Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/proc_fs.h>
27#include <linux/tty.h>
28#include <linux/binfmts.h>
29#include <linux/coredump.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/ptrace.h>
33#include <linux/signal.h>
34#include <linux/signalfd.h>
35#include <linux/ratelimit.h>
36#include <linux/task_work.h>
37#include <linux/capability.h>
38#include <linux/freezer.h>
39#include <linux/pid_namespace.h>
40#include <linux/nsproxy.h>
41#include <linux/user_namespace.h>
42#include <linux/uprobes.h>
43#include <linux/compat.h>
44#include <linux/cn_proc.h>
45#include <linux/compiler.h>
46#include <linux/posix-timers.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49#include <linux/sysctl.h>
50
51#define CREATE_TRACE_POINTS
52#include <trace/events/signal.h>
53
54#include <asm/param.h>
55#include <linux/uaccess.h>
56#include <asm/unistd.h>
57#include <asm/siginfo.h>
58#include <asm/cacheflush.h>
59#include <asm/syscall.h> /* for syscall_get_* */
60
61/*
62 * SLAB caches for signal bits.
63 */
64
65static struct kmem_cache *sigqueue_cachep;
66
67int print_fatal_signals __read_mostly;
68
69static void __user *sig_handler(struct task_struct *t, int sig)
70{
71 return t->sighand->action[sig - 1].sa.sa_handler;
72}
73
74static inline bool sig_handler_ignored(void __user *handler, int sig)
75{
76 /* Is it explicitly or implicitly ignored? */
77 return handler == SIG_IGN ||
78 (handler == SIG_DFL && sig_kernel_ignore(sig));
79}
80
81static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
82{
83 void __user *handler;
84
85 handler = sig_handler(t, sig);
86
87 /* SIGKILL and SIGSTOP may not be sent to the global init */
88 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
89 return true;
90
91 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
92 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
93 return true;
94
95 /* Only allow kernel generated signals to this kthread */
96 if (unlikely((t->flags & PF_KTHREAD) &&
97 (handler == SIG_KTHREAD_KERNEL) && !force))
98 return true;
99
100 return sig_handler_ignored(handler, sig);
101}
102
103static bool sig_ignored(struct task_struct *t, int sig, bool force)
104{
105 /*
106 * Blocked signals are never ignored, since the
107 * signal handler may change by the time it is
108 * unblocked.
109 */
110 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
111 return false;
112
113 /*
114 * Tracers may want to know about even ignored signal unless it
115 * is SIGKILL which can't be reported anyway but can be ignored
116 * by SIGNAL_UNKILLABLE task.
117 */
118 if (t->ptrace && sig != SIGKILL)
119 return false;
120
121 return sig_task_ignored(t, sig, force);
122}
123
124/*
125 * Re-calculate pending state from the set of locally pending
126 * signals, globally pending signals, and blocked signals.
127 */
128static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
129{
130 unsigned long ready;
131 long i;
132
133 switch (_NSIG_WORDS) {
134 default:
135 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
136 ready |= signal->sig[i] &~ blocked->sig[i];
137 break;
138
139 case 4: ready = signal->sig[3] &~ blocked->sig[3];
140 ready |= signal->sig[2] &~ blocked->sig[2];
141 ready |= signal->sig[1] &~ blocked->sig[1];
142 ready |= signal->sig[0] &~ blocked->sig[0];
143 break;
144
145 case 2: ready = signal->sig[1] &~ blocked->sig[1];
146 ready |= signal->sig[0] &~ blocked->sig[0];
147 break;
148
149 case 1: ready = signal->sig[0] &~ blocked->sig[0];
150 }
151 return ready != 0;
152}
153
154#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
155
156static bool recalc_sigpending_tsk(struct task_struct *t)
157{
158 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
159 PENDING(&t->pending, &t->blocked) ||
160 PENDING(&t->signal->shared_pending, &t->blocked) ||
161 cgroup_task_frozen(t)) {
162 set_tsk_thread_flag(t, TIF_SIGPENDING);
163 return true;
164 }
165
166 /*
167 * We must never clear the flag in another thread, or in current
168 * when it's possible the current syscall is returning -ERESTART*.
169 * So we don't clear it here, and only callers who know they should do.
170 */
171 return false;
172}
173
174void recalc_sigpending(void)
175{
176 if (!recalc_sigpending_tsk(current) && !freezing(current))
177 clear_thread_flag(TIF_SIGPENDING);
178
179}
180EXPORT_SYMBOL(recalc_sigpending);
181
182void calculate_sigpending(void)
183{
184 /* Have any signals or users of TIF_SIGPENDING been delayed
185 * until after fork?
186 */
187 spin_lock_irq(¤t->sighand->siglock);
188 set_tsk_thread_flag(current, TIF_SIGPENDING);
189 recalc_sigpending();
190 spin_unlock_irq(¤t->sighand->siglock);
191}
192
193/* Given the mask, find the first available signal that should be serviced. */
194
195#define SYNCHRONOUS_MASK \
196 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
197 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
198
199int next_signal(struct sigpending *pending, sigset_t *mask)
200{
201 unsigned long i, *s, *m, x;
202 int sig = 0;
203
204 s = pending->signal.sig;
205 m = mask->sig;
206
207 /*
208 * Handle the first word specially: it contains the
209 * synchronous signals that need to be dequeued first.
210 */
211 x = *s &~ *m;
212 if (x) {
213 if (x & SYNCHRONOUS_MASK)
214 x &= SYNCHRONOUS_MASK;
215 sig = ffz(~x) + 1;
216 return sig;
217 }
218
219 switch (_NSIG_WORDS) {
220 default:
221 for (i = 1; i < _NSIG_WORDS; ++i) {
222 x = *++s &~ *++m;
223 if (!x)
224 continue;
225 sig = ffz(~x) + i*_NSIG_BPW + 1;
226 break;
227 }
228 break;
229
230 case 2:
231 x = s[1] &~ m[1];
232 if (!x)
233 break;
234 sig = ffz(~x) + _NSIG_BPW + 1;
235 break;
236
237 case 1:
238 /* Nothing to do */
239 break;
240 }
241
242 return sig;
243}
244
245static inline void print_dropped_signal(int sig)
246{
247 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
248
249 if (!print_fatal_signals)
250 return;
251
252 if (!__ratelimit(&ratelimit_state))
253 return;
254
255 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
256 current->comm, current->pid, sig);
257}
258
259/**
260 * task_set_jobctl_pending - set jobctl pending bits
261 * @task: target task
262 * @mask: pending bits to set
263 *
264 * Clear @mask from @task->jobctl. @mask must be subset of
265 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
266 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
267 * cleared. If @task is already being killed or exiting, this function
268 * becomes noop.
269 *
270 * CONTEXT:
271 * Must be called with @task->sighand->siglock held.
272 *
273 * RETURNS:
274 * %true if @mask is set, %false if made noop because @task was dying.
275 */
276bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
277{
278 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
279 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
280 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
281
282 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
283 return false;
284
285 if (mask & JOBCTL_STOP_SIGMASK)
286 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
287
288 task->jobctl |= mask;
289 return true;
290}
291
292/**
293 * task_clear_jobctl_trapping - clear jobctl trapping bit
294 * @task: target task
295 *
296 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
297 * Clear it and wake up the ptracer. Note that we don't need any further
298 * locking. @task->siglock guarantees that @task->parent points to the
299 * ptracer.
300 *
301 * CONTEXT:
302 * Must be called with @task->sighand->siglock held.
303 */
304void task_clear_jobctl_trapping(struct task_struct *task)
305{
306 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
307 task->jobctl &= ~JOBCTL_TRAPPING;
308 smp_mb(); /* advised by wake_up_bit() */
309 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
310 }
311}
312
313/**
314 * task_clear_jobctl_pending - clear jobctl pending bits
315 * @task: target task
316 * @mask: pending bits to clear
317 *
318 * Clear @mask from @task->jobctl. @mask must be subset of
319 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
320 * STOP bits are cleared together.
321 *
322 * If clearing of @mask leaves no stop or trap pending, this function calls
323 * task_clear_jobctl_trapping().
324 *
325 * CONTEXT:
326 * Must be called with @task->sighand->siglock held.
327 */
328void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
329{
330 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
331
332 if (mask & JOBCTL_STOP_PENDING)
333 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
334
335 task->jobctl &= ~mask;
336
337 if (!(task->jobctl & JOBCTL_PENDING_MASK))
338 task_clear_jobctl_trapping(task);
339}
340
341/**
342 * task_participate_group_stop - participate in a group stop
343 * @task: task participating in a group stop
344 *
345 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
346 * Group stop states are cleared and the group stop count is consumed if
347 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
348 * stop, the appropriate `SIGNAL_*` flags are set.
349 *
350 * CONTEXT:
351 * Must be called with @task->sighand->siglock held.
352 *
353 * RETURNS:
354 * %true if group stop completion should be notified to the parent, %false
355 * otherwise.
356 */
357static bool task_participate_group_stop(struct task_struct *task)
358{
359 struct signal_struct *sig = task->signal;
360 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
361
362 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
363
364 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
365
366 if (!consume)
367 return false;
368
369 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
370 sig->group_stop_count--;
371
372 /*
373 * Tell the caller to notify completion iff we are entering into a
374 * fresh group stop. Read comment in do_signal_stop() for details.
375 */
376 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
377 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
378 return true;
379 }
380 return false;
381}
382
383void task_join_group_stop(struct task_struct *task)
384{
385 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
386 struct signal_struct *sig = current->signal;
387
388 if (sig->group_stop_count) {
389 sig->group_stop_count++;
390 mask |= JOBCTL_STOP_CONSUME;
391 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
392 return;
393
394 /* Have the new thread join an on-going signal group stop */
395 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
396}
397
398/*
399 * allocate a new signal queue record
400 * - this may be called without locks if and only if t == current, otherwise an
401 * appropriate lock must be held to stop the target task from exiting
402 */
403static struct sigqueue *
404__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
405 int override_rlimit, const unsigned int sigqueue_flags)
406{
407 struct sigqueue *q = NULL;
408 struct ucounts *ucounts;
409 long sigpending;
410
411 /*
412 * Protect access to @t credentials. This can go away when all
413 * callers hold rcu read lock.
414 *
415 * NOTE! A pending signal will hold on to the user refcount,
416 * and we get/put the refcount only when the sigpending count
417 * changes from/to zero.
418 */
419 rcu_read_lock();
420 ucounts = task_ucounts(t);
421 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
422 rcu_read_unlock();
423 if (!sigpending)
424 return NULL;
425
426 if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
427 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
428 } else {
429 print_dropped_signal(sig);
430 }
431
432 if (unlikely(q == NULL)) {
433 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
434 } else {
435 INIT_LIST_HEAD(&q->list);
436 q->flags = sigqueue_flags;
437 q->ucounts = ucounts;
438 }
439 return q;
440}
441
442static void __sigqueue_free(struct sigqueue *q)
443{
444 if (q->flags & SIGQUEUE_PREALLOC)
445 return;
446 if (q->ucounts) {
447 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
448 q->ucounts = NULL;
449 }
450 kmem_cache_free(sigqueue_cachep, q);
451}
452
453void flush_sigqueue(struct sigpending *queue)
454{
455 struct sigqueue *q;
456
457 sigemptyset(&queue->signal);
458 while (!list_empty(&queue->list)) {
459 q = list_entry(queue->list.next, struct sigqueue , list);
460 list_del_init(&q->list);
461 __sigqueue_free(q);
462 }
463}
464
465/*
466 * Flush all pending signals for this kthread.
467 */
468void flush_signals(struct task_struct *t)
469{
470 unsigned long flags;
471
472 spin_lock_irqsave(&t->sighand->siglock, flags);
473 clear_tsk_thread_flag(t, TIF_SIGPENDING);
474 flush_sigqueue(&t->pending);
475 flush_sigqueue(&t->signal->shared_pending);
476 spin_unlock_irqrestore(&t->sighand->siglock, flags);
477}
478EXPORT_SYMBOL(flush_signals);
479
480#ifdef CONFIG_POSIX_TIMERS
481static void __flush_itimer_signals(struct sigpending *pending)
482{
483 sigset_t signal, retain;
484 struct sigqueue *q, *n;
485
486 signal = pending->signal;
487 sigemptyset(&retain);
488
489 list_for_each_entry_safe(q, n, &pending->list, list) {
490 int sig = q->info.si_signo;
491
492 if (likely(q->info.si_code != SI_TIMER)) {
493 sigaddset(&retain, sig);
494 } else {
495 sigdelset(&signal, sig);
496 list_del_init(&q->list);
497 __sigqueue_free(q);
498 }
499 }
500
501 sigorsets(&pending->signal, &signal, &retain);
502}
503
504void flush_itimer_signals(void)
505{
506 struct task_struct *tsk = current;
507 unsigned long flags;
508
509 spin_lock_irqsave(&tsk->sighand->siglock, flags);
510 __flush_itimer_signals(&tsk->pending);
511 __flush_itimer_signals(&tsk->signal->shared_pending);
512 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
513}
514#endif
515
516void ignore_signals(struct task_struct *t)
517{
518 int i;
519
520 for (i = 0; i < _NSIG; ++i)
521 t->sighand->action[i].sa.sa_handler = SIG_IGN;
522
523 flush_signals(t);
524}
525
526/*
527 * Flush all handlers for a task.
528 */
529
530void
531flush_signal_handlers(struct task_struct *t, int force_default)
532{
533 int i;
534 struct k_sigaction *ka = &t->sighand->action[0];
535 for (i = _NSIG ; i != 0 ; i--) {
536 if (force_default || ka->sa.sa_handler != SIG_IGN)
537 ka->sa.sa_handler = SIG_DFL;
538 ka->sa.sa_flags = 0;
539#ifdef __ARCH_HAS_SA_RESTORER
540 ka->sa.sa_restorer = NULL;
541#endif
542 sigemptyset(&ka->sa.sa_mask);
543 ka++;
544 }
545}
546
547bool unhandled_signal(struct task_struct *tsk, int sig)
548{
549 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
550 if (is_global_init(tsk))
551 return true;
552
553 if (handler != SIG_IGN && handler != SIG_DFL)
554 return false;
555
556 /* If dying, we handle all new signals by ignoring them */
557 if (fatal_signal_pending(tsk))
558 return false;
559
560 /* if ptraced, let the tracer determine */
561 return !tsk->ptrace;
562}
563
564static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
565 bool *resched_timer)
566{
567 struct sigqueue *q, *first = NULL;
568
569 /*
570 * Collect the siginfo appropriate to this signal. Check if
571 * there is another siginfo for the same signal.
572 */
573 list_for_each_entry(q, &list->list, list) {
574 if (q->info.si_signo == sig) {
575 if (first)
576 goto still_pending;
577 first = q;
578 }
579 }
580
581 sigdelset(&list->signal, sig);
582
583 if (first) {
584still_pending:
585 list_del_init(&first->list);
586 copy_siginfo(info, &first->info);
587
588 *resched_timer =
589 (first->flags & SIGQUEUE_PREALLOC) &&
590 (info->si_code == SI_TIMER) &&
591 (info->si_sys_private);
592
593 __sigqueue_free(first);
594 } else {
595 /*
596 * Ok, it wasn't in the queue. This must be
597 * a fast-pathed signal or we must have been
598 * out of queue space. So zero out the info.
599 */
600 clear_siginfo(info);
601 info->si_signo = sig;
602 info->si_errno = 0;
603 info->si_code = SI_USER;
604 info->si_pid = 0;
605 info->si_uid = 0;
606 }
607}
608
609static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
610 kernel_siginfo_t *info, bool *resched_timer)
611{
612 int sig = next_signal(pending, mask);
613
614 if (sig)
615 collect_signal(sig, pending, info, resched_timer);
616 return sig;
617}
618
619/*
620 * Dequeue a signal and return the element to the caller, which is
621 * expected to free it.
622 *
623 * All callers have to hold the siglock.
624 */
625int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
626 kernel_siginfo_t *info, enum pid_type *type)
627{
628 bool resched_timer = false;
629 int signr;
630
631 /* We only dequeue private signals from ourselves, we don't let
632 * signalfd steal them
633 */
634 *type = PIDTYPE_PID;
635 signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
636 if (!signr) {
637 *type = PIDTYPE_TGID;
638 signr = __dequeue_signal(&tsk->signal->shared_pending,
639 mask, info, &resched_timer);
640#ifdef CONFIG_POSIX_TIMERS
641 /*
642 * itimer signal ?
643 *
644 * itimers are process shared and we restart periodic
645 * itimers in the signal delivery path to prevent DoS
646 * attacks in the high resolution timer case. This is
647 * compliant with the old way of self-restarting
648 * itimers, as the SIGALRM is a legacy signal and only
649 * queued once. Changing the restart behaviour to
650 * restart the timer in the signal dequeue path is
651 * reducing the timer noise on heavy loaded !highres
652 * systems too.
653 */
654 if (unlikely(signr == SIGALRM)) {
655 struct hrtimer *tmr = &tsk->signal->real_timer;
656
657 if (!hrtimer_is_queued(tmr) &&
658 tsk->signal->it_real_incr != 0) {
659 hrtimer_forward(tmr, tmr->base->get_time(),
660 tsk->signal->it_real_incr);
661 hrtimer_restart(tmr);
662 }
663 }
664#endif
665 }
666
667 recalc_sigpending();
668 if (!signr)
669 return 0;
670
671 if (unlikely(sig_kernel_stop(signr))) {
672 /*
673 * Set a marker that we have dequeued a stop signal. Our
674 * caller might release the siglock and then the pending
675 * stop signal it is about to process is no longer in the
676 * pending bitmasks, but must still be cleared by a SIGCONT
677 * (and overruled by a SIGKILL). So those cases clear this
678 * shared flag after we've set it. Note that this flag may
679 * remain set after the signal we return is ignored or
680 * handled. That doesn't matter because its only purpose
681 * is to alert stop-signal processing code when another
682 * processor has come along and cleared the flag.
683 */
684 current->jobctl |= JOBCTL_STOP_DEQUEUED;
685 }
686#ifdef CONFIG_POSIX_TIMERS
687 if (resched_timer) {
688 /*
689 * Release the siglock to ensure proper locking order
690 * of timer locks outside of siglocks. Note, we leave
691 * irqs disabled here, since the posix-timers code is
692 * about to disable them again anyway.
693 */
694 spin_unlock(&tsk->sighand->siglock);
695 posixtimer_rearm(info);
696 spin_lock(&tsk->sighand->siglock);
697
698 /* Don't expose the si_sys_private value to userspace */
699 info->si_sys_private = 0;
700 }
701#endif
702 return signr;
703}
704EXPORT_SYMBOL_GPL(dequeue_signal);
705
706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
707{
708 struct task_struct *tsk = current;
709 struct sigpending *pending = &tsk->pending;
710 struct sigqueue *q, *sync = NULL;
711
712 /*
713 * Might a synchronous signal be in the queue?
714 */
715 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
716 return 0;
717
718 /*
719 * Return the first synchronous signal in the queue.
720 */
721 list_for_each_entry(q, &pending->list, list) {
722 /* Synchronous signals have a positive si_code */
723 if ((q->info.si_code > SI_USER) &&
724 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
725 sync = q;
726 goto next;
727 }
728 }
729 return 0;
730next:
731 /*
732 * Check if there is another siginfo for the same signal.
733 */
734 list_for_each_entry_continue(q, &pending->list, list) {
735 if (q->info.si_signo == sync->info.si_signo)
736 goto still_pending;
737 }
738
739 sigdelset(&pending->signal, sync->info.si_signo);
740 recalc_sigpending();
741still_pending:
742 list_del_init(&sync->list);
743 copy_siginfo(info, &sync->info);
744 __sigqueue_free(sync);
745 return info->si_signo;
746}
747
748/*
749 * Tell a process that it has a new active signal..
750 *
751 * NOTE! we rely on the previous spin_lock to
752 * lock interrupts for us! We can only be called with
753 * "siglock" held, and the local interrupt must
754 * have been disabled when that got acquired!
755 *
756 * No need to set need_resched since signal event passing
757 * goes through ->blocked
758 */
759void signal_wake_up_state(struct task_struct *t, unsigned int state)
760{
761 lockdep_assert_held(&t->sighand->siglock);
762
763 set_tsk_thread_flag(t, TIF_SIGPENDING);
764
765 /*
766 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
767 * case. We don't check t->state here because there is a race with it
768 * executing another processor and just now entering stopped state.
769 * By using wake_up_state, we ensure the process will wake up and
770 * handle its death signal.
771 */
772 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
773 kick_process(t);
774}
775
776/*
777 * Remove signals in mask from the pending set and queue.
778 * Returns 1 if any signals were found.
779 *
780 * All callers must be holding the siglock.
781 */
782static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
783{
784 struct sigqueue *q, *n;
785 sigset_t m;
786
787 sigandsets(&m, mask, &s->signal);
788 if (sigisemptyset(&m))
789 return;
790
791 sigandnsets(&s->signal, &s->signal, mask);
792 list_for_each_entry_safe(q, n, &s->list, list) {
793 if (sigismember(mask, q->info.si_signo)) {
794 list_del_init(&q->list);
795 __sigqueue_free(q);
796 }
797 }
798}
799
800static inline int is_si_special(const struct kernel_siginfo *info)
801{
802 return info <= SEND_SIG_PRIV;
803}
804
805static inline bool si_fromuser(const struct kernel_siginfo *info)
806{
807 return info == SEND_SIG_NOINFO ||
808 (!is_si_special(info) && SI_FROMUSER(info));
809}
810
811/*
812 * called with RCU read lock from check_kill_permission()
813 */
814static bool kill_ok_by_cred(struct task_struct *t)
815{
816 const struct cred *cred = current_cred();
817 const struct cred *tcred = __task_cred(t);
818
819 return uid_eq(cred->euid, tcred->suid) ||
820 uid_eq(cred->euid, tcred->uid) ||
821 uid_eq(cred->uid, tcred->suid) ||
822 uid_eq(cred->uid, tcred->uid) ||
823 ns_capable(tcred->user_ns, CAP_KILL);
824}
825
826/*
827 * Bad permissions for sending the signal
828 * - the caller must hold the RCU read lock
829 */
830static int check_kill_permission(int sig, struct kernel_siginfo *info,
831 struct task_struct *t)
832{
833 struct pid *sid;
834 int error;
835
836 if (!valid_signal(sig))
837 return -EINVAL;
838
839 if (!si_fromuser(info))
840 return 0;
841
842 error = audit_signal_info(sig, t); /* Let audit system see the signal */
843 if (error)
844 return error;
845
846 if (!same_thread_group(current, t) &&
847 !kill_ok_by_cred(t)) {
848 switch (sig) {
849 case SIGCONT:
850 sid = task_session(t);
851 /*
852 * We don't return the error if sid == NULL. The
853 * task was unhashed, the caller must notice this.
854 */
855 if (!sid || sid == task_session(current))
856 break;
857 fallthrough;
858 default:
859 return -EPERM;
860 }
861 }
862
863 return security_task_kill(t, info, sig, NULL);
864}
865
866/**
867 * ptrace_trap_notify - schedule trap to notify ptracer
868 * @t: tracee wanting to notify tracer
869 *
870 * This function schedules sticky ptrace trap which is cleared on the next
871 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
872 * ptracer.
873 *
874 * If @t is running, STOP trap will be taken. If trapped for STOP and
875 * ptracer is listening for events, tracee is woken up so that it can
876 * re-trap for the new event. If trapped otherwise, STOP trap will be
877 * eventually taken without returning to userland after the existing traps
878 * are finished by PTRACE_CONT.
879 *
880 * CONTEXT:
881 * Must be called with @task->sighand->siglock held.
882 */
883static void ptrace_trap_notify(struct task_struct *t)
884{
885 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
886 lockdep_assert_held(&t->sighand->siglock);
887
888 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
889 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
890}
891
892/*
893 * Handle magic process-wide effects of stop/continue signals. Unlike
894 * the signal actions, these happen immediately at signal-generation
895 * time regardless of blocking, ignoring, or handling. This does the
896 * actual continuing for SIGCONT, but not the actual stopping for stop
897 * signals. The process stop is done as a signal action for SIG_DFL.
898 *
899 * Returns true if the signal should be actually delivered, otherwise
900 * it should be dropped.
901 */
902static bool prepare_signal(int sig, struct task_struct *p, bool force)
903{
904 struct signal_struct *signal = p->signal;
905 struct task_struct *t;
906 sigset_t flush;
907
908 if (signal->flags & SIGNAL_GROUP_EXIT) {
909 if (signal->core_state)
910 return sig == SIGKILL;
911 /*
912 * The process is in the middle of dying, drop the signal.
913 */
914 return false;
915 } else if (sig_kernel_stop(sig)) {
916 /*
917 * This is a stop signal. Remove SIGCONT from all queues.
918 */
919 siginitset(&flush, sigmask(SIGCONT));
920 flush_sigqueue_mask(&flush, &signal->shared_pending);
921 for_each_thread(p, t)
922 flush_sigqueue_mask(&flush, &t->pending);
923 } else if (sig == SIGCONT) {
924 unsigned int why;
925 /*
926 * Remove all stop signals from all queues, wake all threads.
927 */
928 siginitset(&flush, SIG_KERNEL_STOP_MASK);
929 flush_sigqueue_mask(&flush, &signal->shared_pending);
930 for_each_thread(p, t) {
931 flush_sigqueue_mask(&flush, &t->pending);
932 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
933 if (likely(!(t->ptrace & PT_SEIZED))) {
934 t->jobctl &= ~JOBCTL_STOPPED;
935 wake_up_state(t, __TASK_STOPPED);
936 } else
937 ptrace_trap_notify(t);
938 }
939
940 /*
941 * Notify the parent with CLD_CONTINUED if we were stopped.
942 *
943 * If we were in the middle of a group stop, we pretend it
944 * was already finished, and then continued. Since SIGCHLD
945 * doesn't queue we report only CLD_STOPPED, as if the next
946 * CLD_CONTINUED was dropped.
947 */
948 why = 0;
949 if (signal->flags & SIGNAL_STOP_STOPPED)
950 why |= SIGNAL_CLD_CONTINUED;
951 else if (signal->group_stop_count)
952 why |= SIGNAL_CLD_STOPPED;
953
954 if (why) {
955 /*
956 * The first thread which returns from do_signal_stop()
957 * will take ->siglock, notice SIGNAL_CLD_MASK, and
958 * notify its parent. See get_signal().
959 */
960 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
961 signal->group_stop_count = 0;
962 signal->group_exit_code = 0;
963 }
964 }
965
966 return !sig_ignored(p, sig, force);
967}
968
969/*
970 * Test if P wants to take SIG. After we've checked all threads with this,
971 * it's equivalent to finding no threads not blocking SIG. Any threads not
972 * blocking SIG were ruled out because they are not running and already
973 * have pending signals. Such threads will dequeue from the shared queue
974 * as soon as they're available, so putting the signal on the shared queue
975 * will be equivalent to sending it to one such thread.
976 */
977static inline bool wants_signal(int sig, struct task_struct *p)
978{
979 if (sigismember(&p->blocked, sig))
980 return false;
981
982 if (p->flags & PF_EXITING)
983 return false;
984
985 if (sig == SIGKILL)
986 return true;
987
988 if (task_is_stopped_or_traced(p))
989 return false;
990
991 return task_curr(p) || !task_sigpending(p);
992}
993
994static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
995{
996 struct signal_struct *signal = p->signal;
997 struct task_struct *t;
998
999 /*
1000 * Now find a thread we can wake up to take the signal off the queue.
