t num_entries = 0;
3793	size_t inlen, outlen;
3794	size_t i;
3795	int rc;
3796	efx_dword_t flags_and_num_entries;
3797
3798	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800	nic_data->udp_tunnels_dirty = false;
3801
3802	if (!(nic_data->datapath_caps &
3803	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804		efx_device_attach_if_not_resetting(efx);
3805		return 0;
3806	}
3807
3808	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812		if (nic_data->udp_tunnels[i].type !=
3813		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814			efx_dword_t entry;
3815
3816			EFX_POPULATE_DWORD_2(entry,
3817				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818					ntohs(nic_data->udp_tunnels[i].port),
3819				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820					nic_data->udp_tunnels[i].type);
3821			*_MCDI_ARRAY_DWORD(inbuf,
3822				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823				num_entries++) = entry;
3824		}
3825	}
3826
3827	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829		     EFX_WORD_1_LBN);
3830	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831		     EFX_WORD_1_WIDTH);
3832	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834				!!unloading,
3835			     EFX_WORD_1, num_entries);
3836	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837		flags_and_num_entries;
3838
3839	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843	if (rc == -EIO) {
3844		/* Most likely the MC rebooted due to another function also
3845		 * setting its tunnel port list. Mark the tunnel port list as
3846		 * dirty, so it will be pushed upon coming up from the reboot.
3847		 */
3848		nic_data->udp_tunnels_dirty = true;
3849		return 0;
3850	}
3851
3852	if (rc) {
3853		/* expected not available on unprivileged functions */
3854		if (rc != -EPERM)
3855			netif_warn(efx, drv, efx->net_dev,
3856				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859		netif_info(efx, drv, efx->net_dev,
3860			   "Rebooting MC due to UDP tunnel port list change\n");
3861		will_reset = true;
3862		if (unloading)
3863			/* Delay for the MC reset to complete. This will make
3864			 * unloading other functions a bit smoother. This is a
3865			 * race, but the other unload will work whichever way
3866			 * it goes, this just avoids an unnecessary error
3867			 * message.
3868			 */
3869			msleep(100);
3870	}
3871	if (!will_reset && !unloading) {
3872		/* The caller will have detached, relying on the MC reset to
3873		 * trigger a re-attach.  Since there won't be an MC reset, we
3874		 * have to do the attach ourselves.
3875		 */
3876		efx_device_attach_if_not_resetting(efx);
3877	}
3878
3879	return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885	int rc = 0;
3886
3887	mutex_lock(&nic_data->udp_tunnels_lock);
3888	if (nic_data->udp_tunnels_dirty) {
3889		/* Make sure all TX are stopped while we modify the table, else
3890		 * we might race against an efx_features_check().
3891		 */
3892		efx_device_detach_sync(efx);
3893		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894	}
3895	mutex_unlock(&nic_data->udp_tunnels_lock);
3896	return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900				     unsigned int table, unsigned int entry,
3901				     struct udp_tunnel_info *ti)
3902{
3903	struct efx_nic *efx = efx_netdev_priv(dev);
3904	struct efx_ef10_nic_data *nic_data;
3905	int efx_tunnel_type, rc;
3906
3907	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909	else
3910		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
 
 
 
 
 
 
 
 
 
 
 
 
 
3911
3912	nic_data = efx->nic_data;
3913	if (!(nic_data->datapath_caps &
3914	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915		return -EOPNOTSUPP;
 
 
 
 
3916
3917	mutex_lock(&nic_data->udp_tunnels_lock);
3918	/* Make sure all TX are stopped while we add to the table, else we
3919	 * might race against an efx_features_check().
3920	 */
3921	efx_device_detach_sync(efx);
3922	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923	nic_data->udp_tunnels[entry].port = ti->port;
3924	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925	mutex_unlock(&nic_data->udp_tunnels_lock);
3926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3927	return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table.  However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938	size_t i;
3939
3940	if (!(nic_data->datapath_caps &
3941	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942		return false;
3943
3944	if (nic_data->udp_tunnels_dirty)
3945		/* SW table may not match HW state, so just assume we can't
3946		 * use any UDP tunnel offloads.
3947		 */
3948		return false;
3949
3950	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951		if (nic_data->udp_tunnels[i].type !=
3952		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953		    nic_data->udp_tunnels[i].port == port)
3954			return true;
3955
3956	return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960				       unsigned int table, unsigned int entry,
3961				       struct udp_tunnel_info *ti)
3962{
3963	struct efx_nic *efx = efx_netdev_priv(dev);
3964	struct efx_ef10_nic_data *nic_data;
 
3965	int rc;
3966
3967	nic_data = efx->nic_data;
 
 
 
 
 
 
3968
3969	mutex_lock(&nic_data->udp_tunnels_lock);
3970	/* Make sure all TX are stopped while we remove from the table, else we
3971	 * might race against an efx_features_check().
3972	 */
3973	efx_device_detach_sync(efx);
3974	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975	nic_data->udp_tunnels[entry].port = 0;
3976	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977	mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979	return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983	.set_port	= efx_ef10_udp_tnl_set_port,
3984	.unset_port	= efx_ef10_udp_tnl_unset_port,
3985	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986	.tables         = {
3987		{
3988			.n_entries = 16,
3989			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990					UDP_TUNNEL_TYPE_GENEVE,
3991		},
3992	},
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version.  Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999					      size_t len)
4000{
4001	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003	return scnprintf(buf, len, " rx%x tx%x",
4004			 nic_data->rx_dpcpu_fw_id,
4005			 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009				    u8 flag,
4010				    u32 offset)
4011{
4012	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014	switch (offset) {
4015	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016		return nic_data->datapath_caps & BIT_ULL(flag);
4017	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018		return nic_data->datapath_caps2 & BIT_ULL(flag);
4019	default:
4020		return 0;
4021	}
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026	unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028	/* There is no difference between PFs and VFs. The side is based on
4029	 * the maximum link speed of a given NIC.
4030	 */
4031	switch (efx->pci_dev->device & 0xfff) {
4032	case 0x0903:	/* Farmingdale can do up to 10G */
4033		break;
4034	case 0x0923:	/* Greenport can do up to 40G */
4035	case 0x0a03:	/* Medford can do up to 40G */
4036		ret *= 4;
4037		break;
4038	default:	/* Medford2 can do up to 100G */
4039		ret *= 10;
 
 
 
 
 
 
 
4040	}
 
4041
4042	if (IS_ENABLED(CONFIG_PPC64))
4043		ret *= 4;
4044
4045	return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES		\
4049	(NETIF_F_IP_CSUM |		\
4050	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4051	 NETIF_F_IPV6_CSUM |		\
4052	 NETIF_F_RXHASH |		\
4053	 NETIF_F_NTUPLE |		\
4054	 NETIF_F_SG |			\
4055	 NETIF_F_RXCSUM |		\
4056	 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059	.is_vf = true,
4060	.mem_bar = efx_ef10_vf_mem_bar,
4061	.mem_map_size = efx_ef10_mem_map_size,
4062	.probe = efx_ef10_probe_vf,
4063	.remove = efx_ef10_remove,
4064	.dimension_resources = efx_ef10_dimension_resources,
4065	.init = efx_ef10_init_nic,
4066	.fini = efx_ef10_fini_nic,
4067	.map_reset_reason = efx_ef10_map_reset_reason,
4068	.map_reset_flags = efx_ef10_map_reset_flags,
4069	.reset = efx_ef10_reset,
4070	.probe_port = efx_mcdi_port_probe,
4071	.remove_port = efx_mcdi_port_remove,
4072	.fini_dmaq = efx_fini_dmaq,
4073	.prepare_flr = efx_ef10_prepare_flr,
4074	.finish_flr = efx_port_dummy_op_void,
4075	.describe_stats = efx_ef10_describe_stats,
4076	.update_stats = efx_ef10_update_stats_vf,
4077	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078	.start_stats = efx_port_dummy_op_void,
4079	.pull_stats = efx_port_dummy_op_void,
4080	.stop_stats = efx_port_dummy_op_void,
 
4081	.push_irq_moderation = efx_ef10_push_irq_moderation,
4082	.reconfigure_mac = efx_ef10_mac_reconfigure,
4083	.check_mac_fault = efx_mcdi_mac_check_fault,
4084	.reconfigure_port = efx_mcdi_port_reconfigure,
4085	.get_wol = efx_ef10_get_wol_vf,
4086	.set_wol = efx_ef10_set_wol_vf,
4087	.resume_wol = efx_port_dummy_op_void,
4088	.mcdi_request = efx_ef10_mcdi_request,
4089	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090	.mcdi_read_response = efx_ef10_mcdi_read_response,
4091	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093	.irq_enable_master = efx_port_dummy_op_void,
4094	.irq_test_generate = efx_ef10_irq_test_generate,
4095	.irq_disable_non_ev = efx_port_dummy_op_void,
4096	.irq_handle_msi = efx_ef10_msi_interrupt,
4097	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4098	.tx_probe = efx_ef10_tx_probe,
4099	.tx_init = efx_ef10_tx_init,
4100	.tx_remove = efx_mcdi_tx_remove,
4101	.tx_write = efx_ef10_tx_write,
4102	.tx_limit_len = efx_ef10_tx_limit_len,
4103	.tx_enqueue = __efx_enqueue_skb,
4104	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106	.rx_probe = efx_mcdi_rx_probe,
4107	.rx_init = efx_mcdi_rx_init,
4108	.rx_remove = efx_mcdi_rx_remove,
4109	.rx_write = efx_ef10_rx_write,
4110	.rx_defer_refill = efx_ef10_rx_defer_refill,
4111	.rx_packet = __efx_rx_packet,
4112	.ev_probe = efx_mcdi_ev_probe,
4113	.ev_init = efx_ef10_ev_init,
4114	.ev_fini = efx_mcdi_ev_fini,
4115	.ev_remove = efx_mcdi_ev_remove,
4116	.ev_process = efx_ef10_ev_process,
4117	.ev_read_ack = efx_ef10_ev_read_ack,
4118	.ev_test_generate = efx_ef10_ev_test_generate,
4119	.filter_table_probe = efx_ef10_filter_table_probe,
4120	.filter_table_restore = efx_mcdi_filter_table_restore,
4121	.filter_table_remove = efx_ef10_filter_table_remove,
4122	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123	.filter_insert = efx_mcdi_filter_insert,
4124	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4125	.filter_get_safe = efx_mcdi_filter_get_safe,
4126	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4127	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134	.mtd_probe = efx_port_dummy_op_int,
4135#endif
4136	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4142	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4143	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4144#endif
4145	.get_mac_address = efx_ef10_get_mac_address_vf,
4146	.set_mac_address = efx_ef10_set_mac_address,
4147
4148	.get_phys_port_id = efx_ef10_get_phys_port_id,
4149	.revision = EFX_REV_HUNT_A0,
4150	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154	.can_rx_scatter = true,
4155	.always_rx_scatter = true,
4156	.min_interrupt_mode = EFX_INT_MODE_MSIX,
 
4157	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158	.offload_features = EF10_OFFLOAD_FEATURES,
4159	.mcdi_max_ver = 2,
4160	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162			    1 << HWTSTAMP_FILTER_ALL,
4163	.rx_hash_key_size = 40,
4164	.check_caps = ef10_check_caps,
4165	.print_additional_fwver = efx_ef10_print_additional_fwver,
4166	.sensor_event = efx_mcdi_sensor_event,
4167	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171	.is_vf = false,
4172	.mem_bar = efx_ef10_pf_mem_bar,
4173	.mem_map_size = efx_ef10_mem_map_size,
4174	.probe = efx_ef10_probe_pf,
4175	.remove = efx_ef10_remove,
4176	.dimension_resources = efx_ef10_dimension_resources,
4177	.init = efx_ef10_init_nic,
4178	.fini = efx_ef10_fini_nic,
4179	.map_reset_reason = efx_ef10_map_reset_reason,
4180	.map_reset_flags = efx_ef10_map_reset_flags,
4181	.reset = efx_ef10_reset,
4182	.probe_port = efx_mcdi_port_probe,
4183	.remove_port = efx_mcdi_port_remove,
4184	.fini_dmaq = efx_fini_dmaq,
4185	.prepare_flr = efx_ef10_prepare_flr,
4186	.finish_flr = efx_port_dummy_op_void,
4187	.describe_stats = efx_ef10_describe_stats,
4188	.update_stats = efx_ef10_update_stats_pf,
4189	.start_stats = efx_mcdi_mac_start_stats,
4190	.pull_stats = efx_mcdi_mac_pull_stats,
4191	.stop_stats = efx_mcdi_mac_stop_stats,
 
4192	.push_irq_moderation = efx_ef10_push_irq_moderation,
4193	.reconfigure_mac = efx_ef10_mac_reconfigure,
4194	.check_mac_fault = efx_mcdi_mac_check_fault,
4195	.reconfigure_port = efx_mcdi_port_reconfigure,
4196	.get_wol = efx_ef10_get_wol,
4197	.set_wol = efx_ef10_set_wol,
4198	.resume_wol = efx_port_dummy_op_void,
4199	.get_fec_stats = efx_ef10_get_fec_stats,
4200	.test_chip = efx_ef10_test_chip,
4201	.test_nvram = efx_mcdi_nvram_test_all,
4202	.mcdi_request = efx_ef10_mcdi_request,
4203	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204	.mcdi_read_response = efx_ef10_mcdi_read_response,
4205	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207	.irq_enable_master = efx_port_dummy_op_void,
4208	.irq_test_generate = efx_ef10_irq_test_generate,
4209	.irq_disable_non_ev = efx_port_dummy_op_void,
4210	.irq_handle_msi = efx_ef10_msi_interrupt,
4211	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4212	.tx_probe = efx_ef10_tx_probe,
4213	.tx_init = efx_ef10_tx_init,
4214	.tx_remove = efx_mcdi_tx_remove,
4215	.tx_write = efx_ef10_tx_write,
4216	.tx_limit_len = efx_ef10_tx_limit_len,
4217	.tx_enqueue = __efx_enqueue_skb,
4218	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223	.rx_probe = efx_mcdi_rx_probe,
4224	.rx_init = efx_mcdi_rx_init,
4225	.rx_remove = efx_mcdi_rx_remove,
4226	.rx_write = efx_ef10_rx_write,
4227	.rx_defer_refill = efx_ef10_rx_defer_refill,
4228	.rx_packet = __efx_rx_packet,
4229	.ev_probe = efx_mcdi_ev_probe,
4230	.ev_init = efx_ef10_ev_init,
4231	.ev_fini = efx_mcdi_ev_fini,
4232	.ev_remove = efx_mcdi_ev_remove,
4233	.ev_process = efx_ef10_ev_process,
4234	.ev_read_ack = efx_ef10_ev_read_ack,
4235	.ev_test_generate = efx_ef10_ev_test_generate,
4236	.filter_table_probe = efx_ef10_filter_table_probe,
4237	.filter_table_restore = efx_mcdi_filter_table_restore,
4238	.filter_table_remove = efx_ef10_filter_table_remove,
4239	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240	.filter_insert = efx_mcdi_filter_insert,
4241	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4242	.filter_get_safe = efx_mcdi_filter_get_safe,
4243	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4244	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251	.mtd_probe = efx_ef10_mtd_probe,
4252	.mtd_rename = efx_mcdi_mtd_rename,
4253	.mtd_read = efx_mcdi_mtd_read,
4254	.mtd_erase = efx_mcdi_mtd_erase,
4255	.mtd_write = efx_mcdi_mtd_write,
4256	.mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
 
4264	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
 
4265#ifdef CONFIG_SFC_SRIOV
4266	.sriov_configure = efx_ef10_sriov_configure,
4267	.sriov_init = efx_ef10_sriov_init,
4268	.sriov_fini = efx_ef10_sriov_fini,
4269	.sriov_wanted = efx_ef10_sriov_wanted,
 
 
4270	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4276	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4277	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279	.get_mac_address = efx_ef10_get_mac_address_pf,
4280	.set_mac_address = efx_ef10_set_mac_address,
4281	.tso_versions = efx_ef10_tso_versions,
4282
4283	.get_phys_port_id = efx_ef10_get_phys_port_id,
4284	.revision = EFX_REV_HUNT_A0,
4285	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289	.can_rx_scatter = true,
4290	.always_rx_scatter = true,
4291	.option_descriptors = true,
4292	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
 
4293	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294	.offload_features = EF10_OFFLOAD_FEATURES,
4295	.mcdi_max_ver = 2,
4296	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298			    1 << HWTSTAMP_FILTER_ALL,
4299	.rx_hash_key_size = 40,
4300	.check_caps = ef10_check_caps,
4301	.print_additional_fwver = efx_ef10_print_additional_fwver,
4302	.sensor_event = efx_mcdi_sensor_event,
4303	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
v4.17
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2012-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10#include "net_driver.h"
 
 
  11#include "ef10_regs.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "mcdi_pcol.h"
 
 
 
  15#include "nic.h"
 
  16#include "workarounds.h"
  17#include "selftest.h"
  18#include "ef10_sriov.h"
  19#include <linux/in.h>
  20#include <linux/jhash.h>
  21#include <linux/wait.h>
  22#include <linux/workqueue.h>
 
  23
  24/* Hardware control for EF10 architecture including 'Huntington'. */
  25
  26#define EFX_EF10_DRVGEN_EV		7
  27enum {
  28	EFX_EF10_TEST = 1,
  29	EFX_EF10_REFILL,
  30};
  31/* The maximum size of a shared RSS context */
  32/* TODO: this should really be from the mcdi protocol export */
  33#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
  34
  35/* The filter table(s) are managed by firmware and we have write-only
  36 * access.  When removing filters we must identify them to the
  37 * firmware by a 64-bit handle, but this is too wide for Linux kernel
  38 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  39 * be able to tell in advance whether a requested insertion will
  40 * replace an existing filter.  Therefore we maintain a software hash
  41 * table, which should be at least as large as the hardware hash
  42 * table.
  43 *
  44 * Huntington has a single 8K filter table shared between all filter
  45 * types and both ports.
  46 */
  47#define HUNT_FILTER_TBL_ROWS 8192
  48
  49#define EFX_EF10_FILTER_ID_INVALID 0xffff
  50
  51#define EFX_EF10_FILTER_DEV_UC_MAX	32
  52#define EFX_EF10_FILTER_DEV_MC_MAX	256
  53
  54/* VLAN list entry */
  55struct efx_ef10_vlan {
  56	struct list_head list;
  57	u16 vid;
  58};
  59
  60enum efx_ef10_default_filters {
  61	EFX_EF10_BCAST,
  62	EFX_EF10_UCDEF,
  63	EFX_EF10_MCDEF,
  64	EFX_EF10_VXLAN4_UCDEF,
  65	EFX_EF10_VXLAN4_MCDEF,
  66	EFX_EF10_VXLAN6_UCDEF,
  67	EFX_EF10_VXLAN6_MCDEF,
  68	EFX_EF10_NVGRE4_UCDEF,
  69	EFX_EF10_NVGRE4_MCDEF,
  70	EFX_EF10_NVGRE6_UCDEF,
  71	EFX_EF10_NVGRE6_MCDEF,
  72	EFX_EF10_GENEVE4_UCDEF,
  73	EFX_EF10_GENEVE4_MCDEF,
  74	EFX_EF10_GENEVE6_UCDEF,
  75	EFX_EF10_GENEVE6_MCDEF,
  76
  77	EFX_EF10_NUM_DEFAULT_FILTERS
  78};
  79
  80/* Per-VLAN filters information */
  81struct efx_ef10_filter_vlan {
  82	struct list_head list;
  83	u16 vid;
  84	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
  85	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
  86	u16 default_filters[EFX_EF10_NUM_DEFAULT_FILTERS];
  87};
  88
  89struct efx_ef10_dev_addr {
  90	u8 addr[ETH_ALEN];
  91};
  92
  93struct efx_ef10_filter_table {
  94/* The MCDI match masks supported by this fw & hw, in order of priority */
  95	u32 rx_match_mcdi_flags[
  96		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM * 2];
  97	unsigned int rx_match_count;
  98
  99	struct rw_semaphore lock; /* Protects entries */
 100	struct {
 101		unsigned long spec;	/* pointer to spec plus flag bits */
 102/* AUTO_OLD is used to mark and sweep MAC filters for the device address lists. */
 103/* unused flag	1UL */
 104#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
 105#define EFX_EF10_FILTER_FLAGS		3UL
 106		u64 handle;		/* firmware handle */
 107	} *entry;
 108/* Shadow of net_device address lists, guarded by mac_lock */
 109	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
 110	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
 111	int dev_uc_count;
 112	int dev_mc_count;
 113	bool uc_promisc;
 114	bool mc_promisc;
 115/* Whether in multicast promiscuous mode when last changed */
 116	bool mc_promisc_last;
 117	bool mc_overflow; /* Too many MC addrs; should always imply mc_promisc */
 118	bool vlan_filter;
 119	struct list_head vlan_list;
 120};
 121
 122/* An arbitrary search limit for the software hash table */
 123#define EFX_EF10_FILTER_SEARCH_LIMIT 200
 124
 125static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
 126static void efx_ef10_filter_table_remove(struct efx_nic *efx);
 127static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
 128static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
 129					      struct efx_ef10_filter_vlan *vlan);
 130static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
 131static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
 132
 133static u32 efx_ef10_filter_get_unsafe_id(u32 filter_id)
 134{
 135	WARN_ON_ONCE(filter_id == EFX_EF10_FILTER_ID_INVALID);
 136	return filter_id & (HUNT_FILTER_TBL_ROWS - 1);
 137}
 138
 139static unsigned int efx_ef10_filter_get_unsafe_pri(u32 filter_id)
 140{
 141	return filter_id / (HUNT_FILTER_TBL_ROWS * 2);
 142}
 143
 144static u32 efx_ef10_make_filter_id(unsigned int pri, u16 idx)
 145{
 146	return pri * HUNT_FILTER_TBL_ROWS * 2 + idx;
 147}
 148
 149static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
 150{
 151	efx_dword_t reg;
 152
 153	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
 154	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
 155		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
 156}
 157
 158/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
 159 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
 160 * bar; PFs use BAR 0/1 for memory.
 161 */
 162static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
 163{
 164	switch (efx->pci_dev->device) {
 165	case 0x0b03: /* SFC9250 PF */
 166		return 0;
 167	default:
 168		return 2;
 169	}
 170}
 171
 172/* All VFs use BAR 0/1 for memory */
 173static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
 174{
 175	return 0;
 176}
 177
 178static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
 179{
 180	int bar;
 181
 182	bar = efx->type->mem_bar(efx);
 183	return resource_size(&efx->pci_dev->resource[bar]);
 184}
 185
 186static bool efx_ef10_is_vf(struct efx_nic *efx)
 187{
 188	return efx->type->is_vf;
 189}
 190
 191static int efx_ef10_get_pf_index(struct efx_nic *efx)
 192{
 193	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 194	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 195	size_t outlen;
 196	int rc;
 197
 198	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 199			  sizeof(outbuf), &outlen);
 200	if (rc)
 201		return rc;
 202	if (outlen < sizeof(outbuf))
 203		return -EIO;
 204
 205	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
 206	return 0;
 207}
 208
 209#ifdef CONFIG_SFC_SRIOV
 210static int efx_ef10_get_vf_index(struct efx_nic *efx)
 211{
 212	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 213	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 214	size_t outlen;
 215	int rc;
 216
 217	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 218			  sizeof(outbuf), &outlen);
 219	if (rc)
 220		return rc;
 221	if (outlen < sizeof(outbuf))
 222		return -EIO;
 223
 224	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 225	return 0;
 226}
 227#endif
 228
 229static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 230{
 231	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 232	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 233	size_t outlen;
 234	int rc;
 235
 236	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 237
 238	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 239			  outbuf, sizeof(outbuf), &outlen);
 240	if (rc)
 241		return rc;
 242	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 243		netif_err(efx, drv, efx->net_dev,
 244			  "unable to read datapath firmware capabilities\n");
 245		return -EIO;
 246	}
 247
 248	nic_data->datapath_caps =
 249		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 250
 251	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 252		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 253				GET_CAPABILITIES_V2_OUT_FLAGS2);
 254		nic_data->piobuf_size = MCDI_WORD(outbuf,
 255				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 256	} else {
 257		nic_data->datapath_caps2 = 0;
 258		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 259	}
 260
 261	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 262	 */
 263	nic_data->rx_dpcpu_fw_id =
 264		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 265	nic_data->tx_dpcpu_fw_id =
 266		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 267
 268	if (!(nic_data->datapath_caps &
 269	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 270		netif_err(efx, probe, efx->net_dev,
 271			  "current firmware does not support an RX prefix\n");
 272		return -ENODEV;
 273	}
 274
 275	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 276		u8 vi_window_mode = MCDI_BYTE(outbuf,
 277				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 278
 279		switch (vi_window_mode) {
 280		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
 281			efx->vi_stride = 8192;
 282			break;
 283		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
 284			efx->vi_stride = 16384;
 285			break;
 286		case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
 287			efx->vi_stride = 65536;
 288			break;
 289		default:
 290			netif_err(efx, probe, efx->net_dev,
 291				  "Unrecognised VI window mode %d\n",
 292				  vi_window_mode);
 293			return -EIO;
 294		}
 295		netif_dbg(efx, probe, efx->net_dev, "vi_stride = %u\n",
 296			  efx->vi_stride);
 297	} else {
 298		/* keep default VI stride */
 299		netif_dbg(efx, probe, efx->net_dev,
 300			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 301			  efx->vi_stride);
 302	}
 303
 304	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 305		efx->num_mac_stats = MCDI_WORD(outbuf,
 306				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 307		netif_dbg(efx, probe, efx->net_dev,
 308			  "firmware reports num_mac_stats = %u\n",
 309			  efx->num_mac_stats);
 310	} else {
 311		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 312		netif_dbg(efx, probe, efx->net_dev,
 313			  "firmware did not report num_mac_stats, assuming %u\n",
 314			  efx->num_mac_stats);
 315	}
 316
 317	return 0;
 318}
 319
 320static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 321{
 322	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 323	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 324	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 325	size_t outlen;
 326	int rc;
 327
 328	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 329		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 330	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 331				outbuf, sizeof(outbuf), &outlen);
 332	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 333		return;
 334
 335	nic_data->licensed_features = MCDI_QWORD(outbuf,
 336					 LICENSING_V3_OUT_LICENSED_FEATURES);
 337}
 338
 339static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 340{
 341	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 342	int rc;
 343
 344	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 345			  outbuf, sizeof(outbuf), NULL);
 346	if (rc)
 347		return rc;
 348	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 349	return rc > 0 ? rc : -ERANGE;
 350}
 351
 352static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 353{
 354	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 355	unsigned int implemented;
 356	unsigned int enabled;
 357	int rc;
 358
 359	nic_data->workaround_35388 = false;
 360	nic_data->workaround_61265 = false;
 361
 362	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 363
 364	if (rc == -ENOSYS) {
 365		/* Firmware without GET_WORKAROUNDS - not a problem. */
 366		rc = 0;
 367	} else if (rc == 0) {
 368		/* Bug61265 workaround is always enabled if implemented. */
 369		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 370			nic_data->workaround_61265 = true;
 371
 372		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 373			nic_data->workaround_35388 = true;
 374		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 375			/* Workaround is implemented but not enabled.
 376			 * Try to enable it.
 377			 */
 378			rc = efx_mcdi_set_workaround(efx,
 379						     MC_CMD_WORKAROUND_BUG35388,
 380						     true, NULL);
 381			if (rc == 0)
 382				nic_data->workaround_35388 = true;
 383			/* If we failed to set the workaround just carry on. */
 384			rc = 0;
 385		}
 386	}
 387
 388	netif_dbg(efx, probe, efx->net_dev,
 389		  "workaround for bug 35388 is %sabled\n",
 390		  nic_data->workaround_35388 ? "en" : "dis");
 391	netif_dbg(efx, probe, efx->net_dev,
 392		  "workaround for bug 61265 is %sabled\n",
 393		  nic_data->workaround_61265 ? "en" : "dis");
 394
 395	return rc;
 396}
 397
 398static void efx_ef10_process_timer_config(struct efx_nic *efx,
 399					  const efx_dword_t *data)
 400{
 401	unsigned int max_count;
 402
 403	if (EFX_EF10_WORKAROUND_61265(efx)) {
 404		efx->timer_quantum_ns = MCDI_DWORD(data,
 405			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 406		efx->timer_max_ns = MCDI_DWORD(data,
 407			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 408	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 409		efx->timer_quantum_ns = MCDI_DWORD(data,
 410			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 411		max_count = MCDI_DWORD(data,
 412			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 413		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 414	} else {
 415		efx->timer_quantum_ns = MCDI_DWORD(data,
 416			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 417		max_count = MCDI_DWORD(data,
 418			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 419		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 420	}
 421
 422	netif_dbg(efx, probe, efx->net_dev,
 423		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 424		  efx->timer_quantum_ns, efx->timer_max_ns);
 425}
 426
 427static int efx_ef10_get_timer_config(struct efx_nic *efx)
 428{
 429	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 430	int rc;
 431
 432	rc = efx_ef10_get_timer_workarounds(efx);
 433	if (rc)
 434		return rc;
 435
 436	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 437				outbuf, sizeof(outbuf), NULL);
 438
 439	if (rc == 0) {
 440		efx_ef10_process_timer_config(efx, outbuf);
 441	} else if (rc == -ENOSYS || rc == -EPERM) {
 442		/* Not available - fall back to Huntington defaults. */
 443		unsigned int quantum;
 444
 445		rc = efx_ef10_get_sysclk_freq(efx);
 446		if (rc < 0)
 447			return rc;
 448
 449		quantum = 1536000 / rc; /* 1536 cycles */
 450		efx->timer_quantum_ns = quantum;
 451		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 452		rc = 0;
 453	} else {
 454		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 455				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 456				       NULL, 0, rc);
 457	}
 458
 459	return rc;
 460}
 461
 462static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 463{
 464	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 465	size_t outlen;
 466	int rc;
 467
 468	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 469
 470	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 471			  outbuf, sizeof(outbuf), &outlen);
 472	if (rc)
 473		return rc;
 474	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 475		return -EIO;
 476
 477	ether_addr_copy(mac_address,
 478			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 479	return 0;
 480}
 481
 482static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 483{
 484	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 485	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 486	size_t outlen;
 487	int num_addrs, rc;
 488
 489	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 490		       EVB_PORT_ID_ASSIGNED);
 491	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 492			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 493
 494	if (rc)
 495		return rc;
 496	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 497		return -EIO;
 498
 499	num_addrs = MCDI_DWORD(outbuf,
 500			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 501
 502	WARN_ON(num_addrs != 1);
 503
 504	ether_addr_copy(mac_address,
 505			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 506
 507	return 0;
 508}
 509
 510static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
 511					       struct device_attribute *attr,
 512					       char *buf)
 513{
 514	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 515
 516	return sprintf(buf, "%d\n",
 517		       ((efx->mcdi->fn_flags) &
 518			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 519		       ? 1 : 0);
 520}
 521
 522static ssize_t efx_ef10_show_primary_flag(struct device *dev,
 523					  struct device_attribute *attr,
 524					  char *buf)
 525{
 526	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 527
 528	return sprintf(buf, "%d\n",
 529		       ((efx->mcdi->fn_flags) &
 530			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 531		       ? 1 : 0);
 532}
 533
 534static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 535{
 536	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 537	struct efx_ef10_vlan *vlan;
 538
 539	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 540
 541	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 542		if (vlan->vid == vid)
 543			return vlan;
 544	}
 545
 546	return NULL;
 547}
 548
 549static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 550{
 551	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 552	struct efx_ef10_vlan *vlan;
 553	int rc;
 554
 555	mutex_lock(&nic_data->vlan_lock);
 556
 557	vlan = efx_ef10_find_vlan(efx, vid);
 558	if (vlan) {
 559		/* We add VID 0 on init. 8021q adds it on module init
 560		 * for all interfaces with VLAN filtring feature.
 561		 */
 562		if (vid == 0)
 563			goto done_unlock;
 564		netif_warn(efx, drv, efx->net_dev,
 565			   "VLAN %u already added\n", vid);
 566		rc = -EALREADY;
 567		goto fail_exist;
 568	}
 569
 570	rc = -ENOMEM;
 571	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 572	if (!vlan)
 573		goto fail_alloc;
 574
 575	vlan->vid = vid;
 576
 577	list_add_tail(&vlan->list, &nic_data->vlan_list);
 578
 579	if (efx->filter_state) {
 580		mutex_lock(&efx->mac_lock);
 581		down_write(&efx->filter_sem);
 582		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
 583		up_write(&efx->filter_sem);
 584		mutex_unlock(&efx->mac_lock);
 585		if (rc)
 586			goto fail_filter_add_vlan;
 587	}
 588
 589done_unlock:
 590	mutex_unlock(&nic_data->vlan_lock);
 591	return 0;
 592
 593fail_filter_add_vlan:
 594	list_del(&vlan->list);
 595	kfree(vlan);
 596fail_alloc:
 597fail_exist:
 598	mutex_unlock(&nic_data->vlan_lock);
 599	return rc;
 600}
 601
 602static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 603				       struct efx_ef10_vlan *vlan)
 604{
 605	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 606
 607	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 608
 609	if (efx->filter_state) {
 610		down_write(&efx->filter_sem);
 611		efx_ef10_filter_del_vlan(efx, vlan->vid);
 612		up_write(&efx->filter_sem);
 613	}
 614
 615	list_del(&vlan->list);
 616	kfree(vlan);
 617}
 618
 619static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 620{
 621	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 622	struct efx_ef10_vlan *vlan;
 623	int rc = 0;
 624
 625	/* 8021q removes VID 0 on module unload for all interfaces
 626	 * with VLAN filtering feature. We need to keep it to receive
 627	 * untagged traffic.
 628	 */
 629	if (vid == 0)
 630		return 0;
 631
 632	mutex_lock(&nic_data->vlan_lock);
 633
 634	vlan = efx_ef10_find_vlan(efx, vid);
 635	if (!vlan) {
 636		netif_err(efx, drv, efx->net_dev,
 637			  "VLAN %u to be deleted not found\n", vid);
 638		rc = -ENOENT;
 639	} else {
 640		efx_ef10_del_vlan_internal(efx, vlan);
 641	}
 642
 643	mutex_unlock(&nic_data->vlan_lock);
 644
 645	return rc;
 646}
 647
 648static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 649{
 650	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 651	struct efx_ef10_vlan *vlan, *next_vlan;
 652
 653	mutex_lock(&nic_data->vlan_lock);
 654	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 655		efx_ef10_del_vlan_internal(efx, vlan);
 656	mutex_unlock(&nic_data->vlan_lock);
 657}
 658
 659static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
 660		   NULL);
 661static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
 662
 663static int efx_ef10_probe(struct efx_nic *efx)
 664{
 665	struct efx_ef10_nic_data *nic_data;
 666	int i, rc;
 667
 668	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 669	if (!nic_data)
 670		return -ENOMEM;
 671	efx->nic_data = nic_data;
 672
 673	/* we assume later that we can copy from this buffer in dwords */
 674	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 675
 676	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 677				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 678	if (rc)
 679		goto fail1;
 680
 681	/* Get the MC's warm boot count.  In case it's rebooting right
 682	 * now, be prepared to retry.
 683	 */
 684	i = 0;
 685	for (;;) {
 686		rc = efx_ef10_get_warm_boot_count(efx);
 687		if (rc >= 0)
 688			break;
 689		if (++i == 5)
 690			goto fail2;
 691		ssleep(1);
 692	}
 693	nic_data->warm_boot_count = rc;
 694
 695	efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
 696
 697	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
 698
 699	/* In case we're recovering from a crash (kexec), we want to
 700	 * cancel any outstanding request by the previous user of this
 701	 * function.  We send a special message using the least
 702	 * significant bits of the 'high' (doorbell) register.
 703	 */
 704	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 705
 706	rc = efx_mcdi_init(efx);
 707	if (rc)
 708		goto fail2;
 709
 710	mutex_init(&nic_data->udp_tunnels_lock);
 
