Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50
  51#define CREATE_TRACE_POINTS
  52#include <trace/events/signal.h>
  53
  54#include <asm/param.h>
  55#include <linux/uaccess.h>
  56#include <asm/unistd.h>
  57#include <asm/siginfo.h>
  58#include <asm/cacheflush.h>
  59#include <asm/syscall.h>	/* for syscall_get_* */
  60
  61/*
  62 * SLAB caches for signal bits.
  63 */
  64
  65static struct kmem_cache *sigqueue_cachep;
  66
  67int print_fatal_signals __read_mostly;
  68
  69static void __user *sig_handler(struct task_struct *t, int sig)
  70{
  71	return t->sighand->action[sig - 1].sa.sa_handler;
  72}
  73
  74static inline bool sig_handler_ignored(void __user *handler, int sig)
  75{
  76	/* Is it explicitly or implicitly ignored? */
  77	return handler == SIG_IGN ||
  78	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  79}
  80
  81static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	void __user *handler;
  84
  85	handler = sig_handler(t, sig);
  86
  87	/* SIGKILL and SIGSTOP may not be sent to the global init */
  88	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  89		return true;
  90
  91	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  92	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  93		return true;
  94
  95	/* Only allow kernel generated signals to this kthread */
  96	if (unlikely((t->flags & PF_KTHREAD) &&
  97		     (handler == SIG_KTHREAD_KERNEL) && !force))
  98		return true;
  99
 100	return sig_handler_ignored(handler, sig);
 101}
 102
 103static bool sig_ignored(struct task_struct *t, int sig, bool force)
 104{
 105	/*
 106	 * Blocked signals are never ignored, since the
 107	 * signal handler may change by the time it is
 108	 * unblocked.
 109	 */
 110	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 111		return false;
 112
 113	/*
 114	 * Tracers may want to know about even ignored signal unless it
 115	 * is SIGKILL which can't be reported anyway but can be ignored
 116	 * by SIGNAL_UNKILLABLE task.
 117	 */
 118	if (t->ptrace && sig != SIGKILL)
 119		return false;
 120
 121	return sig_task_ignored(t, sig, force);
 122}
 123
 124/*
 125 * Re-calculate pending state from the set of locally pending
 126 * signals, globally pending signals, and blocked signals.
 127 */
 128static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 129{
 130	unsigned long ready;
 131	long i;
 132
 133	switch (_NSIG_WORDS) {
 134	default:
 135		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 136			ready |= signal->sig[i] &~ blocked->sig[i];
 137		break;
 138
 139	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 140		ready |= signal->sig[2] &~ blocked->sig[2];
 141		ready |= signal->sig[1] &~ blocked->sig[1];
 142		ready |= signal->sig[0] &~ blocked->sig[0];
 143		break;
 144
 145	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 146		ready |= signal->sig[0] &~ blocked->sig[0];
 147		break;
 148
 149	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 150	}
 151	return ready !=	0;
 152}
 153
 154#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 155
 156static bool recalc_sigpending_tsk(struct task_struct *t)
 157{
 158	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 159	    PENDING(&t->pending, &t->blocked) ||
 160	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 161	    cgroup_task_frozen(t)) {
 162		set_tsk_thread_flag(t, TIF_SIGPENDING);
 163		return true;
 164	}
 165
 166	/*
 167	 * We must never clear the flag in another thread, or in current
 168	 * when it's possible the current syscall is returning -ERESTART*.
 169	 * So we don't clear it here, and only callers who know they should do.
 170	 */
 171	return false;
 172}
 173
 174void recalc_sigpending(void)
 
 
 
 
 175{
 176	if (!recalc_sigpending_tsk(current) && !freezing(current))
 177		clear_thread_flag(TIF_SIGPENDING);
 178
 179}
 180EXPORT_SYMBOL(recalc_sigpending);
 181
 182void calculate_sigpending(void)
 183{
 184	/* Have any signals or users of TIF_SIGPENDING been delayed
 185	 * until after fork?
 186	 */
 187	spin_lock_irq(&current->sighand->siglock);
 188	set_tsk_thread_flag(current, TIF_SIGPENDING);
 189	recalc_sigpending();
 190	spin_unlock_irq(&current->sighand->siglock);
 191}
 192
 193/* Given the mask, find the first available signal that should be serviced. */
 194
 195#define SYNCHRONOUS_MASK \
 196	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 197	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 198
 199int next_signal(struct sigpending *pending, sigset_t *mask)
 200{
 201	unsigned long i, *s, *m, x;
 202	int sig = 0;
 203
 204	s = pending->signal.sig;
 205	m = mask->sig;
 206
 207	/*
 208	 * Handle the first word specially: it contains the
 209	 * synchronous signals that need to be dequeued first.
 210	 */
 211	x = *s &~ *m;
 212	if (x) {
 213		if (x & SYNCHRONOUS_MASK)
 214			x &= SYNCHRONOUS_MASK;
 215		sig = ffz(~x) + 1;
 216		return sig;
 217	}
 218
 219	switch (_NSIG_WORDS) {
 220	default:
 221		for (i = 1; i < _NSIG_WORDS; ++i) {
 222			x = *++s &~ *++m;
 223			if (!x)
 224				continue;
 225			sig = ffz(~x) + i*_NSIG_BPW + 1;
 226			break;
 227		}
 228		break;
 229
 230	case 2:
 231		x = s[1] &~ m[1];
 232		if (!x)
 233			break;
 234		sig = ffz(~x) + _NSIG_BPW + 1;
 235		break;
 236
 237	case 1:
 238		/* Nothing to do */
 239		break;
 240	}
 241
 242	return sig;
 243}
 244
 245static inline void print_dropped_signal(int sig)
 246{
 247	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 248
 249	if (!print_fatal_signals)
 250		return;
 251
 252	if (!__ratelimit(&ratelimit_state))
 253		return;
 254
 255	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 256				current->comm, current->pid, sig);
 257}
 258
 259/**
 260 * task_set_jobctl_pending - set jobctl pending bits
 261 * @task: target task
 262 * @mask: pending bits to set
 263 *
 264 * Clear @mask from @task->jobctl.  @mask must be subset of
 265 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 266 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 267 * cleared.  If @task is already being killed or exiting, this function
 268 * becomes noop.
 269 *
 270 * CONTEXT:
 271 * Must be called with @task->sighand->siglock held.
 272 *
 273 * RETURNS:
 274 * %true if @mask is set, %false if made noop because @task was dying.
 275 */
 276bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 277{
 278	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 279			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 280	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 281
 282	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 283		return false;
 284
 285	if (mask & JOBCTL_STOP_SIGMASK)
 286		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 287
 288	task->jobctl |= mask;
 289	return true;
 290}
 291
 292/**
 293 * task_clear_jobctl_trapping - clear jobctl trapping bit
 294 * @task: target task
 295 *
 296 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 297 * Clear it and wake up the ptracer.  Note that we don't need any further
 298 * locking.  @task->siglock guarantees that @task->parent points to the
 299 * ptracer.
 300 *
 301 * CONTEXT:
 302 * Must be called with @task->sighand->siglock held.
 303 */
 304void task_clear_jobctl_trapping(struct task_struct *task)
 305{
 306	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 307		task->jobctl &= ~JOBCTL_TRAPPING;
 308		smp_mb();	/* advised by wake_up_bit() */
 309		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 310	}
 311}
 312
 313/**
 314 * task_clear_jobctl_pending - clear jobctl pending bits
 315 * @task: target task
 316 * @mask: pending bits to clear
 317 *
 318 * Clear @mask from @task->jobctl.  @mask must be subset of
 319 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 320 * STOP bits are cleared together.
 321 *
 322 * If clearing of @mask leaves no stop or trap pending, this function calls
 323 * task_clear_jobctl_trapping().
 324 *
 325 * CONTEXT:
 326 * Must be called with @task->sighand->siglock held.
 327 */
 328void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 329{
 330	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 331
 332	if (mask & JOBCTL_STOP_PENDING)
 333		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 334
 335	task->jobctl &= ~mask;
 336
 337	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 338		task_clear_jobctl_trapping(task);
 339}
 340
 341/**
 342 * task_participate_group_stop - participate in a group stop
 343 * @task: task participating in a group stop
 344 *
 345 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 346 * Group stop states are cleared and the group stop count is consumed if
 347 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 348 * stop, the appropriate `SIGNAL_*` flags are set.
 349 *
 350 * CONTEXT:
 351 * Must be called with @task->sighand->siglock held.
 352 *
 353 * RETURNS:
 354 * %true if group stop completion should be notified to the parent, %false
 355 * otherwise.
 356 */
 357static bool task_participate_group_stop(struct task_struct *task)
 358{
 359	struct signal_struct *sig = task->signal;
 360	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 361
 362	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 363
 364	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 365
 366	if (!consume)
 367		return false;
 368
 369	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 370		sig->group_stop_count--;
 371
 372	/*
 373	 * Tell the caller to notify completion iff we are entering into a
 374	 * fresh group stop.  Read comment in do_signal_stop() for details.
 375	 */
 376	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 377		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 378		return true;
 379	}
 380	return false;
 381}
 382
 383void task_join_group_stop(struct task_struct *task)
 384{
 385	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 386	struct signal_struct *sig = current->signal;
 387
 388	if (sig->group_stop_count) {
 389		sig->group_stop_count++;
 390		mask |= JOBCTL_STOP_CONSUME;
 391	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 392		return;
 393
 394	/* Have the new thread join an on-going signal group stop */
 395	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 396}
 397
 398/*
 399 * allocate a new signal queue record
 400 * - this may be called without locks if and only if t == current, otherwise an
 401 *   appropriate lock must be held to stop the target task from exiting
 402 */
 403static struct sigqueue *
 404__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 405		 int override_rlimit, const unsigned int sigqueue_flags)
 406{
 407	struct sigqueue *q = NULL;
 408	struct ucounts *ucounts;
 409	long sigpending;
 410
 411	/*
 412	 * Protect access to @t credentials. This can go away when all
 413	 * callers hold rcu read lock.
 414	 *
 415	 * NOTE! A pending signal will hold on to the user refcount,
 416	 * and we get/put the refcount only when the sigpending count
 417	 * changes from/to zero.
 418	 */
 419	rcu_read_lock();
 420	ucounts = task_ucounts(t);
 421	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 422	rcu_read_unlock();
 423	if (!sigpending)
 424		return NULL;
 425
 426	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 427		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 428	} else {
 429		print_dropped_signal(sig);
 430	}
 431
 432	if (unlikely(q == NULL)) {
 433		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 434	} else {
 435		INIT_LIST_HEAD(&q->list);
 436		q->flags = sigqueue_flags;
 437		q->ucounts = ucounts;
 438	}
 
 439	return q;
 440}
 441
 442static void __sigqueue_free(struct sigqueue *q)
 443{
 444	if (q->flags & SIGQUEUE_PREALLOC)
 445		return;
 446	if (q->ucounts) {
 447		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 448		q->ucounts = NULL;
 449	}
 450	kmem_cache_free(sigqueue_cachep, q);
 451}
 452
 453void flush_sigqueue(struct sigpending *queue)
 454{
 455	struct sigqueue *q;
 456
 457	sigemptyset(&queue->signal);
 458	while (!list_empty(&queue->list)) {
 459		q = list_entry(queue->list.next, struct sigqueue , list);
 460		list_del_init(&q->list);
 461		__sigqueue_free(q);
 462	}
 463}
 464
 465/*
 466 * Flush all pending signals for this kthread.
 467 */
 468void flush_signals(struct task_struct *t)
 469{
 470	unsigned long flags;
 471
 472	spin_lock_irqsave(&t->sighand->siglock, flags);
 473	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 474	flush_sigqueue(&t->pending);
 475	flush_sigqueue(&t->signal->shared_pending);
 476	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 477}
 478EXPORT_SYMBOL(flush_signals);
 479
 480#ifdef CONFIG_POSIX_TIMERS
 481static void __flush_itimer_signals(struct sigpending *pending)
 482{
 483	sigset_t signal, retain;
 484	struct sigqueue *q, *n;
 485
 486	signal = pending->signal;
 487	sigemptyset(&retain);
 488
 489	list_for_each_entry_safe(q, n, &pending->list, list) {
 490		int sig = q->info.si_signo;
 491
 492		if (likely(q->info.si_code != SI_TIMER)) {
 493			sigaddset(&retain, sig);
 494		} else {
 495			sigdelset(&signal, sig);
 496			list_del_init(&q->list);
 497			__sigqueue_free(q);
 498		}
 499	}
 500
 501	sigorsets(&pending->signal, &signal, &retain);
 502}
 503
 504void flush_itimer_signals(void)
 505{
 506	struct task_struct *tsk = current;
 507	unsigned long flags;
 508
 509	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 510	__flush_itimer_signals(&tsk->pending);
 511	__flush_itimer_signals(&tsk->signal->shared_pending);
 512	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 513}
 514#endif
 515
 516void ignore_signals(struct task_struct *t)
 517{
 518	int i;
 519
 520	for (i = 0; i < _NSIG; ++i)
 521		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 522
 523	flush_signals(t);
 524}
 525
 526/*
 527 * Flush all handlers for a task.
 528 */
 529
 530void
 531flush_signal_handlers(struct task_struct *t, int force_default)
 532{
 533	int i;
 534	struct k_sigaction *ka = &t->sighand->action[0];
 535	for (i = _NSIG ; i != 0 ; i--) {
 536		if (force_default || ka->sa.sa_handler != SIG_IGN)
 537			ka->sa.sa_handler = SIG_DFL;
 538		ka->sa.sa_flags = 0;
 539#ifdef __ARCH_HAS_SA_RESTORER
 540		ka->sa.sa_restorer = NULL;
 541#endif
 542		sigemptyset(&ka->sa.sa_mask);
 543		ka++;
 544	}
 545}
 546
 547bool unhandled_signal(struct task_struct *tsk, int sig)
 548{
 549	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 550	if (is_global_init(tsk))
 551		return true;
 552
 553	if (handler != SIG_IGN && handler != SIG_DFL)
 554		return false;
 555
 556	/* If dying, we handle all new signals by ignoring them */
 557	if (fatal_signal_pending(tsk))
 558		return false;
 559
 560	/* if ptraced, let the tracer determine */
 561	return !tsk->ptrace;
 562}
 563
 564static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 565			   bool *resched_timer)
 566{
 567	struct sigqueue *q, *first = NULL;
 568
 569	/*
 570	 * Collect the siginfo appropriate to this signal.  Check if
 571	 * there is another siginfo for the same signal.
 572	*/
 573	list_for_each_entry(q, &list->list, list) {
 574		if (q->info.si_signo == sig) {
 575			if (first)
 576				goto still_pending;
 577			first = q;
 578		}
 579	}
 580
 581	sigdelset(&list->signal, sig);
 582
 583	if (first) {
 584still_pending:
 585		list_del_init(&first->list);
 586		copy_siginfo(info, &first->info);
 587
 588		*resched_timer =
 589			(first->flags & SIGQUEUE_PREALLOC) &&
 590			(info->si_code == SI_TIMER) &&
 591			(info->si_sys_private);
 592
 593		__sigqueue_free(first);
 594	} else {
 595		/*
 596		 * Ok, it wasn't in the queue.  This must be
 597		 * a fast-pathed signal or we must have been
 598		 * out of queue space.  So zero out the info.
 599		 */
 600		clear_siginfo(info);
 601		info->si_signo = sig;
 602		info->si_errno = 0;
 603		info->si_code = SI_USER;
 604		info->si_pid = 0;
 605		info->si_uid = 0;
 606	}
 607}
 608
 609static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 610			kernel_siginfo_t *info, bool *resched_timer)
 611{
 612	int sig = next_signal(pending, mask);
 613
 614	if (sig)
 615		collect_signal(sig, pending, info, resched_timer);
 616	return sig;
 617}
 618
 619/*
 620 * Dequeue a signal and return the element to the caller, which is
 621 * expected to free it.
 622 *
 623 * All callers have to hold the siglock.
 624 */
 625int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 626		   kernel_siginfo_t *info, enum pid_type *type)
 627{
 628	bool resched_timer = false;
 629	int signr;
 630
 631	/* We only dequeue private signals from ourselves, we don't let
 632	 * signalfd steal them
 633	 */
 634	*type = PIDTYPE_PID;
 635	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 636	if (!signr) {
 637		*type = PIDTYPE_TGID;
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 761	lockdep_assert_held(&t->sighand->siglock);
 762
 763	set_tsk_thread_flag(t, TIF_SIGPENDING);
 764
 765	/*
 766	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 767	 * case. We don't check t->state here because there is a race with it
 768	 * executing another processor and just now entering stopped state.
 769	 * By using wake_up_state, we ensure the process will wake up and
 770	 * handle its death signal.
 771	 */
 772	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 773		kick_process(t);
 774}
 775
 776/*
 777 * Remove signals in mask from the pending set and queue.
 778 * Returns 1 if any signals were found.
 779 *
 780 * All callers must be holding the siglock.
 781 */
 782static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 783{
 784	struct sigqueue *q, *n;
 785	sigset_t m;
 786
 787	sigandsets(&m, mask, &s->signal);
 788	if (sigisemptyset(&m))
 789		return;
 790
 791	sigandnsets(&s->signal, &s->signal, mask);
 792	list_for_each_entry_safe(q, n, &s->list, list) {
 793		if (sigismember(mask, q->info.si_signo)) {
 794			list_del_init(&q->list);
 795			__sigqueue_free(q);
 796		}
 797	}
 
 798}
 799
 800static inline int is_si_special(const struct kernel_siginfo *info)
 801{
 802	return info <= SEND_SIG_PRIV;
 803}
 804
 805static inline bool si_fromuser(const struct kernel_siginfo *info)
 806{
 807	return info == SEND_SIG_NOINFO ||
 808		(!is_si_special(info) && SI_FROMUSER(info));
 809}
 810
 811/*
 812 * called with RCU read lock from check_kill_permission()
 813 */
 814static bool kill_ok_by_cred(struct task_struct *t)
 815{
 816	const struct cred *cred = current_cred();
 817	const struct cred *tcred = __task_cred(t);
 818
 819	return uid_eq(cred->euid, tcred->suid) ||
 820	       uid_eq(cred->euid, tcred->uid) ||
 821	       uid_eq(cred->uid, tcred->suid) ||
 822	       uid_eq(cred->uid, tcred->uid) ||
 823	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 824}
 825
 826/*
 827 * Bad permissions for sending the signal
 828 * - the caller must hold the RCU read lock
 829 */
 830static int check_kill_permission(int sig, struct kernel_siginfo *info,
 831				 struct task_struct *t)
 832{
 833	struct pid *sid;
 834	int error;
 835
 836	if (!valid_signal(sig))
 837		return -EINVAL;
 838
 839	if (!si_fromuser(info))
 840		return 0;
 841
 842	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 843	if (error)
 844		return error;
 845
 846	if (!same_thread_group(current, t) &&
 847	    !kill_ok_by_cred(t)) {
 848		switch (sig) {
 849		case SIGCONT:
 850			sid = task_session(t);
 851			/*
 852			 * We don't return the error if sid == NULL. The
 853			 * task was unhashed, the caller must notice this.
 854			 */
 855			if (!sid || sid == task_session(current))
 856				break;
 857			fallthrough;
 858		default:
 859			return -EPERM;
 860		}
 861	}
 862
 863	return security_task_kill(t, info, sig, NULL);
 864}
 865
 866/**
 867 * ptrace_trap_notify - schedule trap to notify ptracer
 868 * @t: tracee wanting to notify tracer
 869 *
 870 * This function schedules sticky ptrace trap which is cleared on the next
 871 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 872 * ptracer.
 873 *
 874 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 875 * ptracer is listening for events, tracee is woken up so that it can
 876 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 877 * eventually taken without returning to userland after the existing traps
 878 * are finished by PTRACE_CONT.
 879 *
 880 * CONTEXT:
 881 * Must be called with @task->sighand->siglock held.
 882 */
 883static void ptrace_trap_notify(struct task_struct *t)
 884{
 885	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 886	lockdep_assert_held(&t->sighand->siglock);
 887
 888	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 889	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 890}
 891
 892/*
 893 * Handle magic process-wide effects of stop/continue signals. Unlike
 894 * the signal actions, these happen immediately at signal-generation
 895 * time regardless of blocking, ignoring, or handling.  This does the
 896 * actual continuing for SIGCONT, but not the actual stopping for stop
 897 * signals. The process stop is done as a signal action for SIG_DFL.
 898 *
 899 * Returns true if the signal should be actually delivered, otherwise
 900 * it should be dropped.
 901 */
 902static bool prepare_signal(int sig, struct task_struct *p, bool force)
 903{
 904	struct signal_struct *signal = p->signal;
 905	struct task_struct *t;
 906	sigset_t flush;
 907
 908	if (signal->flags & SIGNAL_GROUP_EXIT) {
 909		if (signal->core_state)
 910			return sig == SIGKILL;
 911		/*
 912		 * The process is in the middle of dying, drop the signal.
 913		 */
 914		return false;
 915	} else if (sig_kernel_stop(sig)) {
 916		/*
 917		 * This is a stop signal.  Remove SIGCONT from all queues.
 918		 */
 919		siginitset(&flush, sigmask(SIGCONT));
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t)
 922			flush_sigqueue_mask(&flush, &t->pending);
 923	} else if (sig == SIGCONT) {
 924		unsigned int why;
 925		/*
 926		 * Remove all stop signals from all queues, wake all threads.
 927		 */
 928		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 929		flush_sigqueue_mask(&flush, &signal->shared_pending);
 930		for_each_thread(p, t) {
 931			flush_sigqueue_mask(&flush, &t->pending);
 932			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 933			if (likely(!(t->ptrace & PT_SEIZED))) {
 934				t->jobctl &= ~JOBCTL_STOPPED;
 935				wake_up_state(t, __TASK_STOPPED);
 936			} else
 937				ptrace_trap_notify(t);
 938		}
 939
 940		/*
 941		 * Notify the parent with CLD_CONTINUED if we were stopped.
 942		 *
 943		 * If we were in the middle of a group stop, we pretend it
 944		 * was already finished, and then continued. Since SIGCHLD
 945		 * doesn't queue we report only CLD_STOPPED, as if the next
 946		 * CLD_CONTINUED was dropped.
 947		 */
 948		why = 0;
 949		if (signal->flags & SIGNAL_STOP_STOPPED)
 950			why |= SIGNAL_CLD_CONTINUED;
 951		else if (signal->group_stop_count)
 952			why |= SIGNAL_CLD_STOPPED;
 953
 954		if (why) {
 955			/*
 956			 * The first thread which returns from do_signal_stop()
 957			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 958			 * notify its parent. See get_signal().
 959			 */
 960			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 961			signal->group_stop_count = 0;
 962			signal->group_exit_code = 0;
 963		}
 964	}
 965
 966	return !sig_ignored(p, sig, force);
 967}
 968
 969/*
 970 * Test if P wants to take SIG.  After we've checked all threads with this,
 971 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 972 * blocking SIG were ruled out because they are not running and already
 973 * have pending signals.  Such threads will dequeue from the shared queue
 974 * as soon as they're available, so putting the signal on the shared queue
 975 * will be equivalent to sending it to one such thread.
 976 */
 977static inline bool wants_signal(int sig, struct task_struct *p)
 978{
 979	if (sigismember(&p->blocked, sig))
 980		return false;
 981
 982	if (p->flags & PF_EXITING)
 983		return false;
 984
 985	if (sig == SIGKILL)
 986		return true;
 987
 988	if (task_is_stopped_or_traced(p))
 989		return false;
 990
 991	return task_curr(p) || !task_sigpending(p);
 992}
 993
 994static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 995{
 996	struct signal_struct *signal = p->signal;
 997	struct task_struct *t;
 998
 999	/*
1000	 * Now find a thread we can wake up to take the signal off the queue.
1001	 *
1002	 * Try the suggested task first (may or may not be the main thread).
 
1003	 */
1004	if (wants_signal(sig, p))
1005		t = p;
1006	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007		/*
1008		 * There is just one thread and it does not need to be woken.
1009		 * It will dequeue unblocked signals before it runs again.
1010		 */
1011		return;
1012	else {
1013		/*
1014		 * Otherwise try to find a suitable thread.
1015		 */
1016		t = signal->curr_target;
1017		while (!wants_signal(sig, t)) {
1018			t = next_thread(t);
1019			if (t == signal->curr_target)
1020				/*
1021				 * No thread needs to be woken.
1022				 * Any eligible threads will see
1023				 * the signal in the queue soon.
1024				 */
1025				return;
1026		}
1027		signal->curr_target = t;
1028	}
1029
1030	/*
1031	 * Found a killable thread.  If the signal will be fatal,
1032	 * then start taking the whole group down immediately.
1033	 */
1034	if (sig_fatal(p, sig) &&
1035	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036	    !sigismember(&t->real_blocked, sig) &&
1037	    (sig == SIGKILL || !p->ptrace)) {
1038		/*
1039		 * This signal will be fatal to the whole group.
1040		 */
1041		if (!sig_kernel_coredump(sig)) {
1042			/*
1043			 * Start a group exit and wake everybody up.
1044			 * This way we don't have other threads
1045			 * running and doing things after a slower
1046			 * thread has the fatal signal pending.
1047			 */
1048			signal->flags = SIGNAL_GROUP_EXIT;
1049			signal->group_exit_code = sig;
1050			signal->group_stop_count = 0;
1051			__for_each_thread(signal, t) {
 
1052				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1053				sigaddset(&t->pending.signal, SIGKILL);
1054				signal_wake_up(t, 1);
1055			}
1056			return;
1057		}
1058	}
1059
1060	/*
1061	 * The signal is already in the shared-pending queue.
1062	 * Tell the chosen thread to wake up and dequeue it.
1063	 */
1064	signal_wake_up(t, sig == SIGKILL);
1065	return;
1066}
1067
1068static inline bool legacy_queue(struct sigpending *signals, int sig)
1069{
1070	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1071}
1072
1073static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1074				struct task_struct *t, enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075{
1076	struct sigpending *pending;
1077	struct sigqueue *q;
1078	int override_rlimit;
1079	int ret = 0, result;
1080
1081	lockdep_assert_held(&t->sighand->siglock);
1082
1083	result = TRACE_SIGNAL_IGNORED;
1084	if (!prepare_signal(sig, t, force))
 
1085		goto ret;
1086
1087	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1088	/*
1089	 * Short-circuit ignored signals and support queuing
1090	 * exactly one non-rt signal, so that we can get more
1091	 * detailed information about the cause of the signal.
1092	 */
1093	result = TRACE_SIGNAL_ALREADY_PENDING;
1094	if (legacy_queue(pending, sig))
1095		goto ret;
1096
1097	result = TRACE_SIGNAL_DELIVERED;
1098	/*
1099	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1100	 */
1101	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1102		goto out_set;
1103
1104	/*
1105	 * Real-time signals must be queued if sent by sigqueue, or
1106	 * some other real-time mechanism.  It is implementation
1107	 * defined whether kill() does so.  We attempt to do so, on
1108	 * the principle of least surprise, but since kill is not
1109	 * allowed to fail with EAGAIN when low on memory we just
1110	 * make sure at least one signal gets delivered and don't
1111	 * pass on the info struct.
1112	 */
1113	if (sig < SIGRTMIN)
1114		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1115	else
1116		override_rlimit = 0;
1117
1118	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1119
1120	if (q) {
1121		list_add_tail(&q->list, &pending->list);
1122		switch ((unsigned long) info) {
1123		case (unsigned long) SEND_SIG_NOINFO:
1124			clear_siginfo(&q->info);
1125			q->info.si_signo = sig;
1126			q->info.si_errno = 0;
1127			q->info.si_code = SI_USER;
1128			q->info.si_pid = task_tgid_nr_ns(current,
1129							task_active_pid_ns(t));
1130			rcu_read_lock();
1131			q->info.si_uid =
1132				from_kuid_munged(task_cred_xxx(t, user_ns),
1133						 current_uid());
1134			rcu_read_unlock();
1135			break;
1136		case (unsigned long) SEND_SIG_PRIV:
1137			clear_siginfo(&q->info);
1138			q->info.si_signo = sig;
1139			q->info.si_errno = 0;
1140			q->info.si_code = SI_KERNEL;
1141			q->info.si_pid = 0;
1142			q->info.si_uid = 0;
1143			break;
1144		default:
1145			copy_siginfo(&q->info, info);
 
 
1146			break;
1147		}
1148	} else if (!is_si_special(info) &&
1149		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1150		/*
1151		 * Queue overflow, abort.  We may abort if the
1152		 * signal was rt and sent by user using something
1153		 * other than kill().
1154		 */
1155		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1156		ret = -EAGAIN;
1157		goto ret;
1158	} else {
1159		/*
1160		 * This is a silent loss of information.  We still
1161		 * send the signal, but the *info bits are lost.
1162		 */
1163		result = TRACE_SIGNAL_LOSE_INFO;
1164	}
1165
1166out_set:
1167	signalfd_notify(t, sig);
1168	sigaddset(&pending->signal, sig);
1169
1170	/* Let multiprocess signals appear after on-going forks */
1171	if (type > PIDTYPE_TGID) {
1172		struct multiprocess_signals *delayed;
1173		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1174			sigset_t *signal = &delayed->signal;
1175			/* Can't queue both a stop and a continue signal */
1176			if (sig == SIGCONT)
1177				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1178			else if (sig_kernel_stop(sig))
1179				sigdelset(signal, SIGCONT);
1180			sigaddset(signal, sig);
 
 
 
 
 
1181		}
1182	}
1183
1184	complete_signal(sig, t, type);
 
 
 
1185ret:
1186	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1187	return ret;
1188}
1189
1190static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1191{
1192	bool ret = false;
1193	switch (siginfo_layout(info->si_signo, info->si_code)) {
1194	case SIL_KILL:
1195	case SIL_CHLD:
1196	case SIL_RT:
1197		ret = true;
1198		break;
1199	case SIL_TIMER:
1200	case SIL_POLL:
1201	case SIL_FAULT:
1202	case SIL_FAULT_TRAPNO:
1203	case SIL_FAULT_MCEERR:
1204	case SIL_FAULT_BNDERR:
1205	case SIL_FAULT_PKUERR:
1206	case SIL_FAULT_PERF_EVENT:
1207	case SIL_SYS:
1208		ret = false;
1209		break;
1210	}
1211	return ret;
1212}
1213
1214int send_signal_locked(int sig, struct kernel_siginfo *info,
1215		       struct task_struct *t, enum pid_type type)
1216{
1217	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1218	bool force = false;
1219
1220	if (info == SEND_SIG_NOINFO) {
1221		/* Force if sent from an ancestor pid namespace */
1222		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1223	} else if (info == SEND_SIG_PRIV) {
1224		/* Don't ignore kernel generated signals */
1225		force = true;
1226	} else if (has_si_pid_and_uid(info)) {
1227		/* SIGKILL and SIGSTOP is special or has ids */
1228		struct user_namespace *t_user_ns;
1229
1230		rcu_read_lock();
1231		t_user_ns = task_cred_xxx(t, user_ns);
1232		if (current_user_ns() != t_user_ns) {
1233			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1234			info->si_uid = from_kuid_munged(t_user_ns, uid);
1235		}
1236		rcu_read_unlock();
1237
1238		/* A kernel generated signal? */
1239		force = (info->si_code == SI_KERNEL);
 
 
1240
1241		/* From an ancestor pid namespace? */
1242		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1243			info->si_pid = 0;
1244			force = true;
1245		}
1246	}
1247	return __send_signal_locked(sig, info, t, type, force);
1248}
1249
1250static void print_fatal_signal(int signr)
1251{
1252	struct pt_regs *regs = task_pt_regs(current);
1253	struct file *exe_file;
1254
1255	exe_file = get_task_exe_file(current);
1256	if (exe_file) {
1257		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1258			exe_file, current->comm, signr);
1259		fput(exe_file);
1260	} else {
1261		pr_info("%s: potentially unexpected fatal signal %d.\n",
1262			current->comm, signr);
1263	}
1264
1265#if defined(__i386__) && !defined(__arch_um__)
1266	pr_info("code at %08lx: ", regs->ip);
1267	{
1268		int i;
1269		for (i = 0; i < 16; i++) {
1270			unsigned char insn;
1271
1272			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273				break;
1274			pr_cont("%02x ", insn);
1275		}
1276	}
1277	pr_cont("\n");
1278#endif
1279	preempt_disable();
1280	show_regs(regs);
1281	preempt_enable();
1282}
1283
1284static int __init setup_print_fatal_signals(char *str)
1285{
1286	get_option (&str, &print_fatal_signals);
1287
1288	return 1;
1289}
1290
1291__setup("print-fatal-signals=", setup_print_fatal_signals);
1292
1293int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1294			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1295{
1296	unsigned long flags;
1297	int ret = -ESRCH;
1298
1299	if (lock_task_sighand(p, &flags)) {
1300		ret = send_signal_locked(sig, info, p, type);
1301		unlock_task_sighand(p, &flags);
1302	}
1303
1304	return ret;
1305}
1306
1307enum sig_handler {
1308	HANDLER_CURRENT, /* If reachable use the current handler */
1309	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1310	HANDLER_EXIT,	 /* Only visible as the process exit code */
1311};
1312
1313/*
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316 *
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1320 *
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1323 */
1324static int
1325force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1326	enum sig_handler handler)
1327{
1328	unsigned long int flags;
1329	int ret, blocked, ignored;
1330	struct k_sigaction *action;
1331	int sig = info->si_signo;
1332
1333	spin_lock_irqsave(&t->sighand->siglock, flags);
1334	action = &t->sighand->action[sig-1];
1335	ignored = action->sa.sa_handler == SIG_IGN;
1336	blocked = sigismember(&t->blocked, sig);
1337	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1338		action->sa.sa_handler = SIG_DFL;
1339		if (handler == HANDLER_EXIT)
1340			action->sa.sa_flags |= SA_IMMUTABLE;
1341		if (blocked)
1342			sigdelset(&t->blocked, sig);
 