1001 *
1002 * Try the suggested task first (may or may not be the main thread).
1003 */
1004 if (wants_signal(sig, p))
1005 t = p;
1006 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1007 /*
1008 * There is just one thread and it does not need to be woken.
1009 * It will dequeue unblocked signals before it runs again.
1010 */
1011 return;
1012 else {
1013 /*
1014 * Otherwise try to find a suitable thread.
1015 */
1016 t = signal->curr_target;
1017 while (!wants_signal(sig, t)) {
1018 t = next_thread(t);
1019 if (t == signal->curr_target)
1020 /*
1021 * No thread needs to be woken.
1022 * Any eligible threads will see
1023 * the signal in the queue soon.
1024 */
1025 return;
1026 }
1027 signal->curr_target = t;
1028 }
1029
1030 /*
1031 * Found a killable thread. If the signal will be fatal,
1032 * then start taking the whole group down immediately.
1033 */
1034 if (sig_fatal(p, sig) &&
1035 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1036 !sigismember(&t->real_blocked, sig) &&
1037 (sig == SIGKILL || !p->ptrace)) {
1038 /*
1039 * This signal will be fatal to the whole group.
1040 */
1041 if (!sig_kernel_coredump(sig)) {
1042 /*
1043 * Start a group exit and wake everybody up.
1044 * This way we don't have other threads
1045 * running and doing things after a slower
1046 * thread has the fatal signal pending.
1047 */
1048 signal->flags = SIGNAL_GROUP_EXIT;
1049 signal->group_exit_code = sig;
1050 signal->group_stop_count = 0;
1051 __for_each_thread(signal, t) {
1052 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1053 sigaddset(&t->pending.signal, SIGKILL);
1054 signal_wake_up(t, 1);
1055 }
1056 return;
1057 }
1058 }
1059
1060 /*
1061 * The signal is already in the shared-pending queue.
1062 * Tell the chosen thread to wake up and dequeue it.
1063 */
1064 signal_wake_up(t, sig == SIGKILL);
1065 return;
1066}
1067
1068static inline bool legacy_queue(struct sigpending *signals, int sig)
1069{
1070 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1071}
1072
1073static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1074 struct task_struct *t, enum pid_type type, bool force)
1075{
1076 struct sigpending *pending;
1077 struct sigqueue *q;
1078 int override_rlimit;
1079 int ret = 0, result;
1080
1081 lockdep_assert_held(&t->sighand->siglock);
1082
1083 result = TRACE_SIGNAL_IGNORED;
1084 if (!prepare_signal(sig, t, force))
1085 goto ret;
1086
1087 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1088 /*
1089 * Short-circuit ignored signals and support queuing
1090 * exactly one non-rt signal, so that we can get more
1091 * detailed information about the cause of the signal.
1092 */
1093 result = TRACE_SIGNAL_ALREADY_PENDING;
1094 if (legacy_queue(pending, sig))
1095 goto ret;
1096
1097 result = TRACE_SIGNAL_DELIVERED;
1098 /*
1099 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1100 */
1101 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1102 goto out_set;
1103
1104 /*
1105 * Real-time signals must be queued if sent by sigqueue, or
1106 * some other real-time mechanism. It is implementation
1107 * defined whether kill() does so. We attempt to do so, on
1108 * the principle of least surprise, but since kill is not
1109 * allowed to fail with EAGAIN when low on memory we just
1110 * make sure at least one signal gets delivered and don't
1111 * pass on the info struct.
1112 */
1113 if (sig < SIGRTMIN)
1114 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1115 else
1116 override_rlimit = 0;
1117
1118 q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1119
1120 if (q) {
1121 list_add_tail(&q->list, &pending->list);
1122 switch ((unsigned long) info) {
1123 case (unsigned long) SEND_SIG_NOINFO:
1124 clear_siginfo(&q->info);
1125 q->info.si_signo = sig;
1126 q->info.si_errno = 0;
1127 q->info.si_code = SI_USER;
1128 q->info.si_pid = task_tgid_nr_ns(current,
1129 task_active_pid_ns(t));
1130 rcu_read_lock();
1131 q->info.si_uid =
1132 from_kuid_munged(task_cred_xxx(t, user_ns),
1133 current_uid());
1134 rcu_read_unlock();
1135 break;
1136 case (unsigned long) SEND_SIG_PRIV:
1137 clear_siginfo(&q->info);
1138 q->info.si_signo = sig;
1139 q->info.si_errno = 0;
1140 q->info.si_code = SI_KERNEL;
1141 q->info.si_pid = 0;
1142 q->info.si_uid = 0;
1143 break;
1144 default:
1145 copy_siginfo(&q->info, info);
1146 break;
1147 }
1148 } else if (!is_si_special(info) &&
1149 sig >= SIGRTMIN && info->si_code != SI_USER) {
1150 /*
1151 * Queue overflow, abort. We may abort if the
1152 * signal was rt and sent by user using something
1153 * other than kill().
1154 */
1155 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1156 ret = -EAGAIN;
1157 goto ret;
1158 } else {
1159 /*
1160 * This is a silent loss of information. We still
1161 * send the signal, but the *info bits are lost.
1162 */
1163 result = TRACE_SIGNAL_LOSE_INFO;
1164 }
1165
1166out_set:
1167 signalfd_notify(t, sig);
1168 sigaddset(&pending->signal, sig);
1169
1170 /* Let multiprocess signals appear after on-going forks */
1171 if (type > PIDTYPE_TGID) {
1172 struct multiprocess_signals *delayed;
1173 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1174 sigset_t *signal = &delayed->signal;
1175 /* Can't queue both a stop and a continue signal */
1176 if (sig == SIGCONT)
1177 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1178 else if (sig_kernel_stop(sig))
1179 sigdelset(signal, SIGCONT);
1180 sigaddset(signal, sig);
1181 }
1182 }
1183
1184 complete_signal(sig, t, type);
1185ret:
1186 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1187 return ret;
1188}
1189
1190static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1191{
1192 bool ret = false;
1193 switch (siginfo_layout(info->si_signo, info->si_code)) {
1194 case SIL_KILL:
1195 case SIL_CHLD:
1196 case SIL_RT:
1197 ret = true;
1198 break;
1199 case SIL_TIMER:
1200 case SIL_POLL:
1201 case SIL_FAULT:
1202 case SIL_FAULT_TRAPNO:
1203 case SIL_FAULT_MCEERR:
1204 case SIL_FAULT_BNDERR:
1205 case SIL_FAULT_PKUERR:
1206 case SIL_FAULT_PERF_EVENT:
1207 case SIL_SYS:
1208 ret = false;
1209 break;
1210 }
1211 return ret;
1212}
1213
1214int send_signal_locked(int sig, struct kernel_siginfo *info,
1215 struct task_struct *t, enum pid_type type)
1216{
1217 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1218 bool force = false;
1219
1220 if (info == SEND_SIG_NOINFO) {
1221 /* Force if sent from an ancestor pid namespace */
1222 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1223 } else if (info == SEND_SIG_PRIV) {
1224 /* Don't ignore kernel generated signals */
1225 force = true;
1226 } else if (has_si_pid_and_uid(info)) {
1227 /* SIGKILL and SIGSTOP is special or has ids */
1228 struct user_namespace *t_user_ns;
1229
1230 rcu_read_lock();
1231 t_user_ns = task_cred_xxx(t, user_ns);
1232 if (current_user_ns() != t_user_ns) {
1233 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1234 info->si_uid = from_kuid_munged(t_user_ns, uid);
1235 }
1236 rcu_read_unlock();
1237
1238 /* A kernel generated signal? */
1239 force = (info->si_code == SI_KERNEL);
1240
1241 /* From an ancestor pid namespace? */
1242 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1243 info->si_pid = 0;
1244 force = true;
1245 }
1246 }
1247 return __send_signal_locked(sig, info, t, type, force);
1248}
1249
1250static void print_fatal_signal(int signr)
1251{
1252 struct pt_regs *regs = task_pt_regs(current);
1253 struct file *exe_file;
1254
1255 exe_file = get_task_exe_file(current);
1256 if (exe_file) {
1257 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1258 exe_file, current->comm, signr);
1259 fput(exe_file);
1260 } else {
1261 pr_info("%s: potentially unexpected fatal signal %d.\n",
1262 current->comm, signr);
1263 }
1264
1265#if defined(__i386__) && !defined(__arch_um__)
1266 pr_info("code at %08lx: ", regs->ip);
1267 {
1268 int i;
1269 for (i = 0; i < 16; i++) {
1270 unsigned char insn;
1271
1272 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1273 break;
1274 pr_cont("%02x ", insn);
1275 }
1276 }
1277 pr_cont("\n");
1278#endif
1279 preempt_disable();
1280 show_regs(regs);
1281 preempt_enable();
1282}
1283
1284static int __init setup_print_fatal_signals(char *str)
1285{
1286 get_option (&str, &print_fatal_signals);
1287
1288 return 1;
1289}
1290
1291__setup("print-fatal-signals=", setup_print_fatal_signals);
1292
1293int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1294 enum pid_type type)
1295{
1296 unsigned long flags;
1297 int ret = -ESRCH;
1298
1299 if (lock_task_sighand(p, &flags)) {
1300 ret = send_signal_locked(sig, info, p, type);
1301 unlock_task_sighand(p, &flags);
1302 }
1303
1304 return ret;
1305}
1306
1307enum sig_handler {
1308 HANDLER_CURRENT, /* If reachable use the current handler */
1309 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1310 HANDLER_EXIT, /* Only visible as the process exit code */
1311};
1312
1313/*
1314 * Force a signal that the process can't ignore: if necessary
1315 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1316 *
1317 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1318 * since we do not want to have a signal handler that was blocked
1319 * be invoked when user space had explicitly blocked it.
1320 *
1321 * We don't want to have recursive SIGSEGV's etc, for example,
1322 * that is why we also clear SIGNAL_UNKILLABLE.
1323 */
1324static int
1325force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1326 enum sig_handler handler)
1327{
1328 unsigned long int flags;
1329 int ret, blocked, ignored;
1330 struct k_sigaction *action;
1331 int sig = info->si_signo;
1332
1333 spin_lock_irqsave(&t->sighand->siglock, flags);
1334 action = &t->sighand->action[sig-1];
1335 ignored = action->sa.sa_handler == SIG_IGN;
1336 blocked = sigismember(&t->blocked, sig);
1337 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1338 action->sa.sa_handler = SIG_DFL;
1339 if (handler == HANDLER_EXIT)
1340 action->sa.sa_flags |= SA_IMMUTABLE;
1341 if (blocked)
1342 sigdelset(&t->blocked, sig);
1343 }
1344 /*
1345 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1346 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1347 */
1348 if (action->sa.sa_handler == SIG_DFL &&
1349 (!t->ptrace || (handler == HANDLER_EXIT)))
1350 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1351 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1352 /* This can happen if the signal was already pending and blocked */
1353 if (!task_sigpending(t))
1354 signal_wake_up(t, 0);
1355 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1356
1357 return ret;
1358}
1359
1360int force_sig_info(struct kernel_siginfo *info)
1361{
1362 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1363}
1364
1365/*
1366 * Nuke all other threads in the group.
1367 */
1368int zap_other_threads(struct task_struct *p)
1369{
1370 struct task_struct *t;
1371 int count = 0;
1372
1373 p->signal->group_stop_count = 0;
1374
1375 for_other_threads(p, t) {
1376 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1377 /* Don't require de_thread to wait for the vhost_worker */
1378 if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1379 count++;
1380
1381 /* Don't bother with already dead threads */
1382 if (t->exit_state)
1383 continue;
1384 sigaddset(&t->pending.signal, SIGKILL);
1385 signal_wake_up(t, 1);
1386 }
1387
1388 return count;
1389}
1390
1391struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1392 unsigned long *flags)
1393{
1394 struct sighand_struct *sighand;
1395
1396 rcu_read_lock();
1397 for (;;) {
1398 sighand = rcu_dereference(tsk->sighand);
1399 if (unlikely(sighand == NULL))
1400 break;
1401
1402 /*
1403 * This sighand can be already freed and even reused, but
1404 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1405 * initializes ->siglock: this slab can't go away, it has
1406 * the same object type, ->siglock can't be reinitialized.
1407 *
1408 * We need to ensure that tsk->sighand is still the same
1409 * after we take the lock, we can race with de_thread() or
1410 * __exit_signal(). In the latter case the next iteration
1411 * must see ->sighand == NULL.
1412 */
1413 spin_lock_irqsave(&sighand->siglock, *flags);
1414 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1415 break;
1416 spin_unlock_irqrestore(&sighand->siglock, *flags);
1417 }
1418 rcu_read_unlock();
1419
1420 return sighand;
1421}
1422
1423#ifdef CONFIG_LOCKDEP
1424void lockdep_assert_task_sighand_held(struct task_struct *task)
1425{
1426 struct sighand_struct *sighand;
1427
1428 rcu_read_lock();
1429 sighand = rcu_dereference(task->sighand);
1430 if (sighand)
1431 lockdep_assert_held(&sighand->siglock);
1432 else
1433 WARN_ON_ONCE(1);
1434 rcu_read_unlock();
1435}
1436#endif
1437
1438/*
1439 * send signal info to all the members of a group
1440 */
1441int group_send_sig_info(int sig, struct kernel_siginfo *info,
1442 struct task_struct *p, enum pid_type type)
1443{
1444 int ret;
1445
1446 rcu_read_lock();
1447 ret = check_kill_permission(sig, info, p);
1448 rcu_read_unlock();
1449
1450 if (!ret && sig)
1451 ret = do_send_sig_info(sig, info, p, type);
1452
1453 return ret;
1454}
1455
1456/*
1457 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1458 * control characters do (^C, ^Z etc)
1459 * - the caller must hold at least a readlock on tasklist_lock
1460 */
1461int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1462{
1463 struct task_struct *p = NULL;
1464 int ret = -ESRCH;
1465
1466 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1467 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1468 /*
1469 * If group_send_sig_info() succeeds at least once ret
1470 * becomes 0 and after that the code below has no effect.
1471 * Otherwise we return the last err or -ESRCH if this
1472 * process group is empty.
1473 */
1474 if (ret)
1475 ret = err;
1476 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1477
1478 return ret;
1479}
1480
1481int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1482{
1483 int error = -ESRCH;
1484 struct task_struct *p;
1485
1486 for (;;) {
1487 rcu_read_lock();
1488 p = pid_task(pid, PIDTYPE_PID);
1489 if (p)
1490 error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1491 rcu_read_unlock();
1492 if (likely(!p || error != -ESRCH))
1493 return error;
1494
1495 /*
1496 * The task was unhashed in between, try again. If it
1497 * is dead, pid_task() will return NULL, if we race with
1498 * de_thread() it will find the new leader.
1499 */
1500 }
1501}
1502
1503static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1504{
1505 int error;
1506 rcu_read_lock();
1507 error = kill_pid_info(sig, info, find_vpid(pid));
1508 rcu_read_unlock();
1509 return error;
1510}
1511
1512static inline bool kill_as_cred_perm(const struct cred *cred,
1513 struct task_struct *target)
1514{
1515 const struct cred *pcred = __task_cred(target);
1516
1517 return uid_eq(cred->euid, pcred->suid) ||
1518 uid_eq(cred->euid, pcred->uid) ||
1519 uid_eq(cred->uid, pcred->suid) ||
1520 uid_eq(cred->uid, pcred->uid);
1521}
1522
1523/*
1524 * The usb asyncio usage of siginfo is wrong. The glibc support
1525 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1526 * AKA after the generic fields:
1527 * kernel_pid_t si_pid;
1528 * kernel_uid32_t si_uid;
1529 * sigval_t si_value;
1530 *
1531 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1532 * after the generic fields is:
1533 * void __user *si_addr;
1534 *
1535 * This is a practical problem when there is a 64bit big endian kernel
1536 * and a 32bit userspace. As the 32bit address will encoded in the low
1537 * 32bits of the pointer. Those low 32bits will be stored at higher
1538 * address than appear in a 32 bit pointer. So userspace will not
1539 * see the address it was expecting for it's completions.
1540 *
1541 * There is nothing in the encoding that can allow
1542 * copy_siginfo_to_user32 to detect this confusion of formats, so
1543 * handle this by requiring the caller of kill_pid_usb_asyncio to
1544 * notice when this situration takes place and to store the 32bit
1545 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1546 * parameter.
1547 */
1548int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1549 struct pid *pid, const struct cred *cred)
1550{
1551 struct kernel_siginfo info;
1552 struct task_struct *p;
1553 unsigned long flags;
1554 int ret = -EINVAL;
1555
1556 if (!valid_signal(sig))
1557 return ret;
1558
1559 clear_siginfo(&info);
1560 info.si_signo = sig;
1561 info.si_errno = errno;
1562 info.si_code = SI_ASYNCIO;
1563 *((sigval_t *)&info.si_pid) = addr;
1564
1565 rcu_read_lock();
1566 p = pid_task(pid, PIDTYPE_PID);
1567 if (!p) {
1568 ret = -ESRCH;
1569 goto out_unlock;
1570 }
1571 if (!kill_as_cred_perm(cred, p)) {
1572 ret = -EPERM;
1573 goto out_unlock;
1574 }
1575 ret = security_task_kill(p, &info, sig, cred);
1576 if (ret)
1577 goto out_unlock;
1578
1579 if (sig) {
1580 if (lock_task_sighand(p, &flags)) {
1581 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1582 unlock_task_sighand(p, &flags);
1583 } else
1584 ret = -ESRCH;
1585 }
1586out_unlock:
1587 rcu_read_unlock();
1588 return ret;
1589}
1590EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1591
1592/*
1593 * kill_something_info() interprets pid in interesting ways just like kill(2).
1594 *
1595 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1596 * is probably wrong. Should make it like BSD or SYSV.
1597 */
1598
1599static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1600{
1601 int ret;
1602
1603 if (pid > 0)
1604 return kill_proc_info(sig, info, pid);
1605
1606 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1607 if (pid == INT_MIN)
1608 return -ESRCH;
1609
1610 read_lock(&tasklist_lock);
1611 if (pid != -1) {
1612 ret = __kill_pgrp_info(sig, info,
1613 pid ? find_vpid(-pid) : task_pgrp(current));
1614 } else {
1615 int retval = 0, count = 0;
1616 struct task_struct * p;
1617
1618 for_each_process(p) {
1619 if (task_pid_vnr(p) > 1 &&
1620 !same_thread_group(p, current)) {
1621 int err = group_send_sig_info(sig, info, p,
1622 PIDTYPE_MAX);
1623 ++count;
1624 if (err != -EPERM)
1625 retval = err;
1626 }
1627 }
1628 ret = count ? retval : -ESRCH;
1629 }
1630 read_unlock(&tasklist_lock);
1631
1632 return ret;
1633}
1634
1635/*
1636 * These are for backward compatibility with the rest of the kernel source.
1637 */
1638
1639int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1640{
1641 /*
1642 * Make sure legacy kernel users don't send in bad values
1643 * (normal paths check this in check_kill_permission).
1644 */
1645 if (!valid_signal(sig))
1646 return -EINVAL;
1647
1648 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1649}
1650EXPORT_SYMBOL(send_sig_info);
1651
1652#define __si_special(priv) \
1653 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1654
1655int
1656send_sig(int sig, struct task_struct *p, int priv)
1657{
1658 return send_sig_info(sig, __si_special(priv), p);
1659}
1660EXPORT_SYMBOL(send_sig);
1661
1662void force_sig(int sig)
1663{
1664 struct kernel_siginfo info;
1665
1666 clear_siginfo(&info);
1667 info.si_signo = sig;
1668 info.si_errno = 0;
1669 info.si_code = SI_KERNEL;
1670 info.si_pid = 0;
1671 info.si_uid = 0;
1672 force_sig_info(&info);
1673}
1674EXPORT_SYMBOL(force_sig);
1675
1676void force_fatal_sig(int sig)
1677{
1678 struct kernel_siginfo info;
1679
1680 clear_siginfo(&info);
1681 info.si_signo = sig;
1682 info.si_errno = 0;
1683 info.si_code = SI_KERNEL;
1684 info.si_pid = 0;
1685 info.si_uid = 0;
1686 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1687}
1688
1689void force_exit_sig(int sig)
1690{
1691 struct kernel_siginfo info;
1692
1693 clear_siginfo(&info);
1694 info.si_signo = sig;
1695 info.si_errno = 0;
1696 info.si_code = SI_KERNEL;
1697 info.si_pid = 0;
1698 info.si_uid = 0;
1699 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1700}
1701
1702/*
1703 * When things go south during signal handling, we
1704 * will force a SIGSEGV. And if the signal that caused
1705 * the problem was already a SIGSEGV, we'll want to
1706 * make sure we don't even try to deliver the signal..
1707 */
1708void force_sigsegv(int sig)
1709{
1710 if (sig == SIGSEGV)
1711 force_fatal_sig(SIGSEGV);
1712 else
1713 force_sig(SIGSEGV);
1714}
1715
1716int force_sig_fault_to_task(int sig, int code, void __user *addr,
1717 struct task_struct *t)
1718{
1719 struct kernel_siginfo info;
1720
1721 clear_siginfo(&info);
1722 info.si_signo = sig;
1723 info.si_errno = 0;
1724 info.si_code = code;
1725 info.si_addr = addr;
1726 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1727}
1728
1729int force_sig_fault(int sig, int code, void __user *addr)
1730{
1731 return force_sig_fault_to_task(sig, code, addr, current);
1732}
1733
1734int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1735{
1736 struct kernel_siginfo info;
1737
1738 clear_siginfo(&info);
1739 info.si_signo = sig;
1740 info.si_errno = 0;
1741 info.si_code = code;
1742 info.si_addr = addr;
1743 return send_sig_info(info.si_signo, &info, t);
1744}
1745
1746int force_sig_mceerr(int code, void __user *addr, short lsb)
1747{
1748 struct kernel_siginfo info;
1749
1750 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1751 clear_siginfo(&info);
1752 info.si_signo = SIGBUS;
1753 info.si_errno = 0;
1754 info.si_code = code;
1755 info.si_addr = addr;
1756 info.si_addr_lsb = lsb;
1757 return force_sig_info(&info);
1758}
1759
1760int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1761{
1762 struct kernel_siginfo info;
1763
1764 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1765 clear_siginfo(&info);
1766 info.si_signo = SIGBUS;
1767 info.si_errno = 0;
1768 info.si_code = code;
1769 info.si_addr = addr;
1770 info.si_addr_lsb = lsb;
1771 return send_sig_info(info.si_signo, &info, t);
1772}
1773EXPORT_SYMBOL(send_sig_mceerr);
1774
1775int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1776{
1777 struct kernel_siginfo info;
1778
1779 clear_siginfo(&info);
1780 info.si_signo = SIGSEGV;
1781 info.si_errno = 0;
1782 info.si_code = SEGV_BNDERR;
1783 info.si_addr = addr;
1784 info.si_lower = lower;
1785 info.si_upper = upper;
1786 return force_sig_info(&info);
1787}
1788
1789#ifdef SEGV_PKUERR
1790int force_sig_pkuerr(void __user *addr, u32 pkey)
1791{
1792 struct kernel_siginfo info;
1793
1794 clear_siginfo(&info);
1795 info.si_signo = SIGSEGV;
1796 info.si_errno = 0;
1797 info.si_code = SEGV_PKUERR;
1798 info.si_addr = addr;
1799 info.si_pkey = pkey;
1800 return force_sig_info(&info);
1801}
1802#endif
1803
1804int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1805{
1806 struct kernel_siginfo info;
1807
1808 clear_siginfo(&info);
1809 info.si_signo = SIGTRAP;
1810 info.si_errno = 0;
1811 info.si_code = TRAP_PERF;
1812 info.si_addr = addr;
1813 info.si_perf_data = sig_data;
1814 info.si_perf_type = type;
1815
1816 /*
1817 * Signals generated by perf events should not terminate the whole
1818 * process if SIGTRAP is blocked, however, delivering the signal
1819 * asynchronously is better than not delivering at all. But tell user
1820 * space if the signal was asynchronous, so it can clearly be
1821 * distinguished from normal synchronous ones.
1822 */
1823 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1824 TRAP_PERF_FLAG_ASYNC :
1825 0;
1826
1827 return send_sig_info(info.si_signo, &info, current);
1828}
1829
1830/**
1831 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1832 * @syscall: syscall number to send to userland
1833 * @reason: filter-supplied reason code to send to userland (via si_errno)
1834 * @force_coredump: true to trigger a coredump
1835 *
1836 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1837 */
1838int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1839{
1840 struct kernel_siginfo info;
1841
1842 clear_siginfo(&info);
1843 info.si_signo = SIGSYS;
1844 info.si_code = SYS_SECCOMP;
1845 info.si_call_addr = (void __user *)KSTK_EIP(current);
1846 info.si_errno = reason;
1847 info.si_arch = syscall_get_arch(current);
1848 info.si_syscall = syscall;
1849 return force_sig_info_to_task(&info, current,
1850 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1851}
1852
1853/* For the crazy architectures that include trap information in
1854 * the errno field, instead of an actual errno value.
1855 */
1856int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1857{
1858 struct kernel_siginfo info;
1859
1860 clear_siginfo(&info);
1861 info.si_signo = SIGTRAP;
1862 info.si_errno = errno;
1863 info.si_code = TRAP_HWBKPT;
1864 info.si_addr = addr;
1865 return force_sig_info(&info);
1866}
1867
1868/* For the rare architectures that include trap information using
1869 * si_trapno.
1870 */
1871int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1872{
1873 struct kernel_siginfo info;
1874
1875 clear_siginfo(&info);
1876 info.si_signo = sig;
1877 info.si_errno = 0;
1878 info.si_code = code;
1879 info.si_addr = addr;
1880 info.si_trapno = trapno;
1881 return force_sig_info(&info);
1882}
1883
1884/* For the rare architectures that include trap information using
1885 * si_trapno.
1886 */
1887int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1888 struct task_struct *t)
1889{
1890 struct kernel_siginfo info;
1891
1892 clear_siginfo(&info);
1893 info.si_signo = sig;
1894 info.si_errno = 0;
1895 info.si_code = code;
1896 info.si_addr = addr;
1897 info.si_trapno = trapno;
1898 return send_sig_info(info.si_signo, &info, t);
1899}
1900
1901int kill_pgrp(struct pid *pid, int sig, int priv)
1902{
1903 int ret;
1904
1905 read_lock(&tasklist_lock);
1906 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1907 read_unlock(&tasklist_lock);
1908
1909 return ret;
1910}
1911EXPORT_SYMBOL(kill_pgrp);
1912
1913int kill_pid(struct pid *pid, int sig, int priv)
1914{
1915 return kill_pid_info(sig, __si_special(priv), pid);
1916}
1917EXPORT_SYMBOL(kill_pid);
1918
1919/*
1920 * These functions support sending signals using preallocated sigqueue
1921 * structures. This is needed "because realtime applications cannot
1922 * afford to lose notifications of asynchronous events, like timer
1923 * expirations or I/O completions". In the case of POSIX Timers
1924 * we allocate the sigqueue structure from the timer_create. If this
1925 * allocation fails we are able to report the failure to the application
1926 * with an EAGAIN error.
