Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*  SuperH Ethernet device driver
   3 *
   4 *  Copyright (C) 2014 Renesas Electronics Corporation
   5 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
   6 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
   7 *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
   8 *  Copyright (C) 2014 Codethink Limited
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/spinlock.h>
  14#include <linux/interrupt.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/etherdevice.h>
  17#include <linux/delay.h>
  18#include <linux/platform_device.h>
  19#include <linux/mdio-bitbang.h>
  20#include <linux/netdevice.h>
  21#include <linux/of.h>
 
 
  22#include <linux/of_net.h>
  23#include <linux/phy.h>
  24#include <linux/cache.h>
  25#include <linux/io.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/slab.h>
  28#include <linux/ethtool.h>
  29#include <linux/if_vlan.h>
  30#include <linux/sh_eth.h>
  31#include <linux/of_mdio.h>
  32
  33#include "sh_eth.h"
  34
  35#define SH_ETH_DEF_MSG_ENABLE \
  36		(NETIF_MSG_LINK	| \
  37		NETIF_MSG_TIMER	| \
  38		NETIF_MSG_RX_ERR| \
  39		NETIF_MSG_TX_ERR)
  40
  41#define SH_ETH_OFFSET_INVALID	((u16)~0)
  42
  43#define SH_ETH_OFFSET_DEFAULTS			\
  44	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
  45
  46/* use some intentionally tricky logic here to initialize the whole struct to
  47 * 0xffff, but then override certain fields, requiring us to indicate that we
  48 * "know" that there are overrides in this structure, and we'll need to disable
  49 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but
  50 * the macros available to do this only define GCC 8.
  51 */
  52__diag_push();
  53__diag_ignore(GCC, 8, "-Woverride-init",
  54	      "logic to initialize all and then override some is OK");
  55static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
  56	SH_ETH_OFFSET_DEFAULTS,
  57
  58	[EDSR]		= 0x0000,
  59	[EDMR]		= 0x0400,
  60	[EDTRR]		= 0x0408,
  61	[EDRRR]		= 0x0410,
  62	[EESR]		= 0x0428,
  63	[EESIPR]	= 0x0430,
  64	[TDLAR]		= 0x0010,
  65	[TDFAR]		= 0x0014,
  66	[TDFXR]		= 0x0018,
  67	[TDFFR]		= 0x001c,
  68	[RDLAR]		= 0x0030,
  69	[RDFAR]		= 0x0034,
  70	[RDFXR]		= 0x0038,
  71	[RDFFR]		= 0x003c,
  72	[TRSCER]	= 0x0438,
  73	[RMFCR]		= 0x0440,
  74	[TFTR]		= 0x0448,
  75	[FDR]		= 0x0450,
  76	[RMCR]		= 0x0458,
  77	[RPADIR]	= 0x0460,
  78	[FCFTR]		= 0x0468,
  79	[CSMR]		= 0x04E4,
  80
  81	[ECMR]		= 0x0500,
  82	[ECSR]		= 0x0510,
  83	[ECSIPR]	= 0x0518,
  84	[PIR]		= 0x0520,
  85	[PSR]		= 0x0528,
  86	[PIPR]		= 0x052c,
  87	[RFLR]		= 0x0508,
  88	[APR]		= 0x0554,
  89	[MPR]		= 0x0558,
  90	[PFTCR]		= 0x055c,
  91	[PFRCR]		= 0x0560,
  92	[TPAUSER]	= 0x0564,
  93	[GECMR]		= 0x05b0,
  94	[BCULR]		= 0x05b4,
  95	[MAHR]		= 0x05c0,
  96	[MALR]		= 0x05c8,
  97	[TROCR]		= 0x0700,
  98	[CDCR]		= 0x0708,
  99	[LCCR]		= 0x0710,
 100	[CEFCR]		= 0x0740,
 101	[FRECR]		= 0x0748,
 102	[TSFRCR]	= 0x0750,
 103	[TLFRCR]	= 0x0758,
 104	[RFCR]		= 0x0760,
 105	[CERCR]		= 0x0768,
 106	[CEECR]		= 0x0770,
 107	[MAFCR]		= 0x0778,
 108	[RMII_MII]	= 0x0790,
 109
 110	[ARSTR]		= 0x0000,
 111	[TSU_CTRST]	= 0x0004,
 112	[TSU_FWEN0]	= 0x0010,
 113	[TSU_FWEN1]	= 0x0014,
 114	[TSU_FCM]	= 0x0018,
 115	[TSU_BSYSL0]	= 0x0020,
 116	[TSU_BSYSL1]	= 0x0024,
 117	[TSU_PRISL0]	= 0x0028,
 118	[TSU_PRISL1]	= 0x002c,
 119	[TSU_FWSL0]	= 0x0030,
 120	[TSU_FWSL1]	= 0x0034,
 121	[TSU_FWSLC]	= 0x0038,
 122	[TSU_QTAGM0]	= 0x0040,
 123	[TSU_QTAGM1]	= 0x0044,
 124	[TSU_FWSR]	= 0x0050,
 125	[TSU_FWINMK]	= 0x0054,
 126	[TSU_ADQT0]	= 0x0048,
 127	[TSU_ADQT1]	= 0x004c,
 128	[TSU_VTAG0]	= 0x0058,
 129	[TSU_VTAG1]	= 0x005c,
 130	[TSU_ADSBSY]	= 0x0060,
 131	[TSU_TEN]	= 0x0064,
 132	[TSU_POST1]	= 0x0070,
 133	[TSU_POST2]	= 0x0074,
 134	[TSU_POST3]	= 0x0078,
 135	[TSU_POST4]	= 0x007c,
 136	[TSU_ADRH0]	= 0x0100,
 137
 138	[TXNLCR0]	= 0x0080,
 139	[TXALCR0]	= 0x0084,
 140	[RXNLCR0]	= 0x0088,
 141	[RXALCR0]	= 0x008c,
 142	[FWNLCR0]	= 0x0090,
 143	[FWALCR0]	= 0x0094,
 144	[TXNLCR1]	= 0x00a0,
 145	[TXALCR1]	= 0x00a4,
 146	[RXNLCR1]	= 0x00a8,
 147	[RXALCR1]	= 0x00ac,
 148	[FWNLCR1]	= 0x00b0,
 149	[FWALCR1]	= 0x00b4,
 150};
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
 153	SH_ETH_OFFSET_DEFAULTS,
 154
 155	[ECMR]		= 0x0300,
 156	[RFLR]		= 0x0308,
 157	[ECSR]		= 0x0310,
 158	[ECSIPR]	= 0x0318,
 159	[PIR]		= 0x0320,
 160	[PSR]		= 0x0328,
 161	[RDMLR]		= 0x0340,
 162	[IPGR]		= 0x0350,
 163	[APR]		= 0x0354,
 164	[MPR]		= 0x0358,
 165	[RFCF]		= 0x0360,
 166	[TPAUSER]	= 0x0364,
 167	[TPAUSECR]	= 0x0368,
 168	[MAHR]		= 0x03c0,
 169	[MALR]		= 0x03c8,
 170	[TROCR]		= 0x03d0,
 171	[CDCR]		= 0x03d4,
 172	[LCCR]		= 0x03d8,
 173	[CNDCR]		= 0x03dc,
 174	[CEFCR]		= 0x03e4,
 175	[FRECR]		= 0x03e8,
 176	[TSFRCR]	= 0x03ec,
 177	[TLFRCR]	= 0x03f0,
 178	[RFCR]		= 0x03f4,
 179	[MAFCR]		= 0x03f8,
 180
 181	[EDMR]		= 0x0200,
 182	[EDTRR]		= 0x0208,
 183	[EDRRR]		= 0x0210,
 184	[TDLAR]		= 0x0218,
 185	[RDLAR]		= 0x0220,
 186	[EESR]		= 0x0228,
 187	[EESIPR]	= 0x0230,
 188	[TRSCER]	= 0x0238,
 189	[RMFCR]		= 0x0240,
 190	[TFTR]		= 0x0248,
 191	[FDR]		= 0x0250,
 192	[RMCR]		= 0x0258,
 193	[TFUCR]		= 0x0264,
 194	[RFOCR]		= 0x0268,
 195	[RMIIMODE]      = 0x026c,
 196	[FCFTR]		= 0x0270,
 197	[TRIMD]		= 0x027c,
 198};
 199
 200static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
 201	SH_ETH_OFFSET_DEFAULTS,
 202
 203	[ECMR]		= 0x0100,
 204	[RFLR]		= 0x0108,
 205	[ECSR]		= 0x0110,
 206	[ECSIPR]	= 0x0118,
 207	[PIR]		= 0x0120,
 208	[PSR]		= 0x0128,
 209	[RDMLR]		= 0x0140,
 210	[IPGR]		= 0x0150,
 211	[APR]		= 0x0154,
 212	[MPR]		= 0x0158,
 213	[TPAUSER]	= 0x0164,
 214	[RFCF]		= 0x0160,
 215	[TPAUSECR]	= 0x0168,
 216	[BCFRR]		= 0x016c,
 217	[MAHR]		= 0x01c0,
 218	[MALR]		= 0x01c8,
 219	[TROCR]		= 0x01d0,
 220	[CDCR]		= 0x01d4,
 221	[LCCR]		= 0x01d8,
 222	[CNDCR]		= 0x01dc,
 223	[CEFCR]		= 0x01e4,
 224	[FRECR]		= 0x01e8,
 225	[TSFRCR]	= 0x01ec,
 226	[TLFRCR]	= 0x01f0,
 227	[RFCR]		= 0x01f4,
 228	[MAFCR]		= 0x01f8,
 229	[RTRATE]	= 0x01fc,
 230
 231	[EDMR]		= 0x0000,
 232	[EDTRR]		= 0x0008,
 233	[EDRRR]		= 0x0010,
 234	[TDLAR]		= 0x0018,
 235	[RDLAR]		= 0x0020,
 236	[EESR]		= 0x0028,
 237	[EESIPR]	= 0x0030,
 238	[TRSCER]	= 0x0038,
 239	[RMFCR]		= 0x0040,
 240	[TFTR]		= 0x0048,
 241	[FDR]		= 0x0050,
 242	[RMCR]		= 0x0058,
 243	[TFUCR]		= 0x0064,
 244	[RFOCR]		= 0x0068,
 245	[FCFTR]		= 0x0070,
 246	[RPADIR]	= 0x0078,
 247	[TRIMD]		= 0x007c,
 248	[RBWAR]		= 0x00c8,
 249	[RDFAR]		= 0x00cc,
 250	[TBRAR]		= 0x00d4,
 251	[TDFAR]		= 0x00d8,
 252};
 253
 254static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
 255	SH_ETH_OFFSET_DEFAULTS,
 256
 257	[EDMR]		= 0x0000,
 258	[EDTRR]		= 0x0004,
 259	[EDRRR]		= 0x0008,
 260	[TDLAR]		= 0x000c,
 261	[RDLAR]		= 0x0010,
 262	[EESR]		= 0x0014,
 263	[EESIPR]	= 0x0018,
 264	[TRSCER]	= 0x001c,
 265	[RMFCR]		= 0x0020,
 266	[TFTR]		= 0x0024,
 267	[FDR]		= 0x0028,
 268	[RMCR]		= 0x002c,
 269	[EDOCR]		= 0x0030,
 270	[FCFTR]		= 0x0034,
 271	[RPADIR]	= 0x0038,
 272	[TRIMD]		= 0x003c,
 273	[RBWAR]		= 0x0040,
 274	[RDFAR]		= 0x0044,
 275	[TBRAR]		= 0x004c,
 276	[TDFAR]		= 0x0050,
 277
 278	[ECMR]		= 0x0160,
 279	[ECSR]		= 0x0164,
 280	[ECSIPR]	= 0x0168,
 281	[PIR]		= 0x016c,
 282	[MAHR]		= 0x0170,
 283	[MALR]		= 0x0174,
 284	[RFLR]		= 0x0178,
 285	[PSR]		= 0x017c,
 286	[TROCR]		= 0x0180,
 287	[CDCR]		= 0x0184,
 288	[LCCR]		= 0x0188,
 289	[CNDCR]		= 0x018c,
 290	[CEFCR]		= 0x0194,
 291	[FRECR]		= 0x0198,
 292	[TSFRCR]	= 0x019c,
 293	[TLFRCR]	= 0x01a0,
 294	[RFCR]		= 0x01a4,
 295	[MAFCR]		= 0x01a8,
 296	[IPGR]		= 0x01b4,
 297	[APR]		= 0x01b8,
 298	[MPR]		= 0x01bc,
 299	[TPAUSER]	= 0x01c4,
 300	[BCFR]		= 0x01cc,
 301
 302	[ARSTR]		= 0x0000,
 303	[TSU_CTRST]	= 0x0004,
 304	[TSU_FWEN0]	= 0x0010,
 305	[TSU_FWEN1]	= 0x0014,
 306	[TSU_FCM]	= 0x0018,
 307	[TSU_BSYSL0]	= 0x0020,
 308	[TSU_BSYSL1]	= 0x0024,
 309	[TSU_PRISL0]	= 0x0028,
 310	[TSU_PRISL1]	= 0x002c,
 311	[TSU_FWSL0]	= 0x0030,
 312	[TSU_FWSL1]	= 0x0034,
 313	[TSU_FWSLC]	= 0x0038,
 314	[TSU_QTAGM0]	= 0x0040,
 315	[TSU_QTAGM1]	= 0x0044,
 316	[TSU_ADQT0]	= 0x0048,
 317	[TSU_ADQT1]	= 0x004c,
 318	[TSU_FWSR]	= 0x0050,
 319	[TSU_FWINMK]	= 0x0054,
 320	[TSU_ADSBSY]	= 0x0060,
 321	[TSU_TEN]	= 0x0064,
 322	[TSU_POST1]	= 0x0070,
 323	[TSU_POST2]	= 0x0074,
 324	[TSU_POST3]	= 0x0078,
 325	[TSU_POST4]	= 0x007c,
 326
 327	[TXNLCR0]	= 0x0080,
 328	[TXALCR0]	= 0x0084,
 329	[RXNLCR0]	= 0x0088,
 330	[RXALCR0]	= 0x008c,
 331	[FWNLCR0]	= 0x0090,
 332	[FWALCR0]	= 0x0094,
 333	[TXNLCR1]	= 0x00a0,
 334	[TXALCR1]	= 0x00a4,
 335	[RXNLCR1]	= 0x00a8,
 336	[RXALCR1]	= 0x00ac,
 337	[FWNLCR1]	= 0x00b0,
 338	[FWALCR1]	= 0x00b4,
 339
 340	[TSU_ADRH0]	= 0x0100,
 341};
 342__diag_pop();
 343
 344static void sh_eth_rcv_snd_disable(struct net_device *ndev);
 345static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
 346
 347static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
 348{
 349	struct sh_eth_private *mdp = netdev_priv(ndev);
 350	u16 offset = mdp->reg_offset[enum_index];
 351
 352	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 353		return;
 354
 355	iowrite32(data, mdp->addr + offset);
 356}
 357
 358static u32 sh_eth_read(struct net_device *ndev, int enum_index)
 359{
 360	struct sh_eth_private *mdp = netdev_priv(ndev);
 361	u16 offset = mdp->reg_offset[enum_index];
 362
 363	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 364		return ~0U;
 365
 366	return ioread32(mdp->addr + offset);
 367}
 368
 369static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
 370			  u32 set)
 371{
 372	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
 373		     enum_index);
 374}
 375
 376static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
 377{
 378	return mdp->reg_offset[enum_index];
 379}
 380
 381static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
 382			     int enum_index)
 383{
 384	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
 385
 386	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 387		return;
 388
 389	iowrite32(data, mdp->tsu_addr + offset);
 390}
 391
 392static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
 393{
 394	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
 395
 396	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 397		return ~0U;
 398
 399	return ioread32(mdp->tsu_addr + offset);
 400}
 401
 402static void sh_eth_soft_swap(char *src, int len)
 403{
 404#ifdef __LITTLE_ENDIAN
 405	u32 *p = (u32 *)src;
 406	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
 407
 408	for (; p < maxp; p++)
 409		*p = swab32(*p);
 410#endif
 411}
 412
 413static void sh_eth_select_mii(struct net_device *ndev)
 414{
 415	struct sh_eth_private *mdp = netdev_priv(ndev);
 416	u32 value;
 417
 418	switch (mdp->phy_interface) {
 419	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
 420		value = 0x3;
 421		break;
 422	case PHY_INTERFACE_MODE_GMII:
 423		value = 0x2;
 424		break;
 425	case PHY_INTERFACE_MODE_MII:
 426		value = 0x1;
 427		break;
 428	case PHY_INTERFACE_MODE_RMII:
 429		value = 0x0;
 430		break;
 431	default:
 432		netdev_warn(ndev,
 433			    "PHY interface mode was not setup. Set to MII.\n");
 434		value = 0x1;
 435		break;
 436	}
 437
 438	sh_eth_write(ndev, value, RMII_MII);
 439}
 440
 441static void sh_eth_set_duplex(struct net_device *ndev)
 442{
 443	struct sh_eth_private *mdp = netdev_priv(ndev);
 444
 445	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
 446}
 447
 448static void sh_eth_chip_reset(struct net_device *ndev)
 449{
 450	struct sh_eth_private *mdp = netdev_priv(ndev);
 451
 452	/* reset device */
 453	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
 454	mdelay(1);
 455}
 456
 457static int sh_eth_soft_reset(struct net_device *ndev)
 458{
 459	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
 460	mdelay(3);
 461	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
 462
 463	return 0;
 464}
 465
 466static int sh_eth_check_soft_reset(struct net_device *ndev)
 467{
 468	int cnt;
 469
 470	for (cnt = 100; cnt > 0; cnt--) {
 471		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
 472			return 0;
 473		mdelay(1);
 474	}
 475
 476	netdev_err(ndev, "Device reset failed\n");
 477	return -ETIMEDOUT;
 478}
 479
 480static int sh_eth_soft_reset_gether(struct net_device *ndev)
 481{
 482	struct sh_eth_private *mdp = netdev_priv(ndev);
 483	int ret;
 484
 485	sh_eth_write(ndev, EDSR_ENALL, EDSR);
 486	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
 487
 488	ret = sh_eth_check_soft_reset(ndev);
 489	if (ret)
 490		return ret;
 491
 492	/* Table Init */
 493	sh_eth_write(ndev, 0, TDLAR);
 494	sh_eth_write(ndev, 0, TDFAR);
 495	sh_eth_write(ndev, 0, TDFXR);
 496	sh_eth_write(ndev, 0, TDFFR);
 497	sh_eth_write(ndev, 0, RDLAR);
 498	sh_eth_write(ndev, 0, RDFAR);
 499	sh_eth_write(ndev, 0, RDFXR);
 500	sh_eth_write(ndev, 0, RDFFR);
 501
 502	/* Reset HW CRC register */
 503	if (mdp->cd->csmr)
 504		sh_eth_write(ndev, 0, CSMR);
 505
 506	/* Select MII mode */
 507	if (mdp->cd->select_mii)
 508		sh_eth_select_mii(ndev);
 509
 510	return ret;
 511}
 512
 513static void sh_eth_set_rate_gether(struct net_device *ndev)
 514{
 515	struct sh_eth_private *mdp = netdev_priv(ndev);
 516
 517	if (WARN_ON(!mdp->cd->gecmr))
 518		return;
 519
 520	switch (mdp->speed) {
 521	case 10: /* 10BASE */
 522		sh_eth_write(ndev, GECMR_10, GECMR);
 523		break;
 524	case 100:/* 100BASE */
 525		sh_eth_write(ndev, GECMR_100, GECMR);
 526		break;
 527	case 1000: /* 1000BASE */
 528		sh_eth_write(ndev, GECMR_1000, GECMR);
 529		break;
 530	}
 531}
 532
 533#ifdef CONFIG_OF
 534/* R7S72100 */
 535static struct sh_eth_cpu_data r7s72100_data = {
 536	.soft_reset	= sh_eth_soft_reset_gether,
 537
 538	.chip_reset	= sh_eth_chip_reset,
 539	.set_duplex	= sh_eth_set_duplex,
 540
 541	.register_type	= SH_ETH_REG_GIGABIT,
 542
 543	.edtrr_trns	= EDTRR_TRNS_GETHER,
 544	.ecsr_value	= ECSR_ICD,
 545	.ecsipr_value	= ECSIPR_ICDIP,
 546	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
 547			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
 548			  EESIPR_ECIIP |
 549			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 550			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 551			  EESIPR_RMAFIP | EESIPR_RRFIP |
 552			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 553			  EESIPR_PREIP | EESIPR_CERFIP,
 554
 555	.tx_check	= EESR_TC1 | EESR_FTC,
 556	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 557			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 558			  EESR_TDE,
 559	.fdr_value	= 0x0000070f,
 560
 561	.trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
 562
 563	.no_psr		= 1,
 564	.apr		= 1,
 565	.mpr		= 1,
 566	.tpauser	= 1,
 567	.hw_swap	= 1,
 568	.rpadir		= 1,
 
 569	.no_trimd	= 1,
 570	.no_ade		= 1,
 571	.xdfar_rw	= 1,
 572	.csmr		= 1,
 573	.rx_csum	= 1,
 574	.tsu		= 1,
 575	.no_tx_cntrs	= 1,
 576};
 577
 578static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
 579{
 580	sh_eth_chip_reset(ndev);
 581
 582	sh_eth_select_mii(ndev);
 583}
 584
 585/* R8A7740 */
 586static struct sh_eth_cpu_data r8a7740_data = {
 587	.soft_reset	= sh_eth_soft_reset_gether,
 588
 589	.chip_reset	= sh_eth_chip_reset_r8a7740,
 590	.set_duplex	= sh_eth_set_duplex,
 591	.set_rate	= sh_eth_set_rate_gether,
 592
 593	.register_type	= SH_ETH_REG_GIGABIT,
 594
 595	.edtrr_trns	= EDTRR_TRNS_GETHER,
 596	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 597	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 598	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 599			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 600			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 601			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 602			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 603			  EESIPR_CEEFIP | EESIPR_CELFIP |
 604			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 605			  EESIPR_PREIP | EESIPR_CERFIP,
 606
 607	.tx_check	= EESR_TC1 | EESR_FTC,
 608	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 609			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 610			  EESR_TDE,
 611	.fdr_value	= 0x0000070f,
 612
 613	.apr		= 1,
 614	.mpr		= 1,
 615	.tpauser	= 1,
 616	.gecmr		= 1,
 617	.bculr		= 1,
 618	.hw_swap	= 1,
 619	.rpadir		= 1,
 
 620	.no_trimd	= 1,
 621	.no_ade		= 1,
 622	.xdfar_rw	= 1,
 623	.csmr		= 1,
 624	.rx_csum	= 1,
 625	.tsu		= 1,
 626	.select_mii	= 1,
 627	.magic		= 1,
 628	.cexcr		= 1,
 629};
 630
 631/* There is CPU dependent code */
 632static void sh_eth_set_rate_rcar(struct net_device *ndev)
 633{
 634	struct sh_eth_private *mdp = netdev_priv(ndev);
 635
 636	switch (mdp->speed) {
 637	case 10: /* 10BASE */
 638		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
 639		break;
 640	case 100:/* 100BASE */
 641		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
 642		break;
 643	}
 644}
 645
 646/* R-Car Gen1 */
 647static struct sh_eth_cpu_data rcar_gen1_data = {
 648	.soft_reset	= sh_eth_soft_reset,
 649
 650	.set_duplex	= sh_eth_set_duplex,
 651	.set_rate	= sh_eth_set_rate_rcar,
 652
 653	.register_type	= SH_ETH_REG_FAST_RCAR,
 654
 655	.edtrr_trns	= EDTRR_TRNS_ETHER,
 656	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 657	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 658	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 659			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 660			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 661			  EESIPR_RMAFIP | EESIPR_RRFIP |
 662			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 663			  EESIPR_PREIP | EESIPR_CERFIP,
 664
 665	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 666	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 667			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 668	.fdr_value	= 0x00000f0f,
 669
 670	.apr		= 1,
 671	.mpr		= 1,
 672	.tpauser	= 1,
 673	.hw_swap	= 1,
 674	.no_xdfar	= 1,
 675};
 676
 677/* R-Car Gen2 and RZ/G1 */
 678static struct sh_eth_cpu_data rcar_gen2_data = {
 679	.soft_reset	= sh_eth_soft_reset,
 680
 681	.set_duplex	= sh_eth_set_duplex,
 682	.set_rate	= sh_eth_set_rate_rcar,
 683
 684	.register_type	= SH_ETH_REG_FAST_RCAR,
 685
 686	.edtrr_trns	= EDTRR_TRNS_ETHER,
 687	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 688	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 689			  ECSIPR_MPDIP,
 690	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 691			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 692			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 693			  EESIPR_RMAFIP | EESIPR_RRFIP |
 694			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 695			  EESIPR_PREIP | EESIPR_CERFIP,
 696
 697	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 698	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 699			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 700	.fdr_value	= 0x00000f0f,
 701
 702	.trscer_err_mask = TRSCER_RMAFCE,
 703
 704	.apr		= 1,
 705	.mpr		= 1,
 706	.tpauser	= 1,
 707	.hw_swap	= 1,
 708	.no_xdfar	= 1,
 709	.rmiimode	= 1,
 710	.magic		= 1,
 711};
 712
 713/* R8A77980 */
 714static struct sh_eth_cpu_data r8a77980_data = {
 715	.soft_reset	= sh_eth_soft_reset_gether,
 716
 717	.set_duplex	= sh_eth_set_duplex,
 718	.set_rate	= sh_eth_set_rate_gether,
 719
 720	.register_type  = SH_ETH_REG_GIGABIT,
 721
 722	.edtrr_trns	= EDTRR_TRNS_GETHER,
 723	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 724	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 725			  ECSIPR_MPDIP,
 726	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 727			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 728			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 729			  EESIPR_RMAFIP | EESIPR_RRFIP |
 730			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 731			  EESIPR_PREIP | EESIPR_CERFIP,
 732
 733	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
 734	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 735			  EESR_RFE | EESR_RDE | EESR_RFRMER |
 736			  EESR_TFE | EESR_TDE | EESR_ECI,
 737	.fdr_value	= 0x0000070f,
 738
 739	.apr		= 1,
 740	.mpr		= 1,
 741	.tpauser	= 1,
 742	.gecmr		= 1,
 743	.bculr		= 1,
 744	.hw_swap	= 1,
 745	.nbst		= 1,
 746	.rpadir		= 1,
 747	.no_trimd	= 1,
 748	.no_ade		= 1,
 749	.xdfar_rw	= 1,
 750	.csmr		= 1,
 751	.rx_csum	= 1,
 752	.select_mii	= 1,
 753	.magic		= 1,
 754	.cexcr		= 1,
 755};
 756
 757/* R7S9210 */
 758static struct sh_eth_cpu_data r7s9210_data = {
 759	.soft_reset	= sh_eth_soft_reset,
 760
 761	.set_duplex	= sh_eth_set_duplex,
 762	.set_rate	= sh_eth_set_rate_rcar,
 763
 764	.register_type	= SH_ETH_REG_FAST_SH4,
 765
 766	.edtrr_trns	= EDTRR_TRNS_ETHER,
 767	.ecsr_value	= ECSR_ICD,
 768	.ecsipr_value	= ECSIPR_ICDIP,
 769	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
 770			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
 771			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
 772			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
 773			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 774			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
 775			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
 776
 777	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 778	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 779			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 780
 781	.fdr_value	= 0x0000070f,
 782
 783	.trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
 784
 785	.apr		= 1,
 786	.mpr		= 1,
 787	.tpauser	= 1,
 788	.hw_swap	= 1,
 789	.rpadir		= 1,
 790	.no_ade		= 1,
 791	.xdfar_rw	= 1,
 792};
 793#endif /* CONFIG_OF */
 794
 795static void sh_eth_set_rate_sh7724(struct net_device *ndev)
 796{
 797	struct sh_eth_private *mdp = netdev_priv(ndev);
 798
 799	switch (mdp->speed) {
 800	case 10: /* 10BASE */
 801		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
 802		break;
 803	case 100:/* 100BASE */
 804		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
 805		break;
 806	}
 807}
 808
 809/* SH7724 */
 810static struct sh_eth_cpu_data sh7724_data = {
 811	.soft_reset	= sh_eth_soft_reset,
 812
 813	.set_duplex	= sh_eth_set_duplex,
 814	.set_rate	= sh_eth_set_rate_sh7724,
 815
 816	.register_type	= SH_ETH_REG_FAST_SH4,
 817
 818	.edtrr_trns	= EDTRR_TRNS_ETHER,
 819	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 820	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 821	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 822			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 823			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 824			  EESIPR_RMAFIP | EESIPR_RRFIP |
 825			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 826			  EESIPR_PREIP | EESIPR_CERFIP,
 827
 828	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 829	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 830			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 831
 832	.apr		= 1,
 833	.mpr		= 1,
 834	.tpauser	= 1,
 835	.hw_swap	= 1,
 836	.rpadir		= 1,
 