 
 
 711
 712	/* Reset (most) configuration for this function */
 713	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 714	if (rc)
 715		goto fail3;
 716
 717	/* Enable event logging */
 718	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 719	if (rc)
 720		goto fail3;
 721
 722	rc = device_create_file(&efx->pci_dev->dev,
 723				&dev_attr_link_control_flag);
 724	if (rc)
 725		goto fail3;
 726
 727	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 728	if (rc)
 729		goto fail4;
 730
 731	rc = efx_ef10_get_pf_index(efx);
 732	if (rc)
 733		goto fail5;
 734
 735	rc = efx_ef10_init_datapath_caps(efx);
 736	if (rc < 0)
 737		goto fail5;
 738
 739	efx_ef10_read_licensed_features(efx);
 740
 741	/* We can have one VI for each vi_stride-byte region.
 742	 * However, until we use TX option descriptors we need two TX queues
 743	 * per channel.
 744	 */
 745	efx->max_channels = min_t(unsigned int,
 746				  EFX_MAX_CHANNELS,
 747				  efx_ef10_mem_map_size(efx) /
 748				  (efx->vi_stride * EFX_TXQ_TYPES));
 
 
 
 
 
 
 
 
 
 749	efx->max_tx_channels = efx->max_channels;
 750	if (WARN_ON(efx->max_channels == 0)) {
 751		rc = -EIO;
 752		goto fail5;
 753	}
 754
 755	efx->rx_packet_len_offset =
 756		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 757
 758	if (nic_data->datapath_caps &
 759	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 760		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 761
 762	rc = efx_mcdi_port_get_number(efx);
 763	if (rc < 0)
 764		goto fail5;
 765	efx->port_num = rc;
 766
 767	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 768	if (rc)
 769		goto fail5;
 770
 771	rc = efx_ef10_get_timer_config(efx);
 772	if (rc < 0)
 773		goto fail5;
 774
 775	rc = efx_mcdi_mon_probe(efx);
 776	if (rc && rc != -EPERM)
 777		goto fail5;
 778
 779	efx_ptp_defer_probe_with_channel(efx);
 780
 781#ifdef CONFIG_SFC_SRIOV
 782	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 783		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 784		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 785
 786		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 787	} else
 788#endif
 789		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 790
 791	INIT_LIST_HEAD(&nic_data->vlan_list);
 792	mutex_init(&nic_data->vlan_lock);
 793
 794	/* Add unspecified VID to support VLAN filtering being disabled */
 795	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 796	if (rc)
 797		goto fail_add_vid_unspec;
 798
 799	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 800	 * traffic.  It is added automatically if 8021q module is loaded,
 801	 * but we can't rely on it since module may be not loaded.
 802	 */
 803	rc = efx_ef10_add_vlan(efx, 0);
 804	if (rc)
 805		goto fail_add_vid_0;
 806
 
 
 
 
 
 
 807	return 0;
 808
 809fail_add_vid_0:
 810	efx_ef10_cleanup_vlans(efx);
 811fail_add_vid_unspec:
 812	mutex_destroy(&nic_data->vlan_lock);
 813	efx_ptp_remove(efx);
 814	efx_mcdi_mon_remove(efx);
 815fail5:
 816	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 817fail4:
 818	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 819fail3:
 820	efx_mcdi_detach(efx);
 821
 822	mutex_lock(&nic_data->udp_tunnels_lock);
 823	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 824	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 825	mutex_unlock(&nic_data->udp_tunnels_lock);
 826	mutex_destroy(&nic_data->udp_tunnels_lock);
 827
 828	efx_mcdi_fini(efx);
 829fail2:
 830	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 831fail1:
 832	kfree(nic_data);
 833	efx->nic_data = NULL;
 834	return rc;
 835}
 836
 837static int efx_ef10_free_vis(struct efx_nic *efx)
 838{
 839	MCDI_DECLARE_BUF_ERR(outbuf);
 840	size_t outlen;
 841	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 842				    outbuf, sizeof(outbuf), &outlen);
 843
 844	/* -EALREADY means nothing to free, so ignore */
 845	if (rc == -EALREADY)
 846		rc = 0;
 847	if (rc)
 848		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 849				       rc);
 850	return rc;
 851}
 852
 853#ifdef EFX_USE_PIO
 854
 855static void efx_ef10_free_piobufs(struct efx_nic *efx)
 856{
 857	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 858	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 859	unsigned int i;
 860	int rc;
 861
 862	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 863
 864	for (i = 0; i < nic_data->n_piobufs; i++) {
 865		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 866			       nic_data->piobuf_handle[i]);
 867		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 868				  NULL, 0, NULL);
 869		WARN_ON(rc);
 870	}
 871
 872	nic_data->n_piobufs = 0;
 873}
 874
 875static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 876{
 877	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 878	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 879	unsigned int i;
 880	size_t outlen;
 881	int rc = 0;
 882
 883	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 884
 885	for (i = 0; i < n; i++) {
 886		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 887					outbuf, sizeof(outbuf), &outlen);
 888		if (rc) {
 889			/* Don't display the MC error if we didn't have space
 890			 * for a VF.
 891			 */
 892			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 893				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 894						       0, outbuf, outlen, rc);
 895			break;
 896		}
 897		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 898			rc = -EIO;
 899			break;
 900		}
 901		nic_data->piobuf_handle[i] =
 902			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 903		netif_dbg(efx, probe, efx->net_dev,
 904			  "allocated PIO buffer %u handle %x\n", i,
 905			  nic_data->piobuf_handle[i]);
 906	}
 907
 908	nic_data->n_piobufs = i;
 909	if (rc)
 910		efx_ef10_free_piobufs(efx);
 911	return rc;
 912}
 913
 914static int efx_ef10_link_piobufs(struct efx_nic *efx)
 915{
 916	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 917	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 918	struct efx_channel *channel;
 919	struct efx_tx_queue *tx_queue;
 920	unsigned int offset, index;
 921	int rc;
 922
 923	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 924	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 925
 926	/* Link a buffer to each VI in the write-combining mapping */
 927	for (index = 0; index < nic_data->n_piobufs; ++index) {
 928		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 929			       nic_data->piobuf_handle[index]);
 930		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 931			       nic_data->pio_write_vi_base + index);
 932		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 933				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 934				  NULL, 0, NULL);
 935		if (rc) {
 936			netif_err(efx, drv, efx->net_dev,
 937				  "failed to link VI %u to PIO buffer %u (%d)\n",
 938				  nic_data->pio_write_vi_base + index, index,
 939				  rc);
 940			goto fail;
 941		}
 942		netif_dbg(efx, probe, efx->net_dev,
 943			  "linked VI %u to PIO buffer %u\n",
 944			  nic_data->pio_write_vi_base + index, index);
 945	}
 946
 947	/* Link a buffer to each TX queue */
 948	efx_for_each_channel(channel, efx) {
 949		/* Extra channels, even those with TXQs (PTP), do not require
 950		 * PIO resources.
 951		 */
 952		if (!channel->type->want_pio)
 
 953			continue;
 
 954		efx_for_each_channel_tx_queue(tx_queue, channel) {
 955			/* We assign the PIO buffers to queues in
 956			 * reverse order to allow for the following
 957			 * special case.
 958			 */
 959			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 960				   tx_queue->channel->channel - 1) *
 961				  efx_piobuf_size);
 962			index = offset / nic_data->piobuf_size;
 963			offset = offset % nic_data->piobuf_size;
 964
 965			/* When the host page size is 4K, the first
 966			 * host page in the WC mapping may be within
 967			 * the same VI page as the last TX queue.  We
 968			 * can only link one buffer to each VI.
 969			 */
 970			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 971				BUG_ON(index != 0);
 972				rc = 0;
 973			} else {
 974				MCDI_SET_DWORD(inbuf,
 975					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 976					       nic_data->piobuf_handle[index]);
 977				MCDI_SET_DWORD(inbuf,
 978					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 979					       tx_queue->queue);
 980				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 981						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 982						  NULL, 0, NULL);
 983			}
 984
 985			if (rc) {
 986				/* This is non-fatal; the TX path just
 987				 * won't use PIO for this queue
 988				 */
 989				netif_err(efx, drv, efx->net_dev,
 990					  "failed to link VI %u to PIO buffer %u (%d)\n",
 991					  tx_queue->queue, index, rc);
 992				tx_queue->piobuf = NULL;
 993			} else {
 994				tx_queue->piobuf =
 995					nic_data->pio_write_base +
 996					index * efx->vi_stride + offset;
 997				tx_queue->piobuf_offset = offset;
 998				netif_dbg(efx, probe, efx->net_dev,
 999					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
1000					  tx_queue->queue, index,
1001					  tx_queue->piobuf_offset,
1002					  tx_queue->piobuf);
1003			}
1004		}
1005	}
1006
1007	return 0;
1008
1009fail:
1010	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
1011	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
1012	 */
1013	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
1014	while (index--) {
1015		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
1016			       nic_data->pio_write_vi_base + index);
1017		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
1018			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
1019			     NULL, 0, NULL);
1020	}
1021	return rc;
1022}
1023
1024static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1025{
1026	struct efx_channel *channel;
1027	struct efx_tx_queue *tx_queue;
1028
1029	/* All our existing PIO buffers went away */
1030	efx_for_each_channel(channel, efx)
1031		efx_for_each_channel_tx_queue(tx_queue, channel)
1032			tx_queue->piobuf = NULL;
1033}
1034
1035#else /* !EFX_USE_PIO */
1036
1037static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
1038{
1039	return n == 0 ? 0 : -ENOBUFS;
1040}
1041
1042static int efx_ef10_link_piobufs(struct efx_nic *efx)
1043{
1044	return 0;
1045}
1046
1047static void efx_ef10_free_piobufs(struct efx_nic *efx)
1048{
1049}
1050
1051static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
1052{
1053}
1054
1055#endif /* EFX_USE_PIO */
1056
1057static void efx_ef10_remove(struct efx_nic *efx)
1058{
1059	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1060	int rc;
1061
1062#ifdef CONFIG_SFC_SRIOV
1063	struct efx_ef10_nic_data *nic_data_pf;
1064	struct pci_dev *pci_dev_pf;
1065	struct efx_nic *efx_pf;
1066	struct ef10_vf *vf;
1067
1068	if (efx->pci_dev->is_virtfn) {
1069		pci_dev_pf = efx->pci_dev->physfn;
1070		if (pci_dev_pf) {
1071			efx_pf = pci_get_drvdata(pci_dev_pf);
1072			nic_data_pf = efx_pf->nic_data;
1073			vf = nic_data_pf->vf + nic_data->vf_index;
1074			vf->efx = NULL;
1075		} else
1076			netif_info(efx, drv, efx->net_dev,
1077				   "Could not get the PF id from VF\n");
1078	}
1079#endif
1080
1081	efx_ef10_cleanup_vlans(efx);
1082	mutex_destroy(&nic_data->vlan_lock);
1083
1084	efx_ptp_remove(efx);
1085
1086	efx_mcdi_mon_remove(efx);
1087
1088	efx_ef10_rx_free_indir_table(efx);
1089
1090	if (nic_data->wc_membase)
1091		iounmap(nic_data->wc_membase);
1092
1093	rc = efx_ef10_free_vis(efx);
1094	WARN_ON(rc != 0);
1095
1096	if (!nic_data->must_restore_piobufs)
1097		efx_ef10_free_piobufs(efx);
1098
1099	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
1100	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
1101
1102	efx_mcdi_detach(efx);
1103
1104	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
1105	mutex_lock(&nic_data->udp_tunnels_lock);
1106	(void)efx_ef10_set_udp_tnl_ports(efx, true);
1107	mutex_unlock(&nic_data->udp_tunnels_lock);
1108
1109	mutex_destroy(&nic_data->udp_tunnels_lock);
1110
1111	efx_mcdi_fini(efx);
1112	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1113	kfree(nic_data);
1114}
1115
1116static int efx_ef10_probe_pf(struct efx_nic *efx)
1117{
1118	return efx_ef10_probe(efx);
1119}
1120
1121int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
1122			    u32 *port_flags, u32 *vadaptor_flags,
1123			    unsigned int *vlan_tags)
1124{
1125	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1126	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
1127	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
1128	size_t outlen;
1129	int rc;
1130
1131	if (nic_data->datapath_caps &
1132	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
1133		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
1134			       port_id);
1135
1136		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
1137				  outbuf, sizeof(outbuf), &outlen);
1138		if (rc)
1139			return rc;
1140
1141		if (outlen < sizeof(outbuf)) {
1142			rc = -EIO;
1143			return rc;
1144		}
1145	}
1146
1147	if (port_flags)
1148		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1149	if (vadaptor_flags)
1150		*vadaptor_flags =
1151			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1152	if (vlan_tags)
1153		*vlan_tags =
1154			MCDI_DWORD(outbuf,
1155				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1156
1157	return 0;
1158}
1159
1160int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1161{
1162	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1163
1164	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1165	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1166			    NULL, 0, NULL);
1167}
1168
1169int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1170{
1171	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1172
1173	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1174	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1175			    NULL, 0, NULL);
1176}
1177
1178int efx_ef10_vport_add_mac(struct efx_nic *efx,
1179			   unsigned int port_id, u8 *mac)
1180{
1181	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1182
1183	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1184	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1185
1186	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1187			    sizeof(inbuf), NULL, 0, NULL);
1188}
1189
1190int efx_ef10_vport_del_mac(struct efx_nic *efx,
1191			   unsigned int port_id, u8 *mac)
1192{
1193	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1194
1195	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1196	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1197
1198	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1199			    sizeof(inbuf), NULL, 0, NULL);
1200}
1201
1202#ifdef CONFIG_SFC_SRIOV
1203static int efx_ef10_probe_vf(struct efx_nic *efx)
1204{
1205	int rc;
1206	struct pci_dev *pci_dev_pf;
1207
1208	/* If the parent PF has no VF data structure, it doesn't know about this
1209	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1210	 * if the PF driver is unloaded while the VF is assigned to a guest.
 
1211	 */
1212	pci_dev_pf = efx->pci_dev->physfn;
1213	if (pci_dev_pf) {
1214		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1215		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1216
1217		if (!nic_data_pf->vf) {
1218			netif_info(efx, drv, efx->net_dev,
1219				   "The VF cannot link to its parent PF; "
1220				   "please destroy and re-create the VF\n");
1221			return -EBUSY;
1222		}
1223	}
1224
1225	rc = efx_ef10_probe(efx);
1226	if (rc)
1227		return rc;
1228
1229	rc = efx_ef10_get_vf_index(efx);
1230	if (rc)
1231		goto fail;
1232
1233	if (efx->pci_dev->is_virtfn) {
1234		if (efx->pci_dev->physfn) {
1235			struct efx_nic *efx_pf =
1236				pci_get_drvdata(efx->pci_dev->physfn);
1237			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1238			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1239
1240			nic_data_p->vf[nic_data->vf_index].efx = efx;
1241			nic_data_p->vf[nic_data->vf_index].pci_dev =
1242				efx->pci_dev;
1243		} else
1244			netif_info(efx, drv, efx->net_dev,
1245				   "Could not get the PF id from VF\n");
1246	}
1247
1248	return 0;
1249
1250fail:
1251	efx_ef10_remove(efx);
1252	return rc;
1253}
1254#else
1255static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1256{
1257	return 0;
1258}
1259#endif
1260
1261static int efx_ef10_alloc_vis(struct efx_nic *efx,
1262			      unsigned int min_vis, unsigned int max_vis)
1263{
1264	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1265	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1266	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1267	size_t outlen;
1268	int rc;
1269
1270	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1271	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1272	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1273			  outbuf, sizeof(outbuf), &outlen);
1274	if (rc != 0)
1275		return rc;
1276
1277	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1278		return -EIO;
1279
1280	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1281		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1282
1283	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1284	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1285	return 0;
1286}
1287
1288/* Note that the failure path of this function does not free
1289 * resources, as this will be done by efx_ef10_remove().
1290 */
1291static int efx_ef10_dimension_resources(struct efx_nic *efx)
1292{
 
 
 
1293	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1294	unsigned int uc_mem_map_size, wc_mem_map_size;
1295	unsigned int min_vis = max(EFX_TXQ_TYPES,
1296				   efx_separate_tx_channels ? 2 : 1);
1297	unsigned int channel_vis, pio_write_vi_base, max_vis;
1298	void __iomem *membase;
1299	int rc;
1300
1301	channel_vis = max(efx->n_channels,
1302			  (efx->n_tx_channels + efx->n_extra_tx_channels) *
1303			  EFX_TXQ_TYPES);
 
 
 
 
 
 
 
