Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *		 Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/mmu_context.h>
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 17#include <linux/sched/debug.h>
 18#include <linux/jump_label.h>
 19#include <linux/kernel.h>
 20#include <linux/errno.h>
 21#include <linux/string.h>
 22#include <linux/types.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/mm.h>
 26#include <linux/compat.h>
 27#include <linux/smp.h>
 28#include <linux/kdebug.h>
 29#include <linux/init.h>
 30#include <linux/console.h>
 31#include <linux/extable.h>
 32#include <linux/hardirq.h>
 33#include <linux/kprobes.h>
 34#include <linux/uaccess.h>
 35#include <linux/hugetlb.h>
 36#include <linux/kfence.h>
 37#include <asm/asm-extable.h>
 38#include <asm/asm-offsets.h>
 39#include <asm/ptrace.h>
 40#include <asm/fault.h>
 41#include <asm/diag.h>
 
 42#include <asm/gmap.h>
 43#include <asm/irq.h>
 
 44#include <asm/facility.h>
 45#include <asm/uv.h>
 46#include "../kernel/entry.h"
 47
 48enum fault_type {
 49	KERNEL_FAULT,
 50	USER_FAULT,
 51	GMAP_FAULT,
 52};
 
 
 
 
 53
 54static DEFINE_STATIC_KEY_FALSE(have_store_indication);
 55
 56static int __init fault_init(void)
 57{
 58	if (test_facility(75))
 59		static_branch_enable(&have_store_indication);
 60	return 0;
 61}
 62early_initcall(fault_init);
 63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64/*
 65 * Find out which address space caused the exception.
 
 66 */
 67static enum fault_type get_fault_type(struct pt_regs *regs)
 68{
 69	union teid teid = { .val = regs->int_parm_long };
 70
 71	if (likely(teid.as == PSW_BITS_AS_PRIMARY)) {
 72		if (user_mode(regs))
 73			return USER_FAULT;
 74		if (!IS_ENABLED(CONFIG_PGSTE))
 75			return KERNEL_FAULT;
 76		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
 77			return GMAP_FAULT;
 78		return KERNEL_FAULT;
 
 
 
 
 79	}
 80	if (teid.as == PSW_BITS_AS_SECONDARY)
 81		return USER_FAULT;
 82	/* Access register mode, not used in the kernel */
 83	if (teid.as == PSW_BITS_AS_ACCREG)
 84		return USER_FAULT;
 85	/* Home space -> access via kernel ASCE */
 86	return KERNEL_FAULT;
 87}
 88
 89static unsigned long get_fault_address(struct pt_regs *regs)
 
 
 
 
 90{
 91	union teid teid = { .val = regs->int_parm_long };
 92
 93	return teid.addr * PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 94}
 95
 96static __always_inline bool fault_is_write(struct pt_regs *regs)
 97{
 98	union teid teid = { .val = regs->int_parm_long };
 99
100	if (static_branch_likely(&have_store_indication))
101		return teid.fsi == TEID_FSI_STORE;
102	return false;
103}
104
105static void dump_pagetable(unsigned long asce, unsigned long address)
106{
107	unsigned long entry, *table = __va(asce & _ASCE_ORIGIN);
108
109	pr_alert("AS:%016lx ", asce);
110	switch (asce & _ASCE_TYPE_MASK) {
111	case _ASCE_TYPE_REGION1:
112		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113		if (get_kernel_nofault(entry, table))
114			goto bad;
115		pr_cont("R1:%016lx ", entry);
116		if (entry & _REGION_ENTRY_INVALID)
117			goto out;
118		table = __va(entry & _REGION_ENTRY_ORIGIN);
119		fallthrough;
120	case _ASCE_TYPE_REGION2:
121		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122		if (get_kernel_nofault(entry, table))
123			goto bad;
124		pr_cont("R2:%016lx ", entry);
125		if (entry & _REGION_ENTRY_INVALID)
126			goto out;
127		table = __va(entry & _REGION_ENTRY_ORIGIN);
128		fallthrough;
129	case _ASCE_TYPE_REGION3:
130		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131		if (get_kernel_nofault(entry, table))
132			goto bad;
133		pr_cont("R3:%016lx ", entry);
134		if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135			goto out;
136		table = __va(entry & _REGION_ENTRY_ORIGIN);
137		fallthrough;
138	case _ASCE_TYPE_SEGMENT:
139		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140		if (get_kernel_nofault(entry, table))
141			goto bad;
142		pr_cont("S:%016lx ", entry);
143		if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144			goto out;
145		table = __va(entry & _SEGMENT_ENTRY_ORIGIN);
146	}
147	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148	if (get_kernel_nofault(entry, table))
149		goto bad;
150	pr_cont("P:%016lx ", entry);
151out:
152	pr_cont("\n");
153	return;
154bad:
155	pr_cont("BAD\n");
156}
157
158static void dump_fault_info(struct pt_regs *regs)
159{
160	union teid teid = { .val = regs->int_parm_long };
161	unsigned long asce;
162
163	pr_alert("Failing address: %016lx TEID: %016lx\n",
164		 get_fault_address(regs), teid.val);
165	pr_alert("Fault in ");
166	switch (teid.as) {
167	case PSW_BITS_AS_HOME:
168		pr_cont("home space ");
169		break;
170	case PSW_BITS_AS_SECONDARY:
171		pr_cont("secondary space ");
172		break;
173	case PSW_BITS_AS_ACCREG:
174		pr_cont("access register ");
175		break;
176	case PSW_BITS_AS_PRIMARY:
177		pr_cont("primary space ");
178		break;
179	}
180	pr_cont("mode while using ");
181	switch (get_fault_type(regs)) {
182	case USER_FAULT:
183		asce = S390_lowcore.user_asce.val;
184		pr_cont("user ");
185		break;
186	case GMAP_FAULT:
187		asce = ((struct gmap *)S390_lowcore.gmap)->asce;
188		pr_cont("gmap ");
189		break;
190	case KERNEL_FAULT:
191		asce = S390_lowcore.kernel_asce.val;
192		pr_cont("kernel ");
193		break;
194	default:
195		unreachable();
 