 
1343	}
1344	/*
1345	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1346	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1347	 */
1348	if (action->sa.sa_handler == SIG_DFL &&
1349	    (!t->ptrace || (handler == HANDLER_EXIT)))
1350		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1351	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1352	/* This can happen if the signal was already pending and blocked */
1353	if (!task_sigpending(t))
1354		signal_wake_up(t, 0);
1355	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1356
1357	return ret;
1358}
1359
1360int force_sig_info(struct kernel_siginfo *info)
1361{
1362	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1363}
1364
1365/*
1366 * Nuke all other threads in the group.
1367 */
1368int zap_other_threads(struct task_struct *p)
1369{
1370	struct task_struct *t;
1371	int count = 0;
1372
1373	p->signal->group_stop_count = 0;
1374
1375	for_other_threads(p, t) {
1376		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1377		/* Don't require de_thread to wait for the vhost_worker */
1378		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1379			count++;
1380
1381		/* Don't bother with already dead threads */
1382		if (t->exit_state)
1383			continue;
1384		sigaddset(&t->pending.signal, SIGKILL);
1385		signal_wake_up(t, 1);
1386	}
1387
1388	return count;
1389}
1390
1391struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1392					   unsigned long *flags)
1393{
1394	struct sighand_struct *sighand;
1395
1396	rcu_read_lock();
1397	for (;;) {
 
 
 
 
 
 
1398		sighand = rcu_dereference(tsk->sighand);
1399		if (unlikely(sighand == NULL))
 
 
1400			break;
1401
1402		/*
1403		 * This sighand can be already freed and even reused, but
1404		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1405		 * initializes ->siglock: this slab can't go away, it has
1406		 * the same object type, ->siglock can't be reinitialized.
1407		 *
1408		 * We need to ensure that tsk->sighand is still the same
1409		 * after we take the lock, we can race with de_thread() or
1410		 * __exit_signal(). In the latter case the next iteration
1411		 * must see ->sighand == NULL.
1412		 */
1413		spin_lock_irqsave(&sighand->siglock, *flags);
1414		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
 
1415			break;
1416		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1417	}
1418	rcu_read_unlock();
1419
1420	return sighand;
1421}
1422
1423#ifdef CONFIG_LOCKDEP
1424void lockdep_assert_task_sighand_held(struct task_struct *task)
1425{
1426	struct sighand_struct *sighand;
1427
1428	rcu_read_lock();
1429	sighand = rcu_dereference(task->sighand);
1430	if (sighand)
1431		lockdep_assert_held(&sighand->siglock);
1432	else
1433		WARN_ON_ONCE(1);
1434	rcu_read_unlock();
1435}
1436#endif
1437
1438/*
1439 * send signal info to all the members of a group
1440 */
1441int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442			struct task_struct *p, enum pid_type type)
1443{
1444	int ret;
1445
1446	rcu_read_lock();
1447	ret = check_kill_permission(sig, info, p);
1448	rcu_read_unlock();
1449
1450	if (!ret && sig)
1451		ret = do_send_sig_info(sig, info, p, type);
1452
1453	return ret;
1454}
1455
1456/*
1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458 * control characters do (^C, ^Z etc)
1459 * - the caller must hold at least a readlock on tasklist_lock
1460 */
1461int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462{
1463	struct task_struct *p = NULL;
1464	int ret = -ESRCH;
1465
 
 
1466	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1468		/*
1469		 * If group_send_sig_info() succeeds at least once ret
1470		 * becomes 0 and after that the code below has no effect.
1471		 * Otherwise we return the last err or -ESRCH if this
1472		 * process group is empty.
1473		 */
1474		if (ret)
1475			ret = err;
1476	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1477
1478	return ret;
1479}
1480
1481int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1482{
1483	int error = -ESRCH;
1484	struct task_struct *p;
1485
1486	for (;;) {
1487		rcu_read_lock();
1488		p = pid_task(pid, PIDTYPE_PID);
1489		if (p)
1490			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1491		rcu_read_unlock();
1492		if (likely(!p || error != -ESRCH))
1493			return error;
1494
1495		/*
1496		 * The task was unhashed in between, try again.  If it
1497		 * is dead, pid_task() will return NULL, if we race with
1498		 * de_thread() it will find the new leader.
1499		 */
1500	}
1501}
1502
1503static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1504{
1505	int error;
1506	rcu_read_lock();
1507	error = kill_pid_info(sig, info, find_vpid(pid));
1508	rcu_read_unlock();
1509	return error;
1510}
1511
1512static inline bool kill_as_cred_perm(const struct cred *cred,
1513				     struct task_struct *target)
1514{
1515	const struct cred *pcred = __task_cred(target);
1516
1517	return uid_eq(cred->euid, pcred->suid) ||
1518	       uid_eq(cred->euid, pcred->uid) ||
1519	       uid_eq(cred->uid, pcred->suid) ||
1520	       uid_eq(cred->uid, pcred->uid);
1521}
1522
1523/*
1524 * The usb asyncio usage of siginfo is wrong.  The glibc support
1525 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1526 * AKA after the generic fields:
1527 *	kernel_pid_t	si_pid;
1528 *	kernel_uid32_t	si_uid;
1529 *	sigval_t	si_value;
1530 *
1531 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1532 * after the generic fields is:
1533 *	void __user 	*si_addr;
1534 *
1535 * This is a practical problem when there is a 64bit big endian kernel
1536 * and a 32bit userspace.  As the 32bit address will encoded in the low
1537 * 32bits of the pointer.  Those low 32bits will be stored at higher
1538 * address than appear in a 32 bit pointer.  So userspace will not
1539 * see the address it was expecting for it's completions.
1540 *
1541 * There is nothing in the encoding that can allow
1542 * copy_siginfo_to_user32 to detect this confusion of formats, so
1543 * handle this by requiring the caller of kill_pid_usb_asyncio to
1544 * notice when this situration takes place and to store the 32bit
1545 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1546 * parameter.
1547 */
1548int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1549			 struct pid *pid, const struct cred *cred)
1550{
1551	struct kernel_siginfo info;
1552	struct task_struct *p;
1553	unsigned long flags;
1554	int ret = -EINVAL;
1555
1556	if (!valid_signal(sig))
1557		return ret;
1558
1559	clear_siginfo(&info);
1560	info.si_signo = sig;
1561	info.si_errno = errno;
1562	info.si_code = SI_ASYNCIO;
1563	*((sigval_t *)&info.si_pid) = addr;
1564
1565	rcu_read_lock();
1566	p = pid_task(pid, PIDTYPE_PID);
1567	if (!p) {
1568		ret = -ESRCH;
1569		goto out_unlock;
1570	}
1571	if (!kill_as_cred_perm(cred, p)) {
1572		ret = -EPERM;
1573		goto out_unlock;
1574	}
1575	ret = security_task_kill(p, &info, sig, cred);
1576	if (ret)
1577		goto out_unlock;
1578
1579	if (sig) {
1580		if (lock_task_sighand(p, &flags)) {
1581			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1582			unlock_task_sighand(p, &flags);
1583		} else
1584			ret = -ESRCH;
1585	}
1586out_unlock:
1587	rcu_read_unlock();
1588	return ret;
1589}
1590EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1591
1592/*
1593 * kill_something_info() interprets pid in interesting ways just like kill(2).
1594 *
1595 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1596 * is probably wrong.  Should make it like BSD or SYSV.
1597 */
1598
1599static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1600{
1601	int ret;
1602
1603	if (pid > 0)
1604		return kill_proc_info(sig, info, pid);
 
 
 
 
1605
1606	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1607	if (pid == INT_MIN)
1608		return -ESRCH;
1609
1610	read_lock(&tasklist_lock);
1611	if (pid != -1) {
1612		ret = __kill_pgrp_info(sig, info,
1613				pid ? find_vpid(-pid) : task_pgrp(current));
1614	} else {
1615		int retval = 0, count = 0;
1616		struct task_struct * p;
1617
1618		for_each_process(p) {
1619			if (task_pid_vnr(p) > 1 &&
1620					!same_thread_group(p, current)) {
1621				int err = group_send_sig_info(sig, info, p,
1622							      PIDTYPE_MAX);
1623				++count;
1624				if (err != -EPERM)
1625					retval = err;
1626			}
1627		}
1628		ret = count ? retval : -ESRCH;
1629	}
1630	read_unlock(&tasklist_lock);
1631
1632	return ret;
1633}
1634
1635/*
1636 * These are for backward compatibility with the rest of the kernel source.
1637 */
1638
1639int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1640{
1641	/*
1642	 * Make sure legacy kernel users don't send in bad values
1643	 * (normal paths check this in check_kill_permission).
1644	 */
1645	if (!valid_signal(sig))
1646		return -EINVAL;
1647
1648	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1649}
1650EXPORT_SYMBOL(send_sig_info);
1651
1652#define __si_special(priv) \
1653	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1654
1655int
1656send_sig(int sig, struct task_struct *p, int priv)
1657{
1658	return send_sig_info(sig, __si_special(priv), p);
1659}
1660EXPORT_SYMBOL(send_sig);
1661
1662void force_sig(int sig)
1663{
1664	struct kernel_siginfo info;
1665
1666	clear_siginfo(&info);
1667	info.si_signo = sig;
1668	info.si_errno = 0;
1669	info.si_code = SI_KERNEL;
1670	info.si_pid = 0;
1671	info.si_uid = 0;
1672	force_sig_info(&info);
1673}
1674EXPORT_SYMBOL(force_sig);
1675
1676void force_fatal_sig(int sig)
1677{
1678	struct kernel_siginfo info;
1679
1680	clear_siginfo(&info);
1681	info.si_signo = sig;
1682	info.si_errno = 0;
1683	info.si_code = SI_KERNEL;
1684	info.si_pid = 0;
1685	info.si_uid = 0;
1686	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1687}
1688
1689void force_exit_sig(int sig)
 
1690{
1691	struct kernel_siginfo info;
1692
1693	clear_siginfo(&info);
1694	info.si_signo = sig;
1695	info.si_errno = 0;
1696	info.si_code = SI_KERNEL;
1697	info.si_pid = 0;
1698	info.si_uid = 0;
1699	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1700}
1701
1702/*
1703 * When things go south during signal handling, we
1704 * will force a SIGSEGV. And if the signal that caused
1705 * the problem was already a SIGSEGV, we'll want to
1706 * make sure we don't even try to deliver the signal..
1707 */
1708void force_sigsegv(int sig)
 
1709{
1710	if (sig == SIGSEGV)
1711		force_fatal_sig(SIGSEGV);
1712	else
1713		force_sig(SIGSEGV);
 
 
 
 
1714}
1715
1716int force_sig_fault_to_task(int sig, int code, void __user *addr,
1717			    struct task_struct *t)
 
 
1718{
1719	struct kernel_siginfo info;
1720
1721	clear_siginfo(&info);
1722	info.si_signo = sig;
1723	info.si_errno = 0;
1724	info.si_code  = code;
1725	info.si_addr  = addr;
1726	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1727}
1728
1729int force_sig_fault(int sig, int code, void __user *addr)
1730{
1731	return force_sig_fault_to_task(sig, code, addr, current);
 
 
 
1732}
1733
1734int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
 
 
 
1735{
1736	struct kernel_siginfo info;
1737
1738	clear_siginfo(&info);
1739	info.si_signo = sig;
1740	info.si_errno = 0;
1741	info.si_code  = code;
1742	info.si_addr  = addr;
 
 
 
 
 
 
 
 
1743	return send_sig_info(info.si_signo, &info, t);
1744}
1745
1746int force_sig_mceerr(int code, void __user *addr, short lsb)
 
1747{
1748	struct kernel_siginfo info;
1749
1750	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1751	clear_siginfo(&info);
1752	info.si_signo = SIGBUS;
1753	info.si_errno = 0;
1754	info.si_code = code;
1755	info.si_addr = addr;
1756	info.si_addr_lsb = lsb;
1757	return force_sig_info(&info);
1758}
1759
1760int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1761{
1762	struct kernel_siginfo info;
1763
1764	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1765	clear_siginfo(&info);
1766	info.si_signo = SIGBUS;
1767	info.si_errno = 0;
1768	info.si_code = code;
1769	info.si_addr = addr;
1770	info.si_addr_lsb = lsb;
1771	return send_sig_info(info.si_signo, &info, t);
1772}
1773EXPORT_SYMBOL(send_sig_mceerr);
 
1774
 
1775int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1776{
1777	struct kernel_siginfo info;
1778
1779	clear_siginfo(&info);
1780	info.si_signo = SIGSEGV;
1781	info.si_errno = 0;
1782	info.si_code  = SEGV_BNDERR;
1783	info.si_addr  = addr;
1784	info.si_lower = lower;
1785	info.si_upper = upper;
1786	return force_sig_info(&info);
1787}
 
1788
1789#ifdef SEGV_PKUERR
1790int force_sig_pkuerr(void __user *addr, u32 pkey)
1791{
1792	struct kernel_siginfo info;
1793
1794	clear_siginfo(&info);
1795	info.si_signo = SIGSEGV;
1796	info.si_errno = 0;
1797	info.si_code  = SEGV_PKUERR;
1798	info.si_addr  = addr;
1799	info.si_pkey  = pkey;
1800	return force_sig_info(&info);
1801}
1802#endif
1803
1804int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1805{
1806	struct kernel_siginfo info;
1807
1808	clear_siginfo(&info);
1809	info.si_signo     = SIGTRAP;
1810	info.si_errno     = 0;
1811	info.si_code      = TRAP_PERF;
1812	info.si_addr      = addr;
1813	info.si_perf_data = sig_data;
1814	info.si_perf_type = type;
1815
1816	/*
1817	 * Signals generated by perf events should not terminate the whole
1818	 * process if SIGTRAP is blocked, however, delivering the signal
1819	 * asynchronously is better than not delivering at all. But tell user
1820	 * space if the signal was asynchronous, so it can clearly be
1821	 * distinguished from normal synchronous ones.
1822	 */
1823	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1824				     TRAP_PERF_FLAG_ASYNC :
1825				     0;
1826
1827	return send_sig_info(info.si_signo, &info, current);
1828}
1829
1830/**
1831 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1832 * @syscall: syscall number to send to userland
1833 * @reason: filter-supplied reason code to send to userland (via si_errno)
1834 * @force_coredump: true to trigger a coredump
1835 *
1836 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1837 */
1838int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1839{
1840	struct kernel_siginfo info;
1841
1842	clear_siginfo(&info);
1843	info.si_signo = SIGSYS;
1844	info.si_code = SYS_SECCOMP;
1845	info.si_call_addr = (void __user *)KSTK_EIP(current);
1846	info.si_errno = reason;
1847	info.si_arch = syscall_get_arch(current);
1848	info.si_syscall = syscall;
1849	return force_sig_info_to_task(&info, current,
1850		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1851}
1852
1853/* For the crazy architectures that include trap information in
1854 * the errno field, instead of an actual errno value.
1855 */
1856int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1857{
1858	struct kernel_siginfo info;
1859
1860	clear_siginfo(&info);
1861	info.si_signo = SIGTRAP;
1862	info.si_errno = errno;
1863	info.si_code  = TRAP_HWBKPT;
1864	info.si_addr  = addr;
1865	return force_sig_info(&info);
1866}
1867
1868/* For the rare architectures that include trap information using
1869 * si_trapno.
1870 */
1871int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1872{
1873	struct kernel_siginfo info;
1874
1875	clear_siginfo(&info);
1876	info.si_signo = sig;
1877	info.si_errno = 0;
1878	info.si_code  = code;
1879	info.si_addr  = addr;
1880	info.si_trapno = trapno;
1881	return force_sig_info(&info);
1882}
1883
1884/* For the rare architectures that include trap information using
1885 * si_trapno.
1886 */
1887int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1888			  struct task_struct *t)
1889{
1890	struct kernel_siginfo info;
1891
1892	clear_siginfo(&info);
1893	info.si_signo = sig;
1894	info.si_errno = 0;
1895	info.si_code  = code;
1896	info.si_addr  = addr;
1897	info.si_trapno = trapno;
1898	return send_sig_info(info.si_signo, &info, t);
1899}
1900
1901int kill_pgrp(struct pid *pid, int sig, int priv)
1902{
1903	int ret;
1904
1905	read_lock(&tasklist_lock);
1906	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1907	read_unlock(&tasklist_lock);
1908
1909	return ret;
1910}
1911EXPORT_SYMBOL(kill_pgrp);
1912
1913int kill_pid(struct pid *pid, int sig, int priv)
1914{
1915	return kill_pid_info(sig, __si_special(priv), pid);
1916}
1917EXPORT_SYMBOL(kill_pid);
1918
1919/*
1920 * These functions support sending signals using preallocated sigqueue
1921 * structures.  This is needed "because realtime applications cannot
1922 * afford to lose notifications of asynchronous events, like timer
1923 * expirations or I/O completions".  In the case of POSIX Timers
1924 * we allocate the sigqueue structure from the timer_create.  If this
1925 * allocation fails we are able to report the failure to the application
1926 * with an EAGAIN error.
1927 */
1928struct sigqueue *sigqueue_alloc(void)
1929{
1930	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1931}
1932
1933void sigqueue_free(struct sigqueue *q)
1934{
1935	unsigned long flags;
1936	spinlock_t *lock = &current->sighand->siglock;
1937
1938	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1939	/*
1940	 * We must hold ->siglock while testing q->list
1941	 * to serialize with collect_signal() or with
1942	 * __exit_signal()->flush_sigqueue().
1943	 */
1944	spin_lock_irqsave(lock, flags);
1945	q->flags &= ~SIGQUEUE_PREALLOC;
1946	/*
1947	 * If it is queued it will be freed when dequeued,
1948	 * like the "regular" sigqueue.
1949	 */
1950	if (!list_empty(&q->list))
1951		q = NULL;
1952	spin_unlock_irqrestore(lock, flags);
1953
1954	if (q)
1955		__sigqueue_free(q);
1956}
1957
1958int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1959{
1960	int sig = q->info.si_signo;
1961	struct sigpending *pending;
1962	struct task_struct *t;
1963	unsigned long flags;
1964	int ret, result;
1965
1966	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1967
1968	ret = -1;
1969	rcu_read_lock();
1970
1971	/*
1972	 * This function is used by POSIX timers to deliver a timer signal.
1973	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1974	 * set), the signal must be delivered to the specific thread (queues
1975	 * into t->pending).
1976	 *
1977	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1978	 * process. In this case, prefer to deliver to current if it is in
1979	 * the same thread group as the target process, which avoids
1980	 * unnecessarily waking up a potentially idle task.
1981	 */
1982	t = pid_task(pid, type);
1983	if (!t)
1984		goto ret;
1985	if (type != PIDTYPE_PID && same_thread_group(t, current))
1986		t = current;
1987	if (!likely(lock_task_sighand(t, &flags)))
1988		goto ret;
1989
1990	ret = 1; /* the signal is ignored */
1991	result = TRACE_SIGNAL_IGNORED;
1992	if (!prepare_signal(sig, t, false))
1993		goto out;
1994
1995	ret = 0;
1996	if (unlikely(!list_empty(&q->list))) {
1997		/*
1998		 * If an SI_TIMER entry is already queue just increment
1999		 * the overrun count.
2000		 */
2001		BUG_ON(q->info.si_code != SI_TIMER);
2002		q->info.si_overrun++;
2003		result = TRACE_SIGNAL_ALREADY_PENDING;
2004		goto out;
2005	}
2006	q->info.si_overrun = 0;
2007
2008	signalfd_notify(t, sig);
2009	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2010	list_add_tail(&q->list, &pending->list);
2011	sigaddset(&pending->signal, sig);
2012	complete_signal(sig, t, type);
2013	result = TRACE_SIGNAL_DELIVERED;
2014out:
2015	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2016	unlock_task_sighand(t, &flags);
2017ret:
2018	rcu_read_unlock();
2019	return ret;
2020}
2021
2022static void do_notify_pidfd(struct task_struct *task)
2023{
2024	struct pid *pid;
2025
2026	WARN_ON(task->exit_state == 0);
2027	pid = task_pid(task);
2028	wake_up_all(&pid->wait_pidfd);
2029}
2030
2031/*
2032 * Let a parent know about the death of a child.
2033 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2034 *
2035 * Returns true if our parent ignored us and so we've switched to
2036 * self-reaping.
2037 */
2038bool do_notify_parent(struct task_struct *tsk, int sig)
2039{
2040	struct kernel_siginfo info;
2041	unsigned long flags;
2042	struct sighand_struct *psig;
2043	bool autoreap = false;
2044	u64 utime, stime;
2045
2046	WARN_ON_ONCE(sig == -1);
2047
2048	/* do_notify_parent_cldstop should have been called instead.  */
2049	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2050
2051	WARN_ON_ONCE(!tsk->ptrace &&
2052	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2053
2054	/* Wake up all pidfd waiters */
2055	do_notify_pidfd(tsk);
2056
2057	if (sig != SIGCHLD) {
2058		/*
2059		 * This is only possible if parent == real_parent.
2060		 * Check if it has changed security domain.
2061		 */
2062		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2063			sig = SIGCHLD;
2064	}
2065
2066	clear_siginfo(&info);
2067	info.si_signo = sig;
2068	info.si_errno = 0;
2069	/*
2070	 * We are under tasklist_lock here so our parent is tied to
2071	 * us and cannot change.
2072	 *
2073	 * task_active_pid_ns will always return the same pid namespace
2074	 * until a task passes through release_task.
2075	 *
2076	 * write_lock() currently calls preempt_disable() which is the
2077	 * same as rcu_read_lock(), but according to Oleg, this is not
2078	 * correct to rely on this
2079	 */
2080	rcu_read_lock();
2081	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2082	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2083				       task_uid(tsk));
2084	rcu_read_unlock();
2085
2086	task_cputime(tsk, &utime, &stime);
2087	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2088	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2089
2090	info.si_status = tsk->exit_code & 0x7f;
2091	if (tsk->exit_code & 0x80)
2092		info.si_code = CLD_DUMPED;
2093	else if (tsk->exit_code & 0x7f)
2094		info.si_code = CLD_KILLED;
2095	else {
2096		info.si_code = CLD_EXITED;
2097		info.si_status = tsk->exit_code >> 8;
2098	}
2099
2100	psig = tsk->parent->sighand;
2101	spin_lock_irqsave(&psig->siglock, flags);
2102	if (!tsk->ptrace && sig == SIGCHLD &&
2103	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2104	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2105		/*
2106		 * We are exiting and our parent doesn't care.  POSIX.1
2107		 * defines special semantics for setting SIGCHLD to SIG_IGN
2108		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2109		 * automatically and not left for our parent's wait4 call.
2110		 * Rather than having the parent do it as a magic kind of
2111		 * signal handler, we just set this to tell do_exit that we
2112		 * can be cleaned up without becoming a zombie.  Note that
2113		 * we still call __wake_up_parent in this case, because a
2114		 * blocked sys_wait4 might now return -ECHILD.
2115		 *
2116		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2117		 * is implementation-defined: we do (if you don't want
2118		 * it, just use SIG_IGN instead).
2119		 */
2120		autoreap = true;
2121		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2122			sig = 0;
2123	}
2124	/*
2125	 * Send with __send_signal as si_pid and si_uid are in the
2126	 * parent's namespaces.
2127	 */
2128	if (valid_signal(sig) && sig)
2129		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2130	__wake_up_parent(tsk, tsk->parent);
2131	spin_unlock_irqrestore(&psig->siglock, flags);
2132
2133	return autoreap;
2134}
2135
2136/**
2137 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2138 * @tsk: task reporting the state change
2139 * @for_ptracer: the notification is for ptracer
2140 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2141 *
2142 * Notify @tsk's parent that the stopped/continued state has changed.  If
2143 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2144 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2145 *
2146 * CONTEXT:
2147 * Must be called with tasklist_lock at least read locked.
2148 */
2149static void do_notify_parent_cldstop(struct task_struct *tsk,
2150				     bool for_ptracer, int why)
2151{
2152	struct kernel_siginfo info;
2153	unsigned long flags;
2154	struct task_struct *parent;
2155	struct sighand_struct *sighand;
2156	u64 utime, stime;
2157
2158	if (for_ptracer) {
2159		parent = tsk->parent;
2160	} else {
2161		tsk = tsk->group_leader;
2162		parent = tsk->real_parent;
2163	}
2164
2165	clear_siginfo(&info);
2166	info.si_signo = SIGCHLD;
2167	info.si_errno = 0;
2168	/*
2169	 * see comment in do_notify_parent() about the following 4 lines
2170	 */
2171	rcu_read_lock();
2172	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2173	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2174	rcu_read_unlock();
2175
2176	task_cputime(tsk, &utime, &stime);
2177	info.si_utime = nsec_to_clock_t(utime);
2178	info.si_stime = nsec_to_clock_t(stime);
2179
2180 	info.si_code = why;
2181 	switch (why) {
2182 	case CLD_CONTINUED:
2183 		info.si_status = SIGCONT;
2184 		break;
2185 	case CLD_STOPPED:
2186 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2187 		break;
2188 	case CLD_TRAPPED:
2189 		info.si_status = tsk->exit_code & 0x7f;
2190 		break;
2191 	default:
2192 		BUG();
2193 	}
2194
2195	sighand = parent->sighand;
2196	spin_lock_irqsave(&sighand->siglock, flags);
2197	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2198	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2199		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2200	/*
2201	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2202	 */
2203	__wake_up_parent(tsk, parent);
2204	spin_unlock_irqrestore(&sighand->siglock, flags);
2205}
2206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2207/*
2208 * This must be called with current->sighand->siglock held.
2209 *
2210 * This should be the path for all ptrace stops.
2211 * We always set current->last_siginfo while stopped here.
2212 * That makes it a way to test a stopped process for
2213 * being ptrace-stopped vs being job-control-stopped.
2214 *
2215 * Returns the signal the ptracer requested the code resume
2216 * with.  If the code did not stop because the tracer is gone,
2217 * the stop signal remains unchanged unless clear_code.
2218 */
2219static int ptrace_stop(int exit_code, int why, unsigned long message,
2220		       kernel_siginfo_t *info)
2221	__releases(&current->sighand->siglock)
2222	__acquires(&current->sighand->siglock)
2223{
2224	bool gstop_done = false;
2225
2226	if (arch_ptrace_stop_needed()) {
2227		/*
2228		 * The arch code has something special to do before a
2229		 * ptrace stop.  This is allowed to block, e.g. for faults
2230		 * on user stack pages.  We can't keep the siglock while
2231		 * calling arch_ptrace_stop, so we must release it now.
2232		 * To preserve proper semantics, we must do this before
2233		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2234		 */
2235		spin_unlock_irq(&current->sighand->siglock);
2236		arch_ptrace_stop();
2237		spin_lock_irq(&current->sighand->siglock);
 
 
2238	}
2239
2240	/*
2241	 * After this point ptrace_signal_wake_up or signal_wake_up
2242	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2243	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2244	 * signals here to prevent ptrace_stop sleeping in schedule.
2245	 */
2246	if (!current->ptrace || __fatal_signal_pending(current))
2247		return exit_code;
2248
2249	set_special_state(TASK_TRACED);
2250	current->jobctl |= JOBCTL_TRACED;
2251
2252	/*
2253	 * We're committing to trapping.  TRACED should be visible before
2254	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2255	 * Also, transition to TRACED and updates to ->jobctl should be
2256	 * atomic with respect to siglock and should be done after the arch
2257	 * hook as siglock is released and regrabbed across it.
2258	 *
2259	 *     TRACER				    TRACEE
2260	 *
2261	 *     ptrace_attach()
2262	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2263	 *     do_wait()
2264	 *       set_current_state()                smp_wmb();
2265	 *       ptrace_do_wait()
2266	 *         wait_task_stopped()
2267	 *           task_stopped_code()
2268	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2269	 */
2270	smp_wmb();
2271
2272	current->ptrace_message = message;
2273	current->last_siginfo = info;
2274	current->exit_code = exit_code;
2275
2276	/*
2277	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2278	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2279	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2280	 * could be clear now.  We act as if SIGCONT is received after
2281	 * TASK_TRACED is entered - ignore it.
2282	 */
2283	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2284		gstop_done = task_participate_group_stop(current);
2285
2286	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2287	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2288	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2289		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2290
2291	/* entering a trap, clear TRAPPING */
2292	task_clear_jobctl_trapping(current);
2293
2294	spin_unlock_irq(&current->sighand->siglock);
2295	read_lock(&tasklist_lock);
2296	/*
2297	 * Notify parents of the stop.
2298	 *
2299	 * While ptraced, there are two parents - the ptracer and
2300	 * the real_parent of the group_leader.  The ptracer should
2301	 * know about every stop while the real parent is only
2302	 * interested in the completion of group stop.  The states
2303	 * for the two don't interact with each other.  Notify
2304	 * separately unless they're gonna be duplicates.
2305	 */
2306	if (current->ptrace)
2307		do_notify_parent_cldstop(current, true, why);
2308	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2309		do_notify_parent_cldstop(current, false, why);
2310
2311	/*
2312	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2313	 * One a PREEMPTION kernel this can result in preemption requirement
2314	 * which will be fulfilled after read_unlock() and the ptracer will be
2315	 * put on the CPU.
2316	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2317	 * this task wait in schedule(). If this task gets preempted then it
2318	 * remains enqueued on the runqueue. The ptracer will observe this and
2319	 * then sleep for a delay of one HZ tick. In the meantime this task
2320	 * gets scheduled, enters schedule() and will wait for the ptracer.
2321	 *
2322	 * This preemption point is not bad from a correctness point of
2323	 * view but extends the runtime by one HZ tick time due to the
2324	 * ptracer's sleep.  The preempt-disable section ensures that there
2325	 * will be no preemption between unlock and schedule() and so
2326	 * improving the performance since the ptracer will observe that
2327	 * the tracee is scheduled out once it gets on the CPU.
2328	 *
2329	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2330	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2331	 * before unlocking tasklist_lock so there is no benefit in doing this.
2332	 *
2333	 * In fact disabling preemption is harmful on PREEMPT_RT because
2334	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2335	 * with preemption disabled due to the 'sleeping' spinlock
2336	 * substitution of RT.
2337	 */
2338	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2339		preempt_disable();
2340	read_unlock(&tasklist_lock);
2341	cgroup_enter_frozen();
2342	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2343		preempt_enable_no_resched();
2344	schedule();
2345	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2346
2347	/*
2348	 * We are back.  Now reacquire the siglock before touching
2349	 * last_siginfo, so that we are sure to have synchronized with
2350	 * any signal-sending on another CPU that wants to examine it.
2351	 */
2352	spin_lock_irq(&current->sighand->siglock);
2353	exit_code = current->exit_code;
2354	current->last_siginfo = NULL;
2355	current->ptrace_message = 0;
2356	current->exit_code = 0;
2357
2358	/* LISTENING can be set only during STOP traps, clear it */
2359	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2360
2361	/*
2362	 * Queued signals ignored us while we were stopped for tracing.
2363	 * So check for any that we should take before resuming user mode.
2364	 * This sets TIF_SIGPENDING, but never clears it.
2365	 */
2366	recalc_sigpending_tsk(current);
2367	return exit_code;
2368}
2369
2370static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2371{
2372	kernel_siginfo_t info;
2373
2374	clear_siginfo(&info);
2375	info.si_signo = signr;
2376	info.si_code = exit_code;
2377	info.si_pid = task_pid_vnr(current);
2378	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2379
2380	/* Let the debugger run.  */
2381	return ptrace_stop(exit_code, why, message, &info);
2382}
2383
2384int ptrace_notify(int exit_code, unsigned long message)
2385{
2386	int signr;
2387
2388	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2389	if (unlikely(task_work_pending(current)))
2390		task_work_run();
2391
2392	spin_lock_irq(&current->sighand->siglock);
2393	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2394	spin_unlock_irq(&current->sighand->siglock);
2395	return signr;
2396}
2397
2398/**
2399 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2400 * @signr: signr causing group stop if initiating
2401 *
2402 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2403 * and participate in it.  If already set, participate in the existing
2404 * group stop.  If participated in a group stop (and thus slept), %true is
2405 * returned with siglock released.
2406 *
2407 * If ptraced, this function doesn't handle stop itself.  Instead,
2408 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2409 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2410 * places afterwards.
2411 *
2412 * CONTEXT:
2413 * Must be called with @current->sighand->siglock held, which is released
2414 * on %true return.
2415 *
2416 * RETURNS:
2417 * %false if group stop is already cancelled or ptrace trap is scheduled.
2418 * %true if participated in group stop.
2419 */
2420static bool do_signal_stop(int signr)
2421	__releases(&current->sighand->siglock)
2422{
2423	struct signal_struct *sig = current->signal;
2424
2425	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2426		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2427		struct task_struct *t;
2428
2429		/* signr will be recorded in task->jobctl for retries */
2430		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2431
2432		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2433		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2434		    unlikely(sig->group_exec_task))
2435			return false;
2436		/*
2437		 * There is no group stop already in progress.  We must
2438		 * initiate one now.
2439		 *
2440		 * While ptraced, a task may be resumed while group stop is
2441		 * still in effect and then receive a stop signal and
2442		 * initiate another group stop.  This deviates from the
2443		 * usual behavior as two consecutive stop signals can't
2444		 * cause two group stops when !ptraced.  That is why we
2445		 * also check !task_is_stopped(t) below.
2446		 *
2447		 * The condition can be distinguished by testing whether
2448		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2449		 * group_exit_code in such case.
2450		 *
2451		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2452		 * an intervening stop signal is required to cause two
2453		 * continued events regardless of ptrace.
2454		 */
2455		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2456			sig->group_exit_code = signr;
2457
2458		sig->group_stop_count = 0;
 
