Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12#include <linux/kernel_stat.h>
13#include <linux/mmu_context.h>
14#include <linux/perf_event.h>
15#include <linux/signal.h>
16#include <linux/sched.h>
17#include <linux/sched/debug.h>
18#include <linux/jump_label.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/compat.h>
27#include <linux/smp.h>
28#include <linux/kdebug.h>
29#include <linux/init.h>
30#include <linux/console.h>
31#include <linux/extable.h>
32#include <linux/hardirq.h>
33#include <linux/kprobes.h>
34#include <linux/uaccess.h>
35#include <linux/hugetlb.h>
36#include <linux/kfence.h>
37#include <asm/asm-extable.h>
38#include <asm/asm-offsets.h>
39#include <asm/ptrace.h>
40#include <asm/fault.h>
41#include <asm/diag.h>
42#include <asm/gmap.h>
43#include <asm/irq.h>
44#include <asm/facility.h>
45#include <asm/uv.h>
46#include "../kernel/entry.h"
47
48enum fault_type {
49 KERNEL_FAULT,
50 USER_FAULT,
51 GMAP_FAULT,
52};
53
54static DEFINE_STATIC_KEY_FALSE(have_store_indication);
55
56static int __init fault_init(void)
57{
58 if (test_facility(75))
59 static_branch_enable(&have_store_indication);
60 return 0;
61}
62early_initcall(fault_init);
63
64/*
65 * Find out which address space caused the exception.
66 */
67static enum fault_type get_fault_type(struct pt_regs *regs)
68{
69 union teid teid = { .val = regs->int_parm_long };
70
71 if (likely(teid.as == PSW_BITS_AS_PRIMARY)) {
72 if (user_mode(regs))
73 return USER_FAULT;
74 if (!IS_ENABLED(CONFIG_PGSTE))
75 return KERNEL_FAULT;
76 if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
77 return GMAP_FAULT;
78 return KERNEL_FAULT;
79 }
80 if (teid.as == PSW_BITS_AS_SECONDARY)
81 return USER_FAULT;
82 /* Access register mode, not used in the kernel */
83 if (teid.as == PSW_BITS_AS_ACCREG)
84 return USER_FAULT;
85 /* Home space -> access via kernel ASCE */
86 return KERNEL_FAULT;
87}
88
89static unsigned long get_fault_address(struct pt_regs *regs)
90{
91 union teid teid = { .val = regs->int_parm_long };
92
93 return teid.addr * PAGE_SIZE;
94}
95
96static __always_inline bool fault_is_write(struct pt_regs *regs)
97{
98 union teid teid = { .val = regs->int_parm_long };
99
100 if (static_branch_likely(&have_store_indication))
101 return teid.fsi == TEID_FSI_STORE;
102 return false;
103}
104
105static void dump_pagetable(unsigned long asce, unsigned long address)
106{
107 unsigned long entry, *table = __va(asce & _ASCE_ORIGIN);
108
109 pr_alert("AS:%016lx ", asce);
110 switch (asce & _ASCE_TYPE_MASK) {
111 case _ASCE_TYPE_REGION1:
112 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113 if (get_kernel_nofault(entry, table))
114 goto bad;
115 pr_cont("R1:%016lx ", entry);
116 if (entry & _REGION_ENTRY_INVALID)
117 goto out;
118 table = __va(entry & _REGION_ENTRY_ORIGIN);
119 fallthrough;
120 case _ASCE_TYPE_REGION2:
121 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122 if (get_kernel_nofault(entry, table))
123 goto bad;
124 pr_cont("R2:%016lx ", entry);
125 if (entry & _REGION_ENTRY_INVALID)
126 goto out;
127 table = __va(entry & _REGION_ENTRY_ORIGIN);
128 fallthrough;
129 case _ASCE_TYPE_REGION3:
130 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131 if (get_kernel_nofault(entry, table))
132 goto bad;
133 pr_cont("R3:%016lx ", entry);
134 if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135 goto out;
136 table = __va(entry & _REGION_ENTRY_ORIGIN);
137 fallthrough;
138 case _ASCE_TYPE_SEGMENT:
139 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140 if (get_kernel_nofault(entry, table))
141 goto bad;
142 pr_cont("S:%016lx ", entry);
143 if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144 goto out;
145 table = __va(entry & _SEGMENT_ENTRY_ORIGIN);
146 }
147 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148 if (get_kernel_nofault(entry, table))
149 goto bad;
150 pr_cont("P:%016lx ", entry);
151out:
152 pr_cont("\n");
153 return;
154bad:
155 pr_cont("BAD\n");
156}
157
158static void dump_fault_info(struct pt_regs *regs)
159{
160 union teid teid = { .val = regs->int_parm_long };
161 unsigned long asce;
162
163 pr_alert("Failing address: %016lx TEID: %016lx\n",
164 get_fault_address(regs), teid.val);
165 pr_alert("Fault in ");
166 switch (teid.as) {
167 case PSW_BITS_AS_HOME:
168 pr_cont("home space ");
169 break;
170 case PSW_BITS_AS_SECONDARY:
171 pr_cont("secondary space ");
172 break;
173 case PSW_BITS_AS_ACCREG:
174 pr_cont("access register ");
175 break;
176 case PSW_BITS_AS_PRIMARY:
177 pr_cont("primary space ");
178 break;
179 }
180 pr_cont("mode while using ");
181 switch (get_fault_type(regs)) {
182 case USER_FAULT:
183 asce = S390_lowcore.user_asce.val;
184 pr_cont("user ");
185 break;
186 case GMAP_FAULT:
187 asce = ((struct gmap *)S390_lowcore.gmap)->asce;
188 pr_cont("gmap ");
189 break;
190 case KERNEL_FAULT:
