Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*  SuperH Ethernet device driver
   3 *
   4 *  Copyright (C) 2014 Renesas Electronics Corporation
   5 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
   6 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
   7 *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
   8 *  Copyright (C) 2014 Codethink Limited
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/spinlock.h>
  14#include <linux/interrupt.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/etherdevice.h>
  17#include <linux/delay.h>
  18#include <linux/platform_device.h>
  19#include <linux/mdio-bitbang.h>
  20#include <linux/netdevice.h>
  21#include <linux/of.h>
 
 
  22#include <linux/of_net.h>
  23#include <linux/phy.h>
  24#include <linux/cache.h>
  25#include <linux/io.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/slab.h>
  28#include <linux/ethtool.h>
  29#include <linux/if_vlan.h>
 
  30#include <linux/sh_eth.h>
  31#include <linux/of_mdio.h>
  32
  33#include "sh_eth.h"
  34
  35#define SH_ETH_DEF_MSG_ENABLE \
  36		(NETIF_MSG_LINK	| \
  37		NETIF_MSG_TIMER	| \
  38		NETIF_MSG_RX_ERR| \
  39		NETIF_MSG_TX_ERR)
  40
  41#define SH_ETH_OFFSET_INVALID	((u16)~0)
  42
  43#define SH_ETH_OFFSET_DEFAULTS			\
  44	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
  45
  46/* use some intentionally tricky logic here to initialize the whole struct to
  47 * 0xffff, but then override certain fields, requiring us to indicate that we
  48 * "know" that there are overrides in this structure, and we'll need to disable
  49 * that warning from W=1 builds. GCC has supported this option since 4.2.X, but
  50 * the macros available to do this only define GCC 8.
  51 */
  52__diag_push();
  53__diag_ignore(GCC, 8, "-Woverride-init",
  54	      "logic to initialize all and then override some is OK");
  55static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
  56	SH_ETH_OFFSET_DEFAULTS,
  57
  58	[EDSR]		= 0x0000,
  59	[EDMR]		= 0x0400,
  60	[EDTRR]		= 0x0408,
  61	[EDRRR]		= 0x0410,
  62	[EESR]		= 0x0428,
  63	[EESIPR]	= 0x0430,
  64	[TDLAR]		= 0x0010,
  65	[TDFAR]		= 0x0014,
  66	[TDFXR]		= 0x0018,
  67	[TDFFR]		= 0x001c,
  68	[RDLAR]		= 0x0030,
  69	[RDFAR]		= 0x0034,
  70	[RDFXR]		= 0x0038,
  71	[RDFFR]		= 0x003c,
  72	[TRSCER]	= 0x0438,
  73	[RMFCR]		= 0x0440,
  74	[TFTR]		= 0x0448,
  75	[FDR]		= 0x0450,
  76	[RMCR]		= 0x0458,
  77	[RPADIR]	= 0x0460,
  78	[FCFTR]		= 0x0468,
  79	[CSMR]		= 0x04E4,
  80
  81	[ECMR]		= 0x0500,
  82	[ECSR]		= 0x0510,
  83	[ECSIPR]	= 0x0518,
  84	[PIR]		= 0x0520,
  85	[PSR]		= 0x0528,
  86	[PIPR]		= 0x052c,
  87	[RFLR]		= 0x0508,
  88	[APR]		= 0x0554,
  89	[MPR]		= 0x0558,
  90	[PFTCR]		= 0x055c,
  91	[PFRCR]		= 0x0560,
  92	[TPAUSER]	= 0x0564,
  93	[GECMR]		= 0x05b0,
  94	[BCULR]		= 0x05b4,
  95	[MAHR]		= 0x05c0,
  96	[MALR]		= 0x05c8,
  97	[TROCR]		= 0x0700,
  98	[CDCR]		= 0x0708,
  99	[LCCR]		= 0x0710,
 100	[CEFCR]		= 0x0740,
 101	[FRECR]		= 0x0748,
 102	[TSFRCR]	= 0x0750,
 103	[TLFRCR]	= 0x0758,
 104	[RFCR]		= 0x0760,
 105	[CERCR]		= 0x0768,
 106	[CEECR]		= 0x0770,
 107	[MAFCR]		= 0x0778,
 108	[RMII_MII]	= 0x0790,
 109
 110	[ARSTR]		= 0x0000,
 111	[TSU_CTRST]	= 0x0004,
 112	[TSU_FWEN0]	= 0x0010,
 113	[TSU_FWEN1]	= 0x0014,
 114	[TSU_FCM]	= 0x0018,
 115	[TSU_BSYSL0]	= 0x0020,
 116	[TSU_BSYSL1]	= 0x0024,
 117	[TSU_PRISL0]	= 0x0028,
 118	[TSU_PRISL1]	= 0x002c,
 119	[TSU_FWSL0]	= 0x0030,
 120	[TSU_FWSL1]	= 0x0034,
 121	[TSU_FWSLC]	= 0x0038,
 122	[TSU_QTAGM0]	= 0x0040,
 123	[TSU_QTAGM1]	= 0x0044,
 124	[TSU_FWSR]	= 0x0050,
 125	[TSU_FWINMK]	= 0x0054,
 126	[TSU_ADQT0]	= 0x0048,
 127	[TSU_ADQT1]	= 0x004c,
 128	[TSU_VTAG0]	= 0x0058,
 129	[TSU_VTAG1]	= 0x005c,
 130	[TSU_ADSBSY]	= 0x0060,
 131	[TSU_TEN]	= 0x0064,
 132	[TSU_POST1]	= 0x0070,
 133	[TSU_POST2]	= 0x0074,
 134	[TSU_POST3]	= 0x0078,
 135	[TSU_POST4]	= 0x007c,
 136	[TSU_ADRH0]	= 0x0100,
 137
 138	[TXNLCR0]	= 0x0080,
 139	[TXALCR0]	= 0x0084,
 140	[RXNLCR0]	= 0x0088,
 141	[RXALCR0]	= 0x008c,
 142	[FWNLCR0]	= 0x0090,
 143	[FWALCR0]	= 0x0094,
 144	[TXNLCR1]	= 0x00a0,
 145	[TXALCR1]	= 0x00a4,
 146	[RXNLCR1]	= 0x00a8,
 147	[RXALCR1]	= 0x00ac,
 148	[FWNLCR1]	= 0x00b0,
 149	[FWALCR1]	= 0x00b4,
 150};
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
 153	SH_ETH_OFFSET_DEFAULTS,
 154
 155	[ECMR]		= 0x0300,
 156	[RFLR]		= 0x0308,
 157	[ECSR]		= 0x0310,
 158	[ECSIPR]	= 0x0318,
 159	[PIR]		= 0x0320,
 160	[PSR]		= 0x0328,
 161	[RDMLR]		= 0x0340,
 162	[IPGR]		= 0x0350,
 163	[APR]		= 0x0354,
 164	[MPR]		= 0x0358,
 165	[RFCF]		= 0x0360,
 166	[TPAUSER]	= 0x0364,
 167	[TPAUSECR]	= 0x0368,
 168	[MAHR]		= 0x03c0,
 169	[MALR]		= 0x03c8,
 170	[TROCR]		= 0x03d0,
 171	[CDCR]		= 0x03d4,
 172	[LCCR]		= 0x03d8,
 173	[CNDCR]		= 0x03dc,
 174	[CEFCR]		= 0x03e4,
 175	[FRECR]		= 0x03e8,
 176	[TSFRCR]	= 0x03ec,
 177	[TLFRCR]	= 0x03f0,
 178	[RFCR]		= 0x03f4,
 179	[MAFCR]		= 0x03f8,
 180
 181	[EDMR]		= 0x0200,
 182	[EDTRR]		= 0x0208,
 183	[EDRRR]		= 0x0210,
 184	[TDLAR]		= 0x0218,
 185	[RDLAR]		= 0x0220,
 186	[EESR]		= 0x0228,
 187	[EESIPR]	= 0x0230,
 188	[TRSCER]	= 0x0238,
 189	[RMFCR]		= 0x0240,
 190	[TFTR]		= 0x0248,
 191	[FDR]		= 0x0250,
 192	[RMCR]		= 0x0258,
 193	[TFUCR]		= 0x0264,
 194	[RFOCR]		= 0x0268,
 195	[RMIIMODE]      = 0x026c,
 196	[FCFTR]		= 0x0270,
 197	[TRIMD]		= 0x027c,
 198};
 199
 200static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
 201	SH_ETH_OFFSET_DEFAULTS,
 202
 203	[ECMR]		= 0x0100,
 204	[RFLR]		= 0x0108,
 205	[ECSR]		= 0x0110,
 206	[ECSIPR]	= 0x0118,
 207	[PIR]		= 0x0120,
 208	[PSR]		= 0x0128,
 209	[RDMLR]		= 0x0140,
 210	[IPGR]		= 0x0150,
 211	[APR]		= 0x0154,
 212	[MPR]		= 0x0158,
 213	[TPAUSER]	= 0x0164,
 214	[RFCF]		= 0x0160,
 215	[TPAUSECR]	= 0x0168,
 216	[BCFRR]		= 0x016c,
 217	[MAHR]		= 0x01c0,
 218	[MALR]		= 0x01c8,
 219	[TROCR]		= 0x01d0,
 220	[CDCR]		= 0x01d4,
 221	[LCCR]		= 0x01d8,
 222	[CNDCR]		= 0x01dc,
 223	[CEFCR]		= 0x01e4,
 224	[FRECR]		= 0x01e8,
 225	[TSFRCR]	= 0x01ec,
 226	[TLFRCR]	= 0x01f0,
 227	[RFCR]		= 0x01f4,
 228	[MAFCR]		= 0x01f8,
 229	[RTRATE]	= 0x01fc,
 230
 231	[EDMR]		= 0x0000,
 232	[EDTRR]		= 0x0008,
 233	[EDRRR]		= 0x0010,
 234	[TDLAR]		= 0x0018,
 235	[RDLAR]		= 0x0020,
 236	[EESR]		= 0x0028,
 237	[EESIPR]	= 0x0030,
 238	[TRSCER]	= 0x0038,
 239	[RMFCR]		= 0x0040,
 240	[TFTR]		= 0x0048,
 241	[FDR]		= 0x0050,
 242	[RMCR]		= 0x0058,
 243	[TFUCR]		= 0x0064,
 244	[RFOCR]		= 0x0068,
 245	[FCFTR]		= 0x0070,
 246	[RPADIR]	= 0x0078,
 247	[TRIMD]		= 0x007c,
 248	[RBWAR]		= 0x00c8,
 249	[RDFAR]		= 0x00cc,
 250	[TBRAR]		= 0x00d4,
 251	[TDFAR]		= 0x00d8,
 252};
 253
 254static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
 255	SH_ETH_OFFSET_DEFAULTS,
 256
 257	[EDMR]		= 0x0000,
 258	[EDTRR]		= 0x0004,
 259	[EDRRR]		= 0x0008,
 260	[TDLAR]		= 0x000c,
 261	[RDLAR]		= 0x0010,
 262	[EESR]		= 0x0014,
 263	[EESIPR]	= 0x0018,
 264	[TRSCER]	= 0x001c,
 265	[RMFCR]		= 0x0020,
 266	[TFTR]		= 0x0024,
 267	[FDR]		= 0x0028,
 268	[RMCR]		= 0x002c,
 269	[EDOCR]		= 0x0030,
 270	[FCFTR]		= 0x0034,
 271	[RPADIR]	= 0x0038,
 272	[TRIMD]		= 0x003c,
 273	[RBWAR]		= 0x0040,
 274	[RDFAR]		= 0x0044,
 275	[TBRAR]		= 0x004c,
 276	[TDFAR]		= 0x0050,
 277
 278	[ECMR]		= 0x0160,
 279	[ECSR]		= 0x0164,
 280	[ECSIPR]	= 0x0168,
 281	[PIR]		= 0x016c,
 282	[MAHR]		= 0x0170,
 283	[MALR]		= 0x0174,
 284	[RFLR]		= 0x0178,
 285	[PSR]		= 0x017c,
 286	[TROCR]		= 0x0180,
 287	[CDCR]		= 0x0184,
 288	[LCCR]		= 0x0188,
 289	[CNDCR]		= 0x018c,
 290	[CEFCR]		= 0x0194,
 291	[FRECR]		= 0x0198,
 292	[TSFRCR]	= 0x019c,
 293	[TLFRCR]	= 0x01a0,
 294	[RFCR]		= 0x01a4,
 295	[MAFCR]		= 0x01a8,
 296	[IPGR]		= 0x01b4,
 297	[APR]		= 0x01b8,
 298	[MPR]		= 0x01bc,
 299	[TPAUSER]	= 0x01c4,
 300	[BCFR]		= 0x01cc,
 301
 302	[ARSTR]		= 0x0000,
 303	[TSU_CTRST]	= 0x0004,
 304	[TSU_FWEN0]	= 0x0010,
 305	[TSU_FWEN1]	= 0x0014,
 306	[TSU_FCM]	= 0x0018,
 307	[TSU_BSYSL0]	= 0x0020,
 308	[TSU_BSYSL1]	= 0x0024,
 309	[TSU_PRISL0]	= 0x0028,
 310	[TSU_PRISL1]	= 0x002c,
 311	[TSU_FWSL0]	= 0x0030,
 312	[TSU_FWSL1]	= 0x0034,
 313	[TSU_FWSLC]	= 0x0038,
 314	[TSU_QTAGM0]	= 0x0040,
 315	[TSU_QTAGM1]	= 0x0044,
 316	[TSU_ADQT0]	= 0x0048,
 317	[TSU_ADQT1]	= 0x004c,
 318	[TSU_FWSR]	= 0x0050,
 319	[TSU_FWINMK]	= 0x0054,
 320	[TSU_ADSBSY]	= 0x0060,
 321	[TSU_TEN]	= 0x0064,
 322	[TSU_POST1]	= 0x0070,
 323	[TSU_POST2]	= 0x0074,
 324	[TSU_POST3]	= 0x0078,
 325	[TSU_POST4]	= 0x007c,
 326
 327	[TXNLCR0]	= 0x0080,
 328	[TXALCR0]	= 0x0084,
 329	[RXNLCR0]	= 0x0088,
 330	[RXALCR0]	= 0x008c,
 331	[FWNLCR0]	= 0x0090,
 332	[FWALCR0]	= 0x0094,
 333	[TXNLCR1]	= 0x00a0,
 334	[TXALCR1]	= 0x00a4,
 335	[RXNLCR1]	= 0x00a8,
 336	[RXALCR1]	= 0x00ac,
 337	[FWNLCR1]	= 0x00b0,
 338	[FWALCR1]	= 0x00b4,
 339
 340	[TSU_ADRH0]	= 0x0100,
 341};
 342__diag_pop();
 343
 344static void sh_eth_rcv_snd_disable(struct net_device *ndev);
 345static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
 346
 347static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
 348{
 349	struct sh_eth_private *mdp = netdev_priv(ndev);
 350	u16 offset = mdp->reg_offset[enum_index];
 351
 352	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 353		return;
 354
 355	iowrite32(data, mdp->addr + offset);
 356}
 357
 358static u32 sh_eth_read(struct net_device *ndev, int enum_index)
 359{
 360	struct sh_eth_private *mdp = netdev_priv(ndev);
 361	u16 offset = mdp->reg_offset[enum_index];
 362
 363	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 364		return ~0U;
 365
 366	return ioread32(mdp->addr + offset);
 367}
 368
 369static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
 370			  u32 set)
 371{
 372	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
 373		     enum_index);
 374}
 375
 376static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
 377{
 378	return mdp->reg_offset[enum_index];
 379}
 380
 381static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
 382			     int enum_index)
 383{
 384	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
 385
 386	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 387		return;
 388
 389	iowrite32(data, mdp->tsu_addr + offset);
 390}
 391
 392static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
 393{
 394	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
 395
 396	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 397		return ~0U;
 398
 399	return ioread32(mdp->tsu_addr + offset);
 400}
 401
 402static void sh_eth_soft_swap(char *src, int len)
 403{
 404#ifdef __LITTLE_ENDIAN
 405	u32 *p = (u32 *)src;
 406	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
 407
 408	for (; p < maxp; p++)
 409		*p = swab32(*p);
 410#endif
 411}
 412
 413static void sh_eth_select_mii(struct net_device *ndev)
 414{
 415	struct sh_eth_private *mdp = netdev_priv(ndev);
 416	u32 value;
 417
 418	switch (mdp->phy_interface) {
 419	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
 420		value = 0x3;
 421		break;
 422	case PHY_INTERFACE_MODE_GMII:
 423		value = 0x2;
 424		break;
 425	case PHY_INTERFACE_MODE_MII:
 426		value = 0x1;
 427		break;
 428	case PHY_INTERFACE_MODE_RMII:
 429		value = 0x0;
 430		break;
 431	default:
 432		netdev_warn(ndev,
 433			    "PHY interface mode was not setup. Set to MII.\n");
 434		value = 0x1;
 435		break;
 436	}
 437
 438	sh_eth_write(ndev, value, RMII_MII);
 439}
 440
 441static void sh_eth_set_duplex(struct net_device *ndev)
 442{
 443	struct sh_eth_private *mdp = netdev_priv(ndev);
 444
 445	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
 446}
 447
 448static void sh_eth_chip_reset(struct net_device *ndev)
 449{
 450	struct sh_eth_private *mdp = netdev_priv(ndev);
 451
 452	/* reset device */
 453	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
 454	mdelay(1);
 455}
 456
 457static int sh_eth_soft_reset(struct net_device *ndev)
 458{
 459	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
 460	mdelay(3);
 461	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
 462
 463	return 0;
 464}
 465
 466static int sh_eth_check_soft_reset(struct net_device *ndev)
 467{
 468	int cnt;
 469
 470	for (cnt = 100; cnt > 0; cnt--) {
 471		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
 472			return 0;
 473		mdelay(1);
 474	}
 475
 476	netdev_err(ndev, "Device reset failed\n");
 477	return -ETIMEDOUT;
 478}
 479
 480static int sh_eth_soft_reset_gether(struct net_device *ndev)
 481{
 482	struct sh_eth_private *mdp = netdev_priv(ndev);
 483	int ret;
 484
 485	sh_eth_write(ndev, EDSR_ENALL, EDSR);
 486	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
 487
 488	ret = sh_eth_check_soft_reset(ndev);
 489	if (ret)
 490		return ret;
 491
 492	/* Table Init */
 493	sh_eth_write(ndev, 0, TDLAR);
 494	sh_eth_write(ndev, 0, TDFAR);
 495	sh_eth_write(ndev, 0, TDFXR);
 496	sh_eth_write(ndev, 0, TDFFR);
 497	sh_eth_write(ndev, 0, RDLAR);
 498	sh_eth_write(ndev, 0, RDFAR);
 499	sh_eth_write(ndev, 0, RDFXR);
 500	sh_eth_write(ndev, 0, RDFFR);
 501
 502	/* Reset HW CRC register */
 503	if (mdp->cd->csmr)
 504		sh_eth_write(ndev, 0, CSMR);
 505
 506	/* Select MII mode */
 507	if (mdp->cd->select_mii)
 508		sh_eth_select_mii(ndev);
 509
 510	return ret;
 511}
 512
 513static void sh_eth_set_rate_gether(struct net_device *ndev)
 514{
 515	struct sh_eth_private *mdp = netdev_priv(ndev);
 516
 517	if (WARN_ON(!mdp->cd->gecmr))
 518		return;
 519
 520	switch (mdp->speed) {
 521	case 10: /* 10BASE */
 522		sh_eth_write(ndev, GECMR_10, GECMR);
 523		break;
 524	case 100:/* 100BASE */
 525		sh_eth_write(ndev, GECMR_100, GECMR);
 526		break;
 527	case 1000: /* 1000BASE */
 528		sh_eth_write(ndev, GECMR_1000, GECMR);
 529		break;
 530	}
 531}
 532
 533#ifdef CONFIG_OF
 534/* R7S72100 */
 535static struct sh_eth_cpu_data r7s72100_data = {
 536	.soft_reset	= sh_eth_soft_reset_gether,
 537
 538	.chip_reset	= sh_eth_chip_reset,
 539	.set_duplex	= sh_eth_set_duplex,
 540
 541	.register_type	= SH_ETH_REG_GIGABIT,
 542
 543	.edtrr_trns	= EDTRR_TRNS_GETHER,
 544	.ecsr_value	= ECSR_ICD,
 545	.ecsipr_value	= ECSIPR_ICDIP,
 546	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
 547			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
 548			  EESIPR_ECIIP |
 549			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 550			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 551			  EESIPR_RMAFIP | EESIPR_RRFIP |
 552			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 553			  EESIPR_PREIP | EESIPR_CERFIP,
 554
 555	.tx_check	= EESR_TC1 | EESR_FTC,
 556	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 557			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 558			  EESR_TDE,
 559	.fdr_value	= 0x0000070f,
 560
 561	.trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
 562
 563	.no_psr		= 1,
 564	.apr		= 1,
 565	.mpr		= 1,
 566	.tpauser	= 1,
 567	.hw_swap	= 1,
 568	.rpadir		= 1,
 
 569	.no_trimd	= 1,
 570	.no_ade		= 1,
 571	.xdfar_rw	= 1,
 572	.csmr		= 1,
 573	.rx_csum	= 1,
 574	.tsu		= 1,
 575	.no_tx_cntrs	= 1,
 576};
 577
 578static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
 579{
 580	sh_eth_chip_reset(ndev);
 581
 582	sh_eth_select_mii(ndev);
 583}
 584
 585/* R8A7740 */
 586static struct sh_eth_cpu_data r8a7740_data = {
 587	.soft_reset	= sh_eth_soft_reset_gether,
 588
 589	.chip_reset	= sh_eth_chip_reset_r8a7740,
 590	.set_duplex	= sh_eth_set_duplex,
 591	.set_rate	= sh_eth_set_rate_gether,
 592
 593	.register_type	= SH_ETH_REG_GIGABIT,
 594
 595	.edtrr_trns	= EDTRR_TRNS_GETHER,
 596	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 597	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 598	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 599			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 600			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 601			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 602			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 603			  EESIPR_CEEFIP | EESIPR_CELFIP |
 604			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 605			  EESIPR_PREIP | EESIPR_CERFIP,
 606
 607	.tx_check	= EESR_TC1 | EESR_FTC,
 608	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 609			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 610			  EESR_TDE,
 611	.fdr_value	= 0x0000070f,
 612
 613	.apr		= 1,
 614	.mpr		= 1,
 615	.tpauser	= 1,
 616	.gecmr		= 1,
 617	.bculr		= 1,
 618	.hw_swap	= 1,
 619	.rpadir		= 1,
 