1927 */
1928struct sigqueue *sigqueue_alloc(void)
1929{
1930 return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1931}
1932
1933void sigqueue_free(struct sigqueue *q)
1934{
1935 unsigned long flags;
1936 spinlock_t *lock = ¤t->sighand->siglock;
1937
1938 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1939 /*
1940 * We must hold ->siglock while testing q->list
1941 * to serialize with collect_signal() or with
1942 * __exit_signal()->flush_sigqueue().
1943 */
1944 spin_lock_irqsave(lock, flags);
1945 q->flags &= ~SIGQUEUE_PREALLOC;
1946 /*
1947 * If it is queued it will be freed when dequeued,
1948 * like the "regular" sigqueue.
1949 */
1950 if (!list_empty(&q->list))
1951 q = NULL;
1952 spin_unlock_irqrestore(lock, flags);
1953
1954 if (q)
1955 __sigqueue_free(q);
1956}
1957
1958int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1959{
1960 int sig = q->info.si_signo;
1961 struct sigpending *pending;
1962 struct task_struct *t;
1963 unsigned long flags;
1964 int ret, result;
1965
1966 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1967
1968 ret = -1;
1969 rcu_read_lock();
1970
1971 /*
1972 * This function is used by POSIX timers to deliver a timer signal.
1973 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1974 * set), the signal must be delivered to the specific thread (queues
1975 * into t->pending).
1976 *
1977 * Where type is not PIDTYPE_PID, signals must be delivered to the
1978 * process. In this case, prefer to deliver to current if it is in
1979 * the same thread group as the target process, which avoids
1980 * unnecessarily waking up a potentially idle task.
1981 */
1982 t = pid_task(pid, type);
1983 if (!t)
1984 goto ret;
1985 if (type != PIDTYPE_PID && same_thread_group(t, current))
1986 t = current;
1987 if (!likely(lock_task_sighand(t, &flags)))
1988 goto ret;
1989
1990 ret = 1; /* the signal is ignored */
1991 result = TRACE_SIGNAL_IGNORED;
1992 if (!prepare_signal(sig, t, false))
1993 goto out;
1994
1995 ret = 0;
1996 if (unlikely(!list_empty(&q->list))) {
1997 /*
1998 * If an SI_TIMER entry is already queue just increment
1999 * the overrun count.
2000 */
2001 BUG_ON(q->info.si_code != SI_TIMER);
2002 q->info.si_overrun++;
2003 result = TRACE_SIGNAL_ALREADY_PENDING;
2004 goto out;
2005 }
2006 q->info.si_overrun = 0;
2007
2008 signalfd_notify(t, sig);
2009 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2010 list_add_tail(&q->list, &pending->list);
2011 sigaddset(&pending->signal, sig);
2012 complete_signal(sig, t, type);
2013 result = TRACE_SIGNAL_DELIVERED;
2014out:
2015 trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2016 unlock_task_sighand(t, &flags);
2017ret:
2018 rcu_read_unlock();
2019 return ret;
2020}
2021
2022static void do_notify_pidfd(struct task_struct *task)
2023{
2024 struct pid *pid;
2025
2026 WARN_ON(task->exit_state == 0);
2027 pid = task_pid(task);
2028 wake_up_all(&pid->wait_pidfd);
2029}
2030
2031/*
2032 * Let a parent know about the death of a child.
2033 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2034 *
2035 * Returns true if our parent ignored us and so we've switched to
2036 * self-reaping.
2037 */
2038bool do_notify_parent(struct task_struct *tsk, int sig)
2039{
2040 struct kernel_siginfo info;
2041 unsigned long flags;
2042 struct sighand_struct *psig;
2043 bool autoreap = false;
2044 u64 utime, stime;
2045
2046 WARN_ON_ONCE(sig == -1);
2047
2048 /* do_notify_parent_cldstop should have been called instead. */
2049 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2050
2051 WARN_ON_ONCE(!tsk->ptrace &&
2052 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2053
2054 /* Wake up all pidfd waiters */
2055 do_notify_pidfd(tsk);
2056
2057 if (sig != SIGCHLD) {
2058 /*
2059 * This is only possible if parent == real_parent.
2060 * Check if it has changed security domain.
2061 */
2062 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2063 sig = SIGCHLD;
2064 }
2065
2066 clear_siginfo(&info);
2067 info.si_signo = sig;
2068 info.si_errno = 0;
2069 /*
2070 * We are under tasklist_lock here so our parent is tied to
2071 * us and cannot change.
2072 *
2073 * task_active_pid_ns will always return the same pid namespace
2074 * until a task passes through release_task.
2075 *
2076 * write_lock() currently calls preempt_disable() which is the
2077 * same as rcu_read_lock(), but according to Oleg, this is not
2078 * correct to rely on this
2079 */
2080 rcu_read_lock();
2081 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2082 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2083 task_uid(tsk));
2084 rcu_read_unlock();
2085
2086 task_cputime(tsk, &utime, &stime);
2087 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2088 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2089
2090 info.si_status = tsk->exit_code & 0x7f;
2091 if (tsk->exit_code & 0x80)
2092 info.si_code = CLD_DUMPED;
2093 else if (tsk->exit_code & 0x7f)
2094 info.si_code = CLD_KILLED;
2095 else {
2096 info.si_code = CLD_EXITED;
2097 info.si_status = tsk->exit_code >> 8;
2098 }
2099
2100 psig = tsk->parent->sighand;
2101 spin_lock_irqsave(&psig->siglock, flags);
2102 if (!tsk->ptrace && sig == SIGCHLD &&
2103 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2104 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2105 /*
2106 * We are exiting and our parent doesn't care. POSIX.1
2107 * defines special semantics for setting SIGCHLD to SIG_IGN
2108 * or setting the SA_NOCLDWAIT flag: we should be reaped
2109 * automatically and not left for our parent's wait4 call.
2110 * Rather than having the parent do it as a magic kind of
2111 * signal handler, we just set this to tell do_exit that we
2112 * can be cleaned up without becoming a zombie. Note that
2113 * we still call __wake_up_parent in this case, because a
2114 * blocked sys_wait4 might now return -ECHILD.
2115 *
2116 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2117 * is implementation-defined: we do (if you don't want
2118 * it, just use SIG_IGN instead).
2119 */
2120 autoreap = true;
2121 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2122 sig = 0;
2123 }
2124 /*
2125 * Send with __send_signal as si_pid and si_uid are in the
2126 * parent's namespaces.
2127 */
2128 if (valid_signal(sig) && sig)
2129 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2130 __wake_up_parent(tsk, tsk->parent);
2131 spin_unlock_irqrestore(&psig->siglock, flags);
2132
2133 return autoreap;
2134}
2135
2136/**
2137 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2138 * @tsk: task reporting the state change
2139 * @for_ptracer: the notification is for ptracer
2140 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2141 *
2142 * Notify @tsk's parent that the stopped/continued state has changed. If
2143 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2144 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2145 *
2146 * CONTEXT:
2147 * Must be called with tasklist_lock at least read locked.
2148 */
2149static void do_notify_parent_cldstop(struct task_struct *tsk,
2150 bool for_ptracer, int why)
2151{
2152 struct kernel_siginfo info;
2153 unsigned long flags;
2154 struct task_struct *parent;
2155 struct sighand_struct *sighand;
2156 u64 utime, stime;
2157
2158 if (for_ptracer) {
2159 parent = tsk->parent;
2160 } else {
2161 tsk = tsk->group_leader;
2162 parent = tsk->real_parent;
2163 }
2164
2165 clear_siginfo(&info);
2166 info.si_signo = SIGCHLD;
2167 info.si_errno = 0;
2168 /*
2169 * see comment in do_notify_parent() about the following 4 lines
2170 */
2171 rcu_read_lock();
2172 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2173 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2174 rcu_read_unlock();
2175
2176 task_cputime(tsk, &utime, &stime);
2177 info.si_utime = nsec_to_clock_t(utime);
2178 info.si_stime = nsec_to_clock_t(stime);
2179
2180 info.si_code = why;
2181 switch (why) {
2182 case CLD_CONTINUED:
2183 info.si_status = SIGCONT;
2184 break;
2185 case CLD_STOPPED:
2186 info.si_status = tsk->signal->group_exit_code & 0x7f;
2187 break;
2188 case CLD_TRAPPED:
2189 info.si_status = tsk->exit_code & 0x7f;
2190 break;
2191 default:
2192 BUG();
2193 }
2194
2195 sighand = parent->sighand;
2196 spin_lock_irqsave(&sighand->siglock, flags);
2197 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2198 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2199 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2200 /*
2201 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2202 */
2203 __wake_up_parent(tsk, parent);
2204 spin_unlock_irqrestore(&sighand->siglock, flags);
2205}
2206
2207/*
2208 * This must be called with current->sighand->siglock held.
2209 *
2210 * This should be the path for all ptrace stops.
2211 * We always set current->last_siginfo while stopped here.
2212 * That makes it a way to test a stopped process for
2213 * being ptrace-stopped vs being job-control-stopped.
2214 *
2215 * Returns the signal the ptracer requested the code resume
2216 * with. If the code did not stop because the tracer is gone,
2217 * the stop signal remains unchanged unless clear_code.
2218 */
2219static int ptrace_stop(int exit_code, int why, unsigned long message,
2220 kernel_siginfo_t *info)
2221 __releases(¤t->sighand->siglock)
2222 __acquires(¤t->sighand->siglock)
2223{
2224 bool gstop_done = false;
2225
2226 if (arch_ptrace_stop_needed()) {
2227 /*
2228 * The arch code has something special to do before a
2229 * ptrace stop. This is allowed to block, e.g. for faults
2230 * on user stack pages. We can't keep the siglock while
2231 * calling arch_ptrace_stop, so we must release it now.
2232 * To preserve proper semantics, we must do this before
2233 * any signal bookkeeping like checking group_stop_count.
2234 */
2235 spin_unlock_irq(¤t->sighand->siglock);
2236 arch_ptrace_stop();
2237 spin_lock_irq(¤t->sighand->siglock);
2238 }
2239
2240 /*
2241 * After this point ptrace_signal_wake_up or signal_wake_up
2242 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2243 * signal comes in. Handle previous ptrace_unlinks and fatal
2244 * signals here to prevent ptrace_stop sleeping in schedule.
2245 */
2246 if (!current->ptrace || __fatal_signal_pending(current))
2247 return exit_code;
2248
2249 set_special_state(TASK_TRACED);
2250 current->jobctl |= JOBCTL_TRACED;
2251
2252 /*
2253 * We're committing to trapping. TRACED should be visible before
2254 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2255 * Also, transition to TRACED and updates to ->jobctl should be
2256 * atomic with respect to siglock and should be done after the arch
2257 * hook as siglock is released and regrabbed across it.
2258 *
2259 * TRACER TRACEE
2260 *
2261 * ptrace_attach()
2262 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2263 * do_wait()
2264 * set_current_state() smp_wmb();
2265 * ptrace_do_wait()
2266 * wait_task_stopped()
2267 * task_stopped_code()
2268 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2269 */
2270 smp_wmb();
2271
2272 current->ptrace_message = message;
2273 current->last_siginfo = info;
2274 current->exit_code = exit_code;
2275
2276 /*
2277 * If @why is CLD_STOPPED, we're trapping to participate in a group
2278 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2279 * across siglock relocks since INTERRUPT was scheduled, PENDING
2280 * could be clear now. We act as if SIGCONT is received after
2281 * TASK_TRACED is entered - ignore it.
2282 */
2283 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2284 gstop_done = task_participate_group_stop(current);
2285
2286 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2287 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2288 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2289 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2290
2291 /* entering a trap, clear TRAPPING */
2292 task_clear_jobctl_trapping(current);
2293
2294 spin_unlock_irq(¤t->sighand->siglock);
2295 read_lock(&tasklist_lock);
2296 /*
2297 * Notify parents of the stop.
2298 *
2299 * While ptraced, there are two parents - the ptracer and
2300 * the real_parent of the group_leader. The ptracer should
2301 * know about every stop while the real parent is only
2302 * interested in the completion of group stop. The states
2303 * for the two don't interact with each other. Notify
2304 * separately unless they're gonna be duplicates.
2305 */
2306 if (current->ptrace)
2307 do_notify_parent_cldstop(current, true, why);
2308 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2309 do_notify_parent_cldstop(current, false, why);
2310
2311 /*
2312 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2313 * One a PREEMPTION kernel this can result in preemption requirement
2314 * which will be fulfilled after read_unlock() and the ptracer will be
2315 * put on the CPU.
2316 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2317 * this task wait in schedule(). If this task gets preempted then it
2318 * remains enqueued on the runqueue. The ptracer will observe this and
2319 * then sleep for a delay of one HZ tick. In the meantime this task
2320 * gets scheduled, enters schedule() and will wait for the ptracer.
2321 *
2322 * This preemption point is not bad from a correctness point of
2323 * view but extends the runtime by one HZ tick time due to the
2324 * ptracer's sleep. The preempt-disable section ensures that there
2325 * will be no preemption between unlock and schedule() and so
2326 * improving the performance since the ptracer will observe that
2327 * the tracee is scheduled out once it gets on the CPU.
2328 *
2329 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2330 * Therefore the task can be preempted after do_notify_parent_cldstop()
2331 * before unlocking tasklist_lock so there is no benefit in doing this.
2332 *
2333 * In fact disabling preemption is harmful on PREEMPT_RT because
2334 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2335 * with preemption disabled due to the 'sleeping' spinlock
2336 * substitution of RT.
2337 */
2338 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2339 preempt_disable();
2340 read_unlock(&tasklist_lock);
2341 cgroup_enter_frozen();
2342 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2343 preempt_enable_no_resched();
2344 schedule();
2345 cgroup_leave_frozen(true);
2346
2347 /*
2348 * We are back. Now reacquire the siglock before touching
2349 * last_siginfo, so that we are sure to have synchronized with
2350 * any signal-sending on another CPU that wants to examine it.
2351 */
2352 spin_lock_irq(¤t->sighand->siglock);
2353 exit_code = current->exit_code;
2354 current->last_siginfo = NULL;
2355 current->ptrace_message = 0;
2356 current->exit_code = 0;
2357
2358 /* LISTENING can be set only during STOP traps, clear it */
2359 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2360
2361 /*
2362 * Queued signals ignored us while we were stopped for tracing.
2363 * So check for any that we should take before resuming user mode.
2364 * This sets TIF_SIGPENDING, but never clears it.
2365 */
2366 recalc_sigpending_tsk(current);
2367 return exit_code;
2368}
2369
2370static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2371{
2372 kernel_siginfo_t info;
2373
2374 clear_siginfo(&info);
2375 info.si_signo = signr;
2376 info.si_code = exit_code;
2377 info.si_pid = task_pid_vnr(current);
2378 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2379
2380 /* Let the debugger run. */
2381 return ptrace_stop(exit_code, why, message, &info);
2382}
2383
2384int ptrace_notify(int exit_code, unsigned long message)
2385{
2386 int signr;
2387
2388 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2389 if (unlikely(task_work_pending(current)))
2390 task_work_run();
2391
2392 spin_lock_irq(¤t->sighand->siglock);
2393 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2394 spin_unlock_irq(¤t->sighand->siglock);
2395 return signr;
2396}
2397
2398/**
2399 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2400 * @signr: signr causing group stop if initiating
2401 *
2402 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2403 * and participate in it. If already set, participate in the existing
2404 * group stop. If participated in a group stop (and thus slept), %true is
2405 * returned with siglock released.
2406 *
2407 * If ptraced, this function doesn't handle stop itself. Instead,
2408 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2409 * untouched. The caller must ensure that INTERRUPT trap handling takes
2410 * places afterwards.
2411 *
2412 * CONTEXT:
2413 * Must be called with @current->sighand->siglock held, which is released
2414 * on %true return.
2415 *
2416 * RETURNS:
2417 * %false if group stop is already cancelled or ptrace trap is scheduled.
2418 * %true if participated in group stop.
2419 */
2420static bool do_signal_stop(int signr)
2421 __releases(¤t->sighand->siglock)
2422{
2423 struct signal_struct *sig = current->signal;
2424
2425 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2426 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2427 struct task_struct *t;
2428
2429 /* signr will be recorded in task->jobctl for retries */
2430 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2431
2432 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2433 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2434 unlikely(sig->group_exec_task))
2435 return false;
2436 /*
2437 * There is no group stop already in progress. We must
2438 * initiate one now.
2439 *
2440 * While ptraced, a task may be resumed while group stop is
2441 * still in effect and then receive a stop signal and
2442 * initiate another group stop. This deviates from the
2443 * usual behavior as two consecutive stop signals can't
2444 * cause two group stops when !ptraced. That is why we
2445 * also check !task_is_stopped(t) below.
2446 *
2447 * The condition can be distinguished by testing whether
2448 * SIGNAL_STOP_STOPPED is already set. Don't generate
2449 * group_exit_code in such case.
2450 *
2451 * This is not necessary for SIGNAL_STOP_CONTINUED because
2452 * an intervening stop signal is required to cause two
2453 * continued events regardless of ptrace.
2454 */
2455 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2456 sig->group_exit_code = signr;
2457
2458 sig->group_stop_count = 0;
2459 if (task_set_jobctl_pending(current, signr | gstop))
2460 sig->group_stop_count++;
2461
2462 for_other_threads(current, t) {
2463 /*
2464 * Setting state to TASK_STOPPED for a group
2465 * stop is always done with the siglock held,
2466 * so this check has no races.
2467 */
2468 if (!task_is_stopped(t) &&
2469 task_set_jobctl_pending(t, signr | gstop)) {
2470 sig->group_stop_count++;
2471 if (likely(!(t->ptrace & PT_SEIZED)))
2472 signal_wake_up(t, 0);
2473 else
2474 ptrace_trap_notify(t);
2475 }
2476 }
2477 }
2478
2479 if (likely(!current->ptrace)) {
2480 int notify = 0;
2481
2482 /*
2483 * If there are no other threads in the group, or if there
2484 * is a group stop in progress and we are the last to stop,
2485 * report to the parent.
2486 */
2487 if (task_participate_group_stop(current))
2488 notify = CLD_STOPPED;
2489
2490 current->jobctl |= JOBCTL_STOPPED;
2491 set_special_state(TASK_STOPPED);
2492 spin_unlock_irq(¤t->sighand->siglock);
2493
2494 /*
2495 * Notify the parent of the group stop completion. Because
2496 * we're not holding either the siglock or tasklist_lock
2497 * here, ptracer may attach inbetween; however, this is for
2498 * group stop and should always be delivered to the real
2499 * parent of the group leader. The new ptracer will get
2500 * its notification when this task transitions into
2501 * TASK_TRACED.
2502 */
2503 if (notify) {
2504 read_lock(&tasklist_lock);
2505 do_notify_parent_cldstop(current, false, notify);
2506 read_unlock(&tasklist_lock);
2507 }
2508
2509 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2510 cgroup_enter_frozen();
2511 schedule();
2512 return true;
2513 } else {
2514 /*
2515 * While ptraced, group stop is handled by STOP trap.
2516 * Schedule it and let the caller deal with it.
2517 */
2518 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2519 return false;
2520 }
2521}
2522
2523/**
2524 * do_jobctl_trap - take care of ptrace jobctl traps
2525 *
2526 * When PT_SEIZED, it's used for both group stop and explicit
2527 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2528 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2529 * the stop signal; otherwise, %SIGTRAP.
2530 *
2531 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2532 * number as exit_code and no siginfo.
2533 *
2534 * CONTEXT:
2535 * Must be called with @current->sighand->siglock held, which may be
2536 * released and re-acquired before returning with intervening sleep.
2537 */
2538static void do_jobctl_trap(void)
2539{
2540 struct signal_struct *signal = current->signal;
2541 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2542
2543 if (current->ptrace & PT_SEIZED) {
2544 if (!signal->group_stop_count &&
2545 !(signal->flags & SIGNAL_STOP_STOPPED))
2546 signr = SIGTRAP;
2547 WARN_ON_ONCE(!signr);
2548 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2549 CLD_STOPPED, 0);
2550 } else {
2551 WARN_ON_ONCE(!signr);
2552 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2553 }
2554}
2555
2556/**
2557 * do_freezer_trap - handle the freezer jobctl trap
2558 *
2559 * Puts the task into frozen state, if only the task is not about to quit.
2560 * In this case it drops JOBCTL_TRAP_FREEZE.
2561 *
2562 * CONTEXT:
2563 * Must be called with @current->sighand->siglock held,
2564 * which is always released before returning.
2565 */
2566static void do_freezer_trap(void)
2567 __releases(¤t->sighand->siglock)
2568{
2569 /*
2570 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2571 * let's make another loop to give it a chance to be handled.
2572 * In any case, we'll return back.
2573 */
2574 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2575 JOBCTL_TRAP_FREEZE) {
2576 spin_unlock_irq(¤t->sighand->siglock);
2577 return;
2578 }
2579
2580 /*
2581 * Now we're sure that there is no pending fatal signal and no
2582 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2583 * immediately (if there is a non-fatal signal pending), and
2584 * put the task into sleep.
2585 */
2586 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2587 clear_thread_flag(TIF_SIGPENDING);
2588 spin_unlock_irq(¤t->sighand->siglock);
2589 cgroup_enter_frozen();
2590 schedule();
2591}
2592
2593static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2594{
2595 /*
2596 * We do not check sig_kernel_stop(signr) but set this marker
2597 * unconditionally because we do not know whether debugger will
2598 * change signr. This flag has no meaning unless we are going
2599 * to stop after return from ptrace_stop(). In this case it will
2600 * be checked in do_signal_stop(), we should only stop if it was
2601 * not cleared by SIGCONT while we were sleeping. See also the
2602 * comment in dequeue_signal().
2603 */
2604 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2605 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2606
2607 /* We're back. Did the debugger cancel the sig? */
2608 if (signr == 0)
2609 return signr;
2610
2611 /*
2612 * Update the siginfo structure if the signal has
2613 * changed. If the debugger wanted something
2614 * specific in the siginfo structure then it should
2615 * have updated *info via PTRACE_SETSIGINFO.
2616 */
2617 if (signr != info->si_signo) {
2618 clear_siginfo(info);
2619 info->si_signo = signr;
2620 info->si_errno = 0;
2621 info->si_code = SI_USER;
2622 rcu_read_lock();
2623 info->si_pid = task_pid_vnr(current->parent);
2624 info->si_uid = from_kuid_munged(current_user_ns(),
2625 task_uid(current->parent));
2626 rcu_read_unlock();
2627 }
2628
2629 /* If the (new) signal is now blocked, requeue it. */
2630 if (sigismember(¤t->blocked, signr) ||
2631 fatal_signal_pending(current)) {
2632 send_signal_locked(signr, info, current, type);
2633 signr = 0;
2634 }
2635
2636 return signr;
2637}
2638
2639static void hide_si_addr_tag_bits(struct ksignal *ksig)
2640{
2641 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2642 case SIL_FAULT:
2643 case SIL_FAULT_TRAPNO:
2644 case SIL_FAULT_MCEERR:
2645 case SIL_FAULT_BNDERR:
2646 case SIL_FAULT_PKUERR:
2647 case SIL_FAULT_PERF_EVENT:
2648 ksig->info.si_addr = arch_untagged_si_addr(
2649 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2650 break;
2651 case SIL_KILL:
2652 case SIL_TIMER:
2653 case SIL_POLL:
2654 case SIL_CHLD:
2655 case SIL_RT:
2656 case SIL_SYS:
2657 break;
2658 }
2659}
2660
2661bool get_signal(struct ksignal *ksig)
2662{
2663 struct sighand_struct *sighand = current->sighand;
2664 struct signal_struct *signal = current->signal;
2665 int signr;
2666
2667 clear_notify_signal();
2668 if (unlikely(task_work_pending(current)))
2669 task_work_run();
2670
2671 if (!task_sigpending(current))
2672 return false;
2673
2674 if (unlikely(uprobe_deny_signal()))
2675 return false;
2676
2677 /*
2678 * Do this once, we can't return to user-mode if freezing() == T.
2679 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2680 * thus do not need another check after return.
2681 */
2682 try_to_freeze();
2683
2684relock:
2685 spin_lock_irq(&sighand->siglock);
2686
2687 /*
2688 * Every stopped thread goes here after wakeup. Check to see if
2689 * we should notify the parent, prepare_signal(SIGCONT) encodes
2690 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2691 */
2692 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2693 int why;
2694
2695 if (signal->flags & SIGNAL_CLD_CONTINUED)
2696 why = CLD_CONTINUED;
2697 else
2698 why = CLD_STOPPED;
2699
2700 signal->flags &= ~SIGNAL_CLD_MASK;
2701
2702 spin_unlock_irq(&sighand->siglock);
2703
2704 /*
2705 * Notify the parent that we're continuing. This event is
2706 * always per-process and doesn't make whole lot of sense
2707 * for ptracers, who shouldn't consume the state via
2708 * wait(2) either, but, for backward compatibility, notify
2709 * the ptracer of the group leader too unless it's gonna be
2710 * a duplicate.
2711 */
2712 read_lock(&tasklist_lock);
2713 do_notify_parent_cldstop(current, false, why);
2714
2715 if (ptrace_reparented(current->group_leader))
2716 do_notify_parent_cldstop(current->group_leader,
2717 true, why);
2718 read_unlock(&tasklist_lock);
2719
2720 goto relock;
2721 }
2722
2723 for (;;) {
2724 struct k_sigaction *ka;
2725 enum pid_type type;
2726
2727 /* Has this task already been marked for death? */
2728 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2729 signal->group_exec_task) {
2730 clear_siginfo(&ksig->info);
2731 ksig->info.si_signo = signr = SIGKILL;
2732 sigdelset(¤t->pending.signal, SIGKILL);
2733 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2734 &sighand->action[SIGKILL - 1]);
2735 recalc_sigpending();
2736 goto fatal;
2737 }
2738
2739 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2740 do_signal_stop(0))
2741 goto relock;
2742
2743 if (unlikely(current->jobctl &
2744 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2745 if (current->jobctl & JOBCTL_TRAP_MASK) {
2746 do_jobctl_trap();
2747 spin_unlock_irq(&sighand->siglock);
2748 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2749 do_freezer_trap();
2750
2751 goto relock;
2752 }
2753
2754 /*
2755 * If the task is leaving the frozen state, let's update
2756 * cgroup counters and reset the frozen bit.
2757 */
2758 if (unlikely(cgroup_task_frozen(current))) {
2759 spin_unlock_irq(&sighand->siglock);
2760 cgroup_leave_frozen(false);
2761 goto relock;
2762 }
2763
2764 /*
2765 * Signals generated by the execution of an instruction
2766 * need to be delivered before any other pending signals
2767 * so that the instruction pointer in the signal stack
2768 * frame points to the faulting instruction.
2769 */
2770 type = PIDTYPE_PID;
2771 signr = dequeue_synchronous_signal(&ksig->info);
2772 if (!signr)
2773 signr = dequeue_signal(current, ¤t->blocked,
2774 &ksig->info, &type);
2775
2776 if (!signr)
2777 break; /* will return 0 */
2778
2779 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2780 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2781 signr = ptrace_signal(signr, &ksig->info, type);
2782 if (!signr)
2783 continue;
2784 }
2785
2786 ka = &sighand->action[signr-1];
2787
2788 /* Trace actually delivered signals. */
2789 trace_signal_deliver(signr, &ksig->info, ka);
2790
2791 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2792 continue;
2793 if (ka->sa.sa_handler != SIG_DFL) {
2794 /* Run the handler. */
2795 ksig->ka = *ka;
2796
2797 if (ka->sa.sa_flags & SA_ONESHOT)
2798 ka->sa.sa_handler = SIG_DFL;
2799
2800 break; /* will return non-zero "signr" value */
2801 }
2802
2803 /*
2804 * Now we are doing the default action for this signal.