2459		if (task_set_jobctl_pending(current, signr | gstop))
2460			sig->group_stop_count++;
2461
2462		for_other_threads(current, t) {
 
2463			/*
2464			 * Setting state to TASK_STOPPED for a group
2465			 * stop is always done with the siglock held,
2466			 * so this check has no races.
2467			 */
2468			if (!task_is_stopped(t) &&
2469			    task_set_jobctl_pending(t, signr | gstop)) {
2470				sig->group_stop_count++;
2471				if (likely(!(t->ptrace & PT_SEIZED)))
2472					signal_wake_up(t, 0);
2473				else
2474					ptrace_trap_notify(t);
2475			}
2476		}
2477	}
2478
2479	if (likely(!current->ptrace)) {
2480		int notify = 0;
2481
2482		/*
2483		 * If there are no other threads in the group, or if there
2484		 * is a group stop in progress and we are the last to stop,
2485		 * report to the parent.
2486		 */
2487		if (task_participate_group_stop(current))
2488			notify = CLD_STOPPED;
2489
2490		current->jobctl |= JOBCTL_STOPPED;
2491		set_special_state(TASK_STOPPED);
2492		spin_unlock_irq(&current->sighand->siglock);
2493
2494		/*
2495		 * Notify the parent of the group stop completion.  Because
2496		 * we're not holding either the siglock or tasklist_lock
2497		 * here, ptracer may attach inbetween; however, this is for
2498		 * group stop and should always be delivered to the real
2499		 * parent of the group leader.  The new ptracer will get
2500		 * its notification when this task transitions into
2501		 * TASK_TRACED.
2502		 */
2503		if (notify) {
2504			read_lock(&tasklist_lock);
2505			do_notify_parent_cldstop(current, false, notify);
2506			read_unlock(&tasklist_lock);
2507		}
2508
2509		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2510		cgroup_enter_frozen();
2511		schedule();
2512		return true;
2513	} else {
2514		/*
2515		 * While ptraced, group stop is handled by STOP trap.
2516		 * Schedule it and let the caller deal with it.
2517		 */
2518		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2519		return false;
2520	}
2521}
2522
2523/**
2524 * do_jobctl_trap - take care of ptrace jobctl traps
2525 *
2526 * When PT_SEIZED, it's used for both group stop and explicit
2527 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2528 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2529 * the stop signal; otherwise, %SIGTRAP.
2530 *
2531 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2532 * number as exit_code and no siginfo.
2533 *
2534 * CONTEXT:
2535 * Must be called with @current->sighand->siglock held, which may be
2536 * released and re-acquired before returning with intervening sleep.
2537 */
2538static void do_jobctl_trap(void)
2539{
2540	struct signal_struct *signal = current->signal;
2541	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2542
2543	if (current->ptrace & PT_SEIZED) {
2544		if (!signal->group_stop_count &&
2545		    !(signal->flags & SIGNAL_STOP_STOPPED))
2546			signr = SIGTRAP;
2547		WARN_ON_ONCE(!signr);
2548		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2549				 CLD_STOPPED, 0);
2550	} else {
2551		WARN_ON_ONCE(!signr);
2552		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2553	}
2554}
2555
2556/**
2557 * do_freezer_trap - handle the freezer jobctl trap
2558 *
2559 * Puts the task into frozen state, if only the task is not about to quit.
2560 * In this case it drops JOBCTL_TRAP_FREEZE.
2561 *
2562 * CONTEXT:
2563 * Must be called with @current->sighand->siglock held,
2564 * which is always released before returning.
2565 */
2566static void do_freezer_trap(void)
2567	__releases(&current->sighand->siglock)
2568{
2569	/*
2570	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2571	 * let's make another loop to give it a chance to be handled.
2572	 * In any case, we'll return back.
2573	 */
2574	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2575	     JOBCTL_TRAP_FREEZE) {
2576		spin_unlock_irq(&current->sighand->siglock);
2577		return;
2578	}
2579
2580	/*
2581	 * Now we're sure that there is no pending fatal signal and no
2582	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2583	 * immediately (if there is a non-fatal signal pending), and
2584	 * put the task into sleep.
2585	 */
2586	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2587	clear_thread_flag(TIF_SIGPENDING);
2588	spin_unlock_irq(&current->sighand->siglock);
2589	cgroup_enter_frozen();
2590	schedule();
2591}
2592
2593static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2594{
2595	/*
2596	 * We do not check sig_kernel_stop(signr) but set this marker
2597	 * unconditionally because we do not know whether debugger will
2598	 * change signr. This flag has no meaning unless we are going
2599	 * to stop after return from ptrace_stop(). In this case it will
2600	 * be checked in do_signal_stop(), we should only stop if it was
2601	 * not cleared by SIGCONT while we were sleeping. See also the
2602	 * comment in dequeue_signal().
2603	 */
2604	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2605	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2606
2607	/* We're back.  Did the debugger cancel the sig?  */
 
2608	if (signr == 0)
2609		return signr;
2610
 
 
2611	/*
2612	 * Update the siginfo structure if the signal has
2613	 * changed.  If the debugger wanted something
2614	 * specific in the siginfo structure then it should
2615	 * have updated *info via PTRACE_SETSIGINFO.
2616	 */
2617	if (signr != info->si_signo) {
2618		clear_siginfo(info);
2619		info->si_signo = signr;
2620		info->si_errno = 0;
2621		info->si_code = SI_USER;
2622		rcu_read_lock();
2623		info->si_pid = task_pid_vnr(current->parent);
2624		info->si_uid = from_kuid_munged(current_user_ns(),
2625						task_uid(current->parent));
2626		rcu_read_unlock();
2627	}
2628
2629	/* If the (new) signal is now blocked, requeue it.  */
2630	if (sigismember(&current->blocked, signr) ||
2631	    fatal_signal_pending(current)) {
2632		send_signal_locked(signr, info, current, type);
2633		signr = 0;
2634	}
2635
2636	return signr;
2637}
2638
2639static void hide_si_addr_tag_bits(struct ksignal *ksig)
2640{
2641	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2642	case SIL_FAULT:
2643	case SIL_FAULT_TRAPNO:
2644	case SIL_FAULT_MCEERR:
2645	case SIL_FAULT_BNDERR:
2646	case SIL_FAULT_PKUERR:
2647	case SIL_FAULT_PERF_EVENT:
2648		ksig->info.si_addr = arch_untagged_si_addr(
2649			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2650		break;
2651	case SIL_KILL:
2652	case SIL_TIMER:
2653	case SIL_POLL:
2654	case SIL_CHLD:
2655	case SIL_RT:
2656	case SIL_SYS:
2657		break;
2658	}
2659}
2660
2661bool get_signal(struct ksignal *ksig)
2662{
2663	struct sighand_struct *sighand = current->sighand;
2664	struct signal_struct *signal = current->signal;
2665	int signr;
2666
2667	clear_notify_signal();
2668	if (unlikely(task_work_pending(current)))
2669		task_work_run();
2670
2671	if (!task_sigpending(current))
2672		return false;
2673
2674	if (unlikely(uprobe_deny_signal()))
2675		return false;
2676
2677	/*
2678	 * Do this once, we can't return to user-mode if freezing() == T.
2679	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2680	 * thus do not need another check after return.
2681	 */
2682	try_to_freeze();
2683
2684relock:
2685	spin_lock_irq(&sighand->siglock);
2686
2687	/*
2688	 * Every stopped thread goes here after wakeup. Check to see if
2689	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2690	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2691	 */
2692	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2693		int why;
2694
2695		if (signal->flags & SIGNAL_CLD_CONTINUED)
2696			why = CLD_CONTINUED;
2697		else
2698			why = CLD_STOPPED;
2699
2700		signal->flags &= ~SIGNAL_CLD_MASK;
2701
2702		spin_unlock_irq(&sighand->siglock);
2703
2704		/*
2705		 * Notify the parent that we're continuing.  This event is
2706		 * always per-process and doesn't make whole lot of sense
2707		 * for ptracers, who shouldn't consume the state via
2708		 * wait(2) either, but, for backward compatibility, notify
2709		 * the ptracer of the group leader too unless it's gonna be
2710		 * a duplicate.
2711		 */
2712		read_lock(&tasklist_lock);
2713		do_notify_parent_cldstop(current, false, why);
2714
2715		if (ptrace_reparented(current->group_leader))
2716			do_notify_parent_cldstop(current->group_leader,
2717						true, why);
2718		read_unlock(&tasklist_lock);
2719
2720		goto relock;
2721	}
2722
2723	for (;;) {
2724		struct k_sigaction *ka;
2725		enum pid_type type;
2726
2727		/* Has this task already been marked for death? */
2728		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2729		     signal->group_exec_task) {
2730			clear_siginfo(&ksig->info);
2731			ksig->info.si_signo = signr = SIGKILL;
2732			sigdelset(&current->pending.signal, SIGKILL);
2733			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2734				&sighand->action[SIGKILL - 1]);
2735			recalc_sigpending();
2736			goto fatal;
2737		}
2738
2739		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2740		    do_signal_stop(0))
2741			goto relock;
2742
2743		if (unlikely(current->jobctl &
2744			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2745			if (current->jobctl & JOBCTL_TRAP_MASK) {
2746				do_jobctl_trap();
2747				spin_unlock_irq(&sighand->siglock);
2748			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2749				do_freezer_trap();
2750
2751			goto relock;
2752		}
2753
2754		/*
2755		 * If the task is leaving the frozen state, let's update
2756		 * cgroup counters and reset the frozen bit.
2757		 */
2758		if (unlikely(cgroup_task_frozen(current))) {
2759			spin_unlock_irq(&sighand->siglock);
2760			cgroup_leave_frozen(false);
2761			goto relock;
2762		}
2763
2764		/*
2765		 * Signals generated by the execution of an instruction
2766		 * need to be delivered before any other pending signals
2767		 * so that the instruction pointer in the signal stack
2768		 * frame points to the faulting instruction.
2769		 */
2770		type = PIDTYPE_PID;
2771		signr = dequeue_synchronous_signal(&ksig->info);
2772		if (!signr)
2773			signr = dequeue_signal(current, &current->blocked,
2774					       &ksig->info, &type);
2775
2776		if (!signr)
2777			break; /* will return 0 */
2778
2779		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2780		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2781			signr = ptrace_signal(signr, &ksig->info, type);
2782			if (!signr)
2783				continue;
2784		}
2785
2786		ka = &sighand->action[signr-1];
2787
2788		/* Trace actually delivered signals. */
2789		trace_signal_deliver(signr, &ksig->info, ka);
2790
2791		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2792			continue;
2793		if (ka->sa.sa_handler != SIG_DFL) {
2794			/* Run the handler.  */
2795			ksig->ka = *ka;
2796
2797			if (ka->sa.sa_flags & SA_ONESHOT)
2798				ka->sa.sa_handler = SIG_DFL;
2799
2800			break; /* will return non-zero "signr" value */
2801		}
2802
2803		/*
2804		 * Now we are doing the default action for this signal.
2805		 */
2806		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2807			continue;
2808
2809		/*
2810		 * Global init gets no signals it doesn't want.
2811		 * Container-init gets no signals it doesn't want from same
2812		 * container.
2813		 *
2814		 * Note that if global/container-init sees a sig_kernel_only()
2815		 * signal here, the signal must have been generated internally
2816		 * or must have come from an ancestor namespace. In either
2817		 * case, the signal cannot be dropped.
2818		 */
2819		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2820				!sig_kernel_only(signr))
2821			continue;
2822
2823		if (sig_kernel_stop(signr)) {
2824			/*
2825			 * The default action is to stop all threads in
2826			 * the thread group.  The job control signals
2827			 * do nothing in an orphaned pgrp, but SIGSTOP
2828			 * always works.  Note that siglock needs to be
2829			 * dropped during the call to is_orphaned_pgrp()
2830			 * because of lock ordering with tasklist_lock.
2831			 * This allows an intervening SIGCONT to be posted.
2832			 * We need to check for that and bail out if necessary.
2833			 */
2834			if (signr != SIGSTOP) {
2835				spin_unlock_irq(&sighand->siglock);
2836
2837				/* signals can be posted during this window */
2838
2839				if (is_current_pgrp_orphaned())
2840					goto relock;
2841
2842				spin_lock_irq(&sighand->siglock);
2843			}
2844
2845			if (likely(do_signal_stop(ksig->info.si_signo))) {
2846				/* It released the siglock.  */
2847				goto relock;
2848			}
2849
2850			/*
2851			 * We didn't actually stop, due to a race
2852			 * with SIGCONT or something like that.
2853			 */
2854			continue;
2855		}
2856
2857	fatal:
2858		spin_unlock_irq(&sighand->siglock);
2859		if (unlikely(cgroup_task_frozen(current)))
2860			cgroup_leave_frozen(true);
2861
2862		/*
2863		 * Anything else is fatal, maybe with a core dump.
2864		 */
2865		current->flags |= PF_SIGNALED;
2866
2867		if (sig_kernel_coredump(signr)) {
2868			if (print_fatal_signals)
2869				print_fatal_signal(ksig->info.si_signo);
2870			proc_coredump_connector(current);
2871			/*
2872			 * If it was able to dump core, this kills all
2873			 * other threads in the group and synchronizes with
2874			 * their demise.  If we lost the race with another
2875			 * thread getting here, it set group_exit_code
2876			 * first and our do_group_exit call below will use
2877			 * that value and ignore the one we pass it.
2878			 */
2879			do_coredump(&ksig->info);
2880		}
2881
2882		/*
2883		 * PF_USER_WORKER threads will catch and exit on fatal signals
2884		 * themselves. They have cleanup that must be performed, so
2885		 * we cannot call do_exit() on their behalf.
2886		 */
2887		if (current->flags & PF_USER_WORKER)
2888			goto out;
2889
2890		/*
2891		 * Death signals, no core dump.
2892		 */
2893		do_group_exit(ksig->info.si_signo);
2894		/* NOTREACHED */
2895	}
2896	spin_unlock_irq(&sighand->siglock);
2897out:
2898	ksig->sig = signr;
2899
2900	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2901		hide_si_addr_tag_bits(ksig);
2902
 
2903	return ksig->sig > 0;
2904}
2905
2906/**
2907 * signal_delivered - called after signal delivery to update blocked signals
2908 * @ksig:		kernel signal struct
2909 * @stepping:		nonzero if debugger single-step or block-step in use
2910 *
2911 * This function should be called when a signal has successfully been
2912 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2913 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2914 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2915 */
2916static void signal_delivered(struct ksignal *ksig, int stepping)
2917{
2918	sigset_t blocked;
2919
2920	/* A signal was successfully delivered, and the
2921	   saved sigmask was stored on the signal frame,
2922	   and will be restored by sigreturn.  So we can
2923	   simply clear the restore sigmask flag.  */
2924	clear_restore_sigmask();
2925
2926	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2927	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2928		sigaddset(&blocked, ksig->sig);
2929	set_current_blocked(&blocked);
2930	if (current->sas_ss_flags & SS_AUTODISARM)
2931		sas_ss_reset(current);
2932	if (stepping)
2933		ptrace_notify(SIGTRAP, 0);
2934}
2935
2936void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2937{
2938	if (failed)
2939		force_sigsegv(ksig->sig);
2940	else
2941		signal_delivered(ksig, stepping);
2942}
2943
2944/*
2945 * It could be that complete_signal() picked us to notify about the
2946 * group-wide signal. Other threads should be notified now to take
2947 * the shared signals in @which since we will not.
2948 */
2949static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2950{
2951	sigset_t retarget;
2952	struct task_struct *t;
2953
2954	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2955	if (sigisemptyset(&retarget))
2956		return;
2957
2958	for_other_threads(tsk, t) {
 
2959		if (t->flags & PF_EXITING)
2960			continue;
2961
2962		if (!has_pending_signals(&retarget, &t->blocked))
2963			continue;
2964		/* Remove the signals this thread can handle. */
2965		sigandsets(&retarget, &retarget, &t->blocked);
2966
2967		if (!task_sigpending(t))
2968			signal_wake_up(t, 0);
2969
2970		if (sigisemptyset(&retarget))
2971			break;
2972	}
2973}
2974
2975void exit_signals(struct task_struct *tsk)
2976{
2977	int group_stop = 0;
2978	sigset_t unblocked;
2979
2980	/*
2981	 * @tsk is about to have PF_EXITING set - lock out users which
2982	 * expect stable threadgroup.
2983	 */
2984	cgroup_threadgroup_change_begin(tsk);
2985
2986	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2987		sched_mm_cid_exit_signals(tsk);
2988		tsk->flags |= PF_EXITING;
2989		cgroup_threadgroup_change_end(tsk);
2990		return;
2991	}
2992
2993	spin_lock_irq(&tsk->sighand->siglock);
2994	/*
2995	 * From now this task is not visible for group-wide signals,
2996	 * see wants_signal(), do_signal_stop().
2997	 */
2998	sched_mm_cid_exit_signals(tsk);
2999	tsk->flags |= PF_EXITING;
3000
3001	cgroup_threadgroup_change_end(tsk);
3002
3003	if (!task_sigpending(tsk))
3004		goto out;
3005
3006	unblocked = tsk->blocked;
3007	signotset(&unblocked);
3008	retarget_shared_pending(tsk, &unblocked);
3009
3010	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3011	    task_participate_group_stop(tsk))
3012		group_stop = CLD_STOPPED;
3013out:
3014	spin_unlock_irq(&tsk->sighand->siglock);
3015
3016	/*
3017	 * If group stop has completed, deliver the notification.  This
3018	 * should always go to the real parent of the group leader.
3019	 */
3020	if (unlikely(group_stop)) {
3021		read_lock(&tasklist_lock);
3022		do_notify_parent_cldstop(tsk, false, group_stop);
3023		read_unlock(&tasklist_lock);
3024	}
3025}
3026
 
 
 
 
 
 
 
 
3027/*
3028 * System call entry points.
3029 */
3030
3031/**
3032 *  sys_restart_syscall - restart a system call
3033 */
3034SYSCALL_DEFINE0(restart_syscall)
3035{
3036	struct restart_block *restart = &current->restart_block;
3037	return restart->fn(restart);
3038}
3039
3040long do_no_restart_syscall(struct restart_block *param)
3041{
3042	return -EINTR;
3043}
3044
3045static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3046{
3047	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3048		sigset_t newblocked;
3049		/* A set of now blocked but previously unblocked signals. */
3050		sigandnsets(&newblocked, newset, &current->blocked);
3051		retarget_shared_pending(tsk, &newblocked);
3052	}
3053	tsk->blocked = *newset;
3054	recalc_sigpending();
3055}
3056
3057/**
3058 * set_current_blocked - change current->blocked mask
3059 * @newset: new mask
3060 *
3061 * It is wrong to change ->blocked directly, this helper should be used
3062 * to ensure the process can't miss a shared signal we are going to block.
3063 */
3064void set_current_blocked(sigset_t *newset)
3065{
3066	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3067	__set_current_blocked(newset);
3068}
3069
3070void __set_current_blocked(const sigset_t *newset)
3071{
3072	struct task_struct *tsk = current;
3073
3074	/*
3075	 * In case the signal mask hasn't changed, there is nothing we need
3076	 * to do. The current->blocked shouldn't be modified by other task.
3077	 */
3078	if (sigequalsets(&tsk->blocked, newset))
3079		return;
3080
3081	spin_lock_irq(&tsk->sighand->siglock);
3082	__set_task_blocked(tsk, newset);
3083	spin_unlock_irq(&tsk->sighand->siglock);
3084}
3085
3086/*
3087 * This is also useful for kernel threads that want to temporarily
3088 * (or permanently) block certain signals.
3089 *
3090 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3091 * interface happily blocks "unblockable" signals like SIGKILL
3092 * and friends.
3093 */
3094int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3095{
3096	struct task_struct *tsk = current;
3097	sigset_t newset;
3098
3099	/* Lockless, only current can change ->blocked, never from irq */
3100	if (oldset)
3101		*oldset = tsk->blocked;
3102
3103	switch (how) {
3104	case SIG_BLOCK:
3105		sigorsets(&newset, &tsk->blocked, set);
3106		break;
3107	case SIG_UNBLOCK:
3108		sigandnsets(&newset, &tsk->blocked, set);
3109		break;
3110	case SIG_SETMASK:
3111		newset = *set;
3112		break;
3113	default:
3114		return -EINVAL;
3115	}
3116
3117	__set_current_blocked(&newset);
3118	return 0;
3119}
3120EXPORT_SYMBOL(sigprocmask);
3121
3122/*
3123 * The api helps set app-provided sigmasks.
3124 *
3125 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3126 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3127 *
3128 * Note that it does set_restore_sigmask() in advance, so it must be always
3129 * paired with restore_saved_sigmask_unless() before return from syscall.
3130 */
3131int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3132{
3133	sigset_t kmask;
3134
3135	if (!umask)
3136		return 0;
3137	if (sigsetsize != sizeof(sigset_t))
3138		return -EINVAL;
3139	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3140		return -EFAULT;
3141
3142	set_restore_sigmask();
3143	current->saved_sigmask = current->blocked;
3144	set_current_blocked(&kmask);
3145
3146	return 0;
3147}
3148
3149#ifdef CONFIG_COMPAT
3150int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3151			    size_t sigsetsize)
3152{
3153	sigset_t kmask;
3154
3155	if (!umask)
3156		return 0;
3157	if (sigsetsize != sizeof(compat_sigset_t))
3158		return -EINVAL;
3159	if (get_compat_sigset(&kmask, umask))
3160		return -EFAULT;
3161
3162	set_restore_sigmask();
3163	current->saved_sigmask = current->blocked;
3164	set_current_blocked(&kmask);
3165
3166	return 0;
3167}
3168#endif
3169
3170/**
3171 *  sys_rt_sigprocmask - change the list of currently blocked signals
3172 *  @how: whether to add, remove, or set signals
3173 *  @nset: stores pending signals
3174 *  @oset: previous value of signal mask if non-null
3175 *  @sigsetsize: size of sigset_t type
3176 */
3177SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3178		sigset_t __user *, oset, size_t, sigsetsize)
3179{
3180	sigset_t old_set, new_set;
3181	int error;
3182
3183	/* XXX: Don't preclude handling different sized sigset_t's.  */
3184	if (sigsetsize != sizeof(sigset_t))
3185		return -EINVAL;
3186
3187	old_set = current->blocked;
3188
3189	if (nset) {
3190		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3191			return -EFAULT;
3192		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3193
3194		error = sigprocmask(how, &new_set, NULL);
3195		if (error)
3196			return error;
3197	}
3198
3199	if (oset) {
3200		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3201			return -EFAULT;
3202	}
3203
3204	return 0;
3205}
3206
3207#ifdef CONFIG_COMPAT
3208COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3209		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3210{
3211	sigset_t old_set = current->blocked;
3212
3213	/* XXX: Don't preclude handling different sized sigset_t's.  */
3214	if (sigsetsize != sizeof(sigset_t))
3215		return -EINVAL;
3216
3217	if (nset) {
3218		sigset_t new_set;
3219		int error;
3220		if (get_compat_sigset(&new_set, nset))
3221			return -EFAULT;
3222		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3223
3224		error = sigprocmask(how, &new_set, NULL);
3225		if (error)
3226			return error;
3227	}
3228	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3229}
3230#endif
3231
3232static void do_sigpending(sigset_t *set)
3233{
3234	spin_lock_irq(&current->sighand->siglock);
3235	sigorsets(set, &current->pending.signal,
3236		  &current->signal->shared_pending.signal);
3237	spin_unlock_irq(&current->sighand->siglock);
3238
3239	/* Outside the lock because only this thread touches it.  */
3240	sigandsets(set, &current->blocked, set);
 
3241}
3242
3243/**
3244 *  sys_rt_sigpending - examine a pending signal that has been raised
3245 *			while blocked
3246 *  @uset: stores pending signals
3247 *  @sigsetsize: size of sigset_t type or larger
3248 */
3249SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3250{
3251	sigset_t set;
 
3252
3253	if (sigsetsize > sizeof(*uset))
3254		return -EINVAL;
3255
3256	do_sigpending(&set);
3257
3258	if (copy_to_user(uset, &set, sigsetsize))
3259		return -EFAULT;
3260
3261	return 0;
3262}
3263
3264#ifdef CONFIG_COMPAT
3265COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3266		compat_size_t, sigsetsize)
3267{
3268	sigset_t set;
 
3269
3270	if (sigsetsize > sizeof(*uset))
3271		return -EINVAL;
3272
3273	do_sigpending(&set);
3274
3275	return put_compat_sigset(uset, &set, sigsetsize);
 
3276}
3277#endif
3278
3279static const struct {
3280	unsigned char limit, layout;
3281} sig_sicodes[] = {
3282	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3283	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3284	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3285	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3286	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3287#if defined(SIGEMT)
3288	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3289#endif
3290	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3291	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3292	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3293};
3294
3295static bool known_siginfo_layout(unsigned sig, int si_code)
3296{
3297	if (si_code == SI_KERNEL)
3298		return true;
3299	else if ((si_code > SI_USER)) {
3300		if (sig_specific_sicodes(sig)) {
3301			if (si_code <= sig_sicodes[sig].limit)
3302				return true;
3303		}
3304		else if (si_code <= NSIGPOLL)
3305			return true;
3306	}
3307	else if (si_code >= SI_DETHREAD)
3308		return true;
3309	else if (si_code == SI_ASYNCNL)
3310		return true;
3311	return false;
3312}
3313
3314enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3315{
3316	enum siginfo_layout layout = SIL_KILL;
3317	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3318		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3319		    (si_code <= sig_sicodes[sig].limit)) {
3320			layout = sig_sicodes[sig].layout;
3321			/* Handle the exceptions */
3322			if ((sig == SIGBUS) &&
3323			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3324				layout = SIL_FAULT_MCEERR;
3325			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3326				layout = SIL_FAULT_BNDERR;
3327#ifdef SEGV_PKUERR
3328			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3329				layout = SIL_FAULT_PKUERR;
3330#endif
3331			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3332				layout = SIL_FAULT_PERF_EVENT;
3333			else if (IS_ENABLED(CONFIG_SPARC) &&
3334				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3335				layout = SIL_FAULT_TRAPNO;
3336			else if (IS_ENABLED(CONFIG_ALPHA) &&
3337				 ((sig == SIGFPE) ||
3338				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3339				layout = SIL_FAULT_TRAPNO;
3340		}
3341		else if (si_code <= NSIGPOLL)
3342			layout = SIL_POLL;
3343	} else {
3344		if (si_code == SI_TIMER)
3345			layout = SIL_TIMER;
3346		else if (si_code == SI_SIGIO)
3347			layout = SIL_POLL;
3348		else if (si_code < 0)
3349			layout = SIL_RT;
 
 
 
 
 
 
 
 
 
3350	}
3351	return layout;
3352}
3353
3354static inline char __user *si_expansion(const siginfo_t __user *info)
3355{
3356	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3357}
3358
3359int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3360{
3361	char __user *expansion = si_expansion(to);
3362	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3363		return -EFAULT;
3364	if (clear_user(expansion, SI_EXPANSION_SIZE))
3365		return -EFAULT;
3366	return 0;
3367}
3368
3369static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3370				       const siginfo_t __user *from)
3371{
3372	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3373		char __user *expansion = si_expansion(from);
3374		char buf[SI_EXPANSION_SIZE];
3375		int i;
3376		/*
3377		 * An unknown si_code might need more than
3378		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3379		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3380		 * will return this data to userspace exactly.
3381		 */
3382		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3383			return -EFAULT;
3384		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3385			if (buf[i] != 0)
3386				return -E2BIG;
3387		}
3388	}
3389	return 0;
3390}
3391
3392static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3393				    const siginfo_t __user *from)
3394{
3395	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3396		return -EFAULT;
3397	to->si_signo = signo;
3398	return post_copy_siginfo_from_user(to, from);
3399}
3400
3401int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3402{
3403	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404		return -EFAULT;
3405	return post_copy_siginfo_from_user(to, from);
3406}
3407
3408#ifdef CONFIG_COMPAT
3409/**
3410 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3411 * @to: compat siginfo destination
3412 * @from: kernel siginfo source
3413 *
3414 * Note: This function does not work properly for the SIGCHLD on x32, but
3415 * fortunately it doesn't have to.  The only valid callers for this function are
3416 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3417 * The latter does not care because SIGCHLD will never cause a coredump.
3418 */
3419void copy_siginfo_to_external32(struct compat_siginfo *to,
3420		const struct kernel_siginfo *from)
3421{
3422	memset(to, 0, sizeof(*to));
3423
3424	to->si_signo = from->si_signo;
3425	to->si_errno = from->si_errno;
3426	to->si_code  = from->si_code;
3427	switch(siginfo_layout(from->si_signo, from->si_code)) {
3428	case SIL_KILL:
3429		to->si_pid = from->si_pid;
3430		to->si_uid = from->si_uid;
3431		break;
3432	case SIL_TIMER:
3433		to->si_tid     = from->si_tid;
3434		to->si_overrun = from->si_overrun;
3435		to->si_int     = from->si_int;
3436		break;
3437	case SIL_POLL:
3438		to->si_band = from->si_band;
3439		to->si_fd   = from->si_fd;
3440		break;
3441	case SIL_FAULT:
3442		to->si_addr = ptr_to_compat(from->si_addr);
3443		break;
3444	case SIL_FAULT_TRAPNO:
3445		to->si_addr = ptr_to_compat(from->si_addr);
3446		to->si_trapno = from->si_trapno;
3447		break;
3448	case SIL_FAULT_MCEERR:
3449		to->si_addr = ptr_to_compat(from->si_addr);
3450		to->si_addr_lsb = from->si_addr_lsb;
3451		break;
3452	case SIL_FAULT_BNDERR:
3453		to->si_addr = ptr_to_compat(from->si_addr);
3454		to->si_lower = ptr_to_compat(from->si_lower);
3455		to->si_upper = ptr_to_compat(from->si_upper);
3456		break;
3457	case SIL_FAULT_PKUERR:
3458		to->si_addr = ptr_to_compat(from->si_addr);
3459		to->si_pkey = from->si_pkey;
3460		break;
3461	case SIL_FAULT_PERF_EVENT:
3462		to->si_addr = ptr_to_compat(from->si_addr);
3463		to->si_perf_data = from->si_perf_data;
3464		to->si_perf_type = from->si_perf_type;
3465		to->si_perf_flags = from->si_perf_flags;
 
 
 
 
 
 
 