1304
1305#ifdef EFX_USE_PIO
1306	/* Try to allocate PIO buffers if wanted and if the full
1307	 * number of PIO buffers would be sufficient to allocate one
1308	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1309	 * are only a small number of PIO buffers shared between all
1310	 * functions of the controller.
1311	 */
1312	if (efx_piobuf_size != 0 &&
1313	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1314	    efx->n_tx_channels) {
1315		unsigned int n_piobufs =
1316			DIV_ROUND_UP(efx->n_tx_channels,
1317				     nic_data->piobuf_size / efx_piobuf_size);
1318
1319		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1320		if (rc == -ENOSPC)
1321			netif_dbg(efx, probe, efx->net_dev,
1322				  "out of PIO buffers; cannot allocate more\n");
1323		else if (rc == -EPERM)
1324			netif_dbg(efx, probe, efx->net_dev,
1325				  "not permitted to allocate PIO buffers\n");
1326		else if (rc)
1327			netif_err(efx, probe, efx->net_dev,
1328				  "failed to allocate PIO buffers (%d)\n", rc);
1329		else
1330			netif_dbg(efx, probe, efx->net_dev,
1331				  "allocated %u PIO buffers\n", n_piobufs);
1332	}
1333#else
1334	nic_data->n_piobufs = 0;
1335#endif
1336
1337	/* PIO buffers should be mapped with write-combining enabled,
1338	 * and we want to make single UC and WC mappings rather than
1339	 * several of each (in fact that's the only option if host
1340	 * page size is >4K).  So we may allocate some extra VIs just
1341	 * for writing PIO buffers through.
1342	 *
1343	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1344	 * first 4K of the next VI.  Then the WC mapping begins with
1345	 * the remainder of this last VI.
1346	 */
1347	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1348				     ER_DZ_TX_PIOBUF);
1349	if (nic_data->n_piobufs) {
1350		/* pio_write_vi_base rounds down to give the number of complete
1351		 * VIs inside the UC mapping.
1352		 */
1353		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1354		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1355					       nic_data->n_piobufs) *
1356					      efx->vi_stride) -
1357				   uc_mem_map_size);
1358		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1359	} else {
1360		pio_write_vi_base = 0;
1361		wc_mem_map_size = 0;
1362		max_vis = channel_vis;
1363	}
1364
1365	/* In case the last attached driver failed to free VIs, do it now */
1366	rc = efx_ef10_free_vis(efx);
1367	if (rc != 0)
1368		return rc;
1369
1370	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1371	if (rc != 0)
1372		return rc;
1373
1374	if (nic_data->n_allocated_vis < channel_vis) {
1375		netif_info(efx, drv, efx->net_dev,
1376			   "Could not allocate enough VIs to satisfy RSS"
1377			   " requirements. Performance may not be optimal.\n");
1378		/* We didn't get the VIs to populate our channels.
1379		 * We could keep what we got but then we'd have more
1380		 * interrupts than we need.
1381		 * Instead calculate new max_channels and restart
1382		 */
1383		efx->max_channels = nic_data->n_allocated_vis;
1384		efx->max_tx_channels =
1385			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1386
1387		efx_ef10_free_vis(efx);
1388		return -EAGAIN;
1389	}
1390
1391	/* If we didn't get enough VIs to map all the PIO buffers, free the
1392	 * PIO buffers
1393	 */
1394	if (nic_data->n_piobufs &&
1395	    nic_data->n_allocated_vis <
1396	    pio_write_vi_base + nic_data->n_piobufs) {
1397		netif_dbg(efx, probe, efx->net_dev,
1398			  "%u VIs are not sufficient to map %u PIO buffers\n",
1399			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1400		efx_ef10_free_piobufs(efx);
1401	}
1402
1403	/* Shrink the original UC mapping of the memory BAR */
1404	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1405	if (!membase) {
1406		netif_err(efx, probe, efx->net_dev,
1407			  "could not shrink memory BAR to %x\n",
1408			  uc_mem_map_size);
1409		return -ENOMEM;
1410	}
1411	iounmap(efx->membase);
1412	efx->membase = membase;
1413
1414	/* Set up the WC mapping if needed */
1415	if (wc_mem_map_size) {
1416		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1417						  uc_mem_map_size,
1418						  wc_mem_map_size);
1419		if (!nic_data->wc_membase) {
1420			netif_err(efx, probe, efx->net_dev,
1421				  "could not allocate WC mapping of size %x\n",
1422				  wc_mem_map_size);
1423			return -ENOMEM;
1424		}
1425		nic_data->pio_write_vi_base = pio_write_vi_base;
1426		nic_data->pio_write_base =
1427			nic_data->wc_membase +
1428			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1429			 uc_mem_map_size);
1430
1431		rc = efx_ef10_link_piobufs(efx);
1432		if (rc)
1433			efx_ef10_free_piobufs(efx);
1434	}
1435
1436	netif_dbg(efx, probe, efx->net_dev,
1437		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1438		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1439		  nic_data->wc_membase, wc_mem_map_size);
1440
1441	return 0;
1442}
1443
 
 
 
 
 
 
 
 
 
 
1444static int efx_ef10_init_nic(struct efx_nic *efx)
1445{
1446	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
1447	int rc;
1448
1449	if (nic_data->must_check_datapath_caps) {
1450		rc = efx_ef10_init_datapath_caps(efx);
1451		if (rc)
1452			return rc;
1453		nic_data->must_check_datapath_caps = false;
1454	}
1455
1456	if (nic_data->must_realloc_vis) {
1457		/* We cannot let the number of VIs change now */
1458		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1459					nic_data->n_allocated_vis);
1460		if (rc)
1461			return rc;
1462		nic_data->must_realloc_vis = false;
1463	}
1464
 
 
 
 
 
1465	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1466		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1467		if (rc == 0) {
1468			rc = efx_ef10_link_piobufs(efx);
1469			if (rc)
1470				efx_ef10_free_piobufs(efx);
1471		}
1472
1473		/* Log an error on failure, but this is non-fatal.
1474		 * Permission errors are less important - we've presumably
1475		 * had the PIO buffer licence removed.
1476		 */
1477		if (rc == -EPERM)
1478			netif_dbg(efx, drv, efx->net_dev,
1479				  "not permitted to restore PIO buffers\n");
1480		else if (rc)
1481			netif_err(efx, drv, efx->net_dev,
1482				  "failed to restore PIO buffers (%d)\n", rc);
1483		nic_data->must_restore_piobufs = false;
1484	}
1485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486	/* don't fail init if RSS setup doesn't work */
1487	rc = efx->type->rx_push_rss_config(efx, false,
1488					   efx->rss_context.rx_indir_table, NULL);
1489
1490	return 0;
1491}
1492
1493static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1494{
1495	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1496#ifdef CONFIG_SFC_SRIOV
1497	unsigned int i;
1498#endif
1499
1500	/* All our allocations have been reset */
1501	nic_data->must_realloc_vis = true;
1502	nic_data->must_restore_rss_contexts = true;
1503	nic_data->must_restore_filters = true;
1504	nic_data->must_restore_piobufs = true;
1505	efx_ef10_forget_old_piobufs(efx);
1506	efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
1507
1508	/* Driver-created vswitches and vports must be re-created */
1509	nic_data->must_probe_vswitching = true;
1510	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1511#ifdef CONFIG_SFC_SRIOV
1512	if (nic_data->vf)
1513		for (i = 0; i < efx->vf_count; i++)
1514			nic_data->vf[i].vport_id = 0;
1515#endif
1516}
1517
1518static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1519{
1520	if (reason == RESET_TYPE_MC_FAILURE)
1521		return RESET_TYPE_DATAPATH;
1522
1523	return efx_mcdi_map_reset_reason(reason);
1524}
1525
1526static int efx_ef10_map_reset_flags(u32 *flags)
1527{
1528	enum {
1529		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1530				   ETH_RESET_SHARED_SHIFT),
1531		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1532				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1533				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1534				 ETH_RESET_SHARED_SHIFT)
1535	};
1536
1537	/* We assume for now that our PCI function is permitted to
1538	 * reset everything.
1539	 */
1540
1541	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1542		*flags &= ~EF10_RESET_MC;
1543		return RESET_TYPE_WORLD;
1544	}
1545
1546	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1547		*flags &= ~EF10_RESET_PORT;
1548		return RESET_TYPE_ALL;
1549	}
1550
1551	/* no invisible reset implemented */
1552
1553	return -EINVAL;
1554}
1555
1556static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1557{
1558	int rc = efx_mcdi_reset(efx, reset_type);
1559
1560	/* Unprivileged functions return -EPERM, but need to return success
1561	 * here so that the datapath is brought back up.
1562	 */
1563	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1564		rc = 0;
1565
1566	/* If it was a port reset, trigger reallocation of MC resources.
1567	 * Note that on an MC reset nothing needs to be done now because we'll
1568	 * detect the MC reset later and handle it then.
1569	 * For an FLR, we never get an MC reset event, but the MC has reset all
1570	 * resources assigned to us, so we have to trigger reallocation now.
1571	 */
1572	if ((reset_type == RESET_TYPE_ALL ||
1573	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1574		efx_ef10_reset_mc_allocations(efx);
1575	return rc;
1576}
1577
1578#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1579	[EF10_STAT_ ## ext_name] =				\
1580	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1581#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1582	[EF10_STAT_ ## int_name] =				\
1583	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1584#define EF10_OTHER_STAT(ext_name)				\
1585	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1586#define GENERIC_SW_STAT(ext_name)				\
1587	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1588
1589static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1590	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1591	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1592	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1593	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1594	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1595	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1596	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1597	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1598	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1599	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1600	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1601	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1602	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1603	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1604	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1605	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1606	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1607	EF10_OTHER_STAT(port_rx_good_bytes),
1608	EF10_OTHER_STAT(port_rx_bad_bytes),
1609	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1610	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1611	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1612	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1613	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1614	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1615	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1616	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1617	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1618	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1619	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1620	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1621	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1622	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1623	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1624	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1625	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1626	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1627	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1628	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1629	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1630	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1631	GENERIC_SW_STAT(rx_nodesc_trunc),
1632	GENERIC_SW_STAT(rx_noskb_drops),
1633	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1634	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1635	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1636	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1637	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1638	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1639	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1640	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1641	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1642	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1643	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1644	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1645	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1646	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1647	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1648	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1649	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1650	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1651	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1652	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1653	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1654	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1655	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1656	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1657	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1658	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1659	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1660	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1661	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1662	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1663	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1664	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1665	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1666	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1667	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1668	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1669	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1670	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1671	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1672	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1673	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1674	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1675	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1676	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1677	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1678	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1679	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1680	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1681	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1682	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1683	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1684	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1685};
1686
1687#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1688			       (1ULL << EF10_STAT_port_tx_packets) |	\
1689			       (1ULL << EF10_STAT_port_tx_pause) |	\
1690			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1691			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1692			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1693			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1694			       (1ULL <<                                 \
1695				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1696			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1697			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1698			       (1ULL << EF10_STAT_port_rx_packets) |	\
1699			       (1ULL << EF10_STAT_port_rx_good) |	\
1700			       (1ULL << EF10_STAT_port_rx_bad) |	\
1701			       (1ULL << EF10_STAT_port_rx_pause) |	\
1702			       (1ULL << EF10_STAT_port_rx_control) |	\
1703			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1704			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1705			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1706			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1707			       (1ULL << EF10_STAT_port_rx_64) |		\
1708			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1709			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1710			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1711			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1712			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1713			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1714			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1715			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1716			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1717			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1718			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1719			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1720
1721/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1722 * For a 10G/40G switchable port we do not expose these because they might
1723 * not include all the packets they should.
1724 * On 8000 series NICs these statistics are always provided.
1725 */
1726#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1727				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1728				 (1ULL << EF10_STAT_port_tx_64) |	\
1729				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1730				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1731				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1732				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1733				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1734				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1735
1736/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1737 * switchable port we do expose these because the errors will otherwise
1738 * be silent.
1739 */
1740#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1741				  (1ULL << EF10_STAT_port_rx_length_error))
1742
1743/* These statistics are only provided if the firmware supports the
1744 * capability PM_AND_RXDP_COUNTERS.
1745 */
1746#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1747	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1748	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1749	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1750	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1751	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1752	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1753	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1754	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1755	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1756	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1757	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1758	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1759
1760/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1761 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1762 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1763 * These bits are in the second u64 of the raw mask.
1764 */
1765#define EF10_FEC_STAT_MASK (						\
1766	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1767	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1768	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1769	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1770	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1771	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1772
1773/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1774 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1775 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1776 * These bits are in the second u64 of the raw mask.
1777 */
1778#define EF10_CTPIO_STAT_MASK (						\
1779	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1780	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1781	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1782	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1783	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1784	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1785	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1786	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1787	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1788	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1789	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1790	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1791	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1792	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1793	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1794	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1795
1796static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1797{
1798	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1799	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1800	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1801
1802	if (!(efx->mcdi->fn_flags &
1803	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1804		return 0;
1805
1806	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1807		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1808		/* 8000 series have everything even at 40G */
1809		if (nic_data->datapath_caps2 &
1810		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1811			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1812	} else {
1813		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1814	}
1815
1816	if (nic_data->datapath_caps &
1817	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1818		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1819
1820	return raw_mask;
1821}
1822
1823static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1824{
1825	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1826	u64 raw_mask[2];
1827
1828	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1829
1830	/* Only show vadaptor stats when EVB capability is present */
1831	if (nic_data->datapath_caps &
1832	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1833		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1834		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1835	} else {
1836		raw_mask[1] = 0;
1837	}
1838	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1839	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1840		raw_mask[1] |= EF10_FEC_STAT_MASK;
1841
1842	/* CTPIO stats appear in V3. Only show them on devices that actually
1843	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1844	 * and we may be reporting the stats for the underlying port.
1845	 */
1846	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1847	    (nic_data->datapath_caps2 &
1848	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1849		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1850
1851#if BITS_PER_LONG == 64
1852	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1853	mask[0] = raw_mask[0];
1854	mask[1] = raw_mask[1];
1855#else
1856	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1857	mask[0] = raw_mask[0] & 0xffffffff;
1858	mask[1] = raw_mask[0] >> 32;
1859	mask[2] = raw_mask[1] & 0xffffffff;
1860#endif
1861}
1862
1863static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1864{
1865	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1866
1867	efx_ef10_get_stat_mask(efx, mask);
1868	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1869				      mask, names);
1870}
1871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1873					   struct rtnl_link_stats64 *core_stats)
1874{
1875	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1876	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1877	u64 *stats = nic_data->stats;
1878	size_t stats_count = 0, index;
1879
1880	efx_ef10_get_stat_mask(efx, mask);
1881
1882	if (full_stats) {
1883		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1884			if (efx_ef10_stat_desc[index].name) {
1885				*full_stats++ = stats[index];
1886				++stats_count;
1887			}
1888		}
1889	}
1890
1891	if (!core_stats)
1892		return stats_count;
1893
1894	if (nic_data->datapath_caps &
1895			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1896		/* Use vadaptor stats. */
1897		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1898					 stats[EF10_STAT_rx_multicast] +
1899					 stats[EF10_STAT_rx_broadcast];
1900		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1901					 stats[EF10_STAT_tx_multicast] +
1902					 stats[EF10_STAT_tx_broadcast];
1903		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1904				       stats[EF10_STAT_rx_multicast_bytes] +
1905				       stats[EF10_STAT_rx_broadcast_bytes];
1906		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1907				       stats[EF10_STAT_tx_multicast_bytes] +
1908				       stats[EF10_STAT_tx_broadcast_bytes];
1909		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1910					 stats[GENERIC_STAT_rx_noskb_drops];
1911		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1912		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1913		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1914		core_stats->rx_errors = core_stats->rx_crc_errors;
1915		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1916	} else {
1917		/* Use port stats. */
1918		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1919		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1920		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1921		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1922		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1923					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1924					 stats[GENERIC_STAT_rx_noskb_drops];
1925		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1926		core_stats->rx_length_errors =
1927				stats[EF10_STAT_port_rx_gtjumbo] +
1928				stats[EF10_STAT_port_rx_length_error];
1929		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1930		core_stats->rx_frame_errors =
1931				stats[EF10_STAT_port_rx_align_error];
1932		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1933		core_stats->rx_errors = (core_stats->rx_length_errors +
1934					 core_stats->rx_crc_errors +
1935					 core_stats->rx_frame_errors);
1936	}
1937
1938	return stats_count;
1939}
1940
1941static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
 
1942{
1943	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1944	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1945	__le64 generation_start, generation_end;
1946	u64 *stats = nic_data->stats;
1947	__le64 *dma_stats;
1948
1949	efx_ef10_get_stat_mask(efx, mask);
1950
1951	dma_stats = efx->stats_buffer.addr;
1952
1953	generation_end = dma_stats[efx->num_mac_stats - 1];
1954	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1955		return 0;
1956	rmb();
1957	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1958			     stats, efx->stats_buffer.addr, false);
1959	rmb();
1960	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1961	if (generation_end != generation_start)
1962		return -EAGAIN;
1963
1964	/* Update derived statistics */
1965	efx_nic_fix_nodesc_drop_stat(efx,
1966				     &stats[EF10_STAT_port_rx_nodesc_drops]);
 
 
 
 
 
1967	stats[EF10_STAT_port_rx_good_bytes] =
1968		stats[EF10_STAT_port_rx_bytes] -
1969		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
 
 
 
 
 
 
 
 
 
1970	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1971			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1972	efx_update_sw_stats(efx, stats);
1973	return 0;
1974}
1975
1976
1977static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1978				       struct rtnl_link_stats64 *core_stats)
1979{
1980	int retry;
1981
1982	/* If we're unlucky enough to read statistics during the DMA, wait
1983	 * up to 10ms for it to finish (typically takes <500us)
1984	 */
1985	for (retry = 0; retry < 100; ++retry) {
1986		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1987			break;
1988		udelay(100);
1989	}
1990
1991	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1992}
1993
1994static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
 
1995{
1996	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1997	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1998	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1999	__le64 generation_start, generation_end;
2000	u64 *stats = nic_data->stats;
2001	u32 dma_len = efx->num_mac_stats * sizeof(u64);
2002	struct efx_buffer stats_buf;
2003	__le64 *dma_stats;
2004	int rc;
2005
2006	spin_unlock_bh(&efx->stats_lock);
2007
2008	if (in_interrupt()) {
2009		/* If in atomic context, cannot update stats.  Just update the
2010		 * software stats and return so the caller can continue.
2011		 */
2012		spin_lock_bh(&efx->stats_lock);
2013		efx_update_sw_stats(efx, stats);
2014		return 0;
2015	}
2016
2017	efx_ef10_get_stat_mask(efx, mask);
2018
2019	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
2020	if (rc) {
2021		spin_lock_bh(&efx->stats_lock);
2022		return rc;
2023	}
2024
2025	dma_stats = stats_buf.addr;
2026	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
2027
2028	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
2029	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
2030			      MAC_STATS_IN_DMA, 1);
2031	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
2032	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2033
2034	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
2035				NULL, 0, NULL);
2036	spin_lock_bh(&efx->stats_lock);
2037	if (rc) {
2038		/* Expect ENOENT if DMA queues have not been set up */
2039		if (rc != -ENOENT || atomic_read(&efx->active_queues))
2040			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
2041					       sizeof(inbuf), NULL, 0, rc);
2042		goto out;
2043	}
2044
2045	generation_end = dma_stats[efx->num_mac_stats - 1];
2046	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
2047		WARN_ON_ONCE(1);
2048		goto out;
2049	}
2050	rmb();
2051	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
2052			     stats, stats_buf.addr, false);
2053	rmb();
2054	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
2055	if (generation_end != generation_start) {
2056		rc = -EAGAIN;
2057		goto out;
2058	}
2059
2060	efx_update_sw_stats(efx, stats);
2061out:
 
 
2062	efx_nic_free_buffer(efx, &stats_buf);
 
2063	return rc;
2064}
2065
2066static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
2067				       struct rtnl_link_stats64 *core_stats)
2068{
2069	if (efx_ef10_try_update_nic_stats_vf(efx))
2070		return 0;
2071
2072	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
2073}
2074
 
 
 
 
 
 
 
 
 
 
 
 
2075static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
2076{
2077	struct efx_nic *efx = channel->efx;
2078	unsigned int mode, usecs;
2079	efx_dword_t timer_cmd;
2080
2081	if (channel->irq_moderation_us) {
2082		mode = 3;
2083		usecs = channel->irq_moderation_us;
2084	} else {
2085		mode = 0;
2086		usecs = 0;
2087	}
2088
2089	if (EFX_EF10_WORKAROUND_61265(efx)) {
2090		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
2091		unsigned int ns = usecs * 1000;
2092
2093		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2094			       channel->channel);
2095		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2096		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2097		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2098
2099		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2100				   inbuf, sizeof(inbuf), 0, NULL, 0);
2101	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2102		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2103
2104		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2105				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2106				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2107				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2108		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2109				channel->channel);
2110	} else {
2111		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2112
2113		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2114				     ERF_DZ_TC_TIMER_VAL, ticks,
2115				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2116		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2117				channel->channel);
2118	}
2119}
2120
2121static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2122				struct ethtool_wolinfo *wol) {}
2123
2124static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2125{
2126	return -EOPNOTSUPP;
2127}
2128
2129static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2130{
2131	wol->supported = 0;
2132	wol->wolopts = 0;
2133	memset(&wol->sopass, 0, sizeof(wol->sopass));
2134}
2135
2136static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2137{
2138	if (type != 0)
2139		return -EINVAL;
2140	return 0;
2141}
2142
2143static void efx_ef10_mcdi_request(struct efx_nic *efx,
2144				  const efx_dword_t *hdr, size_t hdr_len,
2145				  const efx_dword_t *sdu, size_t sdu_len)
2146{
2147	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2148	u8 *pdu = nic_data->mcdi_buf.addr;
2149
2150	memcpy(pdu, hdr, hdr_len);
2151	memcpy(pdu + hdr_len, sdu, sdu_len);
2152	wmb();
2153
2154	/* The hardware provides 'low' and 'high' (doorbell) registers
2155	 * for passing the 64-bit address of an MCDI request to
2156	 * firmware.  However the dwords are swapped by firmware.  The
2157	 * least significant bits of the doorbell are then 0 for all
2158	 * MCDI requests due to alignment.
2159	 */
2160	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2161		    ER_DZ_MC_DB_LWRD);
2162	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2163		    ER_DZ_MC_DB_HWRD);
2164}
2165
2166static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2167{
2168	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2169	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2170
2171	rmb();
2172	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2173}
2174
2175static void
2176efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2177			    size_t offset, size_t outlen)
2178{
2179	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2180	const u8 *pdu = nic_data->mcdi_buf.addr;
2181
2182	memcpy(outbuf, pdu + offset, outlen);
2183}
2184
2185static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2186{
2187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2188
2189	/* All our allocations have been reset */
2190	efx_ef10_reset_mc_allocations(efx);
2191
2192	/* The datapath firmware might have been changed */
2193	nic_data->must_check_datapath_caps = true;
2194
2195	/* MAC statistics have been cleared on the NIC; clear the local
2196	 * statistic that we update with efx_update_diff_stat().
2197	 */
2198	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2199}
2200
2201static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2202{
2203	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2204	int rc;
2205
2206	rc = efx_ef10_get_warm_boot_count(efx);
2207	if (rc < 0) {
2208		/* The firmware is presumably in the process of
2209		 * rebooting.  However, we are supposed to report each
2210		 * reboot just once, so we must only do that once we
2211		 * can read and store the updated warm boot count.
2212		 */
2213		return 0;
2214	}
2215
2216	if (rc == nic_data->warm_boot_count)
2217		return 0;
2218
2219	nic_data->warm_boot_count = rc;
2220	efx_ef10_mcdi_reboot_detected(efx);
2221
2222	return -EIO;
2223}
2224
2225/* Handle an MSI interrupt
2226 *
2227 * Handle an MSI hardware interrupt.  This routine schedules event
2228 * queue processing.  No interrupt acknowledgement cycle is necessary.
2229 * Also, we never need to check that the interrupt is for us, since
2230 * MSI interrupts cannot be shared.
2231 */
2232static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2233{
2234	struct efx_msi_context *context = dev_id;
2235	struct efx_nic *efx = context->efx;
2236
2237	netif_vdbg(efx, intr, efx->net_dev,
2238		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2239
2240	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2241		/* Note test interrupts */
2242		if (context->index == efx->irq_level)
2243			efx->last_irq_cpu = raw_smp_processor_id();
2244
2245		/* Schedule processing of the channel */
2246		efx_schedule_channel_irq(efx->channel[context->index]);
2247	}
2248
2249	return IRQ_HANDLED;
2250}
2251
2252static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2253{
2254	struct efx_nic *efx = dev_id;
2255	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2256	struct efx_channel *channel;
2257	efx_dword_t reg;
2258	u32 queues;
2259
2260	/* Read the ISR which also ACKs the interrupts */
2261	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2262	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2263
2264	if (queues == 0)
2265		return IRQ_NONE;
2266
2267	if (likely(soft_enabled)) {
2268		/* Note test interrupts */
2269		if (queues & (1U << efx->irq_level))
2270			efx->last_irq_cpu = raw_smp_processor_id();
2271
2272		efx_for_each_channel(channel, efx) {
2273			if (queues & 1)
2274				efx_schedule_channel_irq(channel);
2275			queues >>= 1;
2276		}
2277	}
2278
2279	netif_vdbg(efx, intr, efx->net_dev,
2280		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2281		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2282
2283	return IRQ_HANDLED;
2284}
2285
2286static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2287{
2288	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2289
2290	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2291				    NULL) == 0)
2292		return -ENOTSUPP;
2293
2294	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2295
2296	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2297	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2298			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2299}
2300
2301static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2302{
2303	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
 
 
 
2304				    (tx_queue->ptr_mask + 1) *
2305				    sizeof(efx_qword_t),
2306				    GFP_KERNEL);
2307}
2308
2309/* This writes to the TX_DESC_WPTR and also pushes data */
2310static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2311					 const efx_qword_t *txd)
2312{
2313	unsigned int write_ptr;
2314	efx_oword_t reg;
2315
2316	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2317	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2318	reg.qword[0] = *txd;
2319	efx_writeo_page(tx_queue->efx, &reg,
2320			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2321}
2322
2323/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2324 */
2325static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2326				struct sk_buff *skb,
2327				bool *data_mapped)
2328{
2329	struct efx_tx_buffer *buffer;
 
 
2330	struct tcphdr *tcp;
2331	struct iphdr *ip;
2332
2333	u16 ipv4_id;
2334	u32 seqnum;
2335	u32 mss;
2336
2337	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2338
2339	mss = skb_shinfo(skb)->gso_size;
2340
2341	if (unlikely(mss < 4)) {
2342		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2343		return -EINVAL;
2344	}
2345
2346	ip = ip_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2347	if (ip->version == 4) {
2348		/* Modify IPv4 header if needed. */
2349		ip->tot_len = 0;
2350		ip->check = 0;
2351		ipv4_id = ntohs(ip->id);
2352	} else {
2353		/* Modify IPv6 header if needed. */
2354		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2355
2356		ipv6->payload_len = 0;
2357		ipv4_id = 0;
2358	}
2359
2360	tcp = tcp_hdr(skb);
2361	seqnum = ntohl(tcp->seq);
2362
2363	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2364
2365	buffer->flags = EFX_TX_BUF_OPTION;
2366	buffer->len = 0;
2367	buffer->unmap_len = 0;
2368	EFX_POPULATE_QWORD_5(buffer->option,
2369			ESF_DZ_TX_DESC_IS_OPT, 1,
2370			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2371			ESF_DZ_TX_TSO_OPTION_TYPE,
2372			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2373			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2374			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2375			);
2376	++tx_queue->insert_count;
2377
2378	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2379
2380	buffer->flags = EFX_TX_BUF_OPTION;
2381	buffer->len = 0;
2382	buffer->unmap_len = 0;
2383	EFX_POPULATE_QWORD_4(buffer->option,
2384			ESF_DZ_TX_DESC_IS_OPT, 1,
2385			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2386			ESF_DZ_TX_TSO_OPTION_TYPE,
2387			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
 
2388			ESF_DZ_TX_TSO_TCP_MSS, mss
2389			);
2390	++tx_queue->insert_count;
2391
2392	return 0;
2393}
2394
2395static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2396{
2397	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2398	u32 tso_versions = 0;
2399
2400	if (nic_data->datapath_caps &
2401	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2402		tso_versions |= BIT(1);
2403	if (nic_data->datapath_caps2 &
2404	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2405		tso_versions |= BIT(2);
2406	return tso_versions;
2407}
2408
2409static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2410{
2411	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2412						       EFX_BUF_SIZE));
2413	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2414	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2415	struct efx_channel *channel = tx_queue->channel;
2416	struct efx_nic *efx = tx_queue->efx;
2417	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2418	bool tso_v2 = false;
2419	size_t inlen;
2420	dma_addr_t dma_addr;
2421	efx_qword_t *txd;
2422	int rc;
2423	int i;
2424	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
2425
2426	/* Only attempt to enable TX timestamping if we have the license for it,
2427	 * otherwise TXQ init will fail
2428	 */
2429	if (!(nic_data->licensed_features &
2430	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2431		tx_queue->timestamping = false;
2432		/* Disable sync events on this channel. */
2433		if (efx->type->ptp_set_ts_sync_events)
2434			efx->type->ptp_set_ts_sync_events(efx, false, false);
2435	}
2436
2437	/* TSOv2 is a limited resource that can only be configured on a limited
2438	 * number of queues. TSO without checksum offload is not really a thing,
2439	 * so we only enable it for those queues.
2440	 * TSOv2 cannot be used with Hardware timestamping.
 