 
 
 
 
 
 
 
196	}
197	pr_cont("ASCE.\n");
198	dump_pagetable(asce, get_fault_address(regs));
199}
200
201int show_unhandled_signals = 1;
202
203void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
204{
205	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
206
207	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
208		return;
209	if (!unhandled_signal(current, signr))
210		return;
211	if (!__ratelimit(&rs))
212		return;
213	pr_alert("User process fault: interruption code %04x ilc:%d ",
214		 regs->int_code & 0xffff, regs->int_code >> 17);
215	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
216	pr_cont("\n");
217	if (is_mm_fault)
218		dump_fault_info(regs);
219	show_regs(regs);
220}
221
222static void do_sigsegv(struct pt_regs *regs, int si_code)
 
 
 
 
223{
 
 
224	report_user_fault(regs, SIGSEGV, 1);
225	force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs));
 
 
 
 
226}
227
228static void handle_fault_error_nolock(struct pt_regs *regs, int si_code)
229{
230	enum fault_type fault_type;
231	unsigned long address;
232	bool is_write;
233
234	if (user_mode(regs)) {
235		if (WARN_ON_ONCE(!si_code))
236			si_code = SEGV_MAPERR;
237		return do_sigsegv(regs, si_code);
238	}
239	if (fixup_exception(regs))
240		return;
241	fault_type = get_fault_type(regs);
242	if (fault_type == KERNEL_FAULT) {
243		address = get_fault_address(regs);
244		is_write = fault_is_write(regs);
245		if (kfence_handle_page_fault(address, is_write, regs))
246			return;
247	}
248	if (fault_type == KERNEL_FAULT)
249		pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n");
 
 
 
 
 
 
250	else
251		pr_alert("Unable to handle kernel paging request in virtual user address space\n");
 
252	dump_fault_info(regs);
253	die(regs, "Oops");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254}
255
256static void handle_fault_error(struct pt_regs *regs, int si_code)
257{
258	struct mm_struct *mm = current->mm;
 
259
260	mmap_read_unlock(mm);
261	handle_fault_error_nolock(regs, si_code);
 
 
 
 
 
 
 
262}
263
264static void do_sigbus(struct pt_regs *regs)
265{
266	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267}
268
269/*
270 * This routine handles page faults.  It determines the address,
271 * and the problem, and then passes it off to one of the appropriate
272 * routines.
273 *
274 * interruption code (int_code):
275 *   04       Protection	   ->  Write-Protection  (suppression)
276 *   10       Segment translation  ->  Not present	 (nullification)
277 *   11       Page translation	   ->  Not present	 (nullification)
278 *   3b       Region third trans.  ->  Not present	 (nullification)
279 */
280static void do_exception(struct pt_regs *regs, int access)
281{
 
 
 
 
 
282	struct vm_area_struct *vma;
 
283	unsigned long address;
284	struct mm_struct *mm;
285	enum fault_type type;
286	unsigned int flags;
287	struct gmap *gmap;
288	vm_fault_t fault;
289	bool is_write;
290
 
291	/*
292	 * The instruction that caused the program check has
293	 * been nullified. Don't signal single step via SIGTRAP.
294	 */
295	clear_thread_flag(TIF_PER_TRAP);
296	if (kprobe_page_fault(regs, 14))
297		return;
298	mm = current->mm;
299	address = get_fault_address(regs);
300	is_write = fault_is_write(regs);
301	type = get_fault_type(regs);
302	switch (type) {
303	case KERNEL_FAULT:
304		return handle_fault_error_nolock(regs, 0);
305	case USER_FAULT:
306	case GMAP_FAULT:
307		if (faulthandler_disabled() || !mm)
308			return handle_fault_error_nolock(regs, 0);
309		break;
310	}
 
 
311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
312	flags = FAULT_FLAG_DEFAULT;
313	if (user_mode(regs))
314		flags |= FAULT_FLAG_USER;
315	if (is_write)
316		access = VM_WRITE;
317	if (access == VM_WRITE)
318		flags |= FAULT_FLAG_WRITE;
319	if (!(flags & FAULT_FLAG_USER))
320		goto lock_mmap;
321	vma = lock_vma_under_rcu(mm, address);
322	if (!vma)
323		goto lock_mmap;
324	if (!(vma->vm_flags & access)) {
325		vma_end_read(vma);
326		goto lock_mmap;
327	}
328	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
329	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
330		vma_end_read(vma);
331	if (!(fault & VM_FAULT_RETRY)) {
332		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
333		if (unlikely(fault & VM_FAULT_ERROR))
334			goto error;
335		return;
336	}
337	count_vm_vma_lock_event(VMA_LOCK_RETRY);
338	if (fault & VM_FAULT_MAJOR)
339		flags |= FAULT_FLAG_TRIED;
340
341	/* Quick path to respond to signals */
342	if (fault_signal_pending(fault, regs)) {
343		if (!user_mode(regs))
344			handle_fault_error_nolock(regs, 0);
345		return;
346	}
347lock_mmap:
348	mmap_read_lock(mm);
349	gmap = NULL;
350	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
351		gmap = (struct gmap *)S390_lowcore.gmap;
352		current->thread.gmap_addr = address;
353		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
354		current->thread.gmap_int_code = regs->int_code & 0xffff;
355		address = __gmap_translate(gmap, address);
356		if (address == -EFAULT)
357			return handle_fault_error(regs, SEGV_MAPERR);
 