3466		break;
3467	case SIL_CHLD:
3468		to->si_pid = from->si_pid;
3469		to->si_uid = from->si_uid;
3470		to->si_status = from->si_status;
3471		to->si_utime = from->si_utime;
3472		to->si_stime = from->si_stime;
3473		break;
3474	case SIL_RT:
3475		to->si_pid = from->si_pid;
3476		to->si_uid = from->si_uid;
3477		to->si_int = from->si_int;
3478		break;
3479	case SIL_SYS:
3480		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3481		to->si_syscall   = from->si_syscall;
3482		to->si_arch      = from->si_arch;
3483		break;
3484	}
 
3485}
3486
 
 
 
 
 
 
 
3487int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3488			   const struct kernel_siginfo *from)
 
3489{
3490	struct compat_siginfo new;
 
3491
3492	copy_siginfo_to_external32(&new, from);
3493	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3494		return -EFAULT;
3495	return 0;
3496}
3497
3498static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3499					 const struct compat_siginfo *from)
3500{
3501	clear_siginfo(to);
3502	to->si_signo = from->si_signo;
3503	to->si_errno = from->si_errno;
3504	to->si_code  = from->si_code;
3505	switch(siginfo_layout(from->si_signo, from->si_code)) {
3506	case SIL_KILL:
3507		to->si_pid = from->si_pid;
3508		to->si_uid = from->si_uid;
3509		break;
3510	case SIL_TIMER:
3511		to->si_tid     = from->si_tid;
3512		to->si_overrun = from->si_overrun;
3513		to->si_int     = from->si_int;
3514		break;
3515	case SIL_POLL:
3516		to->si_band = from->si_band;
3517		to->si_fd   = from->si_fd;
3518		break;
3519	case SIL_FAULT:
3520		to->si_addr = compat_ptr(from->si_addr);
3521		break;
3522	case SIL_FAULT_TRAPNO:
3523		to->si_addr = compat_ptr(from->si_addr);
3524		to->si_trapno = from->si_trapno;
3525		break;
3526	case SIL_FAULT_MCEERR:
3527		to->si_addr = compat_ptr(from->si_addr);
3528		to->si_addr_lsb = from->si_addr_lsb;
3529		break;
3530	case SIL_FAULT_BNDERR:
3531		to->si_addr = compat_ptr(from->si_addr);
3532		to->si_lower = compat_ptr(from->si_lower);
3533		to->si_upper = compat_ptr(from->si_upper);
3534		break;
3535	case SIL_FAULT_PKUERR:
3536		to->si_addr = compat_ptr(from->si_addr);
3537		to->si_pkey = from->si_pkey;
3538		break;
3539	case SIL_FAULT_PERF_EVENT:
3540		to->si_addr = compat_ptr(from->si_addr);
3541		to->si_perf_data = from->si_perf_data;
3542		to->si_perf_type = from->si_perf_type;
3543		to->si_perf_flags = from->si_perf_flags;
 
3544		break;
3545	case SIL_CHLD:
3546		to->si_pid    = from->si_pid;
3547		to->si_uid    = from->si_uid;
3548		to->si_status = from->si_status;
3549#ifdef CONFIG_X86_X32_ABI
3550		if (in_x32_syscall()) {
3551			to->si_utime = from->_sifields._sigchld_x32._utime;
3552			to->si_stime = from->_sifields._sigchld_x32._stime;
3553		} else
3554#endif
3555		{
3556			to->si_utime = from->si_utime;
3557			to->si_stime = from->si_stime;
3558		}
3559		break;
3560	case SIL_RT:
3561		to->si_pid = from->si_pid;
3562		to->si_uid = from->si_uid;
3563		to->si_int = from->si_int;
3564		break;
3565	case SIL_SYS:
3566		to->si_call_addr = compat_ptr(from->si_call_addr);
3567		to->si_syscall   = from->si_syscall;
3568		to->si_arch      = from->si_arch;
3569		break;
3570	}
3571	return 0;
3572}
3573
3574static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3575				      const struct compat_siginfo __user *ufrom)
3576{
3577	struct compat_siginfo from;
3578
3579	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3580		return -EFAULT;
3581
3582	from.si_signo = signo;
3583	return post_copy_siginfo_from_user32(to, &from);
3584}
3585
3586int copy_siginfo_from_user32(struct kernel_siginfo *to,
3587			     const struct compat_siginfo __user *ufrom)
3588{
3589	struct compat_siginfo from;
3590
3591	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3592		return -EFAULT;
3593
3594	return post_copy_siginfo_from_user32(to, &from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3595}
3596#endif /* CONFIG_COMPAT */
3597
3598/**
3599 *  do_sigtimedwait - wait for queued signals specified in @which
3600 *  @which: queued signals to wait for
3601 *  @info: if non-null, the signal's siginfo is returned here
3602 *  @ts: upper bound on process time suspension
3603 */
3604static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3605		    const struct timespec64 *ts)
3606{
3607	ktime_t *to = NULL, timeout = KTIME_MAX;
3608	struct task_struct *tsk = current;
3609	sigset_t mask = *which;
3610	enum pid_type type;
3611	int sig, ret = 0;
3612
3613	if (ts) {
3614		if (!timespec64_valid(ts))
3615			return -EINVAL;
3616		timeout = timespec64_to_ktime(*ts);
3617		to = &timeout;
3618	}
3619
3620	/*
3621	 * Invert the set of allowed signals to get those we want to block.
3622	 */
3623	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3624	signotset(&mask);
3625
3626	spin_lock_irq(&tsk->sighand->siglock);
3627	sig = dequeue_signal(tsk, &mask, info, &type);
3628	if (!sig && timeout) {
3629		/*
3630		 * None ready, temporarily unblock those we're interested
3631		 * while we are sleeping in so that we'll be awakened when
3632		 * they arrive. Unblocking is always fine, we can avoid
3633		 * set_current_blocked().
3634		 */
3635		tsk->real_blocked = tsk->blocked;
3636		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3637		recalc_sigpending();
3638		spin_unlock_irq(&tsk->sighand->siglock);
3639
3640		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3641		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3642					       HRTIMER_MODE_REL);
3643		spin_lock_irq(&tsk->sighand->siglock);
3644		__set_task_blocked(tsk, &tsk->real_blocked);
3645		sigemptyset(&tsk->real_blocked);
3646		sig = dequeue_signal(tsk, &mask, info, &type);
3647	}
3648	spin_unlock_irq(&tsk->sighand->siglock);
3649
3650	if (sig)
3651		return sig;
3652	return ret ? -EINTR : -EAGAIN;
3653}
3654
3655/**
3656 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3657 *			in @uthese
3658 *  @uthese: queued signals to wait for
3659 *  @uinfo: if non-null, the signal's siginfo is returned here
3660 *  @uts: upper bound on process time suspension
3661 *  @sigsetsize: size of sigset_t type
3662 */
3663SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3664		siginfo_t __user *, uinfo,
3665		const struct __kernel_timespec __user *, uts,
3666		size_t, sigsetsize)
3667{
3668	sigset_t these;
3669	struct timespec64 ts;
3670	kernel_siginfo_t info;
3671	int ret;
3672
3673	/* XXX: Don't preclude handling different sized sigset_t's.  */
3674	if (sigsetsize != sizeof(sigset_t))
3675		return -EINVAL;
3676
3677	if (copy_from_user(&these, uthese, sizeof(these)))
3678		return -EFAULT;
3679
3680	if (uts) {
3681		if (get_timespec64(&ts, uts))
3682			return -EFAULT;
3683	}
3684
3685	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3686
3687	if (ret > 0 && uinfo) {
3688		if (copy_siginfo_to_user(uinfo, &info))
3689			ret = -EFAULT;
3690	}
3691
3692	return ret;
3693}
3694
3695#ifdef CONFIG_COMPAT_32BIT_TIME
3696SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3697		siginfo_t __user *, uinfo,
3698		const struct old_timespec32 __user *, uts,
3699		size_t, sigsetsize)
3700{
3701	sigset_t these;
3702	struct timespec64 ts;
3703	kernel_siginfo_t info;
3704	int ret;
3705
3706	if (sigsetsize != sizeof(sigset_t))
3707		return -EINVAL;
3708
3709	if (copy_from_user(&these, uthese, sizeof(these)))
3710		return -EFAULT;
3711
3712	if (uts) {
3713		if (get_old_timespec32(&ts, uts))
3714			return -EFAULT;
3715	}
3716
3717	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3718
3719	if (ret > 0 && uinfo) {
3720		if (copy_siginfo_to_user(uinfo, &info))
3721			ret = -EFAULT;
3722	}
3723
3724	return ret;
3725}
3726#endif
3727
3728#ifdef CONFIG_COMPAT
3729COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3730		struct compat_siginfo __user *, uinfo,
3731		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3732{
3733	sigset_t s;
3734	struct timespec64 t;
3735	kernel_siginfo_t info;
3736	long ret;
3737
3738	if (sigsetsize != sizeof(sigset_t))
3739		return -EINVAL;
3740
3741	if (get_compat_sigset(&s, uthese))
3742		return -EFAULT;
3743
3744	if (uts) {
3745		if (get_timespec64(&t, uts))
3746			return -EFAULT;
3747	}
3748
3749	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3750
3751	if (ret > 0 && uinfo) {
3752		if (copy_siginfo_to_user32(uinfo, &info))
3753			ret = -EFAULT;
3754	}
3755
3756	return ret;
3757}
3758
3759#ifdef CONFIG_COMPAT_32BIT_TIME
3760COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3761		struct compat_siginfo __user *, uinfo,
3762		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3763{
3764	sigset_t s;
3765	struct timespec64 t;
3766	kernel_siginfo_t info;
3767	long ret;
3768
3769	if (sigsetsize != sizeof(sigset_t))
3770		return -EINVAL;
3771
3772	if (get_compat_sigset(&s, uthese))
3773		return -EFAULT;
3774
3775	if (uts) {
3776		if (get_old_timespec32(&t, uts))
3777			return -EFAULT;
3778	}
3779
3780	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3781
3782	if (ret > 0 && uinfo) {
3783		if (copy_siginfo_to_user32(uinfo, &info))
3784			ret = -EFAULT;
3785	}
3786
3787	return ret;
3788}
3789#endif
3790#endif
3791
3792static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3793{
3794	clear_siginfo(info);
3795	info->si_signo = sig;
3796	info->si_errno = 0;
3797	info->si_code = SI_USER;
3798	info->si_pid = task_tgid_vnr(current);
3799	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800}
3801
3802/**
3803 *  sys_kill - send a signal to a process
3804 *  @pid: the PID of the process
3805 *  @sig: signal to be sent
3806 */
3807SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3808{
3809	struct kernel_siginfo info;
3810
3811	prepare_kill_siginfo(sig, &info);
 
 
 
 
 
3812
3813	return kill_something_info(sig, &info, pid);
3814}
3815
3816/*
3817 * Verify that the signaler and signalee either are in the same pid namespace
3818 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3819 * namespace.
3820 */
3821static bool access_pidfd_pidns(struct pid *pid)
3822{
3823	struct pid_namespace *active = task_active_pid_ns(current);
3824	struct pid_namespace *p = ns_of_pid(pid);
3825
3826	for (;;) {
3827		if (!p)
3828			return false;
3829		if (p == active)
3830			break;
3831		p = p->parent;
3832	}
3833
3834	return true;
3835}
3836
3837static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3838		siginfo_t __user *info)
3839{
3840#ifdef CONFIG_COMPAT
3841	/*
3842	 * Avoid hooking up compat syscalls and instead handle necessary
3843	 * conversions here. Note, this is a stop-gap measure and should not be
3844	 * considered a generic solution.
3845	 */
3846	if (in_compat_syscall())
3847		return copy_siginfo_from_user32(
3848			kinfo, (struct compat_siginfo __user *)info);
3849#endif
3850	return copy_siginfo_from_user(kinfo, info);
3851}
3852
3853static struct pid *pidfd_to_pid(const struct file *file)
3854{
3855	struct pid *pid;
3856
3857	pid = pidfd_pid(file);
3858	if (!IS_ERR(pid))
3859		return pid;
3860
3861	return tgid_pidfd_to_pid(file);
3862}
3863
3864/**
3865 * sys_pidfd_send_signal - Signal a process through a pidfd
3866 * @pidfd:  file descriptor of the process
3867 * @sig:    signal to send
3868 * @info:   signal info
3869 * @flags:  future flags
3870 *
3871 * The syscall currently only signals via PIDTYPE_PID which covers
3872 * kill(<positive-pid>, <signal>. It does not signal threads or process
3873 * groups.
3874 * In order to extend the syscall to threads and process groups the @flags
3875 * argument should be used. In essence, the @flags argument will determine
3876 * what is signaled and not the file descriptor itself. Put in other words,
3877 * grouping is a property of the flags argument not a property of the file
3878 * descriptor.
3879 *
3880 * Return: 0 on success, negative errno on failure
3881 */
3882SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3883		siginfo_t __user *, info, unsigned int, flags)
3884{
3885	int ret;
3886	struct fd f;
3887	struct pid *pid;
3888	kernel_siginfo_t kinfo;
3889
3890	/* Enforce flags be set to 0 until we add an extension. */
3891	if (flags)
3892		return -EINVAL;
3893
3894	f = fdget(pidfd);
3895	if (!f.file)
3896		return -EBADF;
3897
3898	/* Is this a pidfd? */
3899	pid = pidfd_to_pid(f.file);
3900	if (IS_ERR(pid)) {
3901		ret = PTR_ERR(pid);
3902		goto err;
3903	}
3904
3905	ret = -EINVAL;
3906	if (!access_pidfd_pidns(pid))
3907		goto err;
3908
3909	if (info) {
3910		ret = copy_siginfo_from_user_any(&kinfo, info);
3911		if (unlikely(ret))
3912			goto err;
3913
3914		ret = -EINVAL;
3915		if (unlikely(sig != kinfo.si_signo))
3916			goto err;
3917
3918		/* Only allow sending arbitrary signals to yourself. */
3919		ret = -EPERM;
3920		if ((task_pid(current) != pid) &&
3921		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3922			goto err;
3923	} else {
3924		prepare_kill_siginfo(sig, &kinfo);
3925	}
3926
3927	ret = kill_pid_info(sig, &kinfo, pid);
3928
3929err:
3930	fdput(f);
3931	return ret;
3932}
3933
3934static int
3935do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3936{
3937	struct task_struct *p;
3938	int error = -ESRCH;
3939
3940	rcu_read_lock();
3941	p = find_task_by_vpid(pid);
3942	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3943		error = check_kill_permission(sig, info, p);
3944		/*
3945		 * The null signal is a permissions and process existence
3946		 * probe.  No signal is actually delivered.
3947		 */
3948		if (!error && sig) {
3949			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3950			/*
3951			 * If lock_task_sighand() failed we pretend the task
3952			 * dies after receiving the signal. The window is tiny,
3953			 * and the signal is private anyway.
3954			 */
3955			if (unlikely(error == -ESRCH))
3956				error = 0;
3957		}
3958	}
3959	rcu_read_unlock();
3960
3961	return error;
3962}
3963
3964static int do_tkill(pid_t tgid, pid_t pid, int sig)
3965{
3966	struct kernel_siginfo info;
3967
3968	clear_siginfo(&info);
3969	info.si_signo = sig;
3970	info.si_errno = 0;
3971	info.si_code = SI_TKILL;
3972	info.si_pid = task_tgid_vnr(current);
3973	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3974
3975	return do_send_specific(tgid, pid, sig, &info);
3976}
3977
3978/**
3979 *  sys_tgkill - send signal to one specific thread
3980 *  @tgid: the thread group ID of the thread
3981 *  @pid: the PID of the thread
3982 *  @sig: signal to be sent
3983 *
3984 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3985 *  exists but it's not belonging to the target process anymore. This
3986 *  method solves the problem of threads exiting and PIDs getting reused.
3987 */
3988SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3989{
3990	/* This is only valid for single tasks */
3991	if (pid <= 0 || tgid <= 0)
3992		return -EINVAL;
3993
3994	return do_tkill(tgid, pid, sig);
3995}
3996
3997/**
3998 *  sys_tkill - send signal to one specific task
3999 *  @pid: the PID of the task
4000 *  @sig: signal to be sent
4001 *
4002 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4003 */
4004SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4005{
4006	/* This is only valid for single tasks */
4007	if (pid <= 0)
4008		return -EINVAL;
4009
4010	return do_tkill(0, pid, sig);
4011}
4012
4013static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4014{
4015	/* Not even root can pretend to send signals from the kernel.
4016	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4017	 */
4018	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4019	    (task_pid_vnr(current) != pid))
4020		return -EPERM;
4021
 
 
4022	/* POSIX.1b doesn't mention process groups.  */
4023	return kill_proc_info(sig, info, pid);
4024}
4025
4026/**
4027 *  sys_rt_sigqueueinfo - send signal information to a signal
4028 *  @pid: the PID of the thread
4029 *  @sig: signal to be sent
4030 *  @uinfo: signal info to be sent
4031 */
4032SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4033		siginfo_t __user *, uinfo)
4034{
4035	kernel_siginfo_t info;
4036	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4037	if (unlikely(ret))
4038		return ret;
4039	return do_rt_sigqueueinfo(pid, sig, &info);
4040}
4041
4042#ifdef CONFIG_COMPAT
4043COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4044			compat_pid_t, pid,
4045			int, sig,
4046			struct compat_siginfo __user *, uinfo)
4047{
4048	kernel_siginfo_t info;
4049	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4050	if (unlikely(ret))
4051		return ret;
4052	return do_rt_sigqueueinfo(pid, sig, &info);
4053}
4054#endif
4055
4056static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4057{
4058	/* This is only valid for single tasks */
4059	if (pid <= 0 || tgid <= 0)
4060		return -EINVAL;
4061
4062	/* Not even root can pretend to send signals from the kernel.
4063	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4064	 */
4065	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4066	    (task_pid_vnr(current) != pid))
4067		return -EPERM;
4068
 
 
4069	return do_send_specific(tgid, pid, sig, info);
4070}
4071
4072SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4073		siginfo_t __user *, uinfo)
4074{
4075	kernel_siginfo_t info;
4076	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077	if (unlikely(ret))
4078		return ret;
 
4079	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4084			compat_pid_t, tgid,
4085			compat_pid_t, pid,
4086			int, sig,
4087			struct compat_siginfo __user *, uinfo)
4088{
4089	kernel_siginfo_t info;
4090	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4091	if (unlikely(ret))
4092		return ret;
4093	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4094}
4095#endif
4096
4097/*
4098 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4099 */
4100void kernel_sigaction(int sig, __sighandler_t action)
4101{
4102	spin_lock_irq(&current->sighand->siglock);
4103	current->sighand->action[sig - 1].sa.sa_handler = action;
4104	if (action == SIG_IGN) {
4105		sigset_t mask;
4106
4107		sigemptyset(&mask);
4108		sigaddset(&mask, sig);
4109
4110		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4111		flush_sigqueue_mask(&mask, &current->pending);
4112		recalc_sigpending();
4113	}
4114	spin_unlock_irq(&current->sighand->siglock);
4115}
4116EXPORT_SYMBOL(kernel_sigaction);
4117
4118void __weak sigaction_compat_abi(struct k_sigaction *act,
4119		struct k_sigaction *oact)
4120{
4121}
4122
4123int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4124{
4125	struct task_struct *p = current, *t;
4126	struct k_sigaction *k;
4127	sigset_t mask;
4128
4129	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4130		return -EINVAL;
4131
4132	k = &p->sighand->action[sig-1];
4133
4134	spin_lock_irq(&p->sighand->siglock);
4135	if (k->sa.sa_flags & SA_IMMUTABLE) {
4136		spin_unlock_irq(&p->sighand->siglock);
4137		return -EINVAL;
4138	}
4139	if (oact)
4140		*oact = *k;
4141
4142	/*
4143	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4144	 * e.g. by having an architecture use the bit in their uapi.
4145	 */
4146	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4147
4148	/*
4149	 * Clear unknown flag bits in order to allow userspace to detect missing
4150	 * support for flag bits and to allow the kernel to use non-uapi bits
4151	 * internally.
4152	 */
4153	if (act)
4154		act->sa.sa_flags &= UAPI_SA_FLAGS;
4155	if (oact)
4156		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4157
4158	sigaction_compat_abi(act, oact);
4159
4160	if (act) {
4161		sigdelsetmask(&act->sa.sa_mask,
4162			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4163		*k = *act;
4164		/*
4165		 * POSIX 3.3.1.3:
4166		 *  "Setting a signal action to SIG_IGN for a signal that is
4167		 *   pending shall cause the pending signal to be discarded,
4168		 *   whether or not it is blocked."
4169		 *
4170		 *  "Setting a signal action to SIG_DFL for a signal that is
4171		 *   pending and whose default action is to ignore the signal
4172		 *   (for example, SIGCHLD), shall cause the pending signal to
4173		 *   be discarded, whether or not it is blocked"
4174		 */
4175		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4176			sigemptyset(&mask);
4177			sigaddset(&mask, sig);
4178			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4179			for_each_thread(p, t)
4180				flush_sigqueue_mask(&mask, &t->pending);
4181		}
4182	}
4183
4184	spin_unlock_irq(&p->sighand->siglock);
4185	return 0;
4186}
4187
4188#ifdef CONFIG_DYNAMIC_SIGFRAME
4189static inline void sigaltstack_lock(void)
4190	__acquires(&current->sighand->siglock)
4191{
4192	spin_lock_irq(&current->sighand->siglock);
4193}
4194
4195static inline void sigaltstack_unlock(void)
4196	__releases(&current->sighand->siglock)
4197{
4198	spin_unlock_irq(&current->sighand->siglock);
4199}
4200#else
4201static inline void sigaltstack_lock(void) { }
4202static inline void sigaltstack_unlock(void) { }
4203#endif
4204
4205static int
4206do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4207		size_t min_ss_size)
4208{
4209	struct task_struct *t = current;
4210	int ret = 0;
4211
4212	if (oss) {
4213		memset(oss, 0, sizeof(stack_t));
4214		oss->ss_sp = (void __user *) t->sas_ss_sp;
4215		oss->ss_size = t->sas_ss_size;
4216		oss->ss_flags = sas_ss_flags(sp) |
4217			(current->sas_ss_flags & SS_FLAG_BITS);
4218	}
4219
4220	if (ss) {
4221		void __user *ss_sp = ss->ss_sp;
4222		size_t ss_size = ss->ss_size;
4223		unsigned ss_flags = ss->ss_flags;
4224		int ss_mode;
4225
4226		if (unlikely(on_sig_stack(sp)))
4227			return -EPERM;
4228
4229		ss_mode = ss_flags & ~SS_FLAG_BITS;
4230		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4231				ss_mode != 0))
4232			return -EINVAL;
4233
4234		/*
4235		 * Return before taking any locks if no actual
4236		 * sigaltstack changes were requested.
4237		 */
4238		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4239		    t->sas_ss_size == ss_size &&
4240		    t->sas_ss_flags == ss_flags)
4241			return 0;
4242
4243		sigaltstack_lock();
4244		if (ss_mode == SS_DISABLE) {
4245			ss_size = 0;
4246			ss_sp = NULL;
4247		} else {
4248			if (unlikely(ss_size < min_ss_size))
4249				ret = -ENOMEM;
4250			if (!sigaltstack_size_valid(ss_size))
4251				ret = -ENOMEM;
4252		}
4253		if (!ret) {
4254			t->sas_ss_sp = (unsigned long) ss_sp;
4255			t->sas_ss_size = ss_size;
4256			t->sas_ss_flags = ss_flags;
4257		}
4258		sigaltstack_unlock();
4259	}
4260	return ret;
4261}
4262
4263SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4264{
4265	stack_t new, old;
4266	int err;
4267	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4268		return -EFAULT;
4269	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4270			      current_user_stack_pointer(),
4271			      MINSIGSTKSZ);
4272	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4273		err = -EFAULT;
4274	return err;
4275}
4276
4277int restore_altstack(const stack_t __user *uss)
4278{
4279	stack_t new;
4280	if (copy_from_user(&new, uss, sizeof(stack_t)))
4281		return -EFAULT;
4282	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4283			     MINSIGSTKSZ);
4284	/* squash all but EFAULT for now */
4285	return 0;
4286}
4287
4288int __save_altstack(stack_t __user *uss, unsigned long sp)
4289{
4290	struct task_struct *t = current;
4291	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4292		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4293		__put_user(t->sas_ss_size, &uss->ss_size);
4294	return err;
 
 
 
 
4295}
4296
4297#ifdef CONFIG_COMPAT
4298static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4299				 compat_stack_t __user *uoss_ptr)
4300{
4301	stack_t uss, uoss;
4302	int ret;
4303
4304	if (uss_ptr) {
4305		compat_stack_t uss32;
4306		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4307			return -EFAULT;
4308		uss.ss_sp = compat_ptr(uss32.ss_sp);
4309		uss.ss_flags = uss32.ss_flags;
4310		uss.ss_size = uss32.ss_size;
4311	}
4312	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4313			     compat_user_stack_pointer(),
4314			     COMPAT_MINSIGSTKSZ);
4315	if (ret >= 0 && uoss_ptr)  {
4316		compat_stack_t old;
4317		memset(&old, 0, sizeof(old));
4318		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4319		old.ss_flags = uoss.ss_flags;
4320		old.ss_size = uoss.ss_size;
4321		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4322			ret = -EFAULT;
4323	}
4324	return ret;
4325}
4326
4327COMPAT_SYSCALL_DEFINE2(sigaltstack,
4328			const compat_stack_t __user *, uss_ptr,
4329			compat_stack_t __user *, uoss_ptr)
4330{
4331	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4332}
4333
4334int compat_restore_altstack(const compat_stack_t __user *uss)
4335{
4336	int err = do_compat_sigaltstack(uss, NULL);
4337	/* squash all but -EFAULT for now */
4338	return err == -EFAULT ? err : 0;
4339}
4340
4341int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4342{
4343	int err;
4344	struct task_struct *t = current;
4345	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4346			 &uss->ss_sp) |
4347		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4348		__put_user(t->sas_ss_size, &uss->ss_size);
4349	return err;
 
 
 
 
4350}
4351#endif
4352
4353#ifdef __ARCH_WANT_SYS_SIGPENDING
4354
4355/**
4356 *  sys_sigpending - examine pending signals
4357 *  @uset: where mask of pending signal is returned
4358 */
4359SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4360{
4361	sigset_t set;
 
4362
4363	if (sizeof(old_sigset_t) > sizeof(*uset))
4364		return -EINVAL;
4365
4366	do_sigpending(&set);
4367
4368	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4369		return -EFAULT;
4370
4371	return 0;
4372}
4373
4374#ifdef CONFIG_COMPAT
4375COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4376{
4377	sigset_t set;
4378
4379	do_sigpending(&set);
4380
4381	return put_user(set.sig[0], set32);
4382}
4383#endif
4384
4385#endif
4386
4387#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4388/**
4389 *  sys_sigprocmask - examine and change blocked signals
4390 *  @how: whether to add, remove, or set signals
4391 *  @nset: signals to add or remove (if non-null)
4392 *  @oset: previous value of signal mask if non-null
4393 *
4394 * Some platforms have their own version with special arguments;
4395 * others support only sys_rt_sigprocmask.
4396 */
4397
4398SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4399		old_sigset_t __user *, oset)
4400{
4401	old_sigset_t old_set, new_set;
4402	sigset_t new_blocked;
4403
4404	old_set = current->blocked.sig[0];
4405
4406	if (nset) {
4407		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4408			return -EFAULT;
4409
4410		new_blocked = current->blocked;
4411
4412		switch (how) {
4413		case SIG_BLOCK:
4414			sigaddsetmask(&new_blocked, new_set);
4415			break;
4416		case SIG_UNBLOCK:
4417			sigdelsetmask(&new_blocked, new_set);
4418			break;
4419		case SIG_SETMASK:
4420			new_blocked.sig[0] = new_set;
4421			break;
4422		default:
4423			return -EINVAL;
4424		}
4425
4426		set_current_blocked(&new_blocked);
4427	}
4428
4429	if (oset) {
4430		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4431			return -EFAULT;
4432	}
4433
4434	return 0;
4435}
4436#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4437
4438#ifndef CONFIG_ODD_RT_SIGACTION
4439/**
4440 *  sys_rt_sigaction - alter an action taken by a process
4441 *  @sig: signal to be sent
4442 *  @act: new sigaction
4443 *  @oact: used to save the previous sigaction
4444 *  @sigsetsize: size of sigset_t type
4445 */
4446SYSCALL_DEFINE4(rt_sigaction, int, sig,
4447		const struct sigaction __user *, act,
4448		struct sigaction __user *, oact,
4449		size_t, sigsetsize)
4450{
4451	struct k_sigaction new_sa, old_sa;
4452	int ret;
4453
4454	/* XXX: Don't preclude handling different sized sigset_t's.  */
4455	if (sigsetsize != sizeof(sigset_t))
4456		return -EINVAL;
4457
4458	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4459		return -EFAULT;
 
 
4460
4461	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4462	if (ret)
4463		return ret;
4464
4465	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4466		return -EFAULT;
4467
4468	return 0;
 
 
 
 
 
