Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 *  S390 version
  4 *    Copyright IBM Corp. 1999
  5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  6 *		 Ulrich Weigand (uweigand@de.ibm.com)
  7 *
  8 *  Derived from "arch/i386/mm/fault.c"
  9 *    Copyright (C) 1995  Linus Torvalds
 10 */
 11
 12#include <linux/kernel_stat.h>
 13#include <linux/mmu_context.h>
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 17#include <linux/sched/debug.h>
 18#include <linux/jump_label.h>
 19#include <linux/kernel.h>
 20#include <linux/errno.h>
 21#include <linux/string.h>
 22#include <linux/types.h>
 23#include <linux/ptrace.h>
 24#include <linux/mman.h>
 25#include <linux/mm.h>
 26#include <linux/compat.h>
 27#include <linux/smp.h>
 28#include <linux/kdebug.h>
 29#include <linux/init.h>
 30#include <linux/console.h>
 31#include <linux/extable.h>
 32#include <linux/hardirq.h>
 33#include <linux/kprobes.h>
 34#include <linux/uaccess.h>
 35#include <linux/hugetlb.h>
 36#include <linux/kfence.h>
 37#include <asm/asm-extable.h>
 38#include <asm/asm-offsets.h>
 39#include <asm/ptrace.h>
 40#include <asm/fault.h>
 41#include <asm/diag.h>
 42#include <asm/gmap.h>
 43#include <asm/irq.h>
 
 44#include <asm/facility.h>
 45#include <asm/uv.h>
 46#include "../kernel/entry.h"
 47
 48enum fault_type {
 49	KERNEL_FAULT,
 50	USER_FAULT,
 51	GMAP_FAULT,
 52};
 
 
 
 
 
 
 
 
 53
 54static DEFINE_STATIC_KEY_FALSE(have_store_indication);
 55
 56static int __init fault_init(void)
 57{
 58	if (test_facility(75))
 59		static_branch_enable(&have_store_indication);
 60	return 0;
 61}
 62early_initcall(fault_init);
 63
 64/*
 65 * Find out which address space caused the exception.
 66 */
 67static enum fault_type get_fault_type(struct pt_regs *regs)
 68{
 69	union teid teid = { .val = regs->int_parm_long };
 70
 71	if (likely(teid.as == PSW_BITS_AS_PRIMARY)) {
 72		if (user_mode(regs))
 73			return USER_FAULT;
 74		if (!IS_ENABLED(CONFIG_PGSTE))
 75			return KERNEL_FAULT;
 76		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
 77			return GMAP_FAULT;
 78		return KERNEL_FAULT;
 79	}
 80	if (teid.as == PSW_BITS_AS_SECONDARY)
 81		return USER_FAULT;
 82	/* Access register mode, not used in the kernel */
 83	if (teid.as == PSW_BITS_AS_ACCREG)
 84		return USER_FAULT;
 85	/* Home space -> access via kernel ASCE */
 86	return KERNEL_FAULT;
 87}
 88
 89static unsigned long get_fault_address(struct pt_regs *regs)
 90{
 91	union teid teid = { .val = regs->int_parm_long };
 92
 93	return teid.addr * PAGE_SIZE;
 94}
 95
 96static __always_inline bool fault_is_write(struct pt_regs *regs)
 
 
 
 
 97{
 98	union teid teid = { .val = regs->int_parm_long };
 99
100	if (static_branch_likely(&have_store_indication))
101		return teid.fsi == TEID_FSI_STORE;
102	return false;
 
 
 
 
 
 
 
 
 
 
103}
104
105static void dump_pagetable(unsigned long asce, unsigned long address)
 
 
 