 
358		if (gmap->pfault_enabled)
359			flags |= FAULT_FLAG_RETRY_NOWAIT;
360	}
 
 
361retry:
 
362	vma = find_vma(mm, address);
363	if (!vma)
364		return handle_fault_error(regs, SEGV_MAPERR);
 
365	if (unlikely(vma->vm_start > address)) {
366		if (!(vma->vm_flags & VM_GROWSDOWN))
367			return handle_fault_error(regs, SEGV_MAPERR);
368		vma = expand_stack(mm, address);
369		if (!vma)
370			return handle_fault_error_nolock(regs, SEGV_MAPERR);
371	}
 
 
 
 
 
 
372	if (unlikely(!(vma->vm_flags & access)))
373		return handle_fault_error(regs, SEGV_ACCERR);
374	fault = handle_mm_fault(vma, address, flags, regs);
375	if (fault_signal_pending(fault, regs)) {
376		if (flags & FAULT_FLAG_RETRY_NOWAIT)
377			mmap_read_unlock(mm);
378		if (!user_mode(regs))
379			handle_fault_error_nolock(regs, 0);
380		return;
 
 
 
 
 
 
381	}
382	/* The fault is fully completed (including releasing mmap lock) */
383	if (fault & VM_FAULT_COMPLETED) {
384		if (gmap) {
385			mmap_read_lock(mm);
386			goto gmap;
 
 
 
 
 
 
 
 
 
 
 
 
387		}
388		return;
389	}
390	if (unlikely(fault & VM_FAULT_ERROR)) {
391		mmap_read_unlock(mm);
392		goto error;
393	}
394	if (fault & VM_FAULT_RETRY) {
395		if (IS_ENABLED(CONFIG_PGSTE) && gmap &&	(flags & FAULT_FLAG_RETRY_NOWAIT)) {
396			/*
397			 * FAULT_FLAG_RETRY_NOWAIT has been set,
398			 * mmap_lock has not been released
399			 */
400			current->thread.gmap_pfault = 1;
401			return handle_fault_error(regs, 0);
 
 
 
402		}
403		flags &= ~FAULT_FLAG_RETRY_NOWAIT;
404		flags |= FAULT_FLAG_TRIED;
405		mmap_read_lock(mm);
406		goto retry;
407	}
408gmap:
409	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
410		address =  __gmap_link(gmap, current->thread.gmap_addr,
411				       address);
412		if (address == -EFAULT)
413			return handle_fault_error(regs, SEGV_MAPERR);
 
 
414		if (address == -ENOMEM) {
415			fault = VM_FAULT_OOM;
416			mmap_read_unlock(mm);
417			goto error;
418		}
419	}
420	mmap_read_unlock(mm);
421	return;
422error:
423	if (fault & VM_FAULT_OOM) {
424		if (!user_mode(regs))
425			handle_fault_error_nolock(regs, 0);
426		else
427			pagefault_out_of_memory();
428	} else if (fault & VM_FAULT_SIGSEGV) {
429		if (!user_mode(regs))
430			handle_fault_error_nolock(regs, 0);
431		else
432			do_sigsegv(regs, SEGV_MAPERR);
433	} else if (fault & VM_FAULT_SIGBUS) {
434		if (!user_mode(regs))
435			handle_fault_error_nolock(regs, 0);
436		else
437			do_sigbus(regs);
438	} else {
439		BUG();
440	}
441}
442
443void do_protection_exception(struct pt_regs *regs)
444{
445	union teid teid = { .val = regs->int_parm_long };
 
446
 
447	/*
448	 * Protection exceptions are suppressing, decrement psw address.
449	 * The exception to this rule are aborted transactions, for these
450	 * the PSW already points to the correct location.
451	 */
452	if (!(regs->int_code & 0x200))
453		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
454	/*
455	 * Check for low-address protection.  This needs to be treated
456	 * as a special case because the translation exception code
457	 * field is not guaranteed to contain valid data in this case.
458	 */
459	if (unlikely(!teid.b61)) {
460		if (user_mode(regs)) {
461			/* Low-address protection in user mode: cannot happen */
462			die(regs, "Low-address protection");
463		}
464		/*
465		 * Low-address protection in kernel mode means
466		 * NULL pointer write access in kernel mode.
467		 */
468		return handle_fault_error_nolock(regs, 0);
469	}
470	if (unlikely(MACHINE_HAS_NX && teid.b56)) {
471		regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK);
472		return handle_fault_error_nolock(regs, SEGV_ACCERR);
473	}
474	do_exception(regs, VM_WRITE);
 
 
475}
476NOKPROBE_SYMBOL(do_protection_exception);
477
478void do_dat_exception(struct pt_regs *regs)
479{
480	do_exception(regs, VM_ACCESS_FLAGS);
 
 
 
 
 
481}
482NOKPROBE_SYMBOL(do_dat_exception);
483
484#if IS_ENABLED(CONFIG_PGSTE)
 
 
 