4469}
4470#ifdef CONFIG_COMPAT
4471COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4472		const struct compat_sigaction __user *, act,
4473		struct compat_sigaction __user *, oact,
4474		compat_size_t, sigsetsize)
4475{
4476	struct k_sigaction new_ka, old_ka;
4477#ifdef __ARCH_HAS_SA_RESTORER
4478	compat_uptr_t restorer;
4479#endif
4480	int ret;
4481
4482	/* XXX: Don't preclude handling different sized sigset_t's.  */
4483	if (sigsetsize != sizeof(compat_sigset_t))
4484		return -EINVAL;
4485
4486	if (act) {
4487		compat_uptr_t handler;
4488		ret = get_user(handler, &act->sa_handler);
4489		new_ka.sa.sa_handler = compat_ptr(handler);
4490#ifdef __ARCH_HAS_SA_RESTORER
4491		ret |= get_user(restorer, &act->sa_restorer);
4492		new_ka.sa.sa_restorer = compat_ptr(restorer);
4493#endif
4494		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4495		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4496		if (ret)
4497			return -EFAULT;
4498	}
4499
4500	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4501	if (!ret && oact) {
4502		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4503			       &oact->sa_handler);
4504		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4505					 sizeof(oact->sa_mask));
4506		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4507#ifdef __ARCH_HAS_SA_RESTORER
4508		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4509				&oact->sa_restorer);
4510#endif
4511	}
4512	return ret;
4513}
4514#endif
4515#endif /* !CONFIG_ODD_RT_SIGACTION */
4516
4517#ifdef CONFIG_OLD_SIGACTION
4518SYSCALL_DEFINE3(sigaction, int, sig,
4519		const struct old_sigaction __user *, act,
4520	        struct old_sigaction __user *, oact)
4521{
4522	struct k_sigaction new_ka, old_ka;
4523	int ret;
4524
4525	if (act) {
4526		old_sigset_t mask;
4527		if (!access_ok(act, sizeof(*act)) ||
4528		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4529		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4530		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531		    __get_user(mask, &act->sa_mask))
4532			return -EFAULT;
4533#ifdef __ARCH_HAS_KA_RESTORER
4534		new_ka.ka_restorer = NULL;
4535#endif
4536		siginitset(&new_ka.sa.sa_mask, mask);
4537	}
4538
4539	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4540
4541	if (!ret && oact) {
4542		if (!access_ok(oact, sizeof(*oact)) ||
4543		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4544		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4545		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4546		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4547			return -EFAULT;
4548	}
4549
4550	return ret;
4551}
4552#endif
4553#ifdef CONFIG_COMPAT_OLD_SIGACTION
4554COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4555		const struct compat_old_sigaction __user *, act,
4556	        struct compat_old_sigaction __user *, oact)
4557{
4558	struct k_sigaction new_ka, old_ka;
4559	int ret;
4560	compat_old_sigset_t mask;
4561	compat_uptr_t handler, restorer;
4562
4563	if (act) {
4564		if (!access_ok(act, sizeof(*act)) ||
4565		    __get_user(handler, &act->sa_handler) ||
4566		    __get_user(restorer, &act->sa_restorer) ||
4567		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4568		    __get_user(mask, &act->sa_mask))
4569			return -EFAULT;
4570
4571#ifdef __ARCH_HAS_KA_RESTORER
4572		new_ka.ka_restorer = NULL;
4573#endif
4574		new_ka.sa.sa_handler = compat_ptr(handler);
4575		new_ka.sa.sa_restorer = compat_ptr(restorer);
4576		siginitset(&new_ka.sa.sa_mask, mask);
4577	}
4578
4579	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581	if (!ret && oact) {
4582		if (!access_ok(oact, sizeof(*oact)) ||
4583		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4584			       &oact->sa_handler) ||
4585		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4586			       &oact->sa_restorer) ||
4587		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4588		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4589			return -EFAULT;
4590	}
4591	return ret;
4592}
4593#endif
4594
4595#ifdef CONFIG_SGETMASK_SYSCALL
4596
4597/*
4598 * For backwards compatibility.  Functionality superseded by sigprocmask.
4599 */
4600SYSCALL_DEFINE0(sgetmask)
4601{
4602	/* SMP safe */
4603	return current->blocked.sig[0];
4604}
4605
4606SYSCALL_DEFINE1(ssetmask, int, newmask)
4607{
4608	int old = current->blocked.sig[0];
4609	sigset_t newset;
4610
4611	siginitset(&newset, newmask);
4612	set_current_blocked(&newset);
4613
4614	return old;
4615}
4616#endif /* CONFIG_SGETMASK_SYSCALL */
4617
4618#ifdef __ARCH_WANT_SYS_SIGNAL
4619/*
4620 * For backwards compatibility.  Functionality superseded by sigaction.
4621 */
4622SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4623{
4624	struct k_sigaction new_sa, old_sa;
4625	int ret;
4626
4627	new_sa.sa.sa_handler = handler;
4628	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4629	sigemptyset(&new_sa.sa.sa_mask);
4630
4631	ret = do_sigaction(sig, &new_sa, &old_sa);
4632
4633	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4634}
4635#endif /* __ARCH_WANT_SYS_SIGNAL */
4636
4637#ifdef __ARCH_WANT_SYS_PAUSE
4638
4639SYSCALL_DEFINE0(pause)
4640{
4641	while (!signal_pending(current)) {
4642		__set_current_state(TASK_INTERRUPTIBLE);
4643		schedule();
4644	}
4645	return -ERESTARTNOHAND;
4646}
4647
4648#endif
4649
4650static int sigsuspend(sigset_t *set)
4651{
4652	current->saved_sigmask = current->blocked;
4653	set_current_blocked(set);
4654
4655	while (!signal_pending(current)) {
4656		__set_current_state(TASK_INTERRUPTIBLE);
4657		schedule();
4658	}
4659	set_restore_sigmask();
4660	return -ERESTARTNOHAND;
4661}
4662
4663/**
4664 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4665 *	@unewset value until a signal is received
4666 *  @unewset: new signal mask value
4667 *  @sigsetsize: size of sigset_t type
4668 */
4669SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4670{
4671	sigset_t newset;
4672
4673	/* XXX: Don't preclude handling different sized sigset_t's.  */
4674	if (sigsetsize != sizeof(sigset_t))
4675		return -EINVAL;
4676
4677	if (copy_from_user(&newset, unewset, sizeof(newset)))
4678		return -EFAULT;
4679	return sigsuspend(&newset);
4680}
4681 
4682#ifdef CONFIG_COMPAT
4683COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4684{
4685	sigset_t newset;
4686
4687	/* XXX: Don't preclude handling different sized sigset_t's.  */
4688	if (sigsetsize != sizeof(sigset_t))
4689		return -EINVAL;
4690
4691	if (get_compat_sigset(&newset, unewset))
4692		return -EFAULT;
4693	return sigsuspend(&newset);
4694}
4695#endif
4696
4697#ifdef CONFIG_OLD_SIGSUSPEND
4698SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4699{
4700	sigset_t blocked;
4701	siginitset(&blocked, mask);
4702	return sigsuspend(&blocked);
4703}
4704#endif
4705#ifdef CONFIG_OLD_SIGSUSPEND3
4706SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4707{
4708	sigset_t blocked;
4709	siginitset(&blocked, mask);
4710	return sigsuspend(&blocked);
4711}
4712#endif
4713
4714__weak const char *arch_vma_name(struct vm_area_struct *vma)
4715{
4716	return NULL;
4717}
4718
4719static inline void siginfo_buildtime_checks(void)
4720{
4721	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4722
4723	/* Verify the offsets in the two siginfos match */
4724#define CHECK_OFFSET(field) \
4725	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4726
4727	/* kill */
4728	CHECK_OFFSET(si_pid);
4729	CHECK_OFFSET(si_uid);
4730
4731	/* timer */
4732	CHECK_OFFSET(si_tid);
4733	CHECK_OFFSET(si_overrun);
4734	CHECK_OFFSET(si_value);
4735
4736	/* rt */
4737	CHECK_OFFSET(si_pid);
4738	CHECK_OFFSET(si_uid);
4739	CHECK_OFFSET(si_value);
4740
4741	/* sigchld */
4742	CHECK_OFFSET(si_pid);
4743	CHECK_OFFSET(si_uid);
4744	CHECK_OFFSET(si_status);
4745	CHECK_OFFSET(si_utime);
4746	CHECK_OFFSET(si_stime);
4747
4748	/* sigfault */
4749	CHECK_OFFSET(si_addr);
4750	CHECK_OFFSET(si_trapno);
4751	CHECK_OFFSET(si_addr_lsb);
4752	CHECK_OFFSET(si_lower);
4753	CHECK_OFFSET(si_upper);
4754	CHECK_OFFSET(si_pkey);
4755	CHECK_OFFSET(si_perf_data);
4756	CHECK_OFFSET(si_perf_type);
4757	CHECK_OFFSET(si_perf_flags);
4758
4759	/* sigpoll */
4760	CHECK_OFFSET(si_band);
4761	CHECK_OFFSET(si_fd);
4762
4763	/* sigsys */
4764	CHECK_OFFSET(si_call_addr);
4765	CHECK_OFFSET(si_syscall);
4766	CHECK_OFFSET(si_arch);
4767#undef CHECK_OFFSET
4768
4769	/* usb asyncio */
4770	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4771		     offsetof(struct siginfo, si_addr));
4772	if (sizeof(int) == sizeof(void __user *)) {
4773		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4774			     sizeof(void __user *));
4775	} else {
4776		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4777			      sizeof_field(struct siginfo, si_uid)) !=
4778			     sizeof(void __user *));
4779		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4780			     offsetof(struct siginfo, si_uid));
4781	}
4782#ifdef CONFIG_COMPAT
4783	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4784		     offsetof(struct compat_siginfo, si_addr));
4785	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4786		     sizeof(compat_uptr_t));
4787	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4788		     sizeof_field(struct siginfo, si_pid));
4789#endif
4790}
4791
4792#if defined(CONFIG_SYSCTL)
4793static struct ctl_table signal_debug_table[] = {
4794#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4795	{
4796		.procname	= "exception-trace",
4797		.data		= &show_unhandled_signals,
4798		.maxlen		= sizeof(int),
4799		.mode		= 0644,
4800		.proc_handler	= proc_dointvec
4801	},
4802#endif
4803	{ }
4804};
4805
4806static int __init init_signal_sysctls(void)
4807{
4808	register_sysctl_init("debug", signal_debug_table);
4809	return 0;
4810}
4811early_initcall(init_signal_sysctls);
4812#endif /* CONFIG_SYSCTL */
4813
4814void __init signals_init(void)
4815{
4816	siginfo_buildtime_checks();
 
 
 
4817
4818	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4819}
4820
4821#ifdef CONFIG_KGDB_KDB
4822#include <linux/kdb.h>
4823/*
4824 * kdb_send_sig - Allows kdb to send signals without exposing
4825 * signal internals.  This function checks if the required locks are
4826 * available before calling the main signal code, to avoid kdb
4827 * deadlocks.
4828 */
4829void kdb_send_sig(struct task_struct *t, int sig)
4830{
4831	static struct task_struct *kdb_prev_t;
4832	int new_t, ret;
4833	if (!spin_trylock(&t->sighand->siglock)) {
4834		kdb_printf("Can't do kill command now.\n"
4835			   "The sigmask lock is held somewhere else in "
4836			   "kernel, try again later\n");
4837		return;
4838	}
4839	new_t = kdb_prev_t != t;
4840	kdb_prev_t = t;
4841	if (!task_is_running(t) && new_t) {
4842		spin_unlock(&t->sighand->siglock);
4843		kdb_printf("Process is not RUNNING, sending a signal from "
4844			   "kdb risks deadlock\n"
4845			   "on the run queue locks. "
4846			   "The signal has _not_ been sent.\n"
4847			   "Reissue the kill command if you want to risk "
4848			   "the deadlock.\n");
4849		return;
4850	}
4851	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4852	spin_unlock(&t->sighand->siglock);
4853	if (ret)
4854		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4855			   sig, t->pid);
4856	else
4857		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4858}
4859#endif	/* CONFIG_KGDB_KDB */
v4.17
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/user.h>
  18#include <linux/sched/debug.h>
  19#include <linux/sched/task.h>
  20#include <linux/sched/task_stack.h>
  21#include <linux/sched/cputime.h>
 
  22#include <linux/fs.h>
 
 
  23#include <linux/tty.h>
  24#include <linux/binfmts.h>
  25#include <linux/coredump.h>
  26#include <linux/security.h>
  27#include <linux/syscalls.h>
  28#include <linux/ptrace.h>
  29#include <linux/signal.h>
  30#include <linux/signalfd.h>
  31#include <linux/ratelimit.h>
  32#include <linux/tracehook.h>
  33#include <linux/capability.h>
  34#include <linux/freezer.h>
  35#include <linux/pid_namespace.h>
  36#include <linux/nsproxy.h>
  37#include <linux/user_namespace.h>
  38#include <linux/uprobes.h>
  39#include <linux/compat.h>
  40#include <linux/cn_proc.h>
  41#include <linux/compiler.h>
  42#include <linux/posix-timers.h>
  43#include <linux/livepatch.h>
 
 
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/signal.h>
  47
  48#include <asm/param.h>
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/siginfo.h>
  52#include <asm/cacheflush.h>
  53#include "audit.h"	/* audit_signal_info() */
  54
  55/*
  56 * SLAB caches for signal bits.
  57 */
  58
  59static struct kmem_cache *sigqueue_cachep;
  60
  61int print_fatal_signals __read_mostly;
  62
  63static void __user *sig_handler(struct task_struct *t, int sig)
  64{
  65	return t->sighand->action[sig - 1].sa.sa_handler;
  66}
  67
  68static int sig_handler_ignored(void __user *handler, int sig)
  69{
  70	/* Is it explicitly or implicitly ignored? */
  71	return handler == SIG_IGN ||
  72		(handler == SIG_DFL && sig_kernel_ignore(sig));
  73}
  74
  75static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  76{
  77	void __user *handler;
  78
  79	handler = sig_handler(t, sig);
  80
 
 
 
 
  81	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  82	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  83		return 1;
 
 
 
 
 
  84
  85	return sig_handler_ignored(handler, sig);
  86}
  87
  88static int sig_ignored(struct task_struct *t, int sig, bool force)
  89{
  90	/*
  91	 * Blocked signals are never ignored, since the
  92	 * signal handler may change by the time it is
  93	 * unblocked.
  94	 */
  95	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  96		return 0;
  97
  98	/*
  99	 * Tracers may want to know about even ignored signal unless it
 100	 * is SIGKILL which can't be reported anyway but can be ignored
 101	 * by SIGNAL_UNKILLABLE task.
 102	 */
 103	if (t->ptrace && sig != SIGKILL)
 104		return 0;
 105
 106	return sig_task_ignored(t, sig, force);
 107}
 108
 109/*
 110 * Re-calculate pending state from the set of locally pending
 111 * signals, globally pending signals, and blocked signals.
 112 */
 113static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 114{
 115	unsigned long ready;
 116	long i;
 117
 118	switch (_NSIG_WORDS) {
 119	default:
 120		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 121			ready |= signal->sig[i] &~ blocked->sig[i];
 122		break;
 123
 124	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 125		ready |= signal->sig[2] &~ blocked->sig[2];
 126		ready |= signal->sig[1] &~ blocked->sig[1];
 127		ready |= signal->sig[0] &~ blocked->sig[0];
 128		break;
 129
 130	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 131		ready |= signal->sig[0] &~ blocked->sig[0];
 132		break;
 133
 134	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 135	}
 136	return ready !=	0;
 137}
 138
 139#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 140
 141static int recalc_sigpending_tsk(struct task_struct *t)
 142{
 143	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 144	    PENDING(&t->pending, &t->blocked) ||
 145	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 146		set_tsk_thread_flag(t, TIF_SIGPENDING);
 147		return 1;
 148	}
 
 149	/*
 150	 * We must never clear the flag in another thread, or in current
 151	 * when it's possible the current syscall is returning -ERESTART*.
 152	 * So we don't clear it here, and only callers who know they should do.
 153	 */
 154	return 0;
 155}
 156
 157/*
 158 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 159 * This is superfluous when called on current, the wakeup is a harmless no-op.
 160 */
 161void recalc_sigpending_and_wake(struct task_struct *t)
 162{
 163	if (recalc_sigpending_tsk(t))
 164		signal_wake_up(t, 0);
 
 165}
 
 166
 167void recalc_sigpending(void)
 168{
 169	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 170	    !klp_patch_pending(current))
 171		clear_thread_flag(TIF_SIGPENDING);
 172
 
 
 
 173}
 174
 175/* Given the mask, find the first available signal that should be serviced. */
 176
 177#define SYNCHRONOUS_MASK \
 178	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 179	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 180
 181int next_signal(struct sigpending *pending, sigset_t *mask)
 182{
 183	unsigned long i, *s, *m, x;
 184	int sig = 0;
 185
 186	s = pending->signal.sig;
 187	m = mask->sig;
 188
 189	/*
 190	 * Handle the first word specially: it contains the
 191	 * synchronous signals that need to be dequeued first.
 192	 */
 193	x = *s &~ *m;
 194	if (x) {
 195		if (x & SYNCHRONOUS_MASK)
 196			x &= SYNCHRONOUS_MASK;
 197		sig = ffz(~x) + 1;
 198		return sig;
 199	}
 200
 201	switch (_NSIG_WORDS) {
 202	default:
 203		for (i = 1; i < _NSIG_WORDS; ++i) {
 204			x = *++s &~ *++m;
 205			if (!x)
 206				continue;
 207			sig = ffz(~x) + i*_NSIG_BPW + 1;
 208			break;
 209		}
 210		break;
 211
 212	case 2:
 213		x = s[1] &~ m[1];
 214		if (!x)
 215			break;
 216		sig = ffz(~x) + _NSIG_BPW + 1;
 217		break;
 218
 219	case 1:
 220		/* Nothing to do */
 221		break;
 222	}
 223
 224	return sig;
 225}
 226
 227static inline void print_dropped_signal(int sig)
 228{
 229	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 230
 231	if (!print_fatal_signals)
 232		return;
 233
 234	if (!__ratelimit(&ratelimit_state))
 235		return;
 236
 237	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 238				current->comm, current->pid, sig);
 239}
 240
 241/**
 242 * task_set_jobctl_pending - set jobctl pending bits
 243 * @task: target task
 244 * @mask: pending bits to set
 245 *
 246 * Clear @mask from @task->jobctl.  @mask must be subset of
 247 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 248 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 249 * cleared.  If @task is already being killed or exiting, this function
 250 * becomes noop.
 251 *
 252 * CONTEXT:
 253 * Must be called with @task->sighand->siglock held.
 254 *
 255 * RETURNS:
 256 * %true if @mask is set, %false if made noop because @task was dying.
 257 */
 258bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 259{
 260	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 261			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 262	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 263
 264	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 265		return false;
 266
 267	if (mask & JOBCTL_STOP_SIGMASK)
 268		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 269
 270	task->jobctl |= mask;
 271	return true;
 272}
 273
 274/**
 275 * task_clear_jobctl_trapping - clear jobctl trapping bit
 276 * @task: target task
 277 *
 278 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 279 * Clear it and wake up the ptracer.  Note that we don't need any further
 280 * locking.  @task->siglock guarantees that @task->parent points to the
 281 * ptracer.
 282 *
 283 * CONTEXT:
 284 * Must be called with @task->sighand->siglock held.
 285 */
 286void task_clear_jobctl_trapping(struct task_struct *task)
 287{
 288	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 289		task->jobctl &= ~JOBCTL_TRAPPING;
 290		smp_mb();	/* advised by wake_up_bit() */
 291		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 292	}
 293}
 294
 295/**
 296 * task_clear_jobctl_pending - clear jobctl pending bits
 297 * @task: target task
 298 * @mask: pending bits to clear
 299 *
 300 * Clear @mask from @task->jobctl.  @mask must be subset of
 301 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 302 * STOP bits are cleared together.
 303 *
 304 * If clearing of @mask leaves no stop or trap pending, this function calls
 305 * task_clear_jobctl_trapping().
 306 *
 307 * CONTEXT:
 308 * Must be called with @task->sighand->siglock held.
 309 */
 310void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 311{
 312	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 313
 314	if (mask & JOBCTL_STOP_PENDING)
 315		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 316
 317	task->jobctl &= ~mask;
 318
 319	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 320		task_clear_jobctl_trapping(task);
 321}
 322
 323/**
 324 * task_participate_group_stop - participate in a group stop
 325 * @task: task participating in a group stop
 326 *
 327 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 328 * Group stop states are cleared and the group stop count is consumed if
 329 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 330 * stop, the appropriate %SIGNAL_* flags are set.
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 *
 335 * RETURNS:
 336 * %true if group stop completion should be notified to the parent, %false
 337 * otherwise.
 338 */
 339static bool task_participate_group_stop(struct task_struct *task)
 340{
 341	struct signal_struct *sig = task->signal;
 342	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 343
 344	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 345
 346	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 347
 348	if (!consume)
 349		return false;
 350
 351	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 352		sig->group_stop_count--;
 353
 354	/*
 355	 * Tell the caller to notify completion iff we are entering into a
 356	 * fresh group stop.  Read comment in do_signal_stop() for details.
 357	 */
 358	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 359		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 360		return true;
 361	}
 362	return false;
 363}
 364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365/*
 366 * allocate a new signal queue record
 367 * - this may be called without locks if and only if t == current, otherwise an
 368 *   appropriate lock must be held to stop the target task from exiting
 369 */
 370static struct sigqueue *
 371__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 372{
 373	struct sigqueue *q = NULL;
 374	struct user_struct *user;
 
 375
 376	/*
 377	 * Protect access to @t credentials. This can go away when all
 378	 * callers hold rcu read lock.
 
 
 
 
 379	 */
 380	rcu_read_lock();
 381	user = get_uid(__task_cred(t)->user);
 382	atomic_inc(&user->sigpending);
 383	rcu_read_unlock();
 
 
 384
 385	if (override_rlimit ||
 386	    atomic_read(&user->sigpending) <=
 387			task_rlimit(t, RLIMIT_SIGPENDING)) {
 388		q = kmem_cache_alloc(sigqueue_cachep, flags);
 389	} else {
 390		print_dropped_signal(sig);
 391	}
 392
 393	if (unlikely(q == NULL)) {
 394		atomic_dec(&user->sigpending);
 395		free_uid(user);
 396	} else {
 397		INIT_LIST_HEAD(&q->list);
 398		q->flags = 0;
 399		q->user = user;
 400	}
 401
 402	return q;
 403}
 404
 405static void __sigqueue_free(struct sigqueue *q)
 406{
 407	if (q->flags & SIGQUEUE_PREALLOC)
 408		return;
 409	atomic_dec(&q->user->sigpending);
 410	free_uid(q->user);
 
 
 411	kmem_cache_free(sigqueue_cachep, q);
 412}
 413
 414void flush_sigqueue(struct sigpending *queue)
 415{
 416	struct sigqueue *q;
 417
 418	sigemptyset(&queue->signal);
 419	while (!list_empty(&queue->list)) {
 420		q = list_entry(queue->list.next, struct sigqueue , list);
 421		list_del_init(&q->list);
 422		__sigqueue_free(q);
 423	}
 424}
 425
 426/*
 427 * Flush all pending signals for this kthread.
 428 */
 429void flush_signals(struct task_struct *t)
 430{
 431	unsigned long flags;
 432
 433	spin_lock_irqsave(&t->sighand->siglock, flags);
 434	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 435	flush_sigqueue(&t->pending);
 436	flush_sigqueue(&t->signal->shared_pending);
 437	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 438}
 
 439
 440#ifdef CONFIG_POSIX_TIMERS
 441static void __flush_itimer_signals(struct sigpending *pending)
 442{
 443	sigset_t signal, retain;
 444	struct sigqueue *q, *n;
 445
 446	signal = pending->signal;
 447	sigemptyset(&retain);
 448
 449	list_for_each_entry_safe(q, n, &pending->list, list) {
 450		int sig = q->info.si_signo;
 451
 452		if (likely(q->info.si_code != SI_TIMER)) {
 453			sigaddset(&retain, sig);
 454		} else {
 455			sigdelset(&signal, sig);
 456			list_del_init(&q->list);
 457			__sigqueue_free(q);
 458		}
 459	}
 460
 461	sigorsets(&pending->signal, &signal, &retain);
 462}
 463
 464void flush_itimer_signals(void)
 465{
 466	struct task_struct *tsk = current;
 467	unsigned long flags;
 468
 469	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 470	__flush_itimer_signals(&tsk->pending);
 471	__flush_itimer_signals(&tsk->signal->shared_pending);
 472	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 473}
 474#endif
 475
 476void ignore_signals(struct task_struct *t)
 477{
 478	int i;
 479
 480	for (i = 0; i < _NSIG; ++i)
 481		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 482
 483	flush_signals(t);
 484}
 485
 486/*
 487 * Flush all handlers for a task.
 488 */
 489
 490void
 491flush_signal_handlers(struct task_struct *t, int force_default)
 492{
 493	int i;
 494	struct k_sigaction *ka = &t->sighand->action[0];
 495	for (i = _NSIG ; i != 0 ; i--) {
 496		if (force_default || ka->sa.sa_handler != SIG_IGN)
 497			ka->sa.sa_handler = SIG_DFL;
 498		ka->sa.sa_flags = 0;
 499#ifdef __ARCH_HAS_SA_RESTORER
 500		ka->sa.sa_restorer = NULL;
 501#endif
 502		sigemptyset(&ka->sa.sa_mask);
 503		ka++;
 504	}
 505}
 506
 507int unhandled_signal(struct task_struct *tsk, int sig)
 508{
 509	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 510	if (is_global_init(tsk))
 511		return 1;
 
 512	if (handler != SIG_IGN && handler != SIG_DFL)
 513		return 0;
 
 
 
 
 
 514	/* if ptraced, let the tracer determine */
 515	return !tsk->ptrace;
 516}
 517
 518static void collect_signal(int sig, struct sigpending *list, siginfo_t *info,
 519			   bool *resched_timer)
 520{
 521	struct sigqueue *q, *first = NULL;
 522
 523	/*
 524	 * Collect the siginfo appropriate to this signal.  Check if
 525	 * there is another siginfo for the same signal.
 526	*/
 527	list_for_each_entry(q, &list->list, list) {
 528		if (q->info.si_signo == sig) {
 529			if (first)
 530				goto still_pending;
 531			first = q;
 532		}
 533	}
 534
 535	sigdelset(&list->signal, sig);
 536
 537	if (first) {
 538still_pending:
 539		list_del_init(&first->list);
 540		copy_siginfo(info, &first->info);
 541
 542		*resched_timer =
 543			(first->flags & SIGQUEUE_PREALLOC) &&
 544			(info->si_code == SI_TIMER) &&
 545			(info->si_sys_private);
 546
 547		__sigqueue_free(first);
 548	} else {
 549		/*
 550		 * Ok, it wasn't in the queue.  This must be
 551		 * a fast-pathed signal or we must have been
 552		 * out of queue space.  So zero out the info.
 553		 */
 554		clear_siginfo(info);
 555		info->si_signo = sig;
 556		info->si_errno = 0;
 557		info->si_code = SI_USER;
 558		info->si_pid = 0;
 559		info->si_uid = 0;
 560	}
 561}
 562
 563static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 564			siginfo_t *info, bool *resched_timer)
 565{
 566	int sig = next_signal(pending, mask);
 567
 568	if (sig)
 569		collect_signal(sig, pending, info, resched_timer);
 570	return sig;
 571}
 572
 573/*
 574 * Dequeue a signal and return the element to the caller, which is
 575 * expected to free it.
 576 *
 577 * All callers have to hold the siglock.
 578 */
 579int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 
 580{
 581	bool resched_timer = false;
 582	int signr;
 583
 584	/* We only dequeue private signals from ourselves, we don't let
 585	 * signalfd steal them
 586	 */
 
 587	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 588	if (!signr) {
 
 589		signr = __dequeue_signal(&tsk->signal->shared_pending,
 590					 mask, info, &resched_timer);
 591#ifdef CONFIG_POSIX_TIMERS
 592		/*
 593		 * itimer signal ?
 594		 *
 595		 * itimers are process shared and we restart periodic
 596		 * itimers in the signal delivery path to prevent DoS
 597		 * attacks in the high resolution timer case. This is
 598		 * compliant with the old way of self-restarting
 599		 * itimers, as the SIGALRM is a legacy signal and only
 600		 * queued once. Changing the restart behaviour to
 601		 * restart the timer in the signal dequeue path is
 602		 * reducing the timer noise on heavy loaded !highres
 603		 * systems too.
 604		 */
 605		if (unlikely(signr == SIGALRM)) {
 606			struct hrtimer *tmr = &tsk->signal->real_timer;
 607
 608			if (!hrtimer_is_queued(tmr) &&
 609			    tsk->signal->it_real_incr != 0) {
 610				hrtimer_forward(tmr, tmr->base->get_time(),
 611						tsk->signal->it_real_incr);
 612				hrtimer_restart(tmr);
 613			}
 614		}
 615#endif
 616	}
 617
 618	recalc_sigpending();
 619	if (!signr)
 620		return 0;
 621
 622	if (unlikely(sig_kernel_stop(signr))) {
 623		/*
 624		 * Set a marker that we have dequeued a stop signal.  Our
 625		 * caller might release the siglock and then the pending
 626		 * stop signal it is about to process is no longer in the
 627		 * pending bitmasks, but must still be cleared by a SIGCONT
 628		 * (and overruled by a SIGKILL).  So those cases clear this
 629		 * shared flag after we've set it.  Note that this flag may
 630		 * remain set after the signal we return is ignored or
 631		 * handled.  That doesn't matter because its only purpose
 632		 * is to alert stop-signal processing code when another
 633		 * processor has come along and cleared the flag.
 634		 */
 635		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 636	}
 637#ifdef CONFIG_POSIX_TIMERS
 638	if (resched_timer) {
 639		/*
 640		 * Release the siglock to ensure proper locking order
 641		 * of timer locks outside of siglocks.  Note, we leave
 642		 * irqs disabled here, since the posix-timers code is
 643		 * about to disable them again anyway.
 644		 */
 645		spin_unlock(&tsk->sighand->siglock);
 646		posixtimer_rearm(info);
 647		spin_lock(&tsk->sighand->siglock);
 648
 649		/* Don't expose the si_sys_private value to userspace */
 650		info->si_sys_private = 0;
 651	}
 652#endif
 653	return signr;
 654}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655
 656/*
 657 * Tell a process that it has a new active signal..
 658 *
 659 * NOTE! we rely on the previous spin_lock to
 660 * lock interrupts for us! We can only be called with
 661 * "siglock" held, and the local interrupt must
 662 * have been disabled when that got acquired!
 663 *
 664 * No need to set need_resched since signal event passing
 665 * goes through ->blocked
 666 */
 667void signal_wake_up_state(struct task_struct *t, unsigned int state)
 668{
 
 
 669	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 670	/*
 671	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 672	 * case. We don't check t->state here because there is a race with it
 673	 * executing another processor and just now entering stopped state.
 674	 * By using wake_up_state, we ensure the process will wake up and
 675	 * handle its death signal.
 676	 */
 677	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 678		kick_process(t);
 679}
 680
 681/*
 682 * Remove signals in mask from the pending set and queue.
 683 * Returns 1 if any signals were found.
 684 *
 685 * All callers must be holding the siglock.
 686 */
 687static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 688{
 689	struct sigqueue *q, *n;
 690	sigset_t m;
 691
 692	sigandsets(&m, mask, &s->signal);
 693	if (sigisemptyset(&m))
 694		return 0;
 695
 696	sigandnsets(&s->signal, &s->signal, mask);
 697	list_for_each_entry_safe(q, n, &s->list, list) {
 698		if (sigismember(mask, q->info.si_signo)) {
 699			list_del_init(&q->list);
 700			__sigqueue_free(q);
 701		}
 702	}
 703	return 1;
 704}
 705
 706static inline int is_si_special(const struct siginfo *info)
 707{
 708	return info <= SEND_SIG_FORCED;
 709}
 710
 711static inline bool si_fromuser(const struct siginfo *info)
 712{
 713	return info == SEND_SIG_NOINFO ||
 714		(!is_si_special(info) && SI_FROMUSER(info));
 715}
 716
 717/*
 718 * called with RCU read lock from check_kill_permission()
 719 */
 720static int kill_ok_by_cred(struct task_struct *t)
 721{
 722	const struct cred *cred = current_cred();
 723	const struct cred *tcred = __task_cred(t);
 724
 725	if (uid_eq(cred->euid, tcred->suid) ||
 726	    uid_eq(cred->euid, tcred->uid)  ||
 727	    uid_eq(cred->uid,  tcred->suid) ||
 728	    uid_eq(cred->uid,  tcred->uid))
 729		return 1;
 730
 731	if (ns_capable(tcred->user_ns, CAP_KILL))
 732		return 1;
 733
 734	return 0;
 735}
 736
 737/*
 738 * Bad permissions for sending the signal
 739 * - the caller must hold the RCU read lock
 740 */
 741static int check_kill_permission(int sig, struct siginfo *info,
 742				 struct task_struct *t)
 743{
 744	struct pid *sid;
 745	int error;
 746
 747	if (!valid_signal(sig))
 748		return -EINVAL;
 749
 750	if (!si_fromuser(info))
 751		return 0;
 752
 753	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 754	if (error)
 755		return error;
 756
 757	if (!same_thread_group(current, t) &&
 758	    !kill_ok_by_cred(t)) {
 759		switch (sig) {
 760		case SIGCONT:
 761			sid = task_session(t);
 762			/*
 763			 * We don't return the error if sid == NULL. The
 764			 * task was unhashed, the caller must notice this.
 765			 */
 766			if (!sid || sid == task_session(current))
 767				break;
 
 768		default:
 769			return -EPERM;
 770		}
 771	}
 772
 773	return security_task_kill(t, info, sig, NULL);
 774}
 775
 776/**
 777 * ptrace_trap_notify - schedule trap to notify ptracer
 778 * @t: tracee wanting to notify tracer
 779 *
 780 * This function schedules sticky ptrace trap which is cleared on the next
 781 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 782 * ptracer.
 783 *
 784 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 785 * ptracer is listening for events, tracee is woken up so that it can
 786 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 787 * eventually taken without returning to userland after the existing traps
 788 * are finished by PTRACE_CONT.
 789 *
 790 * CONTEXT:
 791 * Must be called with @task->sighand->siglock held.
 792 */
 793static void ptrace_trap_notify(struct task_struct *t)
 794{
 795	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 796	assert_spin_locked(&t->sighand->siglock);
 797
 798	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 799	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 800}
 801
 802/*
 803 * Handle magic process-wide effects of stop/continue signals. Unlike
 804 * the signal actions, these happen immediately at signal-generation
 805 * time regardless of blocking, ignoring, or handling.  This does the
 806 * actual continuing for SIGCONT, but not the actual stopping for stop
 807 * signals. The process stop is done as a signal action for SIG_DFL.
 808 *
 809 * Returns true if the signal should be actually delivered, otherwise
 810 * it should be dropped.
 811 */
 812static bool prepare_signal(int sig, struct task_struct *p, bool force)
 813{
 814	struct signal_struct *signal = p->signal;
 815	struct task_struct *t;
 816	sigset_t flush;
 817
 818	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 819		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 820			return sig == SIGKILL;
 821		/*
 822		 * The process is in the middle of dying, nothing to do.
 823		 */
 
 824	} else if (sig_kernel_stop(sig)) {
 825		/*
 826		 * This is a stop signal.  Remove SIGCONT from all queues.
 827		 */
 828		siginitset(&flush, sigmask(SIGCONT));
 829		flush_sigqueue_mask(&flush, &signal->shared_pending);
 830		for_each_thread(p, t)
 831			flush_sigqueue_mask(&flush, &t->pending);
 832	} else if (sig == SIGCONT) {
 833		unsigned int why;
 834		/*
 835		 * Remove all stop signals from all queues, wake all threads.
 836		 */
 837		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 838		flush_sigqueue_mask(&flush, &signal->shared_pending);
 839		for_each_thread(p, t) {
 840			flush_sigqueue_mask(&flush, &t->pending);
 841			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 842			if (likely(!(t->ptrace & PT_SEIZED)))
 