 
106{
107	unsigned long entry, *table = __va(asce & _ASCE_ORIGIN);
108
109	pr_alert("AS:%016lx ", asce);
110	switch (asce & _ASCE_TYPE_MASK) {
111	case _ASCE_TYPE_REGION1:
112		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113		if (get_kernel_nofault(entry, table))
114			goto bad;
115		pr_cont("R1:%016lx ", entry);
116		if (entry & _REGION_ENTRY_INVALID)
117			goto out;
118		table = __va(entry & _REGION_ENTRY_ORIGIN);
119		fallthrough;
120	case _ASCE_TYPE_REGION2:
121		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122		if (get_kernel_nofault(entry, table))
123			goto bad;
124		pr_cont("R2:%016lx ", entry);
125		if (entry & _REGION_ENTRY_INVALID)
126			goto out;
127		table = __va(entry & _REGION_ENTRY_ORIGIN);
128		fallthrough;
129	case _ASCE_TYPE_REGION3:
130		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131		if (get_kernel_nofault(entry, table))
132			goto bad;
133		pr_cont("R3:%016lx ", entry);
134		if (entry & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135			goto out;
136		table = __va(entry & _REGION_ENTRY_ORIGIN);
137		fallthrough;
138	case _ASCE_TYPE_SEGMENT:
139		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140		if (get_kernel_nofault(entry, table))
141			goto bad;
142		pr_cont("S:%016lx ", entry);
143		if (entry & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144			goto out;
145		table = __va(entry & _SEGMENT_ENTRY_ORIGIN);
146	}
147	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148	if (get_kernel_nofault(entry, table))
149		goto bad;
150	pr_cont("P:%016lx ", entry);
151out:
152	pr_cont("\n");
153	return;
154bad:
155	pr_cont("BAD\n");
156}
157
158static void dump_fault_info(struct pt_regs *regs)
159{
160	union teid teid = { .val = regs->int_parm_long };
161	unsigned long asce;
162
163	pr_alert("Failing address: %016lx TEID: %016lx\n",
164		 get_fault_address(regs), teid.val);
165	pr_alert("Fault in ");
166	switch (teid.as) {
167	case PSW_BITS_AS_HOME:
168		pr_cont("home space ");
169		break;
170	case PSW_BITS_AS_SECONDARY:
171		pr_cont("secondary space ");
172		break;
173	case PSW_BITS_AS_ACCREG:
174		pr_cont("access register ");
175		break;
176	case PSW_BITS_AS_PRIMARY:
177		pr_cont("primary space ");
178		break;
179	}
180	pr_cont("mode while using ");
181	switch (get_fault_type(regs)) {
182	case USER_FAULT:
183		asce = S390_lowcore.user_asce.val;
184		pr_cont("user ");
185		break;
186	case GMAP_FAULT:
187		asce = ((struct gmap *)S390_lowcore.gmap)->asce;
188		pr_cont("gmap ");
189		break;
190	case KERNEL_FAULT:
191		asce = S390_lowcore.kernel_asce.val;
192		pr_cont("kernel ");
193		break;
194	default:
195		unreachable();
196	}
197	pr_cont("ASCE.\n");
198	dump_pagetable(asce, get_fault_address(regs));
199}
200
201int show_unhandled_signals = 1;
202
203void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
204{
205	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
206
207	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
208		return;
209	if (!unhandled_signal(current, signr))
210		return;
211	if (!__ratelimit(&rs))
212		return;
213	pr_alert("User process fault: interruption code %04x ilc:%d ",
214		 regs->int_code & 0xffff, regs->int_code >> 17);
215	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
216	pr_cont("\n");
217	if (is_mm_fault)
218		dump_fault_info(regs);
219	show_regs(regs);
220}
221
222static void do_sigsegv(struct pt_regs *regs, int si_code)
 
 
 
 
223{
224	report_user_fault(regs, SIGSEGV, 1);
225	force_sig_fault(SIGSEGV, si_code, (void __user *)get_fault_address(regs));
 
 
 
 
 
226}
227
228static void handle_fault_error_nolock(struct pt_regs *regs, int si_code)
229{
230	enum fault_type fault_type;
231	unsigned long address;
232	bool is_write;
233
234	if (user_mode(regs)) {
235		if (WARN_ON_ONCE(!si_code))
236			si_code = SEGV_MAPERR;
237		return do_sigsegv(regs, si_code);
238	}
239	if (fixup_exception(regs))
240		return;
241	fault_type = get_fault_type(regs);
242	if (fault_type == KERNEL_FAULT) {
243		address = get_fault_address(regs);
244		is_write = fault_is_write(regs);
245		if (kfence_handle_page_fault(address, is_write, regs))
246			return;
247	}
248	if (fault_type == KERNEL_FAULT)
249		pr_alert("Unable to handle kernel pointer dereference in virtual kernel address space\n");
 
 
 
 
 
 
 
250	else
251		pr_alert("Unable to handle kernel paging request in virtual user address space\n");
252	dump_fault_info(regs);
 
253	die(regs, "Oops");
 
254}
255
256static void handle_fault_error(struct pt_regs *regs, int si_code)
257{
258	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
259
260	mmap_read_unlock(mm);
261	handle_fault_error_nolock(regs, si_code);
262}
263
264static void do_sigbus(struct pt_regs *regs)
265{
266	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)get_fault_address(regs));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267}
268
269/*
270 * This routine handles page faults.  It determines the address,
271 * and the problem, and then passes it off to one of the appropriate
272 * routines.
273 *
274 * interruption code (int_code):
275 *   04       Protection	   ->  Write-Protection  (suppression)
276 *   10       Segment translation  ->  Not present	 (nullification)
277 *   11       Page translation	   ->  Not present	 (nullification)
278 *   3b       Region third trans.  ->  Not present	 (nullification)
279 */
280static void do_exception(struct pt_regs *regs, int access)
281{
 
 
282	struct vm_area_struct *vma;
 
283	unsigned long address;
284	struct mm_struct *mm;
285	enum fault_type type;
286	unsigned int flags;
287	struct gmap *gmap;
288	vm_fault_t fault;
289	bool is_write;
 
 
 
 
 
290
291	/*
292	 * The instruction that caused the program check has
293	 * been nullified. Don't signal single step via SIGTRAP.
 