 620	.no_trimd	= 1,
 621	.no_ade		= 1,
 622	.xdfar_rw	= 1,
 623	.csmr		= 1,
 624	.rx_csum	= 1,
 625	.tsu		= 1,
 626	.select_mii	= 1,
 627	.magic		= 1,
 628	.cexcr		= 1,
 629};
 630
 631/* There is CPU dependent code */
 632static void sh_eth_set_rate_rcar(struct net_device *ndev)
 633{
 634	struct sh_eth_private *mdp = netdev_priv(ndev);
 635
 636	switch (mdp->speed) {
 637	case 10: /* 10BASE */
 638		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
 639		break;
 640	case 100:/* 100BASE */
 641		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
 642		break;
 643	}
 644}
 645
 646/* R-Car Gen1 */
 647static struct sh_eth_cpu_data rcar_gen1_data = {
 648	.soft_reset	= sh_eth_soft_reset,
 649
 650	.set_duplex	= sh_eth_set_duplex,
 651	.set_rate	= sh_eth_set_rate_rcar,
 652
 653	.register_type	= SH_ETH_REG_FAST_RCAR,
 654
 655	.edtrr_trns	= EDTRR_TRNS_ETHER,
 656	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 657	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 658	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 659			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 660			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 661			  EESIPR_RMAFIP | EESIPR_RRFIP |
 662			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 663			  EESIPR_PREIP | EESIPR_CERFIP,
 664
 665	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 666	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 667			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 
 668	.fdr_value	= 0x00000f0f,
 669
 670	.apr		= 1,
 671	.mpr		= 1,
 672	.tpauser	= 1,
 673	.hw_swap	= 1,
 674	.no_xdfar	= 1,
 675};
 676
 677/* R-Car Gen2 and RZ/G1 */
 678static struct sh_eth_cpu_data rcar_gen2_data = {
 679	.soft_reset	= sh_eth_soft_reset,
 680
 681	.set_duplex	= sh_eth_set_duplex,
 682	.set_rate	= sh_eth_set_rate_rcar,
 683
 684	.register_type	= SH_ETH_REG_FAST_RCAR,
 685
 686	.edtrr_trns	= EDTRR_TRNS_ETHER,
 687	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 688	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 689			  ECSIPR_MPDIP,
 690	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 691			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 692			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 693			  EESIPR_RMAFIP | EESIPR_RRFIP |
 694			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 695			  EESIPR_PREIP | EESIPR_CERFIP,
 696
 697	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 698	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 699			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 
 700	.fdr_value	= 0x00000f0f,
 701
 702	.trscer_err_mask = TRSCER_RMAFCE,
 703
 704	.apr		= 1,
 705	.mpr		= 1,
 706	.tpauser	= 1,
 707	.hw_swap	= 1,
 708	.no_xdfar	= 1,
 709	.rmiimode	= 1,
 710	.magic		= 1,
 711};
 712
 713/* R8A77980 */
 714static struct sh_eth_cpu_data r8a77980_data = {
 715	.soft_reset	= sh_eth_soft_reset_gether,
 716
 717	.set_duplex	= sh_eth_set_duplex,
 718	.set_rate	= sh_eth_set_rate_gether,
 719
 720	.register_type  = SH_ETH_REG_GIGABIT,
 721
 722	.edtrr_trns	= EDTRR_TRNS_GETHER,
 723	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 724	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 725			  ECSIPR_MPDIP,
 726	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 727			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 728			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 729			  EESIPR_RMAFIP | EESIPR_RRFIP |
 730			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 731			  EESIPR_PREIP | EESIPR_CERFIP,
 732
 733	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
 734	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 735			  EESR_RFE | EESR_RDE | EESR_RFRMER |
 736			  EESR_TFE | EESR_TDE | EESR_ECI,
 737	.fdr_value	= 0x0000070f,
 738
 739	.apr		= 1,
 740	.mpr		= 1,
 741	.tpauser	= 1,
 742	.gecmr		= 1,
 743	.bculr		= 1,
 744	.hw_swap	= 1,
 745	.nbst		= 1,
 746	.rpadir		= 1,
 747	.no_trimd	= 1,
 748	.no_ade		= 1,
 749	.xdfar_rw	= 1,
 750	.csmr		= 1,
 751	.rx_csum	= 1,
 752	.select_mii	= 1,
 753	.magic		= 1,
 754	.cexcr		= 1,
 755};
 756
 757/* R7S9210 */
 758static struct sh_eth_cpu_data r7s9210_data = {
 759	.soft_reset	= sh_eth_soft_reset,
 760
 761	.set_duplex	= sh_eth_set_duplex,
 762	.set_rate	= sh_eth_set_rate_rcar,
 763
 764	.register_type	= SH_ETH_REG_FAST_SH4,
 765
 766	.edtrr_trns	= EDTRR_TRNS_ETHER,
 767	.ecsr_value	= ECSR_ICD,
 768	.ecsipr_value	= ECSIPR_ICDIP,
 769	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
 770			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
 771			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
 772			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
 773			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 774			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
 775			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
 776
 777	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 778	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 779			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 780
 781	.fdr_value	= 0x0000070f,
 782
 783	.trscer_err_mask = TRSCER_RMAFCE | TRSCER_RRFCE,
 784
 785	.apr		= 1,
 786	.mpr		= 1,
 787	.tpauser	= 1,
 788	.hw_swap	= 1,
 789	.rpadir		= 1,
 790	.no_ade		= 1,
 791	.xdfar_rw	= 1,
 792};
 793#endif /* CONFIG_OF */
 794
 795static void sh_eth_set_rate_sh7724(struct net_device *ndev)
 796{
 797	struct sh_eth_private *mdp = netdev_priv(ndev);
 798
 799	switch (mdp->speed) {
 800	case 10: /* 10BASE */
 801		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
 802		break;
 803	case 100:/* 100BASE */
 804		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
 805		break;
 806	}
 807}
 808
 809/* SH7724 */
 810static struct sh_eth_cpu_data sh7724_data = {
 811	.soft_reset	= sh_eth_soft_reset,
 812
 813	.set_duplex	= sh_eth_set_duplex,
 814	.set_rate	= sh_eth_set_rate_sh7724,
 815
 816	.register_type	= SH_ETH_REG_FAST_SH4,
 817
 818	.edtrr_trns	= EDTRR_TRNS_ETHER,
 819	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 820	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 821	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 822			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 823			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 824			  EESIPR_RMAFIP | EESIPR_RRFIP |
 825			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 826			  EESIPR_PREIP | EESIPR_CERFIP,
 827
 828	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 829	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 830			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 
 831
 832	.apr		= 1,
 833	.mpr		= 1,
 834	.tpauser	= 1,
 835	.hw_swap	= 1,
 836	.rpadir		= 1,
 
 837};
 838
 839static void sh_eth_set_rate_sh7757(struct net_device *ndev)
 840{
 841	struct sh_eth_private *mdp = netdev_priv(ndev);
 842
 843	switch (mdp->speed) {
 844	case 10: /* 10BASE */
 845		sh_eth_write(ndev, 0, RTRATE);
 846		break;
 847	case 100:/* 100BASE */
 848		sh_eth_write(ndev, 1, RTRATE);
 849		break;
 850	}
 851}
 852
 853/* SH7757 */
 854static struct sh_eth_cpu_data sh7757_data = {
 855	.soft_reset	= sh_eth_soft_reset,
 856
 857	.set_duplex	= sh_eth_set_duplex,
 858	.set_rate	= sh_eth_set_rate_sh7757,
 859
 860	.register_type	= SH_ETH_REG_FAST_SH4,
 861
 862	.edtrr_trns	= EDTRR_TRNS_ETHER,
 863	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 864			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 865			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 866			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 867			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 868			  EESIPR_CEEFIP | EESIPR_CELFIP |
 869			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 870			  EESIPR_PREIP | EESIPR_CERFIP,
 871
 872	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 873	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 874			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 
 875
 876	.irq_flags	= IRQF_SHARED,
 877	.apr		= 1,
 878	.mpr		= 1,
 879	.tpauser	= 1,
 880	.hw_swap	= 1,
 881	.no_ade		= 1,
 882	.rpadir		= 1,
 
 883	.rtrate		= 1,
 884	.dual_port	= 1,
 885};
 886
 887#define SH_GIGA_ETH_BASE	0xfee00000UL
 888#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
 889#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
 890static void sh_eth_chip_reset_giga(struct net_device *ndev)
 891{
 892	u32 mahr[2], malr[2];
 893	int i;
 894
 895	/* save MAHR and MALR */
 896	for (i = 0; i < 2; i++) {
 897		malr[i] = ioread32((void *)GIGA_MALR(i));
 898		mahr[i] = ioread32((void *)GIGA_MAHR(i));
 899	}
 900
 901	sh_eth_chip_reset(ndev);
 902
 903	/* restore MAHR and MALR */
 904	for (i = 0; i < 2; i++) {
 905		iowrite32(malr[i], (void *)GIGA_MALR(i));
 906		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
 907	}
 908}
 909
 910static void sh_eth_set_rate_giga(struct net_device *ndev)
 911{
 912	struct sh_eth_private *mdp = netdev_priv(ndev);
 913
 914	if (WARN_ON(!mdp->cd->gecmr))
 915		return;
 916
 917	switch (mdp->speed) {
 918	case 10: /* 10BASE */
 919		sh_eth_write(ndev, 0x00000000, GECMR);
 920		break;
 921	case 100:/* 100BASE */
 922		sh_eth_write(ndev, 0x00000010, GECMR);
 923		break;
 924	case 1000: /* 1000BASE */
 925		sh_eth_write(ndev, 0x00000020, GECMR);
 926		break;
 927	}
 928}
 929
 930/* SH7757(GETHERC) */
 931static struct sh_eth_cpu_data sh7757_data_giga = {
 932	.soft_reset	= sh_eth_soft_reset_gether,
 933
 934	.chip_reset	= sh_eth_chip_reset_giga,
 935	.set_duplex	= sh_eth_set_duplex,
 936	.set_rate	= sh_eth_set_rate_giga,
 937
 938	.register_type	= SH_ETH_REG_GIGABIT,
 939
 940	.edtrr_trns	= EDTRR_TRNS_GETHER,
 941	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 942	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 943	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 944			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 945			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 946			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 947			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 948			  EESIPR_CEEFIP | EESIPR_CELFIP |
 949			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 950			  EESIPR_PREIP | EESIPR_CERFIP,
 951
 952	.tx_check	= EESR_TC1 | EESR_FTC,
 953	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 954			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 955			  EESR_TDE,
 956	.fdr_value	= 0x0000072f,
 957
 958	.irq_flags	= IRQF_SHARED,
 959	.apr		= 1,
 960	.mpr		= 1,
 961	.tpauser	= 1,
 962	.gecmr		= 1,
 963	.bculr		= 1,
 964	.hw_swap	= 1,
 965	.rpadir		= 1,
 
 966	.no_trimd	= 1,
 967	.no_ade		= 1,
 968	.xdfar_rw	= 1,
 969	.tsu		= 1,
 970	.cexcr		= 1,
 971	.dual_port	= 1,
 972};
 973
 974/* SH7734 */
 975static struct sh_eth_cpu_data sh7734_data = {
 976	.soft_reset	= sh_eth_soft_reset_gether,
 977
 978	.chip_reset	= sh_eth_chip_reset,
 979	.set_duplex	= sh_eth_set_duplex,
 980	.set_rate	= sh_eth_set_rate_gether,
 981
 982	.register_type	= SH_ETH_REG_GIGABIT,
 983
 984	.edtrr_trns	= EDTRR_TRNS_GETHER,
 985	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 986	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 987	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 988			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 989			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 990			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 991			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
 992			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 993			  EESIPR_PREIP | EESIPR_CERFIP,
 994
 995	.tx_check	= EESR_TC1 | EESR_FTC,
 996	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 997			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 998			  EESR_TDE,
 999
1000	.apr		= 1,
1001	.mpr		= 1,
1002	.tpauser	= 1,
1003	.gecmr		= 1,
1004	.bculr		= 1,
1005	.hw_swap	= 1,
1006	.no_trimd	= 1,
1007	.no_ade		= 1,
1008	.xdfar_rw	= 1,
1009	.tsu		= 1,
1010	.csmr		= 1,
1011	.rx_csum	= 1,
1012	.select_mii	= 1,
1013	.magic		= 1,
1014	.cexcr		= 1,
1015};
1016
1017/* SH7763 */
1018static struct sh_eth_cpu_data sh7763_data = {
1019	.soft_reset	= sh_eth_soft_reset_gether,
1020
1021	.chip_reset	= sh_eth_chip_reset,
1022	.set_duplex	= sh_eth_set_duplex,
1023	.set_rate	= sh_eth_set_rate_gether,
1024
1025	.register_type	= SH_ETH_REG_GIGABIT,
1026
1027	.edtrr_trns	= EDTRR_TRNS_GETHER,
1028	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1029	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1030	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1031			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1032			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1033			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1034			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1035			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1036			  EESIPR_PREIP | EESIPR_CERFIP,
1037
1038	.tx_check	= EESR_TC1 | EESR_FTC,
1039	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1040			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 
1041
1042	.apr		= 1,
1043	.mpr		= 1,
1044	.tpauser	= 1,
1045	.gecmr		= 1,
1046	.bculr		= 1,
1047	.hw_swap	= 1,
1048	.no_trimd	= 1,
1049	.no_ade		= 1,
1050	.xdfar_rw	= 1,
1051	.tsu		= 1,
1052	.irq_flags	= IRQF_SHARED,
1053	.magic		= 1,
1054	.cexcr		= 1,
1055	.rx_csum	= 1,
1056	.dual_port	= 1,
1057};
1058
1059static struct sh_eth_cpu_data sh7619_data = {
1060	.soft_reset	= sh_eth_soft_reset,
1061
1062	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1063
1064	.edtrr_trns	= EDTRR_TRNS_ETHER,
1065	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1066			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1067			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1068			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1069			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1070			  EESIPR_CEEFIP | EESIPR_CELFIP |
1071			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1072			  EESIPR_PREIP | EESIPR_CERFIP,
1073
1074	.apr		= 1,
1075	.mpr		= 1,
1076	.tpauser	= 1,
1077	.hw_swap	= 1,
1078};
1079
1080static struct sh_eth_cpu_data sh771x_data = {
1081	.soft_reset	= sh_eth_soft_reset,
1082
1083	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1084
1085	.edtrr_trns	= EDTRR_TRNS_ETHER,
1086	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1087			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1088			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1089			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1090			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1091			  EESIPR_CEEFIP | EESIPR_CELFIP |
1092			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1093			  EESIPR_PREIP | EESIPR_CERFIP,
1094
1095	.trscer_err_mask = TRSCER_RMAFCE,
1096
1097	.tsu		= 1,
1098	.dual_port	= 1,
1099};
1100
1101static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1102{
1103	if (!cd->ecsr_value)
1104		cd->ecsr_value = DEFAULT_ECSR_INIT;
1105
1106	if (!cd->ecsipr_value)
1107		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1108
1109	if (!cd->fcftr_value)
1110		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1111				  DEFAULT_FIFO_F_D_RFD;
1112
1113	if (!cd->fdr_value)
1114		cd->fdr_value = DEFAULT_FDR_INIT;
1115
1116	if (!cd->tx_check)
1117		cd->tx_check = DEFAULT_TX_CHECK;
1118
1119	if (!cd->eesr_err_check)
1120		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1121
1122	if (!cd->trscer_err_mask)
1123		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1124}
1125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126static void sh_eth_set_receive_align(struct sk_buff *skb)
1127{
1128	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1129
1130	if (reserve)
1131		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1132}
1133
1134/* Program the hardware MAC address from dev->dev_addr. */
1135static void update_mac_address(struct net_device *ndev)
1136{
1137	sh_eth_write(ndev,
1138		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1139		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1140	sh_eth_write(ndev,
1141		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1142}
1143
1144/* Get MAC address from SuperH MAC address register
1145 *
1146 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1147 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1148 * When you want use this device, you must set MAC address in bootloader.
1149 *
1150 */
1151static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1152{
1153	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1154		eth_hw_addr_set(ndev, mac);
1155	} else {
1156		u32 mahr = sh_eth_read(ndev, MAHR);
1157		u32 malr = sh_eth_read(ndev, MALR);
1158		u8 addr[ETH_ALEN];
1159
1160		addr[0] = (mahr >> 24) & 0xFF;
1161		addr[1] = (mahr >> 16) & 0xFF;
1162		addr[2] = (mahr >>  8) & 0xFF;
1163		addr[3] = (mahr >>  0) & 0xFF;
1164		addr[4] = (malr >>  8) & 0xFF;
1165		addr[5] = (malr >>  0) & 0xFF;
1166		eth_hw_addr_set(ndev, addr);
1167	}
1168}
1169
 
 
 
 
 
 
 
 
1170struct bb_info {
1171	void (*set_gate)(void *addr);
1172	struct mdiobb_ctrl ctrl;
1173	void *addr;
1174};
1175
1176static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1177{
1178	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1179	u32 pir;
1180
1181	if (bitbang->set_gate)
1182		bitbang->set_gate(bitbang->addr);
1183
1184	pir = ioread32(bitbang->addr);
1185	if (set)
1186		pir |=  mask;
1187	else
1188		pir &= ~mask;
1189	iowrite32(pir, bitbang->addr);
1190}
1191
1192/* Data I/O pin control */
1193static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1194{
1195	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1196}
1197
1198/* Set bit data*/
1199static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1200{
1201	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1202}
1203
1204/* Get bit data*/
1205static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1206{
1207	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1208
1209	if (bitbang->set_gate)
1210		bitbang->set_gate(bitbang->addr);
1211
1212	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1213}
1214
1215/* MDC pin control */
1216static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1217{
1218	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1219}
1220
1221/* mdio bus control struct */
1222static const struct mdiobb_ops bb_ops = {
1223	.owner = THIS_MODULE,
1224	.set_mdc = sh_mdc_ctrl,
1225	.set_mdio_dir = sh_mmd_ctrl,
1226	.set_mdio_data = sh_set_mdio,
1227	.get_mdio_data = sh_get_mdio,
1228};
1229
1230/* free Tx skb function */
1231static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1232{
1233	struct sh_eth_private *mdp = netdev_priv(ndev);
1234	struct sh_eth_txdesc *txdesc;
1235	int free_num = 0;
1236	int entry;
1237	bool sent;
1238
1239	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1240		entry = mdp->dirty_tx % mdp->num_tx_ring;
1241		txdesc = &mdp->tx_ring[entry];
1242		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1243		if (sent_only && !sent)
1244			break;
1245		/* TACT bit must be checked before all the following reads */
1246		dma_rmb();
1247		netif_info(mdp, tx_done, ndev,
1248			   "tx entry %d status 0x%08x\n",
1249			   entry, le32_to_cpu(txdesc->status));
1250		/* Free the original skb. */
1251		if (mdp->tx_skbuff[entry]) {
1252			dma_unmap_single(&mdp->pdev->dev,
1253					 le32_to_cpu(txdesc->addr),
1254					 le32_to_cpu(txdesc->len) >> 16,
1255					 DMA_TO_DEVICE);
1256			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1257			mdp->tx_skbuff[entry] = NULL;
1258			free_num++;
1259		}
1260		txdesc->status = cpu_to_le32(TD_TFP);
1261		if (entry >= mdp->num_tx_ring - 1)
1262			txdesc->status |= cpu_to_le32(TD_TDLE);
1263
1264		if (sent) {
1265			ndev->stats.tx_packets++;
1266			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1267		}
1268	}
1269	return free_num;
1270}
1271
1272/* free skb and descriptor buffer */
1273static void sh_eth_ring_free(struct net_device *ndev)
1274{
1275	struct sh_eth_private *mdp = netdev_priv(ndev);
1276	int ringsize, i;
1277
1278	if (mdp->rx_ring) {
1279		for (i = 0; i < mdp->num_rx_ring; i++) {
1280			if (mdp->rx_skbuff[i]) {
1281				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1282
1283				dma_unmap_single(&mdp->pdev->dev,
1284						 le32_to_cpu(rxdesc->addr),
1285						 ALIGN(mdp->rx_buf_sz, 32),
1286						 DMA_FROM_DEVICE);
1287			}
1288		}
1289		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1290		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1291				  mdp->rx_desc_dma);
1292		mdp->rx_ring = NULL;
1293	}
1294
1295	/* Free Rx skb ringbuffer */
1296	if (mdp->rx_skbuff) {
1297		for (i = 0; i < mdp->num_rx_ring; i++)
1298			dev_kfree_skb(mdp->rx_skbuff[i]);
1299	}
1300	kfree(mdp->rx_skbuff);
1301	mdp->rx_skbuff = NULL;
1302
1303	if (mdp->tx_ring) {
1304		sh_eth_tx_free(ndev, false);
 
 
 
 
 
 
 
 
 
 
 
 
1305
 
1306		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1307		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1308				  mdp->tx_desc_dma);
1309		mdp->tx_ring = NULL;
1310	}
1311
1312	/* Free Tx skb ringbuffer */
1313	kfree(mdp->tx_skbuff);
1314	mdp->tx_skbuff = NULL;
1315}
1316
1317/* format skb and descriptor buffer */
1318static void sh_eth_ring_format(struct net_device *ndev)
1319{
1320	struct sh_eth_private *mdp = netdev_priv(ndev);
1321	int i;
1322	struct sk_buff *skb;
1323	struct sh_eth_rxdesc *rxdesc = NULL;
1324	struct sh_eth_txdesc *txdesc = NULL;
1325	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1326	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1327	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1328	dma_addr_t dma_addr;
1329	u32 buf_len;
1330
1331	mdp->cur_rx = 0;
1332	mdp->cur_tx = 0;
1333	mdp->dirty_rx = 0;
1334	mdp->dirty_tx = 0;
1335
1336	memset(mdp->rx_ring, 0, rx_ringsize);
1337
1338	/* build Rx ring buffer */
1339	for (i = 0; i < mdp->num_rx_ring; i++) {
1340		/* skb */
1341		mdp->rx_skbuff[i] = NULL;
1342		skb = netdev_alloc_skb(ndev, skbuff_size);
1343		if (skb == NULL)
1344			break;
1345		sh_eth_set_receive_align(skb);
1346
1347		/* The size of the buffer is a multiple of 32 bytes. */
1348		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1349		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1350					  DMA_FROM_DEVICE);
1351		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1352			kfree_skb(skb);
1353			break;
1354		}
1355		mdp->rx_skbuff[i] = skb;
1356
1357		/* RX descriptor */
1358		rxdesc = &mdp->rx_ring[i];
1359		rxdesc->len = cpu_to_le32(buf_len << 16);
1360		rxdesc->addr = cpu_to_le32(dma_addr);
1361		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1362
1363		/* Rx descriptor address set */
1364		if (i == 0) {
1365			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1366			if (mdp->cd->xdfar_rw)
 
1367				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1368		}
1369	}
1370
1371	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1372
1373	/* Mark the last entry as wrapping the ring. */
1374	if (rxdesc)
1375		rxdesc->status |= cpu_to_le32(RD_RDLE);
1376
1377	memset(mdp->tx_ring, 0, tx_ringsize);
1378
1379	/* build Tx ring buffer */
1380	for (i = 0; i < mdp->num_tx_ring; i++) {
1381		mdp->tx_skbuff[i] = NULL;
1382		txdesc = &mdp->tx_ring[i];
1383		txdesc->status = cpu_to_le32(TD_TFP);
1384		txdesc->len = cpu_to_le32(0);
1385		if (i == 0) {
1386			/* Tx descriptor address set */
1387			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1388			if (mdp->cd->xdfar_rw)
 
1389				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1390		}
1391	}
1392
1393	txdesc->status |= cpu_to_le32(TD_TDLE);
1394}
1395
1396/* Get skb and descriptor buffer */
1397static int sh_eth_ring_init(struct net_device *ndev)
1398{
1399	struct sh_eth_private *mdp = netdev_priv(ndev);
1400	int rx_ringsize, tx_ringsize;
1401
1402	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1403	 * card needs room to do 8 byte alignment, +2 so we can reserve
1404	 * the first 2 bytes, and +16 gets room for the status word from the
1405	 * card.
1406	 */
1407	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1408			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1409	if (mdp->cd->rpadir)
1410		mdp->rx_buf_sz += NET_IP_ALIGN;
1411
1412	/* Allocate RX and TX skb rings */
1413	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1414				 GFP_KERNEL);
1415	if (!mdp->rx_skbuff)
1416		return -ENOMEM;
1417
1418	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1419				 GFP_KERNEL);
1420	if (!mdp->tx_skbuff)
1421		goto ring_free;
1422
1423	/* Allocate all Rx descriptors. */
1424	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1425	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1426					  &mdp->rx_desc_dma, GFP_KERNEL);
1427	if (!mdp->rx_ring)
1428		goto ring_free;
1429
1430	mdp->dirty_rx = 0;
1431
1432	/* Allocate all Tx descriptors. */
1433	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1434	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1435					  &mdp->tx_desc_dma, GFP_KERNEL);
1436	if (!mdp->tx_ring)
1437		goto ring_free;
1438	return 0;
1439
1440ring_free:
1441	/* Free Rx and Tx skb ring buffer and DMA buffer */
1442	sh_eth_ring_free(ndev);
1443
1444	return -ENOMEM;
1445}
1446
1447static int sh_eth_dev_init(struct net_device *ndev)
1448{
1449	struct sh_eth_private *mdp = netdev_priv(ndev);
1450	int ret;
1451
1452	/* Soft Reset */
1453	ret = mdp->cd->soft_reset(ndev);
1454	if (ret)
1455		return ret;
1456
1457	if (mdp->cd->rmiimode)
1458		sh_eth_write(ndev, 0x1, RMIIMODE);
1459
1460	/* Descriptor format */
1461	sh_eth_ring_format(ndev);
1462	if (mdp->cd->rpadir)
1463		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1464
1465	/* all sh_eth int mask */
1466	sh_eth_write(ndev, 0, EESIPR);
1467
1468#if defined(__LITTLE_ENDIAN)
1469	if (mdp->cd->hw_swap)
1470		sh_eth_write(ndev, EDMR_EL, EDMR);
1471	else
1472#endif
1473		sh_eth_write(ndev, 0, EDMR);
1474
1475	/* FIFO size set */
1476	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1477	sh_eth_write(ndev, 0, TFTR);
1478
1479	/* Frame recv control (enable multiple-packets per rx irq) */
1480	sh_eth_write(ndev, RMCR_RNC, RMCR);
1481
1482	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1483
1484	/* DMA transfer burst mode */
1485	if (mdp->cd->nbst)
1486		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1487
1488	/* Burst cycle count upper-limit */
1489	if (mdp->cd->bculr)
1490		sh_eth_write(ndev, 0x800, BCULR);
1491
1492	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1493
1494	if (!mdp->cd->no_trimd)
1495		sh_eth_write(ndev, 0, TRIMD);
1496
1497	/* Recv frame limit set register */
1498	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1499		     RFLR);
1500
1501	sh_eth_modify(ndev, EESR, 0, 0);
1502	mdp->irq_enabled = true;
1503	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1504
1505	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1506	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1507		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1508		     ECMR_TE | ECMR_RE, ECMR);
1509
1510	if (mdp->cd->set_rate)
1511		mdp->cd->set_rate(ndev);
1512
1513	/* E-MAC Status Register clear */
1514	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1515
1516	/* E-MAC Interrupt Enable register */
1517	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1518
1519	/* Set MAC address */
1520	update_mac_address(ndev);
1521
1522	/* mask reset */
1523	if (mdp->cd->apr)
1524		sh_eth_write(ndev, 1, APR);
1525	if (mdp->cd->mpr)
1526		sh_eth_write(ndev, 1, MPR);
1527	if (mdp->cd->tpauser)
1528		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1529
1530	/* Setting the Rx mode will start the Rx process. */
1531	sh_eth_write(ndev, EDRRR_R, EDRRR);
1532
1533	return ret;
1534}
1535
1536static void sh_eth_dev_exit(struct net_device *ndev)
1537{
1538	struct sh_eth_private *mdp = netdev_priv(ndev);
1539	int i;
1540
1541	/* Deactivate all TX descriptors, so DMA should stop at next
1542	 * packet boundary if it's currently running
1543	 */
1544	for (i = 0; i < mdp->num_tx_ring; i++)
1545		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1546
1547	/* Disable TX FIFO egress to MAC */
1548	sh_eth_rcv_snd_disable(ndev);
1549
1550	/* Stop RX DMA at next packet boundary */
1551	sh_eth_write(ndev, 0, EDRRR);
1552
1553	/* Aside from TX DMA, we can't tell when the hardware is
1554	 * really stopped, so we need to reset to make sure.
1555	 * Before doing that, wait for long enough to *probably*
1556	 * finish transmitting the last packet and poll stats.
1557	 */
1558	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1559	sh_eth_get_stats(ndev);
1560	mdp->cd->soft_reset(ndev);
1561
1562	/* Set the RMII mode again if required */
1563	if (mdp->cd->rmiimode)
1564		sh_eth_write(ndev, 0x1, RMIIMODE);
1565
1566	/* Set MAC address again */
1567	update_mac_address(ndev);
1568}
1569
1570static void sh_eth_rx_csum(struct sk_buff *skb)
 