 843				wake_up_state(t, __TASK_STOPPED);
 844			else
 845				ptrace_trap_notify(t);
 846		}
 847
 848		/*
 849		 * Notify the parent with CLD_CONTINUED if we were stopped.
 850		 *
 851		 * If we were in the middle of a group stop, we pretend it
 852		 * was already finished, and then continued. Since SIGCHLD
 853		 * doesn't queue we report only CLD_STOPPED, as if the next
 854		 * CLD_CONTINUED was dropped.
 855		 */
 856		why = 0;
 857		if (signal->flags & SIGNAL_STOP_STOPPED)
 858			why |= SIGNAL_CLD_CONTINUED;
 859		else if (signal->group_stop_count)
 860			why |= SIGNAL_CLD_STOPPED;
 861
 862		if (why) {
 863			/*
 864			 * The first thread which returns from do_signal_stop()
 865			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 866			 * notify its parent. See get_signal_to_deliver().
 867			 */
 868			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 869			signal->group_stop_count = 0;
 870			signal->group_exit_code = 0;
 871		}
 872	}
 873
 874	return !sig_ignored(p, sig, force);
 875}
 876
 877/*
 878 * Test if P wants to take SIG.  After we've checked all threads with this,
 879 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 880 * blocking SIG were ruled out because they are not running and already
 881 * have pending signals.  Such threads will dequeue from the shared queue
 882 * as soon as they're available, so putting the signal on the shared queue
 883 * will be equivalent to sending it to one such thread.
 884 */
 885static inline int wants_signal(int sig, struct task_struct *p)
 886{
 887	if (sigismember(&p->blocked, sig))
 888		return 0;
 
 889	if (p->flags & PF_EXITING)
 890		return 0;
 
 891	if (sig == SIGKILL)
 892		return 1;
 
 893	if (task_is_stopped_or_traced(p))
 894		return 0;
 895	return task_curr(p) || !signal_pending(p);
 
 896}
 897
 898static void complete_signal(int sig, struct task_struct *p, int group)
 899{
 900	struct signal_struct *signal = p->signal;
 901	struct task_struct *t;
 902
 903	/*
 904	 * Now find a thread we can wake up to take the signal off the queue.
 905	 *
 906	 * If the main thread wants the signal, it gets first crack.
 907	 * Probably the least surprising to the average bear.
 908	 */
 909	if (wants_signal(sig, p))
 910		t = p;
 911	else if (!group || thread_group_empty(p))
 912		/*
 913		 * There is just one thread and it does not need to be woken.
 914		 * It will dequeue unblocked signals before it runs again.
 915		 */
 916		return;
 917	else {
 918		/*
 919		 * Otherwise try to find a suitable thread.
 920		 */
 921		t = signal->curr_target;
 922		while (!wants_signal(sig, t)) {
 923			t = next_thread(t);
 924			if (t == signal->curr_target)
 925				/*
 926				 * No thread needs to be woken.
 927				 * Any eligible threads will see
 928				 * the signal in the queue soon.
 929				 */
 930				return;
 931		}
 932		signal->curr_target = t;
 933	}
 934
 935	/*
 936	 * Found a killable thread.  If the signal will be fatal,
 937	 * then start taking the whole group down immediately.
 938	 */
 939	if (sig_fatal(p, sig) &&
 940	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
 941	    !sigismember(&t->real_blocked, sig) &&
 942	    (sig == SIGKILL || !p->ptrace)) {
 943		/*
 944		 * This signal will be fatal to the whole group.
 945		 */
 946		if (!sig_kernel_coredump(sig)) {
 947			/*
 948			 * Start a group exit and wake everybody up.
 949			 * This way we don't have other threads
 950			 * running and doing things after a slower
 951			 * thread has the fatal signal pending.
 952			 */
 953			signal->flags = SIGNAL_GROUP_EXIT;
 954			signal->group_exit_code = sig;
 955			signal->group_stop_count = 0;
 956			t = p;
 957			do {
 958				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 959				sigaddset(&t->pending.signal, SIGKILL);
 960				signal_wake_up(t, 1);
 961			} while_each_thread(p, t);
 962			return;
 963		}
 964	}
 965
 966	/*
 967	 * The signal is already in the shared-pending queue.
 968	 * Tell the chosen thread to wake up and dequeue it.
 969	 */
 970	signal_wake_up(t, sig == SIGKILL);
 971	return;
 972}
 973
 974static inline int legacy_queue(struct sigpending *signals, int sig)
 975{
 976	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 977}
 978
 979#ifdef CONFIG_USER_NS
 980static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 981{
 982	if (current_user_ns() == task_cred_xxx(t, user_ns))
 983		return;
 984
 985	if (SI_FROMKERNEL(info))
 986		return;
 987
 988	rcu_read_lock();
 989	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 990					make_kuid(current_user_ns(), info->si_uid));
 991	rcu_read_unlock();
 992}
 993#else
 994static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 995{
 996	return;
 997}
 998#endif
 999
1000static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1001			int group, int from_ancestor_ns)
1002{
1003	struct sigpending *pending;
1004	struct sigqueue *q;
1005	int override_rlimit;
1006	int ret = 0, result;
1007
1008	assert_spin_locked(&t->sighand->siglock);
1009
1010	result = TRACE_SIGNAL_IGNORED;
1011	if (!prepare_signal(sig, t,
1012			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1013		goto ret;
1014
1015	pending = group ? &t->signal->shared_pending : &t->pending;
1016	/*
1017	 * Short-circuit ignored signals and support queuing
1018	 * exactly one non-rt signal, so that we can get more
1019	 * detailed information about the cause of the signal.
1020	 */
1021	result = TRACE_SIGNAL_ALREADY_PENDING;
1022	if (legacy_queue(pending, sig))
1023		goto ret;
1024
1025	result = TRACE_SIGNAL_DELIVERED;
1026	/*
1027	 * fast-pathed signals for kernel-internal things like SIGSTOP
1028	 * or SIGKILL.
1029	 */
1030	if (info == SEND_SIG_FORCED)
1031		goto out_set;
1032
1033	/*
1034	 * Real-time signals must be queued if sent by sigqueue, or
1035	 * some other real-time mechanism.  It is implementation
1036	 * defined whether kill() does so.  We attempt to do so, on
1037	 * the principle of least surprise, but since kill is not
1038	 * allowed to fail with EAGAIN when low on memory we just
1039	 * make sure at least one signal gets delivered and don't
1040	 * pass on the info struct.
1041	 */
1042	if (sig < SIGRTMIN)
1043		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1044	else
1045		override_rlimit = 0;
1046
1047	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1048	if (q) {
1049		list_add_tail(&q->list, &pending->list);
1050		switch ((unsigned long) info) {
1051		case (unsigned long) SEND_SIG_NOINFO:
1052			clear_siginfo(&q->info);
1053			q->info.si_signo = sig;
1054			q->info.si_errno = 0;
1055			q->info.si_code = SI_USER;
1056			q->info.si_pid = task_tgid_nr_ns(current,
1057							task_active_pid_ns(t));
1058			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1059			break;
1060		case (unsigned long) SEND_SIG_PRIV:
1061			clear_siginfo(&q->info);
1062			q->info.si_signo = sig;
1063			q->info.si_errno = 0;
1064			q->info.si_code = SI_KERNEL;
1065			q->info.si_pid = 0;
1066			q->info.si_uid = 0;
1067			break;
1068		default:
1069			copy_siginfo(&q->info, info);
1070			if (from_ancestor_ns)
1071				q->info.si_pid = 0;
1072			break;
1073		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074
1075		userns_fixup_signal_uid(&q->info, t);
 
 
1076
1077	} else if (!is_si_special(info)) {
1078		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1079			/*
1080			 * Queue overflow, abort.  We may abort if the
1081			 * signal was rt and sent by user using something
1082			 * other than kill().
1083			 */
1084			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1085			ret = -EAGAIN;
1086			goto ret;
1087		} else {
1088			/*
1089			 * This is a silent loss of information.  We still
1090			 * send the signal, but the *info bits are lost.
1091			 */
1092			result = TRACE_SIGNAL_LOSE_INFO;
1093		}
1094	}
1095
1096out_set:
1097	signalfd_notify(t, sig);
1098	sigaddset(&pending->signal, sig);
1099	complete_signal(sig, t, group);
1100ret:
1101	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102	return ret;
1103}
1104
1105static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1106			int group)
1107{
1108	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109
1110#ifdef CONFIG_PID_NS
1111	from_ancestor_ns = si_fromuser(info) &&
1112			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1113#endif
1114
1115	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1116}
1117
1118static void print_fatal_signal(int signr)
1119{
1120	struct pt_regs *regs = signal_pt_regs();
1121	pr_info("potentially unexpected fatal signal %d.\n", signr);
 
 
 
 
 
 
 
 
 
 
1122
1123#if defined(__i386__) && !defined(__arch_um__)
1124	pr_info("code at %08lx: ", regs->ip);
1125	{
1126		int i;
1127		for (i = 0; i < 16; i++) {
1128			unsigned char insn;
1129
1130			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1131				break;
1132			pr_cont("%02x ", insn);
1133		}
1134	}
1135	pr_cont("\n");
1136#endif
1137	preempt_disable();
1138	show_regs(regs);
1139	preempt_enable();
1140}
1141
1142static int __init setup_print_fatal_signals(char *str)
1143{
1144	get_option (&str, &print_fatal_signals);
1145
1146	return 1;
1147}
1148
1149__setup("print-fatal-signals=", setup_print_fatal_signals);
1150
1151int
1152__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1153{
1154	return send_signal(sig, info, p, 1);
1155}
1156
1157static int
1158specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1159{
1160	return send_signal(sig, info, t, 0);
1161}
1162
1163int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1164			bool group)
1165{
1166	unsigned long flags;
1167	int ret = -ESRCH;
1168
1169	if (lock_task_sighand(p, &flags)) {
1170		ret = send_signal(sig, info, p, group);
1171		unlock_task_sighand(p, &flags);
1172	}
1173
1174	return ret;
1175}
1176
 
 
 
 
 
 
1177/*
1178 * Force a signal that the process can't ignore: if necessary
1179 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1180 *
1181 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1182 * since we do not want to have a signal handler that was blocked
1183 * be invoked when user space had explicitly blocked it.
1184 *
1185 * We don't want to have recursive SIGSEGV's etc, for example,
1186 * that is why we also clear SIGNAL_UNKILLABLE.
1187 */
1188int
1189force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1190{
1191	unsigned long int flags;
1192	int ret, blocked, ignored;
1193	struct k_sigaction *action;
 
1194
1195	spin_lock_irqsave(&t->sighand->siglock, flags);
1196	action = &t->sighand->action[sig-1];
1197	ignored = action->sa.sa_handler == SIG_IGN;
1198	blocked = sigismember(&t->blocked, sig);
1199	if (blocked || ignored) {
1200		action->sa.sa_handler = SIG_DFL;
1201		if (blocked) {
 
 
1202			sigdelset(&t->blocked, sig);
1203			recalc_sigpending_and_wake(t);
1204		}
1205	}
1206	/*
1207	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1208	 * debugging to leave init killable.
1209	 */
1210	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1211		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1212	ret = specific_send_sig_info(sig, info, t);
 
 
 
1213	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1214
1215	return ret;
1216}
1217
 
 
 
 
 
1218/*
1219 * Nuke all other threads in the group.
1220 */
1221int zap_other_threads(struct task_struct *p)
1222{
1223	struct task_struct *t = p;
1224	int count = 0;
1225
1226	p->signal->group_stop_count = 0;
1227
1228	while_each_thread(p, t) {
1229		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1230		count++;
 
 
1231
1232		/* Don't bother with already dead threads */
1233		if (t->exit_state)
1234			continue;
1235		sigaddset(&t->pending.signal, SIGKILL);
1236		signal_wake_up(t, 1);
1237	}
1238
1239	return count;
1240}
1241
1242struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1243					   unsigned long *flags)
1244{
1245	struct sighand_struct *sighand;
1246
 
1247	for (;;) {
1248		/*
1249		 * Disable interrupts early to avoid deadlocks.
1250		 * See rcu_read_unlock() comment header for details.
1251		 */
1252		local_irq_save(*flags);
1253		rcu_read_lock();
1254		sighand = rcu_dereference(tsk->sighand);
1255		if (unlikely(sighand == NULL)) {
1256			rcu_read_unlock();
1257			local_irq_restore(*flags);
1258			break;
1259		}
1260		/*
1261		 * This sighand can be already freed and even reused, but
1262		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1263		 * initializes ->siglock: this slab can't go away, it has
1264		 * the same object type, ->siglock can't be reinitialized.
1265		 *
1266		 * We need to ensure that tsk->sighand is still the same
1267		 * after we take the lock, we can race with de_thread() or
1268		 * __exit_signal(). In the latter case the next iteration
1269		 * must see ->sighand == NULL.
1270		 */
1271		spin_lock(&sighand->siglock);
1272		if (likely(sighand == tsk->sighand)) {
1273			rcu_read_unlock();
1274			break;
1275		}
1276		spin_unlock(&sighand->siglock);
1277		rcu_read_unlock();
1278		local_irq_restore(*flags);
1279	}
 
1280
1281	return sighand;
1282}
1283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284/*
1285 * send signal info to all the members of a group
1286 */
1287int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1288{
1289	int ret;
1290
1291	rcu_read_lock();
1292	ret = check_kill_permission(sig, info, p);
1293	rcu_read_unlock();
1294
1295	if (!ret && sig)
1296		ret = do_send_sig_info(sig, info, p, true);
1297
1298	return ret;
1299}
1300
1301/*
1302 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1303 * control characters do (^C, ^Z etc)
1304 * - the caller must hold at least a readlock on tasklist_lock
1305 */
1306int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1307{
1308	struct task_struct *p = NULL;
1309	int retval, success;
1310
1311	success = 0;
1312	retval = -ESRCH;
1313	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1314		int err = group_send_sig_info(sig, info, p);
1315		success |= !err;
1316		retval = err;
 
 
 
 
 
 
1317	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1318	return success ? 0 : retval;
 
1319}
1320
1321int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1322{
1323	int error = -ESRCH;
1324	struct task_struct *p;
1325
1326	for (;;) {
1327		rcu_read_lock();
1328		p = pid_task(pid, PIDTYPE_PID);
1329		if (p)
1330			error = group_send_sig_info(sig, info, p);
1331		rcu_read_unlock();
1332		if (likely(!p || error != -ESRCH))
1333			return error;
1334
1335		/*
1336		 * The task was unhashed in between, try again.  If it
1337		 * is dead, pid_task() will return NULL, if we race with
1338		 * de_thread() it will find the new leader.
1339		 */
1340	}
1341}
1342
1343static int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1344{
1345	int error;
1346	rcu_read_lock();
1347	error = kill_pid_info(sig, info, find_vpid(pid));
1348	rcu_read_unlock();
1349	return error;
1350}
1351
1352static int kill_as_cred_perm(const struct cred *cred,
1353			     struct task_struct *target)
1354{
1355	const struct cred *pcred = __task_cred(target);
1356	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1357	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1358		return 0;
1359	return 1;
 
1360}
1361
1362/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1363int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1364			 const struct cred *cred)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365{
1366	int ret = -EINVAL;
1367	struct task_struct *p;
1368	unsigned long flags;
 
1369
1370	if (!valid_signal(sig))
1371		return ret;
1372
 
 
 
 
 
 
1373	rcu_read_lock();
1374	p = pid_task(pid, PIDTYPE_PID);
1375	if (!p) {
1376		ret = -ESRCH;
1377		goto out_unlock;
1378	}
1379	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1380		ret = -EPERM;
1381		goto out_unlock;
1382	}
1383	ret = security_task_kill(p, info, sig, cred);
1384	if (ret)
1385		goto out_unlock;
1386
1387	if (sig) {
1388		if (lock_task_sighand(p, &flags)) {
1389			ret = __send_signal(sig, info, p, 1, 0);
1390			unlock_task_sighand(p, &flags);
1391		} else
1392			ret = -ESRCH;
1393	}
1394out_unlock:
1395	rcu_read_unlock();
1396	return ret;
1397}
1398EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1399
1400/*
1401 * kill_something_info() interprets pid in interesting ways just like kill(2).
1402 *
1403 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1404 * is probably wrong.  Should make it like BSD or SYSV.
1405 */
1406
1407static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1408{
1409	int ret;
1410
1411	if (pid > 0) {
1412		rcu_read_lock();
1413		ret = kill_pid_info(sig, info, find_vpid(pid));
1414		rcu_read_unlock();
1415		return ret;
1416	}
1417
1418	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1419	if (pid == INT_MIN)
1420		return -ESRCH;
1421
1422	read_lock(&tasklist_lock);
1423	if (pid != -1) {
1424		ret = __kill_pgrp_info(sig, info,
1425				pid ? find_vpid(-pid) : task_pgrp(current));
1426	} else {
1427		int retval = 0, count = 0;
1428		struct task_struct * p;
1429
1430		for_each_process(p) {
1431			if (task_pid_vnr(p) > 1 &&
1432					!same_thread_group(p, current)) {
1433				int err = group_send_sig_info(sig, info, p);
 
1434				++count;
1435				if (err != -EPERM)
1436					retval = err;
1437			}
1438		}
1439		ret = count ? retval : -ESRCH;
1440	}
1441	read_unlock(&tasklist_lock);
1442
1443	return ret;
1444}
1445
1446/*
1447 * These are for backward compatibility with the rest of the kernel source.
1448 */
1449
1450int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1451{
1452	/*
1453	 * Make sure legacy kernel users don't send in bad values
1454	 * (normal paths check this in check_kill_permission).
1455	 */
1456	if (!valid_signal(sig))
1457		return -EINVAL;
1458
1459	return do_send_sig_info(sig, info, p, false);
1460}
 
1461
1462#define __si_special(priv) \
1463	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1464
1465int
1466send_sig(int sig, struct task_struct *p, int priv)
1467{
1468	return send_sig_info(sig, __si_special(priv), p);
1469}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470
1471void
1472force_sig(int sig, struct task_struct *p)
1473{
1474	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1475}
1476
1477/*
1478 * When things go south during signal handling, we
1479 * will force a SIGSEGV. And if the signal that caused
1480 * the problem was already a SIGSEGV, we'll want to
1481 * make sure we don't even try to deliver the signal..
1482 */
1483int
1484force_sigsegv(int sig, struct task_struct *p)
1485{
1486	if (sig == SIGSEGV) {
1487		unsigned long flags;
1488		spin_lock_irqsave(&p->sighand->siglock, flags);
1489		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1490		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1491	}
1492	force_sig(SIGSEGV, p);
1493	return 0;
1494}
1495
1496int force_sig_fault(int sig, int code, void __user *addr
1497	___ARCH_SI_TRAPNO(int trapno)
1498	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1499	, struct task_struct *t)
1500{
1501	struct siginfo info;
1502
1503	clear_siginfo(&info);
1504	info.si_signo = sig;
1505	info.si_errno = 0;
1506	info.si_code  = code;
1507	info.si_addr  = addr;
1508#ifdef __ARCH_SI_TRAPNO
1509	info.si_trapno = trapno;
1510#endif
1511#ifdef __ia64__
1512	info.si_imm = imm;
1513	info.si_flags = flags;
1514	info.si_isr = isr;
1515#endif
1516	return force_sig_info(info.si_signo, &info, t);
1517}
1518
1519int send_sig_fault(int sig, int code, void __user *addr
1520	___ARCH_SI_TRAPNO(int trapno)
1521	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1522	, struct task_struct *t)
1523{
1524	struct siginfo info;
1525
1526	clear_siginfo(&info);
1527	info.si_signo = sig;
1528	info.si_errno = 0;
1529	info.si_code  = code;
1530	info.si_addr  = addr;
1531#ifdef __ARCH_SI_TRAPNO
1532	info.si_trapno = trapno;
1533#endif
1534#ifdef __ia64__
1535	info.si_imm = imm;
1536	info.si_flags = flags;
1537	info.si_isr = isr;
1538#endif
1539	return send_sig_info(info.si_signo, &info, t);
1540}
1541
1542#if defined(BUS_MCEERR_AO) && defined(BUS_MCEERR_AR)
1543int force_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1544{
1545	struct siginfo info;
1546
1547	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1548	clear_siginfo(&info);
1549	info.si_signo = SIGBUS;
1550	info.si_errno = 0;
1551	info.si_code = code;
1552	info.si_addr = addr;
1553	info.si_addr_lsb = lsb;
1554	return force_sig_info(info.si_signo, &info, t);
1555}
1556
1557int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1558{
1559	struct siginfo info;
1560
1561	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1562	clear_siginfo(&info);
1563	info.si_signo = SIGBUS;
1564	info.si_errno = 0;
1565	info.si_code = code;
1566	info.si_addr = addr;
1567	info.si_addr_lsb = lsb;
1568	return send_sig_info(info.si_signo, &info, t);
1569}
1570EXPORT_SYMBOL(send_sig_mceerr);
1571#endif
1572
1573#ifdef SEGV_BNDERR
1574int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1575{
1576	struct siginfo info;
1577
1578	clear_siginfo(&info);
1579	info.si_signo = SIGSEGV;
1580	info.si_errno = 0;
1581	info.si_code  = SEGV_BNDERR;
1582	info.si_addr  = addr;
1583	info.si_lower = lower;
1584	info.si_upper = upper;
1585	return force_sig_info(info.si_signo, &info, current);
1586}
1587#endif
1588
1589#ifdef SEGV_PKUERR
1590int force_sig_pkuerr(void __user *addr, u32 pkey)
1591{
1592	struct siginfo info;
1593
1594	clear_siginfo(&info);
1595	info.si_signo = SIGSEGV;
1596	info.si_errno = 0;
1597	info.si_code  = SEGV_PKUERR;
1598	info.si_addr  = addr;
1599	info.si_pkey  = pkey;
1600	return force_sig_info(info.si_signo, &info, current);
1601}
1602#endif
1603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604/* For the crazy architectures that include trap information in
1605 * the errno field, instead of an actual errno value.
1606 */
1607int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1608{
1609	struct siginfo info;
1610
1611	clear_siginfo(&info);
1612	info.si_signo = SIGTRAP;
1613	info.si_errno = errno;
1614	info.si_code  = TRAP_HWBKPT;
1615	info.si_addr  = addr;
1616	return force_sig_info(info.si_signo, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617}
1618
1619int kill_pgrp(struct pid *pid, int sig, int priv)
1620{
1621	int ret;
1622
1623	read_lock(&tasklist_lock);
1624	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1625	read_unlock(&tasklist_lock);
1626
1627	return ret;
1628}
1629EXPORT_SYMBOL(kill_pgrp);
1630
1631int kill_pid(struct pid *pid, int sig, int priv)
1632{
1633	return kill_pid_info(sig, __si_special(priv), pid);
1634}
1635EXPORT_SYMBOL(kill_pid);
1636
1637/*
1638 * These functions support sending signals using preallocated sigqueue
1639 * structures.  This is needed "because realtime applications cannot
1640 * afford to lose notifications of asynchronous events, like timer
1641 * expirations or I/O completions".  In the case of POSIX Timers
1642 * we allocate the sigqueue structure from the timer_create.  If this
1643 * allocation fails we are able to report the failure to the application
1644 * with an EAGAIN error.
1645 */
1646struct sigqueue *sigqueue_alloc(void)
1647{
1648	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1649
1650	if (q)
1651		q->flags |= SIGQUEUE_PREALLOC;
1652
1653	return q;
1654}
1655
1656void sigqueue_free(struct sigqueue *q)
1657{
1658	unsigned long flags;
1659	spinlock_t *lock = &current->sighand->siglock;
1660
1661	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1662	/*
1663	 * We must hold ->siglock while testing q->list
1664	 * to serialize with collect_signal() or with
1665	 * __exit_signal()->flush_sigqueue().
1666	 */
1667	spin_lock_irqsave(lock, flags);
1668	q->flags &= ~SIGQUEUE_PREALLOC;
1669	/*
1670	 * If it is queued it will be freed when dequeued,
1671	 * like the "regular" sigqueue.
1672	 */
1673	if (!list_empty(&q->list))
1674		q = NULL;
1675	spin_unlock_irqrestore(lock, flags);
1676
1677	if (q)
1678		__sigqueue_free(q);
1679}
1680
1681int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1682{
1683	int sig = q->info.si_signo;
1684	struct sigpending *pending;
 
1685	unsigned long flags;
1686	int ret, result;
1687
1688	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1689
1690	ret = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691	if (!likely(lock_task_sighand(t, &flags)))
1692		goto ret;
1693
1694	ret = 1; /* the signal is ignored */
1695	result = TRACE_SIGNAL_IGNORED;
1696	if (!prepare_signal(sig, t, false))
1697		goto out;
1698
1699	ret = 0;
1700	if (unlikely(!list_empty(&q->list))) {
1701		/*
1702		 * If an SI_TIMER entry is already queue just increment
1703		 * the overrun count.
1704		 */
1705		BUG_ON(q->info.si_code != SI_TIMER);
1706		q->info.si_overrun++;
1707		result = TRACE_SIGNAL_ALREADY_PENDING;
1708		goto out;
1709	}
1710	q->info.si_overrun = 0;
1711
1712	signalfd_notify(t, sig);
1713	pending = group ? &t->signal->shared_pending : &t->pending;
1714	list_add_tail(&q->list, &pending->list);
1715	sigaddset(&pending->signal, sig);
1716	complete_signal(sig, t, group);
1717	result = TRACE_SIGNAL_DELIVERED;
1718out:
1719	trace_signal_generate(sig, &q->info, t, group, result);
1720	unlock_task_sighand(t, &flags);
1721ret:
 
1722	return ret;
1723}
1724
 
 
 
 
 
 
 
 
 
1725/*
1726 * Let a parent know about the death of a child.
1727 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1728 *
1729 * Returns true if our parent ignored us and so we've switched to
1730 * self-reaping.
1731 */
1732bool do_notify_parent(struct task_struct *tsk, int sig)
1733{
1734	struct siginfo info;
1735	unsigned long flags;
1736	struct sighand_struct *psig;
1737	bool autoreap = false;
1738	u64 utime, stime;
1739
1740	BUG_ON(sig == -1);
1741
1742 	/* do_notify_parent_cldstop should have been called instead.  */
1743 	BUG_ON(task_is_stopped_or_traced(tsk));
1744
1745	BUG_ON(!tsk->ptrace &&
1746	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1747
 
 
 
1748	if (sig != SIGCHLD) {
1749		/*
1750		 * This is only possible if parent == real_parent.
1751		 * Check if it has changed security domain.
1752		 */
1753		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1754			sig = SIGCHLD;
1755	}
1756
1757	clear_siginfo(&info);
1758	info.si_signo = sig;
1759	info.si_errno = 0;
1760	/*
1761	 * We are under tasklist_lock here so our parent is tied to
1762	 * us and cannot change.
1763	 *
1764	 * task_active_pid_ns will always return the same pid namespace
1765	 * until a task passes through release_task.
1766	 *
1767	 * write_lock() currently calls preempt_disable() which is the
1768	 * same as rcu_read_lock(), but according to Oleg, this is not
1769	 * correct to rely on this
1770	 */
1771	rcu_read_lock();
1772	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1773	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1774				       task_uid(tsk));
1775	rcu_read_unlock();
1776
1777	task_cputime(tsk, &utime, &stime);
1778	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1779	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1780
1781	info.si_status = tsk->exit_code & 0x7f;
1782	if (tsk->exit_code & 0x80)
1783		info.si_code = CLD_DUMPED;
1784	else if (tsk->exit_code & 0x7f)
1785		info.si_code = CLD_KILLED;
1786	else {
1787		info.si_code = CLD_EXITED;
1788		info.si_status = tsk->exit_code >> 8;
1789	}
1790
1791	psig = tsk->parent->sighand;
1792	spin_lock_irqsave(&psig->siglock, flags);
1793	if (!tsk->ptrace && sig == SIGCHLD &&
1794	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1795	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1796		/*
1797		 * We are exiting and our parent doesn't care.  POSIX.1
1798		 * defines special semantics for setting SIGCHLD to SIG_IGN
1799		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1800		 * automatically and not left for our parent's wait4 call.
1801		 * Rather than having the parent do it as a magic kind of
1802		 * signal handler, we just set this to tell do_exit that we
1803		 * can be cleaned up without becoming a zombie.  Note that
1804		 * we still call __wake_up_parent in this case, because a
1805		 * blocked sys_wait4 might now return -ECHILD.
1806		 *
1807		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1808		 * is implementation-defined: we do (if you don't want
1809		 * it, just use SIG_IGN instead).
1810		 */
1811		autoreap = true;
1812		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1813			sig = 0;
1814	}
 
 
 
 
1815	if (valid_signal(sig) && sig)
1816		__group_send_sig_info(sig, &info, tsk->parent);
1817	__wake_up_parent(tsk, tsk->parent);
1818	spin_unlock_irqrestore(&psig->siglock, flags);
1819
1820	return autoreap;
1821}
1822
1823/**
1824 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1825 * @tsk: task reporting the state change
1826 * @for_ptracer: the notification is for ptracer
1827 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1828 *
1829 * Notify @tsk's parent that the stopped/continued state has changed.  If
1830 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1831 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1832 *
1833 * CONTEXT:
1834 * Must be called with tasklist_lock at least read locked.
1835 */
1836static void do_notify_parent_cldstop(struct task_struct *tsk,
1837				     bool for_ptracer, int why)
1838{
1839	struct siginfo info;
1840	unsigned long flags;
1841	struct task_struct *parent;
1842	struct sighand_struct *sighand;
1843	u64 utime, stime;
1844
1845	if (for_ptracer) {
1846		parent = tsk->parent;
1847	} else {
1848		tsk = tsk->group_leader;
1849		parent = tsk->real_parent;
1850	}
1851
1852	clear_siginfo(&info);
1853	info.si_signo = SIGCHLD;
1854	info.si_errno = 0;
1855	/*
1856	 * see comment in do_notify_parent() about the following 4 lines
1857	 */
1858	rcu_read_lock();
1859	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1860	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1861	rcu_read_unlock();
1862
1863	task_cputime(tsk, &utime, &stime);
1864	info.si_utime = nsec_to_clock_t(utime);
1865	info.si_stime = nsec_to_clock_t(stime);
1866
1867 	info.si_code = why;
1868 	switch (why) {
1869 	case CLD_CONTINUED:
1870 		info.si_status = SIGCONT;
1871 		break;
1872 	case CLD_STOPPED:
1873 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1874 		break;
1875 	case CLD_TRAPPED:
1876 		info.si_status = tsk->exit_code & 0x7f;
1877 		break;
1878 	default:
1879 		BUG();
1880 	}
1881
1882	sighand = parent->sighand;
1883	spin_lock_irqsave(&sighand->siglock, flags);
1884	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1885	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1886		__group_send_sig_info(SIGCHLD, &info, parent);
1887	/*
1888	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1889	 */
1890	__wake_up_parent(tsk, parent);
1891	spin_unlock_irqrestore(&sighand->siglock, flags);
1892}
1893
1894static inline int may_ptrace_stop(void)
1895{
1896	if (!likely(current->ptrace))
1897		return 0;
1898	/*
1899	 * Are we in the middle of do_coredump?
1900	 * If so and our tracer is also part of the coredump stopping
1901	 * is a deadlock situation, and pointless because our tracer
1902	 * is dead so don't allow us to stop.
1903	 * If SIGKILL was already sent before the caller unlocked
1904	 * ->siglock we must see ->core_state != NULL. Otherwise it
1905	 * is safe to enter schedule().
1906	 *
1907	 * This is almost outdated, a task with the pending SIGKILL can't
1908	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1909	 * after SIGKILL was already dequeued.
1910	 */
1911	if (unlikely(current->mm->core_state) &&
1912	    unlikely(current->mm == current->parent->mm))
1913		return 0;
1914
1915	return 1;
1916}
1917
1918/*
1919 * Return non-zero if there is a SIGKILL that should be waking us up.
1920 * Called with the siglock held.
1921 */
1922static int sigkill_pending(struct task_struct *tsk)
1923{
1924	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1925		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1926}
1927
1928/*
1929 * This must be called with current->sighand->siglock held.
1930 *
1931 * This should be the path for all ptrace stops.
1932 * We always set current->last_siginfo while stopped here.
1933 * That makes it a way to test a stopped process for
1934 * being ptrace-stopped vs being job-control-stopped.
1935 *
1936 * If we actually decide not to stop at all because the tracer
1937 * is gone, we keep current->exit_code unless clear_code.
 