294	 */
295	clear_thread_flag(TIF_PER_TRAP);
296	if (kprobe_page_fault(regs, 14))
297		return;
298	mm = current->mm;
299	address = get_fault_address(regs);
300	is_write = fault_is_write(regs);
301	type = get_fault_type(regs);
302	switch (type) {
303	case KERNEL_FAULT:
304		return handle_fault_error_nolock(regs, 0);
305	case USER_FAULT:
306	case GMAP_FAULT:
307		if (faulthandler_disabled() || !mm)
308			return handle_fault_error_nolock(regs, 0);
309		break;
310	}
311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
312	flags = FAULT_FLAG_DEFAULT;
313	if (user_mode(regs))
314		flags |= FAULT_FLAG_USER;
315	if (is_write)
316		access = VM_WRITE;
317	if (access == VM_WRITE)
318		flags |= FAULT_FLAG_WRITE;
319	if (!(flags & FAULT_FLAG_USER))
320		goto lock_mmap;
321	vma = lock_vma_under_rcu(mm, address);
322	if (!vma)
323		goto lock_mmap;
324	if (!(vma->vm_flags & access)) {
325		vma_end_read(vma);
326		goto lock_mmap;
327	}
328	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
329	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
330		vma_end_read(vma);
331	if (!(fault & VM_FAULT_RETRY)) {
332		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
333		if (unlikely(fault & VM_FAULT_ERROR))
334			goto error;
335		return;
336	}
337	count_vm_vma_lock_event(VMA_LOCK_RETRY);
338	if (fault & VM_FAULT_MAJOR)
339		flags |= FAULT_FLAG_TRIED;
340
341	/* Quick path to respond to signals */
342	if (fault_signal_pending(fault, regs)) {
343		if (!user_mode(regs))
344			handle_fault_error_nolock(regs, 0);
345		return;
346	}
347lock_mmap:
348	mmap_read_lock(mm);
349	gmap = NULL;
350	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
351		gmap = (struct gmap *)S390_lowcore.gmap;
352		current->thread.gmap_addr = address;
353		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
354		current->thread.gmap_int_code = regs->int_code & 0xffff;
355		address = __gmap_translate(gmap, address);
356		if (address == -EFAULT)
357			return handle_fault_error(regs, SEGV_MAPERR);
358		if (gmap->pfault_enabled)
359			flags |= FAULT_FLAG_RETRY_NOWAIT;
360	}
 
 
361retry:
 
362	vma = find_vma(mm, address);
363	if (!vma)
364		return handle_fault_error(regs, SEGV_MAPERR);
 
365	if (unlikely(vma->vm_start > address)) {
366		if (!(vma->vm_flags & VM_GROWSDOWN))
367			return handle_fault_error(regs, SEGV_MAPERR);
368		vma = expand_stack(mm, address);
369		if (!vma)
370			return handle_fault_error_nolock(regs, SEGV_MAPERR);
371	}
 
 
 
 
 
 
372	if (unlikely(!(vma->vm_flags & access)))
373		return handle_fault_error(regs, SEGV_ACCERR);
374	fault = handle_mm_fault(vma, address, flags, regs);
375	if (fault_signal_pending(fault, regs)) {
376		if (flags & FAULT_FLAG_RETRY_NOWAIT)
377			mmap_read_unlock(mm);
378		if (!user_mode(regs))
379			handle_fault_error_nolock(regs, 0);
380		return;
381	}
382	/* The fault is fully completed (including releasing mmap lock) */
383	if (fault & VM_FAULT_COMPLETED) {
384		if (gmap) {
385			mmap_read_lock(mm);
386			goto gmap;
387		}
388		return;
389	}
390	if (unlikely(fault & VM_FAULT_ERROR)) {
391		mmap_read_unlock(mm);
392		goto error;
393	}
394	if (fault & VM_FAULT_RETRY) {
395		if (IS_ENABLED(CONFIG_PGSTE) && gmap &&	(flags & FAULT_FLAG_RETRY_NOWAIT)) {
396			/*
397			 * FAULT_FLAG_RETRY_NOWAIT has been set,
398			 * mmap_lock has not been released
399			 */
400			current->thread.gmap_pfault = 1;
401			return handle_fault_error(regs, 0);
402		}
403		flags &= ~FAULT_FLAG_RETRY_NOWAIT;
404		flags |= FAULT_FLAG_TRIED;
405		mmap_read_lock(mm);
406		goto retry;
407	}
408gmap:
409	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
410		address =  __gmap_link(gmap, current->thread.gmap_addr,
411				       address);
412		if (address == -EFAULT)
413			return handle_fault_error(regs, SEGV_MAPERR);
414		if (address == -ENOMEM) {
415			fault = VM_FAULT_OOM;
416			mmap_read_unlock(mm);
417			goto error;
418		}
419	}
420	mmap_read_unlock(mm);
421	return;
422error:
423	if (fault & VM_FAULT_OOM) {
424		if (!user_mode(regs))
425			handle_fault_error_nolock(regs, 0);
426		else
427			pagefault_out_of_memory();
428	} else if (fault & VM_FAULT_SIGSEGV) {
429		if (!user_mode(regs))
430			handle_fault_error_nolock(regs, 0);
431		else
432			do_sigsegv(regs, SEGV_MAPERR);
433	} else if (fault & VM_FAULT_SIGBUS) {
434		if (!user_mode(regs))
435			handle_fault_error_nolock(regs, 0);
436		else
437			do_sigbus(regs);
438	} else {
439		BUG();
440	}
441}
442
443void do_protection_exception(struct pt_regs *regs)
444{
445	union teid teid = { .val = regs->int_parm_long };
 