2441	 */
2442	if (csum_offload && (nic_data->datapath_caps2 &
2443			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2444	    !tx_queue->timestamping) {
2445		tso_v2 = true;
2446		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2447				channel->channel);
 
 
 
2448	}
2449
2450	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2451	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2452	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2453	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2454	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2455	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2456
2457	dma_addr = tx_queue->txd.buf.dma_addr;
2458
2459	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2460		  tx_queue->queue, entries, (u64)dma_addr);
2461
2462	for (i = 0; i < entries; ++i) {
2463		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2464		dma_addr += EFX_BUF_SIZE;
2465	}
2466
2467	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2468
2469	do {
2470		MCDI_POPULATE_DWORD_4(inbuf, INIT_TXQ_IN_FLAGS,
2471				/* This flag was removed from mcdi_pcol.h for
2472				 * the non-_EXT version of INIT_TXQ.  However,
2473				 * firmware still honours it.
2474				 */
2475				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2476				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2477				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload,
2478				INIT_TXQ_EXT_IN_FLAG_TIMESTAMP,
2479						tx_queue->timestamping);
2480
2481		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2482					NULL, 0, NULL);
2483		if (rc == -ENOSPC && tso_v2) {
2484			/* Retry without TSOv2 if we're short on contexts. */
2485			tso_v2 = false;
2486			netif_warn(efx, probe, efx->net_dev,
2487				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2488		} else if (rc) {
2489			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2490					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
2491					       NULL, 0, rc);
2492			goto fail;
2493		}
2494	} while (rc);
2495
2496	/* A previous user of this TX queue might have set us up the
2497	 * bomb by writing a descriptor to the TX push collector but
2498	 * not the doorbell.  (Each collector belongs to a port, not a
2499	 * queue or function, so cannot easily be reset.)  We must
2500	 * attempt to push a no-op descriptor in its place.
2501	 */
2502	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2503	tx_queue->insert_count = 1;
2504	txd = efx_tx_desc(tx_queue, 0);
2505	EFX_POPULATE_QWORD_5(*txd,
2506			     ESF_DZ_TX_DESC_IS_OPT, true,
2507			     ESF_DZ_TX_OPTION_TYPE,
2508			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2509			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2510			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
 
 
2511			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2512	tx_queue->write_count = 1;
2513
2514	if (tso_v2) {
2515		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2516		tx_queue->tso_version = 2;
2517	} else if (nic_data->datapath_caps &
2518			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2519		tx_queue->tso_version = 1;
2520	}
2521
2522	wmb();
2523	efx_ef10_push_tx_desc(tx_queue, txd);
2524
2525	return;
2526
2527fail:
2528	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2529		    tx_queue->queue);
2530}
2531
2532static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2533{
2534	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2535	MCDI_DECLARE_BUF_ERR(outbuf);
2536	struct efx_nic *efx = tx_queue->efx;
2537	size_t outlen;
2538	int rc;
2539
2540	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2541		       tx_queue->queue);
2542
2543	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2544			  outbuf, sizeof(outbuf), &outlen);
2545
2546	if (rc && rc != -EALREADY)
2547		goto fail;
2548
2549	return;
2550
2551fail:
2552	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2553			       outbuf, outlen, rc);
2554}
2555
2556static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2557{
2558	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2559}
2560
2561/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2562static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2563{
2564	unsigned int write_ptr;
2565	efx_dword_t reg;
2566
2567	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2568	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2569	efx_writed_page(tx_queue->efx, &reg,
2570			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2571}
2572
2573#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2574
2575static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2576					  dma_addr_t dma_addr, unsigned int len)
2577{
2578	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2579		/* If we need to break across multiple descriptors we should
2580		 * stop at a page boundary. This assumes the length limit is
2581		 * greater than the page size.
2582		 */
2583		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2584
2585		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2586		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2587	}
2588
2589	return len;
2590}
2591
2592static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2593{
2594	unsigned int old_write_count = tx_queue->write_count;
2595	struct efx_tx_buffer *buffer;
2596	unsigned int write_ptr;
2597	efx_qword_t *txd;
2598
2599	tx_queue->xmit_more_available = false;
2600	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2601		return;
2602
2603	do {
2604		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2605		buffer = &tx_queue->buffer[write_ptr];
2606		txd = efx_tx_desc(tx_queue, write_ptr);
2607		++tx_queue->write_count;
2608
2609		/* Create TX descriptor ring entry */
2610		if (buffer->flags & EFX_TX_BUF_OPTION) {
2611			*txd = buffer->option;
2612			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2613				/* PIO descriptor */
2614				tx_queue->packet_write_count = tx_queue->write_count;
2615		} else {
2616			tx_queue->packet_write_count = tx_queue->write_count;
2617			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2618			EFX_POPULATE_QWORD_3(
2619				*txd,
2620				ESF_DZ_TX_KER_CONT,
2621				buffer->flags & EFX_TX_BUF_CONT,
2622				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2623				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2624		}
2625	} while (tx_queue->write_count != tx_queue->insert_count);
2626
2627	wmb(); /* Ensure descriptors are written before they are fetched */
2628
2629	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2630		txd = efx_tx_desc(tx_queue,
2631				  old_write_count & tx_queue->ptr_mask);
2632		efx_ef10_push_tx_desc(tx_queue, txd);
2633		++tx_queue->pushes;
2634	} else {
2635		efx_ef10_notify_tx_desc(tx_queue);
2636	}
2637}
2638
2639#define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2640				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2641#define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2642				 1 << RSS_MODE_HASH_DST_PORT_LBN)
2643#define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2644					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2645					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2646					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2647					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2648					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2649					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2650					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2651					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2652					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2653
2654static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2655{
2656	/* Firmware had a bug (sfc bug 61952) where it would not actually
2657	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2658	 * This meant that it would always contain whatever was previously
2659	 * in the MCDI buffer.  Fortunately, all firmware versions with
2660	 * this bug have the same default flags value for a newly-allocated
2661	 * RSS context, and the only time we want to get the flags is just
2662	 * after allocating.  Moreover, the response has a 32-bit hole
2663	 * where the context ID would be in the request, so we can use an
2664	 * overlength buffer in the request and pre-fill the flags field
2665	 * with what we believe the default to be.  Thus if the firmware
2666	 * has the bug, it will leave our pre-filled value in the flags
2667	 * field of the response, and we will get the right answer.
2668	 *
2669	 * However, this does mean that this function should NOT be used if
2670	 * the RSS context flags might not be their defaults - it is ONLY
2671	 * reliably correct for a newly-allocated RSS context.
2672	 */
2673	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2674	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2675	size_t outlen;
2676	int rc;
2677
2678	/* Check we have a hole for the context ID */
2679	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2680	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2681	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2682		       RSS_CONTEXT_FLAGS_DEFAULT);
2683	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2684			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2685	if (rc == 0) {
2686		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2687			rc = -EIO;
2688		else
2689			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2690	}
2691	return rc;
2692}
2693
2694/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2695 * If we fail, we just leave the RSS context at its default hash settings,
2696 * which is safe but may slightly reduce performance.
2697 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2698 * just need to set the UDP ports flags (for both IP versions).
2699 */
2700static void efx_ef10_set_rss_flags(struct efx_nic *efx,
2701				   struct efx_rss_context *ctx)
2702{
2703	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2704	u32 flags;
2705
2706	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2707
2708	if (efx_ef10_get_rss_flags(efx, ctx->context_id, &flags) != 0)
2709		return;
2710	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID,
2711		       ctx->context_id);
2712	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2713	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2714	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2715	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2716			  NULL, 0, NULL))
2717		/* Succeeded, so UDP 4-tuple is now enabled */
2718		ctx->rx_hash_udp_4tuple = true;
2719}
2720
2721static int efx_ef10_alloc_rss_context(struct efx_nic *efx, bool exclusive,
2722				      struct efx_rss_context *ctx,
2723				      unsigned *context_size)
2724{
2725	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2726	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2727	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2728	size_t outlen;
 
2729	int rc;
2730	u32 alloc_type = exclusive ?
2731				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2732				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2733	unsigned rss_spread = exclusive ?
2734				efx->rss_spread :
2735				min(rounddown_pow_of_two(efx->rss_spread),
2736				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2737
2738	if (!exclusive && rss_spread == 1) {
2739		ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2740		if (context_size)
2741			*context_size = 1;
2742		return 0;
2743	}
2744
2745	if (nic_data->datapath_caps &
2746	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2747		return -EOPNOTSUPP;
2748
2749	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2750		       nic_data->vport_id);
2751	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2752	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2753
2754	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2755		outbuf, sizeof(outbuf), &outlen);
2756	if (rc != 0)
2757		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758
2759	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2760		return -EIO;
2761
2762	ctx->context_id = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2763
2764	if (context_size)
2765		*context_size = rss_spread;
2766
2767	if (nic_data->datapath_caps &
2768	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2769		efx_ef10_set_rss_flags(efx, ctx);
2770
2771	return 0;
2772}
2773
2774static int efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2775{
2776	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2777
2778	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2779		       context);
2780	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2781			    NULL, 0, NULL);
2782}
2783
2784static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2785				       const u32 *rx_indir_table, const u8 *key)
2786{
2787	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2788	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2789	int i, rc;
2790
2791	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2792		       context);
2793	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
2794		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2795
2796	/* This iterates over the length of efx->rss_context.rx_indir_table, but
2797	 * copies bytes from rx_indir_table.  That's because the latter is a
2798	 * pointer rather than an array, but should have the same length.
2799	 * The efx->rss_context.rx_hash_key loop below is similar.
2800	 */
2801	for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); ++i)
2802		MCDI_PTR(tablebuf,
2803			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2804				(u8) rx_indir_table[i];
2805
2806	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2807			  sizeof(tablebuf), NULL, 0, NULL);
2808	if (rc != 0)
2809		return rc;
2810
2811	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2812		       context);
2813	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_hash_key) !=
2814		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2815	for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_hash_key); ++i)
2816		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] = key[i];
2817
2818	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2819			    sizeof(keybuf), NULL, 0, NULL);
2820}
2821
2822static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2823{
2824	int rc;
2825
2826	if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID) {
2827		rc = efx_ef10_free_rss_context(efx, efx->rss_context.context_id);
2828		WARN_ON(rc != 0);
2829	}
2830	efx->rss_context.context_id = EFX_EF10_RSS_CONTEXT_INVALID;
2831}
2832
2833static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2834					      unsigned *context_size)
2835{
2836	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2837	int rc = efx_ef10_alloc_rss_context(efx, false, &efx->rss_context,
2838					    context_size);
2839
2840	if (rc != 0)
2841		return rc;
 
 
2842
2843	nic_data->rx_rss_context_exclusive = false;
2844	efx_set_default_rx_indir_table(efx, &efx->rss_context);
2845	return 0;
2846}
2847
2848static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2849						 const u32 *rx_indir_table,
2850						 const u8 *key)
2851{
2852	u32 old_rx_rss_context = efx->rss_context.context_id;
2853	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2854	int rc;
2855
2856	if (efx->rss_context.context_id == EFX_EF10_RSS_CONTEXT_INVALID ||
2857	    !nic_data->rx_rss_context_exclusive) {
2858		rc = efx_ef10_alloc_rss_context(efx, true, &efx->rss_context,
2859						NULL);
2860		if (rc == -EOPNOTSUPP)
2861			return rc;
2862		else if (rc != 0)
2863			goto fail1;
2864	}
2865
2866	rc = efx_ef10_populate_rss_table(efx, efx->rss_context.context_id,
2867					 rx_indir_table, key);
2868	if (rc != 0)
2869		goto fail2;
2870
2871	if (efx->rss_context.context_id != old_rx_rss_context &&
2872	    old_rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2873		WARN_ON(efx_ef10_free_rss_context(efx, old_rx_rss_context) != 0);
2874	nic_data->rx_rss_context_exclusive = true;
2875	if (rx_indir_table != efx->rss_context.rx_indir_table)
2876		memcpy(efx->rss_context.rx_indir_table, rx_indir_table,
2877		       sizeof(efx->rss_context.rx_indir_table));
2878	if (key != efx->rss_context.rx_hash_key)
2879		memcpy(efx->rss_context.rx_hash_key, key,
2880		       efx->type->rx_hash_key_size);
2881
2882	return 0;
2883
2884fail2:
2885	if (old_rx_rss_context != efx->rss_context.context_id) {
2886		WARN_ON(efx_ef10_free_rss_context(efx, efx->rss_context.context_id) != 0);
2887		efx->rss_context.context_id = old_rx_rss_context;
2888	}
2889fail1:
2890	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2891	return rc;
2892}
2893
2894static int efx_ef10_rx_push_rss_context_config(struct efx_nic *efx,
2895					       struct efx_rss_context *ctx,
2896					       const u32 *rx_indir_table,
2897					       const u8 *key)
2898{
2899	int rc;
2900
2901	WARN_ON(!mutex_is_locked(&efx->rss_lock));
2902
2903	if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
2904		rc = efx_ef10_alloc_rss_context(efx, true, ctx, NULL);
2905		if (rc)
2906			return rc;
2907	}
2908
2909	if (!rx_indir_table) /* Delete this context */
2910		return efx_ef10_free_rss_context(efx, ctx->context_id);
2911
2912	rc = efx_ef10_populate_rss_table(efx, ctx->context_id,
2913					 rx_indir_table, key);
2914	if (rc)
2915		return rc;
2916
2917	memcpy(ctx->rx_indir_table, rx_indir_table,
2918	       sizeof(efx->rss_context.rx_indir_table));
2919	memcpy(ctx->rx_hash_key, key, efx->type->rx_hash_key_size);
2920
2921	return 0;
2922}
2923
2924static int efx_ef10_rx_pull_rss_context_config(struct efx_nic *efx,
2925					       struct efx_rss_context *ctx)
2926{
2927	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN);
2928	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN);
2929	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN);
2930	size_t outlen;
2931	int rc, i;
2932
2933	WARN_ON(!mutex_is_locked(&efx->rss_lock));
2934
2935	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_TABLE_IN_LEN !=
2936		     MC_CMD_RSS_CONTEXT_GET_KEY_IN_LEN);
2937
2938	if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID)
2939		return -ENOENT;
2940
2941	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_TABLE_IN_RSS_CONTEXT_ID,
2942		       ctx->context_id);
2943	BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_indir_table) !=
2944		     MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE_LEN);
2945	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_TABLE, inbuf, sizeof(inbuf),
2946			  tablebuf, sizeof(tablebuf), &outlen);
2947	if (rc != 0)
2948		return rc;
2949
2950	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_TABLE_OUT_LEN))
2951		return -EIO;
2952
2953	for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
2954		ctx->rx_indir_table[i] = MCDI_PTR(tablebuf,
2955				RSS_CONTEXT_GET_TABLE_OUT_INDIRECTION_TABLE)[i];
2956
2957	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_KEY_IN_RSS_CONTEXT_ID,
2958		       ctx->context_id);
2959	BUILD_BUG_ON(ARRAY_SIZE(ctx->rx_hash_key) !=
2960		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2961	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_KEY, inbuf, sizeof(inbuf),
2962			  keybuf, sizeof(keybuf), &outlen);
2963	if (rc != 0)
2964		return rc;
2965
2966	if (WARN_ON(outlen != MC_CMD_RSS_CONTEXT_GET_KEY_OUT_LEN))
2967		return -EIO;
2968
2969	for (i = 0; i < ARRAY_SIZE(ctx->rx_hash_key); ++i)
2970		ctx->rx_hash_key[i] = MCDI_PTR(
2971				keybuf, RSS_CONTEXT_GET_KEY_OUT_TOEPLITZ_KEY)[i];
2972
2973	return 0;
2974}
2975
2976static int efx_ef10_rx_pull_rss_config(struct efx_nic *efx)
2977{
2978	int rc;
2979
2980	mutex_lock(&efx->rss_lock);
2981	rc = efx_ef10_rx_pull_rss_context_config(efx, &efx->rss_context);
2982	mutex_unlock(&efx->rss_lock);
2983	return rc;
2984}
2985
2986static void efx_ef10_rx_restore_rss_contexts(struct efx_nic *efx)
2987{
2988	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2989	struct efx_rss_context *ctx;
2990	int rc;
2991
2992	WARN_ON(!mutex_is_locked(&efx->rss_lock));
2993
2994	if (!nic_data->must_restore_rss_contexts)
2995		return;
2996
2997	list_for_each_entry(ctx, &efx->rss_context.list, list) {
2998		/* previous NIC RSS context is gone */
2999		ctx->context_id = EFX_EF10_RSS_CONTEXT_INVALID;
3000		/* so try to allocate a new one */
3001		rc = efx_ef10_rx_push_rss_context_config(efx, ctx,
3002							 ctx->rx_indir_table,
3003							 ctx->rx_hash_key);
3004		if (rc)
3005			netif_warn(efx, probe, efx->net_dev,
3006				   "failed to restore RSS context %u, rc=%d"
3007				   "; RSS filters may fail to be applied\n",
3008				   ctx->user_id, rc);
3009	}
3010	nic_data->must_restore_rss_contexts = false;
3011}
3012
3013static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
3014					  const u32 *rx_indir_table,
3015					  const u8 *key)
3016{
3017	int rc;
3018
3019	if (efx->rss_spread == 1)
3020		return 0;
3021
3022	if (!key)
3023		key = efx->rss_context.rx_hash_key;
3024
3025	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table, key);
3026
3027	if (rc == -ENOBUFS && !user) {
3028		unsigned context_size;
3029		bool mismatch = false;
3030		size_t i;
3031
3032		for (i = 0;
3033		     i < ARRAY_SIZE(efx->rss_context.rx_indir_table) && !mismatch;
3034		     i++)
3035			mismatch = rx_indir_table[i] !=
3036				ethtool_rxfh_indir_default(i, efx->rss_spread);
3037
3038		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
3039		if (rc == 0) {
3040			if (context_size != efx->rss_spread)
3041				netif_warn(efx, probe, efx->net_dev,
3042					   "Could not allocate an exclusive RSS"
3043					   " context; allocated a shared one of"
3044					   " different size."
3045					   " Wanted %u, got %u.\n",
3046					   efx->rss_spread, context_size);
3047			else if (mismatch)
3048				netif_warn(efx, probe, efx->net_dev,
3049					   "Could not allocate an exclusive RSS"
3050					   " context; allocated a shared one but"
3051					   " could not apply custom"
3052					   " indirection.\n");
3053			else
3054				netif_info(efx, probe, efx->net_dev,
3055					   "Could not allocate an exclusive RSS"
3056					   " context; allocated a shared one.\n");
3057		}
3058	}
3059	return rc;
3060}
3061
3062static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
3063					  const u32 *rx_indir_table
3064					  __attribute__ ((unused)),
3065					  const u8 *key
3066					  __attribute__ ((unused)))
3067{
3068	if (user)
3069		return -EOPNOTSUPP;
3070	if (efx->rss_context.context_id != EFX_EF10_RSS_CONTEXT_INVALID)
3071		return 0;
3072	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
3073}
3074
3075static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
3076{
3077	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
3078				    (rx_queue->ptr_mask + 1) *
3079				    sizeof(efx_qword_t),
3080				    GFP_KERNEL);
3081}
3082
3083static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
3084{
3085	MCDI_DECLARE_BUF(inbuf,
3086			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
3087						EFX_BUF_SIZE));
3088	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3089	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
3090	struct efx_nic *efx = rx_queue->efx;
3091	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3092	size_t inlen;
3093	dma_addr_t dma_addr;
3094	int rc;
3095	int i;
3096	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
3097
3098	rx_queue->scatter_n = 0;
3099	rx_queue->scatter_len = 0;
3100
3101	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
3102	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
3103	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
3104	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
3105		       efx_rx_queue_index(rx_queue));
3106	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
3107			      INIT_RXQ_IN_FLAG_PREFIX, 1,
3108			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
3109	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
3110	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
3111
3112	dma_addr = rx_queue->rxd.buf.dma_addr;
3113
3114	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
3115		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
3116
3117	for (i = 0; i < entries; ++i) {
3118		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
3119		dma_addr += EFX_BUF_SIZE;
3120	}
3121
3122	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
3123
3124	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
3125			  NULL, 0, NULL);
3126	if (rc)
3127		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
3128			    efx_rx_queue_index(rx_queue));
3129}
3130
3131static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
3132{
3133	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
3134	MCDI_DECLARE_BUF_ERR(outbuf);
3135	struct efx_nic *efx = rx_queue->efx;
3136	size_t outlen;
3137	int rc;
3138
3139	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
3140		       efx_rx_queue_index(rx_queue));
3141
3142	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
3143			  outbuf, sizeof(outbuf), &outlen);
3144
3145	if (rc && rc != -EALREADY)
3146		goto fail;
3147
3148	return;
3149
3150fail:
3151	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
3152			       outbuf, outlen, rc);
3153}
3154
3155static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
3156{
3157	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
3158}
3159
3160/* This creates an entry in the RX descriptor queue */
3161static inline void
3162efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
3163{
3164	struct efx_rx_buffer *rx_buf;
3165	efx_qword_t *rxd;
3166
3167	rxd = efx_rx_desc(rx_queue, index);
3168	rx_buf = efx_rx_buffer(rx_queue, index);
3169	EFX_POPULATE_QWORD_2(*rxd,
3170			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
3171			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
3172}
3173
3174static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
3175{
3176	struct efx_nic *efx = rx_queue->efx;
3177	unsigned int write_count;
3178	efx_dword_t reg;
3179
3180	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
3181	write_count = rx_queue->added_count & ~7;
3182	if (rx_queue->notified_count == write_count)
3183		return;
3184
3185	do
3186		efx_ef10_build_rx_desc(
3187			rx_queue,
3188			rx_queue->notified_count & rx_queue->ptr_mask);
3189	while (++rx_queue->notified_count != write_count);
3190
3191	wmb();
3192	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
3193			     write_count & rx_queue->ptr_mask);
3194	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
3195			efx_rx_queue_index(rx_queue));
3196}
3197
3198static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
3199
3200static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
3201{
3202	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
3203	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3204	efx_qword_t event;
3205
3206	EFX_POPULATE_QWORD_2(event,
3207			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3208			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
3209
3210	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3211
3212	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3213	 * already swapped the data to little-endian order.
3214	 */
3215	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3216	       sizeof(efx_qword_t));
3217
3218	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
3219			   inbuf, sizeof(inbuf), 0,
3220			   efx_ef10_rx_defer_refill_complete, 0);
3221}
3222
3223static void
3224efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
3225				  int rc, efx_dword_t *outbuf,
3226				  size_t outlen_actual)
3227{
3228	/* nothing to do */
3229}
3230
3231static int efx_ef10_ev_probe(struct efx_channel *channel)
3232{
3233	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
3234				    (channel->eventq_mask + 1) *
3235				    sizeof(efx_qword_t),
3236				    GFP_KERNEL);
3237}
3238
3239static void efx_ef10_ev_fini(struct efx_channel *channel)
3240{
3241	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
3242	MCDI_DECLARE_BUF_ERR(outbuf);
3243	struct efx_nic *efx = channel->efx;
3244	size_t outlen;
3245	int rc;
3246
3247	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
3248
3249	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
3250			  outbuf, sizeof(outbuf), &outlen);
3251
3252	if (rc && rc != -EALREADY)
3253		goto fail;
3254
3255	return;
3256
3257fail:
3258	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
3259			       outbuf, outlen, rc);
3260}
3261
3262static int efx_ef10_ev_init(struct efx_channel *channel)
3263{
3264	MCDI_DECLARE_BUF(inbuf,
3265			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
3266						   EFX_BUF_SIZE));
3267	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
3268	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
3269	struct efx_nic *efx = channel->efx;
3270	struct efx_ef10_nic_data *nic_data;
3271	size_t inlen, outlen;
3272	unsigned int enabled, implemented;
3273	dma_addr_t dma_addr;
3274	int rc;
3275	int i;
3276
3277	nic_data = efx->nic_data;
3278
3279	/* Fill event queue with all ones (i.e. empty events) */
3280	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
3281
3282	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
3283	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
3284	/* INIT_EVQ expects index in vector table, not absolute */
3285	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
3286	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
3287		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
3288	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
3289	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
3290	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
3291		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
3292	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
3293
3294	if (nic_data->datapath_caps2 &
3295	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
3296		/* Use the new generic approach to specifying event queue
3297		 * configuration, requesting lower latency or higher throughput.
3298		 * The options that actually get used appear in the output.
3299		 */
3300		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
3301				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
3302				      INIT_EVQ_V2_IN_FLAG_TYPE,
3303				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
3304	} else {
3305		bool cut_thru = !(nic_data->datapath_caps &
3306			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
3307
3308		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
3309				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
3310				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
3311				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
3312				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
3313	}
3314
3315	dma_addr = channel->eventq.buf.dma_addr;
3316	for (i = 0; i < entries; ++i) {
3317		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
3318		dma_addr += EFX_BUF_SIZE;
3319	}
3320
3321	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
3322
3323	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
3324			  outbuf, sizeof(outbuf), &outlen);
3325
3326	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
3327		netif_dbg(efx, drv, efx->net_dev,
3328			  "Channel %d using event queue flags %08x\n",
3329			  channel->channel,
3330			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
3331
3332	/* IRQ return is ignored */
3333	if (channel->channel || rc)
3334		return rc;
3335
3336	/* Successfully created event queue on channel 0 */
3337	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
3338	if (rc == -ENOSYS) {
3339		/* GET_WORKAROUNDS was implemented before this workaround,
3340		 * thus it must be unavailable in this firmware.
3341		 */
3342		nic_data->workaround_26807 = false;
3343		rc = 0;
3344	} else if (rc) {
3345		goto fail;
3346	} else {
3347		nic_data->workaround_26807 =
3348			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
3349
3350		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
3351		    !nic_data->workaround_26807) {
3352			unsigned int flags;
3353
3354			rc = efx_mcdi_set_workaround(efx,
3355						     MC_CMD_WORKAROUND_BUG26807,
3356						     true, &flags);
3357
3358			if (!rc) {
3359				if (flags &
3360				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
3361					netif_info(efx, drv, efx->net_dev,
3362						   "other functions on NIC have been reset\n");
3363
3364					/* With MCFW v4.6.x and earlier, the
3365					 * boot count will have incremented,
3366					 * so re-read the warm_boot_count
3367					 * value now to ensure this function
3368					 * doesn't think it has changed next
3369					 * time it checks.
3370					 */
3371					rc = efx_ef10_get_warm_boot_count(efx);
3372					if (rc >= 0) {
3373						nic_data->warm_boot_count = rc;
3374						rc = 0;
3375					}
3376				}
3377				nic_data->workaround_26807 = true;
3378			} else if (rc == -EPERM) {
3379				rc = 0;
3380			}
3381		}
3382	}
3383
3384	if (!rc)
3385		return 0;
3386
3387fail:
3388	efx_ef10_ev_fini(channel);
3389	return rc;
3390}
3391
3392static void efx_ef10_ev_remove(struct efx_channel *channel)
3393{
3394	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3395}
3396
3397static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3398					   unsigned int rx_queue_label)
3399{
3400	struct efx_nic *efx = rx_queue->efx;
3401
3402	netif_info(efx, hw, efx->net_dev,
3403		   "rx event arrived on queue %d labeled as queue %u\n",
3404		   efx_rx_queue_index(rx_queue), rx_queue_label);
3405
3406	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3407}
3408
3409static void
3410efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3411			     unsigned int actual, unsigned int expected)
3412{
3413	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3414	struct efx_nic *efx = rx_queue->efx;
3415
3416	netif_info(efx, hw, efx->net_dev,
3417		   "dropped %d events (index=%d expected=%d)\n",
3418		   dropped, actual, expected);
3419
3420	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3421}
3422
3423/* partially received RX was aborted. clean up. */
3424static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3425{
3426	unsigned int rx_desc_ptr;
3427
3428	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3429		  "scattered RX aborted (dropping %u buffers)\n",
3430		  rx_queue->scatter_n);
3431
3432	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3433
3434	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3435		      0, EFX_RX_PKT_DISCARD);
3436
3437	rx_queue->removed_count += rx_queue->scatter_n;
3438	rx_queue->scatter_n = 0;
3439	rx_queue->scatter_len = 0;
3440	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3441}
3442
3443static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
3444					   unsigned int n_packets,
3445					   unsigned int rx_encap_hdr,
3446					   unsigned int rx_l3_class,
3447					   unsigned int rx_l4_class,
3448					   const efx_qword_t *event)
3449{
3450	struct efx_nic *efx = channel->efx;
3451	bool handled = false;
3452
3453	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
3454		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
3455			if (!efx->loopback_selftest)
3456				channel->n_rx_eth_crc_err += n_packets;
3457			return EFX_RX_PKT_DISCARD;
3458		}
3459		handled = true;
3460	}
3461	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
3462		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3463			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3464			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3465			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3466			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3467			netdev_WARN(efx->net_dev,
3468				    "invalid class for RX_IPCKSUM_ERR: event="
3469				    EFX_QWORD_FMT "\n",
3470				    EFX_QWORD_VAL(*event));
3471		if (!efx->loopback_selftest)
3472			*(rx_encap_hdr ?
3473			  &channel->n_rx_outer_ip_hdr_chksum_err :
3474			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
3475		return 0;
3476	}
3477	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
3478		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
3479			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3480			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3481			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3482			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
3483			netdev_WARN(efx->net_dev,
3484				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
3485				    EFX_QWORD_FMT "\n",
3486				    EFX_QWORD_VAL(*event));
3487		if (!efx->loopback_selftest)
3488			*(rx_encap_hdr ?
3489			  &channel->n_rx_outer_tcp_udp_chksum_err :
3490			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
3491		return 0;
3492	}
3493	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
3494		if (unlikely(!rx_encap_hdr))
3495			netdev_WARN(efx->net_dev,
3496				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
3497				    EFX_QWORD_FMT "\n",
3498				    EFX_QWORD_VAL(*event));
3499		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3500				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
3501				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
3502				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
3503			netdev_WARN(efx->net_dev,
3504				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
3505				    EFX_QWORD_FMT "\n",
3506				    EFX_QWORD_VAL(*event));
3507		if (!efx->loopback_selftest)
3508			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
3509		return 0;
3510	}
3511	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
3512		if (unlikely(!rx_encap_hdr))
3513			netdev_WARN(efx->net_dev,
3514				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3515				    EFX_QWORD_FMT "\n",
3516				    EFX_QWORD_VAL(*event));
3517		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
3518				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
3519				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
3520				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
3521			netdev_WARN(efx->net_dev,
3522				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
3523				    EFX_QWORD_FMT "\n",
3524				    EFX_QWORD_VAL(*event));
3525		if (!efx->loopback_selftest)
3526			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
3527		return 0;
3528	}
3529
3530	WARN_ON(!handled); /* No error bits were recognised */
3531	return 0;
3532}
3533
3534static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3535				    const efx_qword_t *event)
3536{
3537	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
3538	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
3539	unsigned int n_descs, n_packets, i;
3540	struct efx_nic *efx = channel->efx;
3541	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3542	struct efx_rx_queue *rx_queue;
3543	efx_qword_t errors;
3544	bool rx_cont;
3545	u16 flags = 0;
3546
3547	if (unlikely(READ_ONCE(efx->reset_pending)))
3548		return 0;
3549
3550	/* Basic packet information */
3551	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3552	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3553	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3554	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
3555	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
3556	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
3557	rx_encap_hdr =
3558		nic_data->datapath_caps &
3559			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
3560		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
3561		ESE_EZ_ENCAP_HDR_NONE;
3562
3563	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3564		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3565			    EFX_QWORD_FMT "\n",
3566			    EFX_QWORD_VAL(*event));
3567
3568	rx_queue = efx_channel_get_rx_queue(channel);
3569
3570	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3571		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3572
3573	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3574		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3575
3576	if (n_descs != rx_queue->scatter_n + 1) {
3577		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3578
3579		/* detect rx abort */
3580		if (unlikely(n_descs == rx_queue->scatter_n)) {
3581			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3582				netdev_WARN(efx->net_dev,
3583					    "invalid RX abort: scatter_n=%u event="
3584					    EFX_QWORD_FMT "\n",
3585					    rx_queue->scatter_n,
3586					    EFX_QWORD_VAL(*event));
3587			efx_ef10_handle_rx_abort(rx_queue);
3588			return 0;
3589		}
3590
3591		/* Check that RX completion merging is valid, i.e.
3592		 * the current firmware supports it and this is a
3593		 * non-scattered packet.
3594		 */
3595		if (!(nic_data->datapath_caps &
3596		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3597		    rx_queue->scatter_n != 0 || rx_cont) {
3598			efx_ef10_handle_rx_bad_lbits(
3599				rx_queue, next_ptr_lbits,
3600				(rx_queue->removed_count +
3601				 rx_queue->scatter_n + 1) &
3602				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3603			return 0;
3604		}
3605
3606		/* Merged completion for multiple non-scattered packets */
3607		rx_queue->scatter_n = 1;
3608		rx_queue->scatter_len = 0;
3609		n_packets = n_descs;
3610		++channel->n_rx_merge_events;
3611		channel->n_rx_merge_packets += n_packets;
3612		flags |= EFX_RX_PKT_PREFIX_LEN;
3613	} else {
3614		++rx_queue->scatter_n;
3615		rx_queue->scatter_len += rx_bytes;
3616		if (rx_cont)
3617			return 0;
3618		n_packets = 1;
3619	}
3620
3621	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
3622				     ESF_DZ_RX_IPCKSUM_ERR, 1,
3623				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
3624				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
3625				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
3626	EFX_AND_QWORD(errors, *event, errors);
3627	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
3628		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
3629							 rx_encap_hdr,
3630							 rx_l3_class, rx_l4_class,
3631							 event);
3632	} else {
3633		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
3634			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
3635
3636		switch (rx_encap_hdr) {
3637		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
3638			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
3639			if (tcpudp)
3640				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
3641			break;
3642		case ESE_EZ_ENCAP_HDR_GRE:
3643		case ESE_EZ_ENCAP_HDR_NONE:
3644			if (tcpudp)
3645				flags |= EFX_RX_PKT_CSUMMED;
3646			break;
3647		default:
3648			netdev_WARN(efx->net_dev,
3649				    "unknown encapsulation type: event="
3650				    EFX_QWORD_FMT "\n",
3651				    EFX_QWORD_VAL(*event));
3652		}
3653	}
3654
3655	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
3656		flags |= EFX_RX_PKT_TCP;
3657
3658	channel->irq_mod_score += 2 * n_packets;
3659
3660	/* Handle received packet(s) */
3661	for (i = 0; i < n_packets; i++) {
3662		efx_rx_packet(rx_queue,
3663			      rx_queue->removed_count & rx_queue->ptr_mask,
3664			      rx_queue->scatter_n, rx_queue->scatter_len,
3665			      flags);
3666		rx_queue->removed_count += rx_queue->scatter_n;
3667	}
3668
3669	rx_queue->scatter_n = 0;
3670	rx_queue->scatter_len = 0;
3671
3672	return n_packets;
3673}
3674
3675static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
3676{
3677	u32 tstamp;
3678
3679	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
3680	tstamp <<= 16;
3681	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
3682
3683	return tstamp;
3684}
3685
3686static void
3687efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3688{
3689	struct efx_nic *efx = channel->efx;
3690	struct efx_tx_queue *tx_queue;
3691	unsigned int tx_ev_desc_ptr;
3692	unsigned int tx_ev_q_label;
3693	unsigned int tx_ev_type;
 