191 asce = S390_lowcore.kernel_asce.val;
192 pr_cont("kernel ");
193 break;
194 default:
195 unreachable();
196 }
197 pr_cont("ASCE.\n");
198 dump_pagetable(asce, get_fault_address(regs));
199}
200
201int show_unhandled_signals = 1;
202
203void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
204{
205 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
206
207 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
208 return;
209 if (!unhandled_signal(current, signr))
210 return;
211 if (!__ratelimit(&rs))
212 return;
213 pr_alert("User process fault: interruption code %04x ilc:%d ",
214 regs->int_code & 0xffff, regs->int_code >> 17);
215 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
216 pr_cont("\n");
217 if (is_mm_fault)
218 dump_fault_info(regs);
219 show_regs(regs);
220}
221
222static void do_sigsegv(struct pt_regs *regs, int si_code)
223{
224 report_user_fault(regs, SIGSEGV, 1);
225 force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs));
226}
227
228static void handle_fault_error_nolock(struct pt_regs *regs, int si_code)
229{
230 enum fault_type fault_type;
231 unsigned long address;
232 bool is_write;
233
234 if (user_mode(regs)) {
235 if (WARN_ON_ONCE(!si_code))
236 si_code = SEGV_MAPERR;
237 return do_sigsegv(regs, si_code);
238 }
239 if (fixup_exception(regs))
240 return;
241 fault_type = get_fault_type(regs);
242 if (fault_type == KERNEL_FAULT) {
243 address = get_fault_address(regs);
244 is_write = fault_is_write(regs);
245 if (kfence_handle_page_fault(address, is_write, regs))
246 return;
247 }
248 if (fault_type == KERNEL_FAULT)
249 pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n");
250 else
251 pr_alert("Unable to handle kernel paging request in virtual user address space\n");
252 dump_fault_info(regs);
253 die(regs, "Oops");
254}
255
256static void handle_fault_error(struct pt_regs *regs, int si_code)
257{
258 struct mm_struct *mm = current->mm;
259
260 mmap_read_unlock(mm);
261 handle_fault_error_nolock(regs, si_code);
262}
263
264static void do_sigbus(struct pt_regs *regs)
265{
266 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs));
267}
268
269/*
270 * This routine handles page faults. It determines the address,
271 * and the problem, and then passes it off to one of the appropriate
272 * routines.
273 *
274 * interruption code (int_code):
275 * 04 Protection -> Write-Protection (suppression)
276 * 10 Segment translation -> Not present (nullification)
277 * 11 Page translation -> Not present (nullification)
278 * 3b Region third trans. -> Not present (nullification)
279 */
280static void do_exception(struct pt_regs *regs, int access)
281{
282 struct vm_area_struct *vma;
283 unsigned long address;
284 struct mm_struct *mm;
285 enum fault_type type;
286 unsigned int flags;
287 struct gmap *gmap;
288 vm_fault_t fault;
289 bool is_write;
290
291 /*
292 * The instruction that caused the program check has
293 * been nullified. Don't signal single step via SIGTRAP.
294 */
295 clear_thread_flag(TIF_PER_TRAP);
296 if (kprobe_page_fault(regs, 14))
297 return;
298 mm = current->mm;
299 address = get_fault_address(regs);
300 is_write = fault_is_write(regs);
301 type = get_fault_type(regs);
302 switch (type) {
303 case KERNEL_FAULT:
304 return handle_fault_error_nolock(regs, 0);
305 case USER_FAULT:
306 case GMAP_FAULT:
307 if (faulthandler_disabled() || !mm)
308 return handle_fault_error_nolock(regs, 0);
309 break;
310 }
311 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
312 flags = FAULT_FLAG_DEFAULT;
313 if (user_mode(regs))
314 flags |= FAULT_FLAG_USER;
315 if (is_write)
316 access = VM_WRITE;
317 if (access == VM_WRITE)
318 flags |= FAULT_FLAG_WRITE;
319 if (!(flags & FAULT_FLAG_USER))
320 goto lock_mmap;
321 vma = lock_vma_under_rcu(mm, address);
322 if (!vma)
323 goto lock_mmap;
324 if (!(vma->vm_flags & access)) {
325 vma_end_read(vma);
326 goto lock_mmap;
327 }
328 fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
329 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
330 vma_end_read(vma);
331 if (!(fault & VM_FAULT_RETRY)) {
332 count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
333 if (unlikely(fault & VM_FAULT_ERROR))
334 goto error;
335 return;
336 }
337 count_vm_vma_lock_event(VMA_LOCK_RETRY);
338 if (fault & VM_FAULT_MAJOR)
339 flags |= FAULT_FLAG_TRIED;
340
341 /* Quick path to respond to signals */
342 if (fault_signal_pending(fault, regs)) {
343 if (!user_mode(regs))
344 handle_fault_error_nolock(regs, 0);
345 return;
346 }
347lock_mmap:
348 mmap_read_lock(mm);
349 gmap = NULL;
350 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
351 gmap = (struct gmap *)S390_lowcore.gmap;
352 current->thread.gmap_addr = address;
353 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
354 current->thread.gmap_int_code = regs->int_code & 0xffff;