446
447	/*
448	 * Protection exceptions are suppressing, decrement psw address.
449	 * The exception to this rule are aborted transactions, for these
450	 * the PSW already points to the correct location.
451	 */
452	if (!(regs->int_code & 0x200))
453		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
454	/*
455	 * Check for low-address protection.  This needs to be treated
456	 * as a special case because the translation exception code
457	 * field is not guaranteed to contain valid data in this case.
458	 */
459	if (unlikely(!teid.b61)) {
460		if (user_mode(regs)) {
461			/* Low-address protection in user mode: cannot happen */
462			die(regs, "Low-address protection");
463		}
464		/*
465		 * Low-address protection in kernel mode means
466		 * NULL pointer write access in kernel mode.
467		 */
468		return handle_fault_error_nolock(regs, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469	}
470	if (unlikely(MACHINE_HAS_NX && teid.b56)) {
471		regs->int_parm_long = (teid.addr * PAGE_SIZE) | (regs->psw.addr & PAGE_MASK);
472		return handle_fault_error_nolock(regs, SEGV_ACCERR);
 
 
473	}
474	do_exception(regs, VM_WRITE);
 
 
475}
476NOKPROBE_SYMBOL(do_protection_exception);
477
478void do_dat_exception(struct pt_regs *regs)
479{
480	do_exception(regs, VM_ACCESS_FLAGS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481}
482NOKPROBE_SYMBOL(do_dat_exception);
483
484#if IS_ENABLED(CONFIG_PGSTE)
 
 
 
 
485
486void do_secure_storage_access(struct pt_regs *regs)
487{
488	union teid teid = { .val = regs->int_parm_long };
489	unsigned long addr = get_fault_address(regs);
490	struct vm_area_struct *vma;
491	struct mm_struct *mm;
492	struct page *page;
493	struct gmap *gmap;
494	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496	/*
497	 * Bit 61 indicates if the address is valid, if it is not the
498	 * kernel should be stopped or SIGSEGV should be sent to the
499	 * process. Bit 61 is not reliable without the misc UV feature,
500	 * therefore this needs to be checked too.
501	 */
502	if (uv_has_feature(BIT_UV_FEAT_MISC) && !teid.b61) {
503		/*
504		 * When this happens, userspace did something that it
505		 * was not supposed to do, e.g. branching into secure
506		 * memory. Trigger a segmentation fault.
507		 */
508		if (user_mode(regs)) {
509			send_sig(SIGSEGV, current, 0);
510			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
511		}
512		/*
513		 * The kernel should never run into this case and
514		 * there is no way out of this situation.
515		 */
516		panic("Unexpected PGM 0x3d with TEID bit 61=0");
517	}
518	switch (get_fault_type(regs)) {
519	case GMAP_FAULT:
520		mm = current->mm;
521		gmap = (struct gmap *)S390_lowcore.gmap;
522		mmap_read_lock(mm);
523		addr = __gmap_translate(gmap, addr);
524		mmap_read_unlock(mm);
525		if (IS_ERR_VALUE(addr))
526			return handle_fault_error_nolock(regs, SEGV_MAPERR);
527		fallthrough;
528	case USER_FAULT:
529		mm = current->mm;
530		mmap_read_lock(mm);
531		vma = find_vma(mm, addr);
532		if (!vma)
533			return handle_fault_error(regs, SEGV_MAPERR);
534		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
535		if (IS_ERR_OR_NULL(page)) {
536			mmap_read_unlock(mm);
537			break;
 
538		}
539		if (arch_make_page_accessible(page))
540			send_sig(SIGSEGV, current, 0);
541		put_page(page);
542		mmap_read_unlock(mm);
543		break;
544	case KERNEL_FAULT:
545		page = phys_to_page(addr);
546		if (unlikely(!try_get_page(page)))
547			break;
548		rc = arch_make_page_accessible(page);
549		put_page(page);
550		if (rc)
551			BUG();
552		break;
553	default:
554		unreachable();
555	}
 
556}
557NOKPROBE_SYMBOL(do_secure_storage_access);
558
559void do_non_secure_storage_access(struct pt_regs *regs)
560{
561	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
562	unsigned long gaddr = get_fault_address(regs);
563
564	if (WARN_ON_ONCE(get_fault_type(regs) != GMAP_FAULT))
565		return handle_fault_error_nolock(regs, SEGV_MAPERR);
566	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
567		send_sig(SIGSEGV, current, 0);
568}
569NOKPROBE_SYMBOL(do_non_secure_storage_access);
570
571void do_secure_storage_violation(struct pt_regs *regs)
572{
573	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
574	unsigned long gaddr = get_fault_address(regs);
 
 
 
 
 
575
576	/*
577	 * If the VM has been rebooted, its address space might still contain
578	 * secure pages from the previous boot.
579	 * Clear the page so it can be reused.
580	 */
581	if (!gmap_destroy_page(gmap, gaddr))
582		return;
583	/*
584	 * Either KVM messed up the secure guest mapping or the same
585	 * page is mapped into multiple secure guests.
586	 *
587	 * This exception is only triggered when a guest 2 is running
588	 * and can therefore never occur in kernel context.
589	 */
590	pr_warn_ratelimited("Secure storage violation in task: %s, pid %d\n",
591			    current->comm, current->pid);
592	send_sig(SIGSEGV, current, 0);
593}
 
594
595#endif /* CONFIG_PGSTE */
v3.5.6
 
  1/*
  2 *  arch/s390/mm/fault.c
  3 *
  4 *  S390 version
  5 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
  7 *               Ulrich Weigand (uweigand@de.ibm.com)
  8 *
  9 *  Derived from "arch/i386/mm/fault.c"
 10 *    Copyright (C) 1995  Linus Torvalds
 11 */
 12
 13#include <linux/kernel_stat.h>
 