1938 */
1939static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1940	__releases(&current->sighand->siglock)
1941	__acquires(&current->sighand->siglock)
1942{
1943	bool gstop_done = false;
1944
1945	if (arch_ptrace_stop_needed(exit_code, info)) {
1946		/*
1947		 * The arch code has something special to do before a
1948		 * ptrace stop.  This is allowed to block, e.g. for faults
1949		 * on user stack pages.  We can't keep the siglock while
1950		 * calling arch_ptrace_stop, so we must release it now.
1951		 * To preserve proper semantics, we must do this before
1952		 * any signal bookkeeping like checking group_stop_count.
1953		 * Meanwhile, a SIGKILL could come in before we retake the
1954		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1955		 * So after regaining the lock, we must check for SIGKILL.
1956		 */
1957		spin_unlock_irq(&current->sighand->siglock);
1958		arch_ptrace_stop(exit_code, info);
1959		spin_lock_irq(&current->sighand->siglock);
1960		if (sigkill_pending(current))
1961			return;
1962	}
1963
 
 
 
 
 
 
 
 
 
1964	set_special_state(TASK_TRACED);
 
1965
1966	/*
1967	 * We're committing to trapping.  TRACED should be visible before
1968	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1969	 * Also, transition to TRACED and updates to ->jobctl should be
1970	 * atomic with respect to siglock and should be done after the arch
1971	 * hook as siglock is released and regrabbed across it.
1972	 *
1973	 *     TRACER				    TRACEE
1974	 *
1975	 *     ptrace_attach()
1976	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
1977	 *     do_wait()
1978	 *       set_current_state()                smp_wmb();
1979	 *       ptrace_do_wait()
1980	 *         wait_task_stopped()
1981	 *           task_stopped_code()
1982	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
1983	 */
1984	smp_wmb();
1985
 
1986	current->last_siginfo = info;
1987	current->exit_code = exit_code;
1988
1989	/*
1990	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1991	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1992	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1993	 * could be clear now.  We act as if SIGCONT is received after
1994	 * TASK_TRACED is entered - ignore it.
1995	 */
1996	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1997		gstop_done = task_participate_group_stop(current);
1998
1999	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2000	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2001	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2002		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2003
2004	/* entering a trap, clear TRAPPING */
2005	task_clear_jobctl_trapping(current);
2006
2007	spin_unlock_irq(&current->sighand->siglock);
2008	read_lock(&tasklist_lock);
2009	if (may_ptrace_stop()) {
2010		/*
2011		 * Notify parents of the stop.
2012		 *
2013		 * While ptraced, there are two parents - the ptracer and
2014		 * the real_parent of the group_leader.  The ptracer should
2015		 * know about every stop while the real parent is only
2016		 * interested in the completion of group stop.  The states
2017		 * for the two don't interact with each other.  Notify
2018		 * separately unless they're gonna be duplicates.
2019		 */
2020		do_notify_parent_cldstop(current, true, why);
2021		if (gstop_done && ptrace_reparented(current))
2022			do_notify_parent_cldstop(current, false, why);
2023
2024		/*
2025		 * Don't want to allow preemption here, because
2026		 * sys_ptrace() needs this task to be inactive.
2027		 *
2028		 * XXX: implement read_unlock_no_resched().
2029		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030		preempt_disable();
2031		read_unlock(&tasklist_lock);
 
 
2032		preempt_enable_no_resched();
2033		freezable_schedule();
2034	} else {
2035		/*
2036		 * By the time we got the lock, our tracer went away.
2037		 * Don't drop the lock yet, another tracer may come.
2038		 *
2039		 * If @gstop_done, the ptracer went away between group stop
2040		 * completion and here.  During detach, it would have set
2041		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2042		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2043		 * the real parent of the group stop completion is enough.
2044		 */
2045		if (gstop_done)
2046			do_notify_parent_cldstop(current, false, why);
2047
2048		/* tasklist protects us from ptrace_freeze_traced() */
2049		__set_current_state(TASK_RUNNING);
2050		if (clear_code)
2051			current->exit_code = 0;
2052		read_unlock(&tasklist_lock);
2053	}
2054
2055	/*
2056	 * We are back.  Now reacquire the siglock before touching
2057	 * last_siginfo, so that we are sure to have synchronized with
2058	 * any signal-sending on another CPU that wants to examine it.
2059	 */
2060	spin_lock_irq(&current->sighand->siglock);
 
2061	current->last_siginfo = NULL;
 
 
2062
2063	/* LISTENING can be set only during STOP traps, clear it */
2064	current->jobctl &= ~JOBCTL_LISTENING;
2065
2066	/*
2067	 * Queued signals ignored us while we were stopped for tracing.
2068	 * So check for any that we should take before resuming user mode.
2069	 * This sets TIF_SIGPENDING, but never clears it.
2070	 */
2071	recalc_sigpending_tsk(current);
 
2072}
2073
2074static void ptrace_do_notify(int signr, int exit_code, int why)
2075{
2076	siginfo_t info;
2077
2078	clear_siginfo(&info);
2079	info.si_signo = signr;
2080	info.si_code = exit_code;
2081	info.si_pid = task_pid_vnr(current);
2082	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2083
2084	/* Let the debugger run.  */
2085	ptrace_stop(exit_code, why, 1, &info);
2086}
2087
2088void ptrace_notify(int exit_code)
2089{
 
 
2090	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2091	if (unlikely(current->task_works))
2092		task_work_run();
2093
2094	spin_lock_irq(&current->sighand->siglock);
2095	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2096	spin_unlock_irq(&current->sighand->siglock);
 
2097}
2098
2099/**
2100 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2101 * @signr: signr causing group stop if initiating
2102 *
2103 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2104 * and participate in it.  If already set, participate in the existing
2105 * group stop.  If participated in a group stop (and thus slept), %true is
2106 * returned with siglock released.
2107 *
2108 * If ptraced, this function doesn't handle stop itself.  Instead,
2109 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2110 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2111 * places afterwards.
2112 *
2113 * CONTEXT:
2114 * Must be called with @current->sighand->siglock held, which is released
2115 * on %true return.
2116 *
2117 * RETURNS:
2118 * %false if group stop is already cancelled or ptrace trap is scheduled.
2119 * %true if participated in group stop.
2120 */
2121static bool do_signal_stop(int signr)
2122	__releases(&current->sighand->siglock)
2123{
2124	struct signal_struct *sig = current->signal;
2125
2126	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2127		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2128		struct task_struct *t;
2129
2130		/* signr will be recorded in task->jobctl for retries */
2131		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2132
2133		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2134		    unlikely(signal_group_exit(sig)))
 
2135			return false;
2136		/*
2137		 * There is no group stop already in progress.  We must
2138		 * initiate one now.
2139		 *
2140		 * While ptraced, a task may be resumed while group stop is
2141		 * still in effect and then receive a stop signal and
2142		 * initiate another group stop.  This deviates from the
2143		 * usual behavior as two consecutive stop signals can't
2144		 * cause two group stops when !ptraced.  That is why we
2145		 * also check !task_is_stopped(t) below.
2146		 *
2147		 * The condition can be distinguished by testing whether
2148		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2149		 * group_exit_code in such case.
2150		 *
2151		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2152		 * an intervening stop signal is required to cause two
2153		 * continued events regardless of ptrace.
2154		 */
2155		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2156			sig->group_exit_code = signr;
2157
2158		sig->group_stop_count = 0;
2159
2160		if (task_set_jobctl_pending(current, signr | gstop))
2161			sig->group_stop_count++;
2162
2163		t = current;
2164		while_each_thread(current, t) {
2165			/*
2166			 * Setting state to TASK_STOPPED for a group
2167			 * stop is always done with the siglock held,
2168			 * so this check has no races.
2169			 */
2170			if (!task_is_stopped(t) &&
2171			    task_set_jobctl_pending(t, signr | gstop)) {
2172				sig->group_stop_count++;
2173				if (likely(!(t->ptrace & PT_SEIZED)))
2174					signal_wake_up(t, 0);
2175				else
2176					ptrace_trap_notify(t);
2177			}
2178		}
2179	}
2180
2181	if (likely(!current->ptrace)) {
2182		int notify = 0;
2183
2184		/*
2185		 * If there are no other threads in the group, or if there
2186		 * is a group stop in progress and we are the last to stop,
2187		 * report to the parent.
2188		 */
2189		if (task_participate_group_stop(current))
2190			notify = CLD_STOPPED;
2191
 
2192		set_special_state(TASK_STOPPED);
2193		spin_unlock_irq(&current->sighand->siglock);
2194
2195		/*
2196		 * Notify the parent of the group stop completion.  Because
2197		 * we're not holding either the siglock or tasklist_lock
2198		 * here, ptracer may attach inbetween; however, this is for
2199		 * group stop and should always be delivered to the real
2200		 * parent of the group leader.  The new ptracer will get
2201		 * its notification when this task transitions into
2202		 * TASK_TRACED.
2203		 */
2204		if (notify) {
2205			read_lock(&tasklist_lock);
2206			do_notify_parent_cldstop(current, false, notify);
2207			read_unlock(&tasklist_lock);
2208		}
2209
2210		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2211		freezable_schedule();
 
2212		return true;
2213	} else {
2214		/*
2215		 * While ptraced, group stop is handled by STOP trap.
2216		 * Schedule it and let the caller deal with it.
2217		 */
2218		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2219		return false;
2220	}
2221}
2222
2223/**
2224 * do_jobctl_trap - take care of ptrace jobctl traps
2225 *
2226 * When PT_SEIZED, it's used for both group stop and explicit
2227 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2228 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2229 * the stop signal; otherwise, %SIGTRAP.
2230 *
2231 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2232 * number as exit_code and no siginfo.
2233 *
2234 * CONTEXT:
2235 * Must be called with @current->sighand->siglock held, which may be
2236 * released and re-acquired before returning with intervening sleep.
2237 */
2238static void do_jobctl_trap(void)
2239{
2240	struct signal_struct *signal = current->signal;
2241	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2242
2243	if (current->ptrace & PT_SEIZED) {
2244		if (!signal->group_stop_count &&
2245		    !(signal->flags & SIGNAL_STOP_STOPPED))
2246			signr = SIGTRAP;
2247		WARN_ON_ONCE(!signr);
2248		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2249				 CLD_STOPPED);
2250	} else {
2251		WARN_ON_ONCE(!signr);
2252		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2253		current->exit_code = 0;
2254	}
2255}
2256
2257static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258{
2259	/*
2260	 * We do not check sig_kernel_stop(signr) but set this marker
2261	 * unconditionally because we do not know whether debugger will
2262	 * change signr. This flag has no meaning unless we are going
2263	 * to stop after return from ptrace_stop(). In this case it will
2264	 * be checked in do_signal_stop(), we should only stop if it was
2265	 * not cleared by SIGCONT while we were sleeping. See also the
2266	 * comment in dequeue_signal().
2267	 */
2268	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2269	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2270
2271	/* We're back.  Did the debugger cancel the sig?  */
2272	signr = current->exit_code;
2273	if (signr == 0)
2274		return signr;
2275
2276	current->exit_code = 0;
2277
2278	/*
2279	 * Update the siginfo structure if the signal has
2280	 * changed.  If the debugger wanted something
2281	 * specific in the siginfo structure then it should
2282	 * have updated *info via PTRACE_SETSIGINFO.
2283	 */
2284	if (signr != info->si_signo) {
2285		clear_siginfo(info);
2286		info->si_signo = signr;
2287		info->si_errno = 0;
2288		info->si_code = SI_USER;
2289		rcu_read_lock();
2290		info->si_pid = task_pid_vnr(current->parent);
2291		info->si_uid = from_kuid_munged(current_user_ns(),
2292						task_uid(current->parent));
2293		rcu_read_unlock();
2294	}
2295
2296	/* If the (new) signal is now blocked, requeue it.  */
2297	if (sigismember(&current->blocked, signr)) {
2298		specific_send_sig_info(signr, info, current);
 
2299		signr = 0;
2300	}
2301
2302	return signr;
2303}
2304
2305int get_signal(struct ksignal *ksig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306{
2307	struct sighand_struct *sighand = current->sighand;
2308	struct signal_struct *signal = current->signal;
2309	int signr;
2310
2311	if (unlikely(current->task_works))
 
2312		task_work_run();
2313
 
 
 
2314	if (unlikely(uprobe_deny_signal()))
2315		return 0;
2316
2317	/*
2318	 * Do this once, we can't return to user-mode if freezing() == T.
2319	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2320	 * thus do not need another check after return.
2321	 */
2322	try_to_freeze();
2323
2324relock:
2325	spin_lock_irq(&sighand->siglock);
 
2326	/*
2327	 * Every stopped thread goes here after wakeup. Check to see if
2328	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2329	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2330	 */
2331	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2332		int why;
2333
2334		if (signal->flags & SIGNAL_CLD_CONTINUED)
2335			why = CLD_CONTINUED;
2336		else
2337			why = CLD_STOPPED;
2338
2339		signal->flags &= ~SIGNAL_CLD_MASK;
2340
2341		spin_unlock_irq(&sighand->siglock);
2342
2343		/*
2344		 * Notify the parent that we're continuing.  This event is
2345		 * always per-process and doesn't make whole lot of sense
2346		 * for ptracers, who shouldn't consume the state via
2347		 * wait(2) either, but, for backward compatibility, notify
2348		 * the ptracer of the group leader too unless it's gonna be
2349		 * a duplicate.
2350		 */
2351		read_lock(&tasklist_lock);
2352		do_notify_parent_cldstop(current, false, why);
2353
2354		if (ptrace_reparented(current->group_leader))
2355			do_notify_parent_cldstop(current->group_leader,
2356						true, why);
2357		read_unlock(&tasklist_lock);
2358
2359		goto relock;
2360	}
2361
2362	for (;;) {
2363		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2364
2365		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2366		    do_signal_stop(0))
2367			goto relock;
2368
2369		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2370			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371			spin_unlock_irq(&sighand->siglock);
 
2372			goto relock;
2373		}
2374
2375		signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
 
 
 
 
 
 
 
 
 
2376
2377		if (!signr)
2378			break; /* will return 0 */
2379
2380		if (unlikely(current->ptrace) && signr != SIGKILL) {
2381			signr = ptrace_signal(signr, &ksig->info);
 
2382			if (!signr)
2383				continue;
2384		}
2385
2386		ka = &sighand->action[signr-1];
2387
2388		/* Trace actually delivered signals. */
2389		trace_signal_deliver(signr, &ksig->info, ka);
2390
2391		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2392			continue;
2393		if (ka->sa.sa_handler != SIG_DFL) {
2394			/* Run the handler.  */
2395			ksig->ka = *ka;
2396
2397			if (ka->sa.sa_flags & SA_ONESHOT)
2398				ka->sa.sa_handler = SIG_DFL;
2399
2400			break; /* will return non-zero "signr" value */
2401		}
2402
2403		/*
2404		 * Now we are doing the default action for this signal.
2405		 */
2406		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2407			continue;
2408
2409		/*
2410		 * Global init gets no signals it doesn't want.
2411		 * Container-init gets no signals it doesn't want from same
2412		 * container.
2413		 *
2414		 * Note that if global/container-init sees a sig_kernel_only()
2415		 * signal here, the signal must have been generated internally
2416		 * or must have come from an ancestor namespace. In either
2417		 * case, the signal cannot be dropped.
2418		 */
2419		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2420				!sig_kernel_only(signr))
2421			continue;
2422
2423		if (sig_kernel_stop(signr)) {
2424			/*
2425			 * The default action is to stop all threads in
2426			 * the thread group.  The job control signals
2427			 * do nothing in an orphaned pgrp, but SIGSTOP
2428			 * always works.  Note that siglock needs to be
2429			 * dropped during the call to is_orphaned_pgrp()
2430			 * because of lock ordering with tasklist_lock.
2431			 * This allows an intervening SIGCONT to be posted.
2432			 * We need to check for that and bail out if necessary.
2433			 */
2434			if (signr != SIGSTOP) {
2435				spin_unlock_irq(&sighand->siglock);
2436
2437				/* signals can be posted during this window */
2438
2439				if (is_current_pgrp_orphaned())
2440					goto relock;
2441
2442				spin_lock_irq(&sighand->siglock);
2443			}
2444
2445			if (likely(do_signal_stop(ksig->info.si_signo))) {
2446				/* It released the siglock.  */
2447				goto relock;
2448			}
2449
2450			/*
2451			 * We didn't actually stop, due to a race
2452			 * with SIGCONT or something like that.
2453			 */
2454			continue;
2455		}
2456
 
2457		spin_unlock_irq(&sighand->siglock);
 
 
2458
2459		/*
2460		 * Anything else is fatal, maybe with a core dump.
2461		 */
2462		current->flags |= PF_SIGNALED;
2463
2464		if (sig_kernel_coredump(signr)) {
2465			if (print_fatal_signals)
2466				print_fatal_signal(ksig->info.si_signo);
2467			proc_coredump_connector(current);
2468			/*
2469			 * If it was able to dump core, this kills all
2470			 * other threads in the group and synchronizes with
2471			 * their demise.  If we lost the race with another
2472			 * thread getting here, it set group_exit_code
2473			 * first and our do_group_exit call below will use
2474			 * that value and ignore the one we pass it.
2475			 */
2476			do_coredump(&ksig->info);
2477		}
2478
2479		/*
 
 
 
 
 
 
 
 
2480		 * Death signals, no core dump.
2481		 */
2482		do_group_exit(ksig->info.si_signo);
2483		/* NOTREACHED */
2484	}
2485	spin_unlock_irq(&sighand->siglock);
 
 
 
 
 
2486
2487	ksig->sig = signr;
2488	return ksig->sig > 0;
2489}
2490
2491/**
2492 * signal_delivered - 
2493 * @ksig:		kernel signal struct
2494 * @stepping:		nonzero if debugger single-step or block-step in use
2495 *
2496 * This function should be called when a signal has successfully been
2497 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2498 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2499 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2500 */
2501static void signal_delivered(struct ksignal *ksig, int stepping)
2502{
2503	sigset_t blocked;
2504
2505	/* A signal was successfully delivered, and the
2506	   saved sigmask was stored on the signal frame,
2507	   and will be restored by sigreturn.  So we can
2508	   simply clear the restore sigmask flag.  */
2509	clear_restore_sigmask();
2510
2511	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2512	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2513		sigaddset(&blocked, ksig->sig);
2514	set_current_blocked(&blocked);
2515	tracehook_signal_handler(stepping);
 
 
 
2516}
2517
2518void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2519{
2520	if (failed)
2521		force_sigsegv(ksig->sig, current);
2522	else
2523		signal_delivered(ksig, stepping);
2524}
2525
2526/*
2527 * It could be that complete_signal() picked us to notify about the
2528 * group-wide signal. Other threads should be notified now to take
2529 * the shared signals in @which since we will not.
2530 */
2531static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2532{
2533	sigset_t retarget;
2534	struct task_struct *t;
2535
2536	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2537	if (sigisemptyset(&retarget))
2538		return;
2539
2540	t = tsk;
2541	while_each_thread(tsk, t) {
2542		if (t->flags & PF_EXITING)
2543			continue;
2544
2545		if (!has_pending_signals(&retarget, &t->blocked))
2546			continue;
2547		/* Remove the signals this thread can handle. */
2548		sigandsets(&retarget, &retarget, &t->blocked);
2549
2550		if (!signal_pending(t))
2551			signal_wake_up(t, 0);
2552
2553		if (sigisemptyset(&retarget))
2554			break;
2555	}
2556}
2557
2558void exit_signals(struct task_struct *tsk)
2559{
2560	int group_stop = 0;
2561	sigset_t unblocked;
2562
2563	/*
2564	 * @tsk is about to have PF_EXITING set - lock out users which
2565	 * expect stable threadgroup.
2566	 */
2567	cgroup_threadgroup_change_begin(tsk);
2568
2569	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
2570		tsk->flags |= PF_EXITING;
2571		cgroup_threadgroup_change_end(tsk);
2572		return;
2573	}
2574
2575	spin_lock_irq(&tsk->sighand->siglock);
2576	/*
2577	 * From now this task is not visible for group-wide signals,
2578	 * see wants_signal(), do_signal_stop().
2579	 */
 
2580	tsk->flags |= PF_EXITING;
2581
2582	cgroup_threadgroup_change_end(tsk);
2583
2584	if (!signal_pending(tsk))
2585		goto out;
2586
2587	unblocked = tsk->blocked;
2588	signotset(&unblocked);
2589	retarget_shared_pending(tsk, &unblocked);
2590
2591	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2592	    task_participate_group_stop(tsk))
2593		group_stop = CLD_STOPPED;
2594out:
2595	spin_unlock_irq(&tsk->sighand->siglock);
2596
2597	/*
2598	 * If group stop has completed, deliver the notification.  This
2599	 * should always go to the real parent of the group leader.
2600	 */
2601	if (unlikely(group_stop)) {
2602		read_lock(&tasklist_lock);
2603		do_notify_parent_cldstop(tsk, false, group_stop);
2604		read_unlock(&tasklist_lock);
2605	}
2606}
2607
2608EXPORT_SYMBOL(recalc_sigpending);
2609EXPORT_SYMBOL_GPL(dequeue_signal);
2610EXPORT_SYMBOL(flush_signals);
2611EXPORT_SYMBOL(force_sig);
2612EXPORT_SYMBOL(send_sig);
2613EXPORT_SYMBOL(send_sig_info);
2614EXPORT_SYMBOL(sigprocmask);
2615
2616/*
2617 * System call entry points.
2618 */
2619
2620/**
2621 *  sys_restart_syscall - restart a system call
2622 */
2623SYSCALL_DEFINE0(restart_syscall)
2624{
2625	struct restart_block *restart = &current->restart_block;
2626	return restart->fn(restart);
2627}
2628
2629long do_no_restart_syscall(struct restart_block *param)
2630{
2631	return -EINTR;
2632}
2633
2634static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2635{
2636	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2637		sigset_t newblocked;
2638		/* A set of now blocked but previously unblocked signals. */
2639		sigandnsets(&newblocked, newset, &current->blocked);
2640		retarget_shared_pending(tsk, &newblocked);
2641	}
2642	tsk->blocked = *newset;
2643	recalc_sigpending();
2644}
2645
2646/**
2647 * set_current_blocked - change current->blocked mask
2648 * @newset: new mask
2649 *
2650 * It is wrong to change ->blocked directly, this helper should be used
2651 * to ensure the process can't miss a shared signal we are going to block.
2652 */
2653void set_current_blocked(sigset_t *newset)
2654{
2655	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2656	__set_current_blocked(newset);
2657}
2658
2659void __set_current_blocked(const sigset_t *newset)
2660{
2661	struct task_struct *tsk = current;
2662
2663	/*
2664	 * In case the signal mask hasn't changed, there is nothing we need
2665	 * to do. The current->blocked shouldn't be modified by other task.
2666	 */
2667	if (sigequalsets(&tsk->blocked, newset))
2668		return;
2669
2670	spin_lock_irq(&tsk->sighand->siglock);
2671	__set_task_blocked(tsk, newset);
2672	spin_unlock_irq(&tsk->sighand->siglock);
2673}
2674
2675/*
2676 * This is also useful for kernel threads that want to temporarily
2677 * (or permanently) block certain signals.
2678 *
2679 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2680 * interface happily blocks "unblockable" signals like SIGKILL
2681 * and friends.
2682 */
2683int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2684{
2685	struct task_struct *tsk = current;
2686	sigset_t newset;
2687
2688	/* Lockless, only current can change ->blocked, never from irq */
2689	if (oldset)
2690		*oldset = tsk->blocked;
2691
2692	switch (how) {
2693	case SIG_BLOCK:
2694		sigorsets(&newset, &tsk->blocked, set);
2695		break;
2696	case SIG_UNBLOCK:
2697		sigandnsets(&newset, &tsk->blocked, set);
2698		break;
2699	case SIG_SETMASK:
2700		newset = *set;
2701		break;
2702	default:
2703		return -EINVAL;
2704	}
2705
2706	__set_current_blocked(&newset);
2707	return 0;
2708}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2709
2710/**
2711 *  sys_rt_sigprocmask - change the list of currently blocked signals
2712 *  @how: whether to add, remove, or set signals
2713 *  @nset: stores pending signals
2714 *  @oset: previous value of signal mask if non-null
2715 *  @sigsetsize: size of sigset_t type
2716 */
2717SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2718		sigset_t __user *, oset, size_t, sigsetsize)
2719{
2720	sigset_t old_set, new_set;
2721	int error;
2722
2723	/* XXX: Don't preclude handling different sized sigset_t's.  */
2724	if (sigsetsize != sizeof(sigset_t))
2725		return -EINVAL;
2726
2727	old_set = current->blocked;
2728
2729	if (nset) {
2730		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2731			return -EFAULT;
2732		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2733
2734		error = sigprocmask(how, &new_set, NULL);
2735		if (error)
2736			return error;
2737	}
2738
2739	if (oset) {
2740		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2741			return -EFAULT;
2742	}
2743
2744	return 0;
2745}
2746
2747#ifdef CONFIG_COMPAT
2748COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2749		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2750{
2751	sigset_t old_set = current->blocked;
2752
2753	/* XXX: Don't preclude handling different sized sigset_t's.  */
2754	if (sigsetsize != sizeof(sigset_t))
2755		return -EINVAL;
2756
2757	if (nset) {
2758		sigset_t new_set;
2759		int error;
2760		if (get_compat_sigset(&new_set, nset))
2761			return -EFAULT;
2762		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2763
2764		error = sigprocmask(how, &new_set, NULL);
2765		if (error)
2766			return error;
2767	}
2768	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
2769}
2770#endif
2771
2772static int do_sigpending(sigset_t *set)
2773{
2774	spin_lock_irq(&current->sighand->siglock);
2775	sigorsets(set, &current->pending.signal,
2776		  &current->signal->shared_pending.signal);
2777	spin_unlock_irq(&current->sighand->siglock);
2778
2779	/* Outside the lock because only this thread touches it.  */
2780	sigandsets(set, &current->blocked, set);
2781	return 0;
2782}
2783
2784/**
2785 *  sys_rt_sigpending - examine a pending signal that has been raised
2786 *			while blocked
2787 *  @uset: stores pending signals
2788 *  @sigsetsize: size of sigset_t type or larger
2789 */
2790SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2791{
2792	sigset_t set;
2793	int err;
2794
2795	if (sigsetsize > sizeof(*uset))
2796		return -EINVAL;
2797
2798	err = do_sigpending(&set);
2799	if (!err && copy_to_user(uset, &set, sigsetsize))
2800		err = -EFAULT;
2801	return err;
 
 
2802}
2803
2804#ifdef CONFIG_COMPAT
2805COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2806		compat_size_t, sigsetsize)
2807{
2808	sigset_t set;
2809	int err;
2810
2811	if (sigsetsize > sizeof(*uset))
2812		return -EINVAL;
2813
2814	err = do_sigpending(&set);
2815	if (!err)
2816		err = put_compat_sigset(uset, &set, sigsetsize);
2817	return err;
2818}
2819#endif
2820
2821enum siginfo_layout siginfo_layout(int sig, int si_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822{
2823	enum siginfo_layout layout = SIL_KILL;
2824	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
2825		static const struct {
2826			unsigned char limit, layout;
2827		} filter[] = {
2828			[SIGILL]  = { NSIGILL,  SIL_FAULT },
2829			[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
2830			[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
2831			[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
2832			[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
2833#if defined(SIGEMT) && defined(NSIGEMT)
2834			[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
2835#endif
2836			[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
2837			[SIGPOLL] = { NSIGPOLL, SIL_POLL },
2838			[SIGSYS]  = { NSIGSYS,  SIL_SYS },
2839		};
2840		if ((sig < ARRAY_SIZE(filter)) && (si_code <= filter[sig].limit))
2841			layout = filter[sig].layout;
 
 
 
 
 
 
2842		else if (si_code <= NSIGPOLL)
2843			layout = SIL_POLL;
2844	} else {
2845		if (si_code == SI_TIMER)
2846			layout = SIL_TIMER;
2847		else if (si_code == SI_SIGIO)
2848			layout = SIL_POLL;
2849		else if (si_code < 0)
2850			layout = SIL_RT;
2851		/* Tests to support buggy kernel ABIs */
2852#ifdef TRAP_FIXME
2853		if ((sig == SIGTRAP) && (si_code == TRAP_FIXME))
2854			layout = SIL_FAULT;
2855#endif
2856#ifdef FPE_FIXME
2857		if ((sig == SIGFPE) && (si_code == FPE_FIXME))
2858			layout = SIL_FAULT;
2859#endif
2860	}
2861	return layout;
2862}
2863
2864int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
 
 
 
 
 
2865{
2866	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2867
2868	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2869		return -EFAULT;
2870	if (from->si_code < 0)
2871		return __copy_to_user(to, from, sizeof(siginfo_t))
2872			? -EFAULT : 0;
2873	/*
2874	 * If you change siginfo_t structure, please be sure
2875	 * this code is fixed accordingly.
2876	 * Please remember to update the signalfd_copyinfo() function
2877	 * inside fs/signalfd.c too, in case siginfo_t changes.
2878	 * It should never copy any pad contained in the structure
2879	 * to avoid security leaks, but must copy the generic
2880	 * 3 ints plus the relevant union member.
2881	 */
2882	err = __put_user(from->si_signo, &to->si_signo);
2883	err |= __put_user(from->si_errno, &to->si_errno);
2884	err |= __put_user(from->si_code, &to->si_code);
2885	switch (siginfo_layout(from->si_signo, from->si_code)) {
 
 
 
 
 
 
 
2886	case SIL_KILL:
2887		err |= __put_user(from->si_pid, &to->si_pid);
2888		err |= __put_user(from->si_uid, &to->si_uid);
2889		break;
2890	case SIL_TIMER:
2891		/* Unreached SI_TIMER is negative */
 
 
2892		break;
2893	case SIL_POLL:
2894		err |= __put_user(from->si_band, &to->si_band);
2895		err |= __put_user(from->si_fd, &to->si_fd);
2896		break;
2897	case SIL_FAULT:
2898		err |= __put_user(from->si_addr, &to->si_addr);
2899#ifdef __ARCH_SI_TRAPNO
2900		err |= __put_user(from->si_trapno, &to->si_trapno);
2901#endif
2902#ifdef __ia64__
2903		err |= __put_user(from->si_imm, &to->si_imm);
2904		err |= __put_user(from->si_flags, &to->si_flags);
2905		err |= __put_user(from->si_isr, &to->si_isr);
2906#endif
2907		/*
2908		 * Other callers might not initialize the si_lsb field,
2909		 * so check explicitly for the right codes here.
2910		 */
2911#ifdef BUS_MCEERR_AR
2912		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AR)
2913			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2914#endif
2915#ifdef BUS_MCEERR_AO
2916		if (from->si_signo == SIGBUS && from->si_code == BUS_MCEERR_AO)
2917			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2918#endif
2919#ifdef SEGV_BNDERR
2920		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2921			err |= __put_user(from->si_lower, &to->si_lower);
2922			err |= __put_user(from->si_upper, &to->si_upper);
2923		}
2924#endif
2925#ifdef SEGV_PKUERR
2926		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2927			err |= __put_user(from->si_pkey, &to->si_pkey);
2928#endif
2929		break;
2930	case SIL_CHLD:
2931		err |= __put_user(from->si_pid, &to->si_pid);
2932		err |= __put_user(from->si_uid, &to->si_uid);
2933		err |= __put_user(from->si_status, &to->si_status);
2934		err |= __put_user(from->si_utime, &to->si_utime);
2935		err |= __put_user(from->si_stime, &to->si_stime);
2936		break;
2937	case SIL_RT:
2938		err |= __put_user(from->si_pid, &to->si_pid);
2939		err |= __put_user(from->si_uid, &to->si_uid);
2940		err |= __put_user(from->si_ptr, &to->si_ptr);
2941		break;
2942	case SIL_SYS:
2943		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2944		err |= __put_user(from->si_syscall, &to->si_syscall);
2945		err |= __put_user(from->si_arch, &to->si_arch);
2946		break;
2947	}
2948	return err;
2949}
2950
2951#ifdef CONFIG_COMPAT
2952int copy_siginfo_to_user32(struct compat_siginfo __user *to,
2953			   const struct siginfo *from)
2954#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
2955{
2956	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
2957}
2958int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
2959			     const struct siginfo *from, bool x32_ABI)
2960#endif
2961{
2962	struct compat_siginfo new;
2963	memset(&new, 0, sizeof(new));
2964
2965	new.si_signo = from->si_signo;
2966	new.si_errno = from->si_errno;
2967	new.si_code  = from->si_code;
 
 
 
 
 
 
 
 
 