355 address = __gmap_translate(gmap, address);
356 if (address == -EFAULT)
357 return handle_fault_error(regs, SEGV_MAPERR);
358 if (gmap->pfault_enabled)
359 flags |= FAULT_FLAG_RETRY_NOWAIT;
360 }
361retry:
362 vma = find_vma(mm, address);
363 if (!vma)
364 return handle_fault_error(regs, SEGV_MAPERR);
365 if (unlikely(vma->vm_start > address)) {
366 if (!(vma->vm_flags & VM_GROWSDOWN))
367 return handle_fault_error(regs, SEGV_MAPERR);
368 vma = expand_stack(mm, address);
369 if (!vma)
370 return handle_fault_error_nolock(regs, SEGV_MAPERR);
371 }
372 if (unlikely(!(vma->vm_flags & access)))
373 return handle_fault_error(regs, SEGV_ACCERR);
374 fault = handle_mm_fault(vma, address, flags, regs);
375 if (fault_signal_pending(fault, regs)) {
376 if (flags & FAULT_FLAG_RETRY_NOWAIT)
377 mmap_read_unlock(mm);
378 if (!user_mode(regs))
379 handle_fault_error_nolock(regs, 0);
380 return;
381 }
382 /* The fault is fully completed (including releasing mmap lock) */
383 if (fault & VM_FAULT_COMPLETED) {
384 if (gmap) {
385 mmap_read_lock(mm);
386 goto gmap;
387 }
388 return;
389 }
390 if (unlikely(fault & VM_FAULT_ERROR)) {
391 mmap_read_unlock(mm);
392 goto error;
393 }
394 if (fault & VM_FAULT_RETRY) {
395 if (IS_ENABLED(CONFIG_PGSTE) && gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) {
396 /*
397 * FAULT_FLAG_RETRY_NOWAIT has been set,
398 * mmap_lock has not been released
399 */
400 current->thread.gmap_pfault = 1;
401 return handle_fault_error(regs, 0);
402 }
403 flags &= ~FAULT_FLAG_RETRY_NOWAIT;
404 flags |= FAULT_FLAG_TRIED;
405 mmap_read_lock(mm);
406 goto retry;
407 }
408gmap:
409 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
410 address = __gmap_link(gmap, current->thread.gmap_addr,
411 address);
412 if (address == -EFAULT)
413 return handle_fault_error(regs, SEGV_MAPERR);
414 if (address == -ENOMEM) {
415 fault = VM_FAULT_OOM;
416 mmap_read_unlock(mm);
417 goto error;
418 }
419 }
420 mmap_read_unlock(mm);
421 return;
422error:
423 if (fault & VM_FAULT_OOM) {
424 if (!user_mode(regs))
425 handle_fault_error_nolock(regs, 0);
426 else
427 pagefault_out_of_memory();
428 } else if (fault & VM_FAULT_SIGSEGV) {
429 if (!user_mode(regs))
430 handle_fault_error_nolock(regs, 0);
431 else
432 do_sigsegv(regs, SEGV_MAPERR);
433 } else if (fault & VM_FAULT_SIGBUS) {
434 if (!user_mode(regs))
435 handle_fault_error_nolock(regs, 0);
436 else
437 do_sigbus(regs);
438 } else {
439 BUG();
440 }
441}
442
443void do_protection_exception(struct pt_regs *regs)
444{
445 union teid teid = { .val = regs->int_parm_long };
446
447 /*
448 * Protection exceptions are suppressing, decrement psw address.
449 * The exception to this rule are aborted transactions, for these
450 * the PSW already points to the correct location.
451 */
452 if (!(regs->int_code & 0x200))
453 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
454 /*
455 * Check for low-address protection. This needs to be treated
456 * as a special case because the translation exception code
457 * field is not guaranteed to contain valid data in this case.
458 */
459 if (unlikely(!teid.b61)) {
460 if (user_mode(regs)) {
461 /* Low-address protection in user mode: cannot happen */
462 die(regs, "Low-address protection");
463 }
464 /*
465 * Low-address protection in kernel mode means
466 * NULL pointer write access in kernel mode.
467 */
468 return handle_fault_error_nolock(regs, 0);
469 }
470 if (unlikely(MACHINE_HAS_NX && teid.b56)) {
471 regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK);
472 return handle_fault_error_nolock(regs, SEGV_ACCERR);
473 }
474 do_exception(regs, VM_WRITE);
475}
476NOKPROBE_SYMBOL(do_protection_exception);
477
478void do_dat_exception(struct pt_regs *regs)
479{
480 do_exception(regs, VM_ACCESS_FLAGS);
481}
482NOKPROBE_SYMBOL(do_dat_exception);
483
484#if IS_ENABLED(CONFIG_PGSTE)
485
486void do_secure_storage_access(struct pt_regs *regs)
487{
488 union teid teid = { .val = regs->int_parm_long };
489 unsigned long addr = get_fault_address(regs);
490 struct vm_area_struct *vma;
491 struct mm_struct *mm;
492 struct page *page;
493 struct gmap *gmap;
494 int rc;
495
496 /*
497 * Bit 61 indicates if the address is valid, if it is not the
498 * kernel should be stopped or SIGSEGV should be sent to the
499 * process. Bit 61 is not reliable without the misc UV feature,
500 * therefore this needs to be checked too.
501 */
502 if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) {
503 /*
504 * When this happens, userspace did something that it
505 * was not supposed to do, e.g. branching into secure
506 * memory. Trigger a segmentation fault.
507 */
508 if (user_mode(regs)) {
509 send_sig(SIGSEGV, current, 0);
510 return;
511 }
512 /*
513 * The kernel should never run into this case and
514 * there is no way out of this situation.