 14#include <linux/perf_event.h>
 15#include <linux/signal.h>
 16#include <linux/sched.h>
 
 
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/ptrace.h>
 22#include <linux/mman.h>
 23#include <linux/mm.h>
 24#include <linux/compat.h>
 25#include <linux/smp.h>
 26#include <linux/kdebug.h>
 27#include <linux/init.h>
 28#include <linux/console.h>
 29#include <linux/module.h>
 30#include <linux/hardirq.h>
 31#include <linux/kprobes.h>
 32#include <linux/uaccess.h>
 33#include <linux/hugetlb.h>
 
 
 34#include <asm/asm-offsets.h>
 35#include <asm/pgtable.h>
 
 
 
 36#include <asm/irq.h>
 37#include <asm/mmu_context.h>
 38#include <asm/facility.h>
 
 39#include "../kernel/entry.h"
 40
 41#ifndef CONFIG_64BIT
 42#define __FAIL_ADDR_MASK 0x7ffff000
 43#define __SUBCODE_MASK 0x0200
 44#define __PF_RES_FIELD 0ULL
 45#else /* CONFIG_64BIT */
 46#define __FAIL_ADDR_MASK -4096L
 47#define __SUBCODE_MASK 0x0600
 48#define __PF_RES_FIELD 0x8000000000000000ULL
 49#endif /* CONFIG_64BIT */
 50
 51#define VM_FAULT_BADCONTEXT	0x010000
 52#define VM_FAULT_BADMAP		0x020000
 53#define VM_FAULT_BADACCESS	0x040000
 54
 55static unsigned long store_indication;
 56
 57void fault_init(void)
 58{
 59	if (test_facility(2) && test_facility(75))
 60		store_indication = 0xc00;
 
 61}
 
 62
 63static inline int notify_page_fault(struct pt_regs *regs)
 
 
 
 64{
 65	int ret = 0;
 66
 67	/* kprobe_running() needs smp_processor_id() */
 68	if (kprobes_built_in() && !user_mode(regs)) {
 69		preempt_disable();
 70		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 71			ret = 1;
 72		preempt_enable();
 
 
 73	}
 74	return ret;
 
 
 
 
 
 
 75}
 76
 
 
 
 
 
 
 77
 78/*
 79 * Unlock any spinlocks which will prevent us from getting the
 80 * message out.
 81 */
 82void bust_spinlocks(int yes)
 83{
 84	if (yes) {
 85		oops_in_progress = 1;
 86	} else {
 87		int loglevel_save = console_loglevel;
 88		console_unblank();
 89		oops_in_progress = 0;
 90		/*
 91		 * OK, the message is on the console.  Now we call printk()
 92		 * without oops_in_progress set so that printk will give klogd
 93		 * a poke.  Hold onto your hats...
 94		 */
 95		console_loglevel = 15;
 96		printk(" ");
 97		console_loglevel = loglevel_save;
 98	}
 99}
100
101/*
102 * Returns the address space associated with the fault.
103 * Returns 0 for kernel space and 1 for user space.
104 */
105static inline int user_space_fault(unsigned long trans_exc_code)
106{
107	/*
108	 * The lowest two bits of the translation exception
109	 * identification indicate which paging table was used.
110	 */
111	trans_exc_code &= 3;
112	if (trans_exc_code == 2)
113		/* Access via secondary space, set_fs setting decides */
114		return current->thread.mm_segment.ar4;
115	if (user_mode == HOME_SPACE_MODE)
116		/* User space if the access has been done via home space. */
117		return trans_exc_code == 3;
118	/*
119	 * If the user space is not the home space the kernel runs in home
120	 * space. Access via secondary space has already been covered,
121	 * access via primary space or access register is from user space
122	 * and access via home space is from the kernel.
123	 */
124	return trans_exc_code != 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125}
126
127static inline void report_user_fault(struct pt_regs *regs, long signr)
 
 
128{
 
 
129	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
130		return;
131	if (!unhandled_signal(current, signr))
132		return;
133	if (!printk_ratelimit())
134		return;
135	printk(KERN_ALERT "User process fault: interruption code 0x%X ",
136	       regs->int_code);
137	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
138	printk(KERN_CONT "\n");
139	printk(KERN_ALERT "failing address: %lX\n",
140	       regs->int_parm_long & __FAIL_ADDR_MASK);
141	show_regs(regs);
142}
143
144/*
145 * Send SIGSEGV to task.  This is an external routine
146 * to keep the stack usage of do_page_fault small.
147 */
148static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
149{
150	struct siginfo si;
151
152	report_user_fault(regs, SIGSEGV);
153	si.si_signo = SIGSEGV;
154	si.si_code = si_code;
155	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
156	force_sig_info(SIGSEGV, &si, current);
157}
158
159static noinline void do_no_context(struct pt_regs *regs)
160{
161	const struct exception_table_entry *fixup;
162	unsigned long address;
 
163
164	/* Are we prepared to handle this kernel fault?  */
165	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
166	if (fixup) {
167		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
 
 
168		return;
 
 
 
 
 