2805 */
2806 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2807 continue;
2808
2809 /*
2810 * Global init gets no signals it doesn't want.
2811 * Container-init gets no signals it doesn't want from same
2812 * container.
2813 *
2814 * Note that if global/container-init sees a sig_kernel_only()
2815 * signal here, the signal must have been generated internally
2816 * or must have come from an ancestor namespace. In either
2817 * case, the signal cannot be dropped.
2818 */
2819 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2820 !sig_kernel_only(signr))
2821 continue;
2822
2823 if (sig_kernel_stop(signr)) {
2824 /*
2825 * The default action is to stop all threads in
2826 * the thread group. The job control signals
2827 * do nothing in an orphaned pgrp, but SIGSTOP
2828 * always works. Note that siglock needs to be
2829 * dropped during the call to is_orphaned_pgrp()
2830 * because of lock ordering with tasklist_lock.
2831 * This allows an intervening SIGCONT to be posted.
2832 * We need to check for that and bail out if necessary.
2833 */
2834 if (signr != SIGSTOP) {
2835 spin_unlock_irq(&sighand->siglock);
2836
2837 /* signals can be posted during this window */
2838
2839 if (is_current_pgrp_orphaned())
2840 goto relock;
2841
2842 spin_lock_irq(&sighand->siglock);
2843 }
2844
2845 if (likely(do_signal_stop(ksig->info.si_signo))) {
2846 /* It released the siglock. */
2847 goto relock;
2848 }
2849
2850 /*
2851 * We didn't actually stop, due to a race
2852 * with SIGCONT or something like that.
2853 */
2854 continue;
2855 }
2856
2857 fatal:
2858 spin_unlock_irq(&sighand->siglock);
2859 if (unlikely(cgroup_task_frozen(current)))
2860 cgroup_leave_frozen(true);
2861
2862 /*
2863 * Anything else is fatal, maybe with a core dump.
2864 */
2865 current->flags |= PF_SIGNALED;
2866
2867 if (sig_kernel_coredump(signr)) {
2868 if (print_fatal_signals)
2869 print_fatal_signal(ksig->info.si_signo);
2870 proc_coredump_connector(current);
2871 /*
2872 * If it was able to dump core, this kills all
2873 * other threads in the group and synchronizes with
2874 * their demise. If we lost the race with another
2875 * thread getting here, it set group_exit_code
2876 * first and our do_group_exit call below will use
2877 * that value and ignore the one we pass it.
2878 */
2879 do_coredump(&ksig->info);
2880 }
2881
2882 /*
2883 * PF_USER_WORKER threads will catch and exit on fatal signals
2884 * themselves. They have cleanup that must be performed, so
2885 * we cannot call do_exit() on their behalf.
2886 */
2887 if (current->flags & PF_USER_WORKER)
2888 goto out;
2889
2890 /*
2891 * Death signals, no core dump.
2892 */
2893 do_group_exit(ksig->info.si_signo);
2894 /* NOTREACHED */
2895 }
2896 spin_unlock_irq(&sighand->siglock);
2897out:
2898 ksig->sig = signr;
2899
2900 if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2901 hide_si_addr_tag_bits(ksig);
2902
2903 return ksig->sig > 0;
2904}
2905
2906/**
2907 * signal_delivered - called after signal delivery to update blocked signals
2908 * @ksig: kernel signal struct
2909 * @stepping: nonzero if debugger single-step or block-step in use
2910 *
2911 * This function should be called when a signal has successfully been
2912 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2913 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2914 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
2915 */
2916static void signal_delivered(struct ksignal *ksig, int stepping)
2917{
2918 sigset_t blocked;
2919
2920 /* A signal was successfully delivered, and the
2921 saved sigmask was stored on the signal frame,
2922 and will be restored by sigreturn. So we can
2923 simply clear the restore sigmask flag. */
2924 clear_restore_sigmask();
2925
2926 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
2927 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2928 sigaddset(&blocked, ksig->sig);
2929 set_current_blocked(&blocked);
2930 if (current->sas_ss_flags & SS_AUTODISARM)
2931 sas_ss_reset(current);
2932 if (stepping)
2933 ptrace_notify(SIGTRAP, 0);
2934}
2935
2936void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2937{
2938 if (failed)
2939 force_sigsegv(ksig->sig);
2940 else
2941 signal_delivered(ksig, stepping);
2942}
2943
2944/*
2945 * It could be that complete_signal() picked us to notify about the
2946 * group-wide signal. Other threads should be notified now to take
2947 * the shared signals in @which since we will not.
2948 */
2949static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2950{
2951 sigset_t retarget;
2952 struct task_struct *t;
2953
2954 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2955 if (sigisemptyset(&retarget))
2956 return;
2957
2958 for_other_threads(tsk, t) {
2959 if (t->flags & PF_EXITING)
2960 continue;
2961
2962 if (!has_pending_signals(&retarget, &t->blocked))
2963 continue;
2964 /* Remove the signals this thread can handle. */
2965 sigandsets(&retarget, &retarget, &t->blocked);
2966
2967 if (!task_sigpending(t))
2968 signal_wake_up(t, 0);
2969
2970 if (sigisemptyset(&retarget))
2971 break;
2972 }
2973}
2974
2975void exit_signals(struct task_struct *tsk)
2976{
2977 int group_stop = 0;
2978 sigset_t unblocked;
2979
2980 /*
2981 * @tsk is about to have PF_EXITING set - lock out users which
2982 * expect stable threadgroup.
2983 */
2984 cgroup_threadgroup_change_begin(tsk);
2985
2986 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2987 sched_mm_cid_exit_signals(tsk);
2988 tsk->flags |= PF_EXITING;
2989 cgroup_threadgroup_change_end(tsk);
2990 return;
2991 }
2992
2993 spin_lock_irq(&tsk->sighand->siglock);
2994 /*
2995 * From now this task is not visible for group-wide signals,
2996 * see wants_signal(), do_signal_stop().
2997 */
2998 sched_mm_cid_exit_signals(tsk);
2999 tsk->flags |= PF_EXITING;
3000
3001 cgroup_threadgroup_change_end(tsk);
3002
3003 if (!task_sigpending(tsk))
3004 goto out;
3005
3006 unblocked = tsk->blocked;
3007 signotset(&unblocked);
3008 retarget_shared_pending(tsk, &unblocked);
3009
3010 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3011 task_participate_group_stop(tsk))
3012 group_stop = CLD_STOPPED;
3013out:
3014 spin_unlock_irq(&tsk->sighand->siglock);
3015
3016 /*
3017 * If group stop has completed, deliver the notification. This
3018 * should always go to the real parent of the group leader.
3019 */
3020 if (unlikely(group_stop)) {
3021 read_lock(&tasklist_lock);
3022 do_notify_parent_cldstop(tsk, false, group_stop);
3023 read_unlock(&tasklist_lock);
3024 }
3025}
3026
3027/*
3028 * System call entry points.
3029 */
3030
3031/**
3032 * sys_restart_syscall - restart a system call
3033 */
3034SYSCALL_DEFINE0(restart_syscall)
3035{
3036 struct restart_block *restart = ¤t->restart_block;
3037 return restart->fn(restart);
3038}
3039
3040long do_no_restart_syscall(struct restart_block *param)
3041{
3042 return -EINTR;
3043}
3044
3045static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3046{
3047 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3048 sigset_t newblocked;
3049 /* A set of now blocked but previously unblocked signals. */
3050 sigandnsets(&newblocked, newset, ¤t->blocked);
3051 retarget_shared_pending(tsk, &newblocked);
3052 }
3053 tsk->blocked = *newset;
3054 recalc_sigpending();
3055}
3056
3057/**
3058 * set_current_blocked - change current->blocked mask
3059 * @newset: new mask
3060 *
3061 * It is wrong to change ->blocked directly, this helper should be used
3062 * to ensure the process can't miss a shared signal we are going to block.
3063 */
3064void set_current_blocked(sigset_t *newset)
3065{
3066 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3067 __set_current_blocked(newset);
3068}
3069
3070void __set_current_blocked(const sigset_t *newset)
3071{
3072 struct task_struct *tsk = current;
3073
3074 /*
3075 * In case the signal mask hasn't changed, there is nothing we need
3076 * to do. The current->blocked shouldn't be modified by other task.
3077 */
3078 if (sigequalsets(&tsk->blocked, newset))
3079 return;
3080
3081 spin_lock_irq(&tsk->sighand->siglock);
3082 __set_task_blocked(tsk, newset);
3083 spin_unlock_irq(&tsk->sighand->siglock);
3084}
3085
3086/*
3087 * This is also useful for kernel threads that want to temporarily
3088 * (or permanently) block certain signals.
3089 *
3090 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3091 * interface happily blocks "unblockable" signals like SIGKILL
3092 * and friends.
3093 */
3094int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3095{
3096 struct task_struct *tsk = current;
3097 sigset_t newset;
3098
3099 /* Lockless, only current can change ->blocked, never from irq */
3100 if (oldset)
3101 *oldset = tsk->blocked;
3102
3103 switch (how) {
3104 case SIG_BLOCK:
3105 sigorsets(&newset, &tsk->blocked, set);
3106 break;
3107 case SIG_UNBLOCK:
3108 sigandnsets(&newset, &tsk->blocked, set);
3109 break;
3110 case SIG_SETMASK:
3111 newset = *set;
3112 break;
3113 default:
3114 return -EINVAL;
3115 }
3116
3117 __set_current_blocked(&newset);
3118 return 0;
3119}
3120EXPORT_SYMBOL(sigprocmask);
3121
3122/*
3123 * The api helps set app-provided sigmasks.
3124 *
3125 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3126 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3127 *
3128 * Note that it does set_restore_sigmask() in advance, so it must be always
3129 * paired with restore_saved_sigmask_unless() before return from syscall.
3130 */
3131int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3132{
3133 sigset_t kmask;
3134
3135 if (!umask)
3136 return 0;
3137 if (sigsetsize != sizeof(sigset_t))
3138 return -EINVAL;
3139 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3140 return -EFAULT;
3141
3142 set_restore_sigmask();
3143 current->saved_sigmask = current->blocked;
3144 set_current_blocked(&kmask);
3145
3146 return 0;
3147}
3148
3149#ifdef CONFIG_COMPAT
3150int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3151 size_t sigsetsize)
3152{
3153 sigset_t kmask;
3154
3155 if (!umask)
3156 return 0;
3157 if (sigsetsize != sizeof(compat_sigset_t))
3158 return -EINVAL;
3159 if (get_compat_sigset(&kmask, umask))
3160 return -EFAULT;
3161
3162 set_restore_sigmask();
3163 current->saved_sigmask = current->blocked;
3164 set_current_blocked(&kmask);
3165
3166 return 0;
3167}
3168#endif
3169
3170/**
3171 * sys_rt_sigprocmask - change the list of currently blocked signals
3172 * @how: whether to add, remove, or set signals
3173 * @nset: stores pending signals
3174 * @oset: previous value of signal mask if non-null
3175 * @sigsetsize: size of sigset_t type
3176 */
3177SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3178 sigset_t __user *, oset, size_t, sigsetsize)
3179{
3180 sigset_t old_set, new_set;
3181 int error;
3182
3183 /* XXX: Don't preclude handling different sized sigset_t's. */
3184 if (sigsetsize != sizeof(sigset_t))
3185 return -EINVAL;
3186
3187 old_set = current->blocked;
3188
3189 if (nset) {
3190 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3191 return -EFAULT;
3192 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3193
3194 error = sigprocmask(how, &new_set, NULL);
3195 if (error)
3196 return error;
3197 }
3198
3199 if (oset) {
3200 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3201 return -EFAULT;
3202 }
3203
3204 return 0;
3205}
3206
3207#ifdef CONFIG_COMPAT
3208COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3209 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3210{
3211 sigset_t old_set = current->blocked;
3212
3213 /* XXX: Don't preclude handling different sized sigset_t's. */
3214 if (sigsetsize != sizeof(sigset_t))
3215 return -EINVAL;
3216
3217 if (nset) {
3218 sigset_t new_set;
3219 int error;
3220 if (get_compat_sigset(&new_set, nset))
3221 return -EFAULT;
3222 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3223
3224 error = sigprocmask(how, &new_set, NULL);
3225 if (error)
3226 return error;
3227 }
3228 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3229}
3230#endif
3231
3232static void do_sigpending(sigset_t *set)
3233{
3234 spin_lock_irq(¤t->sighand->siglock);
3235 sigorsets(set, ¤t->pending.signal,
3236 ¤t->signal->shared_pending.signal);
3237 spin_unlock_irq(¤t->sighand->siglock);
3238
3239 /* Outside the lock because only this thread touches it. */
3240 sigandsets(set, ¤t->blocked, set);
3241}
3242
3243/**
3244 * sys_rt_sigpending - examine a pending signal that has been raised
3245 * while blocked
3246 * @uset: stores pending signals
3247 * @sigsetsize: size of sigset_t type or larger
3248 */
3249SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3250{
3251 sigset_t set;
3252
3253 if (sigsetsize > sizeof(*uset))
3254 return -EINVAL;
3255
3256 do_sigpending(&set);
3257
3258 if (copy_to_user(uset, &set, sigsetsize))
3259 return -EFAULT;
3260
3261 return 0;
3262}
3263
3264#ifdef CONFIG_COMPAT
3265COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3266 compat_size_t, sigsetsize)
3267{
3268 sigset_t set;
3269
3270 if (sigsetsize > sizeof(*uset))
3271 return -EINVAL;
3272
3273 do_sigpending(&set);
3274
3275 return put_compat_sigset(uset, &set, sigsetsize);
3276}
3277#endif
3278
3279static const struct {
3280 unsigned char limit, layout;
3281} sig_sicodes[] = {
3282 [SIGILL] = { NSIGILL, SIL_FAULT },
3283 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3284 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3285 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3286 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3287#if defined(SIGEMT)
3288 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3289#endif
3290 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3291 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3292 [SIGSYS] = { NSIGSYS, SIL_SYS },
3293};
3294
3295static bool known_siginfo_layout(unsigned sig, int si_code)
3296{
3297 if (si_code == SI_KERNEL)
3298 return true;
3299 else if ((si_code > SI_USER)) {
3300 if (sig_specific_sicodes(sig)) {
3301 if (si_code <= sig_sicodes[sig].limit)
3302 return true;
3303 }
3304 else if (si_code <= NSIGPOLL)
3305 return true;
3306 }
3307 else if (si_code >= SI_DETHREAD)
3308 return true;
3309 else if (si_code == SI_ASYNCNL)
3310 return true;
3311 return false;
3312}
3313
3314enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3315{
3316 enum siginfo_layout layout = SIL_KILL;
3317 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3318 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3319 (si_code <= sig_sicodes[sig].limit)) {
3320 layout = sig_sicodes[sig].layout;
3321 /* Handle the exceptions */
3322 if ((sig == SIGBUS) &&
3323 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3324 layout = SIL_FAULT_MCEERR;
3325 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3326 layout = SIL_FAULT_BNDERR;
3327#ifdef SEGV_PKUERR
3328 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3329 layout = SIL_FAULT_PKUERR;
3330#endif
3331 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3332 layout = SIL_FAULT_PERF_EVENT;
3333 else if (IS_ENABLED(CONFIG_SPARC) &&
3334 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3335 layout = SIL_FAULT_TRAPNO;
3336 else if (IS_ENABLED(CONFIG_ALPHA) &&
3337 ((sig == SIGFPE) ||
3338 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3339 layout = SIL_FAULT_TRAPNO;
3340 }
3341 else if (si_code <= NSIGPOLL)
3342 layout = SIL_POLL;
3343 } else {
3344 if (si_code == SI_TIMER)
3345 layout = SIL_TIMER;
3346 else if (si_code == SI_SIGIO)
3347 layout = SIL_POLL;
3348 else if (si_code < 0)
3349 layout = SIL_RT;
3350 }
3351 return layout;
3352}
3353
3354static inline char __user *si_expansion(const siginfo_t __user *info)
3355{
3356 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3357}
3358
3359int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3360{
3361 char __user *expansion = si_expansion(to);
3362 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3363 return -EFAULT;
3364 if (clear_user(expansion, SI_EXPANSION_SIZE))
3365 return -EFAULT;
3366 return 0;
3367}
3368
3369static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3370 const siginfo_t __user *from)
3371{
3372 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3373 char __user *expansion = si_expansion(from);
3374 char buf[SI_EXPANSION_SIZE];
3375 int i;
3376 /*
3377 * An unknown si_code might need more than
3378 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3379 * extra bytes are 0. This guarantees copy_siginfo_to_user
3380 * will return this data to userspace exactly.
3381 */
3382 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3383 return -EFAULT;
3384 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3385 if (buf[i] != 0)
3386 return -E2BIG;
3387 }
3388 }
3389 return 0;
3390}
3391
3392static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3393 const siginfo_t __user *from)
3394{
3395 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3396 return -EFAULT;
3397 to->si_signo = signo;
3398 return post_copy_siginfo_from_user(to, from);
3399}
3400
3401int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3402{
3403 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3404 return -EFAULT;
3405 return post_copy_siginfo_from_user(to, from);
3406}
3407
3408#ifdef CONFIG_COMPAT
3409/**
3410 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3411 * @to: compat siginfo destination
3412 * @from: kernel siginfo source
3413 *
3414 * Note: This function does not work properly for the SIGCHLD on x32, but
3415 * fortunately it doesn't have to. The only valid callers for this function are
3416 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3417 * The latter does not care because SIGCHLD will never cause a coredump.
3418 */
3419void copy_siginfo_to_external32(struct compat_siginfo *to,
3420 const struct kernel_siginfo *from)
3421{
3422 memset(to, 0, sizeof(*to));
3423
3424 to->si_signo = from->si_signo;
3425 to->si_errno = from->si_errno;
3426 to->si_code = from->si_code;
3427 switch(siginfo_layout(from->si_signo, from->si_code)) {
3428 case SIL_KILL:
3429 to->si_pid = from->si_pid;
3430 to->si_uid = from->si_uid;
3431 break;
3432 case SIL_TIMER:
3433 to->si_tid = from->si_tid;
3434 to->si_overrun = from->si_overrun;
3435 to->si_int = from->si_int;
3436 break;
3437 case SIL_POLL:
3438 to->si_band = from->si_band;
3439 to->si_fd = from->si_fd;
3440 break;
3441 case SIL_FAULT:
3442 to->si_addr = ptr_to_compat(from->si_addr);
3443 break;
3444 case SIL_FAULT_TRAPNO:
3445 to->si_addr = ptr_to_compat(from->si_addr);
3446 to->si_trapno = from->si_trapno;
3447 break;
3448 case SIL_FAULT_MCEERR:
3449 to->si_addr = ptr_to_compat(from->si_addr);
3450 to->si_addr_lsb = from->si_addr_lsb;
3451 break;
3452 case SIL_FAULT_BNDERR:
3453 to->si_addr = ptr_to_compat(from->si_addr);
3454 to->si_lower = ptr_to_compat(from->si_lower);
3455 to->si_upper = ptr_to_compat(from->si_upper);
3456 break;
3457 case SIL_FAULT_PKUERR:
3458 to->si_addr = ptr_to_compat(from->si_addr);
3459 to->si_pkey = from->si_pkey;
3460 break;
3461 case SIL_FAULT_PERF_EVENT:
3462 to->si_addr = ptr_to_compat(from->si_addr);
3463 to->si_perf_data = from->si_perf_data;
3464 to->si_perf_type = from->si_perf_type;
3465 to->si_perf_flags = from->si_perf_flags;
3466 break;
3467 case SIL_CHLD:
3468 to->si_pid = from->si_pid;
3469 to->si_uid = from->si_uid;
3470 to->si_status = from->si_status;
3471 to->si_utime = from->si_utime;
3472 to->si_stime = from->si_stime;
3473 break;
3474 case SIL_RT:
3475 to->si_pid = from->si_pid;
3476 to->si_uid = from->si_uid;
3477 to->si_int = from->si_int;
3478 break;
3479 case SIL_SYS:
3480 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3481 to->si_syscall = from->si_syscall;
3482 to->si_arch = from->si_arch;
3483 break;
3484 }
3485}
3486
3487int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3488 const struct kernel_siginfo *from)
3489{
3490 struct compat_siginfo new;
3491
3492 copy_siginfo_to_external32(&new, from);
3493 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3494 return -EFAULT;
3495 return 0;
3496}
3497
3498static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3499 const struct compat_siginfo *from)
3500{
3501 clear_siginfo(to);
3502 to->si_signo = from->si_signo;
3503 to->si_errno = from->si_errno;
3504 to->si_code = from->si_code;
3505 switch(siginfo_layout(from->si_signo, from->si_code)) {
3506 case SIL_KILL:
3507 to->si_pid = from->si_pid;
3508 to->si_uid = from->si_uid;
3509 break;
3510 case SIL_TIMER:
3511 to->si_tid = from->si_tid;
3512 to->si_overrun = from->si_overrun;
3513 to->si_int = from->si_int;
3514 break;
3515 case SIL_POLL:
3516 to->si_band = from->si_band;
3517 to->si_fd = from->si_fd;
3518 break;
3519 case SIL_FAULT:
3520 to->si_addr = compat_ptr(from->si_addr);
3521 break;
3522 case SIL_FAULT_TRAPNO:
3523 to->si_addr = compat_ptr(from->si_addr);
3524 to->si_trapno = from->si_trapno;
3525 break;
3526 case SIL_FAULT_MCEERR:
3527 to->si_addr = compat_ptr(from->si_addr);
3528 to->si_addr_lsb = from->si_addr_lsb;
3529 break;
3530 case SIL_FAULT_BNDERR:
3531 to->si_addr = compat_ptr(from->si_addr);
3532 to->si_lower = compat_ptr(from->si_lower);
3533 to->si_upper = compat_ptr(from->si_upper);
3534 break;
3535 case SIL_FAULT_PKUERR:
3536 to->si_addr = compat_ptr(from->si_addr);
3537 to->si_pkey = from->si_pkey;
3538 break;
3539 case SIL_FAULT_PERF_EVENT:
3540 to->si_addr = compat_ptr(from->si_addr);
3541 to->si_perf_data = from->si_perf_data;
3542 to->si_perf_type = from->si_perf_type;
3543 to->si_perf_flags = from->si_perf_flags;
3544 break;
3545 case SIL_CHLD:
3546 to->si_pid = from->si_pid;
3547 to->si_uid = from->si_uid;
3548 to->si_status = from->si_status;
3549#ifdef CONFIG_X86_X32_ABI
3550 if (in_x32_syscall()) {
3551 to->si_utime = from->_sifields._sigchld_x32._utime;
3552 to->si_stime = from->_sifields._sigchld_x32._stime;
3553 } else
3554#endif
3555 {
3556 to->si_utime = from->si_utime;
3557 to->si_stime = from->si_stime;
3558 }
3559 break;
3560 case SIL_RT:
3561 to->si_pid = from->si_pid;
3562 to->si_uid = from->si_uid;
3563 to->si_int = from->si_int;
3564 break;
3565 case SIL_SYS:
3566 to->si_call_addr = compat_ptr(from->si_call_addr);
3567 to->si_syscall = from->si_syscall;
3568 to->si_arch = from->si_arch;
3569 break;
3570 }
3571 return 0;
3572}
3573
3574static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3575 const struct compat_siginfo __user *ufrom)
3576{
3577 struct compat_siginfo from;
3578
3579 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3580 return -EFAULT;
3581
3582 from.si_signo = signo;
3583 return post_copy_siginfo_from_user32(to, &from);
3584}
3585
3586int copy_siginfo_from_user32(struct kernel_siginfo *to,
3587 const struct compat_siginfo __user *ufrom)
3588{
3589 struct compat_siginfo from;
3590
3591 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3592 return -EFAULT;
3593
3594 return post_copy_siginfo_from_user32(to, &from);
3595}
3596#endif /* CONFIG_COMPAT */
3597
3598/**
3599 * do_sigtimedwait - wait for queued signals specified in @which
3600 * @which: queued signals to wait for
3601 * @info: if non-null, the signal's siginfo is returned here
3602 * @ts: upper bound on process time suspension
3603 */
3604static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3605 const struct timespec64 *ts)
3606{
3607 ktime_t *to = NULL, timeout = KTIME_MAX;
3608 struct task_struct *tsk = current;
3609 sigset_t mask = *which;
3610 enum pid_type type;
3611 int sig, ret = 0;
3612
3613 if (ts) {
3614 if (!timespec64_valid(ts))
3615 return -EINVAL;
3616 timeout = timespec64_to_ktime(*ts);
3617 to = &timeout;
3618 }
3619
3620 /*
3621 * Invert the set of allowed signals to get those we want to block.
3622 */
3623 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3624 signotset(&mask);
3625
3626 spin_lock_irq(&tsk->sighand->siglock);
3627 sig = dequeue_signal(tsk, &mask, info, &type);
3628 if (!sig && timeout) {
3629 /*
3630 * None ready, temporarily unblock those we're interested
3631 * while we are sleeping in so that we'll be awakened when
3632 * they arrive. Unblocking is always fine, we can avoid
3633 * set_current_blocked().