515 */
516 panic("Unexpected PGM 0x3d with TEID bit 61=0");
517 }
518 switch (get_fault_type(regs)) {
519 case GMAP_FAULT:
520 mm = current->mm;
521 gmap = (struct gmap *)S390_lowcore.gmap;
522 mmap_read_lock(mm);
523 addr = __gmap_translate(gmap, addr);
524 mmap_read_unlock(mm);
525 if (IS_ERR_VALUE(addr))
526 return handle_fault_error_nolock(regs, SEGV_MAPERR);
527 fallthrough;
528 case USER_FAULT:
529 mm = current->mm;
530 mmap_read_lock(mm);
531 vma = find_vma(mm, addr);
532 if (!vma)
533 return handle_fault_error(regs, SEGV_MAPERR);
534 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
535 if (IS_ERR_OR_NULL(page)) {
536 mmap_read_unlock(mm);
537 break;
538 }
539 if (arch_make_page_accessible(page))
540 send_sig(SIGSEGV, current, 0);
541 put_page(page);
542 mmap_read_unlock(mm);
543 break;
544 case KERNEL_FAULT:
545 page = phys_to_page(addr);
546 if (unlikely(!try_get_page(page)))
547 break;
548 rc = arch_make_page_accessible(page);
549 put_page(page);
550 if (rc)
551 BUG();
552 break;
553 default:
554 unreachable();
555 }
556}
557NOKPROBE_SYMBOL(do_secure_storage_access);
558
559void do_non_secure_storage_access(struct pt_regs *regs)
560{
561 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
562 unsigned long gaddr = get_fault_address(regs);
563
564 if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT))
565 return handle_fault_error_nolock(regs, SEGV_MAPERR);
566 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
567 send_sig(SIGSEGV, current, 0);
568}
569NOKPROBE_SYMBOL(do_non_secure_storage_access);
570
571void do_secure_storage_violation(struct pt_regs *regs)
572{
573 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
574 unsigned long gaddr = get_fault_address(regs);
575
576 /*
577 * If the VM has been rebooted, its address space might still contain
578 * secure pages from the previous boot.
579 * Clear the page so it can be reused.
580 */
581 if (!gmap_destroy_page(gmap, gaddr))
582 return;
583 /*
584 * Either KVM messed up the secure guest mapping or the same
585 * page is mapped into multiple secure guests.
586 *
587 * This exception is only triggered when a guest 2 is running
588 * and can therefore never occur in kernel context.
589 */
590 pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n",
591 current->comm, current->pid);
592 send_sig(SIGSEGV, current, 0);
593}
594
595#endif /* CONFIG_PGSTE */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12#include <linux/kernel_stat.h>
13#include <linux/perf_event.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/debug.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/ptrace.h>
22#include <linux/mman.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/smp.h>
26#include <linux/kdebug.h>
27#include <linux/init.h>
28#include <linux/console.h>
29#include <linux/extable.h>
30#include <linux/hardirq.h>
31#include <linux/kprobes.h>
32#include <linux/uaccess.h>
33#include <linux/hugetlb.h>
34#include <asm/asm-offsets.h>
35#include <asm/diag.h>
36#include <asm/pgtable.h>
37#include <asm/gmap.h>
38#include <asm/irq.h>
39#include <asm/mmu_context.h>
40#include <asm/facility.h>
41#include "../kernel/entry.h"
42
43#define __FAIL_ADDR_MASK -4096L
44#define __SUBCODE_MASK 0x0600
45#define __PF_RES_FIELD 0x8000000000000000ULL
46
47#define VM_FAULT_BADCONTEXT 0x010000
48#define VM_FAULT_BADMAP 0x020000
49#define VM_FAULT_BADACCESS 0x040000
50#define VM_FAULT_SIGNAL 0x080000
51#define VM_FAULT_PFAULT 0x100000
52
53enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 VDSO_FAULT,
57 GMAP_FAULT,
58};
59
60static unsigned long store_indication __read_mostly;
61
62static int __init fault_init(void)
63{
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
67}
68early_initcall(fault_init);
69
70static inline int notify_page_fault(struct pt_regs *regs)
71{
72 int ret = 0;
73
74 /* kprobe_running() needs smp_processor_id() */
75 if (kprobes_built_in() && !user_mode(regs)) {
76 preempt_disable();
77 if (kprobe_running() && kprobe_fault_handler(regs, 14))
78 ret = 1;
79 preempt_enable();
80 }
81 return ret;
82}
83
84
85/*
86 * Unlock any spinlocks which will prevent us from getting the
87 * message out.
88 */
89void bust_spinlocks(int yes)
90{
91 if (yes) {
92 oops_in_progress = 1;
93 } else {
94 int loglevel_save = console_loglevel;
95 console_unblank();
96 oops_in_progress = 0;
97 /*
98 * OK, the message is on the console. Now we call printk()
99 * without oops_in_progress set so that printk will give klogd
100 * a poke. Hold onto your hats...
101 */
102 console_loglevel = 15;
103 printk(" ");
104 console_loglevel = loglevel_save;
105 }
106}
107
108/*
109 * Find out which address space caused the exception.
110 * Access register mode is impossible, ignore space == 3.