 
169	}
170
171	/*
172	 * Oops. The kernel tried to access some bad page. We'll have to
173	 * terminate things with extreme prejudice.
174	 */
175	address = regs->int_parm_long & __FAIL_ADDR_MASK;
176	if (!user_space_fault(regs->int_parm_long))
177		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
178		       " at virtual kernel address %p\n", (void *)address);
179	else
180		printk(KERN_ALERT "Unable to handle kernel paging request"
181		       " at virtual user address %p\n", (void *)address);
182
183	die(regs, "Oops");
184	do_exit(SIGKILL);
185}
186
187static noinline void do_low_address(struct pt_regs *regs)
188{
189	/* Low-address protection hit in kernel mode means
190	   NULL pointer write access in kernel mode.  */
191	if (regs->psw.mask & PSW_MASK_PSTATE) {
192		/* Low-address protection hit in user mode 'cannot happen'. */
193		die (regs, "Low-address protection");
194		do_exit(SIGKILL);
195	}
196
197	do_no_context(regs);
 
198}
199
200static noinline void do_sigbus(struct pt_regs *regs)
201{
202	struct task_struct *tsk = current;
203	struct siginfo si;
204
205	/*
206	 * Send a sigbus, regardless of whether we were in kernel
207	 * or user mode.
208	 */
209	si.si_signo = SIGBUS;
210	si.si_errno = 0;
211	si.si_code = BUS_ADRERR;
212	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
213	force_sig_info(SIGBUS, &si, tsk);
214}
215
216static noinline void do_fault_error(struct pt_regs *regs, int fault)
217{
218	int si_code;
219
220	switch (fault) {
221	case VM_FAULT_BADACCESS:
222	case VM_FAULT_BADMAP:
223		/* Bad memory access. Check if it is kernel or user space. */
224		if (regs->psw.mask & PSW_MASK_PSTATE) {
225			/* User mode accesses just cause a SIGSEGV */
226			si_code = (fault == VM_FAULT_BADMAP) ?
227				SEGV_MAPERR : SEGV_ACCERR;
228			do_sigsegv(regs, si_code);
229			return;
230		}
231	case VM_FAULT_BADCONTEXT:
232		do_no_context(regs);
233		break;
234	default: /* fault & VM_FAULT_ERROR */
235		if (fault & VM_FAULT_OOM) {
236			if (!(regs->psw.mask & PSW_MASK_PSTATE))
237				do_no_context(regs);
238			else
239				pagefault_out_of_memory();
240		} else if (fault & VM_FAULT_SIGBUS) {
241			/* Kernel mode? Handle exceptions or die */
242			if (!(regs->psw.mask & PSW_MASK_PSTATE))
243				do_no_context(regs);
244			else
245				do_sigbus(regs);
246		} else
247			BUG();
248		break;
249	}
250}
251
252/*
253 * This routine handles page faults.  It determines the address,
254 * and the problem, and then passes it off to one of the appropriate
255 * routines.
256 *
257 * interruption code (int_code):
258 *   04       Protection           ->  Write-Protection  (suprression)
259 *   10       Segment translation  ->  Not present       (nullification)
260 *   11       Page translation     ->  Not present       (nullification)
261 *   3b       Region third trans.  ->  Not present       (nullification)
262 */
263static inline int do_exception(struct pt_regs *regs, int access)
264{
265	struct task_struct *tsk;
266	struct mm_struct *mm;
267	struct vm_area_struct *vma;
268	unsigned long trans_exc_code;
269	unsigned long address;
 
 
270	unsigned int flags;
271	int fault;
272
273	if (notify_page_fault(regs))
274		return 0;
275
276	tsk = current;
277	mm = tsk->mm;
278	trans_exc_code = regs->int_parm_long;
279
280	/*
281	 * Verify that the fault happened in user space, that
282	 * we are not in an interrupt and that there is a 
283	 * user context.
284	 */
285	fault = VM_FAULT_BADCONTEXT;
286	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
287		goto out;
288
289	address = trans_exc_code & __FAIL_ADDR_MASK;
 
 
 
 
 
 
 
 
 
 
 
290	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
291	flags = FAULT_FLAG_ALLOW_RETRY;
292	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
 
 
 
 
293		flags |= FAULT_FLAG_WRITE;
294	down_read(&mm->mmap_sem);
295
296#ifdef CONFIG_PGSTE
297	if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
298		address = __gmap_fault(address,
299				     (struct gmap *) S390_lowcore.gmap);
300		if (address == -EFAULT) {
301			fault = VM_FAULT_BADMAP;
302			goto out_up;
303		}
304		if (address == -ENOMEM) {
305			fault = VM_FAULT_OOM;
306			goto out_up;
307		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308	}
309#endif
310
311retry:
312	fault = VM_FAULT_BADMAP;
313	vma = find_vma(mm, address);
314	if (!vma)
315		goto out_up;
316
317	if (unlikely(vma->vm_start > address)) {
318		if (!(vma->vm_flags & VM_GROWSDOWN))
319			goto out_up;
320		if (expand_stack(vma, address))
321			goto out_up;
 