 837};
 838
 839static void sh_eth_set_rate_sh7757(struct net_device *ndev)
 840{
 841	struct sh_eth_private *mdp = netdev_priv(ndev);
 842
 843	switch (mdp->speed) {
 844	case 10: /* 10BASE */
 845		sh_eth_write(ndev, 0, RTRATE);
 846		break;
 847	case 100:/* 100BASE */
 848		sh_eth_write(ndev, 1, RTRATE);
 849		break;
 850	}
 851}
 852
 853/* SH7757 */
 854static struct sh_eth_cpu_data sh7757_data = {
 855	.soft_reset	= sh_eth_soft_reset,
 856
 857	.set_duplex	= sh_eth_set_duplex,
 858	.set_rate	= sh_eth_set_rate_sh7757,
 859
 860	.register_type	= SH_ETH_REG_FAST_SH4,
 861
 862	.edtrr_trns	= EDTRR_TRNS_ETHER,
 863	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 864			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 865			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 866			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 867			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 868			  EESIPR_CEEFIP | EESIPR_CELFIP |
 869			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 870			  EESIPR_PREIP | EESIPR_CERFIP,
 871
 872	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 873	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 874			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 875
 876	.irq_flags	= IRQF_SHARED,
 877	.apr		= 1,
 878	.mpr		= 1,
 879	.tpauser	= 1,
 880	.hw_swap	= 1,
 881	.no_ade		= 1,
 882	.rpadir		= 1,
 
 883	.rtrate		= 1,
 884	.dual_port	= 1,
 885};
 886
 887#define SH_GIGA_ETH_BASE	0xfee00000UL
 888#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
 889#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
 890static void sh_eth_chip_reset_giga(struct net_device *ndev)
 891{
 892	u32 mahr[2], malr[2];
 893	int i;
 894
 895	/* save MAHR and MALR */
 896	for (i = 0; i < 2; i++) {
 897		malr[i] = ioread32((void *)GIGA_MALR(i));
 898		mahr[i] = ioread32((void *)GIGA_MAHR(i));
 899	}
 900
 901	sh_eth_chip_reset(ndev);
 902
 903	/* restore MAHR and MALR */
 904	for (i = 0; i < 2; i++) {
 905		iowrite32(malr[i], (void *)GIGA_MALR(i));
 906		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
 907	}
 908}
 909
 910static void sh_eth_set_rate_giga(struct net_device *ndev)
 911{
 912	struct sh_eth_private *mdp = netdev_priv(ndev);
 913
 914	if (WARN_ON(!mdp->cd->gecmr))
 915		return;
 916
 917	switch (mdp->speed) {
 918	case 10: /* 10BASE */
 919		sh_eth_write(ndev, 0x00000000, GECMR);
 920		break;
 921	case 100:/* 100BASE */
 922		sh_eth_write(ndev, 0x00000010, GECMR);
 923		break;
 924	case 1000: /* 1000BASE */
 925		sh_eth_write(ndev, 0x00000020, GECMR);
 926		break;
 927	}
 928}
 929
 930/* SH7757(GETHERC) */
 931static struct sh_eth_cpu_data sh7757_data_giga = {
 932	.soft_reset	= sh_eth_soft_reset_gether,
 933
 934	.chip_reset	= sh_eth_chip_reset_giga,
 935	.set_duplex	= sh_eth_set_duplex,
 936	.set_rate	= sh_eth_set_rate_giga,
 937
 938	.register_type	= SH_ETH_REG_GIGABIT,
 939
 940	.edtrr_trns	= EDTRR_TRNS_GETHER,
 941	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 942	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 943	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 944			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 945			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 946			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 947			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 948			  EESIPR_CEEFIP | EESIPR_CELFIP |
 949			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 950			  EESIPR_PREIP | EESIPR_CERFIP,
 951
 952	.tx_check	= EESR_TC1 | EESR_FTC,
 953	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 954			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 955			  EESR_TDE,
 956	.fdr_value	= 0x0000072f,
 957
 958	.irq_flags	= IRQF_SHARED,
 959	.apr		= 1,
 960	.mpr		= 1,
 961	.tpauser	= 1,
 962	.gecmr		= 1,
 963	.bculr		= 1,
 964	.hw_swap	= 1,
 965	.rpadir		= 1,
 
 966	.no_trimd	= 1,
 967	.no_ade		= 1,
 968	.xdfar_rw	= 1,
 969	.tsu		= 1,
 970	.cexcr		= 1,
 971	.dual_port	= 1,
 972};
 973
 974/* SH7734 */
 975static struct sh_eth_cpu_data sh7734_data = {
 976	.soft_reset	= sh_eth_soft_reset_gether,
 977
 978	.chip_reset	= sh_eth_chip_reset,
 979	.set_duplex	= sh_eth_set_duplex,
 980	.set_rate	= sh_eth_set_rate_gether,
 981
 982	.register_type	= SH_ETH_REG_GIGABIT,
 983
 984	.edtrr_trns	= EDTRR_TRNS_GETHER,
 985	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 986	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 987	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 988			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 989			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 990			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 991			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
 992			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 993			  EESIPR_PREIP | EESIPR_CERFIP,
 994
 995	.tx_check	= EESR_TC1 | EESR_FTC,
 996	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 997			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 998			  EESR_TDE,
 999
1000	.apr		= 1,
1001	.mpr		= 1,
1002	.tpauser	= 1,
1003	.gecmr		= 1,
1004	.bculr		= 1,
1005	.hw_swap	= 1,
1006	.no_trimd	= 1,
1007	.no_ade		= 1,
1008	.xdfar_rw	= 1,
1009	.tsu		= 1,
1010	.csmr		= 1,
1011	.rx_csum	= 1,
1012	.select_mii	= 1,
1013	.magic		= 1,
1014	.cexcr		= 1,
1015};
1016
1017/* SH7763 */
1018static struct sh_eth_cpu_data sh7763_data = {
1019	.soft_reset	= sh_eth_soft_reset_gether,
1020
1021	.chip_reset	= sh_eth_chip_reset,
1022	.set_duplex	= sh_eth_set_duplex,
1023	.set_rate	= sh_eth_set_rate_gether,
1024
1025	.register_type	= SH_ETH_REG_GIGABIT,
1026
1027	.edtrr_trns	= EDTRR_TRNS_GETHER,
1028	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1029	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1030	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1031			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1032			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1033			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1034			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1035			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1036			  EESIPR_PREIP | EESIPR_CERFIP,
1037
1038	.tx_check	= EESR_TC1 | EESR_FTC,
1039	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1040			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1041
1042	.apr		= 1,
1043	.mpr		= 1,
1044	.tpauser	= 1,
1045	.gecmr		= 1,
1046	.bculr		= 1,
1047	.hw_swap	= 1,
1048	.no_trimd	= 1,
1049	.no_ade		= 1,
1050	.xdfar_rw	= 1,
1051	.tsu		= 1,
1052	.irq_flags	= IRQF_SHARED,
1053	.magic		= 1,
1054	.cexcr		= 1,
1055	.rx_csum	= 1,
1056	.dual_port	= 1,
1057};
1058
1059static struct sh_eth_cpu_data sh7619_data = {
1060	.soft_reset	= sh_eth_soft_reset,
1061
1062	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1063
1064	.edtrr_trns	= EDTRR_TRNS_ETHER,
1065	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1066			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1067			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1068			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1069			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1070			  EESIPR_CEEFIP | EESIPR_CELFIP |
1071			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1072			  EESIPR_PREIP | EESIPR_CERFIP,
1073
1074	.apr		= 1,
1075	.mpr		= 1,
1076	.tpauser	= 1,
1077	.hw_swap	= 1,
1078};
1079
1080static struct sh_eth_cpu_data sh771x_data = {
1081	.soft_reset	= sh_eth_soft_reset,
1082
1083	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1084
1085	.edtrr_trns	= EDTRR_TRNS_ETHER,
1086	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1087			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1088			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1089			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1090			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1091			  EESIPR_CEEFIP | EESIPR_CELFIP |
1092			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1093			  EESIPR_PREIP | EESIPR_CERFIP,
1094
1095	.trscer_err_mask = TRSCER_RMAFCE,
1096
1097	.tsu		= 1,
1098	.dual_port	= 1,
1099};
1100
1101static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1102{
1103	if (!cd->ecsr_value)
1104		cd->ecsr_value = DEFAULT_ECSR_INIT;
1105
1106	if (!cd->ecsipr_value)
1107		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1108
1109	if (!cd->fcftr_value)
1110		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1111				  DEFAULT_FIFO_F_D_RFD;
1112
1113	if (!cd->fdr_value)
1114		cd->fdr_value = DEFAULT_FDR_INIT;
1115
1116	if (!cd->tx_check)
1117		cd->tx_check = DEFAULT_TX_CHECK;
1118
1119	if (!cd->eesr_err_check)
1120		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1121
1122	if (!cd->trscer_err_mask)
1123		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1124}
1125
1126static void sh_eth_set_receive_align(struct sk_buff *skb)
1127{
1128	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1129
1130	if (reserve)
1131		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1132}
1133
1134/* Program the hardware MAC address from dev->dev_addr. */
1135static void update_mac_address(struct net_device *ndev)
1136{
1137	sh_eth_write(ndev,
1138		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1139		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1140	sh_eth_write(ndev,
1141		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1142}
1143
1144/* Get MAC address from SuperH MAC address register
1145 *
1146 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1147 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1148 * When you want use this device, you must set MAC address in bootloader.
1149 *
1150 */
1151static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1152{
1153	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1154		eth_hw_addr_set(ndev, mac);
1155	} else {
1156		u32 mahr = sh_eth_read(ndev, MAHR);
1157		u32 malr = sh_eth_read(ndev, MALR);
1158		u8 addr[ETH_ALEN];
1159
1160		addr[0] = (mahr >> 24) & 0xFF;
1161		addr[1] = (mahr >> 16) & 0xFF;
1162		addr[2] = (mahr >>  8) & 0xFF;
1163		addr[3] = (mahr >>  0) & 0xFF;
1164		addr[4] = (malr >>  8) & 0xFF;
1165		addr[5] = (malr >>  0) & 0xFF;
1166		eth_hw_addr_set(ndev, addr);
1167	}
1168}
1169
1170struct bb_info {
1171	void (*set_gate)(void *addr);
1172	struct mdiobb_ctrl ctrl;
1173	void *addr;
1174};
1175
1176static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1177{
1178	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1179	u32 pir;
1180
1181	if (bitbang->set_gate)
1182		bitbang->set_gate(bitbang->addr);
1183
1184	pir = ioread32(bitbang->addr);
1185	if (set)
1186		pir |=  mask;
1187	else
1188		pir &= ~mask;
1189	iowrite32(pir, bitbang->addr);
1190}
1191
1192/* Data I/O pin control */
1193static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1194{
1195	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1196}
1197
1198/* Set bit data*/
1199static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1200{
1201	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1202}
1203
1204/* Get bit data*/
1205static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1206{
1207	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1208
1209	if (bitbang->set_gate)
1210		bitbang->set_gate(bitbang->addr);
1211
1212	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1213}
1214
1215/* MDC pin control */
1216static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1217{
1218	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1219}
1220
1221/* mdio bus control struct */
1222static const struct mdiobb_ops bb_ops = {
1223	.owner = THIS_MODULE,
1224	.set_mdc = sh_mdc_ctrl,
1225	.set_mdio_dir = sh_mmd_ctrl,
1226	.set_mdio_data = sh_set_mdio,
1227	.get_mdio_data = sh_get_mdio,
1228};
1229
1230/* free Tx skb function */
1231static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1232{
1233	struct sh_eth_private *mdp = netdev_priv(ndev);
1234	struct sh_eth_txdesc *txdesc;
1235	int free_num = 0;
1236	int entry;
1237	bool sent;
1238
1239	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1240		entry = mdp->dirty_tx % mdp->num_tx_ring;
1241		txdesc = &mdp->tx_ring[entry];
1242		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1243		if (sent_only && !sent)
1244			break;
1245		/* TACT bit must be checked before all the following reads */
1246		dma_rmb();
1247		netif_info(mdp, tx_done, ndev,
1248			   "tx entry %d status 0x%08x\n",
1249			   entry, le32_to_cpu(txdesc->status));
1250		/* Free the original skb. */
1251		if (mdp->tx_skbuff[entry]) {
1252			dma_unmap_single(&mdp->pdev->dev,
1253					 le32_to_cpu(txdesc->addr),
1254					 le32_to_cpu(txdesc->len) >> 16,
1255					 DMA_TO_DEVICE);
1256			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1257			mdp->tx_skbuff[entry] = NULL;
1258			free_num++;
1259		}
1260		txdesc->status = cpu_to_le32(TD_TFP);
1261		if (entry >= mdp->num_tx_ring - 1)
1262			txdesc->status |= cpu_to_le32(TD_TDLE);
1263
1264		if (sent) {
1265			ndev->stats.tx_packets++;
1266			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1267		}
1268	}
1269	return free_num;
1270}
1271
1272/* free skb and descriptor buffer */
1273static void sh_eth_ring_free(struct net_device *ndev)
1274{
1275	struct sh_eth_private *mdp = netdev_priv(ndev);
1276	int ringsize, i;
1277
1278	if (mdp->rx_ring) {
1279		for (i = 0; i < mdp->num_rx_ring; i++) {
1280			if (mdp->rx_skbuff[i]) {
1281				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1282
1283				dma_unmap_single(&mdp->pdev->dev,
1284						 le32_to_cpu(rxdesc->addr),
1285						 ALIGN(mdp->rx_buf_sz, 32),
1286						 DMA_FROM_DEVICE);
1287			}
1288		}
1289		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1290		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1291				  mdp->rx_desc_dma);
1292		mdp->rx_ring = NULL;
1293	}
1294
1295	/* Free Rx skb ringbuffer */
1296	if (mdp->rx_skbuff) {
1297		for (i = 0; i < mdp->num_rx_ring; i++)
1298			dev_kfree_skb(mdp->rx_skbuff[i]);
1299	}
1300	kfree(mdp->rx_skbuff);
1301	mdp->rx_skbuff = NULL;
1302
1303	if (mdp->tx_ring) {
1304		sh_eth_tx_free(ndev, false);
1305
1306		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1307		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1308				  mdp->tx_desc_dma);
1309		mdp->tx_ring = NULL;
1310	}
1311
1312	/* Free Tx skb ringbuffer */
1313	kfree(mdp->tx_skbuff);
1314	mdp->tx_skbuff = NULL;
1315}
1316
1317/* format skb and descriptor buffer */
1318static void sh_eth_ring_format(struct net_device *ndev)
1319{
1320	struct sh_eth_private *mdp = netdev_priv(ndev);
1321	int i;
1322	struct sk_buff *skb;
1323	struct sh_eth_rxdesc *rxdesc = NULL;
1324	struct sh_eth_txdesc *txdesc = NULL;
1325	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1326	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1327	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1328	dma_addr_t dma_addr;
1329	u32 buf_len;
1330
1331	mdp->cur_rx = 0;
1332	mdp->cur_tx = 0;
1333	mdp->dirty_rx = 0;
1334	mdp->dirty_tx = 0;
1335
1336	memset(mdp->rx_ring, 0, rx_ringsize);
1337
1338	/* build Rx ring buffer */
1339	for (i = 0; i < mdp->num_rx_ring; i++) {
1340		/* skb */
1341		mdp->rx_skbuff[i] = NULL;
1342		skb = netdev_alloc_skb(ndev, skbuff_size);
1343		if (skb == NULL)
1344			break;
1345		sh_eth_set_receive_align(skb);
1346
1347		/* The size of the buffer is a multiple of 32 bytes. */
1348		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1349		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1350					  DMA_FROM_DEVICE);
1351		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1352			kfree_skb(skb);
1353			break;
1354		}
1355		mdp->rx_skbuff[i] = skb;
1356
1357		/* RX descriptor */
1358		rxdesc = &mdp->rx_ring[i];
1359		rxdesc->len = cpu_to_le32(buf_len << 16);
1360		rxdesc->addr = cpu_to_le32(dma_addr);
1361		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1362
1363		/* Rx descriptor address set */
1364		if (i == 0) {
1365			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1366			if (mdp->cd->xdfar_rw)
1367				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1368		}
1369	}
1370
1371	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1372
1373	/* Mark the last entry as wrapping the ring. */
1374	if (rxdesc)
1375		rxdesc->status |= cpu_to_le32(RD_RDLE);
1376
1377	memset(mdp->tx_ring, 0, tx_ringsize);
1378
1379	/* build Tx ring buffer */
1380	for (i = 0; i < mdp->num_tx_ring; i++) {
1381		mdp->tx_skbuff[i] = NULL;
1382		txdesc = &mdp->tx_ring[i];
1383		txdesc->status = cpu_to_le32(TD_TFP);
1384		txdesc->len = cpu_to_le32(0);
1385		if (i == 0) {
1386			/* Tx descriptor address set */
1387			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1388			if (mdp->cd->xdfar_rw)
1389				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1390		}
1391	}
1392
1393	txdesc->status |= cpu_to_le32(TD_TDLE);
1394}
1395
1396/* Get skb and descriptor buffer */
1397static int sh_eth_ring_init(struct net_device *ndev)
1398{
1399	struct sh_eth_private *mdp = netdev_priv(ndev);
1400	int rx_ringsize, tx_ringsize;
1401
1402	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1403	 * card needs room to do 8 byte alignment, +2 so we can reserve
1404	 * the first 2 bytes, and +16 gets room for the status word from the
1405	 * card.
1406	 */
1407	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1408			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1409	if (mdp->cd->rpadir)
1410		mdp->rx_buf_sz += NET_IP_ALIGN;
1411
1412	/* Allocate RX and TX skb rings */
1413	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1414				 GFP_KERNEL);
1415	if (!mdp->rx_skbuff)
1416		return -ENOMEM;
1417
1418	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1419				 GFP_KERNEL);
1420	if (!mdp->tx_skbuff)
1421		goto ring_free;
1422
1423	/* Allocate all Rx descriptors. */
1424	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1425	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1426					  &mdp->rx_desc_dma, GFP_KERNEL);
1427	if (!mdp->rx_ring)
1428		goto ring_free;
1429
1430	mdp->dirty_rx = 0;
1431
1432	/* Allocate all Tx descriptors. */
1433	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1434	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1435					  &mdp->tx_desc_dma, GFP_KERNEL);
1436	if (!mdp->tx_ring)
1437		goto ring_free;
1438	return 0;
1439
1440ring_free:
1441	/* Free Rx and Tx skb ring buffer and DMA buffer */
1442	sh_eth_ring_free(ndev);
1443
1444	return -ENOMEM;
1445}
1446
1447static int sh_eth_dev_init(struct net_device *ndev)
1448{
1449	struct sh_eth_private *mdp = netdev_priv(ndev);
1450	int ret;
1451
1452	/* Soft Reset */
1453	ret = mdp->cd->soft_reset(ndev);
1454	if (ret)
1455		return ret;
1456
1457	if (mdp->cd->rmiimode)
1458		sh_eth_write(ndev, 0x1, RMIIMODE);
1459
1460	/* Descriptor format */
1461	sh_eth_ring_format(ndev);
1462	if (mdp->cd->rpadir)
1463		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1464
1465	/* all sh_eth int mask */
1466	sh_eth_write(ndev, 0, EESIPR);
1467
1468#if defined(__LITTLE_ENDIAN)
1469	if (mdp->cd->hw_swap)
1470		sh_eth_write(ndev, EDMR_EL, EDMR);
1471	else
1472#endif
1473		sh_eth_write(ndev, 0, EDMR);
1474
1475	/* FIFO size set */
1476	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1477	sh_eth_write(ndev, 0, TFTR);
1478
1479	/* Frame recv control (enable multiple-packets per rx irq) */
1480	sh_eth_write(ndev, RMCR_RNC, RMCR);
1481
1482	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1483
1484	/* DMA transfer burst mode */
1485	if (mdp->cd->nbst)
1486		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1487
1488	/* Burst cycle count upper-limit */
1489	if (mdp->cd->bculr)
1490		sh_eth_write(ndev, 0x800, BCULR);
1491
1492	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1493
1494	if (!mdp->cd->no_trimd)
1495		sh_eth_write(ndev, 0, TRIMD);
1496
1497	/* Recv frame limit set register */
1498	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1499		     RFLR);
1500
1501	sh_eth_modify(ndev, EESR, 0, 0);
1502	mdp->irq_enabled = true;
1503	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1504
1505	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1506	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1507		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1508		     ECMR_TE | ECMR_RE, ECMR);
1509
1510	if (mdp->cd->set_rate)
1511		mdp->cd->set_rate(ndev);
1512
1513	/* E-MAC Status Register clear */
1514	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1515
1516	/* E-MAC Interrupt Enable register */
1517	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1518
1519	/* Set MAC address */
1520	update_mac_address(ndev);
1521
1522	/* mask reset */
1523	if (mdp->cd->apr)
1524		sh_eth_write(ndev, 1, APR);
1525	if (mdp->cd->mpr)
1526		sh_eth_write(ndev, 1, MPR);
1527	if (mdp->cd->tpauser)
1528		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1529
1530	/* Setting the Rx mode will start the Rx process. */
1531	sh_eth_write(ndev, EDRRR_R, EDRRR);
1532
1533	return ret;
1534}
1535
1536static void sh_eth_dev_exit(struct net_device *ndev)
1537{
1538	struct sh_eth_private *mdp = netdev_priv(ndev);
1539	int i;
1540
1541	/* Deactivate all TX descriptors, so DMA should stop at next
1542	 * packet boundary if it's currently running
1543	 */
1544	for (i = 0; i < mdp->num_tx_ring; i++)
1545		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1546
1547	/* Disable TX FIFO egress to MAC */
1548	sh_eth_rcv_snd_disable(ndev);
1549
1550	/* Stop RX DMA at next packet boundary */
1551	sh_eth_write(ndev, 0, EDRRR);
1552
1553	/* Aside from TX DMA, we can't tell when the hardware is
1554	 * really stopped, so we need to reset to make sure.
1555	 * Before doing that, wait for long enough to *probably*
1556	 * finish transmitting the last packet and poll stats.
1557	 */
1558	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1559	sh_eth_get_stats(ndev);
1560	mdp->cd->soft_reset(ndev);
1561
1562	/* Set the RMII mode again if required */
1563	if (mdp->cd->rmiimode)
1564		sh_eth_write(ndev, 0x1, RMIIMODE);
1565
1566	/* Set MAC address again */
1567	update_mac_address(ndev);
1568}
1569
1570static void sh_eth_rx_csum(struct sk_buff *skb)
1571{
1572	u8 *hw_csum;
1573
1574	/* The hardware checksum is 2 bytes appended to packet data */
1575	if (unlikely(skb->len < sizeof(__sum16)))
1576		return;
1577	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1578	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1579	skb->ip_summed = CHECKSUM_COMPLETE;
1580	skb_trim(skb, skb->len - sizeof(__sum16));
1581}
1582
1583/* Packet receive function */
1584static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1585{
1586	struct sh_eth_private *mdp = netdev_priv(ndev);
1587	struct sh_eth_rxdesc *rxdesc;
1588
1589	int entry = mdp->cur_rx % mdp->num_rx_ring;
1590	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1591	int limit;
1592	struct sk_buff *skb;
1593	u32 desc_status;
1594	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1595	dma_addr_t dma_addr;
1596	u16 pkt_len;
1597	u32 buf_len;
1598
1599	boguscnt = min(boguscnt, *quota);
1600	limit = boguscnt;
1601	rxdesc = &mdp->rx_ring[entry];
1602	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1603		/* RACT bit must be checked before all the following reads */
1604		dma_rmb();
1605		desc_status = le32_to_cpu(rxdesc->status);
1606		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1607
1608		if (--boguscnt < 0)
1609			break;
1610
1611		netif_info(mdp, rx_status, ndev,
1612			   "rx entry %d status 0x%08x len %d\n",
1613			   entry, desc_status, pkt_len);
1614
1615		if (!(desc_status & RDFEND))
1616			ndev->stats.rx_length_errors++;
1617
1618		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1619		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1620		 * bit 0. However, in case of the R8A7740 and R7S72100
1621		 * the RFS bits are from bit 25 to bit 16. So, the
1622		 * driver needs right shifting by 16.
1623		 */
1624		if (mdp->cd->csmr)
1625			desc_status >>= 16;
1626
1627		skb = mdp->rx_skbuff[entry];
1628		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1629				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1630			ndev->stats.rx_errors++;
1631			if (desc_status & RD_RFS1)
1632				ndev->stats.rx_crc_errors++;
1633			if (desc_status & RD_RFS2)
1634				ndev->stats.rx_frame_errors++;
1635			if (desc_status & RD_RFS3)
1636				ndev->stats.rx_length_errors++;
1637			if (desc_status & RD_RFS4)
1638				ndev->stats.rx_length_errors++;
1639			if (desc_status & RD_RFS6)
1640				ndev->stats.rx_missed_errors++;
1641			if (desc_status & RD_RFS10)
1642				ndev->stats.rx_over_errors++;
1643		} else	if (skb) {
1644			dma_addr = le32_to_cpu(rxdesc->addr);
1645			if (!mdp->cd->hw_swap)
1646				sh_eth_soft_swap(
1647					phys_to_virt(ALIGN(dma_addr, 4)),
1648					pkt_len + 2);
1649			mdp->rx_skbuff[entry] = NULL;
1650			if (mdp->cd->rpadir)
1651				skb_reserve(skb, NET_IP_ALIGN);
1652			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1653					 ALIGN(mdp->rx_buf_sz, 32),
1654					 DMA_FROM_DEVICE);
1655			skb_put(skb, pkt_len);
1656			skb->protocol = eth_type_trans(skb, ndev);
1657			if (ndev->features & NETIF_F_RXCSUM)
1658				sh_eth_rx_csum(skb);
1659			netif_receive_skb(skb);
1660			ndev->stats.rx_packets++;
1661			ndev->stats.rx_bytes += pkt_len;
1662			if (desc_status & RD_RFS8)
1663				ndev->stats.multicast++;
1664		}
1665		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1666		rxdesc = &mdp->rx_ring[entry];
1667	}
1668
1669	/* Refill the Rx ring buffers. */
1670	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1671		entry = mdp->dirty_rx % mdp->num_rx_ring;
1672		rxdesc = &mdp->rx_ring[entry];
1673		/* The size of the buffer is 32 byte boundary. */
1674		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1675		rxdesc->len = cpu_to_le32(buf_len << 16);
1676
1677		if (mdp->rx_skbuff[entry] == NULL) {
1678			skb = netdev_alloc_skb(ndev, skbuff_size);
1679			if (skb == NULL)
1680				break;	/* Better luck next round. */
1681			sh_eth_set_receive_align(skb);
1682			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1683						  buf_len, DMA_FROM_DEVICE);
1684			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1685				kfree_skb(skb);
1686				break;
1687			}
1688			mdp->rx_skbuff[entry] = skb;
1689
1690			skb_checksum_none_assert(skb);
1691			rxdesc->addr = cpu_to_le32(dma_addr);
1692		}
1693		dma_wmb(); /* RACT bit must be set after all the above writes */
1694		if (entry >= mdp->num_rx_ring - 1)
1695			rxdesc->status |=
1696				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1697		else
1698			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1699	}
1700
1701	/* Restart Rx engine if stopped. */
1702	/* If we don't need to check status, don't. -KDU */
1703	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1704		/* fix the values for the next receiving if RDE is set */
1705		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1706			u32 count = (sh_eth_read(ndev, RDFAR) -
1707				     sh_eth_read(ndev, RDLAR)) >> 4;
1708
1709			mdp->cur_rx = count;
1710			mdp->dirty_rx = count;
1711		}
1712		sh_eth_write(ndev, EDRRR_R, EDRRR);
1713	}
1714
1715	*quota -= limit - boguscnt - 1;
1716
1717	return *quota <= 0;
1718}
1719
1720static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1721{
1722	/* disable tx and rx */
1723	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1724}
1725
1726static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1727{
1728	/* enable tx and rx */
1729	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1730}
1731
1732/* E-MAC interrupt handler */
1733static void sh_eth_emac_interrupt(struct net_device *ndev)
1734{
1735	struct sh_eth_private *mdp = netdev_priv(ndev);
1736	u32 felic_stat;
1737	u32 link_stat;
1738
1739	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1740	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1741	if (felic_stat & ECSR_ICD)
1742		ndev->stats.tx_carrier_errors++;
1743	if (felic_stat & ECSR_MPD)
1744		pm_wakeup_event(&mdp->pdev->dev, 0);
1745	if (felic_stat & ECSR_LCHNG) {
1746		/* Link Changed */
1747		if (mdp->cd->no_psr || mdp->no_ether_link)
1748			return;
1749		link_stat = sh_eth_read(ndev, PSR);
1750		if (mdp->ether_link_active_low)
1751			link_stat = ~link_stat;
1752		if (!(link_stat & PSR_LMON)) {
1753			sh_eth_rcv_snd_disable(ndev);
1754		} else {
1755			/* Link Up */
1756			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1757			/* clear int */
1758			sh_eth_modify(ndev, ECSR, 0, 0);
1759			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1760			/* enable tx and rx */
1761			sh_eth_rcv_snd_enable(ndev);
1762		}
1763	}
1764}
1765
1766/* error control function */
1767static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1768{
1769	struct sh_eth_private *mdp = netdev_priv(ndev);
1770	u32 mask;
1771
1772	if (intr_status & EESR_TWB) {
1773		/* Unused write back interrupt */
1774		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1775			ndev->stats.tx_aborted_errors++;
1776			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1777		}
1778	}
1779
1780	if (intr_status & EESR_RABT) {
1781		/* Receive Abort int */
1782		if (intr_status & EESR_RFRMER) {
1783			/* Receive Frame Overflow int */
1784			ndev->stats.rx_frame_errors++;
1785		}
1786	}
1787
1788	if (intr_status & EESR_TDE) {
1789		/* Transmit Descriptor Empty int */
1790		ndev->stats.tx_fifo_errors++;
1791		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1792	}
1793
1794	if (intr_status & EESR_TFE) {
1795		/* FIFO under flow */
1796		ndev->stats.tx_fifo_errors++;
1797		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1798	}
1799
1800	if (intr_status & EESR_RDE) {
1801		/* Receive Descriptor Empty int */
1802		ndev->stats.rx_over_errors++;
1803	}
1804
1805	if (intr_status & EESR_RFE) {
1806		/* Receive FIFO Overflow int */
1807		ndev->stats.rx_fifo_errors++;
1808	}
1809
1810	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1811		/* Address Error */
1812		ndev->stats.tx_fifo_errors++;
1813		netif_err(mdp, tx_err, ndev, "Address Error\n");
1814	}
1815
1816	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1817	if (mdp->cd->no_ade)
1818		mask &= ~EESR_ADE;
1819	if (intr_status & mask) {
1820		/* Tx error */
1821		u32 edtrr = sh_eth_read(ndev, EDTRR);
1822
1823		/* dmesg */
1824		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1825			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1826			   (u32)ndev->state, edtrr);
1827		/* dirty buffer free */
1828		sh_eth_tx_free(ndev, true);
1829
1830		/* SH7712 BUG */
1831		if (edtrr ^ mdp->cd->edtrr_trns) {
1832			/* tx dma start */
1833			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1834		}
1835		/* wakeup */
1836		netif_wake_queue(ndev);
1837	}
1838}
1839
1840static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1841{
1842	struct net_device *ndev = netdev;
1843	struct sh_eth_private *mdp = netdev_priv(ndev);
1844	struct sh_eth_cpu_data *cd = mdp->cd;
1845	irqreturn_t ret = IRQ_NONE;
1846	u32 intr_status, intr_enable;
1847
1848	spin_lock(&mdp->lock);
1849
1850	/* Get interrupt status */
1851	intr_status = sh_eth_read(ndev, EESR);
1852	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1853	 * enabled since it's the one that  comes  thru regardless of the mask,
1854	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1855	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1856	 * bit...
1857	 */
1858	intr_enable = sh_eth_read(ndev, EESIPR);
1859	intr_status &= intr_enable | EESIPR_ECIIP;
1860	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1861			   cd->eesr_err_check))
1862		ret = IRQ_HANDLED;
1863	else
1864		goto out;
1865
1866	if (unlikely(!mdp->irq_enabled)) {
1867		sh_eth_write(ndev, 0, EESIPR);
1868		goto out;
1869	}
1870
1871	if (intr_status & EESR_RX_CHECK) {
1872		if (napi_schedule_prep(&mdp->napi)) {
1873			/* Mask Rx interrupts */
1874			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1875				     EESIPR);
1876			__napi_schedule(&mdp->napi);
1877		} else {
1878			netdev_warn(ndev,
1879				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1880				    intr_status, intr_enable);
1881		}
1882	}
1883
1884	/* Tx Check */
1885	if (intr_status & cd->tx_check) {
1886		/* Clear Tx interrupts */
1887		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1888
1889		sh_eth_tx_free(ndev, true);
1890		netif_wake_queue(ndev);
1891	}
1892
1893	/* E-MAC interrupt */
1894	if (intr_status & EESR_ECI)
1895		sh_eth_emac_interrupt(ndev);
1896
1897	if (intr_status & cd->eesr_err_check) {
1898		/* Clear error interrupts */
1899		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1900
1901		sh_eth_error(ndev, intr_status);
1902	}
1903
1904out:
1905	spin_unlock(&mdp->lock);
1906
1907	return ret;
1908}
1909
1910static int sh_eth_poll(struct napi_struct *napi, int budget)
1911{
1912	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1913						  napi);
1914	struct net_device *ndev = napi->dev;
1915	int quota = budget;
1916	u32 intr_status;
1917
1918	for (;;) {
1919		intr_status = sh_eth_read(ndev, EESR);
1920		if (!(intr_status & EESR_RX_CHECK))
1921			break;
1922		/* Clear Rx interrupts */
1923		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1924
1925		if (sh_eth_rx(ndev, intr_status, &quota))
1926			goto out;
1927	}
1928
1929	napi_complete(napi);
1930
1931	/* Reenable Rx interrupts */
1932	if (mdp->irq_enabled)
1933		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1934out:
1935	return budget - quota;
1936}
1937
1938/* PHY state control function */
1939static void sh_eth_adjust_link(struct net_device *ndev)
1940{
1941	struct sh_eth_private *mdp = netdev_priv(ndev);
1942	struct phy_device *phydev = ndev->phydev;
1943	unsigned long flags;
1944	int new_state = 0;
1945
1946	spin_lock_irqsave(&mdp->lock, flags);
1947
1948	/* Disable TX and RX right over here, if E-MAC change is ignored */
1949	if (mdp->cd->no_psr || mdp->no_ether_link)
1950		sh_eth_rcv_snd_disable(ndev);
1951
1952	if (phydev->link) {
1953		if (phydev->duplex != mdp->duplex) {
1954			new_state = 1;
1955			mdp->duplex = phydev->duplex;
1956			if (mdp->cd->set_duplex)
1957				mdp->cd->set_duplex(ndev);
1958		}
1959
1960		if (phydev->speed != mdp->speed) {
1961			new_state = 1;
1962			mdp->speed = phydev->speed;
1963			if (mdp->cd->set_rate)
1964				mdp->cd->set_rate(ndev);
1965		}
1966		if (!mdp->link) {
1967			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1968			new_state = 1;
1969			mdp->link = phydev->link;
 