 
485
486void do_secure_storage_access(struct pt_regs *regs)
487{
488	union teid teid = { .val = regs->int_parm_long };
489	unsigned long addr = get_fault_address(regs);
490	struct vm_area_struct *vma;
491	struct mm_struct *mm;
492	struct page *page;
493	struct gmap *gmap;
494	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496	/*
497	 * Bit 61 indicates if the address is valid, if it is not the
498	 * kernel should be stopped or SIGSEGV should be sent to the
499	 * process. Bit 61 is not reliable without the misc UV feature,
500	 * therefore this needs to be checked too.
501	 */
502	if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) {
503		/*
504		 * When this happens, userspace did something that it
505		 * was not supposed to do, e.g. branching into secure
506		 * memory. Trigger a segmentation fault.
507		 */
508		if (user_mode(regs)) {
509			send_sig(SIGSEGV, current, 0);
510			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511		}
512		/*
513		 * The kernel should never run into this case and
514		 * there is no way out of this situation.
515		 */
516		panic("Unexpected PGM 0x3d with TEID bit 61=0");
517	}
518	switch (get_fault_type(regs)) {
519	case GMAP_FAULT:
520		mm = current->mm;
521		gmap = (struct gmap *)S390_lowcore.gmap;
522		mmap_read_lock(mm);
523		addr = __gmap_translate(gmap, addr);
524		mmap_read_unlock(mm);
525		if (IS_ERR_VALUE(addr))
526			return handle_fault_error_nolock(regs, SEGV_MAPERR);
527		fallthrough;
528	case USER_FAULT:
529		mm = current->mm;
530		mmap_read_lock(mm);
531		vma = find_vma(mm, addr);
532		if (!vma)
533			return handle_fault_error(regs, SEGV_MAPERR);
534		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
535		if (IS_ERR_OR_NULL(page)) {
536			mmap_read_unlock(mm);
537			break;
 
 
538		}
539		if (arch_make_page_accessible(page))
540			send_sig(SIGSEGV, current, 0);
541		put_page(page);
542		mmap_read_unlock(mm);
543		break;
544	case KERNEL_FAULT:
545		page = phys_to_page(addr);
546		if (unlikely(!try_get_page(page)))
547			break;
548		rc = arch_make_page_accessible(page);
549		put_page(page);
550		if (rc)
551			BUG();
552		break;
553	default:
554		unreachable();
555	}
 
 
 
556}
557NOKPROBE_SYMBOL(do_secure_storage_access);
558
559void do_non_secure_storage_access(struct pt_regs *regs)
560{
561	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
562	unsigned long gaddr = get_fault_address(regs);
563
564	if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT))
565		return handle_fault_error_nolock(regs, SEGV_MAPERR);
566	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
567		send_sig(SIGSEGV, current, 0);
 
 
 
 
 
 
568}
569NOKPROBE_SYMBOL(do_non_secure_storage_access);
570
571void do_secure_storage_violation(struct pt_regs *regs)
572{
573	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
574	unsigned long gaddr = get_fault_address(regs);
575
576	/*
577	 * If the VM has been rebooted, its address space might still contain
578	 * secure pages from the previous boot.
579	 * Clear the page so it can be reused.
580	 */
581	if (!gmap_destroy_page(gmap, gaddr))
582		return;
583	/*
584	 * Either KVM messed up the secure guest mapping or the same
585	 * page is mapped into multiple secure guests.
586	 *
587	 * This exception is only triggered when a guest 2 is running
588	 * and can therefore never occur in kernel context.
589	 */
590	pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n",
591			    current->comm, current->pid);
592	send_sig(SIGSEGV, current, 0);
593}
 
594
595#endif /* CONFIG_PGSTE */
v4.10.11
 
  1/*
  2 *  S390 version
  3 *    Copyright IBM Corp. 1999
  4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  5 *               Ulrich Weigand (uweigand@de.ibm.com)
  6 *
  7 *  Derived from "arch/i386/mm/fault.c"
  8 *    Copyright (C) 1995  Linus Torvalds
  9 */
 10
 11#include <linux/kernel_stat.h>
 
 12#include <linux/perf_event.h>
 13#include <linux/signal.h>
 14#include <linux/sched.h>
 
 
 15#include <linux/kernel.h>
 16#include <linux/errno.h>
 17#include <linux/string.h>
 18#include <linux/types.h>
 19#include <linux/ptrace.h>
 20#include <linux/mman.h>
 21#include <linux/mm.h>
 22#include <linux/compat.h>
 23#include <linux/smp.h>
 24#include <linux/kdebug.h>
 25#include <linux/init.h>
 26#include <linux/console.h>
 27#include <linux/extable.h>
 28#include <linux/hardirq.h>
 29#include <linux/kprobes.h>
 30#include <linux/uaccess.h>
 31#include <linux/hugetlb.h>
 
 
 32#include <asm/asm-offsets.h>
 
 
 33#include <asm/diag.h>
 34#include <asm/pgtable.h>
 35#include <asm/gmap.h>
 36#include <asm/irq.h>
 37#include <asm/mmu_context.h>
 38#include <asm/facility.h>
 
 39#include "../kernel/entry.h"
 40
 41#define __FAIL_ADDR_MASK -4096L
 42#define __SUBCODE_MASK 0x0600
 43#define __PF_RES_FIELD 0x8000000000000000ULL
 44
 45#define VM_FAULT_BADCONTEXT	0x010000
 46#define VM_FAULT_BADMAP		0x020000
 47#define VM_FAULT_BADACCESS	0x040000
 48#define VM_FAULT_SIGNAL		0x080000
 49#define VM_FAULT_PFAULT		0x100000
 50
 51static unsigned long store_indication __read_mostly;
 52
 53static int __init fault_init(void)
 54{
 55	if (test_facility(75))
 56		store_indication = 0xc00;
 57	return 0;
 58}
 59early_initcall(fault_init);
 60
 61static inline int notify_page_fault(struct pt_regs *regs)
 62{
 63	int ret = 0;
 64
 65	/* kprobe_running() needs smp_processor_id() */
 66	if (kprobes_built_in() && !user_mode(regs)) {
 67		preempt_disable();
 68		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 69			ret = 1;
 70		preempt_enable();
 71	}
 72	return ret;
 73}
 74
 75
 76/*
 77 * Unlock any spinlocks which will prevent us from getting the
 78 * message out.
 79 */
 80void bust_spinlocks(int yes)
 81{
 82	if (yes) {
 83		oops_in_progress = 1;
 84	} else {
 85		int loglevel_save = console_loglevel;
 86		console_unblank();
 87		oops_in_progress = 0;
 88		/*
 89		 * OK, the message is on the console.  Now we call printk()
 90		 * without oops_in_progress set so that printk will give klogd
 91		 * a poke.  Hold onto your hats...
 92		 */
 93		console_loglevel = 15;
 94		printk(" ");
 95		console_loglevel = loglevel_save;
 96	}
 