322	}
323
324	/*
325	 * Ok, we have a good vm_area for this memory access, so
326	 * we can handle it..
327	 */
328	fault = VM_FAULT_BADACCESS;
329	if (unlikely(!(vma->vm_flags & access)))
330		goto out_up;
331
332	if (is_vm_hugetlb_page(vma))
333		address &= HPAGE_MASK;
334	/*
335	 * If for any reason at all we couldn't handle the fault,
336	 * make sure we exit gracefully rather than endlessly redo
337	 * the fault.
338	 */
339	fault = handle_mm_fault(mm, vma, address, flags);
340	if (unlikely(fault & VM_FAULT_ERROR))
341		goto out_up;
342
343	/*
344	 * Major/minor page fault accounting is only done on the
345	 * initial attempt. If we go through a retry, it is extremely
346	 * likely that the page will be found in page cache at that point.
347	 */
348	if (flags & FAULT_FLAG_ALLOW_RETRY) {
349		if (fault & VM_FAULT_MAJOR) {
350			tsk->maj_flt++;
351			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
352				      regs, address);
353		} else {
354			tsk->min_flt++;
355			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
356				      regs, address);
 
 
357		}
358		if (fault & VM_FAULT_RETRY) {
359			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
360			 * of starvation. */
361			flags &= ~FAULT_FLAG_ALLOW_RETRY;
362			down_read(&mm->mmap_sem);
363			goto retry;
 
 
 
 
 
 
 
 
 
364		}
365	}
366	/*
367	 * The instruction that caused the program check will
368	 * be repeated. Don't signal single step via SIGTRAP.
369	 */
370	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
371	fault = 0;
372out_up:
373	up_read(&mm->mmap_sem);
374out:
375	return fault;
 
 
 
 
 
 
 
 
 
 
 
376}
377
378void __kprobes do_protection_exception(struct pt_regs *regs)
379{
380	unsigned long trans_exc_code;
381	int fault;
382
383	trans_exc_code = regs->int_parm_long;
384	/* Protection exception is suppressing, decrement psw address. */
385	regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
 
 
 
 
386	/*
387	 * Check for low-address protection.  This needs to be treated
388	 * as a special case because the translation exception code
389	 * field is not guaranteed to contain valid data in this case.
390	 */
391	if (unlikely(!(trans_exc_code & 4))) {
392		do_low_address(regs);
393		return;
394	}
395	fault = do_exception(regs, VM_WRITE);
396	if (unlikely(fault))
397		do_fault_error(regs, fault);
398}
399
400void __kprobes do_dat_exception(struct pt_regs *regs)
401{
402	int access, fault;
403
404	access = VM_READ | VM_EXEC | VM_WRITE;
405	fault = do_exception(regs, access);
406	if (unlikely(fault))
407		do_fault_error(regs, fault);
408}
409
410#ifdef CONFIG_64BIT
411void __kprobes do_asce_exception(struct pt_regs *regs)
412{
413	struct mm_struct *mm = current->mm;
414	struct vm_area_struct *vma;
415	unsigned long trans_exc_code;
416
417	trans_exc_code = regs->int_parm_long;
418	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
419		goto no_context;
420
421	down_read(&mm->mmap_sem);
422	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
423	up_read(&mm->mmap_sem);
424
425	if (vma) {
426		update_mm(mm, current);
427		return;
428	}
429
430	/* User mode accesses just cause a SIGSEGV */
431	if (regs->psw.mask & PSW_MASK_PSTATE) {
432		do_sigsegv(regs, SEGV_MAPERR);
433		return;
434	}
435
436no_context:
437	do_no_context(regs);
438}
439#endif
440
441int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
442{
443	struct pt_regs regs;
444	int access, fault;
445
446	/* Emulate a uaccess fault from kernel mode. */
447	regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
448	if (!irqs_disabled())
449		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
450	regs.psw.addr = (unsigned long) __builtin_return_address(0);
451	regs.psw.addr |= PSW_ADDR_AMODE;
452	regs.int_code = pgm_int_code;
453	regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
454	access = write ? VM_WRITE : VM_READ;
455	fault = do_exception(&regs, access);
456	/*
457	 * Since the fault happened in kernel mode while performing a uaccess
458	 * all we need to do now is emulating a fixup in case "fault" is not
459	 * zero.
460	 * For the calling uaccess functions this results always in -EFAULT.
461	 */
462	return fault ? -EFAULT : 0;
463}
 