 
1970		}
1971	} else if (mdp->link) {
1972		new_state = 1;
1973		mdp->link = 0;
1974		mdp->speed = 0;
1975		mdp->duplex = -1;
 
 
1976	}
1977
1978	/* Enable TX and RX right over here, if E-MAC change is ignored */
1979	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1980		sh_eth_rcv_snd_enable(ndev);
1981
1982	spin_unlock_irqrestore(&mdp->lock, flags);
1983
1984	if (new_state && netif_msg_link(mdp))
1985		phy_print_status(phydev);
1986}
1987
1988/* PHY init function */
1989static int sh_eth_phy_init(struct net_device *ndev)
1990{
1991	struct device_node *np = ndev->dev.parent->of_node;
1992	struct sh_eth_private *mdp = netdev_priv(ndev);
1993	struct phy_device *phydev;
1994
1995	mdp->link = 0;
1996	mdp->speed = 0;
1997	mdp->duplex = -1;
1998
1999	/* Try connect to PHY */
2000	if (np) {
2001		struct device_node *pn;
2002
2003		pn = of_parse_phandle(np, "phy-handle", 0);
2004		phydev = of_phy_connect(ndev, pn,
2005					sh_eth_adjust_link, 0,
2006					mdp->phy_interface);
2007
2008		of_node_put(pn);
2009		if (!phydev)
2010			phydev = ERR_PTR(-ENOENT);
2011	} else {
2012		char phy_id[MII_BUS_ID_SIZE + 3];
2013
2014		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2015			 mdp->mii_bus->id, mdp->phy_id);
2016
2017		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2018				     mdp->phy_interface);
2019	}
2020
2021	if (IS_ERR(phydev)) {
2022		netdev_err(ndev, "failed to connect PHY\n");
2023		return PTR_ERR(phydev);
2024	}
2025
2026	/* mask with MAC supported features */
2027	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT)
2028		phy_set_max_speed(phydev, SPEED_100);
 
 
 
 
 
 
2029
2030	phy_attached_info(phydev);
2031
2032	return 0;
2033}
2034
2035/* PHY control start function */
2036static int sh_eth_phy_start(struct net_device *ndev)
2037{
2038	int ret;
2039
2040	ret = sh_eth_phy_init(ndev);
2041	if (ret)
2042		return ret;
2043
2044	phy_start(ndev->phydev);
2045
2046	return 0;
2047}
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2050 * version must be bumped as well.  Just adding registers up to that
2051 * limit is fine, as long as the existing register indices don't
2052 * change.
2053 */
2054#define SH_ETH_REG_DUMP_VERSION		1
2055#define SH_ETH_REG_DUMP_MAX_REGS	256
2056
2057static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2058{
2059	struct sh_eth_private *mdp = netdev_priv(ndev);
2060	struct sh_eth_cpu_data *cd = mdp->cd;
2061	u32 *valid_map;
2062	size_t len;
2063
2064	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2065
2066	/* Dump starts with a bitmap that tells ethtool which
2067	 * registers are defined for this chip.
2068	 */
2069	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2070	if (buf) {
2071		valid_map = buf;
2072		buf += len;
2073	} else {
2074		valid_map = NULL;
2075	}
2076
2077	/* Add a register to the dump, if it has a defined offset.
2078	 * This automatically skips most undefined registers, but for
2079	 * some it is also necessary to check a capability flag in
2080	 * struct sh_eth_cpu_data.
2081	 */
2082#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2083#define add_reg_from(reg, read_expr) do {				\
2084		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2085			if (buf) {					\
2086				mark_reg_valid(reg);			\
2087				*buf++ = read_expr;			\
2088			}						\
2089			++len;						\
2090		}							\
2091	} while (0)
2092#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2093#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2094
2095	add_reg(EDSR);
2096	add_reg(EDMR);
2097	add_reg(EDTRR);
2098	add_reg(EDRRR);
2099	add_reg(EESR);
2100	add_reg(EESIPR);
2101	add_reg(TDLAR);
2102	if (!cd->no_xdfar)
2103		add_reg(TDFAR);
2104	add_reg(TDFXR);
2105	add_reg(TDFFR);
2106	add_reg(RDLAR);
2107	if (!cd->no_xdfar)
2108		add_reg(RDFAR);
2109	add_reg(RDFXR);
2110	add_reg(RDFFR);
2111	add_reg(TRSCER);
2112	add_reg(RMFCR);
2113	add_reg(TFTR);
2114	add_reg(FDR);
2115	add_reg(RMCR);
2116	add_reg(TFUCR);
2117	add_reg(RFOCR);
2118	if (cd->rmiimode)
2119		add_reg(RMIIMODE);
2120	add_reg(FCFTR);
2121	if (cd->rpadir)
2122		add_reg(RPADIR);
2123	if (!cd->no_trimd)
2124		add_reg(TRIMD);
2125	add_reg(ECMR);
2126	add_reg(ECSR);
2127	add_reg(ECSIPR);
2128	add_reg(PIR);
2129	if (!cd->no_psr)
2130		add_reg(PSR);
2131	add_reg(RDMLR);
2132	add_reg(RFLR);
2133	add_reg(IPGR);
2134	if (cd->apr)
2135		add_reg(APR);
2136	if (cd->mpr)
2137		add_reg(MPR);
2138	add_reg(RFCR);
2139	add_reg(RFCF);
2140	if (cd->tpauser)
2141		add_reg(TPAUSER);
2142	add_reg(TPAUSECR);
2143	if (cd->gecmr)
2144		add_reg(GECMR);
2145	if (cd->bculr)
2146		add_reg(BCULR);
2147	add_reg(MAHR);
2148	add_reg(MALR);
2149	if (!cd->no_tx_cntrs) {
2150		add_reg(TROCR);
2151		add_reg(CDCR);
2152		add_reg(LCCR);
2153		add_reg(CNDCR);
2154	}
2155	add_reg(CEFCR);
2156	add_reg(FRECR);
2157	add_reg(TSFRCR);
2158	add_reg(TLFRCR);
2159	if (cd->cexcr) {
2160		add_reg(CERCR);
2161		add_reg(CEECR);
2162	}
2163	add_reg(MAFCR);
2164	if (cd->rtrate)
2165		add_reg(RTRATE);
2166	if (cd->csmr)
2167		add_reg(CSMR);
2168	if (cd->select_mii)
2169		add_reg(RMII_MII);
2170	if (cd->tsu) {
2171		add_tsu_reg(ARSTR);
2172		add_tsu_reg(TSU_CTRST);
2173		if (cd->dual_port) {
2174			add_tsu_reg(TSU_FWEN0);
2175			add_tsu_reg(TSU_FWEN1);
2176			add_tsu_reg(TSU_FCM);
2177			add_tsu_reg(TSU_BSYSL0);
2178			add_tsu_reg(TSU_BSYSL1);
2179			add_tsu_reg(TSU_PRISL0);
2180			add_tsu_reg(TSU_PRISL1);
2181			add_tsu_reg(TSU_FWSL0);
2182			add_tsu_reg(TSU_FWSL1);
2183		}
2184		add_tsu_reg(TSU_FWSLC);
2185		if (cd->dual_port) {
2186			add_tsu_reg(TSU_QTAGM0);
2187			add_tsu_reg(TSU_QTAGM1);
2188			add_tsu_reg(TSU_FWSR);
2189			add_tsu_reg(TSU_FWINMK);
2190			add_tsu_reg(TSU_ADQT0);
2191			add_tsu_reg(TSU_ADQT1);
2192			add_tsu_reg(TSU_VTAG0);
2193			add_tsu_reg(TSU_VTAG1);
2194		}
2195		add_tsu_reg(TSU_ADSBSY);
2196		add_tsu_reg(TSU_TEN);
2197		add_tsu_reg(TSU_POST1);
2198		add_tsu_reg(TSU_POST2);
2199		add_tsu_reg(TSU_POST3);
2200		add_tsu_reg(TSU_POST4);
2201		/* This is the start of a table, not just a single register. */
2202		if (buf) {
2203			unsigned int i;
2204
2205			mark_reg_valid(TSU_ADRH0);
2206			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2207				*buf++ = ioread32(mdp->tsu_addr +
2208						  mdp->reg_offset[TSU_ADRH0] +
2209						  i * 4);
2210		}
2211		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2212	}
2213
2214#undef mark_reg_valid
2215#undef add_reg_from
2216#undef add_reg
2217#undef add_tsu_reg
2218
2219	return len * 4;
2220}
2221
2222static int sh_eth_get_regs_len(struct net_device *ndev)
2223{
2224	return __sh_eth_get_regs(ndev, NULL);
2225}
2226
2227static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2228			    void *buf)
2229{
2230	struct sh_eth_private *mdp = netdev_priv(ndev);
2231
2232	regs->version = SH_ETH_REG_DUMP_VERSION;
2233
2234	pm_runtime_get_sync(&mdp->pdev->dev);
2235	__sh_eth_get_regs(ndev, buf);
2236	pm_runtime_put_sync(&mdp->pdev->dev);
2237}
2238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239static u32 sh_eth_get_msglevel(struct net_device *ndev)
2240{
2241	struct sh_eth_private *mdp = netdev_priv(ndev);
2242	return mdp->msg_enable;
2243}
2244
2245static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2246{
2247	struct sh_eth_private *mdp = netdev_priv(ndev);
2248	mdp->msg_enable = value;
2249}
2250
2251static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2252	"rx_current", "tx_current",
2253	"rx_dirty", "tx_dirty",
2254};
2255#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2256
2257static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2258{
2259	switch (sset) {
2260	case ETH_SS_STATS:
2261		return SH_ETH_STATS_LEN;
2262	default:
2263		return -EOPNOTSUPP;
2264	}
2265}
2266
2267static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2268				     struct ethtool_stats *stats, u64 *data)
2269{
2270	struct sh_eth_private *mdp = netdev_priv(ndev);
2271	int i = 0;
2272
2273	/* device-specific stats */
2274	data[i++] = mdp->cur_rx;
2275	data[i++] = mdp->cur_tx;
2276	data[i++] = mdp->dirty_rx;
2277	data[i++] = mdp->dirty_tx;
2278}
2279
2280static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2281{
2282	switch (stringset) {
2283	case ETH_SS_STATS:
2284		memcpy(data, sh_eth_gstrings_stats,
2285		       sizeof(sh_eth_gstrings_stats));
2286		break;
2287	}
2288}
2289
2290static void sh_eth_get_ringparam(struct net_device *ndev,
2291				 struct ethtool_ringparam *ring,
2292				 struct kernel_ethtool_ringparam *kernel_ring,
2293				 struct netlink_ext_ack *extack)
2294{
2295	struct sh_eth_private *mdp = netdev_priv(ndev);
2296
2297	ring->rx_max_pending = RX_RING_MAX;
2298	ring->tx_max_pending = TX_RING_MAX;
2299	ring->rx_pending = mdp->num_rx_ring;
2300	ring->tx_pending = mdp->num_tx_ring;
2301}
2302
2303static int sh_eth_set_ringparam(struct net_device *ndev,
2304				struct ethtool_ringparam *ring,
2305				struct kernel_ethtool_ringparam *kernel_ring,
2306				struct netlink_ext_ack *extack)
2307{
2308	struct sh_eth_private *mdp = netdev_priv(ndev);
2309	int ret;
2310
2311	if (ring->tx_pending > TX_RING_MAX ||
2312	    ring->rx_pending > RX_RING_MAX ||
2313	    ring->tx_pending < TX_RING_MIN ||
2314	    ring->rx_pending < RX_RING_MIN)
2315		return -EINVAL;
2316	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2317		return -EINVAL;
2318
2319	if (netif_running(ndev)) {
2320		netif_device_detach(ndev);
2321		netif_tx_disable(ndev);
2322
2323		/* Serialise with the interrupt handler and NAPI, then
2324		 * disable interrupts.  We have to clear the
2325		 * irq_enabled flag first to ensure that interrupts
2326		 * won't be re-enabled.
2327		 */
2328		mdp->irq_enabled = false;
2329		synchronize_irq(ndev->irq);
2330		napi_synchronize(&mdp->napi);
2331		sh_eth_write(ndev, 0x0000, EESIPR);
2332
2333		sh_eth_dev_exit(ndev);
2334
2335		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2336		sh_eth_ring_free(ndev);
2337	}
2338
2339	/* Set new parameters */
2340	mdp->num_rx_ring = ring->rx_pending;
2341	mdp->num_tx_ring = ring->tx_pending;
2342
2343	if (netif_running(ndev)) {
2344		ret = sh_eth_ring_init(ndev);
2345		if (ret < 0) {
2346			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2347				   __func__);
2348			return ret;
2349		}
2350		ret = sh_eth_dev_init(ndev);
2351		if (ret < 0) {
2352			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2353				   __func__);
2354			return ret;
2355		}
2356
2357		netif_device_attach(ndev);
2358	}
2359
2360	return 0;
2361}
2362
2363static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2364{
2365	struct sh_eth_private *mdp = netdev_priv(ndev);
2366
2367	wol->supported = 0;
2368	wol->wolopts = 0;
2369
2370	if (mdp->cd->magic) {
2371		wol->supported = WAKE_MAGIC;
2372		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2373	}
2374}
2375
2376static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2377{
2378	struct sh_eth_private *mdp = netdev_priv(ndev);
2379
2380	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2381		return -EOPNOTSUPP;
2382
2383	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2384
2385	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2386
2387	return 0;
2388}
2389
2390static const struct ethtool_ops sh_eth_ethtool_ops = {
2391	.get_regs_len	= sh_eth_get_regs_len,
2392	.get_regs	= sh_eth_get_regs,
2393	.nway_reset	= phy_ethtool_nway_reset,
2394	.get_msglevel	= sh_eth_get_msglevel,
2395	.set_msglevel	= sh_eth_set_msglevel,
2396	.get_link	= ethtool_op_get_link,
2397	.get_strings	= sh_eth_get_strings,
2398	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2399	.get_sset_count     = sh_eth_get_sset_count,
2400	.get_ringparam	= sh_eth_get_ringparam,
2401	.set_ringparam	= sh_eth_set_ringparam,
2402	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2403	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2404	.get_wol	= sh_eth_get_wol,
2405	.set_wol	= sh_eth_set_wol,
2406};
2407
2408/* network device open function */
2409static int sh_eth_open(struct net_device *ndev)
2410{
2411	struct sh_eth_private *mdp = netdev_priv(ndev);
2412	int ret;
2413
2414	pm_runtime_get_sync(&mdp->pdev->dev);
2415
2416	napi_enable(&mdp->napi);
2417
2418	ret = request_irq(ndev->irq, sh_eth_interrupt,
2419			  mdp->cd->irq_flags, ndev->name, ndev);
2420	if (ret) {
2421		netdev_err(ndev, "Can not assign IRQ number\n");
2422		goto out_napi_off;
2423	}
2424
2425	/* Descriptor set */
2426	ret = sh_eth_ring_init(ndev);
2427	if (ret)
2428		goto out_free_irq;
2429
2430	/* device init */
2431	ret = sh_eth_dev_init(ndev);
2432	if (ret)
2433		goto out_free_irq;
2434
2435	/* PHY control start*/
2436	ret = sh_eth_phy_start(ndev);
2437	if (ret)
2438		goto out_free_irq;
2439
2440	netif_start_queue(ndev);
2441
2442	mdp->is_opened = 1;
2443
2444	return ret;
2445
2446out_free_irq:
2447	free_irq(ndev->irq, ndev);
2448out_napi_off:
2449	napi_disable(&mdp->napi);
2450	pm_runtime_put_sync(&mdp->pdev->dev);
2451	return ret;
2452}
2453
2454/* Timeout function */
2455static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2456{
2457	struct sh_eth_private *mdp = netdev_priv(ndev);
2458	struct sh_eth_rxdesc *rxdesc;
2459	int i;
2460
2461	netif_stop_queue(ndev);
2462
2463	netif_err(mdp, timer, ndev,
2464		  "transmit timed out, status %8.8x, resetting...\n",
2465		  sh_eth_read(ndev, EESR));
2466
2467	/* tx_errors count up */
2468	ndev->stats.tx_errors++;
2469
2470	/* Free all the skbuffs in the Rx queue. */
2471	for (i = 0; i < mdp->num_rx_ring; i++) {
2472		rxdesc = &mdp->rx_ring[i];
2473		rxdesc->status = cpu_to_le32(0);
2474		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2475		dev_kfree_skb(mdp->rx_skbuff[i]);
2476		mdp->rx_skbuff[i] = NULL;
2477	}
2478	for (i = 0; i < mdp->num_tx_ring; i++) {
2479		dev_kfree_skb(mdp->tx_skbuff[i]);
2480		mdp->tx_skbuff[i] = NULL;
2481	}
2482
2483	/* device init */
2484	sh_eth_dev_init(ndev);
2485
2486	netif_start_queue(ndev);
2487}
2488
2489/* Packet transmit function */
2490static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2491				     struct net_device *ndev)
2492{
2493	struct sh_eth_private *mdp = netdev_priv(ndev);
2494	struct sh_eth_txdesc *txdesc;
2495	dma_addr_t dma_addr;
2496	u32 entry;
2497	unsigned long flags;
2498
2499	spin_lock_irqsave(&mdp->lock, flags);
2500	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2501		if (!sh_eth_tx_free(ndev, true)) {
2502			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2503			netif_stop_queue(ndev);
2504			spin_unlock_irqrestore(&mdp->lock, flags);
2505			return NETDEV_TX_BUSY;
2506		}
2507	}
2508	spin_unlock_irqrestore(&mdp->lock, flags);
2509
2510	if (skb_put_padto(skb, ETH_ZLEN))
2511		return NETDEV_TX_OK;
2512
2513	entry = mdp->cur_tx % mdp->num_tx_ring;
2514	mdp->tx_skbuff[entry] = skb;
2515	txdesc = &mdp->tx_ring[entry];
2516	/* soft swap. */
2517	if (!mdp->cd->hw_swap)
2518		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2519	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2520				  DMA_TO_DEVICE);
2521	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2522		kfree_skb(skb);
2523		return NETDEV_TX_OK;
2524	}
2525	txdesc->addr = cpu_to_le32(dma_addr);
2526	txdesc->len  = cpu_to_le32(skb->len << 16);
2527
2528	dma_wmb(); /* TACT bit must be set after all the above writes */
2529	if (entry >= mdp->num_tx_ring - 1)
2530		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2531	else
2532		txdesc->status |= cpu_to_le32(TD_TACT);
2533
2534	wmb(); /* cur_tx must be incremented after TACT bit was set */
2535	mdp->cur_tx++;
2536
2537	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2538		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2539
2540	return NETDEV_TX_OK;
2541}
2542
2543/* The statistics registers have write-clear behaviour, which means we
2544 * will lose any increment between the read and write.  We mitigate
2545 * this by only clearing when we read a non-zero value, so we will
2546 * never falsely report a total of zero.
2547 */
2548static void
2549sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2550{
2551	u32 delta = sh_eth_read(ndev, reg);
2552
2553	if (delta) {
2554		*stat += delta;
2555		sh_eth_write(ndev, 0, reg);
2556	}
2557}
2558
2559static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2560{
2561	struct sh_eth_private *mdp = netdev_priv(ndev);
2562
2563	if (mdp->cd->no_tx_cntrs)
2564		return &ndev->stats;
2565
2566	if (!mdp->is_opened)
2567		return &ndev->stats;
2568
2569	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2570	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2571	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2572
2573	if (mdp->cd->cexcr) {
2574		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2575				   CERCR);
2576		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2577				   CEECR);
2578	} else {
2579		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2580				   CNDCR);
2581	}
2582
2583	return &ndev->stats;
2584}
2585
2586/* device close function */
2587static int sh_eth_close(struct net_device *ndev)
2588{
2589	struct sh_eth_private *mdp = netdev_priv(ndev);
2590
2591	netif_stop_queue(ndev);
2592
2593	/* Serialise with the interrupt handler and NAPI, then disable
2594	 * interrupts.  We have to clear the irq_enabled flag first to
2595	 * ensure that interrupts won't be re-enabled.
2596	 */
2597	mdp->irq_enabled = false;
2598	synchronize_irq(ndev->irq);
2599	napi_disable(&mdp->napi);
2600	sh_eth_write(ndev, 0x0000, EESIPR);
2601
2602	sh_eth_dev_exit(ndev);
2603
2604	/* PHY Disconnect */
2605	if (ndev->phydev) {
2606		phy_stop(ndev->phydev);
2607		phy_disconnect(ndev->phydev);
2608	}
2609
2610	free_irq(ndev->irq, ndev);
2611
2612	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2613	sh_eth_ring_free(ndev);
2614
2615	mdp->is_opened = 0;
2616
2617	pm_runtime_put(&mdp->pdev->dev);
2618
2619	return 0;
2620}
2621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2623{
2624	if (netif_running(ndev))
2625		return -EBUSY;
2626
2627	ndev->mtu = new_mtu;
2628	netdev_update_features(ndev);
2629
2630	return 0;
2631}
2632
2633/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
 