3694	u64 ts_part;
3695
3696	if (unlikely(READ_ONCE(efx->reset_pending)))
3697		return;
3698
3699	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3700		return;
3701
3702	/* Get the transmit queue */
3703	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3704	tx_queue = efx_channel_get_tx_queue(channel,
3705					    tx_ev_q_label % EFX_TXQ_TYPES);
3706
3707	if (!tx_queue->timestamping) {
3708		/* Transmit completion */
3709		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3710		efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3711		return;
3712	}
3713
3714	/* Transmit timestamps are only available for 8XXX series. They result
3715	 * in three events per packet. These occur in order, and are:
3716	 *  - the normal completion event
3717	 *  - the low part of the timestamp
3718	 *  - the high part of the timestamp
3719	 *
 
 
 
 
 
 
 
 
 
 
 
 
 
3720	 * Each part of the timestamp is itself split across two 16 bit
3721	 * fields in the event.
3722	 */
3723	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
 
3724
3725	switch (tx_ev_type) {
3726	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3727		/* In case of Queue flush or FLR, we might have received
3728		 * the previous TX completion event but not the Timestamp
3729		 * events.
3730		 */
3731		if (tx_queue->completed_desc_ptr != tx_queue->ptr_mask)
3732			efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3733
3734		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event,
3735						 ESF_DZ_TX_DESCR_INDX);
3736		tx_queue->completed_desc_ptr =
3737					tx_ev_desc_ptr & tx_queue->ptr_mask;
3738		break;
3739
3740	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3741		ts_part = efx_ef10_extract_event_ts(event);
3742		tx_queue->completed_timestamp_minor = ts_part;
3743		break;
3744
3745	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3746		ts_part = efx_ef10_extract_event_ts(event);
3747		tx_queue->completed_timestamp_major = ts_part;
3748
3749		efx_xmit_done(tx_queue, tx_queue->completed_desc_ptr);
3750		tx_queue->completed_desc_ptr = tx_queue->ptr_mask;
3751		break;
3752
3753	default:
3754		netif_err(efx, hw, efx->net_dev,
3755			  "channel %d unknown tx event type %d (data "
3756			  EFX_QWORD_FMT ")\n",
3757			  channel->channel, tx_ev_type,
3758			  EFX_QWORD_VAL(*event));
3759		break;
3760	}
 
 
3761}
3762
3763static void
3764efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3765{
3766	struct efx_nic *efx = channel->efx;
3767	int subcode;
3768
3769	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3770
3771	switch (subcode) {
3772	case ESE_DZ_DRV_TIMER_EV:
3773	case ESE_DZ_DRV_WAKE_UP_EV:
3774		break;
3775	case ESE_DZ_DRV_START_UP_EV:
3776		/* event queue init complete. ok. */
3777		break;
3778	default:
3779		netif_err(efx, hw, efx->net_dev,
3780			  "channel %d unknown driver event type %d"
3781			  " (data " EFX_QWORD_FMT ")\n",
3782			  channel->channel, subcode,
3783			  EFX_QWORD_VAL(*event));
3784
3785	}
3786}
3787
3788static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3789						   efx_qword_t *event)
3790{
3791	struct efx_nic *efx = channel->efx;
3792	u32 subcode;
3793
3794	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3795
3796	switch (subcode) {
3797	case EFX_EF10_TEST:
3798		channel->event_test_cpu = raw_smp_processor_id();
3799		break;
3800	case EFX_EF10_REFILL:
3801		/* The queue must be empty, so we won't receive any rx
3802		 * events, so efx_process_channel() won't refill the
3803		 * queue. Refill it here
3804		 */
3805		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3806		break;
3807	default:
3808		netif_err(efx, hw, efx->net_dev,
3809			  "channel %d unknown driver event type %u"
3810			  " (data " EFX_QWORD_FMT ")\n",
3811			  channel->channel, (unsigned) subcode,
3812			  EFX_QWORD_VAL(*event));
3813	}
3814}
3815
 
 
3816static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3817{
3818	struct efx_nic *efx = channel->efx;
3819	efx_qword_t event, *p_event;
3820	unsigned int read_ptr;
 
 
3821	int ev_code;
3822	int spent = 0;
3823
3824	if (quota <= 0)
3825		return spent;
3826
3827	read_ptr = channel->eventq_read_ptr;
3828
3829	for (;;) {
3830		p_event = efx_event(channel, read_ptr);
3831		event = *p_event;
3832
3833		if (!efx_event_present(&event))
3834			break;
3835
3836		EFX_SET_QWORD(*p_event);
3837
3838		++read_ptr;
3839
3840		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3841
3842		netif_vdbg(efx, drv, efx->net_dev,
3843			   "processing event on %d " EFX_QWORD_FMT "\n",
3844			   channel->channel, EFX_QWORD_VAL(event));
3845
3846		switch (ev_code) {
3847		case ESE_DZ_EV_CODE_MCDI_EV:
3848			efx_mcdi_process_event(channel, &event);
3849			break;
3850		case ESE_DZ_EV_CODE_RX_EV:
3851			spent += efx_ef10_handle_rx_event(channel, &event);
3852			if (spent >= quota) {
3853				/* XXX can we split a merged event to
3854				 * avoid going over-quota?
3855				 */
3856				spent = quota;
3857				goto out;
3858			}
3859			break;
3860		case ESE_DZ_EV_CODE_TX_EV:
3861			efx_ef10_handle_tx_event(channel, &event);
 
 
 