464
465#ifdef CONFIG_PFAULT 
466/*
467 * 'pfault' pseudo page faults routines.
468 */
469static int pfault_disable;
470
471static int __init nopfault(char *str)
472{
473	pfault_disable = 1;
474	return 1;
475}
476
477__setup("nopfault", nopfault);
478
479struct pfault_refbk {
480	u16 refdiagc;
481	u16 reffcode;
482	u16 refdwlen;
483	u16 refversn;
484	u64 refgaddr;
485	u64 refselmk;
486	u64 refcmpmk;
487	u64 reserved;
488} __attribute__ ((packed, aligned(8)));
489
490int pfault_init(void)
491{
492	struct pfault_refbk refbk = {
493		.refdiagc = 0x258,
494		.reffcode = 0,
495		.refdwlen = 5,
496		.refversn = 2,
497		.refgaddr = __LC_CURRENT_PID,
498		.refselmk = 1ULL << 48,
499		.refcmpmk = 1ULL << 48,
500		.reserved = __PF_RES_FIELD };
501        int rc;
502
503	if (pfault_disable)
504		return -1;
505	asm volatile(
506		"	diag	%1,%0,0x258\n"
507		"0:	j	2f\n"
508		"1:	la	%0,8\n"
509		"2:\n"
510		EX_TABLE(0b,1b)
511		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
512        return rc;
513}
514
515void pfault_fini(void)
516{
517	struct pfault_refbk refbk = {
518		.refdiagc = 0x258,
519		.reffcode = 1,
520		.refdwlen = 5,
521		.refversn = 2,
522	};
523
524	if (pfault_disable)
525		return;
526	asm volatile(
527		"	diag	%0,0,0x258\n"
528		"0:\n"
529		EX_TABLE(0b,0b)
530		: : "a" (&refbk), "m" (refbk) : "cc");
531}
532
533static DEFINE_SPINLOCK(pfault_lock);
534static LIST_HEAD(pfault_list);
535
536static void pfault_interrupt(struct ext_code ext_code,
537			     unsigned int param32, unsigned long param64)
538{
539	struct task_struct *tsk;
540	__u16 subcode;
541	pid_t pid;
542
543	/*
544	 * Get the external interruption subcode & pfault
545	 * initial/completion signal bit. VM stores this 
546	 * in the 'cpu address' field associated with the
547         * external interrupt. 
548	 */
549	subcode = ext_code.subcode;
550	if ((subcode & 0xff00) != __SUBCODE_MASK)
551		return;
552	kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
553	/* Get the token (= pid of the affected task). */
554	pid = sizeof(void *) == 4 ? param32 : param64;
555	rcu_read_lock();
556	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
557	if (tsk)
558		get_task_struct(tsk);
559	rcu_read_unlock();
560	if (!tsk)
561		return;
562	spin_lock(&pfault_lock);
563	if (subcode & 0x0080) {
564		/* signal bit is set -> a page has been swapped in by VM */
565		if (tsk->thread.pfault_wait == 1) {
566			/* Initial interrupt was faster than the completion
567			 * interrupt. pfault_wait is valid. Set pfault_wait
568			 * back to zero and wake up the process. This can
569			 * safely be done because the task is still sleeping
570			 * and can't produce new pfaults. */
571			tsk->thread.pfault_wait = 0;
572			list_del(&tsk->thread.list);
573			wake_up_process(tsk);
574			put_task_struct(tsk);
575		} else {
576			/* Completion interrupt was faster than initial
577			 * interrupt. Set pfault_wait to -1 so the initial
578			 * interrupt doesn't put the task to sleep.
579			 * If the task is not running, ignore the completion
580			 * interrupt since it must be a leftover of a PFAULT
581			 * CANCEL operation which didn't remove all pending
582			 * completion interrupts. */
583			if (tsk->state == TASK_RUNNING)
584				tsk->thread.pfault_wait = -1;
585		}
586	} else {
587		/* signal bit not set -> a real page is missing. */
588		if (WARN_ON_ONCE(tsk != current))
589			goto out;
590		if (tsk->thread.pfault_wait == 1) {
591			/* Already on the list with a reference: put to sleep */
592			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
593			set_tsk_need_resched(tsk);
594		} else if (tsk->thread.pfault_wait == -1) {
595			/* Completion interrupt was faster than the initial
596			 * interrupt (pfault_wait == -1). Set pfault_wait
597			 * back to zero and exit. */
598			tsk->thread.pfault_wait = 0;
599		} else {
600			/* Initial interrupt arrived before completion
601			 * interrupt. Let the task sleep.
602			 * An extra task reference is needed since a different
603			 * cpu may set the task state to TASK_RUNNING again
604			 * before the scheduler is reached. */
605			get_task_struct(tsk);
606			tsk->thread.pfault_wait = 1;
607			list_add(&tsk->thread.list, &pfault_list);
608			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
609			set_tsk_need_resched(tsk);
610		}
 
 
 
 
 
611	}
612out:
613	spin_unlock(&pfault_lock);
614	put_task_struct(tsk);
615}
616
617static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
618				       unsigned long action, void *hcpu)
619{
620	struct thread_struct *thread, *next;
621	struct task_struct *tsk;
622
623	switch (action) {
624	case CPU_DEAD:
625	case CPU_DEAD_FROZEN:
626		spin_lock_irq(&pfault_lock);
627		list_for_each_entry_safe(thread, next, &pfault_list, list) {
628			thread->pfault_wait = 0;
629			list_del(&thread->list);
630			tsk = container_of(thread, struct task_struct, thread);
631			wake_up_process(tsk);
632			put_task_struct(tsk);
633		}
634		spin_unlock_irq(&pfault_lock);
 
 
 
 
 
 
 
 
 
 
 
 
635		break;
636	default:
637		break;
638	}
639	return NOTIFY_OK;
640}
 
641
642static int __init pfault_irq_init(void)
643{
644	int rc;
 
 
 
 
 
 
 
 
645
646	rc = register_external_interrupt(0x2603, pfault_interrupt);
647	if (rc)
648		goto out_extint;
649	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
650	if (rc)
651		goto out_pfault;
652	service_subclass_irq_register();
653	hotcpu_notifier(pfault_cpu_notify, 0);
654	return 0;
655
656out_pfault:
657	unregister_external_interrupt(0x2603, pfault_interrupt);
658out_extint:
659	pfault_disable = 1;
660	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
661}
662early_initcall(pfault_irq_init);
663
664#endif /* CONFIG_PFAULT */