 
 
 
 
 
2634static u32 sh_eth_tsu_get_post_mask(int entry)
2635{
2636	return 0x0f << (28 - ((entry % 8) * 4));
2637}
2638
2639static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2640{
2641	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2642}
2643
2644static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2645					     int entry)
2646{
2647	struct sh_eth_private *mdp = netdev_priv(ndev);
2648	int reg = TSU_POST1 + entry / 8;
2649	u32 tmp;
 
2650
2651	tmp = sh_eth_tsu_read(mdp, reg);
2652	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
 
2653}
2654
2655static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2656					      int entry)
2657{
2658	struct sh_eth_private *mdp = netdev_priv(ndev);
2659	int reg = TSU_POST1 + entry / 8;
2660	u32 post_mask, ref_mask, tmp;
 
2661
 
2662	post_mask = sh_eth_tsu_get_post_mask(entry);
2663	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2664
2665	tmp = sh_eth_tsu_read(mdp, reg);
2666	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2667
2668	/* If other port enables, the function returns "true" */
2669	return tmp & ref_mask;
2670}
2671
2672static int sh_eth_tsu_busy(struct net_device *ndev)
2673{
2674	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2675	struct sh_eth_private *mdp = netdev_priv(ndev);
2676
2677	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2678		udelay(10);
2679		timeout--;
2680		if (timeout <= 0) {
2681			netdev_err(ndev, "%s: timeout\n", __func__);
2682			return -ETIMEDOUT;
2683		}
2684	}
2685
2686	return 0;
2687}
2688
2689static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2690				  const u8 *addr)
2691{
2692	struct sh_eth_private *mdp = netdev_priv(ndev);
2693	u32 val;
2694
2695	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2696	iowrite32(val, mdp->tsu_addr + offset);
2697	if (sh_eth_tsu_busy(ndev) < 0)
2698		return -EBUSY;
2699
2700	val = addr[4] << 8 | addr[5];
2701	iowrite32(val, mdp->tsu_addr + offset + 4);
2702	if (sh_eth_tsu_busy(ndev) < 0)
2703		return -EBUSY;
2704
2705	return 0;
2706}
2707
2708static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2709{
2710	struct sh_eth_private *mdp = netdev_priv(ndev);
2711	u32 val;
2712
2713	val = ioread32(mdp->tsu_addr + offset);
2714	addr[0] = (val >> 24) & 0xff;
2715	addr[1] = (val >> 16) & 0xff;
2716	addr[2] = (val >> 8) & 0xff;
2717	addr[3] = val & 0xff;
2718	val = ioread32(mdp->tsu_addr + offset + 4);
2719	addr[4] = (val >> 8) & 0xff;
2720	addr[5] = val & 0xff;
2721}
2722
2723
2724static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2725{
2726	struct sh_eth_private *mdp = netdev_priv(ndev);
2727	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2728	int i;
2729	u8 c_addr[ETH_ALEN];
2730
2731	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2732		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2733		if (ether_addr_equal(addr, c_addr))
2734			return i;
2735	}
2736
2737	return -ENOENT;
2738}
2739
2740static int sh_eth_tsu_find_empty(struct net_device *ndev)
2741{
2742	u8 blank[ETH_ALEN];
2743	int entry;
2744
2745	memset(blank, 0, sizeof(blank));
2746	entry = sh_eth_tsu_find_entry(ndev, blank);
2747	return (entry < 0) ? -ENOMEM : entry;
2748}
2749
2750static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2751					      int entry)
2752{
2753	struct sh_eth_private *mdp = netdev_priv(ndev);
2754	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2755	int ret;
2756	u8 blank[ETH_ALEN];
2757
2758	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2759			 ~(1 << (31 - entry)), TSU_TEN);
2760
2761	memset(blank, 0, sizeof(blank));
2762	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2763	if (ret < 0)
2764		return ret;
2765	return 0;
2766}
2767
2768static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2769{
2770	struct sh_eth_private *mdp = netdev_priv(ndev);
2771	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2772	int i, ret;
2773
2774	if (!mdp->cd->tsu)
2775		return 0;
2776
2777	i = sh_eth_tsu_find_entry(ndev, addr);
2778	if (i < 0) {
2779		/* No entry found, create one */
2780		i = sh_eth_tsu_find_empty(ndev);
2781		if (i < 0)
2782			return -ENOMEM;
2783		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2784		if (ret < 0)
2785			return ret;
2786
2787		/* Enable the entry */
2788		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2789				 (1 << (31 - i)), TSU_TEN);
2790	}
2791
2792	/* Entry found or created, enable POST */
2793	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2794
2795	return 0;
2796}
2797
2798static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2799{
2800	struct sh_eth_private *mdp = netdev_priv(ndev);
2801	int i, ret;
2802
2803	if (!mdp->cd->tsu)
2804		return 0;
2805
2806	i = sh_eth_tsu_find_entry(ndev, addr);
2807	if (i) {
2808		/* Entry found */
2809		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2810			goto done;
2811
2812		/* Disable the entry if both ports was disabled */
2813		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2814		if (ret < 0)
2815			return ret;
2816	}
2817done:
2818	return 0;
2819}
2820
2821static int sh_eth_tsu_purge_all(struct net_device *ndev)
2822{
2823	struct sh_eth_private *mdp = netdev_priv(ndev);
2824	int i, ret;
2825
2826	if (!mdp->cd->tsu)
2827		return 0;
2828
2829	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2830		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2831			continue;
2832
2833		/* Disable the entry if both ports was disabled */
2834		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2835		if (ret < 0)
2836			return ret;
2837	}
2838
2839	return 0;
2840}
2841
2842static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2843{
2844	struct sh_eth_private *mdp = netdev_priv(ndev);
2845	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2846	u8 addr[ETH_ALEN];
 
2847	int i;
2848
2849	if (!mdp->cd->tsu)
2850		return;
2851
2852	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2853		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2854		if (is_multicast_ether_addr(addr))
2855			sh_eth_tsu_del_entry(ndev, addr);
2856	}
2857}
2858
2859/* Update promiscuous flag and multicast filter */
2860static void sh_eth_set_rx_mode(struct net_device *ndev)
2861{
2862	struct sh_eth_private *mdp = netdev_priv(ndev);
2863	u32 ecmr_bits;
2864	int mcast_all = 0;
2865	unsigned long flags;
2866
2867	spin_lock_irqsave(&mdp->lock, flags);
2868	/* Initial condition is MCT = 1, PRM = 0.
2869	 * Depending on ndev->flags, set PRM or clear MCT
2870	 */
2871	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2872	if (mdp->cd->tsu)
2873		ecmr_bits |= ECMR_MCT;
2874
2875	if (!(ndev->flags & IFF_MULTICAST)) {
2876		sh_eth_tsu_purge_mcast(ndev);
2877		mcast_all = 1;
2878	}
2879	if (ndev->flags & IFF_ALLMULTI) {
2880		sh_eth_tsu_purge_mcast(ndev);
2881		ecmr_bits &= ~ECMR_MCT;
2882		mcast_all = 1;
2883	}
2884
2885	if (ndev->flags & IFF_PROMISC) {
2886		sh_eth_tsu_purge_all(ndev);
2887		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2888	} else if (mdp->cd->tsu) {
2889		struct netdev_hw_addr *ha;
2890		netdev_for_each_mc_addr(ha, ndev) {
2891			if (mcast_all && is_multicast_ether_addr(ha->addr))
2892				continue;
2893
2894			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2895				if (!mcast_all) {
2896					sh_eth_tsu_purge_mcast(ndev);
2897					ecmr_bits &= ~ECMR_MCT;
2898					mcast_all = 1;
2899				}
2900			}
2901		}
2902	}
2903
2904	/* update the ethernet mode */
2905	sh_eth_write(ndev, ecmr_bits, ECMR);
2906
2907	spin_unlock_irqrestore(&mdp->lock, flags);
2908}
2909
2910static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2911{
2912	struct sh_eth_private *mdp = netdev_priv(ndev);
2913	unsigned long flags;
2914
2915	spin_lock_irqsave(&mdp->lock, flags);
2916
2917	/* Disable TX and RX */
2918	sh_eth_rcv_snd_disable(ndev);
2919
2920	/* Modify RX Checksum setting */
2921	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2922
2923	/* Enable TX and RX */
2924	sh_eth_rcv_snd_enable(ndev);
2925
2926	spin_unlock_irqrestore(&mdp->lock, flags);
2927}
2928
2929static int sh_eth_set_features(struct net_device *ndev,
2930			       netdev_features_t features)
2931{
2932	netdev_features_t changed = ndev->features ^ features;
2933	struct sh_eth_private *mdp = netdev_priv(ndev);
2934
2935	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2936		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2937
2938	ndev->features = features;
2939
2940	return 0;
2941}
2942
2943static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2944{
2945	if (!mdp->port)
2946		return TSU_VTAG0;
2947	else
2948		return TSU_VTAG1;
2949}
2950
2951static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2952				  __be16 proto, u16 vid)
2953{
2954	struct sh_eth_private *mdp = netdev_priv(ndev);
2955	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2956
2957	if (unlikely(!mdp->cd->tsu))
2958		return -EPERM;
2959
2960	/* No filtering if vid = 0 */
2961	if (!vid)
2962		return 0;
2963
2964	mdp->vlan_num_ids++;
2965
2966	/* The controller has one VLAN tag HW filter. So, if the filter is
2967	 * already enabled, the driver disables it and the filte
2968	 */
2969	if (mdp->vlan_num_ids > 1) {
2970		/* disable VLAN filter */
2971		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2972		return 0;
2973	}
2974
2975	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2976			 vtag_reg_index);
2977
2978	return 0;
2979}
2980
2981static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2982				   __be16 proto, u16 vid)
2983{
2984	struct sh_eth_private *mdp = netdev_priv(ndev);
2985	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2986
2987	if (unlikely(!mdp->cd->tsu))
2988		return -EPERM;
2989
2990	/* No filtering if vid = 0 */
2991	if (!vid)
2992		return 0;
2993
2994	mdp->vlan_num_ids--;
2995	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2996
2997	return 0;
2998}
2999
3000/* SuperH's TSU register init function */
3001static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3002{
3003	if (!mdp->cd->dual_port) {
3004		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3005		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3006				 TSU_FWSLC);	/* Enable POST registers */
3007		return;
3008	}
3009
3010	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3011	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3012	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3013	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3014	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3015	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3016	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3017	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3018	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3019	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3020	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3021	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3022	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3023	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3024	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3025	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3026	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3027	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3028	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3029}
3030
3031/* MDIO bus release function */
3032static int sh_mdio_release(struct sh_eth_private *mdp)
3033{
3034	/* unregister mdio bus */
3035	mdiobus_unregister(mdp->mii_bus);
3036
3037	/* free bitbang info */
3038	free_mdio_bitbang(mdp->mii_bus);
3039
3040	return 0;
3041}
3042
3043static int sh_mdiobb_read_c22(struct mii_bus *bus, int phy, int reg)
3044{
3045	int res;
3046
3047	pm_runtime_get_sync(bus->parent);
3048	res = mdiobb_read_c22(bus, phy, reg);
3049	pm_runtime_put(bus->parent);
3050
3051	return res;
3052}
3053
3054static int sh_mdiobb_write_c22(struct mii_bus *bus, int phy, int reg, u16 val)
3055{
3056	int res;
3057
3058	pm_runtime_get_sync(bus->parent);
3059	res = mdiobb_write_c22(bus, phy, reg, val);
3060	pm_runtime_put(bus->parent);
3061
3062	return res;
3063}
3064
3065static int sh_mdiobb_read_c45(struct mii_bus *bus, int phy, int devad, int reg)
3066{
3067	int res;
3068
3069	pm_runtime_get_sync(bus->parent);
3070	res = mdiobb_read_c45(bus, phy, devad, reg);
3071	pm_runtime_put(bus->parent);
3072
3073	return res;
3074}
3075
3076static int sh_mdiobb_write_c45(struct mii_bus *bus, int phy, int devad,
3077			       int reg, u16 val)
3078{
3079	int res;
3080
3081	pm_runtime_get_sync(bus->parent);
3082	res = mdiobb_write_c45(bus, phy, devad, reg, val);
3083	pm_runtime_put(bus->parent);
3084
3085	return res;
3086}
3087
3088/* MDIO bus init function */
3089static int sh_mdio_init(struct sh_eth_private *mdp,
3090			struct sh_eth_plat_data *pd)
3091{
3092	int ret;
3093	struct bb_info *bitbang;
3094	struct platform_device *pdev = mdp->pdev;
3095	struct device *dev = &mdp->pdev->dev;
3096	struct phy_device *phydev;
3097	struct device_node *pn;
3098
3099	/* create bit control struct for PHY */
3100	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3101	if (!bitbang)
3102		return -ENOMEM;
3103
3104	/* bitbang init */
3105	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3106	bitbang->set_gate = pd->set_mdio_gate;
3107	bitbang->ctrl.ops = &bb_ops;
3108
3109	/* MII controller setting */
3110	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3111	if (!mdp->mii_bus)
3112		return -ENOMEM;
3113
3114	/* Wrap accessors with Runtime PM-aware ops */
3115	mdp->mii_bus->read = sh_mdiobb_read_c22;
3116	mdp->mii_bus->write = sh_mdiobb_write_c22;
3117	mdp->mii_bus->read_c45 = sh_mdiobb_read_c45;
3118	mdp->mii_bus->write_c45 = sh_mdiobb_write_c45;
3119
3120	/* Hook up MII support for ethtool */
3121	mdp->mii_bus->name = "sh_mii";
3122	mdp->mii_bus->parent = dev;
3123	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3124		 pdev->name, pdev->id);
3125
3126	/* register MDIO bus */
3127	if (pd->phy_irq > 0)
3128		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
 
 
 
 
 
 
3129
3130	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3131	if (ret)
3132		goto out_free_bus;
3133
3134	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
3135	phydev = of_phy_find_device(pn);
3136	if (phydev) {
3137		phydev->mac_managed_pm = true;
3138		put_device(&phydev->mdio.dev);
3139	}
3140	of_node_put(pn);
3141
3142	return 0;
3143
3144out_free_bus:
3145	free_mdio_bitbang(mdp->mii_bus);
3146	return ret;
3147}
3148
3149static const u16 *sh_eth_get_register_offset(int register_type)
3150{
3151	const u16 *reg_offset = NULL;
3152
3153	switch (register_type) {
3154	case SH_ETH_REG_GIGABIT:
3155		reg_offset = sh_eth_offset_gigabit;
3156		break;
 
 
 
3157	case SH_ETH_REG_FAST_RCAR:
3158		reg_offset = sh_eth_offset_fast_rcar;
3159		break;
3160	case SH_ETH_REG_FAST_SH4:
3161		reg_offset = sh_eth_offset_fast_sh4;
3162		break;
3163	case SH_ETH_REG_FAST_SH3_SH2:
3164		reg_offset = sh_eth_offset_fast_sh3_sh2;
3165		break;
3166	}
3167
3168	return reg_offset;
3169}
3170
3171static const struct net_device_ops sh_eth_netdev_ops = {
3172	.ndo_open		= sh_eth_open,
3173	.ndo_stop		= sh_eth_close,
3174	.ndo_start_xmit		= sh_eth_start_xmit,
3175	.ndo_get_stats		= sh_eth_get_stats,
3176	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3177	.ndo_tx_timeout		= sh_eth_tx_timeout,
3178	.ndo_eth_ioctl		= phy_do_ioctl_running,
3179	.ndo_change_mtu		= sh_eth_change_mtu,
3180	.ndo_validate_addr	= eth_validate_addr,
3181	.ndo_set_mac_address	= eth_mac_addr,
3182	.ndo_set_features	= sh_eth_set_features,
3183};
3184
3185static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3186	.ndo_open		= sh_eth_open,
3187	.ndo_stop		= sh_eth_close,
3188	.ndo_start_xmit		= sh_eth_start_xmit,
3189	.ndo_get_stats		= sh_eth_get_stats,
3190	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3191	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3192	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3193	.ndo_tx_timeout		= sh_eth_tx_timeout,
3194	.ndo_eth_ioctl		= phy_do_ioctl_running,
3195	.ndo_change_mtu		= sh_eth_change_mtu,
3196	.ndo_validate_addr	= eth_validate_addr,
3197	.ndo_set_mac_address	= eth_mac_addr,
3198	.ndo_set_features	= sh_eth_set_features,
3199};
3200
3201#ifdef CONFIG_OF
3202static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3203{
3204	struct device_node *np = dev->of_node;
3205	struct sh_eth_plat_data *pdata;
3206	phy_interface_t interface;
3207	int ret;
3208
3209	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3210	if (!pdata)
3211		return NULL;
3212
3213	ret = of_get_phy_mode(np, &interface);
3214	if (ret)
3215		return NULL;
3216	pdata->phy_interface = interface;
3217
3218	of_get_mac_address(np, pdata->mac_addr);
 
 
3219
3220	pdata->no_ether_link =
3221		of_property_read_bool(np, "renesas,no-ether-link");
3222	pdata->ether_link_active_low =
3223		of_property_read_bool(np, "renesas,ether-link-active-low");
3224
3225	return pdata;
3226}
3227
3228static const struct of_device_id sh_eth_match_table[] = {
3229	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3230	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3231	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3232	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3233	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3234	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3235	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3236	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3237	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3238	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3239	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3240	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3241	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3242	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3243	{ }
3244};
3245MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3246#else
3247static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3248{
3249	return NULL;
3250}
3251#endif
3252
3253static int sh_eth_drv_probe(struct platform_device *pdev)
3254{
3255	struct resource *res;
3256	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3257	const struct platform_device_id *id = platform_get_device_id(pdev);
3258	struct sh_eth_private *mdp;
3259	struct net_device *ndev;
3260	int ret;
3261
 
 
 
3262	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3263	if (!ndev)
3264		return -ENOMEM;
3265
3266	pm_runtime_enable(&pdev->dev);
3267	pm_runtime_get_sync(&pdev->dev);
3268
3269	ret = platform_get_irq(pdev, 0);
3270	if (ret < 0)
3271		goto out_release;
3272	ndev->irq = ret;
3273
3274	SET_NETDEV_DEV(ndev, &pdev->dev);
3275
3276	mdp = netdev_priv(ndev);
3277	mdp->num_tx_ring = TX_RING_SIZE;
3278	mdp->num_rx_ring = RX_RING_SIZE;
3279	mdp->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3280	if (IS_ERR(mdp->addr)) {
3281		ret = PTR_ERR(mdp->addr);
3282		goto out_release;
3283	}
3284
3285	ndev->base_addr = res->start;
3286
3287	spin_lock_init(&mdp->lock);
3288	mdp->pdev = pdev;
3289
3290	if (pdev->dev.of_node)
3291		pd = sh_eth_parse_dt(&pdev->dev);
3292	if (!pd) {
3293		dev_err(&pdev->dev, "no platform data\n");
3294		ret = -EINVAL;
3295		goto out_release;
3296	}
3297
3298	/* get PHY ID */
3299	mdp->phy_id = pd->phy;
3300	mdp->phy_interface = pd->phy_interface;
3301	mdp->no_ether_link = pd->no_ether_link;
3302	mdp->ether_link_active_low = pd->ether_link_active_low;
3303
3304	/* set cpu data */
3305	if (id)
3306		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3307	else
3308		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3309
3310	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3311	if (!mdp->reg_offset) {
3312		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3313			mdp->cd->register_type);
3314		ret = -EINVAL;
3315		goto out_release;
3316	}
3317	sh_eth_set_default_cpu_data(mdp->cd);
3318
3319	/* User's manual states max MTU should be 2048 but due to the
3320	 * alignment calculations in sh_eth_ring_init() the practical
3321	 * MTU is a bit less. Maybe this can be optimized some more.
3322	 */
3323	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3324	ndev->min_mtu = ETH_MIN_MTU;
3325
3326	if (mdp->cd->rx_csum) {
3327		ndev->features = NETIF_F_RXCSUM;
3328		ndev->hw_features = NETIF_F_RXCSUM;
3329	}
3330
3331	/* set function */
3332	if (mdp->cd->tsu)
3333		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3334	else
3335		ndev->netdev_ops = &sh_eth_netdev_ops;
3336	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3337	ndev->watchdog_timeo = TX_TIMEOUT;
3338
3339	/* debug message level */
3340	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3341
3342	/* read and set MAC address */
3343	read_mac_address(ndev, pd->mac_addr);
3344	if (!is_valid_ether_addr(ndev->dev_addr)) {
3345		dev_warn(&pdev->dev,
3346			 "no valid MAC address supplied, using a random one.\n");
3347		eth_hw_addr_random(ndev);
3348	}
3349
3350	if (mdp->cd->tsu) {
3351		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3352		struct resource *rtsu;
3353
3354		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3355		if (!rtsu) {
3356			dev_err(&pdev->dev, "no TSU resource\n");
3357			ret = -ENODEV;
3358			goto out_release;
3359		}
3360		/* We can only request the  TSU region  for the first port
3361		 * of the two  sharing this TSU for the probe to succeed...
3362		 */
3363		if (port == 0 &&
3364		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3365					     resource_size(rtsu),
3366					     dev_name(&pdev->dev))) {
3367			dev_err(&pdev->dev, "can't request TSU resource.\n");
3368			ret = -EBUSY;
3369			goto out_release;
3370		}
3371		/* ioremap the TSU registers */
3372		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3373					     resource_size(rtsu));
3374		if (!mdp->tsu_addr) {
3375			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3376			ret = -ENOMEM;
3377			goto out_release;
3378		}
3379		mdp->port = port;
3380		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3381
3382		/* Need to init only the first port of the two sharing a TSU */
3383		if (port == 0) {
3384			if (mdp->cd->chip_reset)
3385				mdp->cd->chip_reset(ndev);
3386
3387			/* TSU init (Init only)*/
3388			sh_eth_tsu_init(mdp);
3389		}
3390	}
3391
3392	if (mdp->cd->rmiimode)
3393		sh_eth_write(ndev, 0x1, RMIIMODE);
3394
3395	/* MDIO bus init */
3396	ret = sh_mdio_init(mdp, pd);
3397	if (ret) {
3398		dev_err_probe(&pdev->dev, ret, "MDIO init failed\n");
 
3399		goto out_release;
3400	}
3401
3402	netif_napi_add(ndev, &mdp->napi, sh_eth_poll);
3403
3404	/* network device register */
3405	ret = register_netdev(ndev);
3406	if (ret)
3407		goto out_napi_del;
3408
3409	if (mdp->cd->magic)
3410		device_set_wakeup_capable(&pdev->dev, 1);
3411
3412	/* print device information */
3413	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3414		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3415
3416	pm_runtime_put(&pdev->dev);
3417	platform_set_drvdata(pdev, ndev);
3418
3419	return ret;
3420
3421out_napi_del:
3422	netif_napi_del(&mdp->napi);
3423	sh_mdio_release(mdp);
3424
3425out_release:
3426	/* net_dev free */
3427	free_netdev(ndev);
3428
3429	pm_runtime_put(&pdev->dev);
3430	pm_runtime_disable(&pdev->dev);
3431	return ret;
3432}
3433
3434static void sh_eth_drv_remove(struct platform_device *pdev)
3435{
3436	struct net_device *ndev = platform_get_drvdata(pdev);
3437	struct sh_eth_private *mdp = netdev_priv(ndev);
3438
3439	unregister_netdev(ndev);
3440	netif_napi_del(&mdp->napi);
3441	sh_mdio_release(mdp);
3442	pm_runtime_disable(&pdev->dev);
3443	free_netdev(ndev);
 
 
3444}
3445
3446#ifdef CONFIG_PM
3447#ifdef CONFIG_PM_SLEEP
3448static int sh_eth_wol_setup(struct net_device *ndev)
3449{
3450	struct sh_eth_private *mdp = netdev_priv(ndev);
3451
3452	/* Only allow ECI interrupts */
3453	synchronize_irq(ndev->irq);
3454	napi_disable(&mdp->napi);
3455	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3456
3457	/* Enable MagicPacket */
3458	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3459
3460	return enable_irq_wake(ndev->irq);
3461}
3462
3463static int sh_eth_wol_restore(struct net_device *ndev)
3464{
3465	struct sh_eth_private *mdp = netdev_priv(ndev);
3466	int ret;
3467
3468	napi_enable(&mdp->napi);
3469
3470	/* Disable MagicPacket */
3471	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3472
3473	/* The device needs to be reset to restore MagicPacket logic
3474	 * for next wakeup. If we close and open the device it will
3475	 * both be reset and all registers restored. This is what
3476	 * happens during suspend and resume without WoL enabled.
3477	 */
3478	sh_eth_close(ndev);
 