 
 
 
 
 
 
 97}
 98
 99/*
100 * Returns the address space associated with the fault.
101 * Returns 0 for kernel space and 1 for user space.
102 */
103static inline int user_space_fault(struct pt_regs *regs)
104{
105	unsigned long trans_exc_code;
106
107	/*
108	 * The lowest two bits of the translation exception
109	 * identification indicate which paging table was used.
110	 */
111	trans_exc_code = regs->int_parm_long & 3;
112	if (trans_exc_code == 3) /* home space -> kernel */
113		return 0;
114	if (user_mode(regs))
115		return 1;
116	if (trans_exc_code == 2) /* secondary space -> set_fs */
117		return current->thread.mm_segment.ar4;
118	if (current->flags & PF_VCPU)
119		return 1;
120	return 0;
121}
122
123static int bad_address(void *p)
124{
125	unsigned long dummy;
126
127	return probe_kernel_address((unsigned long *)p, dummy);
 
 
128}
129
130static void dump_pagetable(unsigned long asce, unsigned long address)
131{
132	unsigned long *table = __va(asce & PAGE_MASK);
133
134	pr_alert("AS:%016lx ", asce);
135	switch (asce & _ASCE_TYPE_MASK) {
136	case _ASCE_TYPE_REGION1:
137		table = table + ((address >> 53) & 0x7ff);
138		if (bad_address(table))
139			goto bad;
140		pr_cont("R1:%016lx ", *table);
141		if (*table & _REGION_ENTRY_INVALID)
142			goto out;
143		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
144		/* fallthrough */
145	case _ASCE_TYPE_REGION2:
146		table = table + ((address >> 42) & 0x7ff);
147		if (bad_address(table))
148			goto bad;
149		pr_cont("R2:%016lx ", *table);
150		if (*table & _REGION_ENTRY_INVALID)
151			goto out;
152		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
153		/* fallthrough */
154	case _ASCE_TYPE_REGION3:
155		table = table + ((address >> 31) & 0x7ff);
156		if (bad_address(table))
157			goto bad;
158		pr_cont("R3:%016lx ", *table);
159		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
160			goto out;
161		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
162		/* fallthrough */
163	case _ASCE_TYPE_SEGMENT:
164		table = table + ((address >> 20) & 0x7ff);
165		if (bad_address(table))
166			goto bad;
167		pr_cont("S:%016lx ", *table);
168		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
169			goto out;
170		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
171	}
172	table = table + ((address >> 12) & 0xff);
173	if (bad_address(table))
174		goto bad;
175	pr_cont("P:%016lx ", *table);
176out:
177	pr_cont("\n");
178	return;
179bad:
180	pr_cont("BAD\n");
181}
182
183static void dump_fault_info(struct pt_regs *regs)
184{
 
185	unsigned long asce;
186
187	pr_alert("Failing address: %016lx TEID: %016lx\n",
188		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
189	pr_alert("Fault in ");
190	switch (regs->int_parm_long & 3) {
191	case 3:
192		pr_cont("home space ");
193		break;
194	case 2:
195		pr_cont("secondary space ");
196		break;
197	case 1:
198		pr_cont("access register ");
199		break;
200	case 0:
201		pr_cont("primary space ");
202		break;
203	}
204	pr_cont("mode while using ");
205	if (!user_space_fault(regs)) {
206		asce = S390_lowcore.kernel_asce;
 
 
 
 
 
 
 
 
 
207		pr_cont("kernel ");
208	}
209#ifdef CONFIG_PGSTE
210	else if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
211		struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
212		asce = gmap->asce;
213		pr_cont("gmap ");
214	}
215#endif
216	else {
217		asce = S390_lowcore.user_asce;
218		pr_cont("user ");
219	}
220	pr_cont("ASCE.\n");
221	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
222}
223
224int show_unhandled_signals = 1;
225
226void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
227{
 
 
228	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
229		return;
230	if (!unhandled_signal(current, signr))
231		return;
232	if (!printk_ratelimit())
233		return;
234	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
235	       regs->int_code & 0xffff, regs->int_code >> 17);
236	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
237	printk(KERN_CONT "\n");
238	if (is_mm_fault)
239		dump_fault_info(regs);
240	show_regs(regs);
241}
242
243/*
244 * Send SIGSEGV to task.  This is an external routine
245 * to keep the stack usage of do_page_fault small.
246 */
247static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
248{
249	struct siginfo si;
250
251	report_user_fault(regs, SIGSEGV, 1);
252	si.si_signo = SIGSEGV;
253	si.si_errno = 0;
254	si.si_code = si_code;
255	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
256	force_sig_info(SIGSEGV, &si, current);
257}
258
259static noinline void do_no_context(struct pt_regs *regs)
260{
261	const struct exception_table_entry *fixup;
 
 
262
263	/* Are we prepared to handle this kernel fault?  */
264	fixup = search_exception_tables(regs->psw.addr);
265	if (fixup) {
266		regs->psw.addr = extable_fixup(fixup);
 
 
267		return;
 
 
 
 
 