 
3862			break;
3863		case ESE_DZ_EV_CODE_DRIVER_EV:
3864			efx_ef10_handle_driver_event(channel, &event);
3865			if (++spent == quota)
3866				goto out;
3867			break;
3868		case EFX_EF10_DRVGEN_EV:
3869			efx_ef10_handle_driver_generated_event(channel, &event);
3870			break;
3871		default:
3872			netif_err(efx, hw, efx->net_dev,
3873				  "channel %d unknown event type %d"
3874				  " (data " EFX_QWORD_FMT ")\n",
3875				  channel->channel, ev_code,
3876				  EFX_QWORD_VAL(event));
3877		}
3878	}
3879
3880out:
3881	channel->eventq_read_ptr = read_ptr;
3882	return spent;
3883}
3884
3885static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3886{
3887	struct efx_nic *efx = channel->efx;
3888	efx_dword_t rptr;
3889
3890	if (EFX_EF10_WORKAROUND_35388(efx)) {
3891		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3892			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3893		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3894			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3895
3896		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3897				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3898				     ERF_DD_EVQ_IND_RPTR,
3899				     (channel->eventq_read_ptr &
3900				      channel->eventq_mask) >>
3901				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3902		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3903				channel->channel);
3904		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3905				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3906				     ERF_DD_EVQ_IND_RPTR,
3907				     channel->eventq_read_ptr &
3908				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3909		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3910				channel->channel);
3911	} else {
3912		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3913				     channel->eventq_read_ptr &
3914				     channel->eventq_mask);
3915		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3916	}
3917}
3918
3919static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3920{
3921	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3922	struct efx_nic *efx = channel->efx;
3923	efx_qword_t event;
3924	int rc;
3925
3926	EFX_POPULATE_QWORD_2(event,
3927			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3928			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3929
3930	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3931
3932	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3933	 * already swapped the data to little-endian order.
3934	 */
3935	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3936	       sizeof(efx_qword_t));
3937
3938	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3939			  NULL, 0, NULL);
3940	if (rc != 0)
3941		goto fail;
3942
3943	return;
3944
3945fail:
3946	WARN_ON(true);
3947	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3948}
3949
3950void efx_ef10_handle_drain_event(struct efx_nic *efx)
3951{
3952	if (atomic_dec_and_test(&efx->active_queues))
3953		wake_up(&efx->flush_wq);
3954
3955	WARN_ON(atomic_read(&efx->active_queues) < 0);
3956}
3957
3958static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3959{
3960	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3961	struct efx_channel *channel;
3962	struct efx_tx_queue *tx_queue;
3963	struct efx_rx_queue *rx_queue;
3964	int pending;
3965
3966	/* If the MC has just rebooted, the TX/RX queues will have already been
3967	 * torn down, but efx->active_queues needs to be set to zero.
3968	 */
3969	if (nic_data->must_realloc_vis) {
3970		atomic_set(&efx->active_queues, 0);
3971		return 0;
3972	}
3973
3974	/* Do not attempt to write to the NIC during EEH recovery */
3975	if (efx->state != STATE_RECOVERY) {
3976		efx_for_each_channel(channel, efx) {
3977			efx_for_each_channel_rx_queue(rx_queue, channel)
3978				efx_ef10_rx_fini(rx_queue);
3979			efx_for_each_channel_tx_queue(tx_queue, channel)
3980				efx_ef10_tx_fini(tx_queue);
3981		}
3982
3983		wait_event_timeout(efx->flush_wq,
3984				   atomic_read(&efx->active_queues) == 0,
3985				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3986		pending = atomic_read(&efx->active_queues);
3987		if (pending) {
3988			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3989				  pending);
3990			return -ETIMEDOUT;
3991		}
3992	}
3993
3994	return 0;
3995}
3996
3997static void efx_ef10_prepare_flr(struct efx_nic *efx)
3998{
3999	atomic_set(&efx->active_queues, 0);
4000}
4001
4002/* Decide whether a filter should be exclusive or else should allow
4003 * delivery to additional recipients.  Currently we decide that
4004 * filters for specific local unicast MAC and IP addresses are
4005 * exclusive.
4006 */
4007static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
4008{
4009	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
4010	    !is_multicast_ether_addr(spec->loc_mac))
4011		return true;
4012
4013	if ((spec->match_flags &
4014	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
4015	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
4016		if (spec->ether_type == htons(ETH_P_IP) &&
4017		    !ipv4_is_multicast(spec->loc_host[0]))
4018			return true;
4019		if (spec->ether_type == htons(ETH_P_IPV6) &&
4020		    ((const u8 *)spec->loc_host)[0] != 0xff)
4021			return true;
4022	}
4023
4024	return false;
4025}
4026
4027static struct efx_filter_spec *
4028efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
4029			   unsigned int filter_idx)
4030{
4031	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
4032					  ~EFX_EF10_FILTER_FLAGS);
4033}
4034
4035static unsigned int
4036efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
4037			   unsigned int filter_idx)
4038{
4039	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
4040}
4041
4042static void
4043efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
4044			  unsigned int filter_idx,
4045			  const struct efx_filter_spec *spec,
4046			  unsigned int flags)
4047{
4048	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
4049}
4050
4051static void
4052efx_ef10_filter_push_prep_set_match_fields(struct efx_nic *efx,
4053					   const struct efx_filter_spec *spec,
4054					   efx_dword_t *inbuf)
4055{
4056	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4057	u32 match_fields = 0, uc_match, mc_match;
4058
4059	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4060		       efx_ef10_filter_is_exclusive(spec) ?
4061		       MC_CMD_FILTER_OP_IN_OP_INSERT :
4062		       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
4063
4064	/* Convert match flags and values.  Unlike almost
4065	 * everything else in MCDI, these fields are in
4066	 * network byte order.
4067	 */
4068#define COPY_VALUE(value, mcdi_field)					     \
4069	do {							     \
4070		match_fields |=					     \
4071			1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
4072			mcdi_field ## _LBN;			     \
4073		BUILD_BUG_ON(					     \
4074			MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
4075			sizeof(value));				     \
4076		memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
4077		       &value, sizeof(value));			     \
4078	} while (0)
4079#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
4080	if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
4081		COPY_VALUE(spec->gen_field, mcdi_field);	     \
4082	}
4083	/* Handle encap filters first.  They will always be mismatch
4084	 * (unknown UC or MC) filters
4085	 */
4086	if (encap_type) {
4087		/* ether_type and outer_ip_proto need to be variables
4088		 * because COPY_VALUE wants to memcpy them
4089		 */
4090		__be16 ether_type =
4091			htons(encap_type & EFX_ENCAP_FLAG_IPV6 ?
4092			      ETH_P_IPV6 : ETH_P_IP);
4093		u8 vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_GENEVE;
4094		u8 outer_ip_proto;
4095
4096		switch (encap_type & EFX_ENCAP_TYPES_MASK) {
4097		case EFX_ENCAP_TYPE_VXLAN:
4098			vni_type = MC_CMD_FILTER_OP_EXT_IN_VNI_TYPE_VXLAN;
4099			/* fallthrough */
4100		case EFX_ENCAP_TYPE_GENEVE:
4101			COPY_VALUE(ether_type, ETHER_TYPE);
4102			outer_ip_proto = IPPROTO_UDP;
4103			COPY_VALUE(outer_ip_proto, IP_PROTO);
4104			/* We always need to set the type field, even
4105			 * though we're not matching on the TNI.
4106			 */
4107			MCDI_POPULATE_DWORD_1(inbuf,
4108				FILTER_OP_EXT_IN_VNI_OR_VSID,
4109				FILTER_OP_EXT_IN_VNI_TYPE,
4110				vni_type);
4111			break;
4112		case EFX_ENCAP_TYPE_NVGRE:
4113			COPY_VALUE(ether_type, ETHER_TYPE);
4114			outer_ip_proto = IPPROTO_GRE;
4115			COPY_VALUE(outer_ip_proto, IP_PROTO);
4116			break;
4117		default:
4118			WARN_ON(1);
4119		}
4120
4121		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4122		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4123	} else {
4124		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4125		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4126	}
4127
4128	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
4129		match_fields |=
4130			is_multicast_ether_addr(spec->loc_mac) ?
4131			1 << mc_match :
4132			1 << uc_match;
4133	COPY_FIELD(REM_HOST, rem_host, SRC_IP);
4134	COPY_FIELD(LOC_HOST, loc_host, DST_IP);
4135	COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
4136	COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
4137	COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
4138	COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
4139	COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
4140	COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
4141	COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
4142	COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
4143#undef COPY_FIELD
4144#undef COPY_VALUE
4145	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
4146		       match_fields);
4147}
4148
4149static void efx_ef10_filter_push_prep(struct efx_nic *efx,
4150				      const struct efx_filter_spec *spec,
4151				      efx_dword_t *inbuf, u64 handle,
4152				      struct efx_rss_context *ctx,
4153				      bool replacing)
4154{
4155	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4156	u32 flags = spec->flags;
4157
4158	memset(inbuf, 0, MC_CMD_FILTER_OP_EXT_IN_LEN);
4159
4160	/* If RSS filter, caller better have given us an RSS context */
4161	if (flags & EFX_FILTER_FLAG_RX_RSS) {
4162		/* We don't have the ability to return an error, so we'll just
4163		 * log a warning and disable RSS for the filter.
4164		 */
4165		if (WARN_ON_ONCE(!ctx))
4166			flags &= ~EFX_FILTER_FLAG_RX_RSS;
4167		else if (WARN_ON_ONCE(ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID))
4168			flags &= ~EFX_FILTER_FLAG_RX_RSS;
4169	}
4170
4171	if (replacing) {
4172		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4173			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
4174		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
4175	} else {
4176		efx_ef10_filter_push_prep_set_match_fields(efx, spec, inbuf);
4177	}
4178
4179	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
4180	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
4181		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4182		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
4183		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
4184	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
4185	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
4186		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
4187	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
4188		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
4189		       0 : spec->dmaq_id);
4190	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
4191		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
4192		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
4193		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
4194	if (flags & EFX_FILTER_FLAG_RX_RSS)
4195		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT, ctx->context_id);
4196}
4197
4198static int efx_ef10_filter_push(struct efx_nic *efx,
4199				const struct efx_filter_spec *spec, u64 *handle,
4200				struct efx_rss_context *ctx, bool replacing)
4201{
4202	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4203	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_EXT_OUT_LEN);
4204	int rc;
4205
4206	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, ctx, replacing);
4207	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4208			  outbuf, sizeof(outbuf), NULL);
4209	if (rc == 0)
4210		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4211	if (rc == -ENOSPC)
4212		rc = -EBUSY; /* to match efx_farch_filter_insert() */
4213	return rc;
4214}
4215
4216static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
4217{
4218	enum efx_encap_type encap_type = efx_filter_get_encap_type(spec);
4219	unsigned int match_flags = spec->match_flags;
4220	unsigned int uc_match, mc_match;
4221	u32 mcdi_flags = 0;
4222
4223#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field, encap) {		\
4224		unsigned int  old_match_flags = match_flags;		\
4225		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
4226		if (match_flags != old_match_flags)			\
4227			mcdi_flags |=					\
4228				(1 << ((encap) ?			\
4229				       MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_ ## \
4230				       mcdi_field ## _LBN :		\
4231				       MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##\
4232				       mcdi_field ## _LBN));		\
4233	}
4234	/* inner or outer based on encap type */
4235	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP, encap_type);
4236	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP, encap_type);
4237	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC, encap_type);
4238	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT, encap_type);
4239	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC, encap_type);
4240	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT, encap_type);
4241	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE, encap_type);
4242	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO, encap_type);
4243	/* always outer */
4244	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN, false);
4245	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN, false);
4246#undef MAP_FILTER_TO_MCDI_FLAG
4247
4248	/* special handling for encap type, and mismatch */
4249	if (encap_type) {
4250		match_flags &= ~EFX_FILTER_MATCH_ENCAP_TYPE;
4251		mcdi_flags |=
4252			(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4253		mcdi_flags |= (1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4254
4255		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_UCAST_DST_LBN;
4256		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_IFRM_UNKNOWN_MCAST_DST_LBN;
4257	} else {
4258		uc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
4259		mc_match = MC_CMD_FILTER_OP_EXT_IN_MATCH_UNKNOWN_MCAST_DST_LBN;
4260	}
4261
4262	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
4263		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
4264		mcdi_flags |=
4265			is_multicast_ether_addr(spec->loc_mac) ?
4266			1 << mc_match :
4267			1 << uc_match;
4268	}
4269
4270	/* Did we map them all? */
4271	WARN_ON_ONCE(match_flags);
4272
4273	return mcdi_flags;
4274}
4275
4276static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
4277			       const struct efx_filter_spec *spec)
4278{
4279	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
4280	unsigned int match_pri;
4281
4282	for (match_pri = 0;
4283	     match_pri < table->rx_match_count;
4284	     match_pri++)
4285		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
4286			return match_pri;
4287
4288	return -EPROTONOSUPPORT;
4289}
4290
4291static s32 efx_ef10_filter_insert(struct efx_nic *efx,
4292				  struct efx_filter_spec *spec,
4293				  bool replace_equal)
4294{
4295	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4296	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4297	struct efx_ef10_filter_table *table;
4298	struct efx_filter_spec *saved_spec;
4299	struct efx_rss_context *ctx = NULL;
4300	unsigned int match_pri, hash;
4301	unsigned int priv_flags;
4302	bool rss_locked = false;
4303	bool replacing = false;
4304	unsigned int depth, i;
4305	int ins_index = -1;
4306	DEFINE_WAIT(wait);
4307	bool is_mc_recip;
4308	s32 rc;
4309
4310	down_read(&efx->filter_sem);
4311	table = efx->filter_state;
4312	down_write(&table->lock);
4313
4314	/* For now, only support RX filters */
4315	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
4316	    EFX_FILTER_FLAG_RX) {
4317		rc = -EINVAL;
4318		goto out_unlock;
4319	}
4320
4321	rc = efx_ef10_filter_pri(table, spec);
4322	if (rc < 0)
4323		goto out_unlock;
4324	match_pri = rc;
4325
4326	hash = efx_filter_spec_hash(spec);
4327	is_mc_recip = efx_filter_is_mc_recipient(spec);
4328	if (is_mc_recip)
4329		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
4330
4331	if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
4332		mutex_lock(&efx->rss_lock);
4333		rss_locked = true;
4334		if (spec->rss_context)
4335			ctx = efx_find_rss_context_entry(efx, spec->rss_context);
4336		else
4337			ctx = &efx->rss_context;
4338		if (!ctx) {
4339			rc = -ENOENT;
4340			goto out_unlock;
4341		}
4342		if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
4343			rc = -EOPNOTSUPP;
4344			goto out_unlock;
4345		}
4346	}
4347
4348	/* Find any existing filters with the same match tuple or
4349	 * else a free slot to insert at.
4350	 */
4351	for (depth = 1; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4352		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4353		saved_spec = efx_ef10_filter_entry_spec(table, i);
4354
4355		if (!saved_spec) {
4356			if (ins_index < 0)
4357				ins_index = i;
4358		} else if (efx_filter_spec_equal(spec, saved_spec)) {
4359			if (spec->priority < saved_spec->priority &&
4360			    spec->priority != EFX_FILTER_PRI_AUTO) {
4361				rc = -EPERM;
4362				goto out_unlock;
4363			}
4364			if (!is_mc_recip) {
4365				/* This is the only one */
4366				if (spec->priority ==
4367				    saved_spec->priority &&
4368				    !replace_equal) {
4369					rc = -EEXIST;
4370					goto out_unlock;
4371				}
4372				ins_index = i;
4373				break;
4374			} else if (spec->priority >
4375				   saved_spec->priority ||
4376				   (spec->priority ==
4377				    saved_spec->priority &&
4378				    replace_equal)) {
4379				if (ins_index < 0)
4380					ins_index = i;
4381				else
4382					__set_bit(depth, mc_rem_map);
4383			}
4384		}
4385	}
4386
4387	/* Once we reach the maximum search depth, use the first suitable
4388	 * slot, or return -EBUSY if there was none
4389	 */
4390	if (ins_index < 0) {
4391		rc = -EBUSY;
4392		goto out_unlock;
4393	}
4394
4395	/* Create a software table entry if necessary. */
4396	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4397	if (saved_spec) {
4398		if (spec->priority == EFX_FILTER_PRI_AUTO &&
4399		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
4400			/* Just make sure it won't be removed */
4401			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
4402				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
4403			table->entry[ins_index].spec &=
4404				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4405			rc = ins_index;
4406			goto out_unlock;
4407		}
4408		replacing = true;
4409		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
4410	} else {
4411		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4412		if (!saved_spec) {
4413			rc = -ENOMEM;
4414			goto out_unlock;
4415		}
4416		*saved_spec = *spec;
4417		priv_flags = 0;
4418	}
4419	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4420
4421	/* Actually insert the filter on the HW */
4422	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
4423				  ctx, replacing);
4424
4425	if (rc == -EINVAL && nic_data->must_realloc_vis)
4426		/* The MC rebooted under us, causing it to reject our filter
4427		 * insertion as pointing to an invalid VI (spec->dmaq_id).
4428		 */
4429		rc = -EAGAIN;
4430
4431	/* Finalise the software table entry */
4432	if (rc == 0) {
4433		if (replacing) {
4434			/* Update the fields that may differ */
4435			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
4436				saved_spec->flags |=
4437					EFX_FILTER_FLAG_RX_OVER_AUTO;
4438			saved_spec->priority = spec->priority;
4439			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
4440			saved_spec->flags |= spec->flags;
4441			saved_spec->rss_context = spec->rss_context;
4442			saved_spec->dmaq_id = spec->dmaq_id;
4443		}
4444	} else if (!replacing) {
4445		kfree(saved_spec);
4446		saved_spec = NULL;
4447	} else {
4448		/* We failed to replace, so the old filter is still present.
4449		 * Roll back the software table to reflect this.  In fact the
4450		 * efx_ef10_filter_set_entry() call below will do the right
4451		 * thing, so nothing extra is needed here.
4452		 */
4453	}
4454	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
4455
4456	/* Remove and finalise entries for lower-priority multicast
4457	 * recipients
4458	 */
4459	if (is_mc_recip) {
4460		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
4461		unsigned int depth, i;
4462
4463		memset(inbuf, 0, sizeof(inbuf));
4464
4465		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
4466			if (!test_bit(depth, mc_rem_map))
4467				continue;
4468
4469			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4470			saved_spec = efx_ef10_filter_entry_spec(table, i);
4471			priv_flags = efx_ef10_filter_entry_flags(table, i);
4472
4473			if (rc == 0) {
4474				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4475					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4476				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4477					       table->entry[i].handle);
4478				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
4479						  inbuf, sizeof(inbuf),
4480						  NULL, 0, NULL);
4481			}
4482
4483			if (rc == 0) {
4484				kfree(saved_spec);
4485				saved_spec = NULL;
4486				priv_flags = 0;
4487			}
4488			efx_ef10_filter_set_entry(table, i, saved_spec,
4489						  priv_flags);
4490		}
4491	}
4492
4493	/* If successful, return the inserted filter ID */
4494	if (rc == 0)
4495		rc = efx_ef10_make_filter_id(match_pri, ins_index);
4496
4497out_unlock:
4498	if (rss_locked)
4499		mutex_unlock(&efx->rss_lock);
4500	up_write(&table->lock);
4501	up_read(&efx->filter_sem);
4502	return rc;
4503}
4504
4505static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
4506{
4507	/* no need to do anything here on EF10 */
4508}
4509
4510/* Remove a filter.
4511 * If !by_index, remove by ID
4512 * If by_index, remove by index
4513 * Filter ID may come from userland and must be range-checked.
4514 * Caller must hold efx->filter_sem for read, and efx->filter_state->lock
4515 * for write.
4516 */
4517static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
4518					   unsigned int priority_mask,
4519					   u32 filter_id, bool by_index)
4520{
4521	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4522	struct efx_ef10_filter_table *table = efx->filter_state;
4523	MCDI_DECLARE_BUF(inbuf,
4524			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4525			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4526	struct efx_filter_spec *spec;
4527	DEFINE_WAIT(wait);
4528	int rc;
4529
4530	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4531	if (!spec ||
4532	    (!by_index &&
4533	     efx_ef10_filter_pri(table, spec) !=
4534	     efx_ef10_filter_get_unsafe_pri(filter_id)))
4535		return -ENOENT;
4536
4537	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
4538	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
4539		/* Just remove flags */
4540		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
4541		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
4542		return 0;
4543	}
4544
4545	if (!(priority_mask & (1U << spec->priority)))
4546		return -ENOENT;
4547
4548	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
4549		/* Reset to an automatic filter */
4550
4551		struct efx_filter_spec new_spec = *spec;
4552
4553		new_spec.priority = EFX_FILTER_PRI_AUTO;
4554		new_spec.flags = (EFX_FILTER_FLAG_RX |
4555				  (efx_rss_active(&efx->rss_context) ?
4556				   EFX_FILTER_FLAG_RX_RSS : 0));
4557		new_spec.dmaq_id = 0;
4558		new_spec.rss_context = 0;
4559		rc = efx_ef10_filter_push(efx, &new_spec,
4560					  &table->entry[filter_idx].handle,
4561					  &efx->rss_context,
4562					  true);
4563
4564		if (rc == 0)
4565			*spec = new_spec;
4566	} else {
4567		/* Really remove the filter */
4568
4569		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4570			       efx_ef10_filter_is_exclusive(spec) ?
4571			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4572			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4573		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4574			       table->entry[filter_idx].handle);
4575		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP,
4576					inbuf, sizeof(inbuf), NULL, 0, NULL);
4577
4578		if ((rc == 0) || (rc == -ENOENT)) {
4579			/* Filter removed OK or didn't actually exist */
4580			kfree(spec);
4581			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4582		} else {
4583			efx_mcdi_display_error(efx, MC_CMD_FILTER_OP,
4584					       MC_CMD_FILTER_OP_EXT_IN_LEN,
4585					       NULL, 0, rc);
4586		}
4587	}
4588
4589	return rc;
4590}
4591
4592static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
4593				       enum efx_filter_priority priority,
4594				       u32 filter_id)
4595{
4596	struct efx_ef10_filter_table *table;
4597	int rc;
4598
4599	down_read(&efx->filter_sem);
4600	table = efx->filter_state;
4601	down_write(&table->lock);
4602	rc = efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4603					     false);
4604	up_write(&table->lock);
4605	up_read(&efx->filter_sem);
4606	return rc;
4607}
4608
4609/* Caller must hold efx->filter_sem for read */
4610static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4611					  enum efx_filter_priority priority,
4612					  u32 filter_id)
4613{
4614	struct efx_ef10_filter_table *table = efx->filter_state;
4615
4616	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4617		return;
4618
4619	down_write(&table->lock);
4620	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id,
4621					true);
4622	up_write(&table->lock);
4623}
4624
4625static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4626				    enum efx_filter_priority priority,
4627				    u32 filter_id, struct efx_filter_spec *spec)
4628{
4629	unsigned int filter_idx = efx_ef10_filter_get_unsafe_id(filter_id);
4630	const struct efx_filter_spec *saved_spec;
4631	struct efx_ef10_filter_table *table;
4632	int rc;
4633
4634	down_read(&efx->filter_sem);
4635	table = efx->filter_state;
4636	down_read(&table->lock);
4637	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4638	if (saved_spec && saved_spec->priority == priority &&
4639	    efx_ef10_filter_pri(table, saved_spec) ==
4640	    efx_ef10_filter_get_unsafe_pri(filter_id)) {
4641		*spec = *saved_spec;
4642		rc = 0;
4643	} else {
4644		rc = -ENOENT;
4645	}
4646	up_read(&table->lock);
4647	up_read(&efx->filter_sem);
4648	return rc;
4649}
4650
4651static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4652				    enum efx_filter_priority priority)
4653{
4654	struct efx_ef10_filter_table *table;
4655	unsigned int priority_mask;
4656	unsigned int i;
4657	int rc;
4658
4659	priority_mask = (((1U << (priority + 1)) - 1) &
4660			 ~(1U << EFX_FILTER_PRI_AUTO));
4661
4662	down_read(&efx->filter_sem);
4663	table = efx->filter_state;
4664	down_write(&table->lock);
4665	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4666		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4667						     i, true);
4668		if (rc && rc != -ENOENT)
4669			break;
4670		rc = 0;
4671	}
4672
4673	up_write(&table->lock);
4674	up_read(&efx->filter_sem);
4675	return rc;
4676}
4677
4678static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4679					 enum efx_filter_priority priority)
4680{
4681	struct efx_ef10_filter_table *table;
4682	unsigned int filter_idx;
4683	s32 count = 0;
4684
4685	down_read(&efx->filter_sem);
4686	table = efx->filter_state;
4687	down_read(&table->lock);
4688	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4689		if (table->entry[filter_idx].spec &&
4690		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4691		    priority)
4692			++count;
4693	}
4694	up_read(&table->lock);
4695	up_read(&efx->filter_sem);
4696	return count;
4697}
4698
4699static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4700{
4701	struct efx_ef10_filter_table *table = efx->filter_state;
4702
4703	return table->rx_match_count * HUNT_FILTER_TBL_ROWS * 2;
4704}
4705
4706static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4707				      enum efx_filter_priority priority,
4708				      u32 *buf, u32 size)
4709{
4710	struct efx_ef10_filter_table *table;
4711	struct efx_filter_spec *spec;
4712	unsigned int filter_idx;
4713	s32 count = 0;
4714
4715	down_read(&efx->filter_sem);
4716	table = efx->filter_state;
4717	down_read(&table->lock);
4718
4719	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4720		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4721		if (spec && spec->priority == priority) {
4722			if (count == size) {
4723				count = -EMSGSIZE;
4724				break;
4725			}
4726			buf[count++] =
4727				efx_ef10_make_filter_id(
4728					efx_ef10_filter_pri(table, spec),
4729					filter_idx);
4730		}
4731	}
4732	up_read(&table->lock);
4733	up_read(&efx->filter_sem);
4734	return count;
4735}
4736
4737#ifdef CONFIG_RFS_ACCEL
4738
4739static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4740					   unsigned int filter_idx)
4741{
4742	struct efx_filter_spec *spec, saved_spec;
4743	struct efx_ef10_filter_table *table;
4744	struct efx_arfs_rule *rule = NULL;
4745	bool ret = true, force = false;
4746	u16 arfs_id;
4747
4748	down_read(&efx->filter_sem);
4749	table = efx->filter_state;
4750	down_write(&table->lock);
4751	spec = efx_ef10_filter_entry_spec(table, filter_idx);
4752
4753	if (!spec || spec->priority != EFX_FILTER_PRI_HINT)
4754		goto out_unlock;
4755
4756	spin_lock_bh(&efx->rps_hash_lock);
4757	if (!efx->rps_hash_table) {
4758		/* In the absence of the table, we always return 0 to ARFS. */
4759		arfs_id = 0;
4760	} else {
4761		rule = efx_rps_hash_find(efx, spec);
4762		if (!rule)
4763			/* ARFS table doesn't know of this filter, so remove it */
4764			goto expire;
4765		arfs_id = rule->arfs_id;
4766		ret = efx_rps_check_rule(rule, filter_idx, &force);
4767		if (force)
4768			goto expire;
4769		if (!ret) {
4770			spin_unlock_bh(&efx->rps_hash_lock);
4771			goto out_unlock;
4772		}
4773	}
4774	if (!rps_may_expire_flow(efx->net_dev, spec->dmaq_id, flow_id, arfs_id))
4775		ret = false;
4776	else if (rule)
4777		rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
4778expire:
4779	saved_spec = *spec; /* remove operation will kfree spec */
4780	spin_unlock_bh(&efx->rps_hash_lock);
4781	/* At this point (since we dropped the lock), another thread might queue
4782	 * up a fresh insertion request (but the actual insertion will be held
4783	 * up by our possession of the filter table lock).  In that case, it
4784	 * will set rule->filter_id to EFX_ARFS_FILTER_ID_PENDING, meaning that
4785	 * the rule is not removed by efx_rps_hash_del() below.
4786	 */
4787	if (ret)
4788		ret = efx_ef10_filter_remove_internal(efx, 1U << spec->priority,
4789						      filter_idx, true) == 0;
4790	/* While we can't safely dereference rule (we dropped the lock), we can
4791	 * still test it for NULL.
4792	 */
4793	if (ret && rule) {
4794		/* Expiring, so remove entry from ARFS table */
4795		spin_lock_bh(&efx->rps_hash_lock);
4796		efx_rps_hash_del(efx, &saved_spec);
4797		spin_unlock_bh(&efx->rps_hash_lock);
4798	}
4799out_unlock:
4800	up_write(&table->lock);
4801	up_read(&efx->filter_sem);
4802	return ret;
4803}
4804
4805#endif /* CONFIG_RFS_ACCEL */
4806
4807static int efx_ef10_filter_match_flags_from_mcdi(bool encap, u32 mcdi_flags)
4808{
4809	int match_flags = 0;
4810
4811#define MAP_FLAG(gen_flag, mcdi_field) do {				\
4812		u32 old_mcdi_flags = mcdi_flags;			\
4813		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ ##	\
4814				     mcdi_field ## _LBN);		\
4815		if (mcdi_flags != old_mcdi_flags)			\
4816			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4817	} while (0)
4818
4819	if (encap) {
4820		/* encap filters must specify encap type */
4821		match_flags |= EFX_FILTER_MATCH_ENCAP_TYPE;
4822		/* and imply ethertype and ip proto */
4823		mcdi_flags &=
4824			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_IP_PROTO_LBN);
4825		mcdi_flags &=
4826			~(1 << MC_CMD_FILTER_OP_EXT_IN_MATCH_ETHER_TYPE_LBN);
4827		/* VLAN tags refer to the outer packet */
4828		MAP_FLAG(INNER_VID, INNER_VLAN);
4829		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4830		/* everything else refers to the inner packet */
4831		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_UCAST_DST);
4832		MAP_FLAG(LOC_MAC_IG, IFRM_UNKNOWN_MCAST_DST);
4833		MAP_FLAG(REM_HOST, IFRM_SRC_IP);
4834		MAP_FLAG(LOC_HOST, IFRM_DST_IP);
4835		MAP_FLAG(REM_MAC, IFRM_SRC_MAC);
4836		MAP_FLAG(REM_PORT, IFRM_SRC_PORT);
4837		MAP_FLAG(LOC_MAC, IFRM_DST_MAC);
4838		MAP_FLAG(LOC_PORT, IFRM_DST_PORT);
4839		MAP_FLAG(ETHER_TYPE, IFRM_ETHER_TYPE);
4840		MAP_FLAG(IP_PROTO, IFRM_IP_PROTO);
4841	} else {
4842		MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4843		MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4844		MAP_FLAG(REM_HOST, SRC_IP);
4845		MAP_FLAG(LOC_HOST, DST_IP);
4846		MAP_FLAG(REM_MAC, SRC_MAC);
4847		MAP_FLAG(REM_PORT, SRC_PORT);
4848		MAP_FLAG(LOC_MAC, DST_MAC);
4849		MAP_FLAG(LOC_PORT, DST_PORT);
4850		MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4851		MAP_FLAG(INNER_VID, INNER_VLAN);
4852		MAP_FLAG(OUTER_VID, OUTER_VLAN);
4853		MAP_FLAG(IP_PROTO, IP_PROTO);
4854	}
4855#undef MAP_FLAG
4856
4857	/* Did we map them all? */
4858	if (mcdi_flags)
4859		return -EINVAL;
4860
4861	return match_flags;
4862}
4863
4864static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4865{
4866	struct efx_ef10_filter_table *table = efx->filter_state;
4867	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4868
4869	/* See comment in efx_ef10_filter_table_remove() */
4870	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4871		return;
4872
4873	if (!table)
4874		return;
4875
4876	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4877		efx_ef10_filter_del_vlan_internal(efx, vlan);
4878}
4879
4880static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4881					    bool encap,
4882					    enum efx_filter_match_flags match_flags)
4883{
4884	unsigned int match_pri;
4885	int mf;
4886
4887	for (match_pri = 0;
4888	     match_pri < table->rx_match_count;
4889	     match_pri++) {
4890		mf = efx_ef10_filter_match_flags_from_mcdi(encap,
4891				table->rx_match_mcdi_flags[match_pri]);
4892		if (mf == match_flags)
4893			return true;
4894	}
4895
4896	return false;
4897}
4898
4899static int
4900efx_ef10_filter_table_probe_matches(struct efx_nic *efx,
4901				    struct efx_ef10_filter_table *table,
4902				    bool encap)
4903{
4904	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4905	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4906	unsigned int pd_match_pri, pd_match_count;
4907	size_t outlen;
4908	int rc;
4909
4910	/* Find out which RX filter types are supported, and their priorities */
4911	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4912		       encap ?
4913		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_ENCAP_RX_MATCHES :
4914		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4915	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4916			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4917			  &outlen);
4918	if (rc)
4919		return rc;
4920
4921	pd_match_count = MCDI_VAR_ARRAY_LEN(
4922		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4923
4924	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4925		u32 mcdi_flags =
4926			MCDI_ARRAY_DWORD(
4927				outbuf,
4928				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4929				pd_match_pri);
4930		rc = efx_ef10_filter_match_flags_from_mcdi(encap, mcdi_flags);
4931		if (rc < 0) {
4932			netif_dbg(efx, probe, efx->net_dev,
4933				  "%s: fw flags %#x pri %u not supported in driver\n",
4934				  __func__, mcdi_flags, pd_match_pri);
4935		} else {
4936			netif_dbg(efx, probe, efx->net_dev,
4937				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4938				  __func__, mcdi_flags, pd_match_pri,
4939				  rc, table->rx_match_count);
4940			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4941			table->rx_match_count++;
4942		}
4943	}
4944
4945	return 0;
4946}
4947
4948static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4949{
4950	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4951	struct net_device *net_dev = efx->net_dev;
4952	struct efx_ef10_filter_table *table;
4953	struct efx_ef10_vlan *vlan;
4954	int rc;
4955
4956	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4957		return -EINVAL;
4958
4959	if (efx->filter_state) /* already probed */
4960		return 0;
4961
4962	table = kzalloc(sizeof(*table), GFP_KERNEL);
4963	if (!table)
4964		return -ENOMEM;
4965
4966	table->rx_match_count = 0;
4967	rc = efx_ef10_filter_table_probe_matches(efx, table, false);
4968	if (rc)
4969		goto fail;
4970	if (nic_data->datapath_caps &
4971		   (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
4972		rc = efx_ef10_filter_table_probe_matches(efx, table, true);
4973	if (rc)
4974		goto fail;
4975	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4976	    !(efx_ef10_filter_match_supported(table, false,
4977		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4978	      efx_ef10_filter_match_supported(table, false,
4979		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4980		netif_info(efx, probe, net_dev,
4981			   "VLAN filters are not supported in this firmware variant\n");
4982		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4983		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4984		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4985	}
4986
4987	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4988	if (!table->entry) {
4989		rc = -ENOMEM;
4990		goto fail;
4991	}
4992
4993	table->mc_promisc_last = false;
4994	table->vlan_filter =
4995		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4996	INIT_LIST_HEAD(&table->vlan_list);
4997	init_rwsem(&table->lock);
4998
4999	efx->filter_state = table;
5000
5001	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
5002		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
5003		if (rc)
5004			goto fail_add_vlan;
5005	}
5006
5007	return 0;
5008
5009fail_add_vlan:
5010	efx_ef10_filter_cleanup_vlans(efx);
5011	efx->filter_state = NULL;
5012fail:
5013	kfree(table);
5014	return rc;
5015}
5016
5017/* Caller must hold efx->filter_sem for read if race against
5018 * efx_ef10_filter_table_remove() is possible
5019 */
5020static void efx_ef10_filter_table_restore(struct efx_nic *efx)
5021{
5022	struct efx_ef10_filter_table *table = efx->filter_state;
5023	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5024	unsigned int invalid_filters = 0, failed = 0;
5025	struct efx_ef10_filter_vlan *vlan;
5026	struct efx_filter_spec *spec;
5027	struct efx_rss_context *ctx;
5028	unsigned int filter_idx;
5029	u32 mcdi_flags;
5030	int match_pri;
5031	int rc, i;
5032
5033	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5034
5035	if (!nic_data->must_restore_filters)
5036		return;
5037
5038	if (!table)
5039		return;
5040
5041	down_write(&table->lock);
5042	mutex_lock(&efx->rss_lock);
5043
5044	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5045		spec = efx_ef10_filter_entry_spec(table, filter_idx);
5046		if (!spec)
5047			continue;
5048
5049		mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
5050		match_pri = 0;
5051		while (match_pri < table->rx_match_count &&
5052		       table->rx_match_mcdi_flags[match_pri] != mcdi_flags)
5053			++match_pri;
5054		if (match_pri >= table->rx_match_count) {
5055			invalid_filters++;
5056			goto not_restored;
5057		}
5058		if (spec->rss_context)
5059			ctx = efx_find_rss_context_entry(efx, spec->rss_context);
5060		else
5061			ctx = &efx->rss_context;
5062		if (spec->flags & EFX_FILTER_FLAG_RX_RSS) {
5063			if (!ctx) {
5064				netif_warn(efx, drv, efx->net_dev,
5065					   "Warning: unable to restore a filter with nonexistent RSS context %u.\n",
5066					   spec->rss_context);
5067				invalid_filters++;
5068				goto not_restored;
5069			}
5070			if (ctx->context_id == EFX_EF10_RSS_CONTEXT_INVALID) {
5071				netif_warn(efx, drv, efx->net_dev,
5072					   "Warning: unable to restore a filter with RSS context %u as it was not created.\n",
5073					   spec->rss_context);
5074				invalid_filters++;
5075				goto not_restored;
5076			}
5077		}
5078
5079		rc = efx_ef10_filter_push(efx, spec,
5080					  &table->entry[filter_idx].handle,
5081					  ctx, false);
5082		if (rc)
5083			failed++;
5084
5085		if (rc) {
5086not_restored:
5087			list_for_each_entry(vlan, &table->vlan_list, list)
5088				for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; ++i)
5089					if (vlan->default_filters[i] == filter_idx)
5090						vlan->default_filters[i] =
5091							EFX_EF10_FILTER_ID_INVALID;
5092
5093			kfree(spec);
5094			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
5095		}
5096	}
5097
5098	mutex_unlock(&efx->rss_lock);
5099	up_write(&table->lock);
5100
5101	/* This can happen validly if the MC's capabilities have changed, so
5102	 * is not an error.
5103	 */
5104	if (invalid_filters)
5105		netif_dbg(efx, drv, efx->net_dev,
5106			  "Did not restore %u filters that are now unsupported.\n",
5107			  invalid_filters);
5108
5109	if (failed)
5110		netif_err(efx, hw, efx->net_dev,
5111			  "unable to restore %u filters\n", failed);
5112	else
5113		nic_data->must_restore_filters = false;
5114}
5115
5116static void efx_ef10_filter_table_remove(struct efx_nic *efx)
5117{
5118	struct efx_ef10_filter_table *table = efx->filter_state;
5119	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_EXT_IN_LEN);
5120	struct efx_filter_spec *spec;
5121	unsigned int filter_idx;
5122	int rc;
5123
5124	efx_ef10_filter_cleanup_vlans(efx);
5125	efx->filter_state = NULL;
5126	/* If we were called without locking, then it's not safe to free
5127	 * the table as others might be using it.  So we just WARN, leak
5128	 * the memory, and potentially get an inconsistent filter table
5129	 * state.
5130	 * This should never actually happen.
5131	 */
5132	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5133		return;
5134
5135	if (!table)
5136		return;
5137
5138	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
5139		spec = efx_ef10_filter_entry_spec(table, filter_idx);
5140		if (!spec)
5141			continue;
5142
5143		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
5144			       efx_ef10_filter_is_exclusive(spec) ?
5145			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
5146			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
5147		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
5148			       table->entry[filter_idx].handle);
5149		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
5150					sizeof(inbuf), NULL, 0, NULL);
5151		if (rc)
5152			netif_info(efx, drv, efx->net_dev,
5153				   "%s: filter %04x remove failed\n",
5154				   __func__, filter_idx);
5155		kfree(spec);
5156	}
5157
5158	vfree(table->entry);
5159	kfree(table);
5160}
5161
5162static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
5163{
5164	struct efx_ef10_filter_table *table = efx->filter_state;
5165	unsigned int filter_idx;
5166
5167	efx_rwsem_assert_write_locked(&table->lock);
5168
5169	if (*id != EFX_EF10_FILTER_ID_INVALID) {
5170		filter_idx = efx_ef10_filter_get_unsafe_id(*id);
5171		if (!table->entry[filter_idx].spec)
5172			netif_dbg(efx, drv, efx->net_dev,
5173				  "marked null spec old %04x:%04x\n", *id,
5174				  filter_idx);
5175		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
5176		*id = EFX_EF10_FILTER_ID_INVALID;
5177	}
5178}
5179
5180/* Mark old per-VLAN filters that may need to be removed */
5181static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
5182					   struct efx_ef10_filter_vlan *vlan)
5183{
5184	struct efx_ef10_filter_table *table = efx->filter_state;
5185	unsigned int i;
5186
5187	for (i = 0; i < table->dev_uc_count; i++)
5188		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
5189	for (i = 0; i < table->dev_mc_count; i++)
5190		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
5191	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5192		efx_ef10_filter_mark_one_old(efx, &vlan->default_filters[i]);
5193}
5194
5195/* Mark old filters that may need to be removed.
5196 * Caller must hold efx->filter_sem for read if race against
5197 * efx_ef10_filter_table_remove() is possible
5198 */
5199static void efx_ef10_filter_mark_old(struct efx_nic *efx)
5200{
5201	struct efx_ef10_filter_table *table = efx->filter_state;
5202	struct efx_ef10_filter_vlan *vlan;
5203
5204	down_write(&table->lock);
5205	list_for_each_entry(vlan, &table->vlan_list, list)
5206		_efx_ef10_filter_vlan_mark_old(efx, vlan);
5207	up_write(&table->lock);
5208}
5209
5210static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
5211{
5212	struct efx_ef10_filter_table *table = efx->filter_state;
5213	struct net_device *net_dev = efx->net_dev;
5214	struct netdev_hw_addr *uc;
5215	unsigned int i;
5216
5217	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
5218	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
5219	i = 1;
5220	netdev_for_each_uc_addr(uc, net_dev) {
5221		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
5222			table->uc_promisc = true;
5223			break;
5224		}
5225		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
5226		i++;
5227	}
5228
5229	table->dev_uc_count = i;
5230}
5231
5232static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
5233{
5234	struct efx_ef10_filter_table *table = efx->filter_state;
5235	struct net_device *net_dev = efx->net_dev;
5236	struct netdev_hw_addr *mc;
5237	unsigned int i;
5238
5239	table->mc_overflow = false;
5240	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
5241
5242	i = 0;
5243	netdev_for_each_mc_addr(mc, net_dev) {
5244		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
5245			table->mc_promisc = true;
5246			table->mc_overflow = true;
5247			break;
5248		}
5249		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
5250		i++;
5251	}
5252
5253	table->dev_mc_count = i;
5254}
5255
5256static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
5257					    struct efx_ef10_filter_vlan *vlan,
5258					    bool multicast, bool rollback)
5259{
5260	struct efx_ef10_filter_table *table = efx->filter_state;
5261	struct efx_ef10_dev_addr *addr_list;
5262	enum efx_filter_flags filter_flags;
5263	struct efx_filter_spec spec;
5264	u8 baddr[ETH_ALEN];
5265	unsigned int i, j;
5266	int addr_count;
5267	u16 *ids;
5268	int rc;
5269
5270	if (multicast) {
5271		addr_list = table->dev_mc_list;
5272		addr_count = table->dev_mc_count;
5273		ids = vlan->mc;
5274	} else {
5275		addr_list = table->dev_uc_list;
5276		addr_count = table->dev_uc_count;
5277		ids = vlan->uc;
5278	}
5279
5280	filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5281
5282	/* Insert/renew filters */
5283	for (i = 0; i < addr_count; i++) {
5284		EFX_WARN_ON_PARANOID(ids[i] != EFX_EF10_FILTER_ID_INVALID);
5285		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5286		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
5287		rc = efx_ef10_filter_insert(efx, &spec, true);
5288		if (rc < 0) {
5289			if (rollback) {
5290				netif_info(efx, drv, efx->net_dev,
5291					   "efx_ef10_filter_insert failed rc=%d\n",
5292					   rc);
5293				/* Fall back to promiscuous */
5294				for (j = 0; j < i; j++) {
5295					efx_ef10_filter_remove_unsafe(
5296						efx, EFX_FILTER_PRI_AUTO,
5297						ids[j]);
5298					ids[j] = EFX_EF10_FILTER_ID_INVALID;
5299				}
5300				return rc;
5301			} else {
5302				/* keep invalid ID, and carry on */
5303			}
5304		} else {
5305			ids[i] = efx_ef10_filter_get_unsafe_id(rc);
5306		}
5307	}
5308
5309	if (multicast && rollback) {
5310		/* Also need an Ethernet broadcast filter */
5311		EFX_WARN_ON_PARANOID(vlan->default_filters[EFX_EF10_BCAST] !=
5312				     EFX_EF10_FILTER_ID_INVALID);
5313		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5314		eth_broadcast_addr(baddr);
5315		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5316		rc = efx_ef10_filter_insert(efx, &spec, true);
5317		if (rc < 0) {
5318			netif_warn(efx, drv, efx->net_dev,
5319				   "Broadcast filter insert failed rc=%d\n", rc);
5320			/* Fall back to promiscuous */
5321			for (j = 0; j < i; j++) {
5322				efx_ef10_filter_remove_unsafe(
5323					efx, EFX_FILTER_PRI_AUTO,
5324					ids[j]);
5325				ids[j] = EFX_EF10_FILTER_ID_INVALID;
5326			}
5327			return rc;
5328		} else {
5329			vlan->default_filters[EFX_EF10_BCAST] =
5330				efx_ef10_filter_get_unsafe_id(rc);
5331		}
5332	}
5333
5334	return 0;
5335}
5336
5337static int efx_ef10_filter_insert_def(struct efx_nic *efx,
5338				      struct efx_ef10_filter_vlan *vlan,
5339				      enum efx_encap_type encap_type,
5340				      bool multicast, bool rollback)
5341{
5342	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5343	enum efx_filter_flags filter_flags;
5344	struct efx_filter_spec spec;
5345	u8 baddr[ETH_ALEN];
5346	int rc;
5347	u16 *id;
5348
5349	filter_flags = efx_rss_active(&efx->rss_context) ? EFX_FILTER_FLAG_RX_RSS : 0;
5350
5351	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
5352
5353	if (multicast)
5354		efx_filter_set_mc_def(&spec);
5355	else
5356		efx_filter_set_uc_def(&spec);
5357
5358	if (encap_type) {
5359		if (nic_data->datapath_caps &
5360		    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
5361			efx_filter_set_encap_type(&spec, encap_type);
5362		else
5363			/* don't insert encap filters on non-supporting
5364			 * platforms. ID will be left as INVALID.
5365			 */
5366			return 0;
5367	}
5368
5369	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
5370		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
5371
5372	rc = efx_ef10_filter_insert(efx, &spec, true);
5373	if (rc < 0) {
5374		const char *um = multicast ? "Multicast" : "Unicast";
5375		const char *encap_name = "";
5376		const char *encap_ipv = "";
5377
5378		if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5379		    EFX_ENCAP_TYPE_VXLAN)
5380			encap_name = "VXLAN ";
5381		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5382			 EFX_ENCAP_TYPE_NVGRE)
5383			encap_name = "NVGRE ";
5384		else if ((encap_type & EFX_ENCAP_TYPES_MASK) ==
5385			 EFX_ENCAP_TYPE_GENEVE)
5386			encap_name = "GENEVE ";
5387		if (encap_type & EFX_ENCAP_FLAG_IPV6)
5388			encap_ipv = "IPv6 ";
5389		else if (encap_type)
5390			encap_ipv = "IPv4 ";
5391
5392		/* unprivileged functions can't insert mismatch filters
5393		 * for encapsulated or unicast traffic, so downgrade
5394		 * those warnings to debug.
5395		 */
5396		netif_cond_dbg(efx, drv, efx->net_dev,
5397			       rc == -EPERM && (encap_type || !multicast), warn,
5398			       "%s%s%s mismatch filter insert failed rc=%d\n",
5399			       encap_name, encap_ipv, um, rc);
5400	} else if (multicast) {
5401		/* mapping from encap types to default filter IDs (multicast) */
5402		static enum efx_ef10_default_filters map[] = {
5403			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_MCDEF,
5404			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_MCDEF,
5405			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_MCDEF,
5406			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_MCDEF,
5407			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5408				EFX_EF10_VXLAN6_MCDEF,
5409			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5410				EFX_EF10_NVGRE6_MCDEF,
5411			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5412				EFX_EF10_GENEVE6_MCDEF,
5413		};
5414
5415		/* quick bounds check (BCAST result impossible) */
5416		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5417		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5418			WARN_ON(1);
5419			return -EINVAL;
5420		}
5421		/* then follow map */
5422		id = &vlan->default_filters[map[encap_type]];
5423
5424		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5425		*id = efx_ef10_filter_get_unsafe_id(rc);
5426		if (!nic_data->workaround_26807 && !encap_type) {
5427			/* Also need an Ethernet broadcast filter */
5428			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
5429					   filter_flags, 0);
5430			eth_broadcast_addr(baddr);
5431			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
5432			rc = efx_ef10_filter_insert(efx, &spec, true);
5433			if (rc < 0) {
5434				netif_warn(efx, drv, efx->net_dev,
5435					   "Broadcast filter insert failed rc=%d\n",
5436					   rc);
5437				if (rollback) {
5438					/* Roll back the mc_def filter */
5439					efx_ef10_filter_remove_unsafe(
5440							efx, EFX_FILTER_PRI_AUTO,
5441							*id);
5442					*id = EFX_EF10_FILTER_ID_INVALID;
5443					return rc;
5444				}
5445			} else {
5446				EFX_WARN_ON_PARANOID(
5447					vlan->default_filters[EFX_EF10_BCAST] !=
5448					EFX_EF10_FILTER_ID_INVALID);
5449				vlan->default_filters[EFX_EF10_BCAST] =
5450					efx_ef10_filter_get_unsafe_id(rc);
5451			}
5452		}
5453		rc = 0;
5454	} else {
5455		/* mapping from encap types to default filter IDs (unicast) */
5456		static enum efx_ef10_default_filters map[] = {
5457			[EFX_ENCAP_TYPE_NONE] = EFX_EF10_UCDEF,
5458			[EFX_ENCAP_TYPE_VXLAN] = EFX_EF10_VXLAN4_UCDEF,
5459			[EFX_ENCAP_TYPE_NVGRE] = EFX_EF10_NVGRE4_UCDEF,
5460			[EFX_ENCAP_TYPE_GENEVE] = EFX_EF10_GENEVE4_UCDEF,
5461			[EFX_ENCAP_TYPE_VXLAN | EFX_ENCAP_FLAG_IPV6] =
5462				EFX_EF10_VXLAN6_UCDEF,
5463			[EFX_ENCAP_TYPE_NVGRE | EFX_ENCAP_FLAG_IPV6] =
5464				EFX_EF10_NVGRE6_UCDEF,
5465			[EFX_ENCAP_TYPE_GENEVE | EFX_ENCAP_FLAG_IPV6] =
5466				EFX_EF10_GENEVE6_UCDEF,
5467		};
5468
5469		/* quick bounds check (BCAST result impossible) */
5470		BUILD_BUG_ON(EFX_EF10_BCAST != 0);
5471		if (encap_type >= ARRAY_SIZE(map) || map[encap_type] == 0) {
5472			WARN_ON(1);
5473			return -EINVAL;
5474		}
5475		/* then follow map */
5476		id = &vlan->default_filters[map[encap_type]];
5477		EFX_WARN_ON_PARANOID(*id != EFX_EF10_FILTER_ID_INVALID);
5478		*id = rc;
5479		rc = 0;
5480	}
5481	return rc;
5482}
5483
5484/* Remove filters that weren't renewed. */
5485static void efx_ef10_filter_remove_old(struct efx_nic *efx)
5486{
5487	struct efx_ef10_filter_table *table = efx->filter_state;
5488	int remove_failed = 0;
5489	int remove_noent = 0;
5490	int rc;
5491	int i;
5492
5493	down_write(&table->lock);
5494	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
5495		if (READ_ONCE(table->entry[i].spec) &
5496		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
5497			rc = efx_ef10_filter_remove_internal(efx,
5498					1U << EFX_FILTER_PRI_AUTO, i, true);
5499			if (rc == -ENOENT)
5500				remove_noent++;
5501			else if (rc)
5502				remove_failed++;
5503		}
5504	}
5505	up_write(&table->lock);
5506
5507	if (remove_failed)
5508		netif_info(efx, drv, efx->net_dev,
5509			   "%s: failed to remove %d filters\n",
5510			   __func__, remove_failed);
5511	if (remove_noent)
5512		netif_info(efx, drv, efx->net_dev,
5513			   "%s: failed to remove %d non-existent filters\n",
5514			   __func__, remove_noent);
5515}
5516
5517static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
5518{
5519	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5520	u8 mac_old[ETH_ALEN];
5521	int rc, rc2;
5522
5523	/* Only reconfigure a PF-created vport */
5524	if (is_zero_ether_addr(nic_data->vport_mac))
5525		return 0;
5526
5527	efx_device_detach_sync(efx);
5528	efx_net_stop(efx->net_dev);
5529	down_write(&efx->filter_sem);
5530	efx_ef10_filter_table_remove(efx);
5531	up_write(&efx->filter_sem);
5532
5533	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
5534	if (rc)
5535		goto restore_filters;
5536
5537	ether_addr_copy(mac_old, nic_data->vport_mac);
5538	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
5539				    nic_data->vport_mac);
5540	if (rc)
5541		goto restore_vadaptor;
5542
5543	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
5544				    efx->net_dev->dev_addr);
5545	if (!rc) {
5546		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
5547	} else {
5548		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
5549		if (rc2) {
5550			/* Failed to add original MAC, so clear vport_mac */
5551			eth_zero_addr(nic_data->vport_mac);
5552			goto reset_nic;
5553		}
5554	}
5555
5556restore_vadaptor:
5557	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
5558	if (rc2)
5559		goto reset_nic;
5560restore_filters:
5561	down_write(&efx->filter_sem);
5562	rc2 = efx_ef10_filter_table_probe(efx);
5563	up_write(&efx->filter_sem);
5564	if (rc2)
5565		goto reset_nic;
5566
5567	rc2 = efx_net_open(efx->net_dev);
5568	if (rc2)
5569		goto reset_nic;
5570
5571	efx_device_attach_if_not_resetting(efx);
5572
5573	return rc;
5574
5575reset_nic:
5576	netif_err(efx, drv, efx->net_dev,
5577		  "Failed to restore when changing MAC address - scheduling reset\n");
5578	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
5579
5580	return rc ? rc : rc2;
5581}
5582
5583/* Caller must hold efx->filter_sem for read if race against
5584 * efx_ef10_filter_table_remove() is possible
5585 */
5586static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
5587					      struct efx_ef10_filter_vlan *vlan)
5588{
5589	struct efx_ef10_filter_table *table = efx->filter_state;
5590	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
5591
5592	/* Do not install unspecified VID if VLAN filtering is enabled.
5593	 * Do not install all specified VIDs if VLAN filtering is disabled.
 