3634 */
3635 tsk->real_blocked = tsk->blocked;
3636 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3637 recalc_sigpending();
3638 spin_unlock_irq(&tsk->sighand->siglock);
3639
3640 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3641 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3642 HRTIMER_MODE_REL);
3643 spin_lock_irq(&tsk->sighand->siglock);
3644 __set_task_blocked(tsk, &tsk->real_blocked);
3645 sigemptyset(&tsk->real_blocked);
3646 sig = dequeue_signal(tsk, &mask, info, &type);
3647 }
3648 spin_unlock_irq(&tsk->sighand->siglock);
3649
3650 if (sig)
3651 return sig;
3652 return ret ? -EINTR : -EAGAIN;
3653}
3654
3655/**
3656 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3657 * in @uthese
3658 * @uthese: queued signals to wait for
3659 * @uinfo: if non-null, the signal's siginfo is returned here
3660 * @uts: upper bound on process time suspension
3661 * @sigsetsize: size of sigset_t type
3662 */
3663SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3664 siginfo_t __user *, uinfo,
3665 const struct __kernel_timespec __user *, uts,
3666 size_t, sigsetsize)
3667{
3668 sigset_t these;
3669 struct timespec64 ts;
3670 kernel_siginfo_t info;
3671 int ret;
3672
3673 /* XXX: Don't preclude handling different sized sigset_t's. */
3674 if (sigsetsize != sizeof(sigset_t))
3675 return -EINVAL;
3676
3677 if (copy_from_user(&these, uthese, sizeof(these)))
3678 return -EFAULT;
3679
3680 if (uts) {
3681 if (get_timespec64(&ts, uts))
3682 return -EFAULT;
3683 }
3684
3685 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3686
3687 if (ret > 0 && uinfo) {
3688 if (copy_siginfo_to_user(uinfo, &info))
3689 ret = -EFAULT;
3690 }
3691
3692 return ret;
3693}
3694
3695#ifdef CONFIG_COMPAT_32BIT_TIME
3696SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3697 siginfo_t __user *, uinfo,
3698 const struct old_timespec32 __user *, uts,
3699 size_t, sigsetsize)
3700{
3701 sigset_t these;
3702 struct timespec64 ts;
3703 kernel_siginfo_t info;
3704 int ret;
3705
3706 if (sigsetsize != sizeof(sigset_t))
3707 return -EINVAL;
3708
3709 if (copy_from_user(&these, uthese, sizeof(these)))
3710 return -EFAULT;
3711
3712 if (uts) {
3713 if (get_old_timespec32(&ts, uts))
3714 return -EFAULT;
3715 }
3716
3717 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3718
3719 if (ret > 0 && uinfo) {
3720 if (copy_siginfo_to_user(uinfo, &info))
3721 ret = -EFAULT;
3722 }
3723
3724 return ret;
3725}
3726#endif
3727
3728#ifdef CONFIG_COMPAT
3729COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3730 struct compat_siginfo __user *, uinfo,
3731 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3732{
3733 sigset_t s;
3734 struct timespec64 t;
3735 kernel_siginfo_t info;
3736 long ret;
3737
3738 if (sigsetsize != sizeof(sigset_t))
3739 return -EINVAL;
3740
3741 if (get_compat_sigset(&s, uthese))
3742 return -EFAULT;
3743
3744 if (uts) {
3745 if (get_timespec64(&t, uts))
3746 return -EFAULT;
3747 }
3748
3749 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3750
3751 if (ret > 0 && uinfo) {
3752 if (copy_siginfo_to_user32(uinfo, &info))
3753 ret = -EFAULT;
3754 }
3755
3756 return ret;
3757}
3758
3759#ifdef CONFIG_COMPAT_32BIT_TIME
3760COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3761 struct compat_siginfo __user *, uinfo,
3762 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3763{
3764 sigset_t s;
3765 struct timespec64 t;
3766 kernel_siginfo_t info;
3767 long ret;
3768
3769 if (sigsetsize != sizeof(sigset_t))
3770 return -EINVAL;
3771
3772 if (get_compat_sigset(&s, uthese))
3773 return -EFAULT;
3774
3775 if (uts) {
3776 if (get_old_timespec32(&t, uts))
3777 return -EFAULT;
3778 }
3779
3780 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3781
3782 if (ret > 0 && uinfo) {
3783 if (copy_siginfo_to_user32(uinfo, &info))
3784 ret = -EFAULT;
3785 }
3786
3787 return ret;
3788}
3789#endif
3790#endif
3791
3792static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3793{
3794 clear_siginfo(info);
3795 info->si_signo = sig;
3796 info->si_errno = 0;
3797 info->si_code = SI_USER;
3798 info->si_pid = task_tgid_vnr(current);
3799 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800}
3801
3802/**
3803 * sys_kill - send a signal to a process
3804 * @pid: the PID of the process
3805 * @sig: signal to be sent
3806 */
3807SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3808{
3809 struct kernel_siginfo info;
3810
3811 prepare_kill_siginfo(sig, &info);
3812
3813 return kill_something_info(sig, &info, pid);
3814}
3815
3816/*
3817 * Verify that the signaler and signalee either are in the same pid namespace
3818 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3819 * namespace.
3820 */
3821static bool access_pidfd_pidns(struct pid *pid)
3822{
3823 struct pid_namespace *active = task_active_pid_ns(current);
3824 struct pid_namespace *p = ns_of_pid(pid);
3825
3826 for (;;) {
3827 if (!p)
3828 return false;
3829 if (p == active)
3830 break;
3831 p = p->parent;
3832 }
3833
3834 return true;
3835}
3836
3837static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3838 siginfo_t __user *info)
3839{
3840#ifdef CONFIG_COMPAT
3841 /*
3842 * Avoid hooking up compat syscalls and instead handle necessary
3843 * conversions here. Note, this is a stop-gap measure and should not be
3844 * considered a generic solution.
3845 */
3846 if (in_compat_syscall())
3847 return copy_siginfo_from_user32(
3848 kinfo, (struct compat_siginfo __user *)info);
3849#endif
3850 return copy_siginfo_from_user(kinfo, info);
3851}
3852
3853static struct pid *pidfd_to_pid(const struct file *file)
3854{
3855 struct pid *pid;
3856
3857 pid = pidfd_pid(file);
3858 if (!IS_ERR(pid))
3859 return pid;
3860
3861 return tgid_pidfd_to_pid(file);
3862}
3863
3864/**
3865 * sys_pidfd_send_signal - Signal a process through a pidfd
3866 * @pidfd: file descriptor of the process
3867 * @sig: signal to send
3868 * @info: signal info
3869 * @flags: future flags
3870 *
3871 * The syscall currently only signals via PIDTYPE_PID which covers
3872 * kill(<positive-pid>, <signal>. It does not signal threads or process
3873 * groups.
3874 * In order to extend the syscall to threads and process groups the @flags
3875 * argument should be used. In essence, the @flags argument will determine
3876 * what is signaled and not the file descriptor itself. Put in other words,
3877 * grouping is a property of the flags argument not a property of the file
3878 * descriptor.
3879 *
3880 * Return: 0 on success, negative errno on failure
3881 */
3882SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3883 siginfo_t __user *, info, unsigned int, flags)
3884{
3885 int ret;
3886 struct fd f;
3887 struct pid *pid;
3888 kernel_siginfo_t kinfo;
3889
3890 /* Enforce flags be set to 0 until we add an extension. */
3891 if (flags)
3892 return -EINVAL;
3893
3894 f = fdget(pidfd);
3895 if (!f.file)
3896 return -EBADF;
3897
3898 /* Is this a pidfd? */
3899 pid = pidfd_to_pid(f.file);
3900 if (IS_ERR(pid)) {
3901 ret = PTR_ERR(pid);
3902 goto err;
3903 }
3904
3905 ret = -EINVAL;
3906 if (!access_pidfd_pidns(pid))
3907 goto err;
3908
3909 if (info) {
3910 ret = copy_siginfo_from_user_any(&kinfo, info);
3911 if (unlikely(ret))
3912 goto err;
3913
3914 ret = -EINVAL;
3915 if (unlikely(sig != kinfo.si_signo))
3916 goto err;
3917
3918 /* Only allow sending arbitrary signals to yourself. */
3919 ret = -EPERM;
3920 if ((task_pid(current) != pid) &&
3921 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3922 goto err;
3923 } else {
3924 prepare_kill_siginfo(sig, &kinfo);
3925 }
3926
3927 ret = kill_pid_info(sig, &kinfo, pid);
3928
3929err:
3930 fdput(f);
3931 return ret;
3932}
3933
3934static int
3935do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3936{
3937 struct task_struct *p;
3938 int error = -ESRCH;
3939
3940 rcu_read_lock();
3941 p = find_task_by_vpid(pid);
3942 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3943 error = check_kill_permission(sig, info, p);
3944 /*
3945 * The null signal is a permissions and process existence
3946 * probe. No signal is actually delivered.
3947 */
3948 if (!error && sig) {
3949 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3950 /*
3951 * If lock_task_sighand() failed we pretend the task
3952 * dies after receiving the signal. The window is tiny,
3953 * and the signal is private anyway.
3954 */
3955 if (unlikely(error == -ESRCH))
3956 error = 0;
3957 }
3958 }
3959 rcu_read_unlock();
3960
3961 return error;
3962}
3963
3964static int do_tkill(pid_t tgid, pid_t pid, int sig)
3965{
3966 struct kernel_siginfo info;
3967
3968 clear_siginfo(&info);
3969 info.si_signo = sig;
3970 info.si_errno = 0;
3971 info.si_code = SI_TKILL;
3972 info.si_pid = task_tgid_vnr(current);
3973 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3974
3975 return do_send_specific(tgid, pid, sig, &info);
3976}
3977
3978/**
3979 * sys_tgkill - send signal to one specific thread
3980 * @tgid: the thread group ID of the thread
3981 * @pid: the PID of the thread
3982 * @sig: signal to be sent
3983 *
3984 * This syscall also checks the @tgid and returns -ESRCH even if the PID
3985 * exists but it's not belonging to the target process anymore. This
3986 * method solves the problem of threads exiting and PIDs getting reused.
3987 */
3988SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3989{
3990 /* This is only valid for single tasks */
3991 if (pid <= 0 || tgid <= 0)
3992 return -EINVAL;
3993
3994 return do_tkill(tgid, pid, sig);
3995}
3996
3997/**
3998 * sys_tkill - send signal to one specific task
3999 * @pid: the PID of the task
4000 * @sig: signal to be sent
4001 *
4002 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4003 */
4004SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4005{
4006 /* This is only valid for single tasks */
4007 if (pid <= 0)
4008 return -EINVAL;
4009
4010 return do_tkill(0, pid, sig);
4011}
4012
4013static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4014{
4015 /* Not even root can pretend to send signals from the kernel.
4016 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4017 */
4018 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4019 (task_pid_vnr(current) != pid))
4020 return -EPERM;
4021
4022 /* POSIX.1b doesn't mention process groups. */
4023 return kill_proc_info(sig, info, pid);
4024}
4025
4026/**
4027 * sys_rt_sigqueueinfo - send signal information to a signal
4028 * @pid: the PID of the thread
4029 * @sig: signal to be sent
4030 * @uinfo: signal info to be sent
4031 */
4032SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4033 siginfo_t __user *, uinfo)
4034{
4035 kernel_siginfo_t info;
4036 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4037 if (unlikely(ret))
4038 return ret;
4039 return do_rt_sigqueueinfo(pid, sig, &info);
4040}
4041
4042#ifdef CONFIG_COMPAT
4043COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4044 compat_pid_t, pid,
4045 int, sig,
4046 struct compat_siginfo __user *, uinfo)
4047{
4048 kernel_siginfo_t info;
4049 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4050 if (unlikely(ret))
4051 return ret;
4052 return do_rt_sigqueueinfo(pid, sig, &info);
4053}
4054#endif
4055
4056static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4057{
4058 /* This is only valid for single tasks */
4059 if (pid <= 0 || tgid <= 0)
4060 return -EINVAL;
4061
4062 /* Not even root can pretend to send signals from the kernel.
4063 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4064 */
4065 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4066 (task_pid_vnr(current) != pid))
4067 return -EPERM;
4068
4069 return do_send_specific(tgid, pid, sig, info);
4070}
4071
4072SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4073 siginfo_t __user *, uinfo)
4074{
4075 kernel_siginfo_t info;
4076 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077 if (unlikely(ret))
4078 return ret;
4079 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4084 compat_pid_t, tgid,
4085 compat_pid_t, pid,
4086 int, sig,
4087 struct compat_siginfo __user *, uinfo)
4088{
4089 kernel_siginfo_t info;
4090 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4091 if (unlikely(ret))
4092 return ret;
4093 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4094}
4095#endif
4096
4097/*
4098 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4099 */
4100void kernel_sigaction(int sig, __sighandler_t action)
4101{
4102 spin_lock_irq(¤t->sighand->siglock);
4103 current->sighand->action[sig - 1].sa.sa_handler = action;
4104 if (action == SIG_IGN) {
4105 sigset_t mask;
4106
4107 sigemptyset(&mask);
4108 sigaddset(&mask, sig);
4109
4110 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending);
4111 flush_sigqueue_mask(&mask, ¤t->pending);
4112 recalc_sigpending();
4113 }
4114 spin_unlock_irq(¤t->sighand->siglock);
4115}
4116EXPORT_SYMBOL(kernel_sigaction);
4117
4118void __weak sigaction_compat_abi(struct k_sigaction *act,
4119 struct k_sigaction *oact)
4120{
4121}
4122
4123int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4124{
4125 struct task_struct *p = current, *t;
4126 struct k_sigaction *k;
4127 sigset_t mask;
4128
4129 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4130 return -EINVAL;
4131
4132 k = &p->sighand->action[sig-1];
4133
4134 spin_lock_irq(&p->sighand->siglock);
4135 if (k->sa.sa_flags & SA_IMMUTABLE) {
4136 spin_unlock_irq(&p->sighand->siglock);
4137 return -EINVAL;
4138 }
4139 if (oact)
4140 *oact = *k;
4141
4142 /*
4143 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4144 * e.g. by having an architecture use the bit in their uapi.
4145 */
4146 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4147
4148 /*
4149 * Clear unknown flag bits in order to allow userspace to detect missing
4150 * support for flag bits and to allow the kernel to use non-uapi bits
4151 * internally.
4152 */
4153 if (act)
4154 act->sa.sa_flags &= UAPI_SA_FLAGS;
4155 if (oact)
4156 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4157
4158 sigaction_compat_abi(act, oact);
4159
4160 if (act) {
4161 sigdelsetmask(&act->sa.sa_mask,
4162 sigmask(SIGKILL) | sigmask(SIGSTOP));
4163 *k = *act;
4164 /*
4165 * POSIX 3.3.1.3:
4166 * "Setting a signal action to SIG_IGN for a signal that is
4167 * pending shall cause the pending signal to be discarded,
4168 * whether or not it is blocked."
4169 *
4170 * "Setting a signal action to SIG_DFL for a signal that is
4171 * pending and whose default action is to ignore the signal
4172 * (for example, SIGCHLD), shall cause the pending signal to
4173 * be discarded, whether or not it is blocked"
4174 */
4175 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4176 sigemptyset(&mask);
4177 sigaddset(&mask, sig);
4178 flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4179 for_each_thread(p, t)
4180 flush_sigqueue_mask(&mask, &t->pending);
4181 }
4182 }
4183
4184 spin_unlock_irq(&p->sighand->siglock);
4185 return 0;
4186}
4187
4188#ifdef CONFIG_DYNAMIC_SIGFRAME
4189static inline void sigaltstack_lock(void)
4190 __acquires(¤t->sighand->siglock)
4191{
4192 spin_lock_irq(¤t->sighand->siglock);
4193}
4194
4195static inline void sigaltstack_unlock(void)
4196 __releases(¤t->sighand->siglock)
4197{
4198 spin_unlock_irq(¤t->sighand->siglock);
4199}
4200#else
4201static inline void sigaltstack_lock(void) { }
4202static inline void sigaltstack_unlock(void) { }
4203#endif
4204
4205static int
4206do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4207 size_t min_ss_size)
4208{
4209 struct task_struct *t = current;
4210 int ret = 0;
4211
4212 if (oss) {
4213 memset(oss, 0, sizeof(stack_t));
4214 oss->ss_sp = (void __user *) t->sas_ss_sp;
4215 oss->ss_size = t->sas_ss_size;
4216 oss->ss_flags = sas_ss_flags(sp) |
4217 (current->sas_ss_flags & SS_FLAG_BITS);
4218 }
4219
4220 if (ss) {
4221 void __user *ss_sp = ss->ss_sp;
4222 size_t ss_size = ss->ss_size;
4223 unsigned ss_flags = ss->ss_flags;
4224 int ss_mode;
4225
4226 if (unlikely(on_sig_stack(sp)))
4227 return -EPERM;
4228
4229 ss_mode = ss_flags & ~SS_FLAG_BITS;
4230 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4231 ss_mode != 0))
4232 return -EINVAL;
4233
4234 /*
4235 * Return before taking any locks if no actual
4236 * sigaltstack changes were requested.
4237 */
4238 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4239 t->sas_ss_size == ss_size &&
4240 t->sas_ss_flags == ss_flags)
4241 return 0;
4242
4243 sigaltstack_lock();
4244 if (ss_mode == SS_DISABLE) {
4245 ss_size = 0;
4246 ss_sp = NULL;
4247 } else {
4248 if (unlikely(ss_size < min_ss_size))
4249 ret = -ENOMEM;
4250 if (!sigaltstack_size_valid(ss_size))
4251 ret = -ENOMEM;
4252 }
4253 if (!ret) {
4254 t->sas_ss_sp = (unsigned long) ss_sp;
4255 t->sas_ss_size = ss_size;
4256 t->sas_ss_flags = ss_flags;
4257 }
4258 sigaltstack_unlock();
4259 }
4260 return ret;
4261}
4262
4263SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4264{
4265 stack_t new, old;
4266 int err;
4267 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4268 return -EFAULT;
4269 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4270 current_user_stack_pointer(),
4271 MINSIGSTKSZ);
4272 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4273 err = -EFAULT;
4274 return err;
4275}
4276
4277int restore_altstack(const stack_t __user *uss)
4278{
4279 stack_t new;
4280 if (copy_from_user(&new, uss, sizeof(stack_t)))
4281 return -EFAULT;
4282 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4283 MINSIGSTKSZ);
4284 /* squash all but EFAULT for now */
4285 return 0;
4286}
4287
4288int __save_altstack(stack_t __user *uss, unsigned long sp)
4289{
4290 struct task_struct *t = current;
4291 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4292 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4293 __put_user(t->sas_ss_size, &uss->ss_size);
4294 return err;
4295}
4296
4297#ifdef CONFIG_COMPAT
4298static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4299 compat_stack_t __user *uoss_ptr)
4300{
4301 stack_t uss, uoss;
4302 int ret;
4303
4304 if (uss_ptr) {
4305 compat_stack_t uss32;
4306 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4307 return -EFAULT;
4308 uss.ss_sp = compat_ptr(uss32.ss_sp);
4309 uss.ss_flags = uss32.ss_flags;
4310 uss.ss_size = uss32.ss_size;
4311 }
4312 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4313 compat_user_stack_pointer(),
4314 COMPAT_MINSIGSTKSZ);
4315 if (ret >= 0 && uoss_ptr) {
4316 compat_stack_t old;
4317 memset(&old, 0, sizeof(old));
4318 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4319 old.ss_flags = uoss.ss_flags;
4320 old.ss_size = uoss.ss_size;
4321 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4322 ret = -EFAULT;
4323 }
4324 return ret;
4325}
4326
4327COMPAT_SYSCALL_DEFINE2(sigaltstack,
4328 const compat_stack_t __user *, uss_ptr,
4329 compat_stack_t __user *, uoss_ptr)
4330{
4331 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4332}
4333
4334int compat_restore_altstack(const compat_stack_t __user *uss)
4335{
4336 int err = do_compat_sigaltstack(uss, NULL);
4337 /* squash all but -EFAULT for now */
4338 return err == -EFAULT ? err : 0;
4339}
4340
4341int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4342{
4343 int err;
4344 struct task_struct *t = current;
4345 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4346 &uss->ss_sp) |
4347 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4348 __put_user(t->sas_ss_size, &uss->ss_size);
4349 return err;
4350}
4351#endif
4352
4353#ifdef __ARCH_WANT_SYS_SIGPENDING
4354
4355/**
4356 * sys_sigpending - examine pending signals
4357 * @uset: where mask of pending signal is returned
4358 */
4359SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4360{
4361 sigset_t set;
4362
4363 if (sizeof(old_sigset_t) > sizeof(*uset))
4364 return -EINVAL;
4365
4366 do_sigpending(&set);
4367
4368 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4369 return -EFAULT;
4370
4371 return 0;
4372}
4373
4374#ifdef CONFIG_COMPAT
4375COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4376{
4377 sigset_t set;
4378
4379 do_sigpending(&set);
4380
4381 return put_user(set.sig[0], set32);
4382}
4383#endif
4384
4385#endif
4386
4387#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4388/**
4389 * sys_sigprocmask - examine and change blocked signals
4390 * @how: whether to add, remove, or set signals
4391 * @nset: signals to add or remove (if non-null)
4392 * @oset: previous value of signal mask if non-null
4393 *
4394 * Some platforms have their own version with special arguments;
4395 * others support only sys_rt_sigprocmask.
4396 */
4397
4398SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4399 old_sigset_t __user *, oset)
4400{
4401 old_sigset_t old_set, new_set;
4402 sigset_t new_blocked;
4403
4404 old_set = current->blocked.sig[0];
4405
4406 if (nset) {
4407 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4408 return -EFAULT;
4409
4410 new_blocked = current->blocked;
4411
4412 switch (how) {
4413 case SIG_BLOCK:
4414 sigaddsetmask(&new_blocked, new_set);
4415 break;
4416 case SIG_UNBLOCK:
4417 sigdelsetmask(&new_blocked, new_set);
4418 break;
4419 case SIG_SETMASK:
4420 new_blocked.sig[0] = new_set;
4421 break;
4422 default:
4423 return -EINVAL;
4424 }
4425
4426 set_current_blocked(&new_blocked);
4427 }
4428
4429 if (oset) {
4430 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4431 return -EFAULT;
4432 }
4433
4434 return 0;
4435}
4436#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4437
4438#ifndef CONFIG_ODD_RT_SIGACTION
4439/**
4440 * sys_rt_sigaction - alter an action taken by a process
4441 * @sig: signal to be sent
4442 * @act: new sigaction
4443 * @oact: used to save the previous sigaction
4444 * @sigsetsize: size of sigset_t type
4445 */
4446SYSCALL_DEFINE4(rt_sigaction, int, sig,
4447 const struct sigaction __user *, act,
4448 struct sigaction __user *, oact,
4449 size_t, sigsetsize)
4450{
4451 struct k_sigaction new_sa, old_sa;
4452 int ret;
4453
4454 /* XXX: Don't preclude handling different sized sigset_t's. */
4455 if (sigsetsize != sizeof(sigset_t))
4456 return -EINVAL;
4457
4458 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4459 return -EFAULT;
4460
4461 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4462 if (ret)
4463 return ret;
4464
4465 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4466 return -EFAULT;
4467
4468 return 0;
4469}
4470#ifdef CONFIG_COMPAT
4471COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4472 const struct compat_sigaction __user *, act,
4473 struct compat_sigaction __user *, oact,
4474 compat_size_t, sigsetsize)
4475{
4476 struct k_sigaction new_ka, old_ka;
4477#ifdef __ARCH_HAS_SA_RESTORER
4478 compat_uptr_t restorer;
4479#endif
4480 int ret;
4481
4482 /* XXX: Don't preclude handling different sized sigset_t's. */
4483 if (sigsetsize != sizeof(compat_sigset_t))
4484 return -EINVAL;
4485
4486 if (act) {
4487 compat_uptr_t handler;
4488 ret = get_user(handler, &act->sa_handler);
4489 new_ka.sa.sa_handler = compat_ptr(handler);
4490#ifdef __ARCH_HAS_SA_RESTORER
4491 ret |= get_user(restorer, &act->sa_restorer);
4492 new_ka.sa.sa_restorer = compat_ptr(restorer);
4493#endif
4494 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4495 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4496 if (ret)
4497 return -EFAULT;
4498 }
4499
4500 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4501 if (!ret && oact) {
4502 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4503 &oact->sa_handler);
4504 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4505 sizeof(oact->sa_mask));
4506 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4507#ifdef __ARCH_HAS_SA_RESTORER
4508 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4509 &oact->sa_restorer);
4510#endif
4511 }
4512 return ret;
4513}
4514#endif
4515#endif /* !CONFIG_ODD_RT_SIGACTION */
4516
4517#ifdef CONFIG_OLD_SIGACTION
4518SYSCALL_DEFINE3(sigaction, int, sig,
4519 const struct old_sigaction __user *, act,
4520 struct old_sigaction __user *, oact)
4521{
4522 struct k_sigaction new_ka, old_ka;
4523 int ret;
4524
4525 if (act) {
4526 old_sigset_t mask;
4527 if (!access_ok(act, sizeof(*act)) ||
4528 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4529 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4530 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4531 __get_user(mask, &act->sa_mask))
4532 return -EFAULT;
4533#ifdef __ARCH_HAS_KA_RESTORER
4534 new_ka.ka_restorer = NULL;
4535#endif
4536 siginitset(&new_ka.sa.sa_mask, mask);
4537 }
4538
4539 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4540
4541 if (!ret && oact) {
4542 if (!access_ok(oact, sizeof(*oact)) ||
4543 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4544 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4545 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4546 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4547 return -EFAULT;
4548 }
4549
4550 return ret;
4551}
4552#endif
4553#ifdef CONFIG_COMPAT_OLD_SIGACTION
4554COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4555 const struct compat_old_sigaction __user *, act,
4556 struct compat_old_sigaction __user *, oact)
4557{
4558 struct k_sigaction new_ka, old_ka;
4559 int ret;
4560 compat_old_sigset_t mask;
4561 compat_uptr_t handler, restorer;
4562
4563 if (act) {
4564 if (!access_ok(act, sizeof(*act)) ||
4565 __get_user(handler, &act->sa_handler) ||
4566 __get_user(restorer, &act->sa_restorer) ||
4567 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4568 __get_user(mask, &act->sa_mask))
4569 return -EFAULT;
4570
4571#ifdef __ARCH_HAS_KA_RESTORER
4572 new_ka.ka_restorer = NULL;
4573#endif
4574 new_ka.sa.sa_handler = compat_ptr(handler);
4575 new_ka.sa.sa_restorer = compat_ptr(restorer);
4576 siginitset(&new_ka.sa.sa_mask, mask);
4577 }
4578
4579 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581 if (!ret && oact) {
4582 if (!access_ok(oact, sizeof(*oact)) ||
4583 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4584 &oact->sa_handler) ||
4585 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4586 &oact->sa_restorer) ||
4587 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4588 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4589 return -EFAULT;
4590 }
4591 return ret;
4592}
4593#endif
4594
4595#ifdef CONFIG_SGETMASK_SYSCALL
4596
4597/*
4598 * For backwards compatibility. Functionality superseded by sigprocmask.
4599 */
4600SYSCALL_DEFINE0(sgetmask)
4601{
4602 /* SMP safe */
4603 return current->blocked.sig[0];
4604}
4605
4606SYSCALL_DEFINE1(ssetmask, int, newmask)
4607{
4608 int old = current->blocked.sig[0];
4609 sigset_t newset;
4610
4611 siginitset(&newset, newmask);
4612 set_current_blocked(&newset);
4613
4614 return old;
4615}
4616#endif /* CONFIG_SGETMASK_SYSCALL */
4617
4618#ifdef __ARCH_WANT_SYS_SIGNAL
4619/*
4620 * For backwards compatibility. Functionality superseded by sigaction.