1571{
1572	u8 *hw_csum;
 
 
 
1573
1574	/* The hardware checksum is 2 bytes appended to packet data */
1575	if (unlikely(skb->len < sizeof(__sum16)))
1576		return;
1577	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1578	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1579	skb->ip_summed = CHECKSUM_COMPLETE;
1580	skb_trim(skb, skb->len - sizeof(__sum16));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581}
1582
1583/* Packet receive function */
1584static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1585{
1586	struct sh_eth_private *mdp = netdev_priv(ndev);
1587	struct sh_eth_rxdesc *rxdesc;
1588
1589	int entry = mdp->cur_rx % mdp->num_rx_ring;
1590	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1591	int limit;
1592	struct sk_buff *skb;
1593	u32 desc_status;
1594	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1595	dma_addr_t dma_addr;
1596	u16 pkt_len;
1597	u32 buf_len;
1598
1599	boguscnt = min(boguscnt, *quota);
1600	limit = boguscnt;
1601	rxdesc = &mdp->rx_ring[entry];
1602	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1603		/* RACT bit must be checked before all the following reads */
1604		dma_rmb();
1605		desc_status = le32_to_cpu(rxdesc->status);
1606		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1607
1608		if (--boguscnt < 0)
1609			break;
1610
1611		netif_info(mdp, rx_status, ndev,
1612			   "rx entry %d status 0x%08x len %d\n",
1613			   entry, desc_status, pkt_len);
1614
1615		if (!(desc_status & RDFEND))
1616			ndev->stats.rx_length_errors++;
1617
1618		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1619		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1620		 * bit 0. However, in case of the R8A7740 and R7S72100
1621		 * the RFS bits are from bit 25 to bit 16. So, the
1622		 * driver needs right shifting by 16.
1623		 */
1624		if (mdp->cd->csmr)
1625			desc_status >>= 16;
1626
1627		skb = mdp->rx_skbuff[entry];
1628		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1629				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1630			ndev->stats.rx_errors++;
1631			if (desc_status & RD_RFS1)
1632				ndev->stats.rx_crc_errors++;
1633			if (desc_status & RD_RFS2)
1634				ndev->stats.rx_frame_errors++;
1635			if (desc_status & RD_RFS3)
1636				ndev->stats.rx_length_errors++;
1637			if (desc_status & RD_RFS4)
1638				ndev->stats.rx_length_errors++;
1639			if (desc_status & RD_RFS6)
1640				ndev->stats.rx_missed_errors++;
1641			if (desc_status & RD_RFS10)
1642				ndev->stats.rx_over_errors++;
1643		} else	if (skb) {
1644			dma_addr = le32_to_cpu(rxdesc->addr);
1645			if (!mdp->cd->hw_swap)
1646				sh_eth_soft_swap(
1647					phys_to_virt(ALIGN(dma_addr, 4)),
1648					pkt_len + 2);
1649			mdp->rx_skbuff[entry] = NULL;
1650			if (mdp->cd->rpadir)
1651				skb_reserve(skb, NET_IP_ALIGN);
1652			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1653					 ALIGN(mdp->rx_buf_sz, 32),
1654					 DMA_FROM_DEVICE);
1655			skb_put(skb, pkt_len);
1656			skb->protocol = eth_type_trans(skb, ndev);
1657			if (ndev->features & NETIF_F_RXCSUM)
1658				sh_eth_rx_csum(skb);
1659			netif_receive_skb(skb);
1660			ndev->stats.rx_packets++;
1661			ndev->stats.rx_bytes += pkt_len;
1662			if (desc_status & RD_RFS8)
1663				ndev->stats.multicast++;
1664		}
1665		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1666		rxdesc = &mdp->rx_ring[entry];
1667	}
1668
1669	/* Refill the Rx ring buffers. */
1670	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1671		entry = mdp->dirty_rx % mdp->num_rx_ring;
1672		rxdesc = &mdp->rx_ring[entry];
1673		/* The size of the buffer is 32 byte boundary. */
1674		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1675		rxdesc->len = cpu_to_le32(buf_len << 16);
1676
1677		if (mdp->rx_skbuff[entry] == NULL) {
1678			skb = netdev_alloc_skb(ndev, skbuff_size);
1679			if (skb == NULL)
1680				break;	/* Better luck next round. */
1681			sh_eth_set_receive_align(skb);
1682			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1683						  buf_len, DMA_FROM_DEVICE);
1684			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1685				kfree_skb(skb);
1686				break;
1687			}
1688			mdp->rx_skbuff[entry] = skb;
1689
1690			skb_checksum_none_assert(skb);
1691			rxdesc->addr = cpu_to_le32(dma_addr);
1692		}
1693		dma_wmb(); /* RACT bit must be set after all the above writes */
1694		if (entry >= mdp->num_rx_ring - 1)
1695			rxdesc->status |=
1696				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1697		else
1698			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1699	}
1700
1701	/* Restart Rx engine if stopped. */
1702	/* If we don't need to check status, don't. -KDU */
1703	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1704		/* fix the values for the next receiving if RDE is set */
1705		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
 
1706			u32 count = (sh_eth_read(ndev, RDFAR) -
1707				     sh_eth_read(ndev, RDLAR)) >> 4;
1708
1709			mdp->cur_rx = count;
1710			mdp->dirty_rx = count;
1711		}
1712		sh_eth_write(ndev, EDRRR_R, EDRRR);
1713	}
1714
1715	*quota -= limit - boguscnt - 1;
1716
1717	return *quota <= 0;
1718}
1719
1720static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1721{
1722	/* disable tx and rx */
1723	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1724}
1725
1726static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1727{
1728	/* enable tx and rx */
1729	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1730}
1731
1732/* E-MAC interrupt handler */
1733static void sh_eth_emac_interrupt(struct net_device *ndev)
1734{
1735	struct sh_eth_private *mdp = netdev_priv(ndev);
1736	u32 felic_stat;
1737	u32 link_stat;
 
1738
1739	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1740	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1741	if (felic_stat & ECSR_ICD)
1742		ndev->stats.tx_carrier_errors++;
1743	if (felic_stat & ECSR_MPD)
1744		pm_wakeup_event(&mdp->pdev->dev, 0);
1745	if (felic_stat & ECSR_LCHNG) {
1746		/* Link Changed */
1747		if (mdp->cd->no_psr || mdp->no_ether_link)
1748			return;
1749		link_stat = sh_eth_read(ndev, PSR);
1750		if (mdp->ether_link_active_low)
1751			link_stat = ~link_stat;
1752		if (!(link_stat & PSR_LMON)) {
1753			sh_eth_rcv_snd_disable(ndev);
1754		} else {
1755			/* Link Up */
1756			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1757			/* clear int */
1758			sh_eth_modify(ndev, ECSR, 0, 0);
1759			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1760			/* enable tx and rx */
1761			sh_eth_rcv_snd_enable(ndev);
 
 
 
1762		}
1763	}
1764}
1765
1766/* error control function */
1767static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1768{
1769	struct sh_eth_private *mdp = netdev_priv(ndev);
1770	u32 mask;
1771
 
1772	if (intr_status & EESR_TWB) {
1773		/* Unused write back interrupt */
1774		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1775			ndev->stats.tx_aborted_errors++;
1776			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1777		}
1778	}
1779
1780	if (intr_status & EESR_RABT) {
1781		/* Receive Abort int */
1782		if (intr_status & EESR_RFRMER) {
1783			/* Receive Frame Overflow int */
1784			ndev->stats.rx_frame_errors++;
1785		}
1786	}
1787
1788	if (intr_status & EESR_TDE) {
1789		/* Transmit Descriptor Empty int */
1790		ndev->stats.tx_fifo_errors++;
1791		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1792	}
1793
1794	if (intr_status & EESR_TFE) {
1795		/* FIFO under flow */
1796		ndev->stats.tx_fifo_errors++;
1797		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1798	}
1799
1800	if (intr_status & EESR_RDE) {
1801		/* Receive Descriptor Empty int */
1802		ndev->stats.rx_over_errors++;
1803	}
1804
1805	if (intr_status & EESR_RFE) {
1806		/* Receive FIFO Overflow int */
1807		ndev->stats.rx_fifo_errors++;
1808	}
1809
1810	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1811		/* Address Error */
1812		ndev->stats.tx_fifo_errors++;
1813		netif_err(mdp, tx_err, ndev, "Address Error\n");
1814	}
1815
1816	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1817	if (mdp->cd->no_ade)
1818		mask &= ~EESR_ADE;
1819	if (intr_status & mask) {
1820		/* Tx error */
1821		u32 edtrr = sh_eth_read(ndev, EDTRR);
1822
1823		/* dmesg */
1824		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1825			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1826			   (u32)ndev->state, edtrr);
1827		/* dirty buffer free */
1828		sh_eth_tx_free(ndev, true);
1829
1830		/* SH7712 BUG */
1831		if (edtrr ^ mdp->cd->edtrr_trns) {
1832			/* tx dma start */
1833			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1834		}
1835		/* wakeup */
1836		netif_wake_queue(ndev);
1837	}
1838}
1839
1840static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1841{
1842	struct net_device *ndev = netdev;
1843	struct sh_eth_private *mdp = netdev_priv(ndev);
1844	struct sh_eth_cpu_data *cd = mdp->cd;
1845	irqreturn_t ret = IRQ_NONE;
1846	u32 intr_status, intr_enable;
1847
1848	spin_lock(&mdp->lock);
1849
1850	/* Get interrupt status */
1851	intr_status = sh_eth_read(ndev, EESR);
1852	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1853	 * enabled since it's the one that  comes  thru regardless of the mask,
1854	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1855	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1856	 * bit...
1857	 */
1858	intr_enable = sh_eth_read(ndev, EESIPR);
1859	intr_status &= intr_enable | EESIPR_ECIIP;
1860	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1861			   cd->eesr_err_check))
1862		ret = IRQ_HANDLED;
1863	else
1864		goto out;
1865
1866	if (unlikely(!mdp->irq_enabled)) {
1867		sh_eth_write(ndev, 0, EESIPR);
1868		goto out;
1869	}
1870
1871	if (intr_status & EESR_RX_CHECK) {
1872		if (napi_schedule_prep(&mdp->napi)) {
1873			/* Mask Rx interrupts */
1874			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1875				     EESIPR);
1876			__napi_schedule(&mdp->napi);
1877		} else {
1878			netdev_warn(ndev,
1879				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1880				    intr_status, intr_enable);
1881		}
1882	}
1883
1884	/* Tx Check */
1885	if (intr_status & cd->tx_check) {
1886		/* Clear Tx interrupts */
1887		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1888
1889		sh_eth_tx_free(ndev, true);
1890		netif_wake_queue(ndev);
1891	}
1892
1893	/* E-MAC interrupt */
1894	if (intr_status & EESR_ECI)
1895		sh_eth_emac_interrupt(ndev);
1896
1897	if (intr_status & cd->eesr_err_check) {
1898		/* Clear error interrupts */
1899		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1900
1901		sh_eth_error(ndev, intr_status);
1902	}
1903
1904out:
1905	spin_unlock(&mdp->lock);
1906
1907	return ret;
1908}
1909
1910static int sh_eth_poll(struct napi_struct *napi, int budget)
1911{
1912	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1913						  napi);
1914	struct net_device *ndev = napi->dev;
1915	int quota = budget;
1916	u32 intr_status;
1917
1918	for (;;) {
1919		intr_status = sh_eth_read(ndev, EESR);
1920		if (!(intr_status & EESR_RX_CHECK))
1921			break;
1922		/* Clear Rx interrupts */
1923		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1924
1925		if (sh_eth_rx(ndev, intr_status, &quota))
1926			goto out;
1927	}
1928
1929	napi_complete(napi);
1930
1931	/* Reenable Rx interrupts */
1932	if (mdp->irq_enabled)
1933		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1934out:
1935	return budget - quota;
1936}
1937
1938/* PHY state control function */
1939static void sh_eth_adjust_link(struct net_device *ndev)
1940{
1941	struct sh_eth_private *mdp = netdev_priv(ndev);
1942	struct phy_device *phydev = ndev->phydev;
1943	unsigned long flags;
1944	int new_state = 0;
1945
1946	spin_lock_irqsave(&mdp->lock, flags);
1947
1948	/* Disable TX and RX right over here, if E-MAC change is ignored */
1949	if (mdp->cd->no_psr || mdp->no_ether_link)
1950		sh_eth_rcv_snd_disable(ndev);
1951
1952	if (phydev->link) {
1953		if (phydev->duplex != mdp->duplex) {
1954			new_state = 1;
1955			mdp->duplex = phydev->duplex;
1956			if (mdp->cd->set_duplex)
1957				mdp->cd->set_duplex(ndev);
1958		}
1959
1960		if (phydev->speed != mdp->speed) {
1961			new_state = 1;
1962			mdp->speed = phydev->speed;
1963			if (mdp->cd->set_rate)
1964				mdp->cd->set_rate(ndev);
1965		}
1966		if (!mdp->link) {
1967			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1968			new_state = 1;
1969			mdp->link = phydev->link;
 
 
1970		}
1971	} else if (mdp->link) {
1972		new_state = 1;
1973		mdp->link = 0;
1974		mdp->speed = 0;
1975		mdp->duplex = -1;
 
 
1976	}
1977
1978	/* Enable TX and RX right over here, if E-MAC change is ignored */
1979	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1980		sh_eth_rcv_snd_enable(ndev);
1981
1982	spin_unlock_irqrestore(&mdp->lock, flags);
1983
1984	if (new_state && netif_msg_link(mdp))
1985		phy_print_status(phydev);
1986}
1987
1988/* PHY init function */
1989static int sh_eth_phy_init(struct net_device *ndev)
1990{
1991	struct device_node *np = ndev->dev.parent->of_node;
1992	struct sh_eth_private *mdp = netdev_priv(ndev);
1993	struct phy_device *phydev;
1994
1995	mdp->link = 0;
1996	mdp->speed = 0;
1997	mdp->duplex = -1;
1998
1999	/* Try connect to PHY */
2000	if (np) {
2001		struct device_node *pn;
2002
2003		pn = of_parse_phandle(np, "phy-handle", 0);
2004		phydev = of_phy_connect(ndev, pn,
2005					sh_eth_adjust_link, 0,
2006					mdp->phy_interface);
2007
2008		of_node_put(pn);
2009		if (!phydev)
2010			phydev = ERR_PTR(-ENOENT);
2011	} else {
2012		char phy_id[MII_BUS_ID_SIZE + 3];
2013
2014		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
2015			 mdp->mii_bus->id, mdp->phy_id);
2016
2017		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2018				     mdp->phy_interface);
2019	}
2020
2021	if (IS_ERR(phydev)) {
2022		netdev_err(ndev, "failed to connect PHY\n");
2023		return PTR_ERR(phydev);
2024	}
2025
2026	/* mask with MAC supported features */
2027	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT)
2028		phy_set_max_speed(phydev, SPEED_100);
2029
2030	phy_attached_info(phydev);
2031
2032	return 0;
2033}
2034
2035/* PHY control start function */
2036static int sh_eth_phy_start(struct net_device *ndev)
2037{
2038	int ret;
2039
2040	ret = sh_eth_phy_init(ndev);
2041	if (ret)
2042		return ret;
2043
2044	phy_start(ndev->phydev);
2045
2046	return 0;
2047}
2048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2050 * version must be bumped as well.  Just adding registers up to that
2051 * limit is fine, as long as the existing register indices don't
2052 * change.
2053 */
2054#define SH_ETH_REG_DUMP_VERSION		1
2055#define SH_ETH_REG_DUMP_MAX_REGS	256
2056
2057static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2058{
2059	struct sh_eth_private *mdp = netdev_priv(ndev);
2060	struct sh_eth_cpu_data *cd = mdp->cd;
2061	u32 *valid_map;
2062	size_t len;
2063
2064	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2065
2066	/* Dump starts with a bitmap that tells ethtool which
2067	 * registers are defined for this chip.
2068	 */
2069	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2070	if (buf) {
2071		valid_map = buf;
2072		buf += len;
2073	} else {
2074		valid_map = NULL;
2075	}
2076
2077	/* Add a register to the dump, if it has a defined offset.
2078	 * This automatically skips most undefined registers, but for
2079	 * some it is also necessary to check a capability flag in
2080	 * struct sh_eth_cpu_data.
2081	 */
2082#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2083#define add_reg_from(reg, read_expr) do {				\
2084		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2085			if (buf) {					\
2086				mark_reg_valid(reg);			\
2087				*buf++ = read_expr;			\
2088			}						\
2089			++len;						\
2090		}							\
2091	} while (0)
2092#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2093#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2094
2095	add_reg(EDSR);
2096	add_reg(EDMR);
2097	add_reg(EDTRR);
2098	add_reg(EDRRR);
2099	add_reg(EESR);
2100	add_reg(EESIPR);
2101	add_reg(TDLAR);
2102	if (!cd->no_xdfar)
2103		add_reg(TDFAR);
2104	add_reg(TDFXR);
2105	add_reg(TDFFR);
2106	add_reg(RDLAR);
2107	if (!cd->no_xdfar)
2108		add_reg(RDFAR);
2109	add_reg(RDFXR);
2110	add_reg(RDFFR);
2111	add_reg(TRSCER);
2112	add_reg(RMFCR);
2113	add_reg(TFTR);
2114	add_reg(FDR);
2115	add_reg(RMCR);
2116	add_reg(TFUCR);
2117	add_reg(RFOCR);
2118	if (cd->rmiimode)
2119		add_reg(RMIIMODE);
2120	add_reg(FCFTR);
2121	if (cd->rpadir)
2122		add_reg(RPADIR);
2123	if (!cd->no_trimd)
2124		add_reg(TRIMD);
2125	add_reg(ECMR);
2126	add_reg(ECSR);
2127	add_reg(ECSIPR);
2128	add_reg(PIR);
2129	if (!cd->no_psr)
2130		add_reg(PSR);
2131	add_reg(RDMLR);
2132	add_reg(RFLR);
2133	add_reg(IPGR);
2134	if (cd->apr)
2135		add_reg(APR);
2136	if (cd->mpr)
2137		add_reg(MPR);
2138	add_reg(RFCR);
2139	add_reg(RFCF);
2140	if (cd->tpauser)
2141		add_reg(TPAUSER);
2142	add_reg(TPAUSECR);
2143	if (cd->gecmr)
2144		add_reg(GECMR);
2145	if (cd->bculr)
2146		add_reg(BCULR);
2147	add_reg(MAHR);
2148	add_reg(MALR);
2149	if (!cd->no_tx_cntrs) {
2150		add_reg(TROCR);
2151		add_reg(CDCR);
2152		add_reg(LCCR);
2153		add_reg(CNDCR);
2154	}
2155	add_reg(CEFCR);
2156	add_reg(FRECR);
2157	add_reg(TSFRCR);
2158	add_reg(TLFRCR);
2159	if (cd->cexcr) {
2160		add_reg(CERCR);
2161		add_reg(CEECR);
2162	}
2163	add_reg(MAFCR);
2164	if (cd->rtrate)
2165		add_reg(RTRATE);
2166	if (cd->csmr)
2167		add_reg(CSMR);
2168	if (cd->select_mii)
2169		add_reg(RMII_MII);
 
2170	if (cd->tsu) {
2171		add_tsu_reg(ARSTR);
2172		add_tsu_reg(TSU_CTRST);
2173		if (cd->dual_port) {
2174			add_tsu_reg(TSU_FWEN0);
2175			add_tsu_reg(TSU_FWEN1);
2176			add_tsu_reg(TSU_FCM);
2177			add_tsu_reg(TSU_BSYSL0);
2178			add_tsu_reg(TSU_BSYSL1);
2179			add_tsu_reg(TSU_PRISL0);
2180			add_tsu_reg(TSU_PRISL1);
2181			add_tsu_reg(TSU_FWSL0);
2182			add_tsu_reg(TSU_FWSL1);
2183		}
2184		add_tsu_reg(TSU_FWSLC);
2185		if (cd->dual_port) {
2186			add_tsu_reg(TSU_QTAGM0);
2187			add_tsu_reg(TSU_QTAGM1);
2188			add_tsu_reg(TSU_FWSR);
2189			add_tsu_reg(TSU_FWINMK);
2190			add_tsu_reg(TSU_ADQT0);
2191			add_tsu_reg(TSU_ADQT1);
2192			add_tsu_reg(TSU_VTAG0);
2193			add_tsu_reg(TSU_VTAG1);
2194		}
2195		add_tsu_reg(TSU_ADSBSY);
2196		add_tsu_reg(TSU_TEN);
2197		add_tsu_reg(TSU_POST1);
2198		add_tsu_reg(TSU_POST2);
2199		add_tsu_reg(TSU_POST3);
2200		add_tsu_reg(TSU_POST4);
2201		/* This is the start of a table, not just a single register. */
2202		if (buf) {
2203			unsigned int i;
2204
2205			mark_reg_valid(TSU_ADRH0);
2206			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2207				*buf++ = ioread32(mdp->tsu_addr +
2208						  mdp->reg_offset[TSU_ADRH0] +
2209						  i * 4);
 
 
 
 
 