 
268	}
269
270	/*
271	 * Oops. The kernel tried to access some bad page. We'll have to
272	 * terminate things with extreme prejudice.
273	 */
274	if (!user_space_fault(regs))
275		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
276		       " in virtual kernel address space\n");
277	else
278		printk(KERN_ALERT "Unable to handle kernel paging request"
279		       " in virtual user address space\n");
280	dump_fault_info(regs);
281	die(regs, "Oops");
282	do_exit(SIGKILL);
283}
284
285static noinline void do_low_address(struct pt_regs *regs)
286{
287	/* Low-address protection hit in kernel mode means
288	   NULL pointer write access in kernel mode.  */
289	if (regs->psw.mask & PSW_MASK_PSTATE) {
290		/* Low-address protection hit in user mode 'cannot happen'. */
291		die (regs, "Low-address protection");
292		do_exit(SIGKILL);
293	}
294
295	do_no_context(regs);
296}
297
298static noinline void do_sigbus(struct pt_regs *regs)
299{
300	struct task_struct *tsk = current;
301	struct siginfo si;
302
303	/*
304	 * Send a sigbus, regardless of whether we were in kernel
305	 * or user mode.
306	 */
307	si.si_signo = SIGBUS;
308	si.si_errno = 0;
309	si.si_code = BUS_ADRERR;
310	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
311	force_sig_info(SIGBUS, &si, tsk);
312}
313
314static noinline void do_fault_error(struct pt_regs *regs, int fault)
315{
316	int si_code;
317
318	switch (fault) {
319	case VM_FAULT_BADACCESS:
320	case VM_FAULT_BADMAP:
321		/* Bad memory access. Check if it is kernel or user space. */
322		if (user_mode(regs)) {
323			/* User mode accesses just cause a SIGSEGV */
324			si_code = (fault == VM_FAULT_BADMAP) ?
325				SEGV_MAPERR : SEGV_ACCERR;
326			do_sigsegv(regs, si_code);
327			return;
328		}
329	case VM_FAULT_BADCONTEXT:
330	case VM_FAULT_PFAULT:
331		do_no_context(regs);
332		break;
333	case VM_FAULT_SIGNAL:
334		if (!user_mode(regs))
335			do_no_context(regs);
336		break;
337	default: /* fault & VM_FAULT_ERROR */
338		if (fault & VM_FAULT_OOM) {
339			if (!user_mode(regs))
340				do_no_context(regs);
341			else
342				pagefault_out_of_memory();
343		} else if (fault & VM_FAULT_SIGSEGV) {
344			/* Kernel mode? Handle exceptions or die */
345			if (!user_mode(regs))
346				do_no_context(regs);
347			else
348				do_sigsegv(regs, SEGV_MAPERR);
349		} else if (fault & VM_FAULT_SIGBUS) {
350			/* Kernel mode? Handle exceptions or die */
351			if (!user_mode(regs))
352				do_no_context(regs);
353			else
354				do_sigbus(regs);
355		} else
356			BUG();
357		break;
358	}
359}
360
361/*
362 * This routine handles page faults.  It determines the address,
363 * and the problem, and then passes it off to one of the appropriate
364 * routines.
365 *
366 * interruption code (int_code):
367 *   04       Protection           ->  Write-Protection  (suprression)
368 *   10       Segment translation  ->  Not present       (nullification)
369 *   11       Page translation     ->  Not present       (nullification)
370 *   3b       Region third trans.  ->  Not present       (nullification)
371 */
372static inline int do_exception(struct pt_regs *regs, int access)
373{
374#ifdef CONFIG_PGSTE
375	struct gmap *gmap;
376#endif
377	struct task_struct *tsk;
378	struct mm_struct *mm;
379	struct vm_area_struct *vma;
380	unsigned long trans_exc_code;
381	unsigned long address;
 
 
382	unsigned int flags;
383	int fault;
 
 
384
385	tsk = current;
386	/*
387	 * The instruction that caused the program check has
388	 * been nullified. Don't signal single step via SIGTRAP.
389	 */
390	clear_pt_regs_flag(regs, PIF_PER_TRAP);
391
392	if (notify_page_fault(regs))
393		return 0;
394
395	mm = tsk->mm;
396	trans_exc_code = regs->int_parm_long;
397
398	/*
399	 * Verify that the fault happened in user space, that
400	 * we are not in an interrupt and that there is a 
401	 * user context.
402	 */
403	fault = VM_FAULT_BADCONTEXT;
404	if (unlikely(!user_space_fault(regs) || faulthandler_disabled() || !mm))
405		goto out;
406
407	address = trans_exc_code & __FAIL_ADDR_MASK;
408	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
409	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
410	if (user_mode(regs))
411		flags |= FAULT_FLAG_USER;
412	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
 
 
413		flags |= FAULT_FLAG_WRITE;
414	down_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415
416#ifdef CONFIG_PGSTE
417	gmap = (current->flags & PF_VCPU) ?
418		(struct gmap *) S390_lowcore.gmap : NULL;
419	if (gmap) {
 
 
 
 
 
 
 
420		current->thread.gmap_addr = address;
421		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
422		current->thread.gmap_int_code = regs->int_code & 0xffff;
423		address = __gmap_translate(gmap, address);
424		if (address == -EFAULT) {
425			fault = VM_FAULT_BADMAP;
426			goto out_up;
427		}
428		if (gmap->pfault_enabled)
429			flags |= FAULT_FLAG_RETRY_NOWAIT;
430	}
431#endif
432
433retry:
434	fault = VM_FAULT_BADMAP;
435	vma = find_vma(mm, address);
436	if (!vma)
437		goto out_up;
438
439	if (unlikely(vma->vm_start > address)) {
440		if (!(vma->vm_flags & VM_GROWSDOWN))
441			goto out_up;
442		if (expand_stack(vma, address))
443			goto out_up;
 