 
3479	ret = sh_eth_open(ndev);
3480	if (ret < 0)
3481		return ret;
3482
3483	return disable_irq_wake(ndev->irq);
3484}
3485
3486static int sh_eth_suspend(struct device *dev)
3487{
3488	struct net_device *ndev = dev_get_drvdata(dev);
3489	struct sh_eth_private *mdp = netdev_priv(ndev);
3490	int ret;
3491
3492	if (!netif_running(ndev))
3493		return 0;
3494
3495	netif_device_detach(ndev);
3496
3497	if (mdp->wol_enabled)
3498		ret = sh_eth_wol_setup(ndev);
3499	else
3500		ret = sh_eth_close(ndev);
3501
3502	return ret;
3503}
3504
3505static int sh_eth_resume(struct device *dev)
3506{
3507	struct net_device *ndev = dev_get_drvdata(dev);
3508	struct sh_eth_private *mdp = netdev_priv(ndev);
3509	int ret;
3510
3511	if (!netif_running(ndev))
3512		return 0;
3513
3514	if (mdp->wol_enabled)
3515		ret = sh_eth_wol_restore(ndev);
3516	else
3517		ret = sh_eth_open(ndev);
3518
3519	if (ret < 0)
3520		return ret;
3521
3522	netif_device_attach(ndev);
3523
3524	return ret;
3525}
3526#endif
3527
3528static int sh_eth_runtime_nop(struct device *dev)
3529{
3530	/* Runtime PM callback shared between ->runtime_suspend()
3531	 * and ->runtime_resume(). Simply returns success.
3532	 *
3533	 * This driver re-initializes all registers after
3534	 * pm_runtime_get_sync() anyway so there is no need
3535	 * to save and restore registers here.
3536	 */
3537	return 0;
3538}
3539
3540static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3541	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3542	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3543};
3544#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3545#else
3546#define SH_ETH_PM_OPS NULL
3547#endif
3548
3549static const struct platform_device_id sh_eth_id_table[] = {
3550	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3551	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3552	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3553	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3554	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3555	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3556	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3557	{ }
3558};
3559MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3560
3561static struct platform_driver sh_eth_driver = {
3562	.probe = sh_eth_drv_probe,
3563	.remove_new = sh_eth_drv_remove,
3564	.id_table = sh_eth_id_table,
3565	.driver = {
3566		   .name = CARDNAME,
3567		   .pm = SH_ETH_PM_OPS,
3568		   .of_match_table = of_match_ptr(sh_eth_match_table),
3569	},
3570};
3571
3572module_platform_driver(sh_eth_driver);
3573
3574MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3575MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3576MODULE_LICENSE("GPL v2");
v4.17
 
   1/*  SuperH Ethernet device driver
   2 *
   3 *  Copyright (C) 2014 Renesas Electronics Corporation
   4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
   5 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
   6 *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
   7 *  Copyright (C) 2014 Codethink Limited
   8 *
   9 *  This program is free software; you can redistribute it and/or modify it
  10 *  under the terms and conditions of the GNU General Public License,
  11 *  version 2, as published by the Free Software Foundation.
  12 *
  13 *  This program is distributed in the hope it will be useful, but WITHOUT
  14 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 *  more details.
  17 *
  18 *  The full GNU General Public License is included in this distribution in
  19 *  the file called "COPYING".
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/spinlock.h>
  25#include <linux/interrupt.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/etherdevice.h>
  28#include <linux/delay.h>
  29#include <linux/platform_device.h>
  30#include <linux/mdio-bitbang.h>
  31#include <linux/netdevice.h>
  32#include <linux/of.h>
  33#include <linux/of_device.h>
  34#include <linux/of_irq.h>
  35#include <linux/of_net.h>
  36#include <linux/phy.h>
  37#include <linux/cache.h>
  38#include <linux/io.h>
  39#include <linux/pm_runtime.h>
  40#include <linux/slab.h>
  41#include <linux/ethtool.h>
  42#include <linux/if_vlan.h>
  43#include <linux/sh_eth.h>
  44#include <linux/of_mdio.h>
  45
  46#include "sh_eth.h"
  47
  48#define SH_ETH_DEF_MSG_ENABLE \
  49		(NETIF_MSG_LINK	| \
  50		NETIF_MSG_TIMER	| \
  51		NETIF_MSG_RX_ERR| \
  52		NETIF_MSG_TX_ERR)
  53
  54#define SH_ETH_OFFSET_INVALID	((u16)~0)
  55
  56#define SH_ETH_OFFSET_DEFAULTS			\
  57	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
  58
 
 
 
 
 
 
 
 
 
  59static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
  60	SH_ETH_OFFSET_DEFAULTS,
  61
  62	[EDSR]		= 0x0000,
  63	[EDMR]		= 0x0400,
  64	[EDTRR]		= 0x0408,
  65	[EDRRR]		= 0x0410,
  66	[EESR]		= 0x0428,
  67	[EESIPR]	= 0x0430,
  68	[TDLAR]		= 0x0010,
  69	[TDFAR]		= 0x0014,
  70	[TDFXR]		= 0x0018,
  71	[TDFFR]		= 0x001c,
  72	[RDLAR]		= 0x0030,
  73	[RDFAR]		= 0x0034,
  74	[RDFXR]		= 0x0038,
  75	[RDFFR]		= 0x003c,
  76	[TRSCER]	= 0x0438,
  77	[RMFCR]		= 0x0440,
  78	[TFTR]		= 0x0448,
  79	[FDR]		= 0x0450,
  80	[RMCR]		= 0x0458,
  81	[RPADIR]	= 0x0460,
  82	[FCFTR]		= 0x0468,
  83	[CSMR]		= 0x04E4,
  84
  85	[ECMR]		= 0x0500,
  86	[ECSR]		= 0x0510,
  87	[ECSIPR]	= 0x0518,
  88	[PIR]		= 0x0520,
  89	[PSR]		= 0x0528,
  90	[PIPR]		= 0x052c,
  91	[RFLR]		= 0x0508,
  92	[APR]		= 0x0554,
  93	[MPR]		= 0x0558,
  94	[PFTCR]		= 0x055c,
  95	[PFRCR]		= 0x0560,
  96	[TPAUSER]	= 0x0564,
  97	[GECMR]		= 0x05b0,
  98	[BCULR]		= 0x05b4,
  99	[MAHR]		= 0x05c0,
 100	[MALR]		= 0x05c8,
 101	[TROCR]		= 0x0700,
 102	[CDCR]		= 0x0708,
 103	[LCCR]		= 0x0710,
 104	[CEFCR]		= 0x0740,
 105	[FRECR]		= 0x0748,
 106	[TSFRCR]	= 0x0750,
 107	[TLFRCR]	= 0x0758,
 108	[RFCR]		= 0x0760,
 109	[CERCR]		= 0x0768,
 110	[CEECR]		= 0x0770,
 111	[MAFCR]		= 0x0778,
 112	[RMII_MII]	= 0x0790,
 113
 114	[ARSTR]		= 0x0000,
 115	[TSU_CTRST]	= 0x0004,
 116	[TSU_FWEN0]	= 0x0010,
 117	[TSU_FWEN1]	= 0x0014,
 118	[TSU_FCM]	= 0x0018,
 119	[TSU_BSYSL0]	= 0x0020,
 120	[TSU_BSYSL1]	= 0x0024,
 121	[TSU_PRISL0]	= 0x0028,
 122	[TSU_PRISL1]	= 0x002c,
 123	[TSU_FWSL0]	= 0x0030,
 124	[TSU_FWSL1]	= 0x0034,
 125	[TSU_FWSLC]	= 0x0038,
 126	[TSU_QTAGM0]	= 0x0040,
 127	[TSU_QTAGM1]	= 0x0044,
 128	[TSU_FWSR]	= 0x0050,
 129	[TSU_FWINMK]	= 0x0054,
 130	[TSU_ADQT0]	= 0x0048,
 131	[TSU_ADQT1]	= 0x004c,
 132	[TSU_VTAG0]	= 0x0058,
 133	[TSU_VTAG1]	= 0x005c,
 134	[TSU_ADSBSY]	= 0x0060,
 135	[TSU_TEN]	= 0x0064,
 136	[TSU_POST1]	= 0x0070,
 137	[TSU_POST2]	= 0x0074,
 138	[TSU_POST3]	= 0x0078,
 139	[TSU_POST4]	= 0x007c,
 140	[TSU_ADRH0]	= 0x0100,
 141
 142	[TXNLCR0]	= 0x0080,
 143	[TXALCR0]	= 0x0084,
 144	[RXNLCR0]	= 0x0088,
 145	[RXALCR0]	= 0x008c,
 146	[FWNLCR0]	= 0x0090,
 147	[FWALCR0]	= 0x0094,
 148	[TXNLCR1]	= 0x00a0,
 149	[TXALCR1]	= 0x00a4,
 150	[RXNLCR1]	= 0x00a8,
 151	[RXALCR1]	= 0x00ac,
 152	[FWNLCR1]	= 0x00b0,
 153	[FWALCR1]	= 0x00b4,
 154};
 155
 156static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
 157	SH_ETH_OFFSET_DEFAULTS,
 158
 159	[EDSR]		= 0x0000,
 160	[EDMR]		= 0x0400,
 161	[EDTRR]		= 0x0408,
 162	[EDRRR]		= 0x0410,
 163	[EESR]		= 0x0428,
 164	[EESIPR]	= 0x0430,
 165	[TDLAR]		= 0x0010,
 166	[TDFAR]		= 0x0014,
 167	[TDFXR]		= 0x0018,
 168	[TDFFR]		= 0x001c,
 169	[RDLAR]		= 0x0030,
 170	[RDFAR]		= 0x0034,
 171	[RDFXR]		= 0x0038,
 172	[RDFFR]		= 0x003c,
 173	[TRSCER]	= 0x0438,
 174	[RMFCR]		= 0x0440,
 175	[TFTR]		= 0x0448,
 176	[FDR]		= 0x0450,
 177	[RMCR]		= 0x0458,
 178	[RPADIR]	= 0x0460,
 179	[FCFTR]		= 0x0468,
 180	[CSMR]		= 0x04E4,
 181
 182	[ECMR]		= 0x0500,
 183	[RFLR]		= 0x0508,
 184	[ECSR]		= 0x0510,
 185	[ECSIPR]	= 0x0518,
 186	[PIR]		= 0x0520,
 187	[APR]		= 0x0554,
 188	[MPR]		= 0x0558,
 189	[PFTCR]		= 0x055c,
 190	[PFRCR]		= 0x0560,
 191	[TPAUSER]	= 0x0564,
 192	[MAHR]		= 0x05c0,
 193	[MALR]		= 0x05c8,
 194	[CEFCR]		= 0x0740,
 195	[FRECR]		= 0x0748,
 196	[TSFRCR]	= 0x0750,
 197	[TLFRCR]	= 0x0758,
 198	[RFCR]		= 0x0760,
 199	[MAFCR]		= 0x0778,
 200
 201	[ARSTR]		= 0x0000,
 202	[TSU_CTRST]	= 0x0004,
 203	[TSU_FWSLC]	= 0x0038,
 204	[TSU_VTAG0]	= 0x0058,
 205	[TSU_ADSBSY]	= 0x0060,
 206	[TSU_TEN]	= 0x0064,
 207	[TSU_POST1]	= 0x0070,
 208	[TSU_POST2]	= 0x0074,
 209	[TSU_POST3]	= 0x0078,
 210	[TSU_POST4]	= 0x007c,
 211	[TSU_ADRH0]	= 0x0100,
 212
 213	[TXNLCR0]	= 0x0080,
 214	[TXALCR0]	= 0x0084,
 215	[RXNLCR0]	= 0x0088,
 216	[RXALCR0]	= 0x008C,
 217};
 218
 219static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
 220	SH_ETH_OFFSET_DEFAULTS,
 221
 222	[ECMR]		= 0x0300,
 223	[RFLR]		= 0x0308,
 224	[ECSR]		= 0x0310,
 225	[ECSIPR]	= 0x0318,
 226	[PIR]		= 0x0320,
 227	[PSR]		= 0x0328,
 228	[RDMLR]		= 0x0340,
 229	[IPGR]		= 0x0350,
 230	[APR]		= 0x0354,
 231	[MPR]		= 0x0358,
 232	[RFCF]		= 0x0360,
 233	[TPAUSER]	= 0x0364,
 234	[TPAUSECR]	= 0x0368,
 235	[MAHR]		= 0x03c0,
 236	[MALR]		= 0x03c8,
 237	[TROCR]		= 0x03d0,
 238	[CDCR]		= 0x03d4,
 239	[LCCR]		= 0x03d8,
 240	[CNDCR]		= 0x03dc,
 241	[CEFCR]		= 0x03e4,
 242	[FRECR]		= 0x03e8,
 243	[TSFRCR]	= 0x03ec,
 244	[TLFRCR]	= 0x03f0,
 245	[RFCR]		= 0x03f4,
 246	[MAFCR]		= 0x03f8,
 247
 248	[EDMR]		= 0x0200,
 249	[EDTRR]		= 0x0208,
 250	[EDRRR]		= 0x0210,
 251	[TDLAR]		= 0x0218,
 252	[RDLAR]		= 0x0220,
 253	[EESR]		= 0x0228,
 254	[EESIPR]	= 0x0230,
 255	[TRSCER]	= 0x0238,
 256	[RMFCR]		= 0x0240,
 257	[TFTR]		= 0x0248,
 258	[FDR]		= 0x0250,
 259	[RMCR]		= 0x0258,
 260	[TFUCR]		= 0x0264,
 261	[RFOCR]		= 0x0268,
 262	[RMIIMODE]      = 0x026c,
 263	[FCFTR]		= 0x0270,
 264	[TRIMD]		= 0x027c,
 265};
 266
 267static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
 268	SH_ETH_OFFSET_DEFAULTS,
 269
 270	[ECMR]		= 0x0100,
 271	[RFLR]		= 0x0108,
 272	[ECSR]		= 0x0110,
 273	[ECSIPR]	= 0x0118,
 274	[PIR]		= 0x0120,
 275	[PSR]		= 0x0128,
 276	[RDMLR]		= 0x0140,
 277	[IPGR]		= 0x0150,
 278	[APR]		= 0x0154,
 279	[MPR]		= 0x0158,
 280	[TPAUSER]	= 0x0164,
 281	[RFCF]		= 0x0160,
 282	[TPAUSECR]	= 0x0168,
 283	[BCFRR]		= 0x016c,
 284	[MAHR]		= 0x01c0,
 285	[MALR]		= 0x01c8,
 286	[TROCR]		= 0x01d0,
 287	[CDCR]		= 0x01d4,
 288	[LCCR]		= 0x01d8,
 289	[CNDCR]		= 0x01dc,
 290	[CEFCR]		= 0x01e4,
 291	[FRECR]		= 0x01e8,
 292	[TSFRCR]	= 0x01ec,
 293	[TLFRCR]	= 0x01f0,
 294	[RFCR]		= 0x01f4,
 295	[MAFCR]		= 0x01f8,
 296	[RTRATE]	= 0x01fc,
 297
 298	[EDMR]		= 0x0000,
 299	[EDTRR]		= 0x0008,
 300	[EDRRR]		= 0x0010,
 301	[TDLAR]		= 0x0018,
 302	[RDLAR]		= 0x0020,
 303	[EESR]		= 0x0028,
 304	[EESIPR]	= 0x0030,
 305	[TRSCER]	= 0x0038,
 306	[RMFCR]		= 0x0040,
 307	[TFTR]		= 0x0048,
 308	[FDR]		= 0x0050,
 309	[RMCR]		= 0x0058,
 310	[TFUCR]		= 0x0064,
 311	[RFOCR]		= 0x0068,
 312	[FCFTR]		= 0x0070,
 313	[RPADIR]	= 0x0078,
 314	[TRIMD]		= 0x007c,
 315	[RBWAR]		= 0x00c8,
 316	[RDFAR]		= 0x00cc,
 317	[TBRAR]		= 0x00d4,
 318	[TDFAR]		= 0x00d8,
 319};
 320
 321static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
 322	SH_ETH_OFFSET_DEFAULTS,
 323
 324	[EDMR]		= 0x0000,
 325	[EDTRR]		= 0x0004,
 326	[EDRRR]		= 0x0008,
 327	[TDLAR]		= 0x000c,
 328	[RDLAR]		= 0x0010,
 329	[EESR]		= 0x0014,
 330	[EESIPR]	= 0x0018,
 331	[TRSCER]	= 0x001c,
 332	[RMFCR]		= 0x0020,
 333	[TFTR]		= 0x0024,
 334	[FDR]		= 0x0028,
 335	[RMCR]		= 0x002c,
 336	[EDOCR]		= 0x0030,
 337	[FCFTR]		= 0x0034,
 338	[RPADIR]	= 0x0038,
 339	[TRIMD]		= 0x003c,
 340	[RBWAR]		= 0x0040,
 341	[RDFAR]		= 0x0044,
 342	[TBRAR]		= 0x004c,
 343	[TDFAR]		= 0x0050,
 344
 345	[ECMR]		= 0x0160,
 346	[ECSR]		= 0x0164,
 347	[ECSIPR]	= 0x0168,
 348	[PIR]		= 0x016c,
 349	[MAHR]		= 0x0170,
 350	[MALR]		= 0x0174,
 351	[RFLR]		= 0x0178,
 352	[PSR]		= 0x017c,
 353	[TROCR]		= 0x0180,
 354	[CDCR]		= 0x0184,
 355	[LCCR]		= 0x0188,
 356	[CNDCR]		= 0x018c,
 357	[CEFCR]		= 0x0194,
 358	[FRECR]		= 0x0198,
 359	[TSFRCR]	= 0x019c,
 360	[TLFRCR]	= 0x01a0,
 361	[RFCR]		= 0x01a4,
 362	[MAFCR]		= 0x01a8,
 363	[IPGR]		= 0x01b4,
 364	[APR]		= 0x01b8,
 365	[MPR]		= 0x01bc,
 366	[TPAUSER]	= 0x01c4,
 367	[BCFR]		= 0x01cc,
 368
 369	[ARSTR]		= 0x0000,
 370	[TSU_CTRST]	= 0x0004,
 371	[TSU_FWEN0]	= 0x0010,
 372	[TSU_FWEN1]	= 0x0014,
 373	[TSU_FCM]	= 0x0018,
 374	[TSU_BSYSL0]	= 0x0020,
 375	[TSU_BSYSL1]	= 0x0024,
 376	[TSU_PRISL0]	= 0x0028,
 377	[TSU_PRISL1]	= 0x002c,
 378	[TSU_FWSL0]	= 0x0030,
 379	[TSU_FWSL1]	= 0x0034,
 380	[TSU_FWSLC]	= 0x0038,
 381	[TSU_QTAGM0]	= 0x0040,
 382	[TSU_QTAGM1]	= 0x0044,
 383	[TSU_ADQT0]	= 0x0048,
 384	[TSU_ADQT1]	= 0x004c,
 385	[TSU_FWSR]	= 0x0050,
 386	[TSU_FWINMK]	= 0x0054,
 387	[TSU_ADSBSY]	= 0x0060,
 388	[TSU_TEN]	= 0x0064,
 389	[TSU_POST1]	= 0x0070,
 390	[TSU_POST2]	= 0x0074,
 391	[TSU_POST3]	= 0x0078,
 392	[TSU_POST4]	= 0x007c,
 393
 394	[TXNLCR0]	= 0x0080,
 395	[TXALCR0]	= 0x0084,
 396	[RXNLCR0]	= 0x0088,
 397	[RXALCR0]	= 0x008c,
 398	[FWNLCR0]	= 0x0090,
 399	[FWALCR0]	= 0x0094,
 400	[TXNLCR1]	= 0x00a0,
 401	[TXALCR1]	= 0x00a4,
 402	[RXNLCR1]	= 0x00a8,
 403	[RXALCR1]	= 0x00ac,
 404	[FWNLCR1]	= 0x00b0,
 405	[FWALCR1]	= 0x00b4,
 406
 407	[TSU_ADRH0]	= 0x0100,
 408};
 
 409
 410static void sh_eth_rcv_snd_disable(struct net_device *ndev);
 411static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
 412
 413static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
 414{
 415	struct sh_eth_private *mdp = netdev_priv(ndev);
 416	u16 offset = mdp->reg_offset[enum_index];
 417
 418	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 419		return;
 420
 421	iowrite32(data, mdp->addr + offset);
 422}
 423
 424static u32 sh_eth_read(struct net_device *ndev, int enum_index)
 425{
 426	struct sh_eth_private *mdp = netdev_priv(ndev);
 427	u16 offset = mdp->reg_offset[enum_index];
 428
 429	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 430		return ~0U;
 431
 432	return ioread32(mdp->addr + offset);
 433}
 434
 435static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
 436			  u32 set)
 437{
 438	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
 439		     enum_index);
 440}
 441
 
 
 
 
 
 442static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
 443			     int enum_index)
 444{
 445	iowrite32(data, mdp->tsu_addr + mdp->reg_offset[enum_index]);
 
 
 
 
 
 446}
 447
 448static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
 449{
 450	return ioread32(mdp->tsu_addr + mdp->reg_offset[enum_index]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453static void sh_eth_select_mii(struct net_device *ndev)
 454{
 455	struct sh_eth_private *mdp = netdev_priv(ndev);
 456	u32 value;
 457
 458	switch (mdp->phy_interface) {
 
 
 
 459	case PHY_INTERFACE_MODE_GMII:
 460		value = 0x2;
 461		break;
 462	case PHY_INTERFACE_MODE_MII:
 463		value = 0x1;
 464		break;
 465	case PHY_INTERFACE_MODE_RMII:
 466		value = 0x0;
 467		break;
 468	default:
 469		netdev_warn(ndev,
 470			    "PHY interface mode was not setup. Set to MII.\n");
 471		value = 0x1;
 472		break;
 473	}
 474
 475	sh_eth_write(ndev, value, RMII_MII);
 476}
 477
 478static void sh_eth_set_duplex(struct net_device *ndev)
 479{
 480	struct sh_eth_private *mdp = netdev_priv(ndev);
 481
 482	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
 483}
 484
 485static void sh_eth_chip_reset(struct net_device *ndev)
 486{
 487	struct sh_eth_private *mdp = netdev_priv(ndev);
 488
 489	/* reset device */
 490	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
 491	mdelay(1);
 492}
 493
 494static int sh_eth_soft_reset(struct net_device *ndev)
 495{
 496	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
 497	mdelay(3);
 498	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
 499
 500	return 0;
 501}
 502
 503static int sh_eth_check_soft_reset(struct net_device *ndev)
 504{
 505	int cnt;
 506
 507	for (cnt = 100; cnt > 0; cnt--) {
 508		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
 509			return 0;
 510		mdelay(1);
 511	}
 512
 513	netdev_err(ndev, "Device reset failed\n");
 514	return -ETIMEDOUT;
 515}
 516
 517static int sh_eth_soft_reset_gether(struct net_device *ndev)
 518{
 519	struct sh_eth_private *mdp = netdev_priv(ndev);
 520	int ret;
 521
 522	sh_eth_write(ndev, EDSR_ENALL, EDSR);
 523	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
 524
 525	ret = sh_eth_check_soft_reset(ndev);
 526	if (ret)
 527		return ret;
 528
 529	/* Table Init */
 530	sh_eth_write(ndev, 0, TDLAR);
 531	sh_eth_write(ndev, 0, TDFAR);
 532	sh_eth_write(ndev, 0, TDFXR);
 533	sh_eth_write(ndev, 0, TDFFR);
 534	sh_eth_write(ndev, 0, RDLAR);
 535	sh_eth_write(ndev, 0, RDFAR);
 536	sh_eth_write(ndev, 0, RDFXR);
 537	sh_eth_write(ndev, 0, RDFFR);
 538
 539	/* Reset HW CRC register */
 540	if (mdp->cd->hw_checksum)
 541		sh_eth_write(ndev, 0, CSMR);
 542
 543	/* Select MII mode */
 544	if (mdp->cd->select_mii)
 545		sh_eth_select_mii(ndev);
 546
 547	return ret;
 548}
 549
 550static void sh_eth_set_rate_gether(struct net_device *ndev)
 551{
 552	struct sh_eth_private *mdp = netdev_priv(ndev);
 553
 
 
 
 554	switch (mdp->speed) {
 555	case 10: /* 10BASE */
 556		sh_eth_write(ndev, GECMR_10, GECMR);
 557		break;
 558	case 100:/* 100BASE */
 559		sh_eth_write(ndev, GECMR_100, GECMR);
 560		break;
 561	case 1000: /* 1000BASE */
 562		sh_eth_write(ndev, GECMR_1000, GECMR);
 563		break;
 564	}
 565}
 566
 567#ifdef CONFIG_OF
 568/* R7S72100 */
 569static struct sh_eth_cpu_data r7s72100_data = {
 570	.soft_reset	= sh_eth_soft_reset_gether,
 571
 572	.chip_reset	= sh_eth_chip_reset,
 573	.set_duplex	= sh_eth_set_duplex,
 574
 575	.register_type	= SH_ETH_REG_FAST_RZ,
 576
 577	.edtrr_trns	= EDTRR_TRNS_GETHER,
 578	.ecsr_value	= ECSR_ICD,
 579	.ecsipr_value	= ECSIPR_ICDIP,
 580	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
 581			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
 582			  EESIPR_ECIIP |
 583			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 584			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 585			  EESIPR_RMAFIP | EESIPR_RRFIP |
 586			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 587			  EESIPR_PREIP | EESIPR_CERFIP,
 588
 589	.tx_check	= EESR_TC1 | EESR_FTC,
 590	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 591			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 592			  EESR_TDE,
 593	.fdr_value	= 0x0000070f,
 594
 
 
 595	.no_psr		= 1,
 596	.apr		= 1,
 597	.mpr		= 1,
 598	.tpauser	= 1,
 599	.hw_swap	= 1,
 600	.rpadir		= 1,
 601	.rpadir_value   = 2 << 16,
 602	.no_trimd	= 1,
 603	.no_ade		= 1,
 604	.xdfar_rw	= 1,
 605	.hw_checksum	= 1,
 
 606	.tsu		= 1,
 607	.no_tx_cntrs	= 1,
 608};
 609
 610static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
 611{
 612	sh_eth_chip_reset(ndev);
 613
 614	sh_eth_select_mii(ndev);
 615}
 616
 617/* R8A7740 */
 618static struct sh_eth_cpu_data r8a7740_data = {
 619	.soft_reset	= sh_eth_soft_reset_gether,
 620
 621	.chip_reset	= sh_eth_chip_reset_r8a7740,
 622	.set_duplex	= sh_eth_set_duplex,
 623	.set_rate	= sh_eth_set_rate_gether,
 624
 625	.register_type	= SH_ETH_REG_GIGABIT,
 626
 627	.edtrr_trns	= EDTRR_TRNS_GETHER,
 628	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 629	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 630	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 631			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 632			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 633			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 634			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 635			  EESIPR_CEEFIP | EESIPR_CELFIP |
 636			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 637			  EESIPR_PREIP | EESIPR_CERFIP,
 638
 639	.tx_check	= EESR_TC1 | EESR_FTC,
 640	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 641			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 642			  EESR_TDE,
 643	.fdr_value	= 0x0000070f,
 644
 645	.apr		= 1,
 646	.mpr		= 1,
 647	.tpauser	= 1,
 
 648	.bculr		= 1,
 649	.hw_swap	= 1,
 650	.rpadir		= 1,
 651	.rpadir_value   = 2 << 16,
 652	.no_trimd	= 1,
 653	.no_ade		= 1,
 654	.xdfar_rw	= 1,
 655	.hw_checksum	= 1,
 