5594	 */
5595	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
5596		return;
 
 
5597
5598	/* Insert/renew unicast filters */
5599	if (table->uc_promisc) {
5600		efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NONE,
5601					   false, false);
5602		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
5603	} else {
5604		/* If any of the filters failed to insert, fall back to
5605		 * promiscuous mode - add in the uc_def filter.  But keep
5606		 * our individual unicast filters.
5607		 */
5608		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
5609			efx_ef10_filter_insert_def(efx, vlan,
5610						   EFX_ENCAP_TYPE_NONE,
5611						   false, false);
5612	}
5613	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5614				   false, false);
5615	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5616					      EFX_ENCAP_FLAG_IPV6,
5617				   false, false);
5618	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5619				   false, false);
5620	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5621					      EFX_ENCAP_FLAG_IPV6,
5622				   false, false);
5623	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5624				   false, false);
5625	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5626					      EFX_ENCAP_FLAG_IPV6,
5627				   false, false);
5628
5629	/* Insert/renew multicast filters */
5630	/* If changing promiscuous state with cascaded multicast filters, remove
5631	 * old filters first, so that packets are dropped rather than duplicated
5632	 */
5633	if (nic_data->workaround_26807 &&
5634	    table->mc_promisc_last != table->mc_promisc)
5635		efx_ef10_filter_remove_old(efx);
5636	if (table->mc_promisc) {
5637		if (nic_data->workaround_26807) {
5638			/* If we failed to insert promiscuous filters, rollback
5639			 * and fall back to individual multicast filters
5640			 */
5641			if (efx_ef10_filter_insert_def(efx, vlan,
5642						       EFX_ENCAP_TYPE_NONE,
5643						       true, true)) {
5644				/* Changing promisc state, so remove old filters */
5645				efx_ef10_filter_remove_old(efx);
5646				efx_ef10_filter_insert_addr_list(efx, vlan,
5647								 true, false);
5648			}
5649		} else {
5650			/* If we failed to insert promiscuous filters, don't
5651			 * rollback.  Regardless, also insert the mc_list,
5652			 * unless it's incomplete due to overflow
5653			 */
5654			efx_ef10_filter_insert_def(efx, vlan,
5655						   EFX_ENCAP_TYPE_NONE,
5656						   true, false);
5657			if (!table->mc_overflow)
5658				efx_ef10_filter_insert_addr_list(efx, vlan,
5659								 true, false);
5660		}
5661	} else {
5662		/* If any filters failed to insert, rollback and fall back to
5663		 * promiscuous mode - mc_def filter and maybe broadcast.  If
5664		 * that fails, roll back again and insert as many of our
5665		 * individual multicast filters as we can.
5666		 */
5667		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
5668			/* Changing promisc state, so remove old filters */
5669			if (nic_data->workaround_26807)
5670				efx_ef10_filter_remove_old(efx);
5671			if (efx_ef10_filter_insert_def(efx, vlan,
5672						       EFX_ENCAP_TYPE_NONE,
5673						       true, true))
5674				efx_ef10_filter_insert_addr_list(efx, vlan,
5675								 true, false);
5676		}
5677	}
5678	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN,
5679				   true, false);
5680	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_VXLAN |
5681					      EFX_ENCAP_FLAG_IPV6,
5682				   true, false);
5683	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE,
5684				   true, false);
5685	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_NVGRE |
5686					      EFX_ENCAP_FLAG_IPV6,
5687				   true, false);
5688	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE,
5689				   true, false);
5690	efx_ef10_filter_insert_def(efx, vlan, EFX_ENCAP_TYPE_GENEVE |
5691					      EFX_ENCAP_FLAG_IPV6,
5692				   true, false);
5693}
5694
5695/* Caller must hold efx->filter_sem for read if race against
5696 * efx_ef10_filter_table_remove() is possible
5697 */
5698static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
5699{
5700	struct efx_ef10_filter_table *table = efx->filter_state;
5701	struct net_device *net_dev = efx->net_dev;
5702	struct efx_ef10_filter_vlan *vlan;
5703	bool vlan_filter;
5704
5705	if (!efx_dev_registered(efx))
5706		return;
5707
5708	if (!table)
5709		return;
5710
5711	efx_ef10_filter_mark_old(efx);
5712
5713	/* Copy/convert the address lists; add the primary station
5714	 * address and broadcast address
5715	 */
5716	netif_addr_lock_bh(net_dev);
5717	efx_ef10_filter_uc_addr_list(efx);
5718	efx_ef10_filter_mc_addr_list(efx);
5719	netif_addr_unlock_bh(net_dev);
5720
5721	/* If VLAN filtering changes, all old filters are finally removed.
5722	 * Do it in advance to avoid conflicts for unicast untagged and
5723	 * VLAN 0 tagged filters.
5724	 */
5725	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5726	if (table->vlan_filter != vlan_filter) {
5727		table->vlan_filter = vlan_filter;
5728		efx_ef10_filter_remove_old(efx);
5729	}
5730
5731	list_for_each_entry(vlan, &table->vlan_list, list)
5732		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5733
5734	efx_ef10_filter_remove_old(efx);
5735	table->mc_promisc_last = table->mc_promisc;
5736}
5737
5738static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5739{
5740	struct efx_ef10_filter_table *table = efx->filter_state;
5741	struct efx_ef10_filter_vlan *vlan;
5742
5743	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5744
5745	list_for_each_entry(vlan, &table->vlan_list, list) {
5746		if (vlan->vid == vid)
5747			return vlan;
5748	}
5749
5750	return NULL;
5751}
5752
5753static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5754{
5755	struct efx_ef10_filter_table *table = efx->filter_state;
5756	struct efx_ef10_filter_vlan *vlan;
5757	unsigned int i;
5758
5759	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5760		return -EINVAL;
5761
5762	vlan = efx_ef10_filter_find_vlan(efx, vid);
5763	if (WARN_ON(vlan)) {
5764		netif_err(efx, drv, efx->net_dev,
5765			  "VLAN %u already added\n", vid);
5766		return -EALREADY;
5767	}
5768
5769	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5770	if (!vlan)
5771		return -ENOMEM;
5772
5773	vlan->vid = vid;
5774
5775	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5776		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5777	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5778		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5779	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5780		vlan->default_filters[i] = EFX_EF10_FILTER_ID_INVALID;
5781
5782	list_add_tail(&vlan->list, &table->vlan_list);
5783
5784	if (efx_dev_registered(efx))
5785		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5786
5787	return 0;
5788}
5789
5790static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5791					      struct efx_ef10_filter_vlan *vlan)
5792{
5793	unsigned int i;
5794
5795	/* See comment in efx_ef10_filter_table_remove() */
5796	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5797		return;
5798
5799	list_del(&vlan->list);
5800
5801	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5802		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5803					      vlan->uc[i]);
5804	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5805		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5806					      vlan->mc[i]);
5807	for (i = 0; i < EFX_EF10_NUM_DEFAULT_FILTERS; i++)
5808		if (vlan->default_filters[i] != EFX_EF10_FILTER_ID_INVALID)
5809			efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5810						      vlan->default_filters[i]);
5811
5812	kfree(vlan);
5813}
5814
5815static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5816{
5817	struct efx_ef10_filter_vlan *vlan;
5818
5819	/* See comment in efx_ef10_filter_table_remove() */
5820	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5821		return;
5822
5823	vlan = efx_ef10_filter_find_vlan(efx, vid);
5824	if (!vlan) {
5825		netif_err(efx, drv, efx->net_dev,
5826			  "VLAN %u not found in filter state\n", vid);
5827		return;
5828	}
5829
5830	efx_ef10_filter_del_vlan_internal(efx, vlan);
5831}
5832
5833static int efx_ef10_set_mac_address(struct efx_nic *efx)
5834{
5835	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5836	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5837	bool was_enabled = efx->port_enabled;
5838	int rc;
5839
5840	efx_device_detach_sync(efx);
5841	efx_net_stop(efx->net_dev);
5842
5843	mutex_lock(&efx->mac_lock);
5844	down_write(&efx->filter_sem);
5845	efx_ef10_filter_table_remove(efx);
5846
5847	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5848			efx->net_dev->dev_addr);
5849	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5850		       nic_data->vport_id);
5851	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5852				sizeof(inbuf), NULL, 0, NULL);
5853
5854	efx_ef10_filter_table_probe(efx);
5855	up_write(&efx->filter_sem);
5856	mutex_unlock(&efx->mac_lock);
5857
5858	if (was_enabled)
5859		efx_net_open(efx->net_dev);
5860	efx_device_attach_if_not_resetting(efx);
5861
5862#ifdef CONFIG_SFC_SRIOV
5863	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5864		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5865
5866		if (rc == -EPERM) {
5867			struct efx_nic *efx_pf;
5868
5869			/* Switch to PF and change MAC address on vport */
5870			efx_pf = pci_get_drvdata(pci_dev_pf);
5871
5872			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5873						       nic_data->vf_index,
5874						       efx->net_dev->dev_addr);
5875		} else if (!rc) {
5876			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5877			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5878			unsigned int i;
5879
5880			/* MAC address successfully changed by VF (with MAC
5881			 * spoofing) so update the parent PF if possible.
5882			 */
5883			for (i = 0; i < efx_pf->vf_count; ++i) {
5884				struct ef10_vf *vf = nic_data->vf + i;
5885
5886				if (vf->efx == efx) {
5887					ether_addr_copy(vf->mac,
5888							efx->net_dev->dev_addr);
5889					return 0;
5890				}
5891			}
5892		}
5893	} else
5894#endif
5895	if (rc == -EPERM) {
5896		netif_err(efx, drv, efx->net_dev,
5897			  "Cannot change MAC address; use sfboot to enable"
5898			  " mac-spoofing on this interface\n");
5899	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5900		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5901		 * fall-back to the method of changing the MAC address on the
5902		 * vport.  This only applies to PFs because such versions of
5903		 * MCFW do not support VFs.
5904		 */
5905		rc = efx_ef10_vport_set_mac_address(efx);
5906	} else if (rc) {
5907		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5908				       sizeof(inbuf), NULL, 0, rc);
5909	}
5910
5911	return rc;
5912}
5913
5914static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5915{
5916	efx_ef10_filter_sync_rx_mode(efx);
5917
 
 
 
 
5918	return efx_mcdi_set_mac(efx);
5919}
5920
5921static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5922{
5923	efx_ef10_filter_sync_rx_mode(efx);
5924
5925	return 0;
5926}
5927
5928static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5929{
5930	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5931
5932	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5933	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5934			    NULL, 0, NULL);
5935}
5936
5937/* MC BISTs follow a different poll mechanism to phy BISTs.
5938 * The BIST is done in the poll handler on the MC, and the MCDI command
5939 * will block until the BIST is done.
5940 */
5941static int efx_ef10_poll_bist(struct efx_nic *efx)
5942{
5943	int rc;
5944	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5945	size_t outlen;
5946	u32 result;
5947
5948	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5949			   outbuf, sizeof(outbuf), &outlen);
5950	if (rc != 0)
5951		return rc;
5952
5953	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5954		return -EIO;
5955
5956	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5957	switch (result) {
5958	case MC_CMD_POLL_BIST_PASSED:
5959		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5960		return 0;
5961	case MC_CMD_POLL_BIST_TIMEOUT:
5962		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5963		return -EIO;
5964	case MC_CMD_POLL_BIST_FAILED:
5965		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5966		return -EIO;
5967	default:
5968		netif_err(efx, hw, efx->net_dev,
5969			  "BIST returned unknown result %u", result);
5970		return -EIO;
5971	}
5972}
5973
5974static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5975{
5976	int rc;
5977
5978	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5979
5980	rc = efx_ef10_start_bist(efx, bist_type);
5981	if (rc != 0)
5982		return rc;
5983
5984	return efx_ef10_poll_bist(efx);
5985}
5986
5987static int
5988efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5989{
5990	int rc, rc2;
5991
5992	efx_reset_down(efx, RESET_TYPE_WORLD);
5993
5994	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5995			  NULL, 0, NULL, 0, NULL);
5996	if (rc != 0)
5997		goto out;
5998
5999	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
6000	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
6001
6002	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
6003
6004out:
6005	if (rc == -EPERM)
6006		rc = 0;
6007	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
6008	return rc ? rc : rc2;
6009}
6010
6011#ifdef CONFIG_SFC_MTD
6012
6013struct efx_ef10_nvram_type_info {
6014	u16 type, type_mask;
6015	u8 port;
6016	const char *name;
6017};
6018
6019static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
6020	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
6021	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
6022	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
6023	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
6024	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
6025	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
6026	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
6027	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
6028	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
6029	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
6030	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
 