111 */
112static inline enum fault_type get_fault_type(struct pt_regs *regs)
113{
114 unsigned long trans_exc_code;
115
116 trans_exc_code = regs->int_parm_long & 3;
117 if (likely(trans_exc_code == 0)) {
118 /* primary space exception */
119 if (IS_ENABLED(CONFIG_PGSTE) &&
120 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
121 return GMAP_FAULT;
122 if (current->thread.mm_segment == USER_DS)
123 return USER_FAULT;
124 return KERNEL_FAULT;
125 }
126 if (trans_exc_code == 2) {
127 /* secondary space exception */
128 if (current->thread.mm_segment & 1) {
129 if (current->thread.mm_segment == USER_DS_SACF)
130 return USER_FAULT;
131 return KERNEL_FAULT;
132 }
133 return VDSO_FAULT;
134 }
135 /* home space exception -> access via kernel ASCE */
136 return KERNEL_FAULT;
137}
138
139static int bad_address(void *p)
140{
141 unsigned long dummy;
142
143 return probe_kernel_address((unsigned long *)p, dummy);
144}
145
146static void dump_pagetable(unsigned long asce, unsigned long address)
147{
148 unsigned long *table = __va(asce & _ASCE_ORIGIN);
149
150 pr_alert("AS:%016lx ", asce);
151 switch (asce & _ASCE_TYPE_MASK) {
152 case _ASCE_TYPE_REGION1:
153 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
154 if (bad_address(table))
155 goto bad;
156 pr_cont("R1:%016lx ", *table);
157 if (*table & _REGION_ENTRY_INVALID)
158 goto out;
159 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
160 /* fallthrough */
161 case _ASCE_TYPE_REGION2:
162 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
163 if (bad_address(table))
164 goto bad;
165 pr_cont("R2:%016lx ", *table);
166 if (*table & _REGION_ENTRY_INVALID)
167 goto out;
168 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
169 /* fallthrough */
170 case _ASCE_TYPE_REGION3:
171 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
172 if (bad_address(table))
173 goto bad;
174 pr_cont("R3:%016lx ", *table);
175 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
176 goto out;
177 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
178 /* fallthrough */
179 case _ASCE_TYPE_SEGMENT:
180 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
181 if (bad_address(table))
182 goto bad;
183 pr_cont("S:%016lx ", *table);
184 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
185 goto out;
186 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
187 }
188 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
189 if (bad_address(table))
190 goto bad;
191 pr_cont("P:%016lx ", *table);
192out:
193 pr_cont("\n");
194 return;
195bad:
196 pr_cont("BAD\n");
197}
198
199static void dump_fault_info(struct pt_regs *regs)
200{
201 unsigned long asce;
202
203 pr_alert("Failing address: %016lx TEID: %016lx\n",
204 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
205 pr_alert("Fault in ");
206 switch (regs->int_parm_long & 3) {
207 case 3:
208 pr_cont("home space ");
209 break;
210 case 2:
211 pr_cont("secondary space ");
212 break;
213 case 1:
214 pr_cont("access register ");
215 break;
216 case 0:
217 pr_cont("primary space ");
218 break;
219 }
220 pr_cont("mode while using ");
221 switch (get_fault_type(regs)) {
222 case USER_FAULT:
223 asce = S390_lowcore.user_asce;
224 pr_cont("user ");
225 break;
226 case VDSO_FAULT:
227 asce = S390_lowcore.vdso_asce;
228 pr_cont("vdso ");
229 break;
230 case GMAP_FAULT:
231 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
232 pr_cont("gmap ");
233 break;
234 case KERNEL_FAULT:
235 asce = S390_lowcore.kernel_asce;
236 pr_cont("kernel ");
237 break;
238 }
239 pr_cont("ASCE.\n");
240 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
241}
242
243int show_unhandled_signals = 1;
244
245void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
246{
247 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
248 return;
249 if (!unhandled_signal(current, signr))
250 return;
251 if (!printk_ratelimit())
252 return;
253 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
254 regs->int_code & 0xffff, regs->int_code >> 17);
255 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
256 printk(KERN_CONT "\n");
257 if (is_mm_fault)
258 dump_fault_info(regs);
259 show_regs(regs);
260}
261
262/*
263 * Send SIGSEGV to task. This is an external routine
264 * to keep the stack usage of do_page_fault small.
265 */
266static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
267{
268 struct siginfo si;
269
270 report_user_fault(regs, SIGSEGV, 1);
271 si.si_signo = SIGSEGV;
272 si.si_errno = 0;
273 si.si_code = si_code;
274 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
275 force_sig_info(SIGSEGV, &si, current);
276}
277
278static noinline void do_no_context(struct pt_regs *regs)
279{
280 const struct exception_table_entry *fixup;
281
282 /* Are we prepared to handle this kernel fault? */
283 fixup = search_exception_tables(regs->psw.addr);
284 if (fixup) {
285 regs->psw.addr = extable_fixup(fixup);
286 return;
287 }
288
289 /*
290 * Oops. The kernel tried to access some bad page. We'll have to
291 * terminate things with extreme prejudice.
292 */
293 if (get_fault_type(regs) == KERNEL_FAULT)
294 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
295 " in virtual kernel address space\n");
296 else
297 printk(KERN_ALERT "Unable to handle kernel paging request"
298 " in virtual user address space\n");
299 dump_fault_info(regs);
300 die(regs, "Oops");
301 do_exit(SIGKILL);
302}
303
304static noinline void do_low_address(struct pt_regs *regs)
305{
306 /* Low-address protection hit in kernel mode means
307 NULL pointer write access in kernel mode. */
308 if (regs->psw.mask & PSW_MASK_PSTATE) {
309 /* Low-address protection hit in user mode 'cannot happen'. */
310 die (regs, "Low-address protection");
311 do_exit(SIGKILL);
312 }
313
314 do_no_context(regs);
315}
316
317static noinline void do_sigbus(struct pt_regs *regs)
318{
319 struct task_struct *tsk = current;
320 struct siginfo si;
321
322 /*
323 * Send a sigbus, regardless of whether we were in kernel
324 * or user mode.