 656	.tsu		= 1,
 657	.select_mii	= 1,
 658	.magic		= 1,
 659	.cexcr		= 1,
 660};
 661
 662/* There is CPU dependent code */
 663static void sh_eth_set_rate_rcar(struct net_device *ndev)
 664{
 665	struct sh_eth_private *mdp = netdev_priv(ndev);
 666
 667	switch (mdp->speed) {
 668	case 10: /* 10BASE */
 669		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
 670		break;
 671	case 100:/* 100BASE */
 672		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
 673		break;
 674	}
 675}
 676
 677/* R-Car Gen1 */
 678static struct sh_eth_cpu_data rcar_gen1_data = {
 679	.soft_reset	= sh_eth_soft_reset,
 680
 681	.set_duplex	= sh_eth_set_duplex,
 682	.set_rate	= sh_eth_set_rate_rcar,
 683
 684	.register_type	= SH_ETH_REG_FAST_RCAR,
 685
 686	.edtrr_trns	= EDTRR_TRNS_ETHER,
 687	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 688	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 689	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 690			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 691			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 692			  EESIPR_RMAFIP | EESIPR_RRFIP |
 693			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 694			  EESIPR_PREIP | EESIPR_CERFIP,
 695
 696	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 697	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 698			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 699	.fdr_value	= 0x00000f0f,
 700
 701	.apr		= 1,
 702	.mpr		= 1,
 703	.tpauser	= 1,
 704	.hw_swap	= 1,
 705	.no_xdfar	= 1,
 706};
 707
 708/* R-Car Gen2 and RZ/G1 */
 709static struct sh_eth_cpu_data rcar_gen2_data = {
 710	.soft_reset	= sh_eth_soft_reset,
 711
 712	.set_duplex	= sh_eth_set_duplex,
 713	.set_rate	= sh_eth_set_rate_rcar,
 714
 715	.register_type	= SH_ETH_REG_FAST_RCAR,
 716
 717	.edtrr_trns	= EDTRR_TRNS_ETHER,
 718	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 719	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 720			  ECSIPR_MPDIP,
 721	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 722			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 723			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 724			  EESIPR_RMAFIP | EESIPR_RRFIP |
 725			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 726			  EESIPR_PREIP | EESIPR_CERFIP,
 727
 728	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 729	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 730			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 731	.fdr_value	= 0x00000f0f,
 732
 733	.trscer_err_mask = DESC_I_RINT8,
 734
 735	.apr		= 1,
 736	.mpr		= 1,
 737	.tpauser	= 1,
 738	.hw_swap	= 1,
 739	.no_xdfar	= 1,
 740	.rmiimode	= 1,
 741	.magic		= 1,
 742};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743#endif /* CONFIG_OF */
 744
 745static void sh_eth_set_rate_sh7724(struct net_device *ndev)
 746{
 747	struct sh_eth_private *mdp = netdev_priv(ndev);
 748
 749	switch (mdp->speed) {
 750	case 10: /* 10BASE */
 751		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
 752		break;
 753	case 100:/* 100BASE */
 754		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
 755		break;
 756	}
 757}
 758
 759/* SH7724 */
 760static struct sh_eth_cpu_data sh7724_data = {
 761	.soft_reset	= sh_eth_soft_reset,
 762
 763	.set_duplex	= sh_eth_set_duplex,
 764	.set_rate	= sh_eth_set_rate_sh7724,
 765
 766	.register_type	= SH_ETH_REG_FAST_SH4,
 767
 768	.edtrr_trns	= EDTRR_TRNS_ETHER,
 769	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 770	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 771	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 772			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 773			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 774			  EESIPR_RMAFIP | EESIPR_RRFIP |
 775			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 776			  EESIPR_PREIP | EESIPR_CERFIP,
 777
 778	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 779	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 780			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 781
 782	.apr		= 1,
 783	.mpr		= 1,
 784	.tpauser	= 1,
 785	.hw_swap	= 1,
 786	.rpadir		= 1,
 787	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
 788};
 789
 790static void sh_eth_set_rate_sh7757(struct net_device *ndev)
 791{
 792	struct sh_eth_private *mdp = netdev_priv(ndev);
 793
 794	switch (mdp->speed) {
 795	case 10: /* 10BASE */
 796		sh_eth_write(ndev, 0, RTRATE);
 797		break;
 798	case 100:/* 100BASE */
 799		sh_eth_write(ndev, 1, RTRATE);
 800		break;
 801	}
 802}
 803
 804/* SH7757 */
 805static struct sh_eth_cpu_data sh7757_data = {
 806	.soft_reset	= sh_eth_soft_reset,
 807
 808	.set_duplex	= sh_eth_set_duplex,
 809	.set_rate	= sh_eth_set_rate_sh7757,
 810
 811	.register_type	= SH_ETH_REG_FAST_SH4,
 812
 813	.edtrr_trns	= EDTRR_TRNS_ETHER,
 814	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 815			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 816			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 817			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 818			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 819			  EESIPR_CEEFIP | EESIPR_CELFIP |
 820			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 821			  EESIPR_PREIP | EESIPR_CERFIP,
 822
 823	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 824	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 825			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 826
 827	.irq_flags	= IRQF_SHARED,
 828	.apr		= 1,
 829	.mpr		= 1,
 830	.tpauser	= 1,
 831	.hw_swap	= 1,
 832	.no_ade		= 1,
 833	.rpadir		= 1,
 834	.rpadir_value   = 2 << 16,
 835	.rtrate		= 1,
 836	.dual_port	= 1,
 837};
 838
 839#define SH_GIGA_ETH_BASE	0xfee00000UL
 840#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
 841#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
 842static void sh_eth_chip_reset_giga(struct net_device *ndev)
 843{
 844	u32 mahr[2], malr[2];
 845	int i;
 846
 847	/* save MAHR and MALR */
 848	for (i = 0; i < 2; i++) {
 849		malr[i] = ioread32((void *)GIGA_MALR(i));
 850		mahr[i] = ioread32((void *)GIGA_MAHR(i));
 851	}
 852
 853	sh_eth_chip_reset(ndev);
 854
 855	/* restore MAHR and MALR */
 856	for (i = 0; i < 2; i++) {
 857		iowrite32(malr[i], (void *)GIGA_MALR(i));
 858		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
 859	}
 860}
 861
 862static void sh_eth_set_rate_giga(struct net_device *ndev)
 863{
 864	struct sh_eth_private *mdp = netdev_priv(ndev);
 865
 
 
 
 866	switch (mdp->speed) {
 867	case 10: /* 10BASE */
 868		sh_eth_write(ndev, 0x00000000, GECMR);
 869		break;
 870	case 100:/* 100BASE */
 871		sh_eth_write(ndev, 0x00000010, GECMR);
 872		break;
 873	case 1000: /* 1000BASE */
 874		sh_eth_write(ndev, 0x00000020, GECMR);
 875		break;
 876	}
 877}
 878
 879/* SH7757(GETHERC) */
 880static struct sh_eth_cpu_data sh7757_data_giga = {
 881	.soft_reset	= sh_eth_soft_reset_gether,
 882
 883	.chip_reset	= sh_eth_chip_reset_giga,
 884	.set_duplex	= sh_eth_set_duplex,
 885	.set_rate	= sh_eth_set_rate_giga,
 886
 887	.register_type	= SH_ETH_REG_GIGABIT,
 888
 889	.edtrr_trns	= EDTRR_TRNS_GETHER,
 890	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 891	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 892	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 893			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 894			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 895			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 896			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 897			  EESIPR_CEEFIP | EESIPR_CELFIP |
 898			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 899			  EESIPR_PREIP | EESIPR_CERFIP,
 900
 901	.tx_check	= EESR_TC1 | EESR_FTC,
 902	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 903			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 904			  EESR_TDE,
 905	.fdr_value	= 0x0000072f,
 906
 907	.irq_flags	= IRQF_SHARED,
 908	.apr		= 1,
 909	.mpr		= 1,
 910	.tpauser	= 1,
 
 911	.bculr		= 1,
 912	.hw_swap	= 1,
 913	.rpadir		= 1,
 914	.rpadir_value   = 2 << 16,
 915	.no_trimd	= 1,
 916	.no_ade		= 1,
 917	.xdfar_rw	= 1,
 918	.tsu		= 1,
 919	.cexcr		= 1,
 920	.dual_port	= 1,
 921};
 922
 923/* SH7734 */
 924static struct sh_eth_cpu_data sh7734_data = {
 925	.soft_reset	= sh_eth_soft_reset_gether,
 926
 927	.chip_reset	= sh_eth_chip_reset,
 928	.set_duplex	= sh_eth_set_duplex,
 929	.set_rate	= sh_eth_set_rate_gether,
 930
 931	.register_type	= SH_ETH_REG_GIGABIT,
 932
 933	.edtrr_trns	= EDTRR_TRNS_GETHER,
 934	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 935	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 936	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 937			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 938			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 939			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 940			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
 941			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 942			  EESIPR_PREIP | EESIPR_CERFIP,
 943
 944	.tx_check	= EESR_TC1 | EESR_FTC,
 945	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 946			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 947			  EESR_TDE,
 948
 949	.apr		= 1,
 950	.mpr		= 1,
 951	.tpauser	= 1,
 
 952	.bculr		= 1,
 953	.hw_swap	= 1,
 954	.no_trimd	= 1,
 955	.no_ade		= 1,
 956	.xdfar_rw	= 1,
 957	.tsu		= 1,
 958	.hw_checksum	= 1,
 
 959	.select_mii	= 1,
 960	.magic		= 1,
 961	.cexcr		= 1,
 962};
 963
 964/* SH7763 */
 965static struct sh_eth_cpu_data sh7763_data = {
 966	.soft_reset	= sh_eth_soft_reset_gether,
 967
 968	.chip_reset	= sh_eth_chip_reset,
 969	.set_duplex	= sh_eth_set_duplex,
 970	.set_rate	= sh_eth_set_rate_gether,
 971
 972	.register_type	= SH_ETH_REG_GIGABIT,
 973
 974	.edtrr_trns	= EDTRR_TRNS_GETHER,
 975	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 976	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 977	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 978			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 979			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 980			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 981			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
 982			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 983			  EESIPR_PREIP | EESIPR_CERFIP,
 984
 985	.tx_check	= EESR_TC1 | EESR_FTC,
 986	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 987			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 988
 989	.apr		= 1,
 990	.mpr		= 1,
 991	.tpauser	= 1,
 
 992	.bculr		= 1,
 993	.hw_swap	= 1,
 994	.no_trimd	= 1,
 995	.no_ade		= 1,
 996	.xdfar_rw	= 1,
 997	.tsu		= 1,
 998	.irq_flags	= IRQF_SHARED,
 999	.magic		= 1,
1000	.cexcr		= 1,
 
1001	.dual_port	= 1,
1002};
1003
1004static struct sh_eth_cpu_data sh7619_data = {
1005	.soft_reset	= sh_eth_soft_reset,
1006
1007	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1008
1009	.edtrr_trns	= EDTRR_TRNS_ETHER,
1010	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1011			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1012			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1013			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1014			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1015			  EESIPR_CEEFIP | EESIPR_CELFIP |
1016			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1017			  EESIPR_PREIP | EESIPR_CERFIP,
1018
1019	.apr		= 1,
1020	.mpr		= 1,
1021	.tpauser	= 1,
1022	.hw_swap	= 1,
1023};
1024
1025static struct sh_eth_cpu_data sh771x_data = {
1026	.soft_reset	= sh_eth_soft_reset,
1027
1028	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1029
1030	.edtrr_trns	= EDTRR_TRNS_ETHER,
1031	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1032			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1033			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1034			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1035			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1036			  EESIPR_CEEFIP | EESIPR_CELFIP |
1037			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1038			  EESIPR_PREIP | EESIPR_CERFIP,
 
 
 
1039	.tsu		= 1,
1040	.dual_port	= 1,
1041};
1042
1043static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1044{
1045	if (!cd->ecsr_value)
1046		cd->ecsr_value = DEFAULT_ECSR_INIT;
1047
1048	if (!cd->ecsipr_value)
1049		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1050
1051	if (!cd->fcftr_value)
1052		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1053				  DEFAULT_FIFO_F_D_RFD;
1054
1055	if (!cd->fdr_value)
1056		cd->fdr_value = DEFAULT_FDR_INIT;
1057
1058	if (!cd->tx_check)
1059		cd->tx_check = DEFAULT_TX_CHECK;
1060
1061	if (!cd->eesr_err_check)
1062		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1063
1064	if (!cd->trscer_err_mask)
1065		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1066}
1067
1068static void sh_eth_set_receive_align(struct sk_buff *skb)
1069{
1070	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1071
1072	if (reserve)
1073		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1074}
1075
1076/* Program the hardware MAC address from dev->dev_addr. */
1077static void update_mac_address(struct net_device *ndev)
1078{
1079	sh_eth_write(ndev,
1080		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1081		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1082	sh_eth_write(ndev,
1083		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1084}
1085
1086/* Get MAC address from SuperH MAC address register
1087 *
1088 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1089 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1090 * When you want use this device, you must set MAC address in bootloader.
1091 *
1092 */
1093static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1094{
1095	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1096		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1097	} else {
1098		u32 mahr = sh_eth_read(ndev, MAHR);
1099		u32 malr = sh_eth_read(ndev, MALR);
 
1100
1101		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1102		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1103		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1104		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1105		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1106		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
 
1107	}
1108}
1109
1110struct bb_info {
1111	void (*set_gate)(void *addr);
1112	struct mdiobb_ctrl ctrl;
1113	void *addr;
1114};
1115
1116static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1117{
1118	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1119	u32 pir;
1120
1121	if (bitbang->set_gate)
1122		bitbang->set_gate(bitbang->addr);
1123
1124	pir = ioread32(bitbang->addr);
1125	if (set)
1126		pir |=  mask;
1127	else
1128		pir &= ~mask;
1129	iowrite32(pir, bitbang->addr);
1130}
1131
1132/* Data I/O pin control */
1133static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1134{
1135	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1136}
1137
1138/* Set bit data*/
1139static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1140{
1141	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1142}
1143
1144/* Get bit data*/
1145static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1146{
1147	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1148
1149	if (bitbang->set_gate)
1150		bitbang->set_gate(bitbang->addr);
1151
1152	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1153}
1154
1155/* MDC pin control */
1156static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1157{
1158	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1159}
1160
1161/* mdio bus control struct */
1162static struct mdiobb_ops bb_ops = {
1163	.owner = THIS_MODULE,
1164	.set_mdc = sh_mdc_ctrl,
1165	.set_mdio_dir = sh_mmd_ctrl,
1166	.set_mdio_data = sh_set_mdio,
1167	.get_mdio_data = sh_get_mdio,
1168};
1169
1170/* free Tx skb function */
1171static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1172{
1173	struct sh_eth_private *mdp = netdev_priv(ndev);
1174	struct sh_eth_txdesc *txdesc;
1175	int free_num = 0;
1176	int entry;
1177	bool sent;
1178
1179	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1180		entry = mdp->dirty_tx % mdp->num_tx_ring;
1181		txdesc = &mdp->tx_ring[entry];
1182		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1183		if (sent_only && !sent)
1184			break;
1185		/* TACT bit must be checked before all the following reads */
1186		dma_rmb();
1187		netif_info(mdp, tx_done, ndev,
1188			   "tx entry %d status 0x%08x\n",
1189			   entry, le32_to_cpu(txdesc->status));
1190		/* Free the original skb. */
1191		if (mdp->tx_skbuff[entry]) {
1192			dma_unmap_single(&mdp->pdev->dev,
1193					 le32_to_cpu(txdesc->addr),
1194					 le32_to_cpu(txdesc->len) >> 16,
1195					 DMA_TO_DEVICE);
1196			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1197			mdp->tx_skbuff[entry] = NULL;
1198			free_num++;
1199		}
1200		txdesc->status = cpu_to_le32(TD_TFP);
1201		if (entry >= mdp->num_tx_ring - 1)
1202			txdesc->status |= cpu_to_le32(TD_TDLE);
1203
1204		if (sent) {
1205			ndev->stats.tx_packets++;
1206			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1207		}
1208	}
1209	return free_num;
1210}
1211
1212/* free skb and descriptor buffer */
1213static void sh_eth_ring_free(struct net_device *ndev)
1214{
1215	struct sh_eth_private *mdp = netdev_priv(ndev);
1216	int ringsize, i;
1217
1218	if (mdp->rx_ring) {
1219		for (i = 0; i < mdp->num_rx_ring; i++) {
1220			if (mdp->rx_skbuff[i]) {
1221				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1222
1223				dma_unmap_single(&mdp->pdev->dev,
1224						 le32_to_cpu(rxdesc->addr),
1225						 ALIGN(mdp->rx_buf_sz, 32),
1226						 DMA_FROM_DEVICE);
1227			}
1228		}
1229		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1230		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1231				  mdp->rx_desc_dma);
1232		mdp->rx_ring = NULL;
1233	}
1234
1235	/* Free Rx skb ringbuffer */
1236	if (mdp->rx_skbuff) {
1237		for (i = 0; i < mdp->num_rx_ring; i++)
1238			dev_kfree_skb(mdp->rx_skbuff[i]);
1239	}
1240	kfree(mdp->rx_skbuff);
1241	mdp->rx_skbuff = NULL;
1242
1243	if (mdp->tx_ring) {
1244		sh_eth_tx_free(ndev, false);
1245
1246		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1247		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1248				  mdp->tx_desc_dma);
1249		mdp->tx_ring = NULL;
1250	}
1251
1252	/* Free Tx skb ringbuffer */
1253	kfree(mdp->tx_skbuff);
1254	mdp->tx_skbuff = NULL;
1255}
1256
1257/* format skb and descriptor buffer */
1258static void sh_eth_ring_format(struct net_device *ndev)
1259{
1260	struct sh_eth_private *mdp = netdev_priv(ndev);
1261	int i;
1262	struct sk_buff *skb;
1263	struct sh_eth_rxdesc *rxdesc = NULL;
1264	struct sh_eth_txdesc *txdesc = NULL;
1265	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1266	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1267	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1268	dma_addr_t dma_addr;
1269	u32 buf_len;
1270
1271	mdp->cur_rx = 0;
1272	mdp->cur_tx = 0;
1273	mdp->dirty_rx = 0;
1274	mdp->dirty_tx = 0;
1275
1276	memset(mdp->rx_ring, 0, rx_ringsize);
1277
1278	/* build Rx ring buffer */
1279	for (i = 0; i < mdp->num_rx_ring; i++) {
1280		/* skb */
1281		mdp->rx_skbuff[i] = NULL;
1282		skb = netdev_alloc_skb(ndev, skbuff_size);
1283		if (skb == NULL)
1284			break;
1285		sh_eth_set_receive_align(skb);
1286
1287		/* The size of the buffer is a multiple of 32 bytes. */
1288		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1289		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1290					  DMA_FROM_DEVICE);
1291		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1292			kfree_skb(skb);
1293			break;
1294		}
1295		mdp->rx_skbuff[i] = skb;
1296
1297		/* RX descriptor */
1298		rxdesc = &mdp->rx_ring[i];
1299		rxdesc->len = cpu_to_le32(buf_len << 16);
1300		rxdesc->addr = cpu_to_le32(dma_addr);
1301		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1302
1303		/* Rx descriptor address set */
1304		if (i == 0) {
1305			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1306			if (mdp->cd->xdfar_rw)
1307				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1308		}
1309	}
1310
1311	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1312
1313	/* Mark the last entry as wrapping the ring. */
1314	if (rxdesc)
1315		rxdesc->status |= cpu_to_le32(RD_RDLE);
1316
1317	memset(mdp->tx_ring, 0, tx_ringsize);
1318
1319	/* build Tx ring buffer */
1320	for (i = 0; i < mdp->num_tx_ring; i++) {
1321		mdp->tx_skbuff[i] = NULL;
1322		txdesc = &mdp->tx_ring[i];
1323		txdesc->status = cpu_to_le32(TD_TFP);
1324		txdesc->len = cpu_to_le32(0);
1325		if (i == 0) {
1326			/* Tx descriptor address set */
1327			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1328			if (mdp->cd->xdfar_rw)
1329				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1330		}
1331	}
1332
1333	txdesc->status |= cpu_to_le32(TD_TDLE);
1334}
1335
1336/* Get skb and descriptor buffer */
1337static int sh_eth_ring_init(struct net_device *ndev)
1338{
1339	struct sh_eth_private *mdp = netdev_priv(ndev);
1340	int rx_ringsize, tx_ringsize;
1341
1342	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1343	 * card needs room to do 8 byte alignment, +2 so we can reserve
1344	 * the first 2 bytes, and +16 gets room for the status word from the
1345	 * card.
1346	 */
1347	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1348			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1349	if (mdp->cd->rpadir)
1350		mdp->rx_buf_sz += NET_IP_ALIGN;
1351
1352	/* Allocate RX and TX skb rings */
1353	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1354				 GFP_KERNEL);
1355	if (!mdp->rx_skbuff)
1356		return -ENOMEM;
1357
1358	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1359				 GFP_KERNEL);
1360	if (!mdp->tx_skbuff)
1361		goto ring_free;
1362
1363	/* Allocate all Rx descriptors. */
1364	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1365	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1366					  &mdp->rx_desc_dma, GFP_KERNEL);
1367	if (!mdp->rx_ring)
1368		goto ring_free;
1369
1370	mdp->dirty_rx = 0;
1371
1372	/* Allocate all Tx descriptors. */
1373	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1374	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1375					  &mdp->tx_desc_dma, GFP_KERNEL);
1376	if (!mdp->tx_ring)
1377		goto ring_free;
1378	return 0;
1379
1380ring_free:
1381	/* Free Rx and Tx skb ring buffer and DMA buffer */
1382	sh_eth_ring_free(ndev);
1383
1384	return -ENOMEM;
1385}
1386
1387static int sh_eth_dev_init(struct net_device *ndev)
1388{
1389	struct sh_eth_private *mdp = netdev_priv(ndev);
1390	int ret;
1391
1392	/* Soft Reset */
1393	ret = mdp->cd->soft_reset(ndev);
1394	if (ret)
1395		return ret;
1396
1397	if (mdp->cd->rmiimode)
1398		sh_eth_write(ndev, 0x1, RMIIMODE);
1399
1400	/* Descriptor format */
1401	sh_eth_ring_format(ndev);
1402	if (mdp->cd->rpadir)
1403		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1404
1405	/* all sh_eth int mask */
1406	sh_eth_write(ndev, 0, EESIPR);
1407
1408#if defined(__LITTLE_ENDIAN)
1409	if (mdp->cd->hw_swap)
1410		sh_eth_write(ndev, EDMR_EL, EDMR);
1411	else
1412#endif
1413		sh_eth_write(ndev, 0, EDMR);
1414
1415	/* FIFO size set */
1416	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1417	sh_eth_write(ndev, 0, TFTR);
1418
1419	/* Frame recv control (enable multiple-packets per rx irq) */
1420	sh_eth_write(ndev, RMCR_RNC, RMCR);
1421
1422	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1423
 
 
 
 
 
1424	if (mdp->cd->bculr)
1425		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1426
1427	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1428
1429	if (!mdp->cd->no_trimd)
1430		sh_eth_write(ndev, 0, TRIMD);
1431
1432	/* Recv frame limit set register */
1433	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1434		     RFLR);
1435
1436	sh_eth_modify(ndev, EESR, 0, 0);
1437	mdp->irq_enabled = true;
1438	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1439
1440	/* PAUSE Prohibition */
1441	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
 
1442		     ECMR_TE | ECMR_RE, ECMR);
1443
1444	if (mdp->cd->set_rate)
1445		mdp->cd->set_rate(ndev);
1446
1447	/* E-MAC Status Register clear */
1448	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1449
1450	/* E-MAC Interrupt Enable register */
1451	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1452
1453	/* Set MAC address */
1454	update_mac_address(ndev);
1455
1456	/* mask reset */
1457	if (mdp->cd->apr)
1458		sh_eth_write(ndev, APR_AP, APR);
1459	if (mdp->cd->mpr)
1460		sh_eth_write(ndev, MPR_MP, MPR);
1461	if (mdp->cd->tpauser)
1462		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1463
1464	/* Setting the Rx mode will start the Rx process. */
1465	sh_eth_write(ndev, EDRRR_R, EDRRR);
1466
1467	return ret;
1468}
1469
1470static void sh_eth_dev_exit(struct net_device *ndev)
1471{
1472	struct sh_eth_private *mdp = netdev_priv(ndev);
1473	int i;
1474
1475	/* Deactivate all TX descriptors, so DMA should stop at next
1476	 * packet boundary if it's currently running
1477	 */
1478	for (i = 0; i < mdp->num_tx_ring; i++)
1479		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1480
1481	/* Disable TX FIFO egress to MAC */
1482	sh_eth_rcv_snd_disable(ndev);
1483
1484	/* Stop RX DMA at next packet boundary */
1485	sh_eth_write(ndev, 0, EDRRR);
1486
1487	/* Aside from TX DMA, we can't tell when the hardware is
1488	 * really stopped, so we need to reset to make sure.
1489	 * Before doing that, wait for long enough to *probably*
1490	 * finish transmitting the last packet and poll stats.
1491	 */
1492	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1493	sh_eth_get_stats(ndev);
1494	mdp->cd->soft_reset(ndev);
1495
 
 
 
 
1496	/* Set MAC address again */
1497	update_mac_address(ndev);
1498}
1499
 
 
 
 
 
 
 
 
 
 
 
 
 
1500/* Packet receive function */
1501static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1502{
1503	struct sh_eth_private *mdp = netdev_priv(ndev);
1504	struct sh_eth_rxdesc *rxdesc;
1505
1506	int entry = mdp->cur_rx % mdp->num_rx_ring;
1507	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1508	int limit;
1509	struct sk_buff *skb;
1510	u32 desc_status;
1511	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1512	dma_addr_t dma_addr;
1513	u16 pkt_len;
1514	u32 buf_len;
1515
1516	boguscnt = min(boguscnt, *quota);
1517	limit = boguscnt;
1518	rxdesc = &mdp->rx_ring[entry];
1519	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1520		/* RACT bit must be checked before all the following reads */
1521		dma_rmb();
1522		desc_status = le32_to_cpu(rxdesc->status);
1523		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1524
1525		if (--boguscnt < 0)
1526			break;
1527
1528		netif_info(mdp, rx_status, ndev,
1529			   "rx entry %d status 0x%08x len %d\n",
1530			   entry, desc_status, pkt_len);
1531
1532		if (!(desc_status & RDFEND))
1533			ndev->stats.rx_length_errors++;
1534
1535		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1536		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1537		 * bit 0. However, in case of the R8A7740 and R7S72100
1538		 * the RFS bits are from bit 25 to bit 16. So, the
1539		 * driver needs right shifting by 16.
1540		 */
1541		if (mdp->cd->hw_checksum)
1542			desc_status >>= 16;
1543
1544		skb = mdp->rx_skbuff[entry];
1545		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1546				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1547			ndev->stats.rx_errors++;
1548			if (desc_status & RD_RFS1)
1549				ndev->stats.rx_crc_errors++;
1550			if (desc_status & RD_RFS2)
1551				ndev->stats.rx_frame_errors++;
1552			if (desc_status & RD_RFS3)
1553				ndev->stats.rx_length_errors++;
1554			if (desc_status & RD_RFS4)
1555				ndev->stats.rx_length_errors++;
1556			if (desc_status & RD_RFS6)
1557				ndev->stats.rx_missed_errors++;
1558			if (desc_status & RD_RFS10)
1559				ndev->stats.rx_over_errors++;
1560		} else	if (skb) {
1561			dma_addr = le32_to_cpu(rxdesc->addr);
1562			if (!mdp->cd->hw_swap)
1563				sh_eth_soft_swap(
1564					phys_to_virt(ALIGN(dma_addr, 4)),
1565					pkt_len + 2);
1566			mdp->rx_skbuff[entry] = NULL;
1567			if (mdp->cd->rpadir)
1568				skb_reserve(skb, NET_IP_ALIGN);
1569			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1570					 ALIGN(mdp->rx_buf_sz, 32),
1571					 DMA_FROM_DEVICE);
1572			skb_put(skb, pkt_len);
1573			skb->protocol = eth_type_trans(skb, ndev);
 