 
2968	switch(siginfo_layout(from->si_signo, from->si_code)) {
2969	case SIL_KILL:
2970		new.si_pid = from->si_pid;
2971		new.si_uid = from->si_uid;
2972		break;
2973	case SIL_TIMER:
2974		new.si_tid     = from->si_tid;
2975		new.si_overrun = from->si_overrun;
2976		new.si_int     = from->si_int;
2977		break;
2978	case SIL_POLL:
2979		new.si_band = from->si_band;
2980		new.si_fd   = from->si_fd;
2981		break;
2982	case SIL_FAULT:
2983		new.si_addr = ptr_to_compat(from->si_addr);
2984#ifdef __ARCH_SI_TRAPNO
2985		new.si_trapno = from->si_trapno;
2986#endif
2987#ifdef BUS_MCEERR_AR
2988		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AR))
2989			new.si_addr_lsb = from->si_addr_lsb;
2990#endif
2991#ifdef BUS_MCEERR_AO
2992		if ((from->si_signo == SIGBUS) && (from->si_code == BUS_MCEERR_AO))
2993			new.si_addr_lsb = from->si_addr_lsb;
2994#endif
2995#ifdef SEGV_BNDERR
2996		if ((from->si_signo == SIGSEGV) &&
2997		    (from->si_code == SEGV_BNDERR)) {
2998			new.si_lower = ptr_to_compat(from->si_lower);
2999			new.si_upper = ptr_to_compat(from->si_upper);
3000		}
3001#endif
3002#ifdef SEGV_PKUERR
3003		if ((from->si_signo == SIGSEGV) &&
3004		    (from->si_code == SEGV_PKUERR))
3005			new.si_pkey = from->si_pkey;
3006#endif
3007
3008		break;
3009	case SIL_CHLD:
3010		new.si_pid    = from->si_pid;
3011		new.si_uid    = from->si_uid;
3012		new.si_status = from->si_status;
3013#ifdef CONFIG_X86_X32_ABI
3014		if (x32_ABI) {
3015			new._sifields._sigchld_x32._utime = from->si_utime;
3016			new._sifields._sigchld_x32._stime = from->si_stime;
3017		} else
3018#endif
3019		{
3020			new.si_utime = from->si_utime;
3021			new.si_stime = from->si_stime;
3022		}
3023		break;
3024	case SIL_RT:
3025		new.si_pid = from->si_pid;
3026		new.si_uid = from->si_uid;
3027		new.si_int = from->si_int;
3028		break;
3029	case SIL_SYS:
3030		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3031		new.si_syscall   = from->si_syscall;
3032		new.si_arch      = from->si_arch;
3033		break;
3034	}
 
 
 
 
 
 
 
3035
3036	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3037		return -EFAULT;
3038
3039	return 0;
 
3040}
3041
3042int copy_siginfo_from_user32(struct siginfo *to,
3043			     const struct compat_siginfo __user *ufrom)
3044{
3045	struct compat_siginfo from;
3046
3047	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3048		return -EFAULT;
3049
3050	clear_siginfo(to);
3051	to->si_signo = from.si_signo;
3052	to->si_errno = from.si_errno;
3053	to->si_code  = from.si_code;
3054	switch(siginfo_layout(from.si_signo, from.si_code)) {
3055	case SIL_KILL:
3056		to->si_pid = from.si_pid;
3057		to->si_uid = from.si_uid;
3058		break;
3059	case SIL_TIMER:
3060		to->si_tid     = from.si_tid;
3061		to->si_overrun = from.si_overrun;
3062		to->si_int     = from.si_int;
3063		break;
3064	case SIL_POLL:
3065		to->si_band = from.si_band;
3066		to->si_fd   = from.si_fd;
3067		break;
3068	case SIL_FAULT:
3069		to->si_addr = compat_ptr(from.si_addr);
3070#ifdef __ARCH_SI_TRAPNO
3071		to->si_trapno = from.si_trapno;
3072#endif
3073#ifdef BUS_MCEERR_AR
3074		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AR))
3075			to->si_addr_lsb = from.si_addr_lsb;
3076#endif
3077#ifdef BUS_MCEER_AO
3078		if ((from.si_signo == SIGBUS) && (from.si_code == BUS_MCEERR_AO))
3079			to->si_addr_lsb = from.si_addr_lsb;
3080#endif
3081#ifdef SEGV_BNDERR
3082		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_BNDERR)) {
3083			to->si_lower = compat_ptr(from.si_lower);
3084			to->si_upper = compat_ptr(from.si_upper);
3085		}
3086#endif
3087#ifdef SEGV_PKUERR
3088		if ((from.si_signo == SIGSEGV) && (from.si_code == SEGV_PKUERR))
3089			to->si_pkey = from.si_pkey;
3090#endif
3091		break;
3092	case SIL_CHLD:
3093		to->si_pid    = from.si_pid;
3094		to->si_uid    = from.si_uid;
3095		to->si_status = from.si_status;
3096#ifdef CONFIG_X86_X32_ABI
3097		if (in_x32_syscall()) {
3098			to->si_utime = from._sifields._sigchld_x32._utime;
3099			to->si_stime = from._sifields._sigchld_x32._stime;
3100		} else
3101#endif
3102		{
3103			to->si_utime = from.si_utime;
3104			to->si_stime = from.si_stime;
3105		}
3106		break;
3107	case SIL_RT:
3108		to->si_pid = from.si_pid;
3109		to->si_uid = from.si_uid;
3110		to->si_int = from.si_int;
3111		break;
3112	case SIL_SYS:
3113		to->si_call_addr = compat_ptr(from.si_call_addr);
3114		to->si_syscall   = from.si_syscall;
3115		to->si_arch      = from.si_arch;
3116		break;
3117	}
3118	return 0;
3119}
3120#endif /* CONFIG_COMPAT */
3121
3122/**
3123 *  do_sigtimedwait - wait for queued signals specified in @which
3124 *  @which: queued signals to wait for
3125 *  @info: if non-null, the signal's siginfo is returned here
3126 *  @ts: upper bound on process time suspension
3127 */
3128static int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
3129		    const struct timespec *ts)
3130{
3131	ktime_t *to = NULL, timeout = KTIME_MAX;
3132	struct task_struct *tsk = current;
3133	sigset_t mask = *which;
 
3134	int sig, ret = 0;
3135
3136	if (ts) {
3137		if (!timespec_valid(ts))
3138			return -EINVAL;
3139		timeout = timespec_to_ktime(*ts);
3140		to = &timeout;
3141	}
3142
3143	/*
3144	 * Invert the set of allowed signals to get those we want to block.
3145	 */
3146	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3147	signotset(&mask);
3148
3149	spin_lock_irq(&tsk->sighand->siglock);
3150	sig = dequeue_signal(tsk, &mask, info);
3151	if (!sig && timeout) {
3152		/*
3153		 * None ready, temporarily unblock those we're interested
3154		 * while we are sleeping in so that we'll be awakened when
3155		 * they arrive. Unblocking is always fine, we can avoid
3156		 * set_current_blocked().
3157		 */
3158		tsk->real_blocked = tsk->blocked;
3159		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3160		recalc_sigpending();
3161		spin_unlock_irq(&tsk->sighand->siglock);
3162
3163		__set_current_state(TASK_INTERRUPTIBLE);
3164		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3165							 HRTIMER_MODE_REL);
3166		spin_lock_irq(&tsk->sighand->siglock);
3167		__set_task_blocked(tsk, &tsk->real_blocked);
3168		sigemptyset(&tsk->real_blocked);
3169		sig = dequeue_signal(tsk, &mask, info);
3170	}
3171	spin_unlock_irq(&tsk->sighand->siglock);
3172
3173	if (sig)
3174		return sig;
3175	return ret ? -EINTR : -EAGAIN;
3176}
3177
3178/**
3179 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3180 *			in @uthese
3181 *  @uthese: queued signals to wait for
3182 *  @uinfo: if non-null, the signal's siginfo is returned here
3183 *  @uts: upper bound on process time suspension
3184 *  @sigsetsize: size of sigset_t type
3185 */
3186SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3187		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
3188		size_t, sigsetsize)
3189{
3190	sigset_t these;
3191	struct timespec ts;
3192	siginfo_t info;
3193	int ret;
3194
3195	/* XXX: Don't preclude handling different sized sigset_t's.  */
3196	if (sigsetsize != sizeof(sigset_t))
3197		return -EINVAL;
3198
3199	if (copy_from_user(&these, uthese, sizeof(these)))
3200		return -EFAULT;
3201
3202	if (uts) {
3203		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3204			return -EFAULT;
3205	}
3206
3207	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3208
3209	if (ret > 0 && uinfo) {
3210		if (copy_siginfo_to_user(uinfo, &info))
3211			ret = -EFAULT;
3212	}
3213
3214	return ret;
3215}
 
3216
3217#ifdef CONFIG_COMPAT
3218COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait, compat_sigset_t __user *, uthese,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3219		struct compat_siginfo __user *, uinfo,
3220		struct compat_timespec __user *, uts, compat_size_t, sigsetsize)
3221{
3222	sigset_t s;
3223	struct timespec t;
3224	siginfo_t info;
3225	long ret;
3226
3227	if (sigsetsize != sizeof(sigset_t))
3228		return -EINVAL;
3229
3230	if (get_compat_sigset(&s, uthese))
3231		return -EFAULT;
3232
3233	if (uts) {
3234		if (compat_get_timespec(&t, uts))
3235			return -EFAULT;
3236	}
3237
3238	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3239
3240	if (ret > 0 && uinfo) {
3241		if (copy_siginfo_to_user32(uinfo, &info))
3242			ret = -EFAULT;
3243	}
3244
3245	return ret;
3246}
3247#endif
 
 
 
 
 
 
 
 
 
 
 
3248
3249/**
3250 *  sys_kill - send a signal to a process
3251 *  @pid: the PID of the process
3252 *  @sig: signal to be sent
3253 */
3254SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3255{
3256	struct siginfo info;
3257
3258	clear_siginfo(&info);
3259	info.si_signo = sig;
3260	info.si_errno = 0;
3261	info.si_code = SI_USER;
3262	info.si_pid = task_tgid_vnr(current);
3263	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3264
3265	return kill_something_info(sig, &info, pid);
3266}
3267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268static int
3269do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
3270{
3271	struct task_struct *p;
3272	int error = -ESRCH;
3273
3274	rcu_read_lock();
3275	p = find_task_by_vpid(pid);
3276	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3277		error = check_kill_permission(sig, info, p);
3278		/*
3279		 * The null signal is a permissions and process existence
3280		 * probe.  No signal is actually delivered.
3281		 */
3282		if (!error && sig) {
3283			error = do_send_sig_info(sig, info, p, false);
3284			/*
3285			 * If lock_task_sighand() failed we pretend the task
3286			 * dies after receiving the signal. The window is tiny,
3287			 * and the signal is private anyway.
3288			 */
3289			if (unlikely(error == -ESRCH))
3290				error = 0;
3291		}
3292	}
3293	rcu_read_unlock();
3294
3295	return error;
3296}
3297
3298static int do_tkill(pid_t tgid, pid_t pid, int sig)
3299{
3300	struct siginfo info;
3301
3302	clear_siginfo(&info);
3303	info.si_signo = sig;
3304	info.si_errno = 0;
3305	info.si_code = SI_TKILL;
3306	info.si_pid = task_tgid_vnr(current);
3307	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3308
3309	return do_send_specific(tgid, pid, sig, &info);
3310}
3311
3312/**
3313 *  sys_tgkill - send signal to one specific thread
3314 *  @tgid: the thread group ID of the thread
3315 *  @pid: the PID of the thread
3316 *  @sig: signal to be sent
3317 *
3318 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3319 *  exists but it's not belonging to the target process anymore. This
3320 *  method solves the problem of threads exiting and PIDs getting reused.
3321 */
3322SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3323{
3324	/* This is only valid for single tasks */
3325	if (pid <= 0 || tgid <= 0)
3326		return -EINVAL;
3327
3328	return do_tkill(tgid, pid, sig);
3329}
3330
3331/**
3332 *  sys_tkill - send signal to one specific task
3333 *  @pid: the PID of the task
3334 *  @sig: signal to be sent
3335 *
3336 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3337 */
3338SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3339{
3340	/* This is only valid for single tasks */
3341	if (pid <= 0)
3342		return -EINVAL;
3343
3344	return do_tkill(0, pid, sig);
3345}
3346
3347static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3348{
3349	/* Not even root can pretend to send signals from the kernel.
3350	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3351	 */
3352	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3353	    (task_pid_vnr(current) != pid))
3354		return -EPERM;
3355
3356	info->si_signo = sig;
3357
3358	/* POSIX.1b doesn't mention process groups.  */
3359	return kill_proc_info(sig, info, pid);
3360}
3361
3362/**
3363 *  sys_rt_sigqueueinfo - send signal information to a signal
3364 *  @pid: the PID of the thread
3365 *  @sig: signal to be sent
3366 *  @uinfo: signal info to be sent
3367 */
3368SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3369		siginfo_t __user *, uinfo)
3370{
3371	siginfo_t info;
3372	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3373		return -EFAULT;
 
3374	return do_rt_sigqueueinfo(pid, sig, &info);
3375}
3376
3377#ifdef CONFIG_COMPAT
3378COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3379			compat_pid_t, pid,
3380			int, sig,
3381			struct compat_siginfo __user *, uinfo)
3382{
3383	siginfo_t info;
3384	int ret = copy_siginfo_from_user32(&info, uinfo);
3385	if (unlikely(ret))
3386		return ret;
3387	return do_rt_sigqueueinfo(pid, sig, &info);
3388}
3389#endif
3390
3391static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3392{
3393	/* This is only valid for single tasks */
3394	if (pid <= 0 || tgid <= 0)
3395		return -EINVAL;
3396
3397	/* Not even root can pretend to send signals from the kernel.
3398	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3399	 */
3400	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3401	    (task_pid_vnr(current) != pid))
3402		return -EPERM;
3403
3404	info->si_signo = sig;
3405
3406	return do_send_specific(tgid, pid, sig, info);
3407}
3408
3409SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3410		siginfo_t __user *, uinfo)
3411{
3412	siginfo_t info;
3413
3414	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3415		return -EFAULT;
3416
3417	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3418}
3419
3420#ifdef CONFIG_COMPAT
3421COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3422			compat_pid_t, tgid,
3423			compat_pid_t, pid,
3424			int, sig,
3425			struct compat_siginfo __user *, uinfo)
3426{
3427	siginfo_t info;
3428
3429	if (copy_siginfo_from_user32(&info, uinfo))
3430		return -EFAULT;
3431	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3432}
3433#endif
3434
3435/*
3436 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3437 */
3438void kernel_sigaction(int sig, __sighandler_t action)
3439{
3440	spin_lock_irq(&current->sighand->siglock);
3441	current->sighand->action[sig - 1].sa.sa_handler = action;
3442	if (action == SIG_IGN) {
3443		sigset_t mask;
3444
3445		sigemptyset(&mask);
3446		sigaddset(&mask, sig);
3447
3448		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3449		flush_sigqueue_mask(&mask, &current->pending);
3450		recalc_sigpending();
3451	}
3452	spin_unlock_irq(&current->sighand->siglock);
3453}
3454EXPORT_SYMBOL(kernel_sigaction);
3455
3456void __weak sigaction_compat_abi(struct k_sigaction *act,
3457		struct k_sigaction *oact)
3458{
3459}
3460
3461int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3462{
3463	struct task_struct *p = current, *t;
3464	struct k_sigaction *k;
3465	sigset_t mask;
3466
3467	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3468		return -EINVAL;
3469
3470	k = &p->sighand->action[sig-1];
3471
3472	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3473	if (oact)
3474		*oact = *k;
3475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3476	sigaction_compat_abi(act, oact);
3477
3478	if (act) {
3479		sigdelsetmask(&act->sa.sa_mask,
3480			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3481		*k = *act;
3482		/*
3483		 * POSIX 3.3.1.3:
3484		 *  "Setting a signal action to SIG_IGN for a signal that is
3485		 *   pending shall cause the pending signal to be discarded,
3486		 *   whether or not it is blocked."
3487		 *
3488		 *  "Setting a signal action to SIG_DFL for a signal that is
3489		 *   pending and whose default action is to ignore the signal
3490		 *   (for example, SIGCHLD), shall cause the pending signal to
3491		 *   be discarded, whether or not it is blocked"
3492		 */
3493		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3494			sigemptyset(&mask);
3495			sigaddset(&mask, sig);
3496			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3497			for_each_thread(p, t)
3498				flush_sigqueue_mask(&mask, &t->pending);
3499		}
3500	}
3501
3502	spin_unlock_irq(&p->sighand->siglock);
3503	return 0;
3504}
3505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3506static int
3507do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp)
 
3508{
3509	struct task_struct *t = current;
 
3510
3511	if (oss) {
3512		memset(oss, 0, sizeof(stack_t));
3513		oss->ss_sp = (void __user *) t->sas_ss_sp;
3514		oss->ss_size = t->sas_ss_size;
3515		oss->ss_flags = sas_ss_flags(sp) |
3516			(current->sas_ss_flags & SS_FLAG_BITS);
3517	}
3518
3519	if (ss) {
3520		void __user *ss_sp = ss->ss_sp;
3521		size_t ss_size = ss->ss_size;
3522		unsigned ss_flags = ss->ss_flags;
3523		int ss_mode;
3524
3525		if (unlikely(on_sig_stack(sp)))
3526			return -EPERM;
3527
3528		ss_mode = ss_flags & ~SS_FLAG_BITS;
3529		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
3530				ss_mode != 0))
3531			return -EINVAL;
3532
 
 
 
 
 
 
 
 
 
 
3533		if (ss_mode == SS_DISABLE) {
3534			ss_size = 0;
3535			ss_sp = NULL;
3536		} else {
3537			if (unlikely(ss_size < MINSIGSTKSZ))
3538				return -ENOMEM;
 
 
3539		}
3540
3541		t->sas_ss_sp = (unsigned long) ss_sp;
3542		t->sas_ss_size = ss_size;
3543		t->sas_ss_flags = ss_flags;
 
 
3544	}
3545	return 0;
3546}
3547
3548SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3549{
3550	stack_t new, old;
3551	int err;
3552	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
3553		return -EFAULT;
3554	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
3555			      current_user_stack_pointer());
 
3556	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
3557		err = -EFAULT;
3558	return err;
3559}
3560
3561int restore_altstack(const stack_t __user *uss)
3562{
3563	stack_t new;
3564	if (copy_from_user(&new, uss, sizeof(stack_t)))
3565		return -EFAULT;
3566	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer());
 
3567	/* squash all but EFAULT for now */
3568	return 0;
3569}
3570
3571int __save_altstack(stack_t __user *uss, unsigned long sp)
3572{
3573	struct task_struct *t = current;
3574	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3575		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3576		__put_user(t->sas_ss_size, &uss->ss_size);
3577	if (err)
3578		return err;
3579	if (t->sas_ss_flags & SS_AUTODISARM)
3580		sas_ss_reset(t);
3581	return 0;
3582}
3583
3584#ifdef CONFIG_COMPAT
3585static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
3586				 compat_stack_t __user *uoss_ptr)
3587{
3588	stack_t uss, uoss;
3589	int ret;
3590
3591	if (uss_ptr) {
3592		compat_stack_t uss32;
3593		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3594			return -EFAULT;
3595		uss.ss_sp = compat_ptr(uss32.ss_sp);
3596		uss.ss_flags = uss32.ss_flags;
3597		uss.ss_size = uss32.ss_size;
3598	}
3599	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
3600			     compat_user_stack_pointer());
 
3601	if (ret >= 0 && uoss_ptr)  {
3602		compat_stack_t old;
3603		memset(&old, 0, sizeof(old));
3604		old.ss_sp = ptr_to_compat(uoss.ss_sp);
3605		old.ss_flags = uoss.ss_flags;
3606		old.ss_size = uoss.ss_size;
3607		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
3608			ret = -EFAULT;
3609	}
3610	return ret;
3611}
3612
3613COMPAT_SYSCALL_DEFINE2(sigaltstack,
3614			const compat_stack_t __user *, uss_ptr,
3615			compat_stack_t __user *, uoss_ptr)
3616{
3617	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
3618}
3619
3620int compat_restore_altstack(const compat_stack_t __user *uss)
3621{
3622	int err = do_compat_sigaltstack(uss, NULL);
3623	/* squash all but -EFAULT for now */
3624	return err == -EFAULT ? err : 0;
3625}
3626
3627int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3628{
3629	int err;
3630	struct task_struct *t = current;
3631	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
3632			 &uss->ss_sp) |
3633		__put_user(t->sas_ss_flags, &uss->ss_flags) |
3634		__put_user(t->sas_ss_size, &uss->ss_size);
3635	if (err)
3636		return err;
3637	if (t->sas_ss_flags & SS_AUTODISARM)
3638		sas_ss_reset(t);
3639	return 0;
3640}
3641#endif
3642
3643#ifdef __ARCH_WANT_SYS_SIGPENDING
3644
3645/**
3646 *  sys_sigpending - examine pending signals
3647 *  @uset: where mask of pending signal is returned
3648 */
3649SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
3650{
3651	sigset_t set;
3652	int err;
3653
3654	if (sizeof(old_sigset_t) > sizeof(*uset))
3655		return -EINVAL;
3656
3657	err = do_sigpending(&set);
3658	if (!err && copy_to_user(uset, &set, sizeof(old_sigset_t)))
3659		err = -EFAULT;
3660	return err;
 
 
3661}
3662
3663#ifdef CONFIG_COMPAT
3664COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
3665{
3666	sigset_t set;
3667	int err = do_sigpending(&set);
3668	if (!err)
3669		err = put_user(set.sig[0], set32);
3670	return err;
3671}
3672#endif
3673
3674#endif
3675
3676#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3677/**
3678 *  sys_sigprocmask - examine and change blocked signals
3679 *  @how: whether to add, remove, or set signals
3680 *  @nset: signals to add or remove (if non-null)
3681 *  @oset: previous value of signal mask if non-null
3682 *
3683 * Some platforms have their own version with special arguments;
3684 * others support only sys_rt_sigprocmask.
3685 */
3686
3687SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3688		old_sigset_t __user *, oset)
3689{
3690	old_sigset_t old_set, new_set;
3691	sigset_t new_blocked;
3692
3693	old_set = current->blocked.sig[0];
3694
3695	if (nset) {
3696		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3697			return -EFAULT;
3698
3699		new_blocked = current->blocked;
3700
3701		switch (how) {
3702		case SIG_BLOCK:
3703			sigaddsetmask(&new_blocked, new_set);
3704			break;
3705		case SIG_UNBLOCK:
3706			sigdelsetmask(&new_blocked, new_set);
3707			break;
3708		case SIG_SETMASK:
3709			new_blocked.sig[0] = new_set;
3710			break;
3711		default:
3712			return -EINVAL;
3713		}
3714
3715		set_current_blocked(&new_blocked);
3716	}
3717
3718	if (oset) {
3719		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3720			return -EFAULT;
3721	}
3722
3723	return 0;
3724}
3725#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3726
3727#ifndef CONFIG_ODD_RT_SIGACTION
3728/**
3729 *  sys_rt_sigaction - alter an action taken by a process
3730 *  @sig: signal to be sent
3731 *  @act: new sigaction
3732 *  @oact: used to save the previous sigaction
3733 *  @sigsetsize: size of sigset_t type
3734 */
3735SYSCALL_DEFINE4(rt_sigaction, int, sig,
3736		const struct sigaction __user *, act,
3737		struct sigaction __user *, oact,
3738		size_t, sigsetsize)
3739{
3740	struct k_sigaction new_sa, old_sa;
3741	int ret = -EINVAL;
3742
3743	/* XXX: Don't preclude handling different sized sigset_t's.  */
3744	if (sigsetsize != sizeof(sigset_t))
3745		goto out;
3746
3747	if (act) {
3748		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3749			return -EFAULT;
3750	}
3751
3752	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
 
 
 
3753
3754	if (!ret && oact) {
3755		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3756			return -EFAULT;
3757	}
3758out:
3759	return ret;
3760}
3761#ifdef CONFIG_COMPAT
3762COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3763		const struct compat_sigaction __user *, act,
3764		struct compat_sigaction __user *, oact,
3765		compat_size_t, sigsetsize)
3766{
3767	struct k_sigaction new_ka, old_ka;
3768#ifdef __ARCH_HAS_SA_RESTORER
3769	compat_uptr_t restorer;
3770#endif
3771	int ret;
3772
3773	/* XXX: Don't preclude handling different sized sigset_t's.  */
3774	if (sigsetsize != sizeof(compat_sigset_t))
3775		return -EINVAL;
3776
3777	if (act) {
3778		compat_uptr_t handler;
3779		ret = get_user(handler, &act->sa_handler);
3780		new_ka.sa.sa_handler = compat_ptr(handler);
3781#ifdef __ARCH_HAS_SA_RESTORER
3782		ret |= get_user(restorer, &act->sa_restorer);
3783		new_ka.sa.sa_restorer = compat_ptr(restorer);
3784#endif
3785		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
3786		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3787		if (ret)
3788			return -EFAULT;
3789	}
3790
3791	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3792	if (!ret && oact) {
3793		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3794			       &oact->sa_handler);
3795		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
3796					 sizeof(oact->sa_mask));
3797		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3798#ifdef __ARCH_HAS_SA_RESTORER
3799		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3800				&oact->sa_restorer);
3801#endif
3802	}
3803	return ret;
3804}
3805#endif
3806#endif /* !CONFIG_ODD_RT_SIGACTION */
3807
3808#ifdef CONFIG_OLD_SIGACTION
3809SYSCALL_DEFINE3(sigaction, int, sig,
3810		const struct old_sigaction __user *, act,
3811	        struct old_sigaction __user *, oact)
3812{
3813	struct k_sigaction new_ka, old_ka;
3814	int ret;
3815
3816	if (act) {
3817		old_sigset_t mask;
3818		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3819		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3820		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3821		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3822		    __get_user(mask, &act->sa_mask))
3823			return -EFAULT;
3824#ifdef __ARCH_HAS_KA_RESTORER
3825		new_ka.ka_restorer = NULL;
3826#endif
3827		siginitset(&new_ka.sa.sa_mask, mask);
3828	}
3829
3830	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3831
3832	if (!ret && oact) {
3833		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3834		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3835		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3836		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3837		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3838			return -EFAULT;
3839	}
3840
3841	return ret;
3842}
3843#endif
3844#ifdef CONFIG_COMPAT_OLD_SIGACTION
3845COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3846		const struct compat_old_sigaction __user *, act,
3847	        struct compat_old_sigaction __user *, oact)
3848{
3849	struct k_sigaction new_ka, old_ka;
3850	int ret;
3851	compat_old_sigset_t mask;
3852	compat_uptr_t handler, restorer;
3853
3854	if (act) {
3855		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3856		    __get_user(handler, &act->sa_handler) ||
3857		    __get_user(restorer, &act->sa_restorer) ||
3858		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3859		    __get_user(mask, &act->sa_mask))
3860			return -EFAULT;
3861
3862#ifdef __ARCH_HAS_KA_RESTORER
3863		new_ka.ka_restorer = NULL;
3864#endif
3865		new_ka.sa.sa_handler = compat_ptr(handler);
3866		new_ka.sa.sa_restorer = compat_ptr(restorer);
3867		siginitset(&new_ka.sa.sa_mask, mask);
3868	}
3869
3870	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3871
3872	if (!ret && oact) {
3873		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3874		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3875			       &oact->sa_handler) ||
3876		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3877			       &oact->sa_restorer) ||
3878		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3879		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3880			return -EFAULT;
3881	}
3882	return ret;
3883}
3884#endif
3885
3886#ifdef CONFIG_SGETMASK_SYSCALL
3887
3888/*
3889 * For backwards compatibility.  Functionality superseded by sigprocmask.
3890 */
3891SYSCALL_DEFINE0(sgetmask)
3892{
3893	/* SMP safe */
3894	return current->blocked.sig[0];
3895}
3896
3897SYSCALL_DEFINE1(ssetmask, int, newmask)
3898{
3899	int old = current->blocked.sig[0];
3900	sigset_t newset;
3901
3902	siginitset(&newset, newmask);
3903	set_current_blocked(&newset);
3904
3905	return old;
3906}
3907#endif /* CONFIG_SGETMASK_SYSCALL */
3908
3909#ifdef __ARCH_WANT_SYS_SIGNAL
3910/*
3911 * For backwards compatibility.  Functionality superseded by sigaction.
3912 */
3913SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3914{
3915	struct k_sigaction new_sa, old_sa;
3916	int ret;
3917
3918	new_sa.sa.sa_handler = handler;
3919	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3920	sigemptyset(&new_sa.sa.sa_mask);
3921
3922	ret = do_sigaction(sig, &new_sa, &old_sa);
3923
3924	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3925}
3926#endif /* __ARCH_WANT_SYS_SIGNAL */
3927
3928#ifdef __ARCH_WANT_SYS_PAUSE
3929
3930SYSCALL_DEFINE0(pause)
3931{
3932	while (!signal_pending(current)) {
3933		__set_current_state(TASK_INTERRUPTIBLE);
3934		schedule();
3935	}
3936	return -ERESTARTNOHAND;
3937}
3938
3939#endif
3940
3941static int sigsuspend(sigset_t *set)
3942{
3943	current->saved_sigmask = current->blocked;
3944	set_current_blocked(set);
3945
3946	while (!signal_pending(current)) {
3947		__set_current_state(TASK_INTERRUPTIBLE);
3948		schedule();
3949	}
3950	set_restore_sigmask();
3951	return -ERESTARTNOHAND;
3952}
3953
3954/**
3955 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3956 *	@unewset value until a signal is received
3957 *  @unewset: new signal mask value
3958 *  @sigsetsize: size of sigset_t type
3959 */
3960SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3961{
3962	sigset_t newset;
3963
3964	/* XXX: Don't preclude handling different sized sigset_t's.  */
3965	if (sigsetsize != sizeof(sigset_t))
3966		return -EINVAL;
3967
3968	if (copy_from_user(&newset, unewset, sizeof(newset)))
3969		return -EFAULT;
3970	return sigsuspend(&newset);
3971}
3972 
3973#ifdef CONFIG_COMPAT
3974COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3975{
3976	sigset_t newset;
3977
3978	/* XXX: Don't preclude handling different sized sigset_t's.  */
3979	if (sigsetsize != sizeof(sigset_t))
3980		return -EINVAL;
3981
3982	if (get_compat_sigset(&newset, unewset))
3983		return -EFAULT;
3984	return sigsuspend(&newset);
3985}
3986#endif
3987
3988#ifdef CONFIG_OLD_SIGSUSPEND
3989SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3990{
3991	sigset_t blocked;
3992	siginitset(&blocked, mask);
3993	return sigsuspend(&blocked);
3994}
3995#endif
3996#ifdef CONFIG_OLD_SIGSUSPEND3
3997SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3998{
3999	sigset_t blocked;
4000	siginitset(&blocked, mask);
4001	return sigsuspend(&blocked);
4002}
4003#endif
4004
4005__weak const char *arch_vma_name(struct vm_area_struct *vma)
4006{
4007	return NULL;
4008}
4009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4010void __init signals_init(void)
4011{
4012	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
4013	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
4014		!= offsetof(struct siginfo, _sifields._pad));
4015	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4016
4017	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4018}
4019
4020#ifdef CONFIG_KGDB_KDB
4021#include <linux/kdb.h>
4022/*
4023 * kdb_send_sig - Allows kdb to send signals without exposing
4024 * signal internals.  This function checks if the required locks are
4025 * available before calling the main signal code, to avoid kdb
4026 * deadlocks.
4027 */
4028void kdb_send_sig(struct task_struct *t, int sig)
4029{
4030	static struct task_struct *kdb_prev_t;
4031	int new_t, ret;
4032	if (!spin_trylock(&t->sighand->siglock)) {
4033		kdb_printf("Can't do kill command now.\n"
4034			   "The sigmask lock is held somewhere else in "
4035			   "kernel, try again later\n");
4036		return;
4037	}
4038	new_t = kdb_prev_t != t;
4039	kdb_prev_t = t;
4040	if (t->state != TASK_RUNNING && new_t) {
4041		spin_unlock(&t->sighand->siglock);
4042		kdb_printf("Process is not RUNNING, sending a signal from "
4043			   "kdb risks deadlock\n"
4044			   "on the run queue locks. "
4045			   "The signal has _not_ been sent.\n"
4046			   "Reissue the kill command if you want to risk "
4047			   "the deadlock.\n");
4048		return;
4049	}
4050	ret = send_signal(sig, SEND_SIG_PRIV, t, false);
4051	spin_unlock(&t->sighand->siglock);
4052	if (ret)
4053		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4054			   sig, t->pid);
4055	else
4056		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4057}
4058#endif	/* CONFIG_KGDB_KDB */