 
 
 
 
 
 
6031};
 
6032
6033static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
6034					struct efx_mcdi_mtd_partition *part,
6035					unsigned int type)
 
6036{
6037	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
6038	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
6039	const struct efx_ef10_nvram_type_info *info;
6040	size_t size, erase_size, outlen;
 
6041	bool protected;
6042	int rc;
6043
6044	for (info = efx_ef10_nvram_types; ; info++) {
6045		if (info ==
6046		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
6047			return -ENODEV;
 
6048		if ((type & ~info->type_mask) == info->type)
6049			break;
6050	}
6051	if (info->port != efx_port_num(efx))
6052		return -ENODEV;
6053
6054	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
6055	if (rc)
6056		return rc;
 
 
 
 
 
 
6057	if (protected)
6058		return -ENODEV; /* hide it */
 
 
 
 
 
 
 
 
6059
6060	part->nvram_type = type;
6061
6062	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
6063	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
6064			  outbuf, sizeof(outbuf), &outlen);
6065	if (rc)
6066		return rc;
6067	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
6068		return -EIO;
6069	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
6070	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
6071		part->fw_subtype = MCDI_DWORD(outbuf,
6072					      NVRAM_METADATA_OUT_SUBTYPE);
6073
6074	part->common.dev_type_name = "EF10 NVRAM manager";
6075	part->common.type_name = info->name;
6076
6077	part->common.mtd.type = MTD_NORFLASH;
6078	part->common.mtd.flags = MTD_CAP_NORFLASH;
6079	part->common.mtd.size = size;
6080	part->common.mtd.erasesize = erase_size;
 
 
 
6081
6082	return 0;
6083}
6084
6085static int efx_ef10_mtd_probe(struct efx_nic *efx)
6086{
6087	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
 
6088	struct efx_mcdi_mtd_partition *parts;
6089	size_t outlen, n_parts_total, i, n_parts;
6090	unsigned int type;
6091	int rc;
6092
6093	ASSERT_RTNL();
6094
6095	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
6096	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
6097			  outbuf, sizeof(outbuf), &outlen);
6098	if (rc)
6099		return rc;
6100	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
6101		return -EIO;
6102
6103	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
6104	if (n_parts_total >
6105	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
6106		return -EIO;
6107
6108	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
6109	if (!parts)
6110		return -ENOMEM;
6111
6112	n_parts = 0;
6113	for (i = 0; i < n_parts_total; i++) {
6114		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
6115					i);
6116		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
6117		if (rc == 0)
6118			n_parts++;
6119		else if (rc != -ENODEV)
 
6120			goto fail;
 
 
 
 
 
 
6121	}
6122
6123	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
6124fail:
6125	if (rc)
6126		kfree(parts);
6127	return rc;
6128}
6129
6130#endif /* CONFIG_SFC_MTD */
6131
6132static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
6133{
6134	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
6135}
6136
6137static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
6138					    u32 host_time) {}
6139
6140static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
6141					   bool temp)
6142{
6143	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
6144	int rc;
6145
6146	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
6147	    channel->sync_events_state == SYNC_EVENTS_VALID ||
6148	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
6149		return 0;
6150	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
6151
6152	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
6153	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6154	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
6155		       channel->channel);
6156
6157	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6158			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6159
6160	if (rc != 0)
6161		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6162						    SYNC_EVENTS_DISABLED;
6163
6164	return rc;
6165}
6166
6167static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
6168					    bool temp)
6169{
6170	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
6171	int rc;
6172
6173	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
6174	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
6175		return 0;
6176	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
6177		channel->sync_events_state = SYNC_EVENTS_DISABLED;
6178		return 0;
6179	}
6180	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
6181					    SYNC_EVENTS_DISABLED;
6182
6183	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
6184	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
6185	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
6186		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
6187	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
6188		       channel->channel);
6189
6190	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
6191			  inbuf, sizeof(inbuf), NULL, 0, NULL);
6192
6193	return rc;
6194}
6195
6196static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
6197					   bool temp)
6198{
6199	int (*set)(struct efx_channel *channel, bool temp);
6200	struct efx_channel *channel;
6201
6202	set = en ?
6203	      efx_ef10_rx_enable_timestamping :
6204	      efx_ef10_rx_disable_timestamping;
6205
6206	channel = efx_ptp_channel(efx);
6207	if (channel) {
6208		int rc = set(channel, temp);
6209		if (en && rc != 0) {
6210			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
6211			return rc;
6212		}
6213	}
6214
6215	return 0;
6216}
6217
6218static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
6219					 struct hwtstamp_config *init)
6220{
6221	return -EOPNOTSUPP;
6222}
6223
6224static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
6225				      struct hwtstamp_config *init)
6226{
6227	int rc;
6228
6229	switch (init->rx_filter) {
6230	case HWTSTAMP_FILTER_NONE:
6231		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
6232		/* if TX timestamping is still requested then leave PTP on */
6233		return efx_ptp_change_mode(efx,
6234					   init->tx_type != HWTSTAMP_TX_OFF, 0);
6235	case HWTSTAMP_FILTER_ALL:
6236	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
6237	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
6238	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
6239	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
6240	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6241	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6242	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
6243	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6244	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6245	case HWTSTAMP_FILTER_PTP_V2_EVENT:
6246	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6247	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6248	case HWTSTAMP_FILTER_NTP_ALL:
6249		init->rx_filter = HWTSTAMP_FILTER_ALL;
6250		rc = efx_ptp_change_mode(efx, true, 0);
6251		if (!rc)
6252			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
6253		if (rc)
6254			efx_ptp_change_mode(efx, false, 0);
6255		return rc;
6256	default:
6257		return -ERANGE;
6258	}
6259}
6260
6261static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
6262				     struct netdev_phys_item_id *ppid)
6263{
6264	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6265
6266	if (!is_valid_ether_addr(nic_data->port_id))
6267		return -EOPNOTSUPP;
6268
6269	ppid->id_len = ETH_ALEN;
6270	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
6271
6272	return 0;
6273}
6274
6275static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6276{
6277	if (proto != htons(ETH_P_8021Q))
6278		return -EINVAL;
6279
6280	return efx_ef10_add_vlan(efx, vid);
6281}
6282
6283static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
6284{
6285	if (proto != htons(ETH_P_8021Q))
6286		return -EINVAL;
6287
6288	return efx_ef10_del_vlan(efx, vid);
6289}
6290
6291/* We rely on the MCDI wiping out our TX rings if it made any changes to the
6292 * ports table, ensuring that any TSO descriptors that were made on a now-
6293 * removed tunnel port will be blown away and won't break things when we try
6294 * to transmit them using the new ports table.
6295 */
6296static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
6297{
6298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6299	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
6300	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
6301	bool will_reset = false;
6302	size_t num_entries = 0;
6303	size_t inlen, outlen;
6304	size_t i;
6305	int rc;
6306	efx_dword_t flags_and_num_entries;
6307
6308	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
6309
6310	nic_data->udp_tunnels_dirty = false;
6311
6312	if (!(nic_data->datapath_caps &
6313	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
6314		efx_device_attach_if_not_resetting(efx);
6315		return 0;
6316	}
6317
6318	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
6319		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
6320
6321	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6322		if (nic_data->udp_tunnels[i].count &&
6323		    nic_data->udp_tunnels[i].port) {
6324			efx_dword_t entry;
6325
6326			EFX_POPULATE_DWORD_2(entry,
6327				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
6328					ntohs(nic_data->udp_tunnels[i].port),
6329				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
6330					nic_data->udp_tunnels[i].type);
6331			*_MCDI_ARRAY_DWORD(inbuf,
6332				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
6333				num_entries++) = entry;
6334		}
6335	}
6336
6337	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
6338		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
6339		     EFX_WORD_1_LBN);
6340	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
6341		     EFX_WORD_1_WIDTH);
6342	EFX_POPULATE_DWORD_2(flags_and_num_entries,
6343			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
6344				!!unloading,
6345			     EFX_WORD_1, num_entries);
6346	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
6347		flags_and_num_entries;
6348
6349	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
6350
6351	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
6352				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
6353	if (rc == -EIO) {
6354		/* Most likely the MC rebooted due to another function also
6355		 * setting its tunnel port list. Mark the tunnel port list as
6356		 * dirty, so it will be pushed upon coming up from the reboot.
6357		 */
6358		nic_data->udp_tunnels_dirty = true;
6359		return 0;
6360	}
6361
6362	if (rc) {
6363		/* expected not available on unprivileged functions */
6364		if (rc != -EPERM)
6365			netif_warn(efx, drv, efx->net_dev,
6366				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
6367	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
6368		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
6369		netif_info(efx, drv, efx->net_dev,
6370			   "Rebooting MC due to UDP tunnel port list change\n");
6371		will_reset = true;
6372		if (unloading)
6373			/* Delay for the MC reset to complete. This will make
6374			 * unloading other functions a bit smoother. This is a
6375			 * race, but the other unload will work whichever way
6376			 * it goes, this just avoids an unnecessary error
6377			 * message.
6378			 */
6379			msleep(100);
6380	}
6381	if (!will_reset && !unloading) {
6382		/* The caller will have detached, relying on the MC reset to
6383		 * trigger a re-attach.  Since there won't be an MC reset, we
6384		 * have to do the attach ourselves.
6385		 */
6386		efx_device_attach_if_not_resetting(efx);
6387	}
6388
6389	return rc;
6390}
6391
6392static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
6393{
6394	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6395	int rc = 0;
6396
6397	mutex_lock(&nic_data->udp_tunnels_lock);
6398	if (nic_data->udp_tunnels_dirty) {
6399		/* Make sure all TX are stopped while we modify the table, else
6400		 * we might race against an efx_features_check().
6401		 */
6402		efx_device_detach_sync(efx);
6403		rc = efx_ef10_set_udp_tnl_ports(efx, false);
6404	}
6405	mutex_unlock(&nic_data->udp_tunnels_lock);
6406	return rc;
6407}
6408
6409static struct efx_udp_tunnel *__efx_ef10_udp_tnl_lookup_port(struct efx_nic *efx,
6410							     __be16 port)
 
6411{
6412	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6413	size_t i;
 
6414
6415	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
6416		if (!nic_data->udp_tunnels[i].count)
6417			continue;
6418		if (nic_data->udp_tunnels[i].port == port)
6419			return &nic_data->udp_tunnels[i];
6420	}
6421	return NULL;
6422}
6423
6424static int efx_ef10_udp_tnl_add_port(struct efx_nic *efx,
6425				     struct efx_udp_tunnel tnl)
6426{
6427	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6428	struct efx_udp_tunnel *match;
6429	char typebuf[8];
6430	size_t i;
6431	int rc;
6432
 
6433	if (!(nic_data->datapath_caps &
6434	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6435		return 0;
6436
6437	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6438	netif_dbg(efx, drv, efx->net_dev, "Adding UDP tunnel (%s) port %d\n",
6439		  typebuf, ntohs(tnl.port));
6440
6441	mutex_lock(&nic_data->udp_tunnels_lock);
6442	/* Make sure all TX are stopped while we add to the table, else we
6443	 * might race against an efx_features_check().
6444	 */
6445	efx_device_detach_sync(efx);
 
 
 
 
6446
6447	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6448	if (match != NULL) {
6449		if (match->type == tnl.type) {
6450			netif_dbg(efx, drv, efx->net_dev,
6451				  "Referencing existing tunnel entry\n");
6452			match->count++;
6453			/* No need to cause an MCDI update */
6454			rc = 0;
6455			goto unlock_out;
6456		}
6457		efx_get_udp_tunnel_type_name(match->type,
6458					     typebuf, sizeof(typebuf));
6459		netif_dbg(efx, drv, efx->net_dev,
6460			  "UDP port %d is already in use by %s\n",
6461			  ntohs(tnl.port), typebuf);
6462		rc = -EEXIST;
6463		goto unlock_out;
6464	}
6465
6466	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
6467		if (!nic_data->udp_tunnels[i].count) {
6468			nic_data->udp_tunnels[i] = tnl;
6469			nic_data->udp_tunnels[i].count = 1;
6470			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6471			goto unlock_out;
6472		}
6473
6474	netif_dbg(efx, drv, efx->net_dev,
6475		  "Unable to add UDP tunnel (%s) port %d; insufficient resources.\n",
6476		  typebuf, ntohs(tnl.port));
6477
6478	rc = -ENOMEM;
6479
6480unlock_out:
6481	mutex_unlock(&nic_data->udp_tunnels_lock);
6482	return rc;
6483}
6484
6485/* Called under the TX lock with the TX queue running, hence no-one can be
6486 * in the middle of updating the UDP tunnels table.  However, they could
6487 * have tried and failed the MCDI, in which case they'll have set the dirty
6488 * flag before dropping their locks.
6489 */
6490static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
6491{
6492	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
6493
6494	if (!(nic_data->datapath_caps &
6495	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6496		return false;
6497
6498	if (nic_data->udp_tunnels_dirty)
6499		/* SW table may not match HW state, so just assume we can't
6500		 * use any UDP tunnel offloads.
6501		 */
6502		return false;
6503
6504	return __efx_ef10_udp_tnl_lookup_port(efx, port) != NULL;
 
 
 
 
 
 
6505}
6506
6507static int efx_ef10_udp_tnl_del_port(struct efx_nic *efx,
6508				     struct efx_udp_tunnel tnl)
 
6509{
6510	struct efx_ef10_nic_data *nic_data = efx->nic_data;
6511	struct efx_udp_tunnel *match;
6512	char typebuf[8];
6513	int rc;
6514
6515	if (!(nic_data->datapath_caps &
6516	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
6517		return 0;
6518
6519	efx_get_udp_tunnel_type_name(tnl.type, typebuf, sizeof(typebuf));
6520	netif_dbg(efx, drv, efx->net_dev, "Removing UDP tunnel (%s) port %d\n",
6521		  typebuf, ntohs(tnl.port));
6522
6523	mutex_lock(&nic_data->udp_tunnels_lock);
6524	/* Make sure all TX are stopped while we remove from the table, else we
6525	 * might race against an efx_features_check().
6526	 */
6527	efx_device_detach_sync(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6528
6529	match = __efx_ef10_udp_tnl_lookup_port(efx, tnl.port);
6530	if (match != NULL) {
6531		if (match->type == tnl.type) {
6532			if (--match->count) {
6533				/* Port is still in use, so nothing to do */
6534				netif_dbg(efx, drv, efx->net_dev,
6535					  "UDP tunnel port %d remains active\n",
6536					  ntohs(tnl.port));
6537				rc = 0;
6538				goto out_unlock;
6539			}
6540			rc = efx_ef10_set_udp_tnl_ports(efx, false);
6541			goto out_unlock;
6542		}
6543		efx_get_udp_tunnel_type_name(match->type,
6544					     typebuf, sizeof(typebuf));
6545		netif_warn(efx, drv, efx->net_dev,
6546			   "UDP port %d is actually in use by %s, not removing\n",
6547			   ntohs(tnl.port), typebuf);
6548	}
6549	rc = -ENOENT;
6550
6551out_unlock:
6552	mutex_unlock(&nic_data->udp_tunnels_lock);
6553	return rc;
 
6554}
6555
6556#define EF10_OFFLOAD_FEATURES		\
6557	(NETIF_F_IP_CSUM |		\
6558	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
6559	 NETIF_F_IPV6_CSUM |		\
6560	 NETIF_F_RXHASH |		\
6561	 NETIF_F_NTUPLE)
 
 
 
6562
6563const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
6564	.is_vf = true,
6565	.mem_bar = efx_ef10_vf_mem_bar,
6566	.mem_map_size = efx_ef10_mem_map_size,
6567	.probe = efx_ef10_probe_vf,
6568	.remove = efx_ef10_remove,
6569	.dimension_resources = efx_ef10_dimension_resources,
6570	.init = efx_ef10_init_nic,
6571	.fini = efx_port_dummy_op_void,
6572	.map_reset_reason = efx_ef10_map_reset_reason,
6573	.map_reset_flags = efx_ef10_map_reset_flags,
6574	.reset = efx_ef10_reset,
6575	.probe_port = efx_mcdi_port_probe,
6576	.remove_port = efx_mcdi_port_remove,
6577	.fini_dmaq = efx_ef10_fini_dmaq,
6578	.prepare_flr = efx_ef10_prepare_flr,
6579	.finish_flr = efx_port_dummy_op_void,
6580	.describe_stats = efx_ef10_describe_stats,
6581	.update_stats = efx_ef10_update_stats_vf,
 
6582	.start_stats = efx_port_dummy_op_void,
6583	.pull_stats = efx_port_dummy_op_void,
6584	.stop_stats = efx_port_dummy_op_void,
6585	.set_id_led = efx_mcdi_set_id_led,
6586	.push_irq_moderation = efx_ef10_push_irq_moderation,
6587	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
6588	.check_mac_fault = efx_mcdi_mac_check_fault,
6589	.reconfigure_port = efx_mcdi_port_reconfigure,
6590	.get_wol = efx_ef10_get_wol_vf,
6591	.set_wol = efx_ef10_set_wol_vf,
6592	.resume_wol = efx_port_dummy_op_void,
6593	.mcdi_request = efx_ef10_mcdi_request,
6594	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6595	.mcdi_read_response = efx_ef10_mcdi_read_response,
6596	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6597	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6598	.irq_enable_master = efx_port_dummy_op_void,
6599	.irq_test_generate = efx_ef10_irq_test_generate,
6600	.irq_disable_non_ev = efx_port_dummy_op_void,
6601	.irq_handle_msi = efx_ef10_msi_interrupt,
6602	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6603	.tx_probe = efx_ef10_tx_probe,
6604	.tx_init = efx_ef10_tx_init,
6605	.tx_remove = efx_ef10_tx_remove,
6606	.tx_write = efx_ef10_tx_write,
6607	.tx_limit_len = efx_ef10_tx_limit_len,
6608	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
6609	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6610	.rx_probe = efx_ef10_rx_probe,
6611	.rx_init = efx_ef10_rx_init,
6612	.rx_remove = efx_ef10_rx_remove,
 
6613	.rx_write = efx_ef10_rx_write,
6614	.rx_defer_refill = efx_ef10_rx_defer_refill,
6615	.ev_probe = efx_ef10_ev_probe,
 
6616	.ev_init = efx_ef10_ev_init,
6617	.ev_fini = efx_ef10_ev_fini,
6618	.ev_remove = efx_ef10_ev_remove,
6619	.ev_process = efx_ef10_ev_process,
6620	.ev_read_ack = efx_ef10_ev_read_ack,
6621	.ev_test_generate = efx_ef10_ev_test_generate,
6622	.filter_table_probe = efx_ef10_filter_table_probe,
6623	.filter_table_restore = efx_ef10_filter_table_restore,
6624	.filter_table_remove = efx_ef10_filter_table_remove,
6625	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6626	.filter_insert = efx_ef10_filter_insert,
6627	.filter_remove_safe = efx_ef10_filter_remove_safe,
6628	.filter_get_safe = efx_ef10_filter_get_safe,
6629	.filter_clear_rx = efx_ef10_filter_clear_rx,
6630	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6631	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6632	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6633#ifdef CONFIG_RFS_ACCEL
6634	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6635#endif
6636#ifdef CONFIG_SFC_MTD
6637	.mtd_probe = efx_port_dummy_op_int,
6638#endif
6639	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
6640	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
6641	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6642	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6643#ifdef CONFIG_SFC_SRIOV
6644	.vswitching_probe = efx_ef10_vswitching_probe_vf,
6645	.vswitching_restore = efx_ef10_vswitching_restore_vf,
6646	.vswitching_remove = efx_ef10_vswitching_remove_vf,
6647#endif
6648	.get_mac_address = efx_ef10_get_mac_address_vf,
6649	.set_mac_address = efx_ef10_set_mac_address,
6650
6651	.get_phys_port_id = efx_ef10_get_phys_port_id,
6652	.revision = EFX_REV_HUNT_A0,
6653	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6654	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6655	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6656	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6657	.can_rx_scatter = true,
6658	.always_rx_scatter = true,
6659	.min_interrupt_mode = EFX_INT_MODE_MSIX,
6660	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6661	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6662	.offload_features = EF10_OFFLOAD_FEATURES,
6663	.mcdi_max_ver = 2,
6664	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6665	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6666			    1 << HWTSTAMP_FILTER_ALL,
6667	.rx_hash_key_size = 40,
 
 
 
 
6668};
6669
6670const struct efx_nic_type efx_hunt_a0_nic_type = {
6671	.is_vf = false,
6672	.mem_bar = efx_ef10_pf_mem_bar,
6673	.mem_map_size = efx_ef10_mem_map_size,
6674	.probe = efx_ef10_probe_pf,
6675	.remove = efx_ef10_remove,
6676	.dimension_resources = efx_ef10_dimension_resources,
6677	.init = efx_ef10_init_nic,
6678	.fini = efx_port_dummy_op_void,
6679	.map_reset_reason = efx_ef10_map_reset_reason,
6680	.map_reset_flags = efx_ef10_map_reset_flags,
6681	.reset = efx_ef10_reset,
6682	.probe_port = efx_mcdi_port_probe,
6683	.remove_port = efx_mcdi_port_remove,
6684	.fini_dmaq = efx_ef10_fini_dmaq,
6685	.prepare_flr = efx_ef10_prepare_flr,
6686	.finish_flr = efx_port_dummy_op_void,
6687	.describe_stats = efx_ef10_describe_stats,
6688	.update_stats = efx_ef10_update_stats_pf,
6689	.start_stats = efx_mcdi_mac_start_stats,
6690	.pull_stats = efx_mcdi_mac_pull_stats,
6691	.stop_stats = efx_mcdi_mac_stop_stats,
6692	.set_id_led = efx_mcdi_set_id_led,
6693	.push_irq_moderation = efx_ef10_push_irq_moderation,
6694	.reconfigure_mac = efx_ef10_mac_reconfigure,
6695	.check_mac_fault = efx_mcdi_mac_check_fault,
6696	.reconfigure_port = efx_mcdi_port_reconfigure,
6697	.get_wol = efx_ef10_get_wol,
6698	.set_wol = efx_ef10_set_wol,
6699	.resume_wol = efx_port_dummy_op_void,
 
6700	.test_chip = efx_ef10_test_chip,
6701	.test_nvram = efx_mcdi_nvram_test_all,
6702	.mcdi_request = efx_ef10_mcdi_request,
6703	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
6704	.mcdi_read_response = efx_ef10_mcdi_read_response,
6705	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
6706	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
6707	.irq_enable_master = efx_port_dummy_op_void,
6708	.irq_test_generate = efx_ef10_irq_test_generate,
6709	.irq_disable_non_ev = efx_port_dummy_op_void,
6710	.irq_handle_msi = efx_ef10_msi_interrupt,
6711	.irq_handle_legacy = efx_ef10_legacy_interrupt,
6712	.tx_probe = efx_ef10_tx_probe,
6713	.tx_init = efx_ef10_tx_init,
6714	.tx_remove = efx_ef10_tx_remove,
6715	.tx_write = efx_ef10_tx_write,
6716	.tx_limit_len = efx_ef10_tx_limit_len,
6717	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
6718	.rx_pull_rss_config = efx_ef10_rx_pull_rss_config,
6719	.rx_push_rss_context_config = efx_ef10_rx_push_rss_context_config,
6720	.rx_pull_rss_context_config = efx_ef10_rx_pull_rss_context_config,
6721	.rx_restore_rss_contexts = efx_ef10_rx_restore_rss_contexts,
6722	.rx_probe = efx_ef10_rx_probe,
6723	.rx_init = efx_ef10_rx_init,
6724	.rx_remove = efx_ef10_rx_remove,
 
6725	.rx_write = efx_ef10_rx_write,
6726	.rx_defer_refill = efx_ef10_rx_defer_refill,
6727	.ev_probe = efx_ef10_ev_probe,
 
6728	.ev_init = efx_ef10_ev_init,
6729	.ev_fini = efx_ef10_ev_fini,
6730	.ev_remove = efx_ef10_ev_remove,
6731	.ev_process = efx_ef10_ev_process,
6732	.ev_read_ack = efx_ef10_ev_read_ack,
6733	.ev_test_generate = efx_ef10_ev_test_generate,
6734	.filter_table_probe = efx_ef10_filter_table_probe,
6735	.filter_table_restore = efx_ef10_filter_table_restore,
6736	.filter_table_remove = efx_ef10_filter_table_remove,
6737	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
6738	.filter_insert = efx_ef10_filter_insert,
6739	.filter_remove_safe = efx_ef10_filter_remove_safe,
6740	.filter_get_safe = efx_ef10_filter_get_safe,
6741	.filter_clear_rx = efx_ef10_filter_clear_rx,
6742	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
6743	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
6744	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
6745#ifdef CONFIG_RFS_ACCEL
6746	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
6747#endif
6748#ifdef CONFIG_SFC_MTD
6749	.mtd_probe = efx_ef10_mtd_probe,
6750	.mtd_rename = efx_mcdi_mtd_rename,
6751	.mtd_read = efx_mcdi_mtd_read,
6752	.mtd_erase = efx_mcdi_mtd_erase,
6753	.mtd_write = efx_mcdi_mtd_write,
6754	.mtd_sync = efx_mcdi_mtd_sync,
6755#endif
6756	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
6757	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
6758	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
6759	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
6760	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
6761	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
6762	.udp_tnl_add_port = efx_ef10_udp_tnl_add_port,
6763	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
6764	.udp_tnl_del_port = efx_ef10_udp_tnl_del_port,
6765#ifdef CONFIG_SFC_SRIOV
6766	.sriov_configure = efx_ef10_sriov_configure,
6767	.sriov_init = efx_ef10_sriov_init,
6768	.sriov_fini = efx_ef10_sriov_fini,
6769	.sriov_wanted = efx_ef10_sriov_wanted,
6770	.sriov_reset = efx_ef10_sriov_reset,
6771	.sriov_flr = efx_ef10_sriov_flr,
6772	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
6773	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
6774	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
6775	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
6776	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
6777	.vswitching_probe = efx_ef10_vswitching_probe_pf,
6778	.vswitching_restore = efx_ef10_vswitching_restore_pf,
6779	.vswitching_remove = efx_ef10_vswitching_remove_pf,
6780#endif
6781	.get_mac_address = efx_ef10_get_mac_address_pf,
6782	.set_mac_address = efx_ef10_set_mac_address,
6783	.tso_versions = efx_ef10_tso_versions,
6784
6785	.get_phys_port_id = efx_ef10_get_phys_port_id,
6786	.revision = EFX_REV_HUNT_A0,
6787	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
6788	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
6789	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
6790	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
6791	.can_rx_scatter = true,
6792	.always_rx_scatter = true,
6793	.option_descriptors = true,
6794	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
6795	.max_interrupt_mode = EFX_INT_MODE_MSIX,
6796	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
6797	.offload_features = EF10_OFFLOAD_FEATURES,
6798	.mcdi_max_ver = 2,
6799	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
6800	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
6801			    1 << HWTSTAMP_FILTER_ALL,
6802	.rx_hash_key_size = 40,
 
 
 
 
6803};