 
2210		}
2211		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2212	}
2213
2214#undef mark_reg_valid
2215#undef add_reg_from
2216#undef add_reg
2217#undef add_tsu_reg
2218
2219	return len * 4;
2220}
2221
2222static int sh_eth_get_regs_len(struct net_device *ndev)
2223{
2224	return __sh_eth_get_regs(ndev, NULL);
2225}
2226
2227static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2228			    void *buf)
2229{
2230	struct sh_eth_private *mdp = netdev_priv(ndev);
2231
2232	regs->version = SH_ETH_REG_DUMP_VERSION;
2233
2234	pm_runtime_get_sync(&mdp->pdev->dev);
2235	__sh_eth_get_regs(ndev, buf);
2236	pm_runtime_put_sync(&mdp->pdev->dev);
2237}
2238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239static u32 sh_eth_get_msglevel(struct net_device *ndev)
2240{
2241	struct sh_eth_private *mdp = netdev_priv(ndev);
2242	return mdp->msg_enable;
2243}
2244
2245static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2246{
2247	struct sh_eth_private *mdp = netdev_priv(ndev);
2248	mdp->msg_enable = value;
2249}
2250
2251static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2252	"rx_current", "tx_current",
2253	"rx_dirty", "tx_dirty",
2254};
2255#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2256
2257static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2258{
2259	switch (sset) {
2260	case ETH_SS_STATS:
2261		return SH_ETH_STATS_LEN;
2262	default:
2263		return -EOPNOTSUPP;
2264	}
2265}
2266
2267static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2268				     struct ethtool_stats *stats, u64 *data)
2269{
2270	struct sh_eth_private *mdp = netdev_priv(ndev);
2271	int i = 0;
2272
2273	/* device-specific stats */
2274	data[i++] = mdp->cur_rx;
2275	data[i++] = mdp->cur_tx;
2276	data[i++] = mdp->dirty_rx;
2277	data[i++] = mdp->dirty_tx;
2278}
2279
2280static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2281{
2282	switch (stringset) {
2283	case ETH_SS_STATS:
2284		memcpy(data, sh_eth_gstrings_stats,
2285		       sizeof(sh_eth_gstrings_stats));
2286		break;
2287	}
2288}
2289
2290static void sh_eth_get_ringparam(struct net_device *ndev,
2291				 struct ethtool_ringparam *ring,
2292				 struct kernel_ethtool_ringparam *kernel_ring,
2293				 struct netlink_ext_ack *extack)
2294{
2295	struct sh_eth_private *mdp = netdev_priv(ndev);
2296
2297	ring->rx_max_pending = RX_RING_MAX;
2298	ring->tx_max_pending = TX_RING_MAX;
2299	ring->rx_pending = mdp->num_rx_ring;
2300	ring->tx_pending = mdp->num_tx_ring;
2301}
2302
2303static int sh_eth_set_ringparam(struct net_device *ndev,
2304				struct ethtool_ringparam *ring,
2305				struct kernel_ethtool_ringparam *kernel_ring,
2306				struct netlink_ext_ack *extack)
2307{
2308	struct sh_eth_private *mdp = netdev_priv(ndev);
2309	int ret;
2310
2311	if (ring->tx_pending > TX_RING_MAX ||
2312	    ring->rx_pending > RX_RING_MAX ||
2313	    ring->tx_pending < TX_RING_MIN ||
2314	    ring->rx_pending < RX_RING_MIN)
2315		return -EINVAL;
2316	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2317		return -EINVAL;
2318
2319	if (netif_running(ndev)) {
2320		netif_device_detach(ndev);
2321		netif_tx_disable(ndev);
2322
2323		/* Serialise with the interrupt handler and NAPI, then
2324		 * disable interrupts.  We have to clear the
2325		 * irq_enabled flag first to ensure that interrupts
2326		 * won't be re-enabled.
2327		 */
2328		mdp->irq_enabled = false;
2329		synchronize_irq(ndev->irq);
2330		napi_synchronize(&mdp->napi);
2331		sh_eth_write(ndev, 0x0000, EESIPR);
2332
2333		sh_eth_dev_exit(ndev);
2334
2335		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2336		sh_eth_ring_free(ndev);
2337	}
2338
2339	/* Set new parameters */
2340	mdp->num_rx_ring = ring->rx_pending;
2341	mdp->num_tx_ring = ring->tx_pending;
2342
2343	if (netif_running(ndev)) {
2344		ret = sh_eth_ring_init(ndev);
2345		if (ret < 0) {
2346			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2347				   __func__);
2348			return ret;
2349		}
2350		ret = sh_eth_dev_init(ndev);
2351		if (ret < 0) {
2352			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2353				   __func__);
2354			return ret;
2355		}
2356
2357		netif_device_attach(ndev);
2358	}
2359
2360	return 0;
2361}
2362
2363static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2364{
2365	struct sh_eth_private *mdp = netdev_priv(ndev);
2366
2367	wol->supported = 0;
2368	wol->wolopts = 0;
2369
2370	if (mdp->cd->magic) {
2371		wol->supported = WAKE_MAGIC;
2372		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2373	}
2374}
2375
2376static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2377{
2378	struct sh_eth_private *mdp = netdev_priv(ndev);
2379
2380	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2381		return -EOPNOTSUPP;
2382
2383	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2384
2385	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2386
2387	return 0;
2388}
2389
2390static const struct ethtool_ops sh_eth_ethtool_ops = {
2391	.get_regs_len	= sh_eth_get_regs_len,
2392	.get_regs	= sh_eth_get_regs,
2393	.nway_reset	= phy_ethtool_nway_reset,
2394	.get_msglevel	= sh_eth_get_msglevel,
2395	.set_msglevel	= sh_eth_set_msglevel,
2396	.get_link	= ethtool_op_get_link,
2397	.get_strings	= sh_eth_get_strings,
2398	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2399	.get_sset_count     = sh_eth_get_sset_count,
2400	.get_ringparam	= sh_eth_get_ringparam,
2401	.set_ringparam	= sh_eth_set_ringparam,
2402	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2403	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2404	.get_wol	= sh_eth_get_wol,
2405	.set_wol	= sh_eth_set_wol,
2406};
2407
2408/* network device open function */
2409static int sh_eth_open(struct net_device *ndev)
2410{
2411	struct sh_eth_private *mdp = netdev_priv(ndev);
2412	int ret;
2413
2414	pm_runtime_get_sync(&mdp->pdev->dev);
2415
2416	napi_enable(&mdp->napi);
2417
2418	ret = request_irq(ndev->irq, sh_eth_interrupt,
2419			  mdp->cd->irq_flags, ndev->name, ndev);
2420	if (ret) {
2421		netdev_err(ndev, "Can not assign IRQ number\n");
2422		goto out_napi_off;
2423	}
2424
2425	/* Descriptor set */
2426	ret = sh_eth_ring_init(ndev);
2427	if (ret)
2428		goto out_free_irq;
2429
2430	/* device init */
2431	ret = sh_eth_dev_init(ndev);
2432	if (ret)
2433		goto out_free_irq;
2434
2435	/* PHY control start*/
2436	ret = sh_eth_phy_start(ndev);
2437	if (ret)
2438		goto out_free_irq;
2439
2440	netif_start_queue(ndev);
2441
2442	mdp->is_opened = 1;
2443
2444	return ret;
2445
2446out_free_irq:
2447	free_irq(ndev->irq, ndev);
2448out_napi_off:
2449	napi_disable(&mdp->napi);
2450	pm_runtime_put_sync(&mdp->pdev->dev);
2451	return ret;
2452}
2453
2454/* Timeout function */
2455static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2456{
2457	struct sh_eth_private *mdp = netdev_priv(ndev);
2458	struct sh_eth_rxdesc *rxdesc;
2459	int i;
2460
2461	netif_stop_queue(ndev);
2462
2463	netif_err(mdp, timer, ndev,
2464		  "transmit timed out, status %8.8x, resetting...\n",
2465		  sh_eth_read(ndev, EESR));
2466
2467	/* tx_errors count up */
2468	ndev->stats.tx_errors++;
2469
2470	/* Free all the skbuffs in the Rx queue. */
2471	for (i = 0; i < mdp->num_rx_ring; i++) {
2472		rxdesc = &mdp->rx_ring[i];
2473		rxdesc->status = cpu_to_le32(0);
2474		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2475		dev_kfree_skb(mdp->rx_skbuff[i]);
2476		mdp->rx_skbuff[i] = NULL;
2477	}
2478	for (i = 0; i < mdp->num_tx_ring; i++) {
2479		dev_kfree_skb(mdp->tx_skbuff[i]);
2480		mdp->tx_skbuff[i] = NULL;
2481	}
2482
2483	/* device init */
2484	sh_eth_dev_init(ndev);
2485
2486	netif_start_queue(ndev);
2487}
2488
2489/* Packet transmit function */
2490static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2491				     struct net_device *ndev)
2492{
2493	struct sh_eth_private *mdp = netdev_priv(ndev);
2494	struct sh_eth_txdesc *txdesc;
2495	dma_addr_t dma_addr;
2496	u32 entry;
2497	unsigned long flags;
2498
2499	spin_lock_irqsave(&mdp->lock, flags);
2500	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2501		if (!sh_eth_tx_free(ndev, true)) {
2502			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2503			netif_stop_queue(ndev);
2504			spin_unlock_irqrestore(&mdp->lock, flags);
2505			return NETDEV_TX_BUSY;
2506		}
2507	}
2508	spin_unlock_irqrestore(&mdp->lock, flags);
2509
2510	if (skb_put_padto(skb, ETH_ZLEN))
2511		return NETDEV_TX_OK;
2512
2513	entry = mdp->cur_tx % mdp->num_tx_ring;
2514	mdp->tx_skbuff[entry] = skb;
2515	txdesc = &mdp->tx_ring[entry];
2516	/* soft swap. */
2517	if (!mdp->cd->hw_swap)
2518		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2519	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2520				  DMA_TO_DEVICE);
2521	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2522		kfree_skb(skb);
2523		return NETDEV_TX_OK;
2524	}
2525	txdesc->addr = cpu_to_le32(dma_addr);
2526	txdesc->len  = cpu_to_le32(skb->len << 16);
2527
2528	dma_wmb(); /* TACT bit must be set after all the above writes */
2529	if (entry >= mdp->num_tx_ring - 1)
2530		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2531	else
2532		txdesc->status |= cpu_to_le32(TD_TACT);
2533
2534	wmb(); /* cur_tx must be incremented after TACT bit was set */
2535	mdp->cur_tx++;
2536
2537	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2538		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2539
2540	return NETDEV_TX_OK;
2541}
2542
2543/* The statistics registers have write-clear behaviour, which means we
2544 * will lose any increment between the read and write.  We mitigate
2545 * this by only clearing when we read a non-zero value, so we will
2546 * never falsely report a total of zero.
2547 */
2548static void
2549sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2550{
2551	u32 delta = sh_eth_read(ndev, reg);
2552
2553	if (delta) {
2554		*stat += delta;
2555		sh_eth_write(ndev, 0, reg);
2556	}
2557}
2558
2559static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2560{
2561	struct sh_eth_private *mdp = netdev_priv(ndev);
2562
2563	if (mdp->cd->no_tx_cntrs)
2564		return &ndev->stats;
2565
2566	if (!mdp->is_opened)
2567		return &ndev->stats;
2568
2569	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2570	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2571	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2572
2573	if (mdp->cd->cexcr) {
2574		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2575				   CERCR);
2576		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2577				   CEECR);
2578	} else {
2579		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2580				   CNDCR);
2581	}
2582
2583	return &ndev->stats;
2584}
2585
2586/* device close function */
2587static int sh_eth_close(struct net_device *ndev)
2588{
2589	struct sh_eth_private *mdp = netdev_priv(ndev);
2590
2591	netif_stop_queue(ndev);
2592
2593	/* Serialise with the interrupt handler and NAPI, then disable
2594	 * interrupts.  We have to clear the irq_enabled flag first to
2595	 * ensure that interrupts won't be re-enabled.
2596	 */
2597	mdp->irq_enabled = false;
2598	synchronize_irq(ndev->irq);
2599	napi_disable(&mdp->napi);
2600	sh_eth_write(ndev, 0x0000, EESIPR);
2601
2602	sh_eth_dev_exit(ndev);
2603
2604	/* PHY Disconnect */
2605	if (ndev->phydev) {
2606		phy_stop(ndev->phydev);
2607		phy_disconnect(ndev->phydev);
2608	}
2609
2610	free_irq(ndev->irq, ndev);
2611
2612	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2613	sh_eth_ring_free(ndev);
2614
2615	mdp->is_opened = 0;
2616
2617	pm_runtime_put(&mdp->pdev->dev);
2618
2619	return 0;
2620}
2621
2622static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
 
2623{
2624	if (netif_running(ndev))
2625		return -EBUSY;
2626
2627	ndev->mtu = new_mtu;
2628	netdev_update_features(ndev);
2629
2630	return 0;
 
 
 
2631}
2632
2633/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
 
 
 
 
 
 
2634static u32 sh_eth_tsu_get_post_mask(int entry)
2635{
2636	return 0x0f << (28 - ((entry % 8) * 4));
2637}
2638
2639static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2640{
2641	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2642}
2643
2644static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2645					     int entry)
2646{
2647	struct sh_eth_private *mdp = netdev_priv(ndev);
2648	int reg = TSU_POST1 + entry / 8;
2649	u32 tmp;
 
2650
2651	tmp = sh_eth_tsu_read(mdp, reg);
2652	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
 
2653}
2654
2655static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2656					      int entry)
2657{
2658	struct sh_eth_private *mdp = netdev_priv(ndev);
2659	int reg = TSU_POST1 + entry / 8;
2660	u32 post_mask, ref_mask, tmp;
 
2661
 
2662	post_mask = sh_eth_tsu_get_post_mask(entry);
2663	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2664
2665	tmp = sh_eth_tsu_read(mdp, reg);
2666	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2667
2668	/* If other port enables, the function returns "true" */
2669	return tmp & ref_mask;
2670}
2671
2672static int sh_eth_tsu_busy(struct net_device *ndev)
2673{
2674	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2675	struct sh_eth_private *mdp = netdev_priv(ndev);
2676
2677	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2678		udelay(10);
2679		timeout--;
2680		if (timeout <= 0) {
2681			netdev_err(ndev, "%s: timeout\n", __func__);
2682			return -ETIMEDOUT;
2683		}
2684	}
2685
2686	return 0;
2687}
2688
2689static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2690				  const u8 *addr)
2691{
2692	struct sh_eth_private *mdp = netdev_priv(ndev);
2693	u32 val;
2694
2695	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2696	iowrite32(val, mdp->tsu_addr + offset);
2697	if (sh_eth_tsu_busy(ndev) < 0)
2698		return -EBUSY;
2699
2700	val = addr[4] << 8 | addr[5];
2701	iowrite32(val, mdp->tsu_addr + offset + 4);
2702	if (sh_eth_tsu_busy(ndev) < 0)
2703		return -EBUSY;
2704
2705	return 0;
2706}
2707
2708static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2709{
2710	struct sh_eth_private *mdp = netdev_priv(ndev);
2711	u32 val;
2712
2713	val = ioread32(mdp->tsu_addr + offset);
2714	addr[0] = (val >> 24) & 0xff;
2715	addr[1] = (val >> 16) & 0xff;
2716	addr[2] = (val >> 8) & 0xff;
2717	addr[3] = val & 0xff;
2718	val = ioread32(mdp->tsu_addr + offset + 4);
2719	addr[4] = (val >> 8) & 0xff;
2720	addr[5] = val & 0xff;
2721}
2722
2723
2724static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2725{
2726	struct sh_eth_private *mdp = netdev_priv(ndev);
2727	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2728	int i;
2729	u8 c_addr[ETH_ALEN];
2730
2731	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2732		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2733		if (ether_addr_equal(addr, c_addr))
2734			return i;
2735	}
2736
2737	return -ENOENT;
2738}
2739
2740static int sh_eth_tsu_find_empty(struct net_device *ndev)
2741{
2742	u8 blank[ETH_ALEN];
2743	int entry;
2744
2745	memset(blank, 0, sizeof(blank));
2746	entry = sh_eth_tsu_find_entry(ndev, blank);
2747	return (entry < 0) ? -ENOMEM : entry;
2748}
2749
2750static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2751					      int entry)
2752{
2753	struct sh_eth_private *mdp = netdev_priv(ndev);
2754	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2755	int ret;
2756	u8 blank[ETH_ALEN];
2757
2758	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2759			 ~(1 << (31 - entry)), TSU_TEN);
2760
2761	memset(blank, 0, sizeof(blank));
2762	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2763	if (ret < 0)
2764		return ret;
2765	return 0;
2766}
2767
2768static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2769{
2770	struct sh_eth_private *mdp = netdev_priv(ndev);
2771	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2772	int i, ret;
2773
2774	if (!mdp->cd->tsu)
2775		return 0;
2776
2777	i = sh_eth_tsu_find_entry(ndev, addr);
2778	if (i < 0) {
2779		/* No entry found, create one */
2780		i = sh_eth_tsu_find_empty(ndev);
2781		if (i < 0)
2782			return -ENOMEM;
2783		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2784		if (ret < 0)
2785			return ret;
2786
2787		/* Enable the entry */
2788		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2789				 (1 << (31 - i)), TSU_TEN);
2790	}
2791
2792	/* Entry found or created, enable POST */
2793	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2794
2795	return 0;
2796}
2797
2798static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2799{
2800	struct sh_eth_private *mdp = netdev_priv(ndev);
2801	int i, ret;
2802
2803	if (!mdp->cd->tsu)
2804		return 0;
2805
2806	i = sh_eth_tsu_find_entry(ndev, addr);
2807	if (i) {
2808		/* Entry found */
2809		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2810			goto done;
2811
2812		/* Disable the entry if both ports was disabled */
2813		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2814		if (ret < 0)
2815			return ret;
2816	}
2817done:
2818	return 0;
2819}
2820
2821static int sh_eth_tsu_purge_all(struct net_device *ndev)
2822{
2823	struct sh_eth_private *mdp = netdev_priv(ndev);
2824	int i, ret;
2825
2826	if (!mdp->cd->tsu)
2827		return 0;
2828
2829	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2830		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2831			continue;
2832
2833		/* Disable the entry if both ports was disabled */
2834		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2835		if (ret < 0)
2836			return ret;
2837	}
2838
2839	return 0;
2840}
2841
2842static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2843{
2844	struct sh_eth_private *mdp = netdev_priv(ndev);
2845	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2846	u8 addr[ETH_ALEN];
 
2847	int i;
2848
2849	if (!mdp->cd->tsu)
2850		return;
2851
2852	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2853		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2854		if (is_multicast_ether_addr(addr))
2855			sh_eth_tsu_del_entry(ndev, addr);
2856	}
2857}
2858
2859/* Update promiscuous flag and multicast filter */
2860static void sh_eth_set_rx_mode(struct net_device *ndev)
2861{
2862	struct sh_eth_private *mdp = netdev_priv(ndev);
2863	u32 ecmr_bits;
2864	int mcast_all = 0;
2865	unsigned long flags;
2866
2867	spin_lock_irqsave(&mdp->lock, flags);
2868	/* Initial condition is MCT = 1, PRM = 0.
2869	 * Depending on ndev->flags, set PRM or clear MCT
2870	 */
2871	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2872	if (mdp->cd->tsu)
2873		ecmr_bits |= ECMR_MCT;
2874
2875	if (!(ndev->flags & IFF_MULTICAST)) {
2876		sh_eth_tsu_purge_mcast(ndev);
2877		mcast_all = 1;
2878	}
2879	if (ndev->flags & IFF_ALLMULTI) {
2880		sh_eth_tsu_purge_mcast(ndev);
2881		ecmr_bits &= ~ECMR_MCT;
2882		mcast_all = 1;
2883	}
2884
2885	if (ndev->flags & IFF_PROMISC) {
2886		sh_eth_tsu_purge_all(ndev);
2887		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2888	} else if (mdp->cd->tsu) {
2889		struct netdev_hw_addr *ha;
2890		netdev_for_each_mc_addr(ha, ndev) {
2891			if (mcast_all && is_multicast_ether_addr(ha->addr))
2892				continue;
2893
2894			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2895				if (!mcast_all) {
2896					sh_eth_tsu_purge_mcast(ndev);
2897					ecmr_bits &= ~ECMR_MCT;
2898					mcast_all = 1;
2899				}
2900			}
2901		}
2902	}
2903
2904	/* update the ethernet mode */
2905	sh_eth_write(ndev, ecmr_bits, ECMR);
2906
2907	spin_unlock_irqrestore(&mdp->lock, flags);
2908}
2909
2910static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2911{
2912	struct sh_eth_private *mdp = netdev_priv(ndev);
2913	unsigned long flags;
2914
2915	spin_lock_irqsave(&mdp->lock, flags);
2916
2917	/* Disable TX and RX */
2918	sh_eth_rcv_snd_disable(ndev);
2919
2920	/* Modify RX Checksum setting */
2921	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2922
2923	/* Enable TX and RX */
2924	sh_eth_rcv_snd_enable(ndev);
2925
2926	spin_unlock_irqrestore(&mdp->lock, flags);
2927}
2928
2929static int sh_eth_set_features(struct net_device *ndev,
2930			       netdev_features_t features)
2931{
2932	netdev_features_t changed = ndev->features ^ features;
2933	struct sh_eth_private *mdp = netdev_priv(ndev);
2934
2935	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2936		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2937
2938	ndev->features = features;
2939
2940	return 0;
2941}
2942
2943static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2944{
2945	if (!mdp->port)
2946		return TSU_VTAG0;
2947	else
2948		return TSU_VTAG1;
2949}
2950
2951static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2952				  __be16 proto, u16 vid)
2953{
2954	struct sh_eth_private *mdp = netdev_priv(ndev);
2955	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2956
2957	if (unlikely(!mdp->cd->tsu))
2958		return -EPERM;
2959
2960	/* No filtering if vid = 0 */
2961	if (!vid)
2962		return 0;
2963
2964	mdp->vlan_num_ids++;
2965
2966	/* The controller has one VLAN tag HW filter. So, if the filter is
2967	 * already enabled, the driver disables it and the filte
2968	 */
2969	if (mdp->vlan_num_ids > 1) {
2970		/* disable VLAN filter */
2971		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2972		return 0;
2973	}
2974
2975	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2976			 vtag_reg_index);
2977
2978	return 0;
2979}
2980
2981static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2982				   __be16 proto, u16 vid)
2983{
2984	struct sh_eth_private *mdp = netdev_priv(ndev);
2985	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2986
2987	if (unlikely(!mdp->cd->tsu))
2988		return -EPERM;
2989
2990	/* No filtering if vid = 0 */
2991	if (!vid)
2992		return 0;
2993
2994	mdp->vlan_num_ids--;
2995	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2996
2997	return 0;
2998}
2999
3000/* SuperH's TSU register init function */
3001static void sh_eth_tsu_init(struct sh_eth_private *mdp)
3002{
3003	if (!mdp->cd->dual_port) {
3004		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
3005		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
3006				 TSU_FWSLC);	/* Enable POST registers */
3007		return;
3008	}
3009
3010	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
3011	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
3012	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
3013	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
3014	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
3015	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3016	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3017	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3018	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3019	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3020	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3021	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
 
 
 
 
 
3022	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3023	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3024	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3025	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3026	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3027	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3028	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3029}
3030
3031/* MDIO bus release function */
3032static int sh_mdio_release(struct sh_eth_private *mdp)
3033{
3034	/* unregister mdio bus */
3035	mdiobus_unregister(mdp->mii_bus);
3036
3037	/* free bitbang info */
3038	free_mdio_bitbang(mdp->mii_bus);
3039
3040	return 0;
3041}
3042
3043static int sh_mdiobb_read_c22(struct mii_bus *bus, int phy, int reg)
3044{
3045	int res;
3046
3047	pm_runtime_get_sync(bus->parent);
3048	res = mdiobb_read_c22(bus, phy, reg);
3049	pm_runtime_put(bus->parent);
3050
3051	return res;
3052}
3053
3054static int sh_mdiobb_write_c22(struct mii_bus *bus, int phy, int reg, u16 val)
3055{
3056	int res;
3057
3058	pm_runtime_get_sync(bus->parent);
3059	res = mdiobb_write_c22(bus, phy, reg, val);
3060	pm_runtime_put(bus->parent);
3061
3062	return res;
3063}
3064
3065static int sh_mdiobb_read_c45(struct mii_bus *bus, int phy, int devad, int reg)
3066{
3067	int res;
3068
3069	pm_runtime_get_sync(bus->parent);
3070	res = mdiobb_read_c45(bus, phy, devad, reg);
3071	pm_runtime_put(bus->parent);
3072
3073	return res;
3074}
3075
3076static int sh_mdiobb_write_c45(struct mii_bus *bus, int phy, int devad,
3077			       int reg, u16 val)
3078{
3079	int res;
3080
3081	pm_runtime_get_sync(bus->parent);
3082	res = mdiobb_write_c45(bus, phy, devad, reg, val);
3083	pm_runtime_put(bus->parent);
3084
3085	return res;
3086}
3087
3088/* MDIO bus init function */
3089static int sh_mdio_init(struct sh_eth_private *mdp,
3090			struct sh_eth_plat_data *pd)
3091{
3092	int ret;
3093	struct bb_info *bitbang;
3094	struct platform_device *pdev = mdp->pdev;
3095	struct device *dev = &mdp->pdev->dev;
3096	struct phy_device *phydev;
3097	struct device_node *pn;
3098
3099	/* create bit control struct for PHY */
3100	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3101	if (!bitbang)
3102		return -ENOMEM;
3103
3104	/* bitbang init */
3105	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3106	bitbang->set_gate = pd->set_mdio_gate;
3107	bitbang->ctrl.ops = &bb_ops;
3108
3109	/* MII controller setting */
3110	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3111	if (!mdp->mii_bus)
3112		return -ENOMEM;
3113
3114	/* Wrap accessors with Runtime PM-aware ops */
3115	mdp->mii_bus->read = sh_mdiobb_read_c22;
3116	mdp->mii_bus->write = sh_mdiobb_write_c22;
3117	mdp->mii_bus->read_c45 = sh_mdiobb_read_c45;
3118	mdp->mii_bus->write_c45 = sh_mdiobb_write_c45;
3119
3120	/* Hook up MII support for ethtool */
3121	mdp->mii_bus->name = "sh_mii";
3122	mdp->mii_bus->parent = dev;
3123	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3124		 pdev->name, pdev->id);
3125
3126	/* register MDIO bus */
3127	if (pd->phy_irq > 0)
3128		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
 