 
1574			netif_receive_skb(skb);
1575			ndev->stats.rx_packets++;
1576			ndev->stats.rx_bytes += pkt_len;
1577			if (desc_status & RD_RFS8)
1578				ndev->stats.multicast++;
1579		}
1580		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1581		rxdesc = &mdp->rx_ring[entry];
1582	}
1583
1584	/* Refill the Rx ring buffers. */
1585	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1586		entry = mdp->dirty_rx % mdp->num_rx_ring;
1587		rxdesc = &mdp->rx_ring[entry];
1588		/* The size of the buffer is 32 byte boundary. */
1589		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1590		rxdesc->len = cpu_to_le32(buf_len << 16);
1591
1592		if (mdp->rx_skbuff[entry] == NULL) {
1593			skb = netdev_alloc_skb(ndev, skbuff_size);
1594			if (skb == NULL)
1595				break;	/* Better luck next round. */
1596			sh_eth_set_receive_align(skb);
1597			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1598						  buf_len, DMA_FROM_DEVICE);
1599			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1600				kfree_skb(skb);
1601				break;
1602			}
1603			mdp->rx_skbuff[entry] = skb;
1604
1605			skb_checksum_none_assert(skb);
1606			rxdesc->addr = cpu_to_le32(dma_addr);
1607		}
1608		dma_wmb(); /* RACT bit must be set after all the above writes */
1609		if (entry >= mdp->num_rx_ring - 1)
1610			rxdesc->status |=
1611				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1612		else
1613			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1614	}
1615
1616	/* Restart Rx engine if stopped. */
1617	/* If we don't need to check status, don't. -KDU */
1618	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1619		/* fix the values for the next receiving if RDE is set */
1620		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1621			u32 count = (sh_eth_read(ndev, RDFAR) -
1622				     sh_eth_read(ndev, RDLAR)) >> 4;
1623
1624			mdp->cur_rx = count;
1625			mdp->dirty_rx = count;
1626		}
1627		sh_eth_write(ndev, EDRRR_R, EDRRR);
1628	}
1629
1630	*quota -= limit - boguscnt - 1;
1631
1632	return *quota <= 0;
1633}
1634
1635static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1636{
1637	/* disable tx and rx */
1638	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1639}
1640
1641static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1642{
1643	/* enable tx and rx */
1644	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1645}
1646
1647/* E-MAC interrupt handler */
1648static void sh_eth_emac_interrupt(struct net_device *ndev)
1649{
1650	struct sh_eth_private *mdp = netdev_priv(ndev);
1651	u32 felic_stat;
1652	u32 link_stat;
1653
1654	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1655	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1656	if (felic_stat & ECSR_ICD)
1657		ndev->stats.tx_carrier_errors++;
1658	if (felic_stat & ECSR_MPD)
1659		pm_wakeup_event(&mdp->pdev->dev, 0);
1660	if (felic_stat & ECSR_LCHNG) {
1661		/* Link Changed */
1662		if (mdp->cd->no_psr || mdp->no_ether_link)
1663			return;
1664		link_stat = sh_eth_read(ndev, PSR);
1665		if (mdp->ether_link_active_low)
1666			link_stat = ~link_stat;
1667		if (!(link_stat & PHY_ST_LINK)) {
1668			sh_eth_rcv_snd_disable(ndev);
1669		} else {
1670			/* Link Up */
1671			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1672			/* clear int */
1673			sh_eth_modify(ndev, ECSR, 0, 0);
1674			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1675			/* enable tx and rx */
1676			sh_eth_rcv_snd_enable(ndev);
1677		}
1678	}
1679}
1680
1681/* error control function */
1682static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1683{
1684	struct sh_eth_private *mdp = netdev_priv(ndev);
1685	u32 mask;
1686
1687	if (intr_status & EESR_TWB) {
1688		/* Unused write back interrupt */
1689		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1690			ndev->stats.tx_aborted_errors++;
1691			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1692		}
1693	}
1694
1695	if (intr_status & EESR_RABT) {
1696		/* Receive Abort int */
1697		if (intr_status & EESR_RFRMER) {
1698			/* Receive Frame Overflow int */
1699			ndev->stats.rx_frame_errors++;
1700		}
1701	}
1702
1703	if (intr_status & EESR_TDE) {
1704		/* Transmit Descriptor Empty int */
1705		ndev->stats.tx_fifo_errors++;
1706		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1707	}
1708
1709	if (intr_status & EESR_TFE) {
1710		/* FIFO under flow */
1711		ndev->stats.tx_fifo_errors++;
1712		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1713	}
1714
1715	if (intr_status & EESR_RDE) {
1716		/* Receive Descriptor Empty int */
1717		ndev->stats.rx_over_errors++;
1718	}
1719
1720	if (intr_status & EESR_RFE) {
1721		/* Receive FIFO Overflow int */
1722		ndev->stats.rx_fifo_errors++;
1723	}
1724
1725	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1726		/* Address Error */
1727		ndev->stats.tx_fifo_errors++;
1728		netif_err(mdp, tx_err, ndev, "Address Error\n");
1729	}
1730
1731	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1732	if (mdp->cd->no_ade)
1733		mask &= ~EESR_ADE;
1734	if (intr_status & mask) {
1735		/* Tx error */
1736		u32 edtrr = sh_eth_read(ndev, EDTRR);
1737
1738		/* dmesg */
1739		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1740			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1741			   (u32)ndev->state, edtrr);
1742		/* dirty buffer free */
1743		sh_eth_tx_free(ndev, true);
1744
1745		/* SH7712 BUG */
1746		if (edtrr ^ mdp->cd->edtrr_trns) {
1747			/* tx dma start */
1748			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1749		}
1750		/* wakeup */
1751		netif_wake_queue(ndev);
1752	}
1753}
1754
1755static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1756{
1757	struct net_device *ndev = netdev;
1758	struct sh_eth_private *mdp = netdev_priv(ndev);
1759	struct sh_eth_cpu_data *cd = mdp->cd;
1760	irqreturn_t ret = IRQ_NONE;
1761	u32 intr_status, intr_enable;
1762
1763	spin_lock(&mdp->lock);
1764
1765	/* Get interrupt status */
1766	intr_status = sh_eth_read(ndev, EESR);
1767	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1768	 * enabled since it's the one that  comes  thru regardless of the mask,
1769	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1770	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1771	 * bit...
1772	 */
1773	intr_enable = sh_eth_read(ndev, EESIPR);
1774	intr_status &= intr_enable | EESIPR_ECIIP;
1775	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1776			   cd->eesr_err_check))
1777		ret = IRQ_HANDLED;
1778	else
1779		goto out;
1780
1781	if (unlikely(!mdp->irq_enabled)) {
1782		sh_eth_write(ndev, 0, EESIPR);
1783		goto out;
1784	}
1785
1786	if (intr_status & EESR_RX_CHECK) {
1787		if (napi_schedule_prep(&mdp->napi)) {
1788			/* Mask Rx interrupts */
1789			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1790				     EESIPR);
1791			__napi_schedule(&mdp->napi);
1792		} else {
1793			netdev_warn(ndev,
1794				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1795				    intr_status, intr_enable);
1796		}
1797	}
1798
1799	/* Tx Check */
1800	if (intr_status & cd->tx_check) {
1801		/* Clear Tx interrupts */
1802		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1803
1804		sh_eth_tx_free(ndev, true);
1805		netif_wake_queue(ndev);
1806	}
1807
1808	/* E-MAC interrupt */
1809	if (intr_status & EESR_ECI)
1810		sh_eth_emac_interrupt(ndev);
1811
1812	if (intr_status & cd->eesr_err_check) {
1813		/* Clear error interrupts */
1814		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1815
1816		sh_eth_error(ndev, intr_status);
1817	}
1818
1819out:
1820	spin_unlock(&mdp->lock);
1821
1822	return ret;
1823}
1824
1825static int sh_eth_poll(struct napi_struct *napi, int budget)
1826{
1827	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1828						  napi);
1829	struct net_device *ndev = napi->dev;
1830	int quota = budget;
1831	u32 intr_status;
1832
1833	for (;;) {
1834		intr_status = sh_eth_read(ndev, EESR);
1835		if (!(intr_status & EESR_RX_CHECK))
1836			break;
1837		/* Clear Rx interrupts */
1838		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1839
1840		if (sh_eth_rx(ndev, intr_status, &quota))
1841			goto out;
1842	}
1843
1844	napi_complete(napi);
1845
1846	/* Reenable Rx interrupts */
1847	if (mdp->irq_enabled)
1848		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1849out:
1850	return budget - quota;
1851}
1852
1853/* PHY state control function */
1854static void sh_eth_adjust_link(struct net_device *ndev)
1855{
1856	struct sh_eth_private *mdp = netdev_priv(ndev);
1857	struct phy_device *phydev = ndev->phydev;
 
1858	int new_state = 0;
1859
 
 
 
 
 
 
1860	if (phydev->link) {
1861		if (phydev->duplex != mdp->duplex) {
1862			new_state = 1;
1863			mdp->duplex = phydev->duplex;
1864			if (mdp->cd->set_duplex)
1865				mdp->cd->set_duplex(ndev);
1866		}
1867
1868		if (phydev->speed != mdp->speed) {
1869			new_state = 1;
1870			mdp->speed = phydev->speed;
1871			if (mdp->cd->set_rate)
1872				mdp->cd->set_rate(ndev);
1873		}
1874		if (!mdp->link) {
1875			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1876			new_state = 1;
1877			mdp->link = phydev->link;
1878			if (mdp->cd->no_psr || mdp->no_ether_link)
1879				sh_eth_rcv_snd_enable(ndev);
1880		}
1881	} else if (mdp->link) {
1882		new_state = 1;
1883		mdp->link = 0;
1884		mdp->speed = 0;
1885		mdp->duplex = -1;
1886		if (mdp->cd->no_psr || mdp->no_ether_link)
1887			sh_eth_rcv_snd_disable(ndev);
1888	}
1889
 
 
 
 
 
 
1890	if (new_state && netif_msg_link(mdp))
1891		phy_print_status(phydev);
1892}
1893
1894/* PHY init function */
1895static int sh_eth_phy_init(struct net_device *ndev)
1896{
1897	struct device_node *np = ndev->dev.parent->of_node;
1898	struct sh_eth_private *mdp = netdev_priv(ndev);
1899	struct phy_device *phydev;
1900
1901	mdp->link = 0;
1902	mdp->speed = 0;
1903	mdp->duplex = -1;
1904
1905	/* Try connect to PHY */
1906	if (np) {
1907		struct device_node *pn;
1908
1909		pn = of_parse_phandle(np, "phy-handle", 0);
1910		phydev = of_phy_connect(ndev, pn,
1911					sh_eth_adjust_link, 0,
1912					mdp->phy_interface);
1913
1914		of_node_put(pn);
1915		if (!phydev)
1916			phydev = ERR_PTR(-ENOENT);
1917	} else {
1918		char phy_id[MII_BUS_ID_SIZE + 3];
1919
1920		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1921			 mdp->mii_bus->id, mdp->phy_id);
1922
1923		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1924				     mdp->phy_interface);
1925	}
1926
1927	if (IS_ERR(phydev)) {
1928		netdev_err(ndev, "failed to connect PHY\n");
1929		return PTR_ERR(phydev);
1930	}
1931
1932	/* mask with MAC supported features */
1933	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
1934		int err = phy_set_max_speed(phydev, SPEED_100);
1935		if (err) {
1936			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
1937			phy_disconnect(phydev);
1938			return err;
1939		}
1940	}
1941
1942	phy_attached_info(phydev);
1943
1944	return 0;
1945}
1946
1947/* PHY control start function */
1948static int sh_eth_phy_start(struct net_device *ndev)
1949{
1950	int ret;
1951
1952	ret = sh_eth_phy_init(ndev);
1953	if (ret)
1954		return ret;
1955
1956	phy_start(ndev->phydev);
1957
1958	return 0;
1959}
1960
1961static int sh_eth_get_link_ksettings(struct net_device *ndev,
1962				     struct ethtool_link_ksettings *cmd)
1963{
1964	struct sh_eth_private *mdp = netdev_priv(ndev);
1965	unsigned long flags;
1966
1967	if (!ndev->phydev)
1968		return -ENODEV;
1969
1970	spin_lock_irqsave(&mdp->lock, flags);
1971	phy_ethtool_ksettings_get(ndev->phydev, cmd);
1972	spin_unlock_irqrestore(&mdp->lock, flags);
1973
1974	return 0;
1975}
1976
1977static int sh_eth_set_link_ksettings(struct net_device *ndev,
1978				     const struct ethtool_link_ksettings *cmd)
1979{
1980	struct sh_eth_private *mdp = netdev_priv(ndev);
1981	unsigned long flags;
1982	int ret;
1983
1984	if (!ndev->phydev)
1985		return -ENODEV;
1986
1987	spin_lock_irqsave(&mdp->lock, flags);
1988
1989	/* disable tx and rx */
1990	sh_eth_rcv_snd_disable(ndev);
1991
1992	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1993	if (ret)
1994		goto error_exit;
1995
1996	if (cmd->base.duplex == DUPLEX_FULL)
1997		mdp->duplex = 1;
1998	else
1999		mdp->duplex = 0;
2000
2001	if (mdp->cd->set_duplex)
2002		mdp->cd->set_duplex(ndev);
2003
2004error_exit:
2005	mdelay(1);
2006
2007	/* enable tx and rx */
2008	sh_eth_rcv_snd_enable(ndev);
2009
2010	spin_unlock_irqrestore(&mdp->lock, flags);
2011
2012	return ret;
2013}
2014
2015/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2016 * version must be bumped as well.  Just adding registers up to that
2017 * limit is fine, as long as the existing register indices don't
2018 * change.
2019 */
2020#define SH_ETH_REG_DUMP_VERSION		1
2021#define SH_ETH_REG_DUMP_MAX_REGS	256
2022
2023static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2024{
2025	struct sh_eth_private *mdp = netdev_priv(ndev);
2026	struct sh_eth_cpu_data *cd = mdp->cd;
2027	u32 *valid_map;
2028	size_t len;
2029
2030	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2031
2032	/* Dump starts with a bitmap that tells ethtool which
2033	 * registers are defined for this chip.
2034	 */
2035	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2036	if (buf) {
2037		valid_map = buf;
2038		buf += len;
2039	} else {
2040		valid_map = NULL;
2041	}
2042
2043	/* Add a register to the dump, if it has a defined offset.
2044	 * This automatically skips most undefined registers, but for
2045	 * some it is also necessary to check a capability flag in
2046	 * struct sh_eth_cpu_data.
2047	 */
2048#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2049#define add_reg_from(reg, read_expr) do {				\
2050		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2051			if (buf) {					\
2052				mark_reg_valid(reg);			\
2053				*buf++ = read_expr;			\
2054			}						\
2055			++len;						\
2056		}							\
2057	} while (0)
2058#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2059#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2060
2061	add_reg(EDSR);
2062	add_reg(EDMR);
2063	add_reg(EDTRR);
2064	add_reg(EDRRR);
2065	add_reg(EESR);
2066	add_reg(EESIPR);
2067	add_reg(TDLAR);
2068	add_reg(TDFAR);
 
2069	add_reg(TDFXR);
2070	add_reg(TDFFR);
2071	add_reg(RDLAR);
2072	add_reg(RDFAR);
 
2073	add_reg(RDFXR);
2074	add_reg(RDFFR);
2075	add_reg(TRSCER);
2076	add_reg(RMFCR);
2077	add_reg(TFTR);
2078	add_reg(FDR);
2079	add_reg(RMCR);
2080	add_reg(TFUCR);
2081	add_reg(RFOCR);
2082	if (cd->rmiimode)
2083		add_reg(RMIIMODE);
2084	add_reg(FCFTR);
2085	if (cd->rpadir)
2086		add_reg(RPADIR);
2087	if (!cd->no_trimd)
2088		add_reg(TRIMD);
2089	add_reg(ECMR);
2090	add_reg(ECSR);
2091	add_reg(ECSIPR);
2092	add_reg(PIR);
2093	if (!cd->no_psr)
2094		add_reg(PSR);
2095	add_reg(RDMLR);
2096	add_reg(RFLR);
2097	add_reg(IPGR);
2098	if (cd->apr)
2099		add_reg(APR);
2100	if (cd->mpr)
2101		add_reg(MPR);
2102	add_reg(RFCR);
2103	add_reg(RFCF);
2104	if (cd->tpauser)
2105		add_reg(TPAUSER);
2106	add_reg(TPAUSECR);
2107	add_reg(GECMR);
 
2108	if (cd->bculr)
2109		add_reg(BCULR);
2110	add_reg(MAHR);
2111	add_reg(MALR);
2112	add_reg(TROCR);
2113	add_reg(CDCR);
2114	add_reg(LCCR);
2115	add_reg(CNDCR);
 
 
2116	add_reg(CEFCR);
2117	add_reg(FRECR);
2118	add_reg(TSFRCR);
2119	add_reg(TLFRCR);
2120	add_reg(CERCR);
2121	add_reg(CEECR);
 
 
2122	add_reg(MAFCR);
2123	if (cd->rtrate)
2124		add_reg(RTRATE);
2125	if (cd->hw_checksum)
2126		add_reg(CSMR);
2127	if (cd->select_mii)
2128		add_reg(RMII_MII);
2129	if (cd->tsu) {
2130		add_tsu_reg(ARSTR);
2131		add_tsu_reg(TSU_CTRST);
2132		add_tsu_reg(TSU_FWEN0);
2133		add_tsu_reg(TSU_FWEN1);
2134		add_tsu_reg(TSU_FCM);
2135		add_tsu_reg(TSU_BSYSL0);
2136		add_tsu_reg(TSU_BSYSL1);
2137		add_tsu_reg(TSU_PRISL0);
2138		add_tsu_reg(TSU_PRISL1);
2139		add_tsu_reg(TSU_FWSL0);
2140		add_tsu_reg(TSU_FWSL1);
 
 
2141		add_tsu_reg(TSU_FWSLC);
2142		add_tsu_reg(TSU_QTAGM0);
2143		add_tsu_reg(TSU_QTAGM1);
2144		add_tsu_reg(TSU_FWSR);
2145		add_tsu_reg(TSU_FWINMK);
2146		add_tsu_reg(TSU_ADQT0);
2147		add_tsu_reg(TSU_ADQT1);
2148		add_tsu_reg(TSU_VTAG0);
2149		add_tsu_reg(TSU_VTAG1);
 
 
2150		add_tsu_reg(TSU_ADSBSY);
2151		add_tsu_reg(TSU_TEN);
2152		add_tsu_reg(TSU_POST1);
2153		add_tsu_reg(TSU_POST2);
2154		add_tsu_reg(TSU_POST3);
2155		add_tsu_reg(TSU_POST4);
2156		/* This is the start of a table, not just a single register. */
2157		if (buf) {
2158			unsigned int i;
2159
2160			mark_reg_valid(TSU_ADRH0);
2161			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2162				*buf++ = ioread32(mdp->tsu_addr +
2163						  mdp->reg_offset[TSU_ADRH0] +
2164						  i * 4);
2165		}
2166		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2167	}
2168
2169#undef mark_reg_valid
2170#undef add_reg_from
2171#undef add_reg
2172#undef add_tsu_reg
2173
2174	return len * 4;
2175}
2176
2177static int sh_eth_get_regs_len(struct net_device *ndev)
2178{
2179	return __sh_eth_get_regs(ndev, NULL);
2180}
2181
2182static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2183			    void *buf)
2184{
2185	struct sh_eth_private *mdp = netdev_priv(ndev);
2186
2187	regs->version = SH_ETH_REG_DUMP_VERSION;
2188
2189	pm_runtime_get_sync(&mdp->pdev->dev);
2190	__sh_eth_get_regs(ndev, buf);
2191	pm_runtime_put_sync(&mdp->pdev->dev);
2192}
2193
2194static int sh_eth_nway_reset(struct net_device *ndev)
2195{
2196	struct sh_eth_private *mdp = netdev_priv(ndev);
2197	unsigned long flags;
2198	int ret;
2199
2200	if (!ndev->phydev)
2201		return -ENODEV;
2202
2203	spin_lock_irqsave(&mdp->lock, flags);
2204	ret = phy_start_aneg(ndev->phydev);
2205	spin_unlock_irqrestore(&mdp->lock, flags);
2206
2207	return ret;
2208}
2209
2210static u32 sh_eth_get_msglevel(struct net_device *ndev)
2211{
2212	struct sh_eth_private *mdp = netdev_priv(ndev);
2213	return mdp->msg_enable;
2214}
2215
2216static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2217{
2218	struct sh_eth_private *mdp = netdev_priv(ndev);
2219	mdp->msg_enable = value;
2220}
2221
2222static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2223	"rx_current", "tx_current",
2224	"rx_dirty", "tx_dirty",
2225};
2226#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2227
2228static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2229{
2230	switch (sset) {
2231	case ETH_SS_STATS:
2232		return SH_ETH_STATS_LEN;
2233	default:
2234		return -EOPNOTSUPP;
2235	}
2236}
2237
2238static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2239				     struct ethtool_stats *stats, u64 *data)
2240{
2241	struct sh_eth_private *mdp = netdev_priv(ndev);
2242	int i = 0;
2243
2244	/* device-specific stats */
2245	data[i++] = mdp->cur_rx;
2246	data[i++] = mdp->cur_tx;
2247	data[i++] = mdp->dirty_rx;
2248	data[i++] = mdp->dirty_tx;
2249}
2250
2251static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2252{
2253	switch (stringset) {
2254	case ETH_SS_STATS:
2255		memcpy(data, *sh_eth_gstrings_stats,
2256		       sizeof(sh_eth_gstrings_stats));
2257		break;
2258	}
2259}
2260
2261static void sh_eth_get_ringparam(struct net_device *ndev,
2262				 struct ethtool_ringparam *ring)
 
 
2263{
2264	struct sh_eth_private *mdp = netdev_priv(ndev);
2265
2266	ring->rx_max_pending = RX_RING_MAX;
2267	ring->tx_max_pending = TX_RING_MAX;
2268	ring->rx_pending = mdp->num_rx_ring;
2269	ring->tx_pending = mdp->num_tx_ring;
2270}
2271
2272static int sh_eth_set_ringparam(struct net_device *ndev,
2273				struct ethtool_ringparam *ring)
 
 
2274{
2275	struct sh_eth_private *mdp = netdev_priv(ndev);
2276	int ret;
2277
2278	if (ring->tx_pending > TX_RING_MAX ||
2279	    ring->rx_pending > RX_RING_MAX ||
2280	    ring->tx_pending < TX_RING_MIN ||
2281	    ring->rx_pending < RX_RING_MIN)
2282		return -EINVAL;
2283	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2284		return -EINVAL;
2285
2286	if (netif_running(ndev)) {
2287		netif_device_detach(ndev);
2288		netif_tx_disable(ndev);
2289
2290		/* Serialise with the interrupt handler and NAPI, then
2291		 * disable interrupts.  We have to clear the
2292		 * irq_enabled flag first to ensure that interrupts
2293		 * won't be re-enabled.
2294		 */
2295		mdp->irq_enabled = false;
2296		synchronize_irq(ndev->irq);
2297		napi_synchronize(&mdp->napi);
2298		sh_eth_write(ndev, 0x0000, EESIPR);
2299
2300		sh_eth_dev_exit(ndev);
2301
2302		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2303		sh_eth_ring_free(ndev);
2304	}
2305
2306	/* Set new parameters */
2307	mdp->num_rx_ring = ring->rx_pending;
2308	mdp->num_tx_ring = ring->tx_pending;
2309
2310	if (netif_running(ndev)) {
2311		ret = sh_eth_ring_init(ndev);
2312		if (ret < 0) {
2313			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2314				   __func__);
2315			return ret;
2316		}
2317		ret = sh_eth_dev_init(ndev);
2318		if (ret < 0) {
2319			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2320				   __func__);
2321			return ret;
2322		}
2323
2324		netif_device_attach(ndev);
2325	}
2326
2327	return 0;
2328}
2329
2330static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2331{
2332	struct sh_eth_private *mdp = netdev_priv(ndev);
2333
2334	wol->supported = 0;
2335	wol->wolopts = 0;
2336
2337	if (mdp->cd->magic) {
2338		wol->supported = WAKE_MAGIC;
2339		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2340	}
2341}
2342
2343static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2344{
2345	struct sh_eth_private *mdp = netdev_priv(ndev);
2346
2347	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2348		return -EOPNOTSUPP;
2349
2350	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2351
2352	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2353
2354	return 0;
2355}
2356
2357static const struct ethtool_ops sh_eth_ethtool_ops = {
2358	.get_regs_len	= sh_eth_get_regs_len,
2359	.get_regs	= sh_eth_get_regs,
2360	.nway_reset	= sh_eth_nway_reset,
2361	.get_msglevel	= sh_eth_get_msglevel,
2362	.set_msglevel	= sh_eth_set_msglevel,
2363	.get_link	= ethtool_op_get_link,
2364	.get_strings	= sh_eth_get_strings,
2365	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2366	.get_sset_count     = sh_eth_get_sset_count,
2367	.get_ringparam	= sh_eth_get_ringparam,
2368	.set_ringparam	= sh_eth_set_ringparam,
2369	.get_link_ksettings = sh_eth_get_link_ksettings,
2370	.set_link_ksettings = sh_eth_set_link_ksettings,
2371	.get_wol	= sh_eth_get_wol,
2372	.set_wol	= sh_eth_set_wol,
2373};
2374
2375/* network device open function */
2376static int sh_eth_open(struct net_device *ndev)
2377{
2378	struct sh_eth_private *mdp = netdev_priv(ndev);
2379	int ret;
2380
2381	pm_runtime_get_sync(&mdp->pdev->dev);
2382
2383	napi_enable(&mdp->napi);
2384
2385	ret = request_irq(ndev->irq, sh_eth_interrupt,
2386			  mdp->cd->irq_flags, ndev->name, ndev);
2387	if (ret) {
2388		netdev_err(ndev, "Can not assign IRQ number\n");
2389		goto out_napi_off;
2390	}
2391
2392	/* Descriptor set */
2393	ret = sh_eth_ring_init(ndev);
2394	if (ret)
2395		goto out_free_irq;
2396
2397	/* device init */
2398	ret = sh_eth_dev_init(ndev);
2399	if (ret)
2400		goto out_free_irq;
2401
2402	/* PHY control start*/
2403	ret = sh_eth_phy_start(ndev);
2404	if (ret)
2405		goto out_free_irq;
2406
2407	netif_start_queue(ndev);
2408
2409	mdp->is_opened = 1;
2410
2411	return ret;
2412
2413out_free_irq:
2414	free_irq(ndev->irq, ndev);
2415out_napi_off:
2416	napi_disable(&mdp->napi);
2417	pm_runtime_put_sync(&mdp->pdev->dev);
2418	return ret;
2419}
2420
2421/* Timeout function */
2422static void sh_eth_tx_timeout(struct net_device *ndev)
2423{
2424	struct sh_eth_private *mdp = netdev_priv(ndev);
2425	struct sh_eth_rxdesc *rxdesc;
2426	int i;
2427
2428	netif_stop_queue(ndev);
2429
2430	netif_err(mdp, timer, ndev,
2431		  "transmit timed out, status %8.8x, resetting...\n",
2432		  sh_eth_read(ndev, EESR));
2433
2434	/* tx_errors count up */
2435	ndev->stats.tx_errors++;
2436
2437	/* Free all the skbuffs in the Rx queue. */
2438	for (i = 0; i < mdp->num_rx_ring; i++) {
2439		rxdesc = &mdp->rx_ring[i];
2440		rxdesc->status = cpu_to_le32(0);
2441		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2442		dev_kfree_skb(mdp->rx_skbuff[i]);
2443		mdp->rx_skbuff[i] = NULL;
2444	}
2445	for (i = 0; i < mdp->num_tx_ring; i++) {
2446		dev_kfree_skb(mdp->tx_skbuff[i]);
2447		mdp->tx_skbuff[i] = NULL;
2448	}
2449
2450	/* device init */
2451	sh_eth_dev_init(ndev);
2452
2453	netif_start_queue(ndev);
2454}
2455
2456/* Packet transmit function */
2457static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 
2458{
2459	struct sh_eth_private *mdp = netdev_priv(ndev);
2460	struct sh_eth_txdesc *txdesc;
2461	dma_addr_t dma_addr;
2462	u32 entry;
2463	unsigned long flags;
2464
2465	spin_lock_irqsave(&mdp->lock, flags);
2466	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2467		if (!sh_eth_tx_free(ndev, true)) {
2468			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2469			netif_stop_queue(ndev);
2470			spin_unlock_irqrestore(&mdp->lock, flags);
2471			return NETDEV_TX_BUSY;
2472		}
2473	}
2474	spin_unlock_irqrestore(&mdp->lock, flags);
2475
2476	if (skb_put_padto(skb, ETH_ZLEN))
2477		return NETDEV_TX_OK;
2478
2479	entry = mdp->cur_tx % mdp->num_tx_ring;
2480	mdp->tx_skbuff[entry] = skb;
2481	txdesc = &mdp->tx_ring[entry];
2482	/* soft swap. */
2483	if (!mdp->cd->hw_swap)
2484		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2485	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2486				  DMA_TO_DEVICE);
2487	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2488		kfree_skb(skb);
2489		return NETDEV_TX_OK;
2490	}
2491	txdesc->addr = cpu_to_le32(dma_addr);
2492	txdesc->len  = cpu_to_le32(skb->len << 16);
2493
2494	dma_wmb(); /* TACT bit must be set after all the above writes */
2495	if (entry >= mdp->num_tx_ring - 1)
2496		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2497	else
2498		txdesc->status |= cpu_to_le32(TD_TACT);
2499
 