4621 */
4622SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4623{
4624 struct k_sigaction new_sa, old_sa;
4625 int ret;
4626
4627 new_sa.sa.sa_handler = handler;
4628 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4629 sigemptyset(&new_sa.sa.sa_mask);
4630
4631 ret = do_sigaction(sig, &new_sa, &old_sa);
4632
4633 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4634}
4635#endif /* __ARCH_WANT_SYS_SIGNAL */
4636
4637#ifdef __ARCH_WANT_SYS_PAUSE
4638
4639SYSCALL_DEFINE0(pause)
4640{
4641 while (!signal_pending(current)) {
4642 __set_current_state(TASK_INTERRUPTIBLE);
4643 schedule();
4644 }
4645 return -ERESTARTNOHAND;
4646}
4647
4648#endif
4649
4650static int sigsuspend(sigset_t *set)
4651{
4652 current->saved_sigmask = current->blocked;
4653 set_current_blocked(set);
4654
4655 while (!signal_pending(current)) {
4656 __set_current_state(TASK_INTERRUPTIBLE);
4657 schedule();
4658 }
4659 set_restore_sigmask();
4660 return -ERESTARTNOHAND;
4661}
4662
4663/**
4664 * sys_rt_sigsuspend - replace the signal mask for a value with the
4665 * @unewset value until a signal is received
4666 * @unewset: new signal mask value
4667 * @sigsetsize: size of sigset_t type
4668 */
4669SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4670{
4671 sigset_t newset;
4672
4673 /* XXX: Don't preclude handling different sized sigset_t's. */
4674 if (sigsetsize != sizeof(sigset_t))
4675 return -EINVAL;
4676
4677 if (copy_from_user(&newset, unewset, sizeof(newset)))
4678 return -EFAULT;
4679 return sigsuspend(&newset);
4680}
4681
4682#ifdef CONFIG_COMPAT
4683COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4684{
4685 sigset_t newset;
4686
4687 /* XXX: Don't preclude handling different sized sigset_t's. */
4688 if (sigsetsize != sizeof(sigset_t))
4689 return -EINVAL;
4690
4691 if (get_compat_sigset(&newset, unewset))
4692 return -EFAULT;
4693 return sigsuspend(&newset);
4694}
4695#endif
4696
4697#ifdef CONFIG_OLD_SIGSUSPEND
4698SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4699{
4700 sigset_t blocked;
4701 siginitset(&blocked, mask);
4702 return sigsuspend(&blocked);
4703}
4704#endif
4705#ifdef CONFIG_OLD_SIGSUSPEND3
4706SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4707{
4708 sigset_t blocked;
4709 siginitset(&blocked, mask);
4710 return sigsuspend(&blocked);
4711}
4712#endif
4713
4714__weak const char *arch_vma_name(struct vm_area_struct *vma)
4715{
4716 return NULL;
4717}
4718
4719static inline void siginfo_buildtime_checks(void)
4720{
4721 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4722
4723 /* Verify the offsets in the two siginfos match */
4724#define CHECK_OFFSET(field) \
4725 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4726
4727 /* kill */
4728 CHECK_OFFSET(si_pid);
4729 CHECK_OFFSET(si_uid);
4730
4731 /* timer */
4732 CHECK_OFFSET(si_tid);
4733 CHECK_OFFSET(si_overrun);
4734 CHECK_OFFSET(si_value);
4735
4736 /* rt */
4737 CHECK_OFFSET(si_pid);
4738 CHECK_OFFSET(si_uid);
4739 CHECK_OFFSET(si_value);
4740
4741 /* sigchld */
4742 CHECK_OFFSET(si_pid);
4743 CHECK_OFFSET(si_uid);
4744 CHECK_OFFSET(si_status);
4745 CHECK_OFFSET(si_utime);
4746 CHECK_OFFSET(si_stime);
4747
4748 /* sigfault */
4749 CHECK_OFFSET(si_addr);
4750 CHECK_OFFSET(si_trapno);
4751 CHECK_OFFSET(si_addr_lsb);
4752 CHECK_OFFSET(si_lower);
4753 CHECK_OFFSET(si_upper);
4754 CHECK_OFFSET(si_pkey);
4755 CHECK_OFFSET(si_perf_data);
4756 CHECK_OFFSET(si_perf_type);
4757 CHECK_OFFSET(si_perf_flags);
4758
4759 /* sigpoll */
4760 CHECK_OFFSET(si_band);
4761 CHECK_OFFSET(si_fd);
4762
4763 /* sigsys */
4764 CHECK_OFFSET(si_call_addr);
4765 CHECK_OFFSET(si_syscall);
4766 CHECK_OFFSET(si_arch);
4767#undef CHECK_OFFSET
4768
4769 /* usb asyncio */
4770 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4771 offsetof(struct siginfo, si_addr));
4772 if (sizeof(int) == sizeof(void __user *)) {
4773 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4774 sizeof(void __user *));
4775 } else {
4776 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4777 sizeof_field(struct siginfo, si_uid)) !=
4778 sizeof(void __user *));
4779 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4780 offsetof(struct siginfo, si_uid));
4781 }
4782#ifdef CONFIG_COMPAT
4783 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4784 offsetof(struct compat_siginfo, si_addr));
4785 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4786 sizeof(compat_uptr_t));
4787 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4788 sizeof_field(struct siginfo, si_pid));
4789#endif
4790}
4791
4792#if defined(CONFIG_SYSCTL)
4793static struct ctl_table signal_debug_table[] = {
4794#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4795 {
4796 .procname = "exception-trace",
4797 .data = &show_unhandled_signals,
4798 .maxlen = sizeof(int),
4799 .mode = 0644,
4800 .proc_handler = proc_dointvec
4801 },
4802#endif
4803 { }
4804};
4805
4806static int __init init_signal_sysctls(void)
4807{
4808 register_sysctl_init("debug", signal_debug_table);
4809 return 0;
4810}
4811early_initcall(init_signal_sysctls);
4812#endif /* CONFIG_SYSCTL */
4813
4814void __init signals_init(void)
4815{
4816 siginfo_buildtime_checks();
4817
4818 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4819}
4820
4821#ifdef CONFIG_KGDB_KDB
4822#include <linux/kdb.h>
4823/*
4824 * kdb_send_sig - Allows kdb to send signals without exposing
4825 * signal internals. This function checks if the required locks are
4826 * available before calling the main signal code, to avoid kdb
4827 * deadlocks.
4828 */
4829void kdb_send_sig(struct task_struct *t, int sig)
4830{
4831 static struct task_struct *kdb_prev_t;
4832 int new_t, ret;
4833 if (!spin_trylock(&t->sighand->siglock)) {
4834 kdb_printf("Can't do kill command now.\n"
4835 "The sigmask lock is held somewhere else in "
4836 "kernel, try again later\n");
4837 return;
4838 }
4839 new_t = kdb_prev_t != t;
4840 kdb_prev_t = t;
4841 if (!task_is_running(t) && new_t) {
4842 spin_unlock(&t->sighand->siglock);
4843 kdb_printf("Process is not RUNNING, sending a signal from "
4844 "kdb risks deadlock\n"
4845 "on the run queue locks. "
4846 "The signal has _not_ been sent.\n"
4847 "Reissue the kill command if you want to risk "
4848 "the deadlock.\n");
4849 return;
4850 }
4851 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4852 spin_unlock(&t->sighand->siglock);
4853 if (ret)
4854 kdb_printf("Fail to deliver Signal %d to process %d.\n",
4855 sig, t->pid);
4856 else
4857 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4858}
4859#endif /* CONFIG_KGDB_KDB */
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/security.h>
21#include <linux/syscalls.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/signalfd.h>
25#include <linux/ratelimit.h>
26#include <linux/tracehook.h>
27#include <linux/capability.h>
28#include <linux/freezer.h>
29#include <linux/pid_namespace.h>
30#include <linux/nsproxy.h>
31#define CREATE_TRACE_POINTS
32#include <trace/events/signal.h>
33
34#include <asm/param.h>
35#include <asm/uaccess.h>
36#include <asm/unistd.h>
37#include <asm/siginfo.h>
38#include "audit.h" /* audit_signal_info() */
39
40/*
41 * SLAB caches for signal bits.
42 */
43
44static struct kmem_cache *sigqueue_cachep;
45
46int print_fatal_signals __read_mostly;
47
48static void __user *sig_handler(struct task_struct *t, int sig)
49{
50 return t->sighand->action[sig - 1].sa.sa_handler;
51}
52
53static int sig_handler_ignored(void __user *handler, int sig)
54{
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58}
59
60static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62{
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72}
73
74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75{
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !t->ptrace;
91}
92
93/*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98{
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121}
122
123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125static int recalc_sigpending_tsk(struct task_struct *t)
126{
127 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139}
140
141/*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145void recalc_sigpending_and_wake(struct task_struct *t)
146{
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149}
150
151void recalc_sigpending(void)
152{
153 if (!recalc_sigpending_tsk(current) && !freezing(current))
154 clear_thread_flag(TIF_SIGPENDING);
155
156}
157
158/* Given the mask, find the first available signal that should be serviced. */
159
160#define SYNCHRONOUS_MASK \
161 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
162 sigmask(SIGTRAP) | sigmask(SIGFPE))
163
164int next_signal(struct sigpending *pending, sigset_t *mask)
165{
166 unsigned long i, *s, *m, x;
167 int sig = 0;
168
169 s = pending->signal.sig;
170 m = mask->sig;
171
172 /*
173 * Handle the first word specially: it contains the
174 * synchronous signals that need to be dequeued first.
175 */
176 x = *s &~ *m;
177 if (x) {
178 if (x & SYNCHRONOUS_MASK)
179 x &= SYNCHRONOUS_MASK;
180 sig = ffz(~x) + 1;
181 return sig;
182 }
183
184 switch (_NSIG_WORDS) {
185 default:
186 for (i = 1; i < _NSIG_WORDS; ++i) {
187 x = *++s &~ *++m;
188 if (!x)
189 continue;
190 sig = ffz(~x) + i*_NSIG_BPW + 1;
191 break;
192 }
193 break;
194
195 case 2:
196 x = s[1] &~ m[1];
197 if (!x)
198 break;
199 sig = ffz(~x) + _NSIG_BPW + 1;
200 break;
201
202 case 1:
203 /* Nothing to do */
204 break;
205 }
206
207 return sig;
208}
209
210static inline void print_dropped_signal(int sig)
211{
212 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
213
214 if (!print_fatal_signals)
215 return;
216
217 if (!__ratelimit(&ratelimit_state))
218 return;
219
220 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
221 current->comm, current->pid, sig);
222}
223
224/**
225 * task_set_jobctl_pending - set jobctl pending bits
226 * @task: target task
227 * @mask: pending bits to set
228 *
229 * Clear @mask from @task->jobctl. @mask must be subset of
230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
231 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
232 * cleared. If @task is already being killed or exiting, this function
233 * becomes noop.
234 *
235 * CONTEXT:
236 * Must be called with @task->sighand->siglock held.
237 *
238 * RETURNS:
239 * %true if @mask is set, %false if made noop because @task was dying.
240 */
241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
242{
243 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
244 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
245 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
246
247 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
248 return false;
249
250 if (mask & JOBCTL_STOP_SIGMASK)
251 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
252
253 task->jobctl |= mask;
254 return true;
255}
256
257/**
258 * task_clear_jobctl_trapping - clear jobctl trapping bit
259 * @task: target task
260 *
261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
262 * Clear it and wake up the ptracer. Note that we don't need any further
263 * locking. @task->siglock guarantees that @task->parent points to the
264 * ptracer.
265 *
266 * CONTEXT:
267 * Must be called with @task->sighand->siglock held.
268 */
269void task_clear_jobctl_trapping(struct task_struct *task)
270{
271 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
272 task->jobctl &= ~JOBCTL_TRAPPING;
273 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
274 }
275}
276
277/**
278 * task_clear_jobctl_pending - clear jobctl pending bits
279 * @task: target task
280 * @mask: pending bits to clear
281 *
282 * Clear @mask from @task->jobctl. @mask must be subset of
283 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
284 * STOP bits are cleared together.
285 *
286 * If clearing of @mask leaves no stop or trap pending, this function calls
287 * task_clear_jobctl_trapping().
288 *
289 * CONTEXT:
290 * Must be called with @task->sighand->siglock held.
291 */
292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
293{
294 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
295
296 if (mask & JOBCTL_STOP_PENDING)
297 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
298
299 task->jobctl &= ~mask;
300
301 if (!(task->jobctl & JOBCTL_PENDING_MASK))
302 task_clear_jobctl_trapping(task);
303}
304
305/**
306 * task_participate_group_stop - participate in a group stop
307 * @task: task participating in a group stop
308 *
309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
310 * Group stop states are cleared and the group stop count is consumed if
311 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
312 * stop, the appropriate %SIGNAL_* flags are set.
313 *
314 * CONTEXT:
315 * Must be called with @task->sighand->siglock held.
316 *
317 * RETURNS:
318 * %true if group stop completion should be notified to the parent, %false
319 * otherwise.
320 */
321static bool task_participate_group_stop(struct task_struct *task)
322{
323 struct signal_struct *sig = task->signal;
324 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
325
326 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
327
328 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
329
330 if (!consume)
331 return false;
332
333 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
334 sig->group_stop_count--;
335
336 /*
337 * Tell the caller to notify completion iff we are entering into a
338 * fresh group stop. Read comment in do_signal_stop() for details.
339 */
340 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
341 sig->flags = SIGNAL_STOP_STOPPED;
342 return true;
343 }
344 return false;
345}
346
347/*
348 * allocate a new signal queue record
349 * - this may be called without locks if and only if t == current, otherwise an
350 * appropriate lock must be held to stop the target task from exiting
351 */
352static struct sigqueue *
353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
354{
355 struct sigqueue *q = NULL;
356 struct user_struct *user;
357
358 /*
359 * Protect access to @t credentials. This can go away when all
360 * callers hold rcu read lock.
361 */
362 rcu_read_lock();
363 user = get_uid(__task_cred(t)->user);
364 atomic_inc(&user->sigpending);
365 rcu_read_unlock();
366
367 if (override_rlimit ||
368 atomic_read(&user->sigpending) <=
369 task_rlimit(t, RLIMIT_SIGPENDING)) {
370 q = kmem_cache_alloc(sigqueue_cachep, flags);
371 } else {
372 print_dropped_signal(sig);
373 }
374
375 if (unlikely(q == NULL)) {
376 atomic_dec(&user->sigpending);
377 free_uid(user);
378 } else {
379 INIT_LIST_HEAD(&q->list);
380 q->flags = 0;
381 q->user = user;
382 }
383
384 return q;
385}
386
387static void __sigqueue_free(struct sigqueue *q)
388{
389 if (q->flags & SIGQUEUE_PREALLOC)
390 return;
391 atomic_dec(&q->user->sigpending);
392 free_uid(q->user);
393 kmem_cache_free(sigqueue_cachep, q);
394}
395
396void flush_sigqueue(struct sigpending *queue)
397{
398 struct sigqueue *q;
399
400 sigemptyset(&queue->signal);
401 while (!list_empty(&queue->list)) {
402 q = list_entry(queue->list.next, struct sigqueue , list);
403 list_del_init(&q->list);
404 __sigqueue_free(q);
405 }
406}
407
408/*
409 * Flush all pending signals for a task.
410 */
411void __flush_signals(struct task_struct *t)
412{
413 clear_tsk_thread_flag(t, TIF_SIGPENDING);
414 flush_sigqueue(&t->pending);
415 flush_sigqueue(&t->signal->shared_pending);
416}
417
418void flush_signals(struct task_struct *t)
419{
420 unsigned long flags;
421
422 spin_lock_irqsave(&t->sighand->siglock, flags);
423 __flush_signals(t);
424 spin_unlock_irqrestore(&t->sighand->siglock, flags);
425}
426
427static void __flush_itimer_signals(struct sigpending *pending)
428{
429 sigset_t signal, retain;
430 struct sigqueue *q, *n;
431
432 signal = pending->signal;
433 sigemptyset(&retain);
434
435 list_for_each_entry_safe(q, n, &pending->list, list) {
436 int sig = q->info.si_signo;
437
438 if (likely(q->info.si_code != SI_TIMER)) {
439 sigaddset(&retain, sig);
440 } else {
441 sigdelset(&signal, sig);
442 list_del_init(&q->list);
443 __sigqueue_free(q);
444 }
445 }
446
447 sigorsets(&pending->signal, &signal, &retain);
448}
449
450void flush_itimer_signals(void)
451{
452 struct task_struct *tsk = current;
453 unsigned long flags;
454
455 spin_lock_irqsave(&tsk->sighand->siglock, flags);
456 __flush_itimer_signals(&tsk->pending);
457 __flush_itimer_signals(&tsk->signal->shared_pending);
458 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
459}
460
461void ignore_signals(struct task_struct *t)
462{
463 int i;
464
465 for (i = 0; i < _NSIG; ++i)
466 t->sighand->action[i].sa.sa_handler = SIG_IGN;
467
468 flush_signals(t);
469}
470
471/*
472 * Flush all handlers for a task.
473 */
474
475void
476flush_signal_handlers(struct task_struct *t, int force_default)
477{
478 int i;
479 struct k_sigaction *ka = &t->sighand->action[0];
480 for (i = _NSIG ; i != 0 ; i--) {
481 if (force_default || ka->sa.sa_handler != SIG_IGN)
482 ka->sa.sa_handler = SIG_DFL;
483 ka->sa.sa_flags = 0;
484 sigemptyset(&ka->sa.sa_mask);
485 ka++;
486 }
487}
488
489int unhandled_signal(struct task_struct *tsk, int sig)
490{
491 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
492 if (is_global_init(tsk))
493 return 1;
494 if (handler != SIG_IGN && handler != SIG_DFL)
495 return 0;
496 /* if ptraced, let the tracer determine */
497 return !tsk->ptrace;
498}
499
500/*
501 * Notify the system that a driver wants to block all signals for this
502 * process, and wants to be notified if any signals at all were to be
503 * sent/acted upon. If the notifier routine returns non-zero, then the
504 * signal will be acted upon after all. If the notifier routine returns 0,
505 * then then signal will be blocked. Only one block per process is
506 * allowed. priv is a pointer to private data that the notifier routine
507 * can use to determine if the signal should be blocked or not.
508 */
509void
510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
511{
512 unsigned long flags;
513
514 spin_lock_irqsave(¤t->sighand->siglock, flags);
515 current->notifier_mask = mask;
516 current->notifier_data = priv;
517 current->notifier = notifier;
518 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
519}
520
521/* Notify the system that blocking has ended. */
522
523void
524unblock_all_signals(void)
525{
526 unsigned long flags;
527
528 spin_lock_irqsave(¤t->sighand->siglock, flags);
529 current->notifier = NULL;
530 current->notifier_data = NULL;
531 recalc_sigpending();
532 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
533}
534
535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
536{
537 struct sigqueue *q, *first = NULL;
538
539 /*
540 * Collect the siginfo appropriate to this signal. Check if
541 * there is another siginfo for the same signal.
542 */
543 list_for_each_entry(q, &list->list, list) {
544 if (q->info.si_signo == sig) {
545 if (first)
546 goto still_pending;
547 first = q;
548 }
549 }
550
551 sigdelset(&list->signal, sig);
552
553 if (first) {
554still_pending:
555 list_del_init(&first->list);
556 copy_siginfo(info, &first->info);
557 __sigqueue_free(first);
558 } else {
559 /*
560 * Ok, it wasn't in the queue. This must be
561 * a fast-pathed signal or we must have been
562 * out of queue space. So zero out the info.
563 */
564 info->si_signo = sig;
565 info->si_errno = 0;
566 info->si_code = SI_USER;
567 info->si_pid = 0;
568 info->si_uid = 0;
569 }
570}
571
572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
573 siginfo_t *info)
574{
575 int sig = next_signal(pending, mask);
576
577 if (sig) {
578 if (current->notifier) {
579 if (sigismember(current->notifier_mask, sig)) {
580 if (!(current->notifier)(current->notifier_data)) {
581 clear_thread_flag(TIF_SIGPENDING);
582 return 0;
583 }
584 }
585 }
586
587 collect_signal(sig, pending, info);
588 }
589
590 return sig;
591}
592
593/*
594 * Dequeue a signal and return the element to the caller, which is
595 * expected to free it.
596 *
597 * All callers have to hold the siglock.
598 */
599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
600{
601 int signr;
602
603 /* We only dequeue private signals from ourselves, we don't let
604 * signalfd steal them
605 */
606 signr = __dequeue_signal(&tsk->pending, mask, info);
607 if (!signr) {
608 signr = __dequeue_signal(&tsk->signal->shared_pending,
609 mask, info);
610 /*
611 * itimer signal ?
612 *
613 * itimers are process shared and we restart periodic
614 * itimers in the signal delivery path to prevent DoS
615 * attacks in the high resolution timer case. This is
616 * compliant with the old way of self-restarting
617 * itimers, as the SIGALRM is a legacy signal and only
618 * queued once. Changing the restart behaviour to
619 * restart the timer in the signal dequeue path is
620 * reducing the timer noise on heavy loaded !highres
621 * systems too.
622 */
623 if (unlikely(signr == SIGALRM)) {
624 struct hrtimer *tmr = &tsk->signal->real_timer;
625
626 if (!hrtimer_is_queued(tmr) &&
627 tsk->signal->it_real_incr.tv64 != 0) {
628 hrtimer_forward(tmr, tmr->base->get_time(),
629 tsk->signal->it_real_incr);
630 hrtimer_restart(tmr);
631 }
632 }
633 }
634
635 recalc_sigpending();
636 if (!signr)
637 return 0;
638
639 if (unlikely(sig_kernel_stop(signr))) {
640 /*
641 * Set a marker that we have dequeued a stop signal. Our
642 * caller might release the siglock and then the pending
643 * stop signal it is about to process is no longer in the
644 * pending bitmasks, but must still be cleared by a SIGCONT
645 * (and overruled by a SIGKILL). So those cases clear this
646 * shared flag after we've set it. Note that this flag may
647 * remain set after the signal we return is ignored or
648 * handled. That doesn't matter because its only purpose
649 * is to alert stop-signal processing code when another
650 * processor has come along and cleared the flag.
651 */
652 current->jobctl |= JOBCTL_STOP_DEQUEUED;
653 }
654 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
655 /*
656 * Release the siglock to ensure proper locking order
657 * of timer locks outside of siglocks. Note, we leave
658 * irqs disabled here, since the posix-timers code is
659 * about to disable them again anyway.
660 */
661 spin_unlock(&tsk->sighand->siglock);
662 do_schedule_next_timer(info);
663 spin_lock(&tsk->sighand->siglock);
664 }
665 return signr;
666}
667
668/*
669 * Tell a process that it has a new active signal..
670 *
671 * NOTE! we rely on the previous spin_lock to
672 * lock interrupts for us! We can only be called with
673 * "siglock" held, and the local interrupt must
674 * have been disabled when that got acquired!
675 *
676 * No need to set need_resched since signal event passing
677 * goes through ->blocked
678 */
679void signal_wake_up(struct task_struct *t, int resume)
680{
681 unsigned int mask;
682
683 set_tsk_thread_flag(t, TIF_SIGPENDING);
684
685 /*
686 * For SIGKILL, we want to wake it up in the stopped/traced/killable
687 * case. We don't check t->state here because there is a race with it
688 * executing another processor and just now entering stopped state.
689 * By using wake_up_state, we ensure the process will wake up and
690 * handle its death signal.
691 */
692 mask = TASK_INTERRUPTIBLE;
693 if (resume)
694 mask |= TASK_WAKEKILL;
695 if (!wake_up_state(t, mask))
696 kick_process(t);
697}
698
699/*
700 * Remove signals in mask from the pending set and queue.
701 * Returns 1 if any signals were found.
702 *
703 * All callers must be holding the siglock.
704 *
705 * This version takes a sigset mask and looks at all signals,
706 * not just those in the first mask word.
707 */
708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
709{
710 struct sigqueue *q, *n;
711 sigset_t m;
712
713 sigandsets(&m, mask, &s->signal);
714 if (sigisemptyset(&m))
715 return 0;
716
717 sigandnsets(&s->signal, &s->signal, mask);
718 list_for_each_entry_safe(q, n, &s->list, list) {
719 if (sigismember(mask, q->info.si_signo)) {
720 list_del_init(&q->list);
721 __sigqueue_free(q);
722 }
723 }
724 return 1;
725}
726/*
727 * Remove signals in mask from the pending set and queue.
728 * Returns 1 if any signals were found.
729 *
730 * All callers must be holding the siglock.
731 */
732static int rm_from_queue(unsigned long mask, struct sigpending *s)
733{
734 struct sigqueue *q, *n;
735
736 if (!sigtestsetmask(&s->signal, mask))
737 return 0;
738
739 sigdelsetmask(&s->signal, mask);
740 list_for_each_entry_safe(q, n, &s->list, list) {
741 if (q->info.si_signo < SIGRTMIN &&
742 (mask & sigmask(q->info.si_signo))) {
743 list_del_init(&q->list);
744 __sigqueue_free(q);
745 }
746 }
747 return 1;
748}
749
750static inline int is_si_special(const struct siginfo *info)
751{
752 return info <= SEND_SIG_FORCED;
753}
754
755static inline bool si_fromuser(const struct siginfo *info)
756{
757 return info == SEND_SIG_NOINFO ||
758 (!is_si_special(info) && SI_FROMUSER(info));
759}
760
761/*
762 * called with RCU read lock from check_kill_permission()
763 */
764static int kill_ok_by_cred(struct task_struct *t)
765{
766 const struct cred *cred = current_cred();
767 const struct cred *tcred = __task_cred(t);
768
769 if (cred->user->user_ns == tcred->user->user_ns &&
770 (cred->euid == tcred->suid ||
771 cred->euid == tcred->uid ||
772 cred->uid == tcred->suid ||
773 cred->uid == tcred->uid))
774 return 1;
775
776 if (ns_capable(tcred->user->user_ns, CAP_KILL))
777 return 1;
778
779 return 0;
780}
781
782/*
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
785 */
786static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
788{
789 struct pid *sid;
790 int error;
791
792 if (!valid_signal(sig))
793 return -EINVAL;
794
795 if (!si_fromuser(info))
796 return 0;
797
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
801
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
807 /*
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
810 */
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
815 }
816 }
817
818 return security_task_kill(t, info, sig, 0);
819}
820
821/**
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
824 *
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
828 *
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
834 *
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
837 */
838static void ptrace_trap_notify(struct task_struct *t)
839{
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
842
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845}
846
847/*
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
853 *
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
856 */
857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
858{
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
861
862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 /*
864 * The process is in the middle of dying, nothing to do.
865 */
866 } else if (sig_kernel_stop(sig)) {
867 /*
868 * This is a stop signal. Remove SIGCONT from all queues.
869 */
870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 t = p;
872 do {
873 rm_from_queue(sigmask(SIGCONT), &t->pending);
874 } while_each_thread(p, t);
875 } else if (sig == SIGCONT) {
876 unsigned int why;
877 /*
878 * Remove all stop signals from all queues, wake all threads.
879 */
880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 t = p;
882 do {
883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 if (likely(!(t->ptrace & PT_SEIZED)))
886 wake_up_state(t, __TASK_STOPPED);
887 else
888 ptrace_trap_notify(t);
889 } while_each_thread(p, t);
890
891 /*
892 * Notify the parent with CLD_CONTINUED if we were stopped.
893 *
894 * If we were in the middle of a group stop, we pretend it
895 * was already finished, and then continued. Since SIGCHLD
896 * doesn't queue we report only CLD_STOPPED, as if the next
897 * CLD_CONTINUED was dropped.
898 */
899 why = 0;
900 if (signal->flags & SIGNAL_STOP_STOPPED)
901 why |= SIGNAL_CLD_CONTINUED;
902 else if (signal->group_stop_count)
903 why |= SIGNAL_CLD_STOPPED;
904
905 if (why) {
906 /*
907 * The first thread which returns from do_signal_stop()
908 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 * notify its parent. See get_signal_to_deliver().
910 */
911 signal->flags = why | SIGNAL_STOP_CONTINUED;
912 signal->group_stop_count = 0;
913 signal->group_exit_code = 0;
914 }
915 }
916
917 return !sig_ignored(p, sig, from_ancestor_ns);
918}
919
920/*
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
927 */
928static inline int wants_signal(int sig, struct task_struct *p)
929{
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (task_is_stopped_or_traced(p))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
939}
940
941static void complete_signal(int sig, struct task_struct *p, int group)
942{
943 struct signal_struct *signal = p->signal;
944 struct task_struct *t;
945
946 /*
947 * Now find a thread we can wake up to take the signal off the queue.