 
 
 
 
 
3129
3130	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3131	if (ret)
3132		goto out_free_bus;
3133
3134	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
3135	phydev = of_phy_find_device(pn);
3136	if (phydev) {
3137		phydev->mac_managed_pm = true;
3138		put_device(&phydev->mdio.dev);
3139	}
3140	of_node_put(pn);
3141
3142	return 0;
3143
3144out_free_bus:
3145	free_mdio_bitbang(mdp->mii_bus);
3146	return ret;
3147}
3148
3149static const u16 *sh_eth_get_register_offset(int register_type)
3150{
3151	const u16 *reg_offset = NULL;
3152
3153	switch (register_type) {
3154	case SH_ETH_REG_GIGABIT:
3155		reg_offset = sh_eth_offset_gigabit;
3156		break;
 
 
 
3157	case SH_ETH_REG_FAST_RCAR:
3158		reg_offset = sh_eth_offset_fast_rcar;
3159		break;
3160	case SH_ETH_REG_FAST_SH4:
3161		reg_offset = sh_eth_offset_fast_sh4;
3162		break;
3163	case SH_ETH_REG_FAST_SH3_SH2:
3164		reg_offset = sh_eth_offset_fast_sh3_sh2;
3165		break;
3166	}
3167
3168	return reg_offset;
3169}
3170
3171static const struct net_device_ops sh_eth_netdev_ops = {
3172	.ndo_open		= sh_eth_open,
3173	.ndo_stop		= sh_eth_close,
3174	.ndo_start_xmit		= sh_eth_start_xmit,
3175	.ndo_get_stats		= sh_eth_get_stats,
3176	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3177	.ndo_tx_timeout		= sh_eth_tx_timeout,
3178	.ndo_eth_ioctl		= phy_do_ioctl_running,
3179	.ndo_change_mtu		= sh_eth_change_mtu,
3180	.ndo_validate_addr	= eth_validate_addr,
3181	.ndo_set_mac_address	= eth_mac_addr,
3182	.ndo_set_features	= sh_eth_set_features,
3183};
3184
3185static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3186	.ndo_open		= sh_eth_open,
3187	.ndo_stop		= sh_eth_close,
3188	.ndo_start_xmit		= sh_eth_start_xmit,
3189	.ndo_get_stats		= sh_eth_get_stats,
3190	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3191	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3192	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3193	.ndo_tx_timeout		= sh_eth_tx_timeout,
3194	.ndo_eth_ioctl		= phy_do_ioctl_running,
3195	.ndo_change_mtu		= sh_eth_change_mtu,
3196	.ndo_validate_addr	= eth_validate_addr,
3197	.ndo_set_mac_address	= eth_mac_addr,
3198	.ndo_set_features	= sh_eth_set_features,
3199};
3200
3201#ifdef CONFIG_OF
3202static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3203{
3204	struct device_node *np = dev->of_node;
3205	struct sh_eth_plat_data *pdata;
3206	phy_interface_t interface;
3207	int ret;
3208
3209	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3210	if (!pdata)
3211		return NULL;
3212
3213	ret = of_get_phy_mode(np, &interface);
3214	if (ret)
3215		return NULL;
3216	pdata->phy_interface = interface;
3217
3218	of_get_mac_address(np, pdata->mac_addr);
 
 
3219
3220	pdata->no_ether_link =
3221		of_property_read_bool(np, "renesas,no-ether-link");
3222	pdata->ether_link_active_low =
3223		of_property_read_bool(np, "renesas,ether-link-active-low");
3224
3225	return pdata;
3226}
3227
3228static const struct of_device_id sh_eth_match_table[] = {
3229	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3230	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3231	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3232	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3233	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3234	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3235	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3236	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3237	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3238	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3239	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3240	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3241	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3242	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3243	{ }
3244};
3245MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3246#else
3247static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3248{
3249	return NULL;
3250}
3251#endif
3252
3253static int sh_eth_drv_probe(struct platform_device *pdev)
3254{
3255	struct resource *res;
3256	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3257	const struct platform_device_id *id = platform_get_device_id(pdev);
3258	struct sh_eth_private *mdp;
3259	struct net_device *ndev;
3260	int ret;
 
 
 
3261
3262	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3263	if (!ndev)
3264		return -ENOMEM;
3265
3266	pm_runtime_enable(&pdev->dev);
3267	pm_runtime_get_sync(&pdev->dev);
3268
 
 
 
 
3269	ret = platform_get_irq(pdev, 0);
3270	if (ret < 0)
3271		goto out_release;
3272	ndev->irq = ret;
3273
3274	SET_NETDEV_DEV(ndev, &pdev->dev);
3275
3276	mdp = netdev_priv(ndev);
3277	mdp->num_tx_ring = TX_RING_SIZE;
3278	mdp->num_rx_ring = RX_RING_SIZE;
3279	mdp->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3280	if (IS_ERR(mdp->addr)) {
3281		ret = PTR_ERR(mdp->addr);
3282		goto out_release;
3283	}
3284
3285	ndev->base_addr = res->start;
3286
3287	spin_lock_init(&mdp->lock);
3288	mdp->pdev = pdev;
3289
3290	if (pdev->dev.of_node)
3291		pd = sh_eth_parse_dt(&pdev->dev);
3292	if (!pd) {
3293		dev_err(&pdev->dev, "no platform data\n");
3294		ret = -EINVAL;
3295		goto out_release;
3296	}
3297
3298	/* get PHY ID */
3299	mdp->phy_id = pd->phy;
3300	mdp->phy_interface = pd->phy_interface;
3301	mdp->no_ether_link = pd->no_ether_link;
3302	mdp->ether_link_active_low = pd->ether_link_active_low;
3303
3304	/* set cpu data */
3305	if (id)
3306		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3307	else
3308		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3309
3310	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3311	if (!mdp->reg_offset) {
3312		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3313			mdp->cd->register_type);
3314		ret = -EINVAL;
3315		goto out_release;
3316	}
3317	sh_eth_set_default_cpu_data(mdp->cd);
3318
3319	/* User's manual states max MTU should be 2048 but due to the
3320	 * alignment calculations in sh_eth_ring_init() the practical
3321	 * MTU is a bit less. Maybe this can be optimized some more.
3322	 */
3323	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3324	ndev->min_mtu = ETH_MIN_MTU;
3325
3326	if (mdp->cd->rx_csum) {
3327		ndev->features = NETIF_F_RXCSUM;
3328		ndev->hw_features = NETIF_F_RXCSUM;
3329	}
3330
3331	/* set function */
3332	if (mdp->cd->tsu)
3333		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3334	else
3335		ndev->netdev_ops = &sh_eth_netdev_ops;
3336	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3337	ndev->watchdog_timeo = TX_TIMEOUT;
3338
3339	/* debug message level */
3340	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3341
3342	/* read and set MAC address */
3343	read_mac_address(ndev, pd->mac_addr);
3344	if (!is_valid_ether_addr(ndev->dev_addr)) {
3345		dev_warn(&pdev->dev,
3346			 "no valid MAC address supplied, using a random one.\n");
3347		eth_hw_addr_random(ndev);
3348	}
3349
 
3350	if (mdp->cd->tsu) {
3351		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3352		struct resource *rtsu;
3353
3354		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3355		if (!rtsu) {
3356			dev_err(&pdev->dev, "no TSU resource\n");
3357			ret = -ENODEV;
3358			goto out_release;
3359		}
3360		/* We can only request the  TSU region  for the first port
3361		 * of the two  sharing this TSU for the probe to succeed...
3362		 */
3363		if (port == 0 &&
3364		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3365					     resource_size(rtsu),
3366					     dev_name(&pdev->dev))) {
3367			dev_err(&pdev->dev, "can't request TSU resource.\n");
3368			ret = -EBUSY;
3369			goto out_release;
3370		}
3371		/* ioremap the TSU registers */
3372		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3373					     resource_size(rtsu));
3374		if (!mdp->tsu_addr) {
3375			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3376			ret = -ENOMEM;
3377			goto out_release;
3378		}
3379		mdp->port = port;
3380		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
 
3381
3382		/* Need to init only the first port of the two sharing a TSU */
3383		if (port == 0) {
3384			if (mdp->cd->chip_reset)
3385				mdp->cd->chip_reset(ndev);
3386
 
3387			/* TSU init (Init only)*/
3388			sh_eth_tsu_init(mdp);
3389		}
3390	}
3391
3392	if (mdp->cd->rmiimode)
3393		sh_eth_write(ndev, 0x1, RMIIMODE);
3394
3395	/* MDIO bus init */
3396	ret = sh_mdio_init(mdp, pd);
3397	if (ret) {
3398		dev_err_probe(&pdev->dev, ret, "MDIO init failed\n");
3399		goto out_release;
3400	}
3401
3402	netif_napi_add(ndev, &mdp->napi, sh_eth_poll);
3403
3404	/* network device register */
3405	ret = register_netdev(ndev);
3406	if (ret)
3407		goto out_napi_del;
3408
3409	if (mdp->cd->magic)
3410		device_set_wakeup_capable(&pdev->dev, 1);
3411
3412	/* print device information */
3413	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3414		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3415
3416	pm_runtime_put(&pdev->dev);
3417	platform_set_drvdata(pdev, ndev);
3418
3419	return ret;
3420
3421out_napi_del:
3422	netif_napi_del(&mdp->napi);
3423	sh_mdio_release(mdp);
3424
3425out_release:
3426	/* net_dev free */
3427	free_netdev(ndev);
 
3428
3429	pm_runtime_put(&pdev->dev);
3430	pm_runtime_disable(&pdev->dev);
3431	return ret;
3432}
3433
3434static void sh_eth_drv_remove(struct platform_device *pdev)
3435{
3436	struct net_device *ndev = platform_get_drvdata(pdev);
3437	struct sh_eth_private *mdp = netdev_priv(ndev);
3438
3439	unregister_netdev(ndev);
3440	netif_napi_del(&mdp->napi);
3441	sh_mdio_release(mdp);
3442	pm_runtime_disable(&pdev->dev);
3443	free_netdev(ndev);
 
 
3444}
3445
3446#ifdef CONFIG_PM
3447#ifdef CONFIG_PM_SLEEP
3448static int sh_eth_wol_setup(struct net_device *ndev)
3449{
3450	struct sh_eth_private *mdp = netdev_priv(ndev);
3451
3452	/* Only allow ECI interrupts */
3453	synchronize_irq(ndev->irq);
3454	napi_disable(&mdp->napi);
3455	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3456
3457	/* Enable MagicPacket */
3458	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3459
3460	return enable_irq_wake(ndev->irq);
3461}
3462
3463static int sh_eth_wol_restore(struct net_device *ndev)
3464{
3465	struct sh_eth_private *mdp = netdev_priv(ndev);
3466	int ret;
3467
3468	napi_enable(&mdp->napi);
3469
3470	/* Disable MagicPacket */
3471	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3472
3473	/* The device needs to be reset to restore MagicPacket logic
3474	 * for next wakeup. If we close and open the device it will
3475	 * both be reset and all registers restored. This is what
3476	 * happens during suspend and resume without WoL enabled.
3477	 */
3478	sh_eth_close(ndev);
3479	ret = sh_eth_open(ndev);
3480	if (ret < 0)
3481		return ret;
3482
3483	return disable_irq_wake(ndev->irq);
3484}
3485
3486static int sh_eth_suspend(struct device *dev)
3487{
3488	struct net_device *ndev = dev_get_drvdata(dev);
3489	struct sh_eth_private *mdp = netdev_priv(ndev);
3490	int ret;
3491
3492	if (!netif_running(ndev))
3493		return 0;
3494
3495	netif_device_detach(ndev);
3496
3497	if (mdp->wol_enabled)
3498		ret = sh_eth_wol_setup(ndev);
3499	else
3500		ret = sh_eth_close(ndev);
 
3501
3502	return ret;
3503}
3504
3505static int sh_eth_resume(struct device *dev)
3506{
3507	struct net_device *ndev = dev_get_drvdata(dev);
3508	struct sh_eth_private *mdp = netdev_priv(ndev);
3509	int ret;
3510
3511	if (!netif_running(ndev))
3512		return 0;
3513
3514	if (mdp->wol_enabled)
3515		ret = sh_eth_wol_restore(ndev);
3516	else
3517		ret = sh_eth_open(ndev);
3518
3519	if (ret < 0)
3520		return ret;
3521
3522	netif_device_attach(ndev);
3523
3524	return ret;
3525}
3526#endif
3527
3528static int sh_eth_runtime_nop(struct device *dev)
3529{
3530	/* Runtime PM callback shared between ->runtime_suspend()
3531	 * and ->runtime_resume(). Simply returns success.
3532	 *
3533	 * This driver re-initializes all registers after
3534	 * pm_runtime_get_sync() anyway so there is no need
3535	 * to save and restore registers here.
3536	 */
3537	return 0;
3538}
3539
3540static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3541	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3542	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3543};
3544#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3545#else
3546#define SH_ETH_PM_OPS NULL
3547#endif
3548
3549static const struct platform_device_id sh_eth_id_table[] = {
3550	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3551	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3552	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3553	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3554	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3555	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3556	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3557	{ }
3558};
3559MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3560
3561static struct platform_driver sh_eth_driver = {
3562	.probe = sh_eth_drv_probe,
3563	.remove_new = sh_eth_drv_remove,
3564	.id_table = sh_eth_id_table,
3565	.driver = {
3566		   .name = CARDNAME,
3567		   .pm = SH_ETH_PM_OPS,
3568		   .of_match_table = of_match_ptr(sh_eth_match_table),
3569	},
3570};
3571
3572module_platform_driver(sh_eth_driver);
3573
3574MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3575MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3576MODULE_LICENSE("GPL v2");
v4.10.11
 
   1/*  SuperH Ethernet device driver
   2 *
   3 *  Copyright (C) 2014  Renesas Electronics Corporation
   4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
   5 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
   6 *  Copyright (C) 2013-2016 Cogent Embedded, Inc.
   7 *  Copyright (C) 2014 Codethink Limited
   8 *
   9 *  This program is free software; you can redistribute it and/or modify it
  10 *  under the terms and conditions of the GNU General Public License,
  11 *  version 2, as published by the Free Software Foundation.
  12 *
  13 *  This program is distributed in the hope it will be useful, but WITHOUT
  14 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 *  more details.
  17 *
  18 *  The full GNU General Public License is included in this distribution in
  19 *  the file called "COPYING".
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/spinlock.h>
  25#include <linux/interrupt.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/etherdevice.h>
  28#include <linux/delay.h>
  29#include <linux/platform_device.h>
  30#include <linux/mdio-bitbang.h>
  31#include <linux/netdevice.h>
  32#include <linux/of.h>
  33#include <linux/of_device.h>
  34#include <linux/of_irq.h>
  35#include <linux/of_net.h>
  36#include <linux/phy.h>
  37#include <linux/cache.h>
  38#include <linux/io.h>
  39#include <linux/pm_runtime.h>
  40#include <linux/slab.h>
  41#include <linux/ethtool.h>
  42#include <linux/if_vlan.h>
  43#include <linux/clk.h>
  44#include <linux/sh_eth.h>
  45#include <linux/of_mdio.h>
  46
  47#include "sh_eth.h"
  48
  49#define SH_ETH_DEF_MSG_ENABLE \
  50		(NETIF_MSG_LINK	| \
  51		NETIF_MSG_TIMER	| \
  52		NETIF_MSG_RX_ERR| \
  53		NETIF_MSG_TX_ERR)
  54
  55#define SH_ETH_OFFSET_INVALID	((u16)~0)
  56
  57#define SH_ETH_OFFSET_DEFAULTS			\
  58	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
  59
 
 
 
 
 
 
 
 
 
  60static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
  61	SH_ETH_OFFSET_DEFAULTS,
  62
  63	[EDSR]		= 0x0000,
  64	[EDMR]		= 0x0400,
  65	[EDTRR]		= 0x0408,
  66	[EDRRR]		= 0x0410,
  67	[EESR]		= 0x0428,
  68	[EESIPR]	= 0x0430,
  69	[TDLAR]		= 0x0010,
  70	[TDFAR]		= 0x0014,
  71	[TDFXR]		= 0x0018,
  72	[TDFFR]		= 0x001c,
  73	[RDLAR]		= 0x0030,
  74	[RDFAR]		= 0x0034,
  75	[RDFXR]		= 0x0038,
  76	[RDFFR]		= 0x003c,
  77	[TRSCER]	= 0x0438,
  78	[RMFCR]		= 0x0440,
  79	[TFTR]		= 0x0448,
  80	[FDR]		= 0x0450,
  81	[RMCR]		= 0x0458,
  82	[RPADIR]	= 0x0460,
  83	[FCFTR]		= 0x0468,
  84	[CSMR]		= 0x04E4,
  85
  86	[ECMR]		= 0x0500,
  87	[ECSR]		= 0x0510,
  88	[ECSIPR]	= 0x0518,
  89	[PIR]		= 0x0520,
  90	[PSR]		= 0x0528,
  91	[PIPR]		= 0x052c,
  92	[RFLR]		= 0x0508,
  93	[APR]		= 0x0554,
  94	[MPR]		= 0x0558,
  95	[PFTCR]		= 0x055c,
  96	[PFRCR]		= 0x0560,
  97	[TPAUSER]	= 0x0564,
  98	[GECMR]		= 0x05b0,
  99	[BCULR]		= 0x05b4,
 100	[MAHR]		= 0x05c0,
 101	[MALR]		= 0x05c8,
 102	[TROCR]		= 0x0700,
 103	[CDCR]		= 0x0708,
 104	[LCCR]		= 0x0710,
 105	[CEFCR]		= 0x0740,
 106	[FRECR]		= 0x0748,
 107	[TSFRCR]	= 0x0750,
 108	[TLFRCR]	= 0x0758,
 109	[RFCR]		= 0x0760,
 110	[CERCR]		= 0x0768,
 111	[CEECR]		= 0x0770,
 112	[MAFCR]		= 0x0778,
 113	[RMII_MII]	= 0x0790,
 114
 115	[ARSTR]		= 0x0000,
 116	[TSU_CTRST]	= 0x0004,
 117	[TSU_FWEN0]	= 0x0010,
 118	[TSU_FWEN1]	= 0x0014,
 119	[TSU_FCM]	= 0x0018,
 120	[TSU_BSYSL0]	= 0x0020,
 121	[TSU_BSYSL1]	= 0x0024,
 122	[TSU_PRISL0]	= 0x0028,
 123	[TSU_PRISL1]	= 0x002c,
 124	[TSU_FWSL0]	= 0x0030,
 125	[TSU_FWSL1]	= 0x0034,
 126	[TSU_FWSLC]	= 0x0038,
 127	[TSU_QTAG0]	= 0x0040,
 128	[TSU_QTAG1]	= 0x0044,
 129	[TSU_FWSR]	= 0x0050,
 130	[TSU_FWINMK]	= 0x0054,
 131	[TSU_ADQT0]	= 0x0048,
 132	[TSU_ADQT1]	= 0x004c,
 133	[TSU_VTAG0]	= 0x0058,
 134	[TSU_VTAG1]	= 0x005c,
 135	[TSU_ADSBSY]	= 0x0060,
 136	[TSU_TEN]	= 0x0064,
 137	[TSU_POST1]	= 0x0070,
 138	[TSU_POST2]	= 0x0074,
 139	[TSU_POST3]	= 0x0078,
 140	[TSU_POST4]	= 0x007c,
 141	[TSU_ADRH0]	= 0x0100,
 142
 143	[TXNLCR0]	= 0x0080,
 144	[TXALCR0]	= 0x0084,
 145	[RXNLCR0]	= 0x0088,
 146	[RXALCR0]	= 0x008c,
 147	[FWNLCR0]	= 0x0090,
 148	[FWALCR0]	= 0x0094,
 149	[TXNLCR1]	= 0x00a0,
 150	[TXALCR1]	= 0x00a0,
 151	[RXNLCR1]	= 0x00a8,
 152	[RXALCR1]	= 0x00ac,
 153	[FWNLCR1]	= 0x00b0,
 154	[FWALCR1]	= 0x00b4,
 155};
 156
 157static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
 158	SH_ETH_OFFSET_DEFAULTS,
 159
 160	[EDSR]		= 0x0000,
 161	[EDMR]		= 0x0400,
 162	[EDTRR]		= 0x0408,
 163	[EDRRR]		= 0x0410,
 164	[EESR]		= 0x0428,
 165	[EESIPR]	= 0x0430,
 166	[TDLAR]		= 0x0010,
 167	[TDFAR]		= 0x0014,
 168	[TDFXR]		= 0x0018,
 169	[TDFFR]		= 0x001c,
 170	[RDLAR]		= 0x0030,
 171	[RDFAR]		= 0x0034,
 172	[RDFXR]		= 0x0038,
 173	[RDFFR]		= 0x003c,
 174	[TRSCER]	= 0x0438,
 175	[RMFCR]		= 0x0440,
 176	[TFTR]		= 0x0448,
 177	[FDR]		= 0x0450,
 178	[RMCR]		= 0x0458,
 179	[RPADIR]	= 0x0460,
 180	[FCFTR]		= 0x0468,
 181	[CSMR]		= 0x04E4,
 182
 183	[ECMR]		= 0x0500,
 184	[RFLR]		= 0x0508,
 185	[ECSR]		= 0x0510,
 186	[ECSIPR]	= 0x0518,
 187	[PIR]		= 0x0520,
 188	[APR]		= 0x0554,
 189	[MPR]		= 0x0558,
 190	[PFTCR]		= 0x055c,
 191	[PFRCR]		= 0x0560,
 192	[TPAUSER]	= 0x0564,
 193	[MAHR]		= 0x05c0,
 194	[MALR]		= 0x05c8,
 195	[CEFCR]		= 0x0740,
 196	[FRECR]		= 0x0748,
 197	[TSFRCR]	= 0x0750,
 198	[TLFRCR]	= 0x0758,
 199	[RFCR]		= 0x0760,
 200	[MAFCR]		= 0x0778,
 201
 202	[ARSTR]		= 0x0000,
 203	[TSU_CTRST]	= 0x0004,
 204	[TSU_FWSLC]	= 0x0038,
 205	[TSU_VTAG0]	= 0x0058,
 206	[TSU_ADSBSY]	= 0x0060,
 207	[TSU_TEN]	= 0x0064,
 208	[TSU_POST1]	= 0x0070,
 209	[TSU_POST2]	= 0x0074,
 210	[TSU_POST3]	= 0x0078,
 211	[TSU_POST4]	= 0x007c,
 212	[TSU_ADRH0]	= 0x0100,
 213
 214	[TXNLCR0]	= 0x0080,
 215	[TXALCR0]	= 0x0084,
 216	[RXNLCR0]	= 0x0088,
 217	[RXALCR0]	= 0x008C,
 218};
 219
 220static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
 221	SH_ETH_OFFSET_DEFAULTS,
 222
 223	[ECMR]		= 0x0300,
 224	[RFLR]		= 0x0308,
 225	[ECSR]		= 0x0310,
 226	[ECSIPR]	= 0x0318,
 227	[PIR]		= 0x0320,
 228	[PSR]		= 0x0328,
 229	[RDMLR]		= 0x0340,
 230	[IPGR]		= 0x0350,
 231	[APR]		= 0x0354,
 232	[MPR]		= 0x0358,
 233	[RFCF]		= 0x0360,
 234	[TPAUSER]	= 0x0364,
 235	[TPAUSECR]	= 0x0368,
 236	[MAHR]		= 0x03c0,
 237	[MALR]		= 0x03c8,
 238	[TROCR]		= 0x03d0,
 239	[CDCR]		= 0x03d4,
 240	[LCCR]		= 0x03d8,
 241	[CNDCR]		= 0x03dc,
 242	[CEFCR]		= 0x03e4,
 243	[FRECR]		= 0x03e8,
 244	[TSFRCR]	= 0x03ec,
 245	[TLFRCR]	= 0x03f0,
 246	[RFCR]		= 0x03f4,
 247	[MAFCR]		= 0x03f8,
 248
 249	[EDMR]		= 0x0200,
 250	[EDTRR]		= 0x0208,
 251	[EDRRR]		= 0x0210,
 252	[TDLAR]		= 0x0218,
 253	[RDLAR]		= 0x0220,
 254	[EESR]		= 0x0228,
 255	[EESIPR]	= 0x0230,
 256	[TRSCER]	= 0x0238,
 257	[RMFCR]		= 0x0240,
 258	[TFTR]		= 0x0248,
 259	[FDR]		= 0x0250,
 260	[RMCR]		= 0x0258,
 261	[TFUCR]		= 0x0264,
 262	[RFOCR]		= 0x0268,
 263	[RMIIMODE]      = 0x026c,
 264	[FCFTR]		= 0x0270,
 265	[TRIMD]		= 0x027c,
 266};
 267
 268static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
 269	SH_ETH_OFFSET_DEFAULTS,
 270
 271	[ECMR]		= 0x0100,
 272	[RFLR]		= 0x0108,
 273	[ECSR]		= 0x0110,
 274	[ECSIPR]	= 0x0118,
 275	[PIR]		= 0x0120,
 276	[PSR]		= 0x0128,
 277	[RDMLR]		= 0x0140,
 278	[IPGR]		= 0x0150,
 279	[APR]		= 0x0154,
 280	[MPR]		= 0x0158,
 281	[TPAUSER]	= 0x0164,
 282	[RFCF]		= 0x0160,
 283	[TPAUSECR]	= 0x0168,
 284	[BCFRR]		= 0x016c,
 285	[MAHR]		= 0x01c0,
 286	[MALR]		= 0x01c8,
 287	[TROCR]		= 0x01d0,
 288	[CDCR]		= 0x01d4,
 289	[LCCR]		= 0x01d8,
 290	[CNDCR]		= 0x01dc,
 291	[CEFCR]		= 0x01e4,
 292	[FRECR]		= 0x01e8,
 293	[TSFRCR]	= 0x01ec,
 294	[TLFRCR]	= 0x01f0,
 295	[RFCR]		= 0x01f4,
 296	[MAFCR]		= 0x01f8,
 297	[RTRATE]	= 0x01fc,
 298
 299	[EDMR]		= 0x0000,
 300	[EDTRR]		= 0x0008,
 301	[EDRRR]		= 0x0010,
 302	[TDLAR]		= 0x0018,
 303	[RDLAR]		= 0x0020,
 304	[EESR]		= 0x0028,
 305	[EESIPR]	= 0x0030,
 306	[TRSCER]	= 0x0038,
 307	[RMFCR]		= 0x0040,
 308	[TFTR]		= 0x0048,
 309	[FDR]		= 0x0050,
 310	[RMCR]		= 0x0058,
 311	[TFUCR]		= 0x0064,
 312	[RFOCR]		= 0x0068,
 313	[FCFTR]		= 0x0070,
 314	[RPADIR]	= 0x0078,
 315	[TRIMD]		= 0x007c,
 316	[RBWAR]		= 0x00c8,
 317	[RDFAR]		= 0x00cc,
 318	[TBRAR]		= 0x00d4,
 319	[TDFAR]		= 0x00d8,
 320};
 321
 322static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
 323	SH_ETH_OFFSET_DEFAULTS,
 324
 325	[EDMR]		= 0x0000,
 326	[EDTRR]		= 0x0004,
 327	[EDRRR]		= 0x0008,
 328	[TDLAR]		= 0x000c,
 329	[RDLAR]		= 0x0010,
 330	[EESR]		= 0x0014,
 331	[EESIPR]	= 0x0018,
 332	[TRSCER]	= 0x001c,
 333	[RMFCR]		= 0x0020,
 334	[TFTR]		= 0x0024,
 335	[FDR]		= 0x0028,
 336	[RMCR]		= 0x002c,
 337	[EDOCR]		= 0x0030,
 338	[FCFTR]		= 0x0034,
 339	[RPADIR]	= 0x0038,
 340	[TRIMD]		= 0x003c,
 341	[RBWAR]		= 0x0040,
 342	[RDFAR]		= 0x0044,
 343	[TBRAR]		= 0x004c,
 344	[TDFAR]		= 0x0050,
 345
 346	[ECMR]		= 0x0160,
 347	[ECSR]		= 0x0164,
 348	[ECSIPR]	= 0x0168,
 349	[PIR]		= 0x016c,
 350	[MAHR]		= 0x0170,
 351	[MALR]		= 0x0174,
 352	[RFLR]		= 0x0178,
 353	[PSR]		= 0x017c,
 354	[TROCR]		= 0x0180,
 355	[CDCR]		= 0x0184,
 356	[LCCR]		= 0x0188,
 357	[CNDCR]		= 0x018c,
 358	[CEFCR]		= 0x0194,
 359	[FRECR]		= 0x0198,
 360	[TSFRCR]	= 0x019c,
 361	[TLFRCR]	= 0x01a0,
 362	[RFCR]		= 0x01a4,
 363	[MAFCR]		= 0x01a8,
 364	[IPGR]		= 0x01b4,
 365	[APR]		= 0x01b8,
 366	[MPR]		= 0x01bc,
 367	[TPAUSER]	= 0x01c4,
 368	[BCFR]		= 0x01cc,
 369
 370	[ARSTR]		= 0x0000,
 371	[TSU_CTRST]	= 0x0004,
 372	[TSU_FWEN0]	= 0x0010,
 373	[TSU_FWEN1]	= 0x0014,
 374	[TSU_FCM]	= 0x0018,
 375	[TSU_BSYSL0]	= 0x0020,
 376	[TSU_BSYSL1]	= 0x0024,
 377	[TSU_PRISL0]	= 0x0028,
 378	[TSU_PRISL1]	= 0x002c,
 379	[TSU_FWSL0]	= 0x0030,
 380	[TSU_FWSL1]	= 0x0034,
 381	[TSU_FWSLC]	= 0x0038,
 382	[TSU_QTAGM0]	= 0x0040,
 383	[TSU_QTAGM1]	= 0x0044,
 384	[TSU_ADQT0]	= 0x0048,
 385	[TSU_ADQT1]	= 0x004c,
 386	[TSU_FWSR]	= 0x0050,
 387	[TSU_FWINMK]	= 0x0054,
 388	[TSU_ADSBSY]	= 0x0060,
 389	[TSU_TEN]	= 0x0064,
 390	[TSU_POST1]	= 0x0070,
 391	[TSU_POST2]	= 0x0074,
 392	[TSU_POST3]	= 0x0078,
 393	[TSU_POST4]	= 0x007c,
 394
 395	[TXNLCR0]	= 0x0080,
 396	[TXALCR0]	= 0x0084,
 397	[RXNLCR0]	= 0x0088,
 398	[RXALCR0]	= 0x008c,
 399	[FWNLCR0]	= 0x0090,
 400	[FWALCR0]	= 0x0094,
 401	[TXNLCR1]	= 0x00a0,
 402	[TXALCR1]	= 0x00a0,
 403	[RXNLCR1]	= 0x00a8,
 404	[RXALCR1]	= 0x00ac,
 405	[FWNLCR1]	= 0x00b0,
 406	[FWALCR1]	= 0x00b4,
 407
 408	[TSU_ADRH0]	= 0x0100,
 409};
 