444	}
445
446	/*
447	 * Ok, we have a good vm_area for this memory access, so
448	 * we can handle it..
449	 */
450	fault = VM_FAULT_BADACCESS;
451	if (unlikely(!(vma->vm_flags & access)))
452		goto out_up;
453
454	if (is_vm_hugetlb_page(vma))
455		address &= HPAGE_MASK;
456	/*
457	 * If for any reason at all we couldn't handle the fault,
458	 * make sure we exit gracefully rather than endlessly redo
459	 * the fault.
460	 */
461	fault = handle_mm_fault(vma, address, flags);
462	/* No reason to continue if interrupted by SIGKILL. */
463	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
464		fault = VM_FAULT_SIGNAL;
465		goto out;
466	}
467	if (unlikely(fault & VM_FAULT_ERROR))
468		goto out_up;
469
470	/*
471	 * Major/minor page fault accounting is only done on the
472	 * initial attempt. If we go through a retry, it is extremely
473	 * likely that the page will be found in page cache at that point.
474	 */
475	if (flags & FAULT_FLAG_ALLOW_RETRY) {
476		if (fault & VM_FAULT_MAJOR) {
477			tsk->maj_flt++;
478			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
479				      regs, address);
480		} else {
481			tsk->min_flt++;
482			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
483				      regs, address);
484		}
485		if (fault & VM_FAULT_RETRY) {
486#ifdef CONFIG_PGSTE
487			if (gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) {
488				/* FAULT_FLAG_RETRY_NOWAIT has been set,
489				 * mmap_sem has not been released */
490				current->thread.gmap_pfault = 1;
491				fault = VM_FAULT_PFAULT;
492				goto out_up;
493			}
494#endif
495			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
496			 * of starvation. */
497			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
498				   FAULT_FLAG_RETRY_NOWAIT);
499			flags |= FAULT_FLAG_TRIED;
500			down_read(&mm->mmap_sem);
501			goto retry;
502		}
 
 
 
 
503	}
504#ifdef CONFIG_PGSTE
505	if (gmap) {
506		address =  __gmap_link(gmap, current->thread.gmap_addr,
507				       address);
508		if (address == -EFAULT) {
509			fault = VM_FAULT_BADMAP;
510			goto out_up;
511		}
512		if (address == -ENOMEM) {
513			fault = VM_FAULT_OOM;
514			goto out_up;
 
515		}
516	}
517#endif
518	fault = 0;
519out_up:
520	up_read(&mm->mmap_sem);
521out:
522	return fault;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
523}
524
525void do_protection_exception(struct pt_regs *regs)
526{
527	unsigned long trans_exc_code;
528	int fault;
529
530	trans_exc_code = regs->int_parm_long;
531	/*
532	 * Protection exceptions are suppressing, decrement psw address.
533	 * The exception to this rule are aborted transactions, for these
534	 * the PSW already points to the correct location.
535	 */
536	if (!(regs->int_code & 0x200))
537		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
538	/*
539	 * Check for low-address protection.  This needs to be treated
540	 * as a special case because the translation exception code
541	 * field is not guaranteed to contain valid data in this case.
542	 */
543	if (unlikely(!(trans_exc_code & 4))) {
544		do_low_address(regs);
545		return;
 
 
 
 
 
 
 
 
 
 
 
546	}
547	fault = do_exception(regs, VM_WRITE);
548	if (unlikely(fault))
549		do_fault_error(regs, fault);
550}
551NOKPROBE_SYMBOL(do_protection_exception);
552
553void do_dat_exception(struct pt_regs *regs)
554{
555	int access, fault;
556
557	access = VM_READ | VM_EXEC | VM_WRITE;
558	fault = do_exception(regs, access);
559	if (unlikely(fault))
560		do_fault_error(regs, fault);
561}
562NOKPROBE_SYMBOL(do_dat_exception);
563
564#ifdef CONFIG_PFAULT 
565/*
566 * 'pfault' pseudo page faults routines.
567 */
568static int pfault_disable;
569
570static int __init nopfault(char *str)
571{
572	pfault_disable = 1;
573	return 1;
574}
575
576__setup("nopfault", nopfault);
577
578struct pfault_refbk {
579	u16 refdiagc;
580	u16 reffcode;
581	u16 refdwlen;
582	u16 refversn;
583	u64 refgaddr;
584	u64 refselmk;
585	u64 refcmpmk;
586	u64 reserved;
587} __attribute__ ((packed, aligned(8)));
588
589int pfault_init(void)
590{
591	struct pfault_refbk refbk = {
592		.refdiagc = 0x258,
593		.reffcode = 0,
594		.refdwlen = 5,
595		.refversn = 2,
596		.refgaddr = __LC_LPP,
597		.refselmk = 1ULL << 48,
598		.refcmpmk = 1ULL << 48,
599		.reserved = __PF_RES_FIELD };
600        int rc;
601
602	if (pfault_disable)
603		return -1;
604	diag_stat_inc(DIAG_STAT_X258);
605	asm volatile(
606		"	diag	%1,%0,0x258\n"
607		"0:	j	2f\n"
608		"1:	la	%0,8\n"
609		"2:\n"
610		EX_TABLE(0b,1b)
611		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
612        return rc;
613}
614
615void pfault_fini(void)
616{
617	struct pfault_refbk refbk = {
618		.refdiagc = 0x258,
619		.reffcode = 1,
620		.refdwlen = 5,
621		.refversn = 2,
622	};
623
624	if (pfault_disable)
625		return;
626	diag_stat_inc(DIAG_STAT_X258);
627	asm volatile(
628		"	diag	%0,0,0x258\n"
629		"0:	nopr	%%r7\n"
630		EX_TABLE(0b,0b)
631		: : "a" (&refbk), "m" (refbk) : "cc");
632}
633
634static DEFINE_SPINLOCK(pfault_lock);
635static LIST_HEAD(pfault_list);
636
637#define PF_COMPLETE	0x0080
638
639/*
640 * The mechanism of our pfault code: if Linux is running as guest, runs a user
641 * space process and the user space process accesses a page that the host has
642 * paged out we get a pfault interrupt.
643 *
644 * This allows us, within the guest, to schedule a different process. Without
645 * this mechanism the host would have to suspend the whole virtual cpu until
646 * the page has been paged in.
647 *
648 * So when we get such an interrupt then we set the state of the current task
649 * to uninterruptible and also set the need_resched flag. Both happens within
650 * interrupt context(!). If we later on want to return to user space we
651 * recognize the need_resched flag and then call schedule().  It's not very
652 * obvious how this works...
653 *
654 * Of course we have a lot of additional fun with the completion interrupt (->
655 * host signals that a page of a process has been paged in and the process can
656 * continue to run). This interrupt can arrive on any cpu and, since we have
657 * virtual cpus, actually appear before the interrupt that signals that a page
658 * is missing.
659 */
660static void pfault_interrupt(struct ext_code ext_code,
661			     unsigned int param32, unsigned long param64)
662{
663	struct task_struct *tsk;
664	__u16 subcode;
665	pid_t pid;
666
667	/*
668	 * Get the external interruption subcode & pfault initial/completion
669	 * signal bit. VM stores this in the 'cpu address' field associated
670	 * with the external interrupt.
 