948 *
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
951 */
952 if (wants_signal(sig, p))
953 t = p;
954 else if (!group || thread_group_empty(p))
955 /*
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
958 */
959 return;
960 else {
961 /*
962 * Otherwise try to find a suitable thread.
963 */
964 t = signal->curr_target;
965 while (!wants_signal(sig, t)) {
966 t = next_thread(t);
967 if (t == signal->curr_target)
968 /*
969 * No thread needs to be woken.
970 * Any eligible threads will see
971 * the signal in the queue soon.
972 */
973 return;
974 }
975 signal->curr_target = t;
976 }
977
978 /*
979 * Found a killable thread. If the signal will be fatal,
980 * then start taking the whole group down immediately.
981 */
982 if (sig_fatal(p, sig) &&
983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 !sigismember(&t->real_blocked, sig) &&
985 (sig == SIGKILL || !t->ptrace)) {
986 /*
987 * This signal will be fatal to the whole group.
988 */
989 if (!sig_kernel_coredump(sig)) {
990 /*
991 * Start a group exit and wake everybody up.
992 * This way we don't have other threads
993 * running and doing things after a slower
994 * thread has the fatal signal pending.
995 */
996 signal->flags = SIGNAL_GROUP_EXIT;
997 signal->group_exit_code = sig;
998 signal->group_stop_count = 0;
999 t = p;
1000 do {
1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 sigaddset(&t->pending.signal, SIGKILL);
1003 signal_wake_up(t, 1);
1004 } while_each_thread(p, t);
1005 return;
1006 }
1007 }
1008
1009 /*
1010 * The signal is already in the shared-pending queue.
1011 * Tell the chosen thread to wake up and dequeue it.
1012 */
1013 signal_wake_up(t, sig == SIGKILL);
1014 return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023 int group, int from_ancestor_ns)
1024{
1025 struct sigpending *pending;
1026 struct sigqueue *q;
1027 int override_rlimit;
1028
1029 trace_signal_generate(sig, info, t);
1030
1031 assert_spin_locked(&t->sighand->siglock);
1032
1033 if (!prepare_signal(sig, t, from_ancestor_ns))
1034 return 0;
1035
1036 pending = group ? &t->signal->shared_pending : &t->pending;
1037 /*
1038 * Short-circuit ignored signals and support queuing
1039 * exactly one non-rt signal, so that we can get more
1040 * detailed information about the cause of the signal.
1041 */
1042 if (legacy_queue(pending, sig))
1043 return 0;
1044 /*
1045 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 * or SIGKILL.
1047 */
1048 if (info == SEND_SIG_FORCED)
1049 goto out_set;
1050
1051 /*
1052 * Real-time signals must be queued if sent by sigqueue, or
1053 * some other real-time mechanism. It is implementation
1054 * defined whether kill() does so. We attempt to do so, on
1055 * the principle of least surprise, but since kill is not
1056 * allowed to fail with EAGAIN when low on memory we just
1057 * make sure at least one signal gets delivered and don't
1058 * pass on the info struct.
1059 */
1060 if (sig < SIGRTMIN)
1061 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 else
1063 override_rlimit = 0;
1064
1065 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 override_rlimit);
1067 if (q) {
1068 list_add_tail(&q->list, &pending->list);
1069 switch ((unsigned long) info) {
1070 case (unsigned long) SEND_SIG_NOINFO:
1071 q->info.si_signo = sig;
1072 q->info.si_errno = 0;
1073 q->info.si_code = SI_USER;
1074 q->info.si_pid = task_tgid_nr_ns(current,
1075 task_active_pid_ns(t));
1076 q->info.si_uid = current_uid();
1077 break;
1078 case (unsigned long) SEND_SIG_PRIV:
1079 q->info.si_signo = sig;
1080 q->info.si_errno = 0;
1081 q->info.si_code = SI_KERNEL;
1082 q->info.si_pid = 0;
1083 q->info.si_uid = 0;
1084 break;
1085 default:
1086 copy_siginfo(&q->info, info);
1087 if (from_ancestor_ns)
1088 q->info.si_pid = 0;
1089 break;
1090 }
1091 } else if (!is_si_special(info)) {
1092 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093 /*
1094 * Queue overflow, abort. We may abort if the
1095 * signal was rt and sent by user using something
1096 * other than kill().
1097 */
1098 trace_signal_overflow_fail(sig, group, info);
1099 return -EAGAIN;
1100 } else {
1101 /*
1102 * This is a silent loss of information. We still
1103 * send the signal, but the *info bits are lost.
1104 */
1105 trace_signal_lose_info(sig, group, info);
1106 }
1107 }
1108
1109out_set:
1110 signalfd_notify(t, sig);
1111 sigaddset(&pending->signal, sig);
1112 complete_signal(sig, t, group);
1113 return 0;
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117 int group)
1118{
1119 int from_ancestor_ns = 0;
1120
1121#ifdef CONFIG_PID_NS
1122 from_ancestor_ns = si_fromuser(info) &&
1123 !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126 return __send_signal(sig, info, t, group, from_ancestor_ns);
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132 current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135 printk("code at %08lx: ", regs->ip);
1136 {
1137 int i;
1138 for (i = 0; i < 16; i++) {
1139 unsigned char insn;
1140
1141 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142 break;
1143 printk("%02x ", insn);
1144 }
1145 }
1146#endif
1147 printk("\n");
1148 preempt_disable();
1149 show_regs(regs);
1150 preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155 get_option (&str, &print_fatal_signals);
1156
1157 return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165 return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171 return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175 bool group)
1176{
1177 unsigned long flags;
1178 int ret = -ESRCH;
1179
1180 if (lock_task_sighand(p, &flags)) {
1181 ret = send_signal(sig, info, p, group);
1182 unlock_task_sighand(p, &flags);
1183 }
1184
1185 return ret;
1186}
1187
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201{
1202 unsigned long int flags;
1203 int ret, blocked, ignored;
1204 struct k_sigaction *action;
1205
1206 spin_lock_irqsave(&t->sighand->siglock, flags);
1207 action = &t->sighand->action[sig-1];
1208 ignored = action->sa.sa_handler == SIG_IGN;
1209 blocked = sigismember(&t->blocked, sig);
1210 if (blocked || ignored) {
1211 action->sa.sa_handler = SIG_DFL;
1212 if (blocked) {
1213 sigdelset(&t->blocked, sig);
1214 recalc_sigpending_and_wake(t);
1215 }
1216 }
1217 if (action->sa.sa_handler == SIG_DFL)
1218 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219 ret = specific_send_sig_info(sig, info, t);
1220 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222 return ret;
1223}
1224
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230 struct task_struct *t = p;
1231 int count = 0;
1232
1233 p->signal->group_stop_count = 0;
1234
1235 while_each_thread(p, t) {
1236 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237 count++;
1238
1239 /* Don't bother with already dead threads */
1240 if (t->exit_state)
1241 continue;
1242 sigaddset(&t->pending.signal, SIGKILL);
1243 signal_wake_up(t, 1);
1244 }
1245
1246 return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250 unsigned long *flags)
1251{
1252 struct sighand_struct *sighand;
1253
1254 for (;;) {
1255 local_irq_save(*flags);
1256 rcu_read_lock();
1257 sighand = rcu_dereference(tsk->sighand);
1258 if (unlikely(sighand == NULL)) {
1259 rcu_read_unlock();
1260 local_irq_restore(*flags);
1261 break;
1262 }
1263
1264 spin_lock(&sighand->siglock);
1265 if (likely(sighand == tsk->sighand)) {
1266 rcu_read_unlock();
1267 break;
1268 }
1269 spin_unlock(&sighand->siglock);
1270 rcu_read_unlock();
1271 local_irq_restore(*flags);
1272 }
1273
1274 return sighand;
1275}
1276
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281{
1282 int ret;
1283
1284 rcu_read_lock();
1285 ret = check_kill_permission(sig, info, p);
1286 rcu_read_unlock();
1287
1288 if (!ret && sig)
1289 ret = do_send_sig_info(sig, info, p, true);
1290
1291 return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301 struct task_struct *p = NULL;
1302 int retval, success;
1303
1304 success = 0;
1305 retval = -ESRCH;
1306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307 int err = group_send_sig_info(sig, info, p);
1308 success |= !err;
1309 retval = err;
1310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311 return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316 int error = -ESRCH;
1317 struct task_struct *p;
1318
1319 rcu_read_lock();
1320retry:
1321 p = pid_task(pid, PIDTYPE_PID);
1322 if (p) {
1323 error = group_send_sig_info(sig, info, p);
1324 if (unlikely(error == -ESRCH))
1325 /*
1326 * The task was unhashed in between, try again.
1327 * If it is dead, pid_task() will return NULL,
1328 * if we race with de_thread() it will find the
1329 * new leader.
1330 */
1331 goto retry;
1332 }
1333 rcu_read_unlock();
1334
1335 return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340 int error;
1341 rcu_read_lock();
1342 error = kill_pid_info(sig, info, find_vpid(pid));
1343 rcu_read_unlock();
1344 return error;
1345}
1346
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349 uid_t uid, uid_t euid, u32 secid)
1350{
1351 int ret = -EINVAL;
1352 struct task_struct *p;
1353 const struct cred *pcred;
1354 unsigned long flags;
1355
1356 if (!valid_signal(sig))
1357 return ret;
1358
1359 rcu_read_lock();
1360 p = pid_task(pid, PIDTYPE_PID);
1361 if (!p) {
1362 ret = -ESRCH;
1363 goto out_unlock;
1364 }
1365 pcred = __task_cred(p);
1366 if (si_fromuser(info) &&
1367 euid != pcred->suid && euid != pcred->uid &&
1368 uid != pcred->suid && uid != pcred->uid) {
1369 ret = -EPERM;
1370 goto out_unlock;
1371 }
1372 ret = security_task_kill(p, info, sig, secid);
1373 if (ret)
1374 goto out_unlock;
1375
1376 if (sig) {
1377 if (lock_task_sighand(p, &flags)) {
1378 ret = __send_signal(sig, info, p, 1, 0);
1379 unlock_task_sighand(p, &flags);
1380 } else
1381 ret = -ESRCH;
1382 }
1383out_unlock:
1384 rcu_read_unlock();
1385 return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong. Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398 int ret;
1399
1400 if (pid > 0) {
1401 rcu_read_lock();
1402 ret = kill_pid_info(sig, info, find_vpid(pid));
1403 rcu_read_unlock();
1404 return ret;
1405 }
1406
1407 read_lock(&tasklist_lock);
1408 if (pid != -1) {
1409 ret = __kill_pgrp_info(sig, info,
1410 pid ? find_vpid(-pid) : task_pgrp(current));
1411 } else {
1412 int retval = 0, count = 0;
1413 struct task_struct * p;
1414
1415 for_each_process(p) {
1416 if (task_pid_vnr(p) > 1 &&
1417 !same_thread_group(p, current)) {
1418 int err = group_send_sig_info(sig, info, p);
1419 ++count;
1420 if (err != -EPERM)
1421 retval = err;
1422 }
1423 }
1424 ret = count ? retval : -ESRCH;
1425 }
1426 read_unlock(&tasklist_lock);
1427
1428 return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437 /*
1438 * Make sure legacy kernel users don't send in bad values
1439 * (normal paths check this in check_kill_permission).
1440 */
1441 if (!valid_signal(sig))
1442 return -EINVAL;
1443
1444 return do_send_sig_info(sig, info, p, false);
1445}
1446
1447#define __si_special(priv) \
1448 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453 return send_sig_info(sig, __si_special(priv), p);
1454}
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459 force_sig_info(sig, SEND_SIG_PRIV, p);
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
1470{
1471 if (sig == SIGSEGV) {
1472 unsigned long flags;
1473 spin_lock_irqsave(&p->sighand->siglock, flags);
1474 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476 }
1477 force_sig(SIGSEGV, p);
1478 return 0;
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483 int ret;
1484
1485 read_lock(&tasklist_lock);
1486 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487 read_unlock(&tasklist_lock);
1488
1489 return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495 return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures. This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions". In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create. If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512 if (q)
1513 q->flags |= SIGQUEUE_PREALLOC;
1514
1515 return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520 unsigned long flags;
1521 spinlock_t *lock = ¤t->sighand->siglock;
1522
1523 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524 /*
1525 * We must hold ->siglock while testing q->list
1526 * to serialize with collect_signal() or with
1527 * __exit_signal()->flush_sigqueue().
1528 */
1529 spin_lock_irqsave(lock, flags);
1530 q->flags &= ~SIGQUEUE_PREALLOC;
1531 /*
1532 * If it is queued it will be freed when dequeued,
1533 * like the "regular" sigqueue.
1534 */
1535 if (!list_empty(&q->list))
1536 q = NULL;
1537 spin_unlock_irqrestore(lock, flags);
1538
1539 if (q)
1540 __sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545 int sig = q->info.si_signo;
1546 struct sigpending *pending;
1547 unsigned long flags;
1548 int ret;
1549
1550 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552 ret = -1;
1553 if (!likely(lock_task_sighand(t, &flags)))
1554 goto ret;
1555
1556 ret = 1; /* the signal is ignored */
1557 if (!prepare_signal(sig, t, 0))
1558 goto out;
1559
1560 ret = 0;
1561 if (unlikely(!list_empty(&q->list))) {
1562 /*
1563 * If an SI_TIMER entry is already queue just increment
1564 * the overrun count.
1565 */
1566 BUG_ON(q->info.si_code != SI_TIMER);
1567 q->info.si_overrun++;
1568 goto out;
1569 }
1570 q->info.si_overrun = 0;
1571
1572 signalfd_notify(t, sig);
1573 pending = group ? &t->signal->shared_pending : &t->pending;
1574 list_add_tail(&q->list, &pending->list);
1575 sigaddset(&pending->signal, sig);
1576 complete_signal(sig, t, group);
1577out:
1578 unlock_task_sighand(t, &flags);
1579ret:
1580 return ret;
1581}
1582
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592 struct siginfo info;
1593 unsigned long flags;
1594 struct sighand_struct *psig;
1595 bool autoreap = false;
1596
1597 BUG_ON(sig == -1);
1598
1599 /* do_notify_parent_cldstop should have been called instead. */
1600 BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602 BUG_ON(!tsk->ptrace &&
1603 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
1605 info.si_signo = sig;
1606 info.si_errno = 0;
1607 /*
1608 * we are under tasklist_lock here so our parent is tied to
1609 * us and cannot exit and release its namespace.
1610 *
1611 * the only it can is to switch its nsproxy with sys_unshare,
1612 * bu uncharing pid namespaces is not allowed, so we'll always
1613 * see relevant namespace
1614 *
1615 * write_lock() currently calls preempt_disable() which is the
1616 * same as rcu_read_lock(), but according to Oleg, this is not
1617 * correct to rely on this
1618 */
1619 rcu_read_lock();
1620 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621 info.si_uid = __task_cred(tsk)->uid;
1622 rcu_read_unlock();
1623
1624 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625 tsk->signal->utime));
1626 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627 tsk->signal->stime));
1628
1629 info.si_status = tsk->exit_code & 0x7f;
1630 if (tsk->exit_code & 0x80)
1631 info.si_code = CLD_DUMPED;
1632 else if (tsk->exit_code & 0x7f)
1633 info.si_code = CLD_KILLED;
1634 else {
1635 info.si_code = CLD_EXITED;
1636 info.si_status = tsk->exit_code >> 8;
1637 }
1638
1639 psig = tsk->parent->sighand;
1640 spin_lock_irqsave(&psig->siglock, flags);
1641 if (!tsk->ptrace && sig == SIGCHLD &&
1642 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644 /*
1645 * We are exiting and our parent doesn't care. POSIX.1
1646 * defines special semantics for setting SIGCHLD to SIG_IGN
1647 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648 * automatically and not left for our parent's wait4 call.
1649 * Rather than having the parent do it as a magic kind of
1650 * signal handler, we just set this to tell do_exit that we
1651 * can be cleaned up without becoming a zombie. Note that
1652 * we still call __wake_up_parent in this case, because a
1653 * blocked sys_wait4 might now return -ECHILD.
1654 *
1655 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656 * is implementation-defined: we do (if you don't want
1657 * it, just use SIG_IGN instead).
1658 */
1659 autoreap = true;
1660 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661 sig = 0;
1662 }
1663 if (valid_signal(sig) && sig)
1664 __group_send_sig_info(sig, &info, tsk->parent);
1665 __wake_up_parent(tsk, tsk->parent);
1666 spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668 return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed. If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685 bool for_ptracer, int why)
1686{
1687 struct siginfo info;
1688 unsigned long flags;
1689 struct task_struct *parent;
1690 struct sighand_struct *sighand;
1691
1692 if (for_ptracer) {
1693 parent = tsk->parent;
1694 } else {
1695 tsk = tsk->group_leader;
1696 parent = tsk->real_parent;
1697 }
1698
1699 info.si_signo = SIGCHLD;
1700 info.si_errno = 0;
1701 /*
1702 * see comment in do_notify_parent() about the following 4 lines
1703 */
1704 rcu_read_lock();
1705 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706 info.si_uid = __task_cred(tsk)->uid;
1707 rcu_read_unlock();
1708
1709 info.si_utime = cputime_to_clock_t(tsk->utime);
1710 info.si_stime = cputime_to_clock_t(tsk->stime);
1711
1712 info.si_code = why;
1713 switch (why) {
1714 case CLD_CONTINUED:
1715 info.si_status = SIGCONT;
1716 break;
1717 case CLD_STOPPED:
1718 info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 break;
1720 case CLD_TRAPPED:
1721 info.si_status = tsk->exit_code & 0x7f;
1722 break;
1723 default:
1724 BUG();
1725 }
1726
1727 sighand = parent->sighand;
1728 spin_lock_irqsave(&sighand->siglock, flags);
1729 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731 __group_send_sig_info(SIGCHLD, &info, parent);
1732 /*
1733 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734 */
1735 __wake_up_parent(tsk, parent);
1736 spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741 if (!likely(current->ptrace))
1742 return 0;
1743 /*
1744 * Are we in the middle of do_coredump?
1745 * If so and our tracer is also part of the coredump stopping
1746 * is a deadlock situation, and pointless because our tracer
1747 * is dead so don't allow us to stop.
1748 * If SIGKILL was already sent before the caller unlocked
1749 * ->siglock we must see ->core_state != NULL. Otherwise it
1750 * is safe to enter schedule().
1751 */
1752 if (unlikely(current->mm->core_state) &&
1753 unlikely(current->mm == current->parent->mm))
1754 return 0;
1755
1756 return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765 return sigismember(&tsk->pending.signal, SIGKILL) ||
1766 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781 __releases(¤t->sighand->siglock)
1782 __acquires(¤t->sighand->siglock)
1783{
1784 bool gstop_done = false;
1785
1786 if (arch_ptrace_stop_needed(exit_code, info)) {
1787 /*
1788 * The arch code has something special to do before a
1789 * ptrace stop. This is allowed to block, e.g. for faults
1790 * on user stack pages. We can't keep the siglock while
1791 * calling arch_ptrace_stop, so we must release it now.
1792 * To preserve proper semantics, we must do this before
1793 * any signal bookkeeping like checking group_stop_count.
1794 * Meanwhile, a SIGKILL could come in before we retake the
1795 * siglock. That must prevent us from sleeping in TASK_TRACED.
1796 * So after regaining the lock, we must check for SIGKILL.
1797 */
1798 spin_unlock_irq(¤t->sighand->siglock);
1799 arch_ptrace_stop(exit_code, info);
1800 spin_lock_irq(¤t->sighand->siglock);
1801 if (sigkill_pending(current))
1802 return;
1803 }
1804
1805 /*
1806 * We're committing to trapping. TRACED should be visible before
1807 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808 * Also, transition to TRACED and updates to ->jobctl should be
1809 * atomic with respect to siglock and should be done after the arch
1810 * hook as siglock is released and regrabbed across it.
1811 */
1812 set_current_state(TASK_TRACED);
1813
1814 current->last_siginfo = info;
1815 current->exit_code = exit_code;
1816
1817 /*
1818 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1820 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821 * could be clear now. We act as if SIGCONT is received after
1822 * TASK_TRACED is entered - ignore it.
1823 */
1824 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825 gstop_done = task_participate_group_stop(current);
1826
1827 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832 /* entering a trap, clear TRAPPING */
1833 task_clear_jobctl_trapping(current);
1834
1835 spin_unlock_irq(¤t->sighand->siglock);
1836 read_lock(&tasklist_lock);
1837 if (may_ptrace_stop()) {
1838 /*
1839 * Notify parents of the stop.
1840 *
1841 * While ptraced, there are two parents - the ptracer and
1842 * the real_parent of the group_leader. The ptracer should
1843 * know about every stop while the real parent is only
1844 * interested in the completion of group stop. The states
1845 * for the two don't interact with each other. Notify
1846 * separately unless they're gonna be duplicates.
1847 */
1848 do_notify_parent_cldstop(current, true, why);
1849 if (gstop_done && ptrace_reparented(current))
1850 do_notify_parent_cldstop(current, false, why);
1851
1852 /*
1853 * Don't want to allow preemption here, because
1854 * sys_ptrace() needs this task to be inactive.
1855 *
1856 * XXX: implement read_unlock_no_resched().
1857 */
1858 preempt_disable();
1859 read_unlock(&tasklist_lock);
1860 preempt_enable_no_resched();
1861 schedule();
1862 } else {
1863 /*
1864 * By the time we got the lock, our tracer went away.
1865 * Don't drop the lock yet, another tracer may come.
1866 *
1867 * If @gstop_done, the ptracer went away between group stop
1868 * completion and here. During detach, it would have set
1869 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871 * the real parent of the group stop completion is enough.
1872 */
1873 if (gstop_done)
1874 do_notify_parent_cldstop(current, false, why);
1875
1876 __set_current_state(TASK_RUNNING);
1877 if (clear_code)
1878 current->exit_code = 0;
1879 read_unlock(&tasklist_lock);
1880 }
1881
1882 /*
1883 * While in TASK_TRACED, we were considered "frozen enough".
1884 * Now that we woke up, it's crucial if we're supposed to be
1885 * frozen that we freeze now before running anything substantial.
1886 */
1887 try_to_freeze();
1888
1889 /*
1890 * We are back. Now reacquire the siglock before touching
1891 * last_siginfo, so that we are sure to have synchronized with
1892 * any signal-sending on another CPU that wants to examine it.
1893 */
1894 spin_lock_irq(¤t->sighand->siglock);
1895 current->last_siginfo = NULL;
1896
1897 /* LISTENING can be set only during STOP traps, clear it */
1898 current->jobctl &= ~JOBCTL_LISTENING;
1899
1900 /*
1901 * Queued signals ignored us while we were stopped for tracing.
1902 * So check for any that we should take before resuming user mode.
1903 * This sets TIF_SIGPENDING, but never clears it.
1904 */
1905 recalc_sigpending_tsk(current);
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910 siginfo_t info;
1911
1912 memset(&info, 0, sizeof info);
1913 info.si_signo = signr;
1914 info.si_code = exit_code;
1915 info.si_pid = task_pid_vnr(current);
1916 info.si_uid = current_uid();
1917
1918 /* Let the debugger run. */
1919 ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
1924 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1925
1926 spin_lock_irq(¤t->sighand->siglock);
1927 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928 spin_unlock_irq(¤t->sighand->siglock);
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it. If already set, participate in the existing
1937 * group stop. If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself. Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched. The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954 __releases(¤t->sighand->siglock)
1955{
1956 struct signal_struct *sig = current->signal;
1957
1958 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960 struct task_struct *t;
1961
1962 /* signr will be recorded in task->jobctl for retries */
1963 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966 unlikely(signal_group_exit(sig)))
1967 return false;
1968 /*
1969 * There is no group stop already in progress. We must
1970 * initiate one now.
1971 *
1972 * While ptraced, a task may be resumed while group stop is
1973 * still in effect and then receive a stop signal and
1974 * initiate another group stop. This deviates from the
1975 * usual behavior as two consecutive stop signals can't
1976 * cause two group stops when !ptraced. That is why we
1977 * also check !task_is_stopped(t) below.
1978 *
1979 * The condition can be distinguished by testing whether
1980 * SIGNAL_STOP_STOPPED is already set. Don't generate
1981 * group_exit_code in such case.
1982 *
1983 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984 * an intervening stop signal is required to cause two
1985 * continued events regardless of ptrace.
1986 */
1987 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988 sig->group_exit_code = signr;
1989 else
1990 WARN_ON_ONCE(!current->ptrace);
1991
1992 sig->group_stop_count = 0;
1993
1994 if (task_set_jobctl_pending(current, signr | gstop))
1995 sig->group_stop_count++;
1996
1997 for (t = next_thread(current); t != current;
1998 t = next_thread(t)) {
1999 /*
2000 * Setting state to TASK_STOPPED for a group
2001 * stop is always done with the siglock held,
2002 * so this check has no races.
2003 */
2004 if (!task_is_stopped(t) &&
2005 task_set_jobctl_pending(t, signr | gstop)) {
2006 sig->group_stop_count++;
2007 if (likely(!(t->ptrace & PT_SEIZED)))
2008 signal_wake_up(t, 0);
2009 else
2010 ptrace_trap_notify(t);
2011 }
2012 }
2013 }
2014
2015 if (likely(!current->ptrace)) {
2016 int notify = 0;
2017
2018 /*
2019 * If there are no other threads in the group, or if there
2020 * is a group stop in progress and we are the last to stop,
2021 * report to the parent.
2022 */
2023 if (task_participate_group_stop(current))
2024 notify = CLD_STOPPED;
2025
2026 __set_current_state(TASK_STOPPED);
2027 spin_unlock_irq(¤t->sighand->siglock);
2028
2029 /*
2030 * Notify the parent of the group stop completion. Because
2031 * we're not holding either the siglock or tasklist_lock
2032 * here, ptracer may attach inbetween; however, this is for
2033 * group stop and should always be delivered to the real
2034 * parent of the group leader. The new ptracer will get
2035 * its notification when this task transitions into
2036 * TASK_TRACED.
2037 */
2038 if (notify) {
2039 read_lock(&tasklist_lock);
2040 do_notify_parent_cldstop(current, false, notify);
2041 read_unlock(&tasklist_lock);
2042 }
2043
2044 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2045 schedule();
2046 return true;
2047 } else {
2048 /*
2049 * While ptraced, group stop is handled by STOP trap.
2050 * Schedule it and let the caller deal with it.
2051 */
2052 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053 return false;
2054 }
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074 struct signal_struct *signal = current->signal;
2075 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077 if (current->ptrace & PT_SEIZED) {
2078 if (!signal->group_stop_count &&
2079 !(signal->flags & SIGNAL_STOP_STOPPED))
2080 signr = SIGTRAP;
2081 WARN_ON_ONCE(!signr);
2082 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083 CLD_STOPPED);
2084 } else {
2085 WARN_ON_ONCE(!signr);
2086 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087 current->exit_code = 0;
2088 }
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092 struct pt_regs *regs, void *cookie)
2093{
2094 ptrace_signal_deliver(regs, cookie);
2095 /*
2096 * We do not check sig_kernel_stop(signr) but set this marker
2097 * unconditionally because we do not know whether debugger will
2098 * change signr. This flag has no meaning unless we are going
2099 * to stop after return from ptrace_stop(). In this case it will
2100 * be checked in do_signal_stop(), we should only stop if it was
2101 * not cleared by SIGCONT while we were sleeping. See also the
2102 * comment in dequeue_signal().