 410
 411static void sh_eth_rcv_snd_disable(struct net_device *ndev);
 412static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
 413
 414static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
 415{
 416	struct sh_eth_private *mdp = netdev_priv(ndev);
 417	u16 offset = mdp->reg_offset[enum_index];
 418
 419	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 420		return;
 421
 422	iowrite32(data, mdp->addr + offset);
 423}
 424
 425static u32 sh_eth_read(struct net_device *ndev, int enum_index)
 426{
 427	struct sh_eth_private *mdp = netdev_priv(ndev);
 428	u16 offset = mdp->reg_offset[enum_index];
 429
 430	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 431		return ~0U;
 432
 433	return ioread32(mdp->addr + offset);
 434}
 435
 436static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
 437			  u32 set)
 438{
 439	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
 440		     enum_index);
 441}
 442
 443static bool sh_eth_is_gether(struct sh_eth_private *mdp)
 444{
 445	return mdp->reg_offset == sh_eth_offset_gigabit;
 446}
 447
 448static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
 
 449{
 450	return mdp->reg_offset == sh_eth_offset_fast_rz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453static void sh_eth_select_mii(struct net_device *ndev)
 454{
 455	struct sh_eth_private *mdp = netdev_priv(ndev);
 456	u32 value;
 457
 458	switch (mdp->phy_interface) {
 
 
 
 459	case PHY_INTERFACE_MODE_GMII:
 460		value = 0x2;
 461		break;
 462	case PHY_INTERFACE_MODE_MII:
 463		value = 0x1;
 464		break;
 465	case PHY_INTERFACE_MODE_RMII:
 466		value = 0x0;
 467		break;
 468	default:
 469		netdev_warn(ndev,
 470			    "PHY interface mode was not setup. Set to MII.\n");
 471		value = 0x1;
 472		break;
 473	}
 474
 475	sh_eth_write(ndev, value, RMII_MII);
 476}
 477
 478static void sh_eth_set_duplex(struct net_device *ndev)
 479{
 480	struct sh_eth_private *mdp = netdev_priv(ndev);
 481
 482	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
 483}
 484
 485static void sh_eth_chip_reset(struct net_device *ndev)
 486{
 487	struct sh_eth_private *mdp = netdev_priv(ndev);
 488
 489	/* reset device */
 490	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
 491	mdelay(1);
 492}
 493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494static void sh_eth_set_rate_gether(struct net_device *ndev)
 495{
 496	struct sh_eth_private *mdp = netdev_priv(ndev);
 497
 
 
 
 498	switch (mdp->speed) {
 499	case 10: /* 10BASE */
 500		sh_eth_write(ndev, GECMR_10, GECMR);
 501		break;
 502	case 100:/* 100BASE */
 503		sh_eth_write(ndev, GECMR_100, GECMR);
 504		break;
 505	case 1000: /* 1000BASE */
 506		sh_eth_write(ndev, GECMR_1000, GECMR);
 507		break;
 508	}
 509}
 510
 511#ifdef CONFIG_OF
 512/* R7S72100 */
 513static struct sh_eth_cpu_data r7s72100_data = {
 
 
 514	.chip_reset	= sh_eth_chip_reset,
 515	.set_duplex	= sh_eth_set_duplex,
 516
 517	.register_type	= SH_ETH_REG_FAST_RZ,
 518
 
 519	.ecsr_value	= ECSR_ICD,
 520	.ecsipr_value	= ECSIPR_ICDIP,
 521	.eesipr_value	= 0xe77f009f,
 
 
 
 
 
 
 
 522
 523	.tx_check	= EESR_TC1 | EESR_FTC,
 524	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 525			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 526			  EESR_TDE | EESR_ECI,
 527	.fdr_value	= 0x0000070f,
 528
 
 
 529	.no_psr		= 1,
 530	.apr		= 1,
 531	.mpr		= 1,
 532	.tpauser	= 1,
 533	.hw_swap	= 1,
 534	.rpadir		= 1,
 535	.rpadir_value   = 2 << 16,
 536	.no_trimd	= 1,
 537	.no_ade		= 1,
 538	.hw_crc		= 1,
 
 
 539	.tsu		= 1,
 540	.shift_rd0	= 1,
 541};
 542
 543static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
 544{
 545	sh_eth_chip_reset(ndev);
 546
 547	sh_eth_select_mii(ndev);
 548}
 549
 550/* R8A7740 */
 551static struct sh_eth_cpu_data r8a7740_data = {
 
 
 552	.chip_reset	= sh_eth_chip_reset_r8a7740,
 553	.set_duplex	= sh_eth_set_duplex,
 554	.set_rate	= sh_eth_set_rate_gether,
 555
 556	.register_type	= SH_ETH_REG_GIGABIT,
 557
 
 558	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 559	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 560	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 
 
 
 
 
 
 
 561
 562	.tx_check	= EESR_TC1 | EESR_FTC,
 563	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 564			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 565			  EESR_TDE | EESR_ECI,
 566	.fdr_value	= 0x0000070f,
 567
 568	.apr		= 1,
 569	.mpr		= 1,
 570	.tpauser	= 1,
 
 571	.bculr		= 1,
 572	.hw_swap	= 1,
 573	.rpadir		= 1,
 574	.rpadir_value   = 2 << 16,
 575	.no_trimd	= 1,
 576	.no_ade		= 1,
 577	.hw_crc		= 1,
 
 
 578	.tsu		= 1,
 579	.select_mii	= 1,
 580	.shift_rd0	= 1,
 
 581};
 582
 583/* There is CPU dependent code */
 584static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
 585{
 586	struct sh_eth_private *mdp = netdev_priv(ndev);
 587
 588	switch (mdp->speed) {
 589	case 10: /* 10BASE */
 590		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
 591		break;
 592	case 100:/* 100BASE */
 593		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
 594		break;
 595	}
 596}
 597
 598/* R8A7778/9 */
 599static struct sh_eth_cpu_data r8a777x_data = {
 
 
 600	.set_duplex	= sh_eth_set_duplex,
 601	.set_rate	= sh_eth_set_rate_r8a777x,
 602
 603	.register_type	= SH_ETH_REG_FAST_RCAR,
 604
 
 605	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 606	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 607	.eesipr_value	= 0x01ff009f,
 
 
 
 
 
 608
 609	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 610	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 611			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 612			  EESR_ECI,
 613	.fdr_value	= 0x00000f0f,
 614
 615	.apr		= 1,
 616	.mpr		= 1,
 617	.tpauser	= 1,
 618	.hw_swap	= 1,
 
 619};
 620
 621/* R8A7790/1 */
 622static struct sh_eth_cpu_data r8a779x_data = {
 
 
 623	.set_duplex	= sh_eth_set_duplex,
 624	.set_rate	= sh_eth_set_rate_r8a777x,
 625
 626	.register_type	= SH_ETH_REG_FAST_RCAR,
 627
 628	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 629	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 630	.eesipr_value	= 0x01ff009f,
 
 
 
 
 
 
 
 631
 632	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 633	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 634			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 635			  EESR_ECI,
 636	.fdr_value	= 0x00000f0f,
 637
 638	.trscer_err_mask = DESC_I_RINT8,
 639
 640	.apr		= 1,
 641	.mpr		= 1,
 642	.tpauser	= 1,
 643	.hw_swap	= 1,
 
 644	.rmiimode	= 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645};
 646#endif /* CONFIG_OF */
 647
 648static void sh_eth_set_rate_sh7724(struct net_device *ndev)
 649{
 650	struct sh_eth_private *mdp = netdev_priv(ndev);
 651
 652	switch (mdp->speed) {
 653	case 10: /* 10BASE */
 654		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
 655		break;
 656	case 100:/* 100BASE */
 657		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
 658		break;
 659	}
 660}
 661
 662/* SH7724 */
 663static struct sh_eth_cpu_data sh7724_data = {
 
 
 664	.set_duplex	= sh_eth_set_duplex,
 665	.set_rate	= sh_eth_set_rate_sh7724,
 666
 667	.register_type	= SH_ETH_REG_FAST_SH4,
 668
 
 669	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 670	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 671	.eesipr_value	= 0x01ff009f,
 
 
 
 
 
 672
 673	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 674	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 675			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 676			  EESR_ECI,
 677
 678	.apr		= 1,
 679	.mpr		= 1,
 680	.tpauser	= 1,
 681	.hw_swap	= 1,
 682	.rpadir		= 1,
 683	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
 684};
 685
 686static void sh_eth_set_rate_sh7757(struct net_device *ndev)
 687{
 688	struct sh_eth_private *mdp = netdev_priv(ndev);
 689
 690	switch (mdp->speed) {
 691	case 10: /* 10BASE */
 692		sh_eth_write(ndev, 0, RTRATE);
 693		break;
 694	case 100:/* 100BASE */
 695		sh_eth_write(ndev, 1, RTRATE);
 696		break;
 697	}
 698}
 699
 700/* SH7757 */
 701static struct sh_eth_cpu_data sh7757_data = {
 
 
 702	.set_duplex	= sh_eth_set_duplex,
 703	.set_rate	= sh_eth_set_rate_sh7757,
 704
 705	.register_type	= SH_ETH_REG_FAST_SH4,
 706
 707	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 
 
 
 
 
 
 
 
 708
 709	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 710	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 711			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 712			  EESR_ECI,
 713
 714	.irq_flags	= IRQF_SHARED,
 715	.apr		= 1,
 716	.mpr		= 1,
 717	.tpauser	= 1,
 718	.hw_swap	= 1,
 719	.no_ade		= 1,
 720	.rpadir		= 1,
 721	.rpadir_value   = 2 << 16,
 722	.rtrate		= 1,
 
 723};
 724
 725#define SH_GIGA_ETH_BASE	0xfee00000UL
 726#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
 727#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
 728static void sh_eth_chip_reset_giga(struct net_device *ndev)
 729{
 730	u32 mahr[2], malr[2];
 731	int i;
 732
 733	/* save MAHR and MALR */
 734	for (i = 0; i < 2; i++) {
 735		malr[i] = ioread32((void *)GIGA_MALR(i));
 736		mahr[i] = ioread32((void *)GIGA_MAHR(i));
 737	}
 738
 739	sh_eth_chip_reset(ndev);
 740
 741	/* restore MAHR and MALR */
 742	for (i = 0; i < 2; i++) {
 743		iowrite32(malr[i], (void *)GIGA_MALR(i));
 744		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
 745	}
 746}
 747
 748static void sh_eth_set_rate_giga(struct net_device *ndev)
 749{
 750	struct sh_eth_private *mdp = netdev_priv(ndev);
 751
 
 
 
 752	switch (mdp->speed) {
 753	case 10: /* 10BASE */
 754		sh_eth_write(ndev, 0x00000000, GECMR);
 755		break;
 756	case 100:/* 100BASE */
 757		sh_eth_write(ndev, 0x00000010, GECMR);
 758		break;
 759	case 1000: /* 1000BASE */
 760		sh_eth_write(ndev, 0x00000020, GECMR);
 761		break;
 762	}
 763}
 764
 765/* SH7757(GETHERC) */
 766static struct sh_eth_cpu_data sh7757_data_giga = {
 
 
 767	.chip_reset	= sh_eth_chip_reset_giga,
 768	.set_duplex	= sh_eth_set_duplex,
 769	.set_rate	= sh_eth_set_rate_giga,
 770
 771	.register_type	= SH_ETH_REG_GIGABIT,
 772
 
 773	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 774	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 775	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 
 
 
 
 
 
 
 776
 777	.tx_check	= EESR_TC1 | EESR_FTC,
 778	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 779			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 780			  EESR_TDE | EESR_ECI,
 781	.fdr_value	= 0x0000072f,
 782
 783	.irq_flags	= IRQF_SHARED,
 784	.apr		= 1,
 785	.mpr		= 1,
 786	.tpauser	= 1,
 
 787	.bculr		= 1,
 788	.hw_swap	= 1,
 789	.rpadir		= 1,
 790	.rpadir_value   = 2 << 16,
 791	.no_trimd	= 1,
 792	.no_ade		= 1,
 
 793	.tsu		= 1,
 
 
 794};
 795
 796/* SH7734 */
 797static struct sh_eth_cpu_data sh7734_data = {
 
 
 798	.chip_reset	= sh_eth_chip_reset,
 799	.set_duplex	= sh_eth_set_duplex,
 800	.set_rate	= sh_eth_set_rate_gether,
 801
 802	.register_type	= SH_ETH_REG_GIGABIT,
 803
 
 804	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 805	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 806	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
 
 
 
 
 
 
 807
 808	.tx_check	= EESR_TC1 | EESR_FTC,
 809	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 810			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 811			  EESR_TDE | EESR_ECI,
 812
 813	.apr		= 1,
 814	.mpr		= 1,
 815	.tpauser	= 1,
 
 816	.bculr		= 1,
 817	.hw_swap	= 1,
 818	.no_trimd	= 1,
 819	.no_ade		= 1,
 
 820	.tsu		= 1,
 821	.hw_crc		= 1,
 
 822	.select_mii	= 1,
 823	.shift_rd0	= 1,
 
 824};
 825
 826/* SH7763 */
 827static struct sh_eth_cpu_data sh7763_data = {
 
 
 828	.chip_reset	= sh_eth_chip_reset,
 829	.set_duplex	= sh_eth_set_duplex,
 830	.set_rate	= sh_eth_set_rate_gether,
 831
 832	.register_type	= SH_ETH_REG_GIGABIT,
 833
 
 834	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 835	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 836	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003f07ff,
 
 
 
 
 
 
 837
 838	.tx_check	= EESR_TC1 | EESR_FTC,
 839	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 840			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 841			  EESR_ECI,
 842
 843	.apr		= 1,
 844	.mpr		= 1,
 845	.tpauser	= 1,
 
 846	.bculr		= 1,
 847	.hw_swap	= 1,
 848	.no_trimd	= 1,
 849	.no_ade		= 1,
 
 850	.tsu		= 1,
 851	.irq_flags	= IRQF_SHARED,
 
 
 
 
 852};
 853
 854static struct sh_eth_cpu_data sh7619_data = {
 
 
 855	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
 856
 857	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 
 
 
 
 
 
 
 
 858
 859	.apr		= 1,
 860	.mpr		= 1,
 861	.tpauser	= 1,
 862	.hw_swap	= 1,
 863};
 864
 865static struct sh_eth_cpu_data sh771x_data = {
 
 
 866	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
 867
 868	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 
 
 
 
 
 
 
 
 
 
 
 869	.tsu		= 1,
 
 870};
 871
 872static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
 873{
 874	if (!cd->ecsr_value)
 875		cd->ecsr_value = DEFAULT_ECSR_INIT;
 876
 877	if (!cd->ecsipr_value)
 878		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
 879
 880	if (!cd->fcftr_value)
 881		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
 882				  DEFAULT_FIFO_F_D_RFD;
 883
 884	if (!cd->fdr_value)
 885		cd->fdr_value = DEFAULT_FDR_INIT;
 886
 887	if (!cd->tx_check)
 888		cd->tx_check = DEFAULT_TX_CHECK;
 889
 890	if (!cd->eesr_err_check)
 891		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
 892
 893	if (!cd->trscer_err_mask)
 894		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
 895}
 896
 897static int sh_eth_check_reset(struct net_device *ndev)
 898{
 899	int ret = 0;
 900	int cnt = 100;
 901
 902	while (cnt > 0) {
 903		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
 904			break;
 905		mdelay(1);
 906		cnt--;
 907	}
 908	if (cnt <= 0) {
 909		netdev_err(ndev, "Device reset failed\n");
 910		ret = -ETIMEDOUT;
 911	}
 912	return ret;
 913}
 914
 915static int sh_eth_reset(struct net_device *ndev)
 916{
 917	struct sh_eth_private *mdp = netdev_priv(ndev);
 918	int ret = 0;
 919
 920	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
 921		sh_eth_write(ndev, EDSR_ENALL, EDSR);
 922		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
 923
 924		ret = sh_eth_check_reset(ndev);
 925		if (ret)
 926			return ret;
 927
 928		/* Table Init */
 929		sh_eth_write(ndev, 0x0, TDLAR);
 930		sh_eth_write(ndev, 0x0, TDFAR);
 931		sh_eth_write(ndev, 0x0, TDFXR);
 932		sh_eth_write(ndev, 0x0, TDFFR);
 933		sh_eth_write(ndev, 0x0, RDLAR);
 934		sh_eth_write(ndev, 0x0, RDFAR);
 935		sh_eth_write(ndev, 0x0, RDFXR);
 936		sh_eth_write(ndev, 0x0, RDFFR);
 937
 938		/* Reset HW CRC register */
 939		if (mdp->cd->hw_crc)
 940			sh_eth_write(ndev, 0x0, CSMR);
 941
 942		/* Select MII mode */
 943		if (mdp->cd->select_mii)
 944			sh_eth_select_mii(ndev);
 945	} else {
 946		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
 947		mdelay(3);
 948		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
 949	}
 950
 951	return ret;
 952}
 953
 954static void sh_eth_set_receive_align(struct sk_buff *skb)
 955{
 956	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
 957
 958	if (reserve)
 959		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
 960}
 961
 962/* Program the hardware MAC address from dev->dev_addr. */
 963static void update_mac_address(struct net_device *ndev)
 964{
 965	sh_eth_write(ndev,
 966		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
 967		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
 968	sh_eth_write(ndev,
 969		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
 970}
 971
 972/* Get MAC address from SuperH MAC address register
 973 *
 974 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
 975 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
 976 * When you want use this device, you must set MAC address in bootloader.
 977 *
 978 */
 979static void read_mac_address(struct net_device *ndev, unsigned char *mac)
 980{
 981	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
 982		memcpy(ndev->dev_addr, mac, ETH_ALEN);
 983	} else {
 984		u32 mahr = sh_eth_read(ndev, MAHR);
 985		u32 malr = sh_eth_read(ndev, MALR);
 
 986
 987		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
 988		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
 989		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
 990		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
 991		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
 992		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
 