325 */
326 si.si_signo = SIGBUS;
327 si.si_errno = 0;
328 si.si_code = BUS_ADRERR;
329 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
330 force_sig_info(SIGBUS, &si, tsk);
331}
332
333static noinline int signal_return(struct pt_regs *regs)
334{
335 u16 instruction;
336 int rc;
337
338 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
339 if (rc)
340 return rc;
341 if (instruction == 0x0a77) {
342 set_pt_regs_flag(regs, PIF_SYSCALL);
343 regs->int_code = 0x00040077;
344 return 0;
345 } else if (instruction == 0x0aad) {
346 set_pt_regs_flag(regs, PIF_SYSCALL);
347 regs->int_code = 0x000400ad;
348 return 0;
349 }
350 return -EACCES;
351}
352
353static noinline void do_fault_error(struct pt_regs *regs, int access, int fault)
354{
355 int si_code;
356
357 switch (fault) {
358 case VM_FAULT_BADACCESS:
359 if (access == VM_EXEC && signal_return(regs) == 0)
360 break;
361 case VM_FAULT_BADMAP:
362 /* Bad memory access. Check if it is kernel or user space. */
363 if (user_mode(regs)) {
364 /* User mode accesses just cause a SIGSEGV */
365 si_code = (fault == VM_FAULT_BADMAP) ?
366 SEGV_MAPERR : SEGV_ACCERR;
367 do_sigsegv(regs, si_code);
368 break;
369 }
370 case VM_FAULT_BADCONTEXT:
371 case VM_FAULT_PFAULT:
372 do_no_context(regs);
373 break;
374 case VM_FAULT_SIGNAL:
375 if (!user_mode(regs))
376 do_no_context(regs);
377 break;
378 default: /* fault & VM_FAULT_ERROR */
379 if (fault & VM_FAULT_OOM) {
380 if (!user_mode(regs))
381 do_no_context(regs);
382 else
383 pagefault_out_of_memory();
384 } else if (fault & VM_FAULT_SIGSEGV) {
385 /* Kernel mode? Handle exceptions or die */
386 if (!user_mode(regs))
387 do_no_context(regs);
388 else
389 do_sigsegv(regs, SEGV_MAPERR);
390 } else if (fault & VM_FAULT_SIGBUS) {
391 /* Kernel mode? Handle exceptions or die */
392 if (!user_mode(regs))
393 do_no_context(regs);
394 else
395 do_sigbus(regs);
396 } else
397 BUG();
398 break;
399 }
400}
401
402/*
403 * This routine handles page faults. It determines the address,
404 * and the problem, and then passes it off to one of the appropriate
405 * routines.
406 *
407 * interruption code (int_code):
408 * 04 Protection -> Write-Protection (suprression)
409 * 10 Segment translation -> Not present (nullification)
410 * 11 Page translation -> Not present (nullification)
411 * 3b Region third trans. -> Not present (nullification)
412 */
413static inline int do_exception(struct pt_regs *regs, int access)
414{
415 struct gmap *gmap;
416 struct task_struct *tsk;
417 struct mm_struct *mm;
418 struct vm_area_struct *vma;
419 enum fault_type type;
420 unsigned long trans_exc_code;
421 unsigned long address;
422 unsigned int flags;
423 int fault;
424
425 tsk = current;
426 /*
427 * The instruction that caused the program check has
428 * been nullified. Don't signal single step via SIGTRAP.
429 */
430 clear_pt_regs_flag(regs, PIF_PER_TRAP);
431
432 if (notify_page_fault(regs))
433 return 0;
434
435 mm = tsk->mm;
436 trans_exc_code = regs->int_parm_long;
437
438 /*
439 * Verify that the fault happened in user space, that
440 * we are not in an interrupt and that there is a
441 * user context.
442 */
443 fault = VM_FAULT_BADCONTEXT;
444 type = get_fault_type(regs);
445 switch (type) {
446 case KERNEL_FAULT:
447 goto out;
448 case VDSO_FAULT:
449 fault = VM_FAULT_BADMAP;
450 goto out;
451 case USER_FAULT:
452 case GMAP_FAULT:
453 if (faulthandler_disabled() || !mm)
454 goto out;
455 break;
456 }
457
458 address = trans_exc_code & __FAIL_ADDR_MASK;
459 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
460 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
461 if (user_mode(regs))
462 flags |= FAULT_FLAG_USER;
463 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
464 flags |= FAULT_FLAG_WRITE;
465 down_read(&mm->mmap_sem);
466
467 gmap = NULL;
468 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
469 gmap = (struct gmap *) S390_lowcore.gmap;
470 current->thread.gmap_addr = address;
471 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
472 current->thread.gmap_int_code = regs->int_code & 0xffff;
473 address = __gmap_translate(gmap, address);
474 if (address == -EFAULT) {
475 fault = VM_FAULT_BADMAP;
476 goto out_up;
477 }
478 if (gmap->pfault_enabled)
479 flags |= FAULT_FLAG_RETRY_NOWAIT;
480 }
481
482retry:
483 fault = VM_FAULT_BADMAP;
484 vma = find_vma(mm, address);
485 if (!vma)
486 goto out_up;
487
488 if (unlikely(vma->vm_start > address)) {
489 if (!(vma->vm_flags & VM_GROWSDOWN))
490 goto out_up;
491 if (expand_stack(vma, address))
492 goto out_up;
493 }
494
495 /*
496 * Ok, we have a good vm_area for this memory access, so
497 * we can handle it..