2103 */
2104 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107 /* We're back. Did the debugger cancel the sig? */
2108 signr = current->exit_code;
2109 if (signr == 0)
2110 return signr;
2111
2112 current->exit_code = 0;
2113
2114 /*
2115 * Update the siginfo structure if the signal has
2116 * changed. If the debugger wanted something
2117 * specific in the siginfo structure then it should
2118 * have updated *info via PTRACE_SETSIGINFO.
2119 */
2120 if (signr != info->si_signo) {
2121 info->si_signo = signr;
2122 info->si_errno = 0;
2123 info->si_code = SI_USER;
2124 info->si_pid = task_pid_vnr(current->parent);
2125 info->si_uid = task_uid(current->parent);
2126 }
2127
2128 /* If the (new) signal is now blocked, requeue it. */
2129 if (sigismember(¤t->blocked, signr)) {
2130 specific_send_sig_info(signr, info, current);
2131 signr = 0;
2132 }
2133
2134 return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138 struct pt_regs *regs, void *cookie)
2139{
2140 struct sighand_struct *sighand = current->sighand;
2141 struct signal_struct *signal = current->signal;
2142 int signr;
2143
2144relock:
2145 /*
2146 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147 * While in TASK_STOPPED, we were considered "frozen enough".
2148 * Now that we woke up, it's crucial if we're supposed to be
2149 * frozen that we freeze now before running anything substantial.
2150 */
2151 try_to_freeze();
2152
2153 spin_lock_irq(&sighand->siglock);
2154 /*
2155 * Every stopped thread goes here after wakeup. Check to see if
2156 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158 */
2159 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160 int why;
2161
2162 if (signal->flags & SIGNAL_CLD_CONTINUED)
2163 why = CLD_CONTINUED;
2164 else
2165 why = CLD_STOPPED;
2166
2167 signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169 spin_unlock_irq(&sighand->siglock);
2170
2171 /*
2172 * Notify the parent that we're continuing. This event is
2173 * always per-process and doesn't make whole lot of sense
2174 * for ptracers, who shouldn't consume the state via
2175 * wait(2) either, but, for backward compatibility, notify
2176 * the ptracer of the group leader too unless it's gonna be
2177 * a duplicate.
2178 */
2179 read_lock(&tasklist_lock);
2180 do_notify_parent_cldstop(current, false, why);
2181
2182 if (ptrace_reparented(current->group_leader))
2183 do_notify_parent_cldstop(current->group_leader,
2184 true, why);
2185 read_unlock(&tasklist_lock);
2186
2187 goto relock;
2188 }
2189
2190 for (;;) {
2191 struct k_sigaction *ka;
2192
2193 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194 do_signal_stop(0))
2195 goto relock;
2196
2197 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198 do_jobctl_trap();
2199 spin_unlock_irq(&sighand->siglock);
2200 goto relock;
2201 }
2202
2203 signr = dequeue_signal(current, ¤t->blocked, info);
2204
2205 if (!signr)
2206 break; /* will return 0 */
2207
2208 if (unlikely(current->ptrace) && signr != SIGKILL) {
2209 signr = ptrace_signal(signr, info,
2210 regs, cookie);
2211 if (!signr)
2212 continue;
2213 }
2214
2215 ka = &sighand->action[signr-1];
2216
2217 /* Trace actually delivered signals. */
2218 trace_signal_deliver(signr, info, ka);
2219
2220 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2221 continue;
2222 if (ka->sa.sa_handler != SIG_DFL) {
2223 /* Run the handler. */
2224 *return_ka = *ka;
2225
2226 if (ka->sa.sa_flags & SA_ONESHOT)
2227 ka->sa.sa_handler = SIG_DFL;
2228
2229 break; /* will return non-zero "signr" value */
2230 }
2231
2232 /*
2233 * Now we are doing the default action for this signal.
2234 */
2235 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236 continue;
2237
2238 /*
2239 * Global init gets no signals it doesn't want.
2240 * Container-init gets no signals it doesn't want from same
2241 * container.
2242 *
2243 * Note that if global/container-init sees a sig_kernel_only()
2244 * signal here, the signal must have been generated internally
2245 * or must have come from an ancestor namespace. In either
2246 * case, the signal cannot be dropped.
2247 */
2248 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249 !sig_kernel_only(signr))
2250 continue;
2251
2252 if (sig_kernel_stop(signr)) {
2253 /*
2254 * The default action is to stop all threads in
2255 * the thread group. The job control signals
2256 * do nothing in an orphaned pgrp, but SIGSTOP
2257 * always works. Note that siglock needs to be
2258 * dropped during the call to is_orphaned_pgrp()
2259 * because of lock ordering with tasklist_lock.
2260 * This allows an intervening SIGCONT to be posted.
2261 * We need to check for that and bail out if necessary.
2262 */
2263 if (signr != SIGSTOP) {
2264 spin_unlock_irq(&sighand->siglock);
2265
2266 /* signals can be posted during this window */
2267
2268 if (is_current_pgrp_orphaned())
2269 goto relock;
2270
2271 spin_lock_irq(&sighand->siglock);
2272 }
2273
2274 if (likely(do_signal_stop(info->si_signo))) {
2275 /* It released the siglock. */
2276 goto relock;
2277 }
2278
2279 /*
2280 * We didn't actually stop, due to a race
2281 * with SIGCONT or something like that.
2282 */
2283 continue;
2284 }
2285
2286 spin_unlock_irq(&sighand->siglock);
2287
2288 /*
2289 * Anything else is fatal, maybe with a core dump.
2290 */
2291 current->flags |= PF_SIGNALED;
2292
2293 if (sig_kernel_coredump(signr)) {
2294 if (print_fatal_signals)
2295 print_fatal_signal(regs, info->si_signo);
2296 /*
2297 * If it was able to dump core, this kills all
2298 * other threads in the group and synchronizes with
2299 * their demise. If we lost the race with another
2300 * thread getting here, it set group_exit_code
2301 * first and our do_group_exit call below will use
2302 * that value and ignore the one we pass it.
2303 */
2304 do_coredump(info->si_signo, info->si_signo, regs);
2305 }
2306
2307 /*
2308 * Death signals, no core dump.
2309 */
2310 do_group_exit(info->si_signo);
2311 /* NOTREACHED */
2312 }
2313 spin_unlock_irq(&sighand->siglock);
2314 return signr;
2315}
2316
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324 sigset_t retarget;
2325 struct task_struct *t;
2326
2327 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328 if (sigisemptyset(&retarget))
2329 return;
2330
2331 t = tsk;
2332 while_each_thread(tsk, t) {
2333 if (t->flags & PF_EXITING)
2334 continue;
2335
2336 if (!has_pending_signals(&retarget, &t->blocked))
2337 continue;
2338 /* Remove the signals this thread can handle. */
2339 sigandsets(&retarget, &retarget, &t->blocked);
2340
2341 if (!signal_pending(t))
2342 signal_wake_up(t, 0);
2343
2344 if (sigisemptyset(&retarget))
2345 break;
2346 }
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351 int group_stop = 0;
2352 sigset_t unblocked;
2353
2354 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355 tsk->flags |= PF_EXITING;
2356 return;
2357 }
2358
2359 spin_lock_irq(&tsk->sighand->siglock);
2360 /*
2361 * From now this task is not visible for group-wide signals,
2362 * see wants_signal(), do_signal_stop().
2363 */
2364 tsk->flags |= PF_EXITING;
2365 if (!signal_pending(tsk))
2366 goto out;
2367
2368 unblocked = tsk->blocked;
2369 signotset(&unblocked);
2370 retarget_shared_pending(tsk, &unblocked);
2371
2372 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373 task_participate_group_stop(tsk))
2374 group_stop = CLD_STOPPED;
2375out:
2376 spin_unlock_irq(&tsk->sighand->siglock);
2377
2378 /*
2379 * If group stop has completed, deliver the notification. This
2380 * should always go to the real parent of the group leader.
2381 */
2382 if (unlikely(group_stop)) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(tsk, false, group_stop);
2385 read_unlock(&tasklist_lock);
2386 }
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 * sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409 struct restart_block *restart = ¤t_thread_info()->restart_block;
2410 return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415 return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421 sigset_t newblocked;
2422 /* A set of now blocked but previously unblocked signals. */
2423 sigandnsets(&newblocked, newset, ¤t->blocked);
2424 retarget_shared_pending(tsk, &newblocked);
2425 }
2426 tsk->blocked = *newset;
2427 recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
2438{
2439 struct task_struct *tsk = current;
2440
2441 spin_lock_irq(&tsk->sighand->siglock);
2442 __set_task_blocked(tsk, newset);
2443 spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456 struct task_struct *tsk = current;
2457 sigset_t newset;
2458
2459 /* Lockless, only current can change ->blocked, never from irq */
2460 if (oldset)
2461 *oldset = tsk->blocked;
2462
2463 switch (how) {
2464 case SIG_BLOCK:
2465 sigorsets(&newset, &tsk->blocked, set);
2466 break;
2467 case SIG_UNBLOCK:
2468 sigandnsets(&newset, &tsk->blocked, set);
2469 break;
2470 case SIG_SETMASK:
2471 newset = *set;
2472 break;
2473 default:
2474 return -EINVAL;
2475 }
2476
2477 set_current_blocked(&newset);
2478 return 0;
2479}
2480
2481/**
2482 * sys_rt_sigprocmask - change the list of currently blocked signals
2483 * @how: whether to add, remove, or set signals
2484 * @nset: stores pending signals
2485 * @oset: previous value of signal mask if non-null
2486 * @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489 sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491 sigset_t old_set, new_set;
2492 int error;
2493
2494 /* XXX: Don't preclude handling different sized sigset_t's. */
2495 if (sigsetsize != sizeof(sigset_t))
2496 return -EINVAL;
2497
2498 old_set = current->blocked;
2499
2500 if (nset) {
2501 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502 return -EFAULT;
2503 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505 error = sigprocmask(how, &new_set, NULL);
2506 if (error)
2507 return error;
2508 }
2509
2510 if (oset) {
2511 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512 return -EFAULT;
2513 }
2514
2515 return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
2519{
2520 long error = -EINVAL;
2521 sigset_t pending;
2522
2523 if (sigsetsize > sizeof(sigset_t))
2524 goto out;
2525
2526 spin_lock_irq(¤t->sighand->siglock);
2527 sigorsets(&pending, ¤t->pending.signal,
2528 ¤t->signal->shared_pending.signal);
2529 spin_unlock_irq(¤t->sighand->siglock);
2530
2531 /* Outside the lock because only this thread touches it. */
2532 sigandsets(&pending, ¤t->blocked, &pending);
2533
2534 error = -EFAULT;
2535 if (!copy_to_user(set, &pending, sigsetsize))
2536 error = 0;
2537
2538out:
2539 return error;
2540}
2541
2542/**
2543 * sys_rt_sigpending - examine a pending signal that has been raised
2544 * while blocked
2545 * @set: stores pending signals
2546 * @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550 return do_sigpending(set, sigsetsize);
2551}
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557 int err;
2558
2559 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560 return -EFAULT;
2561 if (from->si_code < 0)
2562 return __copy_to_user(to, from, sizeof(siginfo_t))
2563 ? -EFAULT : 0;
2564 /*
2565 * If you change siginfo_t structure, please be sure
2566 * this code is fixed accordingly.
2567 * Please remember to update the signalfd_copyinfo() function
2568 * inside fs/signalfd.c too, in case siginfo_t changes.
2569 * It should never copy any pad contained in the structure
2570 * to avoid security leaks, but must copy the generic
2571 * 3 ints plus the relevant union member.
2572 */
2573 err = __put_user(from->si_signo, &to->si_signo);
2574 err |= __put_user(from->si_errno, &to->si_errno);
2575 err |= __put_user((short)from->si_code, &to->si_code);
2576 switch (from->si_code & __SI_MASK) {
2577 case __SI_KILL:
2578 err |= __put_user(from->si_pid, &to->si_pid);
2579 err |= __put_user(from->si_uid, &to->si_uid);
2580 break;
2581 case __SI_TIMER:
2582 err |= __put_user(from->si_tid, &to->si_tid);
2583 err |= __put_user(from->si_overrun, &to->si_overrun);
2584 err |= __put_user(from->si_ptr, &to->si_ptr);
2585 break;
2586 case __SI_POLL:
2587 err |= __put_user(from->si_band, &to->si_band);
2588 err |= __put_user(from->si_fd, &to->si_fd);
2589 break;
2590 case __SI_FAULT:
2591 err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593 err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596 /*
2597 * Other callers might not initialize the si_lsb field,
2598 * so check explicitly for the right codes here.
2599 */
2600 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2601 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
2603 break;
2604 case __SI_CHLD:
2605 err |= __put_user(from->si_pid, &to->si_pid);
2606 err |= __put_user(from->si_uid, &to->si_uid);
2607 err |= __put_user(from->si_status, &to->si_status);
2608 err |= __put_user(from->si_utime, &to->si_utime);
2609 err |= __put_user(from->si_stime, &to->si_stime);
2610 break;
2611 case __SI_RT: /* This is not generated by the kernel as of now. */
2612 case __SI_MESGQ: /* But this is */
2613 err |= __put_user(from->si_pid, &to->si_pid);
2614 err |= __put_user(from->si_uid, &to->si_uid);
2615 err |= __put_user(from->si_ptr, &to->si_ptr);
2616 break;
2617 default: /* this is just in case for now ... */
2618 err |= __put_user(from->si_pid, &to->si_pid);
2619 err |= __put_user(from->si_uid, &to->si_uid);
2620 break;
2621 }
2622 return err;
2623}
2624
2625#endif
2626
2627/**
2628 * do_sigtimedwait - wait for queued signals specified in @which
2629 * @which: queued signals to wait for
2630 * @info: if non-null, the signal's siginfo is returned here
2631 * @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634 const struct timespec *ts)
2635{
2636 struct task_struct *tsk = current;
2637 long timeout = MAX_SCHEDULE_TIMEOUT;
2638 sigset_t mask = *which;
2639 int sig;
2640
2641 if (ts) {
2642 if (!timespec_valid(ts))
2643 return -EINVAL;
2644 timeout = timespec_to_jiffies(ts);
2645 /*
2646 * We can be close to the next tick, add another one
2647 * to ensure we will wait at least the time asked for.
2648 */
2649 if (ts->tv_sec || ts->tv_nsec)
2650 timeout++;
2651 }
2652
2653 /*
2654 * Invert the set of allowed signals to get those we want to block.
2655 */
2656 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657 signotset(&mask);
2658
2659 spin_lock_irq(&tsk->sighand->siglock);
2660 sig = dequeue_signal(tsk, &mask, info);
2661 if (!sig && timeout) {
2662 /*
2663 * None ready, temporarily unblock those we're interested
2664 * while we are sleeping in so that we'll be awakened when
2665 * they arrive. Unblocking is always fine, we can avoid
2666 * set_current_blocked().
2667 */
2668 tsk->real_blocked = tsk->blocked;
2669 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670 recalc_sigpending();
2671 spin_unlock_irq(&tsk->sighand->siglock);
2672
2673 timeout = schedule_timeout_interruptible(timeout);
2674
2675 spin_lock_irq(&tsk->sighand->siglock);
2676 __set_task_blocked(tsk, &tsk->real_blocked);
2677 siginitset(&tsk->real_blocked, 0);
2678 sig = dequeue_signal(tsk, &mask, info);
2679 }
2680 spin_unlock_irq(&tsk->sighand->siglock);
2681
2682 if (sig)
2683 return sig;
2684 return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 * in @uthese
2690 * @uthese: queued signals to wait for
2691 * @uinfo: if non-null, the signal's siginfo is returned here
2692 * @uts: upper bound on process time suspension
2693 * @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697 size_t, sigsetsize)
2698{
2699 sigset_t these;
2700 struct timespec ts;
2701 siginfo_t info;
2702 int ret;
2703
2704 /* XXX: Don't preclude handling different sized sigset_t's. */
2705 if (sigsetsize != sizeof(sigset_t))
2706 return -EINVAL;
2707
2708 if (copy_from_user(&these, uthese, sizeof(these)))
2709 return -EFAULT;
2710
2711 if (uts) {
2712 if (copy_from_user(&ts, uts, sizeof(ts)))
2713 return -EFAULT;
2714 }
2715
2716 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718 if (ret > 0 && uinfo) {
2719 if (copy_siginfo_to_user(uinfo, &info))
2720 ret = -EFAULT;
2721 }
2722
2723 return ret;
2724}
2725
2726/**
2727 * sys_kill - send a signal to a process
2728 * @pid: the PID of the process
2729 * @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733 struct siginfo info;
2734
2735 info.si_signo = sig;
2736 info.si_errno = 0;
2737 info.si_code = SI_USER;
2738 info.si_pid = task_tgid_vnr(current);
2739 info.si_uid = current_uid();
2740
2741 return kill_something_info(sig, &info, pid);
2742}
2743
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747 struct task_struct *p;
2748 int error = -ESRCH;
2749
2750 rcu_read_lock();
2751 p = find_task_by_vpid(pid);
2752 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753 error = check_kill_permission(sig, info, p);
2754 /*
2755 * The null signal is a permissions and process existence
2756 * probe. No signal is actually delivered.
2757 */
2758 if (!error && sig) {
2759 error = do_send_sig_info(sig, info, p, false);
2760 /*
2761 * If lock_task_sighand() failed we pretend the task
2762 * dies after receiving the signal. The window is tiny,
2763 * and the signal is private anyway.
2764 */
2765 if (unlikely(error == -ESRCH))
2766 error = 0;
2767 }
2768 }
2769 rcu_read_unlock();
2770
2771 return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776 struct siginfo info;
2777
2778 info.si_signo = sig;
2779 info.si_errno = 0;
2780 info.si_code = SI_TKILL;
2781 info.si_pid = task_tgid_vnr(current);
2782 info.si_uid = current_uid();
2783
2784 return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 * sys_tgkill - send signal to one specific thread
2789 * @tgid: the thread group ID of the thread
2790 * @pid: the PID of the thread
2791 * @sig: signal to be sent
2792 *
2793 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 * exists but it's not belonging to the target process anymore. This
2795 * method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799 /* This is only valid for single tasks */
2800 if (pid <= 0 || tgid <= 0)
2801 return -EINVAL;
2802
2803 return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 * sys_tkill - send signal to one specific task
2808 * @pid: the PID of the task
2809 * @sig: signal to be sent
2810 *
2811 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815 /* This is only valid for single tasks */
2816 if (pid <= 0)
2817 return -EINVAL;
2818
2819 return do_tkill(0, pid, sig);
2820}
2821
2822/**
2823 * sys_rt_sigqueueinfo - send signal information to a signal
2824 * @pid: the PID of the thread
2825 * @sig: signal to be sent
2826 * @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829 siginfo_t __user *, uinfo)
2830{
2831 siginfo_t info;
2832
2833 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834 return -EFAULT;
2835
2836 /* Not even root can pretend to send signals from the kernel.
2837 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838 */
2839 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840 /* We used to allow any < 0 si_code */
2841 WARN_ON_ONCE(info.si_code < 0);
2842 return -EPERM;
2843 }
2844 info.si_signo = sig;
2845
2846 /* POSIX.1b doesn't mention process groups. */
2847 return kill_proc_info(sig, &info, pid);
2848}
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852 /* This is only valid for single tasks */
2853 if (pid <= 0 || tgid <= 0)
2854 return -EINVAL;
2855
2856 /* Not even root can pretend to send signals from the kernel.
2857 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858 */
2859 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860 /* We used to allow any < 0 si_code */
2861 WARN_ON_ONCE(info->si_code < 0);
2862 return -EPERM;
2863 }
2864 info->si_signo = sig;
2865
2866 return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870 siginfo_t __user *, uinfo)
2871{
2872 siginfo_t info;
2873
2874 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875 return -EFAULT;
2876
2877 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878}
2879
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882 struct task_struct *t = current;
2883 struct k_sigaction *k;
2884 sigset_t mask;
2885
2886 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887 return -EINVAL;
2888
2889 k = &t->sighand->action[sig-1];
2890
2891 spin_lock_irq(¤t->sighand->siglock);
2892 if (oact)
2893 *oact = *k;
2894
2895 if (act) {
2896 sigdelsetmask(&act->sa.sa_mask,
2897 sigmask(SIGKILL) | sigmask(SIGSTOP));
2898 *k = *act;
2899 /*
2900 * POSIX 3.3.1.3:
2901 * "Setting a signal action to SIG_IGN for a signal that is
2902 * pending shall cause the pending signal to be discarded,
2903 * whether or not it is blocked."
2904 *
2905 * "Setting a signal action to SIG_DFL for a signal that is
2906 * pending and whose default action is to ignore the signal
2907 * (for example, SIGCHLD), shall cause the pending signal to
2908 * be discarded, whether or not it is blocked"
2909 */
2910 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911 sigemptyset(&mask);
2912 sigaddset(&mask, sig);
2913 rm_from_queue_full(&mask, &t->signal->shared_pending);
2914 do {
2915 rm_from_queue_full(&mask, &t->pending);
2916 t = next_thread(t);
2917 } while (t != current);
2918 }
2919 }
2920
2921 spin_unlock_irq(¤t->sighand->siglock);
2922 return 0;
2923}
2924
2925int
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927{
2928 stack_t oss;
2929 int error;
2930
2931 oss.ss_sp = (void __user *) current->sas_ss_sp;
2932 oss.ss_size = current->sas_ss_size;
2933 oss.ss_flags = sas_ss_flags(sp);
2934
2935 if (uss) {
2936 void __user *ss_sp;
2937 size_t ss_size;
2938 int ss_flags;
2939
2940 error = -EFAULT;
2941 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942 goto out;
2943 error = __get_user(ss_sp, &uss->ss_sp) |
2944 __get_user(ss_flags, &uss->ss_flags) |
2945 __get_user(ss_size, &uss->ss_size);
2946 if (error)
2947 goto out;
2948
2949 error = -EPERM;
2950 if (on_sig_stack(sp))
2951 goto out;
2952
2953 error = -EINVAL;
2954 /*
2955 * Note - this code used to test ss_flags incorrectly:
2956 * old code may have been written using ss_flags==0
2957 * to mean ss_flags==SS_ONSTACK (as this was the only
2958 * way that worked) - this fix preserves that older
2959 * mechanism.
2960 */
2961 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962 goto out;
2963
2964 if (ss_flags == SS_DISABLE) {
2965 ss_size = 0;
2966 ss_sp = NULL;
2967 } else {
2968 error = -ENOMEM;
2969 if (ss_size < MINSIGSTKSZ)
2970 goto out;
2971 }
2972
2973 current->sas_ss_sp = (unsigned long) ss_sp;
2974 current->sas_ss_size = ss_size;
2975 }
2976
2977 error = 0;
2978 if (uoss) {
2979 error = -EFAULT;
2980 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981 goto out;
2982 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983 __put_user(oss.ss_size, &uoss->ss_size) |
2984 __put_user(oss.ss_flags, &uoss->ss_flags);
2985 }
2986
2987out:
2988 return error;
2989}
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 * sys_sigpending - examine pending signals
2995 * @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999 return do_sigpending(set, sizeof(*set));
3000}
3001
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 * sys_sigprocmask - examine and change blocked signals
3007 * @how: whether to add, remove, or set signals
3008 * @nset: signals to add or remove (if non-null)
3009 * @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016 old_sigset_t __user *, oset)
3017{
3018 old_sigset_t old_set, new_set;
3019 sigset_t new_blocked;
3020
3021 old_set = current->blocked.sig[0];
3022
3023 if (nset) {
3024 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025 return -EFAULT;
3026 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028 new_blocked = current->blocked;
3029
3030 switch (how) {
3031 case SIG_BLOCK:
3032 sigaddsetmask(&new_blocked, new_set);
3033 break;
3034 case SIG_UNBLOCK:
3035 sigdelsetmask(&new_blocked, new_set);
3036 break;
3037 case SIG_SETMASK:
3038 new_blocked.sig[0] = new_set;
3039 break;
3040 default:
3041 return -EINVAL;
3042 }
3043
3044 set_current_blocked(&new_blocked);
3045 }
3046
3047 if (oset) {
3048 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049 return -EFAULT;
3050 }
3051
3052 return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 * sys_rt_sigaction - alter an action taken by a process
3059 * @sig: signal to be sent
3060 * @act: new sigaction
3061 * @oact: used to save the previous sigaction
3062 * @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065 const struct sigaction __user *, act,
3066 struct sigaction __user *, oact,
3067 size_t, sigsetsize)
3068{
3069 struct k_sigaction new_sa, old_sa;
3070 int ret = -EINVAL;
3071
3072 /* XXX: Don't preclude handling different sized sigset_t's. */
3073 if (sigsetsize != sizeof(sigset_t))
3074 goto out;
3075
3076 if (act) {
3077 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078 return -EFAULT;
3079 }
3080
3081 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083 if (!ret && oact) {
3084 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085 return -EFAULT;
3086 }
3087out:
3088 return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094/*
3095 * For backwards compatibility. Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099 /* SMP safe */
3100 return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105 int old = current->blocked.sig[0];
3106 sigset_t newset;
3107
3108 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109 set_current_blocked(&newset);
3110
3111 return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility. Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121 struct k_sigaction new_sa, old_sa;
3122 int ret;
3123
3124 new_sa.sa.sa_handler = handler;
3125 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126 sigemptyset(&new_sa.sa.sa_mask);
3127
3128 ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138 while (!signal_pending(current)) {
3139 current->state = TASK_INTERRUPTIBLE;
3140 schedule();
3141 }
3142 return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3148/**
3149 * sys_rt_sigsuspend - replace the signal mask for a value with the
3150 * @unewset value until a signal is received
3151 * @unewset: new signal mask value
3152 * @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156 sigset_t newset;
3157
3158 /* XXX: Don't preclude handling different sized sigset_t's. */
3159 if (sigsetsize != sizeof(sigset_t))
3160 return -EINVAL;
3161
3162 if (copy_from_user(&newset, unewset, sizeof(newset)))
3163 return -EFAULT;
3164 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3165
3166 current->saved_sigmask = current->blocked;
3167 set_current_blocked(&newset);
3168
3169 current->state = TASK_INTERRUPTIBLE;
3170 schedule();
3171 set_restore_sigmask();
3172 return -ERESTARTNOHAND;
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178 return NULL;
3179}
3180
3181void __init signals_init(void)
3182{
3183 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals. This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197 static struct task_struct *kdb_prev_t;
3198 int sig, new_t;
3199 if (!spin_trylock(&t->sighand->siglock)) {
3200 kdb_printf("Can't do kill command now.\n"
3201 "The sigmask lock is held somewhere else in "
3202 "kernel, try again later\n");
3203 return;
3204 }
3205 spin_unlock(&t->sighand->siglock);
3206 new_t = kdb_prev_t != t;
3207 kdb_prev_t = t;
3208 if (t->state != TASK_RUNNING && new_t) {
3209 kdb_printf("Process is not RUNNING, sending a signal from "
3210 "kdb risks deadlock\n"
3211 "on the run queue locks. "
3212 "The signal has _not_ been sent.\n"
3213 "Reissue the kill command if you want to risk "
3214 "the deadlock.\n");
3215 return;
3216 }
3217 sig = info->si_signo;
3218 if (send_sig_info(sig, info, t))
3219 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220 sig, t->pid);
3221 else
3222 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif /* CONFIG_KGDB_KDB */