 993	}
 994}
 995
 996static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
 997{
 998	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
 999		return EDTRR_TRNS_GETHER;
1000	else
1001		return EDTRR_TRNS_ETHER;
1002}
1003
1004struct bb_info {
1005	void (*set_gate)(void *addr);
1006	struct mdiobb_ctrl ctrl;
1007	void *addr;
1008};
1009
1010static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1011{
1012	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1013	u32 pir;
1014
1015	if (bitbang->set_gate)
1016		bitbang->set_gate(bitbang->addr);
1017
1018	pir = ioread32(bitbang->addr);
1019	if (set)
1020		pir |=  mask;
1021	else
1022		pir &= ~mask;
1023	iowrite32(pir, bitbang->addr);
1024}
1025
1026/* Data I/O pin control */
1027static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1028{
1029	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1030}
1031
1032/* Set bit data*/
1033static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1034{
1035	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1036}
1037
1038/* Get bit data*/
1039static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1040{
1041	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1042
1043	if (bitbang->set_gate)
1044		bitbang->set_gate(bitbang->addr);
1045
1046	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1047}
1048
1049/* MDC pin control */
1050static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1051{
1052	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1053}
1054
1055/* mdio bus control struct */
1056static struct mdiobb_ops bb_ops = {
1057	.owner = THIS_MODULE,
1058	.set_mdc = sh_mdc_ctrl,
1059	.set_mdio_dir = sh_mmd_ctrl,
1060	.set_mdio_data = sh_set_mdio,
1061	.get_mdio_data = sh_get_mdio,
1062};
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064/* free skb and descriptor buffer */
1065static void sh_eth_ring_free(struct net_device *ndev)
1066{
1067	struct sh_eth_private *mdp = netdev_priv(ndev);
1068	int ringsize, i;
1069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070	/* Free Rx skb ringbuffer */
1071	if (mdp->rx_skbuff) {
1072		for (i = 0; i < mdp->num_rx_ring; i++)
1073			dev_kfree_skb(mdp->rx_skbuff[i]);
1074	}
1075	kfree(mdp->rx_skbuff);
1076	mdp->rx_skbuff = NULL;
1077
1078	/* Free Tx skb ringbuffer */
1079	if (mdp->tx_skbuff) {
1080		for (i = 0; i < mdp->num_tx_ring; i++)
1081			dev_kfree_skb(mdp->tx_skbuff[i]);
1082	}
1083	kfree(mdp->tx_skbuff);
1084	mdp->tx_skbuff = NULL;
1085
1086	if (mdp->rx_ring) {
1087		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1088		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1089				  mdp->rx_desc_dma);
1090		mdp->rx_ring = NULL;
1091	}
1092
1093	if (mdp->tx_ring) {
1094		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1095		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1096				  mdp->tx_desc_dma);
1097		mdp->tx_ring = NULL;
1098	}
 
 
 
 
1099}
1100
1101/* format skb and descriptor buffer */
1102static void sh_eth_ring_format(struct net_device *ndev)
1103{
1104	struct sh_eth_private *mdp = netdev_priv(ndev);
1105	int i;
1106	struct sk_buff *skb;
1107	struct sh_eth_rxdesc *rxdesc = NULL;
1108	struct sh_eth_txdesc *txdesc = NULL;
1109	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1110	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1111	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1112	dma_addr_t dma_addr;
1113	u32 buf_len;
1114
1115	mdp->cur_rx = 0;
1116	mdp->cur_tx = 0;
1117	mdp->dirty_rx = 0;
1118	mdp->dirty_tx = 0;
1119
1120	memset(mdp->rx_ring, 0, rx_ringsize);
1121
1122	/* build Rx ring buffer */
1123	for (i = 0; i < mdp->num_rx_ring; i++) {
1124		/* skb */
1125		mdp->rx_skbuff[i] = NULL;
1126		skb = netdev_alloc_skb(ndev, skbuff_size);
1127		if (skb == NULL)
1128			break;
1129		sh_eth_set_receive_align(skb);
1130
1131		/* The size of the buffer is a multiple of 32 bytes. */
1132		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1133		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1134					  DMA_FROM_DEVICE);
1135		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1136			kfree_skb(skb);
1137			break;
1138		}
1139		mdp->rx_skbuff[i] = skb;
1140
1141		/* RX descriptor */
1142		rxdesc = &mdp->rx_ring[i];
1143		rxdesc->len = cpu_to_le32(buf_len << 16);
1144		rxdesc->addr = cpu_to_le32(dma_addr);
1145		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1146
1147		/* Rx descriptor address set */
1148		if (i == 0) {
1149			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1150			if (sh_eth_is_gether(mdp) ||
1151			    sh_eth_is_rz_fast_ether(mdp))
1152				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1153		}
1154	}
1155
1156	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1157
1158	/* Mark the last entry as wrapping the ring. */
1159	if (rxdesc)
1160		rxdesc->status |= cpu_to_le32(RD_RDLE);
1161
1162	memset(mdp->tx_ring, 0, tx_ringsize);
1163
1164	/* build Tx ring buffer */
1165	for (i = 0; i < mdp->num_tx_ring; i++) {
1166		mdp->tx_skbuff[i] = NULL;
1167		txdesc = &mdp->tx_ring[i];
1168		txdesc->status = cpu_to_le32(TD_TFP);
1169		txdesc->len = cpu_to_le32(0);
1170		if (i == 0) {
1171			/* Tx descriptor address set */
1172			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1173			if (sh_eth_is_gether(mdp) ||
1174			    sh_eth_is_rz_fast_ether(mdp))
1175				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1176		}
1177	}
1178
1179	txdesc->status |= cpu_to_le32(TD_TDLE);
1180}
1181
1182/* Get skb and descriptor buffer */
1183static int sh_eth_ring_init(struct net_device *ndev)
1184{
1185	struct sh_eth_private *mdp = netdev_priv(ndev);
1186	int rx_ringsize, tx_ringsize;
1187
1188	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1189	 * card needs room to do 8 byte alignment, +2 so we can reserve
1190	 * the first 2 bytes, and +16 gets room for the status word from the
1191	 * card.
1192	 */
1193	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1194			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1195	if (mdp->cd->rpadir)
1196		mdp->rx_buf_sz += NET_IP_ALIGN;
1197
1198	/* Allocate RX and TX skb rings */
1199	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1200				 GFP_KERNEL);
1201	if (!mdp->rx_skbuff)
1202		return -ENOMEM;
1203
1204	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1205				 GFP_KERNEL);
1206	if (!mdp->tx_skbuff)
1207		goto ring_free;
1208
1209	/* Allocate all Rx descriptors. */
1210	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1211	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1212					  GFP_KERNEL);
1213	if (!mdp->rx_ring)
1214		goto ring_free;
1215
1216	mdp->dirty_rx = 0;
1217
1218	/* Allocate all Tx descriptors. */
1219	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1220	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1221					  GFP_KERNEL);
1222	if (!mdp->tx_ring)
1223		goto ring_free;
1224	return 0;
1225
1226ring_free:
1227	/* Free Rx and Tx skb ring buffer and DMA buffer */
1228	sh_eth_ring_free(ndev);
1229
1230	return -ENOMEM;
1231}
1232
1233static int sh_eth_dev_init(struct net_device *ndev)
1234{
1235	struct sh_eth_private *mdp = netdev_priv(ndev);
1236	int ret;
1237
1238	/* Soft Reset */
1239	ret = sh_eth_reset(ndev);
1240	if (ret)
1241		return ret;
1242
1243	if (mdp->cd->rmiimode)
1244		sh_eth_write(ndev, 0x1, RMIIMODE);
1245
1246	/* Descriptor format */
1247	sh_eth_ring_format(ndev);
1248	if (mdp->cd->rpadir)
1249		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1250
1251	/* all sh_eth int mask */
1252	sh_eth_write(ndev, 0, EESIPR);
1253
1254#if defined(__LITTLE_ENDIAN)
1255	if (mdp->cd->hw_swap)
1256		sh_eth_write(ndev, EDMR_EL, EDMR);
1257	else
1258#endif
1259		sh_eth_write(ndev, 0, EDMR);
1260
1261	/* FIFO size set */
1262	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1263	sh_eth_write(ndev, 0, TFTR);
1264
1265	/* Frame recv control (enable multiple-packets per rx irq) */
1266	sh_eth_write(ndev, RMCR_RNC, RMCR);
1267
1268	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1269
 
 
 
 
 
1270	if (mdp->cd->bculr)
1271		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1272
1273	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1274
1275	if (!mdp->cd->no_trimd)
1276		sh_eth_write(ndev, 0, TRIMD);
1277
1278	/* Recv frame limit set register */
1279	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1280		     RFLR);
1281
1282	sh_eth_modify(ndev, EESR, 0, 0);
1283	mdp->irq_enabled = true;
1284	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1285
1286	/* PAUSE Prohibition */
1287	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
 
1288		     ECMR_TE | ECMR_RE, ECMR);
1289
1290	if (mdp->cd->set_rate)
1291		mdp->cd->set_rate(ndev);
1292
1293	/* E-MAC Status Register clear */
1294	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1295
1296	/* E-MAC Interrupt Enable register */
1297	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1298
1299	/* Set MAC address */
1300	update_mac_address(ndev);
1301
1302	/* mask reset */
1303	if (mdp->cd->apr)
1304		sh_eth_write(ndev, APR_AP, APR);
1305	if (mdp->cd->mpr)
1306		sh_eth_write(ndev, MPR_MP, MPR);
1307	if (mdp->cd->tpauser)
1308		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1309
1310	/* Setting the Rx mode will start the Rx process. */
1311	sh_eth_write(ndev, EDRRR_R, EDRRR);
1312
1313	return ret;
1314}
1315
1316static void sh_eth_dev_exit(struct net_device *ndev)
1317{
1318	struct sh_eth_private *mdp = netdev_priv(ndev);
1319	int i;
1320
1321	/* Deactivate all TX descriptors, so DMA should stop at next
1322	 * packet boundary if it's currently running
1323	 */
1324	for (i = 0; i < mdp->num_tx_ring; i++)
1325		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1326
1327	/* Disable TX FIFO egress to MAC */
1328	sh_eth_rcv_snd_disable(ndev);
1329
1330	/* Stop RX DMA at next packet boundary */
1331	sh_eth_write(ndev, 0, EDRRR);
1332
1333	/* Aside from TX DMA, we can't tell when the hardware is
1334	 * really stopped, so we need to reset to make sure.
1335	 * Before doing that, wait for long enough to *probably*
1336	 * finish transmitting the last packet and poll stats.
1337	 */
1338	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1339	sh_eth_get_stats(ndev);
1340	sh_eth_reset(ndev);
 
 
 
 
1341
1342	/* Set MAC address again */
1343	update_mac_address(ndev);
1344}
1345
1346/* free Tx skb function */
1347static int sh_eth_txfree(struct net_device *ndev)
1348{
1349	struct sh_eth_private *mdp = netdev_priv(ndev);
1350	struct sh_eth_txdesc *txdesc;
1351	int free_num = 0;
1352	int entry;
1353
1354	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1355		entry = mdp->dirty_tx % mdp->num_tx_ring;
1356		txdesc = &mdp->tx_ring[entry];
1357		if (txdesc->status & cpu_to_le32(TD_TACT))
1358			break;
1359		/* TACT bit must be checked before all the following reads */
1360		dma_rmb();
1361		netif_info(mdp, tx_done, ndev,
1362			   "tx entry %d status 0x%08x\n",
1363			   entry, le32_to_cpu(txdesc->status));
1364		/* Free the original skb. */
1365		if (mdp->tx_skbuff[entry]) {
1366			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1367					 le32_to_cpu(txdesc->len) >> 16,
1368					 DMA_TO_DEVICE);
1369			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1370			mdp->tx_skbuff[entry] = NULL;
1371			free_num++;
1372		}
1373		txdesc->status = cpu_to_le32(TD_TFP);
1374		if (entry >= mdp->num_tx_ring - 1)
1375			txdesc->status |= cpu_to_le32(TD_TDLE);
1376
1377		ndev->stats.tx_packets++;
1378		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1379	}
1380	return free_num;
1381}
1382
1383/* Packet receive function */
1384static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1385{
1386	struct sh_eth_private *mdp = netdev_priv(ndev);
1387	struct sh_eth_rxdesc *rxdesc;
1388
1389	int entry = mdp->cur_rx % mdp->num_rx_ring;
1390	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1391	int limit;
1392	struct sk_buff *skb;
1393	u32 desc_status;
1394	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1395	dma_addr_t dma_addr;
1396	u16 pkt_len;
1397	u32 buf_len;
1398
1399	boguscnt = min(boguscnt, *quota);
1400	limit = boguscnt;
1401	rxdesc = &mdp->rx_ring[entry];
1402	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1403		/* RACT bit must be checked before all the following reads */
1404		dma_rmb();
1405		desc_status = le32_to_cpu(rxdesc->status);
1406		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1407
1408		if (--boguscnt < 0)
1409			break;
1410
1411		netif_info(mdp, rx_status, ndev,
1412			   "rx entry %d status 0x%08x len %d\n",
1413			   entry, desc_status, pkt_len);
1414
1415		if (!(desc_status & RDFEND))
1416			ndev->stats.rx_length_errors++;
1417
1418		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1419		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1420		 * bit 0. However, in case of the R8A7740 and R7S72100
1421		 * the RFS bits are from bit 25 to bit 16. So, the
1422		 * driver needs right shifting by 16.
1423		 */
1424		if (mdp->cd->shift_rd0)
1425			desc_status >>= 16;
1426
1427		skb = mdp->rx_skbuff[entry];
1428		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1429				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1430			ndev->stats.rx_errors++;
1431			if (desc_status & RD_RFS1)
1432				ndev->stats.rx_crc_errors++;
1433			if (desc_status & RD_RFS2)
1434				ndev->stats.rx_frame_errors++;
1435			if (desc_status & RD_RFS3)
1436				ndev->stats.rx_length_errors++;
1437			if (desc_status & RD_RFS4)
1438				ndev->stats.rx_length_errors++;
1439			if (desc_status & RD_RFS6)
1440				ndev->stats.rx_missed_errors++;
1441			if (desc_status & RD_RFS10)
1442				ndev->stats.rx_over_errors++;
1443		} else	if (skb) {
1444			dma_addr = le32_to_cpu(rxdesc->addr);
1445			if (!mdp->cd->hw_swap)
1446				sh_eth_soft_swap(
1447					phys_to_virt(ALIGN(dma_addr, 4)),
1448					pkt_len + 2);
1449			mdp->rx_skbuff[entry] = NULL;
1450			if (mdp->cd->rpadir)
1451				skb_reserve(skb, NET_IP_ALIGN);
1452			dma_unmap_single(&ndev->dev, dma_addr,
1453					 ALIGN(mdp->rx_buf_sz, 32),
1454					 DMA_FROM_DEVICE);
1455			skb_put(skb, pkt_len);
1456			skb->protocol = eth_type_trans(skb, ndev);
 
 
1457			netif_receive_skb(skb);
1458			ndev->stats.rx_packets++;
1459			ndev->stats.rx_bytes += pkt_len;
1460			if (desc_status & RD_RFS8)
1461				ndev->stats.multicast++;
1462		}
1463		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1464		rxdesc = &mdp->rx_ring[entry];
1465	}
1466
1467	/* Refill the Rx ring buffers. */
1468	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1469		entry = mdp->dirty_rx % mdp->num_rx_ring;
1470		rxdesc = &mdp->rx_ring[entry];
1471		/* The size of the buffer is 32 byte boundary. */
1472		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1473		rxdesc->len = cpu_to_le32(buf_len << 16);
1474
1475		if (mdp->rx_skbuff[entry] == NULL) {
1476			skb = netdev_alloc_skb(ndev, skbuff_size);
1477			if (skb == NULL)
1478				break;	/* Better luck next round. */
1479			sh_eth_set_receive_align(skb);
1480			dma_addr = dma_map_single(&ndev->dev, skb->data,
1481						  buf_len, DMA_FROM_DEVICE);
1482			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1483				kfree_skb(skb);
1484				break;
1485			}
1486			mdp->rx_skbuff[entry] = skb;
1487
1488			skb_checksum_none_assert(skb);
1489			rxdesc->addr = cpu_to_le32(dma_addr);
1490		}
1491		dma_wmb(); /* RACT bit must be set after all the above writes */
1492		if (entry >= mdp->num_rx_ring - 1)
1493			rxdesc->status |=
1494				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1495		else
1496			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1497	}
1498
1499	/* Restart Rx engine if stopped. */
1500	/* If we don't need to check status, don't. -KDU */
1501	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1502		/* fix the values for the next receiving if RDE is set */
1503		if (intr_status & EESR_RDE &&
1504		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1505			u32 count = (sh_eth_read(ndev, RDFAR) -
1506				     sh_eth_read(ndev, RDLAR)) >> 4;
1507
1508			mdp->cur_rx = count;
1509			mdp->dirty_rx = count;
1510		}
1511		sh_eth_write(ndev, EDRRR_R, EDRRR);
1512	}
1513
1514	*quota -= limit - boguscnt - 1;
1515
1516	return *quota <= 0;
1517}
1518
1519static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1520{
1521	/* disable tx and rx */
1522	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1523}
1524
1525static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1526{
1527	/* enable tx and rx */
1528	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1529}
1530
1531/* error control function */
1532static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1533{
1534	struct sh_eth_private *mdp = netdev_priv(ndev);
1535	u32 felic_stat;
1536	u32 link_stat;
1537	u32 mask;
1538
1539	if (intr_status & EESR_ECI) {
1540		felic_stat = sh_eth_read(ndev, ECSR);
1541		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1542		if (felic_stat & ECSR_ICD)
1543			ndev->stats.tx_carrier_errors++;
1544		if (felic_stat & ECSR_LCHNG) {
1545			/* Link Changed */
1546			if (mdp->cd->no_psr || mdp->no_ether_link) {
1547				goto ignore_link;
1548			} else {
1549				link_stat = (sh_eth_read(ndev, PSR));
1550				if (mdp->ether_link_active_low)
1551					link_stat = ~link_stat;
1552			}
1553			if (!(link_stat & PHY_ST_LINK)) {
1554				sh_eth_rcv_snd_disable(ndev);
1555			} else {
1556				/* Link Up */
1557				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1558				/* clear int */
1559				sh_eth_modify(ndev, ECSR, 0, 0);
1560				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1561					      DMAC_M_ECI);
1562				/* enable tx and rx */
1563				sh_eth_rcv_snd_enable(ndev);
1564			}
1565		}
1566	}
 
 
 
 
 
 
 
1567
1568ignore_link:
1569	if (intr_status & EESR_TWB) {
1570		/* Unused write back interrupt */
1571		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1572			ndev->stats.tx_aborted_errors++;
1573			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1574		}
1575	}
1576
1577	if (intr_status & EESR_RABT) {
1578		/* Receive Abort int */
1579		if (intr_status & EESR_RFRMER) {
1580			/* Receive Frame Overflow int */
1581			ndev->stats.rx_frame_errors++;
1582		}
1583	}
1584
1585	if (intr_status & EESR_TDE) {
1586		/* Transmit Descriptor Empty int */
1587		ndev->stats.tx_fifo_errors++;
1588		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1589	}
1590
1591	if (intr_status & EESR_TFE) {
1592		/* FIFO under flow */
1593		ndev->stats.tx_fifo_errors++;
1594		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1595	}
1596
1597	if (intr_status & EESR_RDE) {
1598		/* Receive Descriptor Empty int */
1599		ndev->stats.rx_over_errors++;
1600	}
1601
1602	if (intr_status & EESR_RFE) {
1603		/* Receive FIFO Overflow int */
1604		ndev->stats.rx_fifo_errors++;
1605	}
1606
1607	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1608		/* Address Error */
1609		ndev->stats.tx_fifo_errors++;
1610		netif_err(mdp, tx_err, ndev, "Address Error\n");
1611	}
1612
1613	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1614	if (mdp->cd->no_ade)
1615		mask &= ~EESR_ADE;
1616	if (intr_status & mask) {
1617		/* Tx error */
1618		u32 edtrr = sh_eth_read(ndev, EDTRR);
1619
1620		/* dmesg */
1621		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1622			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1623			   (u32)ndev->state, edtrr);
1624		/* dirty buffer free */
1625		sh_eth_txfree(ndev);
1626
1627		/* SH7712 BUG */
1628		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1629			/* tx dma start */
1630			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1631		}
1632		/* wakeup */
1633		netif_wake_queue(ndev);
1634	}
1635}
1636
1637static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1638{
1639	struct net_device *ndev = netdev;
1640	struct sh_eth_private *mdp = netdev_priv(ndev);
1641	struct sh_eth_cpu_data *cd = mdp->cd;
1642	irqreturn_t ret = IRQ_NONE;
1643	u32 intr_status, intr_enable;
1644
1645	spin_lock(&mdp->lock);
1646
1647	/* Get interrupt status */
1648	intr_status = sh_eth_read(ndev, EESR);
1649	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1650	 * enabled since it's the one that  comes thru regardless of the mask,
1651	 * and we need to fully handle it in sh_eth_error() in order to quench
1652	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
 
1653	 */
1654	intr_enable = sh_eth_read(ndev, EESIPR);
1655	intr_status &= intr_enable | DMAC_M_ECI;
1656	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
 
1657		ret = IRQ_HANDLED;
1658	else
1659		goto out;
1660
1661	if (unlikely(!mdp->irq_enabled)) {
1662		sh_eth_write(ndev, 0, EESIPR);
1663		goto out;
1664	}
1665
1666	if (intr_status & EESR_RX_CHECK) {
1667		if (napi_schedule_prep(&mdp->napi)) {
1668			/* Mask Rx interrupts */
1669			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1670				     EESIPR);
1671			__napi_schedule(&mdp->napi);
1672		} else {
1673			netdev_warn(ndev,
1674				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1675				    intr_status, intr_enable);
1676		}
1677	}
1678
1679	/* Tx Check */
1680	if (intr_status & cd->tx_check) {
1681		/* Clear Tx interrupts */
1682		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1683
1684		sh_eth_txfree(ndev);
1685		netif_wake_queue(ndev);
1686	}
1687
 
 
 
 
1688	if (intr_status & cd->eesr_err_check) {
1689		/* Clear error interrupts */
1690		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1691
1692		sh_eth_error(ndev, intr_status);
1693	}
1694
1695out:
1696	spin_unlock(&mdp->lock);
1697
1698	return ret;
1699}
1700
1701static int sh_eth_poll(struct napi_struct *napi, int budget)
1702{
1703	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1704						  napi);
1705	struct net_device *ndev = napi->dev;
1706	int quota = budget;
1707	u32 intr_status;
1708
1709	for (;;) {
1710		intr_status = sh_eth_read(ndev, EESR);
1711		if (!(intr_status & EESR_RX_CHECK))
1712			break;
1713		/* Clear Rx interrupts */
1714		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1715
1716		if (sh_eth_rx(ndev, intr_status, &quota))
1717			goto out;
1718	}
1719
1720	napi_complete(napi);
1721
1722	/* Reenable Rx interrupts */
1723	if (mdp->irq_enabled)
1724		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1725out:
1726	return budget - quota;
1727}
1728
1729/* PHY state control function */
1730static void sh_eth_adjust_link(struct net_device *ndev)
1731{
1732	struct sh_eth_private *mdp = netdev_priv(ndev);
1733	struct phy_device *phydev = ndev->phydev;
 
1734	int new_state = 0;
1735
 
 
 
 
 
 
1736	if (phydev->link) {
1737		if (phydev->duplex != mdp->duplex) {
1738			new_state = 1;
1739			mdp->duplex = phydev->duplex;
1740			if (mdp->cd->set_duplex)
1741				mdp->cd->set_duplex(ndev);
1742		}
1743
1744		if (phydev->speed != mdp->speed) {
1745			new_state = 1;
1746			mdp->speed = phydev->speed;
1747			if (mdp->cd->set_rate)
1748				mdp->cd->set_rate(ndev);
1749		}
1750		if (!mdp->link) {
1751			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1752			new_state = 1;
1753			mdp->link = phydev->link;
1754			if (mdp->cd->no_psr || mdp->no_ether_link)
1755				sh_eth_rcv_snd_enable(ndev);
1756		}
1757	} else if (mdp->link) {
1758		new_state = 1;
1759		mdp->link = 0;
1760		mdp->speed = 0;
1761		mdp->duplex = -1;
1762		if (mdp->cd->no_psr || mdp->no_ether_link)
1763			sh_eth_rcv_snd_disable(ndev);
1764	}
1765
 
 
 
 
 