498 */
499 fault = VM_FAULT_BADACCESS;
500 if (unlikely(!(vma->vm_flags & access)))
501 goto out_up;
502
503 if (is_vm_hugetlb_page(vma))
504 address &= HPAGE_MASK;
505 /*
506 * If for any reason at all we couldn't handle the fault,
507 * make sure we exit gracefully rather than endlessly redo
508 * the fault.
509 */
510 fault = handle_mm_fault(vma, address, flags);
511 /* No reason to continue if interrupted by SIGKILL. */
512 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
513 fault = VM_FAULT_SIGNAL;
514 goto out;
515 }
516 if (unlikely(fault & VM_FAULT_ERROR))
517 goto out_up;
518
519 /*
520 * Major/minor page fault accounting is only done on the
521 * initial attempt. If we go through a retry, it is extremely
522 * likely that the page will be found in page cache at that point.
523 */
524 if (flags & FAULT_FLAG_ALLOW_RETRY) {
525 if (fault & VM_FAULT_MAJOR) {
526 tsk->maj_flt++;
527 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
528 regs, address);
529 } else {
530 tsk->min_flt++;
531 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
532 regs, address);
533 }
534 if (fault & VM_FAULT_RETRY) {
535 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
536 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
537 /* FAULT_FLAG_RETRY_NOWAIT has been set,
538 * mmap_sem has not been released */
539 current->thread.gmap_pfault = 1;
540 fault = VM_FAULT_PFAULT;
541 goto out_up;
542 }
543 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
544 * of starvation. */
545 flags &= ~(FAULT_FLAG_ALLOW_RETRY |
546 FAULT_FLAG_RETRY_NOWAIT);
547 flags |= FAULT_FLAG_TRIED;
548 down_read(&mm->mmap_sem);
549 goto retry;
550 }
551 }
552 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
553 address = __gmap_link(gmap, current->thread.gmap_addr,
554 address);
555 if (address == -EFAULT) {
556 fault = VM_FAULT_BADMAP;
557 goto out_up;
558 }
559 if (address == -ENOMEM) {
560 fault = VM_FAULT_OOM;
561 goto out_up;
562 }
563 }
564 fault = 0;
565out_up:
566 up_read(&mm->mmap_sem);
567out:
568 return fault;
569}
570
571void do_protection_exception(struct pt_regs *regs)
572{
573 unsigned long trans_exc_code;
574 int access, fault;
575
576 trans_exc_code = regs->int_parm_long;
577 /*
578 * Protection exceptions are suppressing, decrement psw address.
579 * The exception to this rule are aborted transactions, for these
580 * the PSW already points to the correct location.
581 */
582 if (!(regs->int_code & 0x200))
583 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
584 /*
585 * Check for low-address protection. This needs to be treated
586 * as a special case because the translation exception code
587 * field is not guaranteed to contain valid data in this case.
588 */
589 if (unlikely(!(trans_exc_code & 4))) {
590 do_low_address(regs);
591 return;
592 }
593 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
594 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
595 (regs->psw.addr & PAGE_MASK);
596 access = VM_EXEC;
597 fault = VM_FAULT_BADACCESS;
598 } else {
599 access = VM_WRITE;
600 fault = do_exception(regs, access);
601 }
602 if (unlikely(fault))
603 do_fault_error(regs, access, fault);
604}
605NOKPROBE_SYMBOL(do_protection_exception);
606
607void do_dat_exception(struct pt_regs *regs)
608{
609 int access, fault;
610
611 access = VM_READ | VM_EXEC | VM_WRITE;
612 fault = do_exception(regs, access);
613 if (unlikely(fault))
614 do_fault_error(regs, access, fault);
615}
616NOKPROBE_SYMBOL(do_dat_exception);
617
618#ifdef CONFIG_PFAULT
619/*
620 * 'pfault' pseudo page faults routines.
621 */
622static int pfault_disable;
623
624static int __init nopfault(char *str)
625{
626 pfault_disable = 1;
627 return 1;
628}
629
630__setup("nopfault", nopfault);
631
632struct pfault_refbk {
633 u16 refdiagc;
634 u16 reffcode;
635 u16 refdwlen;
636 u16 refversn;
637 u64 refgaddr;
638 u64 refselmk;
639 u64 refcmpmk;
640 u64 reserved;
641} __attribute__ ((packed, aligned(8)));
642
643int pfault_init(void)
644{
645 struct pfault_refbk refbk = {
646 .refdiagc = 0x258,
647 .reffcode = 0,
648 .refdwlen = 5,
649 .refversn = 2,
650 .refgaddr = __LC_LPP,
651 .refselmk = 1ULL << 48,
652 .refcmpmk = 1ULL << 48,
653 .reserved = __PF_RES_FIELD };
654 int rc;
655
656 if (pfault_disable)
657 return -1;
658 diag_stat_inc(DIAG_STAT_X258);
659 asm volatile(
660 " diag %1,%0,0x258\n"
661 "0: j 2f\n"
662 "1: la %0,8\n"
663 "2:\n"
664 EX_TABLE(0b,1b)
665 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
666 return rc;
667}
668
669void pfault_fini(void)
670{
671 struct pfault_refbk refbk = {
672 .refdiagc = 0x258,
673 .reffcode = 1,
674 .refdwlen = 5,
675 .refversn = 2,
676 };
677
678 if (pfault_disable)
679 return;
680 diag_stat_inc(DIAG_STAT_X258);
681 asm volatile(
682 " diag %0,0,0x258\n"
683 "0: nopr %%r7\n"
684 EX_TABLE(0b,0b)
685 : : "a" (&refbk), "m" (refbk) : "cc");
686}
687
688static DEFINE_SPINLOCK(pfault_lock);
689static LIST_HEAD(pfault_list);
690
691#define PF_COMPLETE 0x0080
692
693/*
694 * The mechanism of our pfault code: if Linux is running as guest, runs a user
695 * space process and the user space process accesses a page that the host has
696 * paged out we get a pfault interrupt.