671	 */
672	subcode = ext_code.subcode;
673	if ((subcode & 0xff00) != __SUBCODE_MASK)
674		return;
675	inc_irq_stat(IRQEXT_PFL);
676	/* Get the token (= pid of the affected task). */
677	pid = param64 & LPP_PFAULT_PID_MASK;
678	rcu_read_lock();
679	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
680	if (tsk)
681		get_task_struct(tsk);
682	rcu_read_unlock();
683	if (!tsk)
684		return;
685	spin_lock(&pfault_lock);
686	if (subcode & PF_COMPLETE) {
687		/* signal bit is set -> a page has been swapped in by VM */
688		if (tsk->thread.pfault_wait == 1) {
689			/* Initial interrupt was faster than the completion
690			 * interrupt. pfault_wait is valid. Set pfault_wait
691			 * back to zero and wake up the process. This can
692			 * safely be done because the task is still sleeping
693			 * and can't produce new pfaults. */
694			tsk->thread.pfault_wait = 0;
695			list_del(&tsk->thread.list);
696			wake_up_process(tsk);
697			put_task_struct(tsk);
698		} else {
699			/* Completion interrupt was faster than initial
700			 * interrupt. Set pfault_wait to -1 so the initial
701			 * interrupt doesn't put the task to sleep.
702			 * If the task is not running, ignore the completion
703			 * interrupt since it must be a leftover of a PFAULT
704			 * CANCEL operation which didn't remove all pending
705			 * completion interrupts. */
706			if (tsk->state == TASK_RUNNING)
707				tsk->thread.pfault_wait = -1;
708		}
709	} else {
710		/* signal bit not set -> a real page is missing. */
711		if (WARN_ON_ONCE(tsk != current))
712			goto out;
713		if (tsk->thread.pfault_wait == 1) {
714			/* Already on the list with a reference: put to sleep */
715			goto block;
716		} else if (tsk->thread.pfault_wait == -1) {
717			/* Completion interrupt was faster than the initial
718			 * interrupt (pfault_wait == -1). Set pfault_wait
719			 * back to zero and exit. */
720			tsk->thread.pfault_wait = 0;
721		} else {
722			/* Initial interrupt arrived before completion
723			 * interrupt. Let the task sleep.
724			 * An extra task reference is needed since a different
725			 * cpu may set the task state to TASK_RUNNING again
726			 * before the scheduler is reached. */
727			get_task_struct(tsk);
728			tsk->thread.pfault_wait = 1;
729			list_add(&tsk->thread.list, &pfault_list);
730block:
731			/* Since this must be a userspace fault, there
732			 * is no kernel task state to trample. Rely on the
733			 * return to userspace schedule() to block. */
734			__set_current_state(TASK_UNINTERRUPTIBLE);
735			set_tsk_need_resched(tsk);
736			set_preempt_need_resched();
737		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738	}
739out:
740	spin_unlock(&pfault_lock);
741	put_task_struct(tsk);
742}
 
743
744static int pfault_cpu_dead(unsigned int cpu)
745{
746	struct thread_struct *thread, *next;
747	struct task_struct *tsk;
748
749	spin_lock_irq(&pfault_lock);
750	list_for_each_entry_safe(thread, next, &pfault_list, list) {
751		thread->pfault_wait = 0;
752		list_del(&thread->list);
753		tsk = container_of(thread, struct task_struct, thread);
754		wake_up_process(tsk);
755		put_task_struct(tsk);
756	}
757	spin_unlock_irq(&pfault_lock);
758	return 0;
759}
 
760
761static int __init pfault_irq_init(void)
762{
763	int rc;
 
764
765	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
766	if (rc)
767		goto out_extint;
768	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
769	if (rc)
770		goto out_pfault;
771	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
772	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
773				  NULL, pfault_cpu_dead);
774	return 0;
775
776out_pfault:
777	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
778out_extint:
779	pfault_disable = 1;
780	return rc;
 
781}
782early_initcall(pfault_irq_init);
783
784#endif /* CONFIG_PFAULT */