2500	mdp->cur_tx++;
2501
2502	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2503		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2504
2505	return NETDEV_TX_OK;
2506}
2507
2508/* The statistics registers have write-clear behaviour, which means we
2509 * will lose any increment between the read and write.  We mitigate
2510 * this by only clearing when we read a non-zero value, so we will
2511 * never falsely report a total of zero.
2512 */
2513static void
2514sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2515{
2516	u32 delta = sh_eth_read(ndev, reg);
2517
2518	if (delta) {
2519		*stat += delta;
2520		sh_eth_write(ndev, 0, reg);
2521	}
2522}
2523
2524static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2525{
2526	struct sh_eth_private *mdp = netdev_priv(ndev);
2527
2528	if (mdp->cd->no_tx_cntrs)
2529		return &ndev->stats;
2530
2531	if (!mdp->is_opened)
2532		return &ndev->stats;
2533
2534	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2535	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2536	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2537
2538	if (mdp->cd->cexcr) {
2539		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2540				   CERCR);
2541		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2542				   CEECR);
2543	} else {
2544		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2545				   CNDCR);
2546	}
2547
2548	return &ndev->stats;
2549}
2550
2551/* device close function */
2552static int sh_eth_close(struct net_device *ndev)
2553{
2554	struct sh_eth_private *mdp = netdev_priv(ndev);
2555
2556	netif_stop_queue(ndev);
2557
2558	/* Serialise with the interrupt handler and NAPI, then disable
2559	 * interrupts.  We have to clear the irq_enabled flag first to
2560	 * ensure that interrupts won't be re-enabled.
2561	 */
2562	mdp->irq_enabled = false;
2563	synchronize_irq(ndev->irq);
2564	napi_disable(&mdp->napi);
2565	sh_eth_write(ndev, 0x0000, EESIPR);
2566
2567	sh_eth_dev_exit(ndev);
2568
2569	/* PHY Disconnect */
2570	if (ndev->phydev) {
2571		phy_stop(ndev->phydev);
2572		phy_disconnect(ndev->phydev);
2573	}
2574
2575	free_irq(ndev->irq, ndev);
2576
2577	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2578	sh_eth_ring_free(ndev);
2579
2580	pm_runtime_put_sync(&mdp->pdev->dev);
2581
2582	mdp->is_opened = 0;
2583
2584	return 0;
2585}
2586
2587/* ioctl to device function */
2588static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2589{
2590	struct phy_device *phydev = ndev->phydev;
2591
2592	if (!netif_running(ndev))
2593		return -EINVAL;
2594
2595	if (!phydev)
2596		return -ENODEV;
2597
2598	return phy_mii_ioctl(phydev, rq, cmd);
2599}
2600
2601static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2602{
2603	if (netif_running(ndev))
2604		return -EBUSY;
2605
2606	ndev->mtu = new_mtu;
2607	netdev_update_features(ndev);
2608
2609	return 0;
2610}
2611
2612/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2613static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2614					    int entry)
2615{
2616	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2617}
2618
2619static u32 sh_eth_tsu_get_post_mask(int entry)
2620{
2621	return 0x0f << (28 - ((entry % 8) * 4));
2622}
2623
2624static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2625{
2626	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2627}
2628
2629static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2630					     int entry)
2631{
2632	struct sh_eth_private *mdp = netdev_priv(ndev);
 
2633	u32 tmp;
2634	void *reg_offset;
2635
2636	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2637	tmp = ioread32(reg_offset);
2638	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2639}
2640
2641static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2642					      int entry)
2643{
2644	struct sh_eth_private *mdp = netdev_priv(ndev);
 
2645	u32 post_mask, ref_mask, tmp;
2646	void *reg_offset;
2647
2648	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2649	post_mask = sh_eth_tsu_get_post_mask(entry);
2650	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2651
2652	tmp = ioread32(reg_offset);
2653	iowrite32(tmp & ~post_mask, reg_offset);
2654
2655	/* If other port enables, the function returns "true" */
2656	return tmp & ref_mask;
2657}
2658
2659static int sh_eth_tsu_busy(struct net_device *ndev)
2660{
2661	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2662	struct sh_eth_private *mdp = netdev_priv(ndev);
2663
2664	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2665		udelay(10);
2666		timeout--;
2667		if (timeout <= 0) {
2668			netdev_err(ndev, "%s: timeout\n", __func__);
2669			return -ETIMEDOUT;
2670		}
2671	}
2672
2673	return 0;
2674}
2675
2676static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2677				  const u8 *addr)
2678{
 
2679	u32 val;
2680
2681	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2682	iowrite32(val, reg);
2683	if (sh_eth_tsu_busy(ndev) < 0)
2684		return -EBUSY;
2685
2686	val = addr[4] << 8 | addr[5];
2687	iowrite32(val, reg + 4);
2688	if (sh_eth_tsu_busy(ndev) < 0)
2689		return -EBUSY;
2690
2691	return 0;
2692}
2693
2694static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2695{
 
2696	u32 val;
2697
2698	val = ioread32(reg);
2699	addr[0] = (val >> 24) & 0xff;
2700	addr[1] = (val >> 16) & 0xff;
2701	addr[2] = (val >> 8) & 0xff;
2702	addr[3] = val & 0xff;
2703	val = ioread32(reg + 4);
2704	addr[4] = (val >> 8) & 0xff;
2705	addr[5] = val & 0xff;
2706}
2707
2708
2709static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2710{
2711	struct sh_eth_private *mdp = netdev_priv(ndev);
2712	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2713	int i;
2714	u8 c_addr[ETH_ALEN];
2715
2716	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2717		sh_eth_tsu_read_entry(reg_offset, c_addr);
2718		if (ether_addr_equal(addr, c_addr))
2719			return i;
2720	}
2721
2722	return -ENOENT;
2723}
2724
2725static int sh_eth_tsu_find_empty(struct net_device *ndev)
2726{
2727	u8 blank[ETH_ALEN];
2728	int entry;
2729
2730	memset(blank, 0, sizeof(blank));
2731	entry = sh_eth_tsu_find_entry(ndev, blank);
2732	return (entry < 0) ? -ENOMEM : entry;
2733}
2734
2735static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2736					      int entry)
2737{
2738	struct sh_eth_private *mdp = netdev_priv(ndev);
2739	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2740	int ret;
2741	u8 blank[ETH_ALEN];
2742
2743	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2744			 ~(1 << (31 - entry)), TSU_TEN);
2745
2746	memset(blank, 0, sizeof(blank));
2747	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2748	if (ret < 0)
2749		return ret;
2750	return 0;
2751}
2752
2753static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2754{
2755	struct sh_eth_private *mdp = netdev_priv(ndev);
2756	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2757	int i, ret;
2758
2759	if (!mdp->cd->tsu)
2760		return 0;
2761
2762	i = sh_eth_tsu_find_entry(ndev, addr);
2763	if (i < 0) {
2764		/* No entry found, create one */
2765		i = sh_eth_tsu_find_empty(ndev);
2766		if (i < 0)
2767			return -ENOMEM;
2768		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2769		if (ret < 0)
2770			return ret;
2771
2772		/* Enable the entry */
2773		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2774				 (1 << (31 - i)), TSU_TEN);
2775	}
2776
2777	/* Entry found or created, enable POST */
2778	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2779
2780	return 0;
2781}
2782
2783static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2784{
2785	struct sh_eth_private *mdp = netdev_priv(ndev);
2786	int i, ret;
2787
2788	if (!mdp->cd->tsu)
2789		return 0;
2790
2791	i = sh_eth_tsu_find_entry(ndev, addr);
2792	if (i) {
2793		/* Entry found */
2794		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2795			goto done;
2796
2797		/* Disable the entry if both ports was disabled */
2798		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2799		if (ret < 0)
2800			return ret;
2801	}
2802done:
2803	return 0;
2804}
2805
2806static int sh_eth_tsu_purge_all(struct net_device *ndev)
2807{
2808	struct sh_eth_private *mdp = netdev_priv(ndev);
2809	int i, ret;
2810
2811	if (!mdp->cd->tsu)
2812		return 0;
2813
2814	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2815		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2816			continue;
2817
2818		/* Disable the entry if both ports was disabled */
2819		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2820		if (ret < 0)
2821			return ret;
2822	}
2823
2824	return 0;
2825}
2826
2827static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2828{
2829	struct sh_eth_private *mdp = netdev_priv(ndev);
 
2830	u8 addr[ETH_ALEN];
2831	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2832	int i;
2833
2834	if (!mdp->cd->tsu)
2835		return;
2836
2837	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2838		sh_eth_tsu_read_entry(reg_offset, addr);
2839		if (is_multicast_ether_addr(addr))
2840			sh_eth_tsu_del_entry(ndev, addr);
2841	}
2842}
2843
2844/* Update promiscuous flag and multicast filter */
2845static void sh_eth_set_rx_mode(struct net_device *ndev)
2846{
2847	struct sh_eth_private *mdp = netdev_priv(ndev);
2848	u32 ecmr_bits;
2849	int mcast_all = 0;
2850	unsigned long flags;
2851
2852	spin_lock_irqsave(&mdp->lock, flags);
2853	/* Initial condition is MCT = 1, PRM = 0.
2854	 * Depending on ndev->flags, set PRM or clear MCT
2855	 */
2856	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2857	if (mdp->cd->tsu)
2858		ecmr_bits |= ECMR_MCT;
2859
2860	if (!(ndev->flags & IFF_MULTICAST)) {
2861		sh_eth_tsu_purge_mcast(ndev);
2862		mcast_all = 1;
2863	}
2864	if (ndev->flags & IFF_ALLMULTI) {
2865		sh_eth_tsu_purge_mcast(ndev);
2866		ecmr_bits &= ~ECMR_MCT;
2867		mcast_all = 1;
2868	}
2869
2870	if (ndev->flags & IFF_PROMISC) {
2871		sh_eth_tsu_purge_all(ndev);
2872		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2873	} else if (mdp->cd->tsu) {
2874		struct netdev_hw_addr *ha;
2875		netdev_for_each_mc_addr(ha, ndev) {
2876			if (mcast_all && is_multicast_ether_addr(ha->addr))
2877				continue;
2878
2879			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2880				if (!mcast_all) {
2881					sh_eth_tsu_purge_mcast(ndev);
2882					ecmr_bits &= ~ECMR_MCT;
2883					mcast_all = 1;
2884				}
2885			}
2886		}
2887	}
2888
2889	/* update the ethernet mode */
2890	sh_eth_write(ndev, ecmr_bits, ECMR);
2891
2892	spin_unlock_irqrestore(&mdp->lock, flags);
2893}
2894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2895static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2896{
2897	if (!mdp->port)
2898		return TSU_VTAG0;
2899	else
2900		return TSU_VTAG1;
2901}
2902
2903static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2904				  __be16 proto, u16 vid)
2905{
2906	struct sh_eth_private *mdp = netdev_priv(ndev);
2907	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2908
2909	if (unlikely(!mdp->cd->tsu))
2910		return -EPERM;
2911
2912	/* No filtering if vid = 0 */
2913	if (!vid)
2914		return 0;
2915
2916	mdp->vlan_num_ids++;
2917
2918	/* The controller has one VLAN tag HW filter. So, if the filter is
2919	 * already enabled, the driver disables it and the filte
2920	 */
2921	if (mdp->vlan_num_ids > 1) {
2922		/* disable VLAN filter */
2923		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2924		return 0;
2925	}
2926
2927	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2928			 vtag_reg_index);
2929
2930	return 0;
2931}
2932
2933static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2934				   __be16 proto, u16 vid)
2935{
2936	struct sh_eth_private *mdp = netdev_priv(ndev);
2937	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2938
2939	if (unlikely(!mdp->cd->tsu))
2940		return -EPERM;
2941
2942	/* No filtering if vid = 0 */
2943	if (!vid)
2944		return 0;
2945
2946	mdp->vlan_num_ids--;
2947	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2948
2949	return 0;
2950}
2951
2952/* SuperH's TSU register init function */
2953static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2954{
2955	if (!mdp->cd->dual_port) {
2956		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2957		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2958				 TSU_FWSLC);	/* Enable POST registers */
2959		return;
2960	}
2961
2962	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2963	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2964	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2965	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2966	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2967	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2968	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2969	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2970	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2971	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2972	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2973	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2974	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2975	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2976	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2977	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2978	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2979	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2980	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2981}
2982
2983/* MDIO bus release function */
2984static int sh_mdio_release(struct sh_eth_private *mdp)
2985{
2986	/* unregister mdio bus */
2987	mdiobus_unregister(mdp->mii_bus);
2988
2989	/* free bitbang info */
2990	free_mdio_bitbang(mdp->mii_bus);
2991
2992	return 0;
2993}
2994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995/* MDIO bus init function */
2996static int sh_mdio_init(struct sh_eth_private *mdp,
2997			struct sh_eth_plat_data *pd)
2998{
2999	int ret;
3000	struct bb_info *bitbang;
3001	struct platform_device *pdev = mdp->pdev;
3002	struct device *dev = &mdp->pdev->dev;
 
 
3003
3004	/* create bit control struct for PHY */
3005	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3006	if (!bitbang)
3007		return -ENOMEM;
3008
3009	/* bitbang init */
3010	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3011	bitbang->set_gate = pd->set_mdio_gate;
3012	bitbang->ctrl.ops = &bb_ops;
3013
3014	/* MII controller setting */
3015	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3016	if (!mdp->mii_bus)
3017		return -ENOMEM;
3018
 
 
 
 
 
 
3019	/* Hook up MII support for ethtool */
3020	mdp->mii_bus->name = "sh_mii";
3021	mdp->mii_bus->parent = dev;
3022	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3023		 pdev->name, pdev->id);
3024
3025	/* register MDIO bus */
3026	if (dev->of_node) {
3027		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3028	} else {
3029		if (pd->phy_irq > 0)
3030			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3031
3032		ret = mdiobus_register(mdp->mii_bus);
3033	}
3034
 
3035	if (ret)
3036		goto out_free_bus;
3037
 
 
 
 
 
 
 
 
3038	return 0;
3039
3040out_free_bus:
3041	free_mdio_bitbang(mdp->mii_bus);
3042	return ret;
3043}
3044
3045static const u16 *sh_eth_get_register_offset(int register_type)
3046{
3047	const u16 *reg_offset = NULL;
3048
3049	switch (register_type) {
3050	case SH_ETH_REG_GIGABIT:
3051		reg_offset = sh_eth_offset_gigabit;
3052		break;
3053	case SH_ETH_REG_FAST_RZ:
3054		reg_offset = sh_eth_offset_fast_rz;
3055		break;
3056	case SH_ETH_REG_FAST_RCAR:
3057		reg_offset = sh_eth_offset_fast_rcar;
3058		break;
3059	case SH_ETH_REG_FAST_SH4:
3060		reg_offset = sh_eth_offset_fast_sh4;
3061		break;
3062	case SH_ETH_REG_FAST_SH3_SH2:
3063		reg_offset = sh_eth_offset_fast_sh3_sh2;
3064		break;
3065	}
3066
3067	return reg_offset;
3068}
3069
3070static const struct net_device_ops sh_eth_netdev_ops = {
3071	.ndo_open		= sh_eth_open,
3072	.ndo_stop		= sh_eth_close,
3073	.ndo_start_xmit		= sh_eth_start_xmit,
3074	.ndo_get_stats		= sh_eth_get_stats,
3075	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3076	.ndo_tx_timeout		= sh_eth_tx_timeout,
3077	.ndo_do_ioctl		= sh_eth_do_ioctl,
3078	.ndo_change_mtu		= sh_eth_change_mtu,
3079	.ndo_validate_addr	= eth_validate_addr,
3080	.ndo_set_mac_address	= eth_mac_addr,
 
3081};
3082
3083static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3084	.ndo_open		= sh_eth_open,
3085	.ndo_stop		= sh_eth_close,
3086	.ndo_start_xmit		= sh_eth_start_xmit,
3087	.ndo_get_stats		= sh_eth_get_stats,
3088	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3089	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3090	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3091	.ndo_tx_timeout		= sh_eth_tx_timeout,
3092	.ndo_do_ioctl		= sh_eth_do_ioctl,
3093	.ndo_change_mtu		= sh_eth_change_mtu,
3094	.ndo_validate_addr	= eth_validate_addr,
3095	.ndo_set_mac_address	= eth_mac_addr,
 
3096};
3097
3098#ifdef CONFIG_OF
3099static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3100{
3101	struct device_node *np = dev->of_node;
3102	struct sh_eth_plat_data *pdata;
3103	const char *mac_addr;
 
3104
3105	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3106	if (!pdata)
3107		return NULL;
3108
3109	pdata->phy_interface = of_get_phy_mode(np);
 
 
 
3110
3111	mac_addr = of_get_mac_address(np);
3112	if (mac_addr)
3113		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
3114
3115	pdata->no_ether_link =
3116		of_property_read_bool(np, "renesas,no-ether-link");
3117	pdata->ether_link_active_low =
3118		of_property_read_bool(np, "renesas,ether-link-active-low");
3119
3120	return pdata;
3121}
3122
3123static const struct of_device_id sh_eth_match_table[] = {
3124	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3125	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3126	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3127	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3128	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3129	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3130	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3131	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3132	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
 
3133	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
 
3134	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3135	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3136	{ }
3137};
3138MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3139#else
3140static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3141{
3142	return NULL;
3143}
3144#endif
3145
3146static int sh_eth_drv_probe(struct platform_device *pdev)
3147{
3148	struct resource *res;
3149	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3150	const struct platform_device_id *id = platform_get_device_id(pdev);
3151	struct sh_eth_private *mdp;
3152	struct net_device *ndev;
3153	int ret;
3154
3155	/* get base addr */
3156	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3157
3158	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3159	if (!ndev)
3160		return -ENOMEM;
3161
3162	pm_runtime_enable(&pdev->dev);
3163	pm_runtime_get_sync(&pdev->dev);
3164
3165	ret = platform_get_irq(pdev, 0);
3166	if (ret < 0)
3167		goto out_release;
3168	ndev->irq = ret;
3169
3170	SET_NETDEV_DEV(ndev, &pdev->dev);
3171
3172	mdp = netdev_priv(ndev);
3173	mdp->num_tx_ring = TX_RING_SIZE;
3174	mdp->num_rx_ring = RX_RING_SIZE;
3175	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3176	if (IS_ERR(mdp->addr)) {
3177		ret = PTR_ERR(mdp->addr);
3178		goto out_release;
3179	}
3180
3181	ndev->base_addr = res->start;
3182
3183	spin_lock_init(&mdp->lock);
3184	mdp->pdev = pdev;
3185
3186	if (pdev->dev.of_node)
3187		pd = sh_eth_parse_dt(&pdev->dev);
3188	if (!pd) {
3189		dev_err(&pdev->dev, "no platform data\n");
3190		ret = -EINVAL;
3191		goto out_release;
3192	}
3193
3194	/* get PHY ID */
3195	mdp->phy_id = pd->phy;
3196	mdp->phy_interface = pd->phy_interface;
3197	mdp->no_ether_link = pd->no_ether_link;
3198	mdp->ether_link_active_low = pd->ether_link_active_low;
3199
3200	/* set cpu data */
3201	if (id)
3202		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3203	else
3204		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3205
3206	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3207	if (!mdp->reg_offset) {
3208		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3209			mdp->cd->register_type);
3210		ret = -EINVAL;
3211		goto out_release;
3212	}
3213	sh_eth_set_default_cpu_data(mdp->cd);
3214
3215	/* User's manual states max MTU should be 2048 but due to the
3216	 * alignment calculations in sh_eth_ring_init() the practical
3217	 * MTU is a bit less. Maybe this can be optimized some more.
3218	 */
3219	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3220	ndev->min_mtu = ETH_MIN_MTU;
3221
 
 
 
 
 
3222	/* set function */
3223	if (mdp->cd->tsu)
3224		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3225	else
3226		ndev->netdev_ops = &sh_eth_netdev_ops;
3227	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3228	ndev->watchdog_timeo = TX_TIMEOUT;
3229
3230	/* debug message level */
3231	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3232
3233	/* read and set MAC address */
3234	read_mac_address(ndev, pd->mac_addr);
3235	if (!is_valid_ether_addr(ndev->dev_addr)) {
3236		dev_warn(&pdev->dev,
3237			 "no valid MAC address supplied, using a random one.\n");
3238		eth_hw_addr_random(ndev);
3239	}
3240
3241	if (mdp->cd->tsu) {
3242		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3243		struct resource *rtsu;
3244
3245		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3246		if (!rtsu) {
3247			dev_err(&pdev->dev, "no TSU resource\n");
3248			ret = -ENODEV;
3249			goto out_release;
3250		}
3251		/* We can only request the  TSU region  for the first port
3252		 * of the two  sharing this TSU for the probe to succeed...
3253		 */
3254		if (port == 0 &&
3255		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3256					     resource_size(rtsu),
3257					     dev_name(&pdev->dev))) {
3258			dev_err(&pdev->dev, "can't request TSU resource.\n");
3259			ret = -EBUSY;
3260			goto out_release;
3261		}
3262		/* ioremap the TSU registers */
3263		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3264					     resource_size(rtsu));
3265		if (!mdp->tsu_addr) {
3266			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3267			ret = -ENOMEM;
3268			goto out_release;
3269		}
3270		mdp->port = port;
3271		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3272
3273		/* Need to init only the first port of the two sharing a TSU */
3274		if (port == 0) {
3275			if (mdp->cd->chip_reset)
3276				mdp->cd->chip_reset(ndev);
3277
3278			/* TSU init (Init only)*/
3279			sh_eth_tsu_init(mdp);
3280		}
3281	}
3282
3283	if (mdp->cd->rmiimode)
3284		sh_eth_write(ndev, 0x1, RMIIMODE);
3285
3286	/* MDIO bus init */
3287	ret = sh_mdio_init(mdp, pd);
3288	if (ret) {
3289		if (ret != -EPROBE_DEFER)
3290			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3291		goto out_release;
3292	}
3293
3294	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3295
3296	/* network device register */
3297	ret = register_netdev(ndev);
3298	if (ret)
3299		goto out_napi_del;
3300
3301	if (mdp->cd->magic)
3302		device_set_wakeup_capable(&pdev->dev, 1);
3303
3304	/* print device information */
3305	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3306		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3307
3308	pm_runtime_put(&pdev->dev);
3309	platform_set_drvdata(pdev, ndev);
3310
3311	return ret;
3312
3313out_napi_del:
3314	netif_napi_del(&mdp->napi);
3315	sh_mdio_release(mdp);
3316
3317out_release:
3318	/* net_dev free */
3319	free_netdev(ndev);
3320
3321	pm_runtime_put(&pdev->dev);
3322	pm_runtime_disable(&pdev->dev);
3323	return ret;
3324}
3325
3326static int sh_eth_drv_remove(struct platform_device *pdev)
3327{
3328	struct net_device *ndev = platform_get_drvdata(pdev);
3329	struct sh_eth_private *mdp = netdev_priv(ndev);
3330
3331	unregister_netdev(ndev);
3332	netif_napi_del(&mdp->napi);
3333	sh_mdio_release(mdp);
3334	pm_runtime_disable(&pdev->dev);
3335	free_netdev(ndev);
3336
3337	return 0;
3338}
3339
3340#ifdef CONFIG_PM
3341#ifdef CONFIG_PM_SLEEP
3342static int sh_eth_wol_setup(struct net_device *ndev)
3343{
3344	struct sh_eth_private *mdp = netdev_priv(ndev);
3345
3346	/* Only allow ECI interrupts */
3347	synchronize_irq(ndev->irq);
3348	napi_disable(&mdp->napi);
3349	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3350
3351	/* Enable MagicPacket */
3352	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3353
3354	return enable_irq_wake(ndev->irq);
3355}
3356
3357static int sh_eth_wol_restore(struct net_device *ndev)
3358{
3359	struct sh_eth_private *mdp = netdev_priv(ndev);
3360	int ret;
3361
3362	napi_enable(&mdp->napi);
3363
3364	/* Disable MagicPacket */
3365	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3366
3367	/* The device needs to be reset to restore MagicPacket logic
3368	 * for next wakeup. If we close and open the device it will
3369	 * both be reset and all registers restored. This is what
3370	 * happens during suspend and resume without WoL enabled.
3371	 */
3372	ret = sh_eth_close(ndev);
3373	if (ret < 0)
3374		return ret;
3375	ret = sh_eth_open(ndev);
3376	if (ret < 0)
3377		return ret;
3378
3379	return disable_irq_wake(ndev->irq);
3380}
3381
3382static int sh_eth_suspend(struct device *dev)
3383{
3384	struct net_device *ndev = dev_get_drvdata(dev);
3385	struct sh_eth_private *mdp = netdev_priv(ndev);
3386	int ret = 0;
3387
3388	if (!netif_running(ndev))
3389		return 0;
3390
3391	netif_device_detach(ndev);
3392
3393	if (mdp->wol_enabled)
3394		ret = sh_eth_wol_setup(ndev);
3395	else
3396		ret = sh_eth_close(ndev);
3397
3398	return ret;
3399}
3400
3401static int sh_eth_resume(struct device *dev)
3402{
3403	struct net_device *ndev = dev_get_drvdata(dev);
3404	struct sh_eth_private *mdp = netdev_priv(ndev);
3405	int ret = 0;
3406
3407	if (!netif_running(ndev))
3408		return 0;
3409
3410	if (mdp->wol_enabled)
3411		ret = sh_eth_wol_restore(ndev);
3412	else
3413		ret = sh_eth_open(ndev);
3414
3415	if (ret < 0)
3416		return ret;
3417
3418	netif_device_attach(ndev);
3419
3420	return ret;
3421}
3422#endif
3423
3424static int sh_eth_runtime_nop(struct device *dev)
3425{
3426	/* Runtime PM callback shared between ->runtime_suspend()
3427	 * and ->runtime_resume(). Simply returns success.
3428	 *
3429	 * This driver re-initializes all registers after
3430	 * pm_runtime_get_sync() anyway so there is no need
3431	 * to save and restore registers here.
3432	 */
3433	return 0;
3434}
3435
3436static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3437	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3438	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3439};
3440#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3441#else
3442#define SH_ETH_PM_OPS NULL
3443#endif
3444
3445static const struct platform_device_id sh_eth_id_table[] = {
3446	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3447	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3448	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3449	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3450	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3451	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3452	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3453	{ }
3454};
3455MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3456
3457static struct platform_driver sh_eth_driver = {
3458	.probe = sh_eth_drv_probe,
3459	.remove = sh_eth_drv_remove,
3460	.id_table = sh_eth_id_table,
3461	.driver = {
3462		   .name = CARDNAME,
3463		   .pm = SH_ETH_PM_OPS,
3464		   .of_match_table = of_match_ptr(sh_eth_match_table),
3465	},
3466};
3467
3468module_platform_driver(sh_eth_driver);
3469
3470MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3471MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3472MODULE_LICENSE("GPL v2");