697 *
698 * This allows us, within the guest, to schedule a different process. Without
699 * this mechanism the host would have to suspend the whole virtual cpu until
700 * the page has been paged in.
701 *
702 * So when we get such an interrupt then we set the state of the current task
703 * to uninterruptible and also set the need_resched flag. Both happens within
704 * interrupt context(!). If we later on want to return to user space we
705 * recognize the need_resched flag and then call schedule(). It's not very
706 * obvious how this works...
707 *
708 * Of course we have a lot of additional fun with the completion interrupt (->
709 * host signals that a page of a process has been paged in and the process can
710 * continue to run). This interrupt can arrive on any cpu and, since we have
711 * virtual cpus, actually appear before the interrupt that signals that a page
712 * is missing.
713 */
714static void pfault_interrupt(struct ext_code ext_code,
715 unsigned int param32, unsigned long param64)
716{
717 struct task_struct *tsk;
718 __u16 subcode;
719 pid_t pid;
720
721 /*
722 * Get the external interruption subcode & pfault initial/completion
723 * signal bit. VM stores this in the 'cpu address' field associated
724 * with the external interrupt.
725 */
726 subcode = ext_code.subcode;
727 if ((subcode & 0xff00) != __SUBCODE_MASK)
728 return;
729 inc_irq_stat(IRQEXT_PFL);
730 /* Get the token (= pid of the affected task). */
731 pid = param64 & LPP_PID_MASK;
732 rcu_read_lock();
733 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
734 if (tsk)
735 get_task_struct(tsk);
736 rcu_read_unlock();
737 if (!tsk)
738 return;
739 spin_lock(&pfault_lock);
740 if (subcode & PF_COMPLETE) {
741 /* signal bit is set -> a page has been swapped in by VM */
742 if (tsk->thread.pfault_wait == 1) {
743 /* Initial interrupt was faster than the completion
744 * interrupt. pfault_wait is valid. Set pfault_wait
745 * back to zero and wake up the process. This can
746 * safely be done because the task is still sleeping
747 * and can't produce new pfaults. */
748 tsk->thread.pfault_wait = 0;
749 list_del(&tsk->thread.list);
750 wake_up_process(tsk);
751 put_task_struct(tsk);
752 } else {
753 /* Completion interrupt was faster than initial
754 * interrupt. Set pfault_wait to -1 so the initial
755 * interrupt doesn't put the task to sleep.
756 * If the task is not running, ignore the completion
757 * interrupt since it must be a leftover of a PFAULT
758 * CANCEL operation which didn't remove all pending
759 * completion interrupts. */
760 if (tsk->state == TASK_RUNNING)
761 tsk->thread.pfault_wait = -1;
762 }
763 } else {
764 /* signal bit not set -> a real page is missing. */
765 if (WARN_ON_ONCE(tsk != current))
766 goto out;
767 if (tsk->thread.pfault_wait == 1) {
768 /* Already on the list with a reference: put to sleep */
769 goto block;
770 } else if (tsk->thread.pfault_wait == -1) {
771 /* Completion interrupt was faster than the initial
772 * interrupt (pfault_wait == -1). Set pfault_wait
773 * back to zero and exit. */
774 tsk->thread.pfault_wait = 0;
775 } else {
776 /* Initial interrupt arrived before completion
777 * interrupt. Let the task sleep.
778 * An extra task reference is needed since a different
779 * cpu may set the task state to TASK_RUNNING again
780 * before the scheduler is reached. */
781 get_task_struct(tsk);
782 tsk->thread.pfault_wait = 1;
783 list_add(&tsk->thread.list, &pfault_list);
784block:
785 /* Since this must be a userspace fault, there
786 * is no kernel task state to trample. Rely on the
787 * return to userspace schedule() to block. */
788 __set_current_state(TASK_UNINTERRUPTIBLE);
789 set_tsk_need_resched(tsk);
790 set_preempt_need_resched();
791 }
792 }
793out:
794 spin_unlock(&pfault_lock);
795 put_task_struct(tsk);
796}
797
798static int pfault_cpu_dead(unsigned int cpu)
799{
800 struct thread_struct *thread, *next;
801 struct task_struct *tsk;
802
803 spin_lock_irq(&pfault_lock);
804 list_for_each_entry_safe(thread, next, &pfault_list, list) {
805 thread->pfault_wait = 0;
806 list_del(&thread->list);
807 tsk = container_of(thread, struct task_struct, thread);
808 wake_up_process(tsk);
809 put_task_struct(tsk);
810 }
811 spin_unlock_irq(&pfault_lock);
812 return 0;
813}
814
815static int __init pfault_irq_init(void)
816{
817 int rc;
818
819 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
820 if (rc)
821 goto out_extint;
822 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
823 if (rc)
824 goto out_pfault;
825 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
826 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
827 NULL, pfault_cpu_dead);
828 return 0;
829
830out_pfault:
831 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
832out_extint:
833 pfault_disable = 1;
834 return rc;
835}
836early_initcall(pfault_irq_init);
837
838#endif /* CONFIG_PFAULT */