 
1766	if (new_state && netif_msg_link(mdp))
1767		phy_print_status(phydev);
1768}
1769
1770/* PHY init function */
1771static int sh_eth_phy_init(struct net_device *ndev)
1772{
1773	struct device_node *np = ndev->dev.parent->of_node;
1774	struct sh_eth_private *mdp = netdev_priv(ndev);
1775	struct phy_device *phydev;
1776
1777	mdp->link = 0;
1778	mdp->speed = 0;
1779	mdp->duplex = -1;
1780
1781	/* Try connect to PHY */
1782	if (np) {
1783		struct device_node *pn;
1784
1785		pn = of_parse_phandle(np, "phy-handle", 0);
1786		phydev = of_phy_connect(ndev, pn,
1787					sh_eth_adjust_link, 0,
1788					mdp->phy_interface);
1789
1790		of_node_put(pn);
1791		if (!phydev)
1792			phydev = ERR_PTR(-ENOENT);
1793	} else {
1794		char phy_id[MII_BUS_ID_SIZE + 3];
1795
1796		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1797			 mdp->mii_bus->id, mdp->phy_id);
1798
1799		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1800				     mdp->phy_interface);
1801	}
1802
1803	if (IS_ERR(phydev)) {
1804		netdev_err(ndev, "failed to connect PHY\n");
1805		return PTR_ERR(phydev);
1806	}
1807
 
 
 
 
1808	phy_attached_info(phydev);
1809
1810	return 0;
1811}
1812
1813/* PHY control start function */
1814static int sh_eth_phy_start(struct net_device *ndev)
1815{
1816	int ret;
1817
1818	ret = sh_eth_phy_init(ndev);
1819	if (ret)
1820		return ret;
1821
1822	phy_start(ndev->phydev);
1823
1824	return 0;
1825}
1826
1827static int sh_eth_get_link_ksettings(struct net_device *ndev,
1828				     struct ethtool_link_ksettings *cmd)
1829{
1830	struct sh_eth_private *mdp = netdev_priv(ndev);
1831	unsigned long flags;
1832	int ret;
1833
1834	if (!ndev->phydev)
1835		return -ENODEV;
1836
1837	spin_lock_irqsave(&mdp->lock, flags);
1838	ret = phy_ethtool_ksettings_get(ndev->phydev, cmd);
1839	spin_unlock_irqrestore(&mdp->lock, flags);
1840
1841	return ret;
1842}
1843
1844static int sh_eth_set_link_ksettings(struct net_device *ndev,
1845				     const struct ethtool_link_ksettings *cmd)
1846{
1847	struct sh_eth_private *mdp = netdev_priv(ndev);
1848	unsigned long flags;
1849	int ret;
1850
1851	if (!ndev->phydev)
1852		return -ENODEV;
1853
1854	spin_lock_irqsave(&mdp->lock, flags);
1855
1856	/* disable tx and rx */
1857	sh_eth_rcv_snd_disable(ndev);
1858
1859	ret = phy_ethtool_ksettings_set(ndev->phydev, cmd);
1860	if (ret)
1861		goto error_exit;
1862
1863	if (cmd->base.duplex == DUPLEX_FULL)
1864		mdp->duplex = 1;
1865	else
1866		mdp->duplex = 0;
1867
1868	if (mdp->cd->set_duplex)
1869		mdp->cd->set_duplex(ndev);
1870
1871error_exit:
1872	mdelay(1);
1873
1874	/* enable tx and rx */
1875	sh_eth_rcv_snd_enable(ndev);
1876
1877	spin_unlock_irqrestore(&mdp->lock, flags);
1878
1879	return ret;
1880}
1881
1882/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1883 * version must be bumped as well.  Just adding registers up to that
1884 * limit is fine, as long as the existing register indices don't
1885 * change.
1886 */
1887#define SH_ETH_REG_DUMP_VERSION		1
1888#define SH_ETH_REG_DUMP_MAX_REGS	256
1889
1890static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1891{
1892	struct sh_eth_private *mdp = netdev_priv(ndev);
1893	struct sh_eth_cpu_data *cd = mdp->cd;
1894	u32 *valid_map;
1895	size_t len;
1896
1897	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1898
1899	/* Dump starts with a bitmap that tells ethtool which
1900	 * registers are defined for this chip.
1901	 */
1902	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1903	if (buf) {
1904		valid_map = buf;
1905		buf += len;
1906	} else {
1907		valid_map = NULL;
1908	}
1909
1910	/* Add a register to the dump, if it has a defined offset.
1911	 * This automatically skips most undefined registers, but for
1912	 * some it is also necessary to check a capability flag in
1913	 * struct sh_eth_cpu_data.
1914	 */
1915#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1916#define add_reg_from(reg, read_expr) do {				\
1917		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1918			if (buf) {					\
1919				mark_reg_valid(reg);			\
1920				*buf++ = read_expr;			\
1921			}						\
1922			++len;						\
1923		}							\
1924	} while (0)
1925#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1926#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1927
1928	add_reg(EDSR);
1929	add_reg(EDMR);
1930	add_reg(EDTRR);
1931	add_reg(EDRRR);
1932	add_reg(EESR);
1933	add_reg(EESIPR);
1934	add_reg(TDLAR);
1935	add_reg(TDFAR);
 
1936	add_reg(TDFXR);
1937	add_reg(TDFFR);
1938	add_reg(RDLAR);
1939	add_reg(RDFAR);
 
1940	add_reg(RDFXR);
1941	add_reg(RDFFR);
1942	add_reg(TRSCER);
1943	add_reg(RMFCR);
1944	add_reg(TFTR);
1945	add_reg(FDR);
1946	add_reg(RMCR);
1947	add_reg(TFUCR);
1948	add_reg(RFOCR);
1949	if (cd->rmiimode)
1950		add_reg(RMIIMODE);
1951	add_reg(FCFTR);
1952	if (cd->rpadir)
1953		add_reg(RPADIR);
1954	if (!cd->no_trimd)
1955		add_reg(TRIMD);
1956	add_reg(ECMR);
1957	add_reg(ECSR);
1958	add_reg(ECSIPR);
1959	add_reg(PIR);
1960	if (!cd->no_psr)
1961		add_reg(PSR);
1962	add_reg(RDMLR);
1963	add_reg(RFLR);
1964	add_reg(IPGR);
1965	if (cd->apr)
1966		add_reg(APR);
1967	if (cd->mpr)
1968		add_reg(MPR);
1969	add_reg(RFCR);
1970	add_reg(RFCF);
1971	if (cd->tpauser)
1972		add_reg(TPAUSER);
1973	add_reg(TPAUSECR);
1974	add_reg(GECMR);
 
1975	if (cd->bculr)
1976		add_reg(BCULR);
1977	add_reg(MAHR);
1978	add_reg(MALR);
1979	add_reg(TROCR);
1980	add_reg(CDCR);
1981	add_reg(LCCR);
1982	add_reg(CNDCR);
 
 
1983	add_reg(CEFCR);
1984	add_reg(FRECR);
1985	add_reg(TSFRCR);
1986	add_reg(TLFRCR);
1987	add_reg(CERCR);
1988	add_reg(CEECR);
 
 
1989	add_reg(MAFCR);
1990	if (cd->rtrate)
1991		add_reg(RTRATE);
1992	if (cd->hw_crc)
1993		add_reg(CSMR);
1994	if (cd->select_mii)
1995		add_reg(RMII_MII);
1996	add_reg(ARSTR);
1997	if (cd->tsu) {
 
1998		add_tsu_reg(TSU_CTRST);
1999		add_tsu_reg(TSU_FWEN0);
2000		add_tsu_reg(TSU_FWEN1);
2001		add_tsu_reg(TSU_FCM);
2002		add_tsu_reg(TSU_BSYSL0);
2003		add_tsu_reg(TSU_BSYSL1);
2004		add_tsu_reg(TSU_PRISL0);
2005		add_tsu_reg(TSU_PRISL1);
2006		add_tsu_reg(TSU_FWSL0);
2007		add_tsu_reg(TSU_FWSL1);
 
 
2008		add_tsu_reg(TSU_FWSLC);
2009		add_tsu_reg(TSU_QTAG0);
2010		add_tsu_reg(TSU_QTAG1);
2011		add_tsu_reg(TSU_QTAGM0);
2012		add_tsu_reg(TSU_QTAGM1);
2013		add_tsu_reg(TSU_FWSR);
2014		add_tsu_reg(TSU_FWINMK);
2015		add_tsu_reg(TSU_ADQT0);
2016		add_tsu_reg(TSU_ADQT1);
2017		add_tsu_reg(TSU_VTAG0);
2018		add_tsu_reg(TSU_VTAG1);
2019		add_tsu_reg(TSU_ADSBSY);
2020		add_tsu_reg(TSU_TEN);
2021		add_tsu_reg(TSU_POST1);
2022		add_tsu_reg(TSU_POST2);
2023		add_tsu_reg(TSU_POST3);
2024		add_tsu_reg(TSU_POST4);
2025		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2026			/* This is the start of a table, not just a single
2027			 * register.
2028			 */
2029			if (buf) {
2030				unsigned int i;
2031
2032				mark_reg_valid(TSU_ADRH0);
2033				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2034					*buf++ = ioread32(
2035						mdp->tsu_addr +
2036						mdp->reg_offset[TSU_ADRH0] +
2037						i * 4);
2038			}
2039			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2040		}
 
2041	}
2042
2043#undef mark_reg_valid
2044#undef add_reg_from
2045#undef add_reg
2046#undef add_tsu_reg
2047
2048	return len * 4;
2049}
2050
2051static int sh_eth_get_regs_len(struct net_device *ndev)
2052{
2053	return __sh_eth_get_regs(ndev, NULL);
2054}
2055
2056static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2057			    void *buf)
2058{
2059	struct sh_eth_private *mdp = netdev_priv(ndev);
2060
2061	regs->version = SH_ETH_REG_DUMP_VERSION;
2062
2063	pm_runtime_get_sync(&mdp->pdev->dev);
2064	__sh_eth_get_regs(ndev, buf);
2065	pm_runtime_put_sync(&mdp->pdev->dev);
2066}
2067
2068static int sh_eth_nway_reset(struct net_device *ndev)
2069{
2070	struct sh_eth_private *mdp = netdev_priv(ndev);
2071	unsigned long flags;
2072	int ret;
2073
2074	if (!ndev->phydev)
2075		return -ENODEV;
2076
2077	spin_lock_irqsave(&mdp->lock, flags);
2078	ret = phy_start_aneg(ndev->phydev);
2079	spin_unlock_irqrestore(&mdp->lock, flags);
2080
2081	return ret;
2082}
2083
2084static u32 sh_eth_get_msglevel(struct net_device *ndev)
2085{
2086	struct sh_eth_private *mdp = netdev_priv(ndev);
2087	return mdp->msg_enable;
2088}
2089
2090static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2091{
2092	struct sh_eth_private *mdp = netdev_priv(ndev);
2093	mdp->msg_enable = value;
2094}
2095
2096static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2097	"rx_current", "tx_current",
2098	"rx_dirty", "tx_dirty",
2099};
2100#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2101
2102static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2103{
2104	switch (sset) {
2105	case ETH_SS_STATS:
2106		return SH_ETH_STATS_LEN;
2107	default:
2108		return -EOPNOTSUPP;
2109	}
2110}
2111
2112static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2113				     struct ethtool_stats *stats, u64 *data)
2114{
2115	struct sh_eth_private *mdp = netdev_priv(ndev);
2116	int i = 0;
2117
2118	/* device-specific stats */
2119	data[i++] = mdp->cur_rx;
2120	data[i++] = mdp->cur_tx;
2121	data[i++] = mdp->dirty_rx;
2122	data[i++] = mdp->dirty_tx;
2123}
2124
2125static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2126{
2127	switch (stringset) {
2128	case ETH_SS_STATS:
2129		memcpy(data, *sh_eth_gstrings_stats,
2130		       sizeof(sh_eth_gstrings_stats));
2131		break;
2132	}
2133}
2134
2135static void sh_eth_get_ringparam(struct net_device *ndev,
2136				 struct ethtool_ringparam *ring)
 
 
2137{
2138	struct sh_eth_private *mdp = netdev_priv(ndev);
2139
2140	ring->rx_max_pending = RX_RING_MAX;
2141	ring->tx_max_pending = TX_RING_MAX;
2142	ring->rx_pending = mdp->num_rx_ring;
2143	ring->tx_pending = mdp->num_tx_ring;
2144}
2145
2146static int sh_eth_set_ringparam(struct net_device *ndev,
2147				struct ethtool_ringparam *ring)
 
 
2148{
2149	struct sh_eth_private *mdp = netdev_priv(ndev);
2150	int ret;
2151
2152	if (ring->tx_pending > TX_RING_MAX ||
2153	    ring->rx_pending > RX_RING_MAX ||
2154	    ring->tx_pending < TX_RING_MIN ||
2155	    ring->rx_pending < RX_RING_MIN)
2156		return -EINVAL;
2157	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2158		return -EINVAL;
2159
2160	if (netif_running(ndev)) {
2161		netif_device_detach(ndev);
2162		netif_tx_disable(ndev);
2163
2164		/* Serialise with the interrupt handler and NAPI, then
2165		 * disable interrupts.  We have to clear the
2166		 * irq_enabled flag first to ensure that interrupts
2167		 * won't be re-enabled.
2168		 */
2169		mdp->irq_enabled = false;
2170		synchronize_irq(ndev->irq);
2171		napi_synchronize(&mdp->napi);
2172		sh_eth_write(ndev, 0x0000, EESIPR);
2173
2174		sh_eth_dev_exit(ndev);
2175
2176		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2177		sh_eth_ring_free(ndev);
2178	}
2179
2180	/* Set new parameters */
2181	mdp->num_rx_ring = ring->rx_pending;
2182	mdp->num_tx_ring = ring->tx_pending;
2183
2184	if (netif_running(ndev)) {
2185		ret = sh_eth_ring_init(ndev);
2186		if (ret < 0) {
2187			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2188				   __func__);
2189			return ret;
2190		}
2191		ret = sh_eth_dev_init(ndev);
2192		if (ret < 0) {
2193			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2194				   __func__);
2195			return ret;
2196		}
2197
2198		netif_device_attach(ndev);
2199	}
2200
2201	return 0;
2202}
2203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204static const struct ethtool_ops sh_eth_ethtool_ops = {
2205	.get_regs_len	= sh_eth_get_regs_len,
2206	.get_regs	= sh_eth_get_regs,
2207	.nway_reset	= sh_eth_nway_reset,
2208	.get_msglevel	= sh_eth_get_msglevel,
2209	.set_msglevel	= sh_eth_set_msglevel,
2210	.get_link	= ethtool_op_get_link,
2211	.get_strings	= sh_eth_get_strings,
2212	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2213	.get_sset_count     = sh_eth_get_sset_count,
2214	.get_ringparam	= sh_eth_get_ringparam,
2215	.set_ringparam	= sh_eth_set_ringparam,
2216	.get_link_ksettings = sh_eth_get_link_ksettings,
2217	.set_link_ksettings = sh_eth_set_link_ksettings,
 
 
2218};
2219
2220/* network device open function */
2221static int sh_eth_open(struct net_device *ndev)
2222{
2223	struct sh_eth_private *mdp = netdev_priv(ndev);
2224	int ret;
2225
2226	pm_runtime_get_sync(&mdp->pdev->dev);
2227
2228	napi_enable(&mdp->napi);
2229
2230	ret = request_irq(ndev->irq, sh_eth_interrupt,
2231			  mdp->cd->irq_flags, ndev->name, ndev);
2232	if (ret) {
2233		netdev_err(ndev, "Can not assign IRQ number\n");
2234		goto out_napi_off;
2235	}
2236
2237	/* Descriptor set */
2238	ret = sh_eth_ring_init(ndev);
2239	if (ret)
2240		goto out_free_irq;
2241
2242	/* device init */
2243	ret = sh_eth_dev_init(ndev);
2244	if (ret)
2245		goto out_free_irq;
2246
2247	/* PHY control start*/
2248	ret = sh_eth_phy_start(ndev);
2249	if (ret)
2250		goto out_free_irq;
2251
2252	netif_start_queue(ndev);
2253
2254	mdp->is_opened = 1;
2255
2256	return ret;
2257
2258out_free_irq:
2259	free_irq(ndev->irq, ndev);
2260out_napi_off:
2261	napi_disable(&mdp->napi);
2262	pm_runtime_put_sync(&mdp->pdev->dev);
2263	return ret;
2264}
2265
2266/* Timeout function */
2267static void sh_eth_tx_timeout(struct net_device *ndev)
2268{
2269	struct sh_eth_private *mdp = netdev_priv(ndev);
2270	struct sh_eth_rxdesc *rxdesc;
2271	int i;
2272
2273	netif_stop_queue(ndev);
2274
2275	netif_err(mdp, timer, ndev,
2276		  "transmit timed out, status %8.8x, resetting...\n",
2277		  sh_eth_read(ndev, EESR));
2278
2279	/* tx_errors count up */
2280	ndev->stats.tx_errors++;
2281
2282	/* Free all the skbuffs in the Rx queue. */
2283	for (i = 0; i < mdp->num_rx_ring; i++) {
2284		rxdesc = &mdp->rx_ring[i];
2285		rxdesc->status = cpu_to_le32(0);
2286		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2287		dev_kfree_skb(mdp->rx_skbuff[i]);
2288		mdp->rx_skbuff[i] = NULL;
2289	}
2290	for (i = 0; i < mdp->num_tx_ring; i++) {
2291		dev_kfree_skb(mdp->tx_skbuff[i]);
2292		mdp->tx_skbuff[i] = NULL;
2293	}
2294
2295	/* device init */
2296	sh_eth_dev_init(ndev);
2297
2298	netif_start_queue(ndev);
2299}
2300
2301/* Packet transmit function */
2302static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
 
2303{
2304	struct sh_eth_private *mdp = netdev_priv(ndev);
2305	struct sh_eth_txdesc *txdesc;
2306	dma_addr_t dma_addr;
2307	u32 entry;
2308	unsigned long flags;
2309
2310	spin_lock_irqsave(&mdp->lock, flags);
2311	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2312		if (!sh_eth_txfree(ndev)) {
2313			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2314			netif_stop_queue(ndev);
2315			spin_unlock_irqrestore(&mdp->lock, flags);
2316			return NETDEV_TX_BUSY;
2317		}
2318	}
2319	spin_unlock_irqrestore(&mdp->lock, flags);
2320
2321	if (skb_put_padto(skb, ETH_ZLEN))
2322		return NETDEV_TX_OK;
2323
2324	entry = mdp->cur_tx % mdp->num_tx_ring;
2325	mdp->tx_skbuff[entry] = skb;
2326	txdesc = &mdp->tx_ring[entry];
2327	/* soft swap. */
2328	if (!mdp->cd->hw_swap)
2329		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2330	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2331				  DMA_TO_DEVICE);
2332	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2333		kfree_skb(skb);
2334		return NETDEV_TX_OK;
2335	}
2336	txdesc->addr = cpu_to_le32(dma_addr);
2337	txdesc->len  = cpu_to_le32(skb->len << 16);
2338
2339	dma_wmb(); /* TACT bit must be set after all the above writes */
2340	if (entry >= mdp->num_tx_ring - 1)
2341		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2342	else
2343		txdesc->status |= cpu_to_le32(TD_TACT);
2344
 
2345	mdp->cur_tx++;
2346
2347	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2348		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2349
2350	return NETDEV_TX_OK;
2351}
2352
2353/* The statistics registers have write-clear behaviour, which means we
2354 * will lose any increment between the read and write.  We mitigate
2355 * this by only clearing when we read a non-zero value, so we will
2356 * never falsely report a total of zero.
2357 */
2358static void
2359sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2360{
2361	u32 delta = sh_eth_read(ndev, reg);
2362
2363	if (delta) {
2364		*stat += delta;
2365		sh_eth_write(ndev, 0, reg);
2366	}
2367}
2368
2369static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2370{
2371	struct sh_eth_private *mdp = netdev_priv(ndev);
2372
2373	if (sh_eth_is_rz_fast_ether(mdp))
2374		return &ndev->stats;
2375
2376	if (!mdp->is_opened)
2377		return &ndev->stats;
2378
2379	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2380	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2381	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2382
2383	if (sh_eth_is_gether(mdp)) {
2384		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2385				   CERCR);
2386		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2387				   CEECR);
2388	} else {
2389		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2390				   CNDCR);
2391	}
2392
2393	return &ndev->stats;
2394}
2395
2396/* device close function */
2397static int sh_eth_close(struct net_device *ndev)
2398{
2399	struct sh_eth_private *mdp = netdev_priv(ndev);
2400
2401	netif_stop_queue(ndev);
2402
2403	/* Serialise with the interrupt handler and NAPI, then disable
2404	 * interrupts.  We have to clear the irq_enabled flag first to
2405	 * ensure that interrupts won't be re-enabled.
2406	 */
2407	mdp->irq_enabled = false;
2408	synchronize_irq(ndev->irq);
2409	napi_disable(&mdp->napi);
2410	sh_eth_write(ndev, 0x0000, EESIPR);
2411
2412	sh_eth_dev_exit(ndev);
2413
2414	/* PHY Disconnect */
2415	if (ndev->phydev) {
2416		phy_stop(ndev->phydev);
2417		phy_disconnect(ndev->phydev);
2418	}
2419
2420	free_irq(ndev->irq, ndev);
2421
2422	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2423	sh_eth_ring_free(ndev);
2424
2425	pm_runtime_put_sync(&mdp->pdev->dev);
2426
2427	mdp->is_opened = 0;
2428
2429	return 0;
2430}
2431
2432/* ioctl to device function */
2433static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2434{
2435	struct phy_device *phydev = ndev->phydev;
 
2436
2437	if (!netif_running(ndev))
2438		return -EINVAL;
2439
2440	if (!phydev)
2441		return -ENODEV;
2442
2443	return phy_mii_ioctl(phydev, rq, cmd);
2444}
2445
2446/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2447static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2448					    int entry)
2449{
2450	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2451}
2452
2453static u32 sh_eth_tsu_get_post_mask(int entry)
2454{
2455	return 0x0f << (28 - ((entry % 8) * 4));
2456}
2457
2458static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2459{
2460	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2461}
2462
2463static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2464					     int entry)
2465{
2466	struct sh_eth_private *mdp = netdev_priv(ndev);
 
2467	u32 tmp;
2468	void *reg_offset;
2469
2470	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2471	tmp = ioread32(reg_offset);
2472	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2473}
2474
2475static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2476					      int entry)
2477{
2478	struct sh_eth_private *mdp = netdev_priv(ndev);
 
2479	u32 post_mask, ref_mask, tmp;
2480	void *reg_offset;
2481
2482	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2483	post_mask = sh_eth_tsu_get_post_mask(entry);
2484	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2485
2486	tmp = ioread32(reg_offset);
2487	iowrite32(tmp & ~post_mask, reg_offset);
2488
2489	/* If other port enables, the function returns "true" */
2490	return tmp & ref_mask;
2491}
2492
2493static int sh_eth_tsu_busy(struct net_device *ndev)
2494{
2495	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2496	struct sh_eth_private *mdp = netdev_priv(ndev);
2497
2498	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2499		udelay(10);
2500		timeout--;
2501		if (timeout <= 0) {
2502			netdev_err(ndev, "%s: timeout\n", __func__);
2503			return -ETIMEDOUT;
2504		}
2505	}
2506
2507	return 0;
2508}
2509
2510static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2511				  const u8 *addr)
2512{
 
2513	u32 val;
2514
2515	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2516	iowrite32(val, reg);
2517	if (sh_eth_tsu_busy(ndev) < 0)
2518		return -EBUSY;
2519
2520	val = addr[4] << 8 | addr[5];
2521	iowrite32(val, reg + 4);
2522	if (sh_eth_tsu_busy(ndev) < 0)
2523		return -EBUSY;
2524
2525	return 0;
2526}
2527
2528static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2529{
 
2530	u32 val;
2531
2532	val = ioread32(reg);
2533	addr[0] = (val >> 24) & 0xff;
2534	addr[1] = (val >> 16) & 0xff;
2535	addr[2] = (val >> 8) & 0xff;
2536	addr[3] = val & 0xff;
2537	val = ioread32(reg + 4);
2538	addr[4] = (val >> 8) & 0xff;
2539	addr[5] = val & 0xff;
2540}
2541
2542
2543static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2544{
2545	struct sh_eth_private *mdp = netdev_priv(ndev);
2546	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2547	int i;
2548	u8 c_addr[ETH_ALEN];
2549
2550	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2551		sh_eth_tsu_read_entry(reg_offset, c_addr);
2552		if (ether_addr_equal(addr, c_addr))
2553			return i;
2554	}
2555
2556	return -ENOENT;
2557}
2558
2559static int sh_eth_tsu_find_empty(struct net_device *ndev)
2560{
2561	u8 blank[ETH_ALEN];
2562	int entry;
2563
2564	memset(blank, 0, sizeof(blank));
2565	entry = sh_eth_tsu_find_entry(ndev, blank);
2566	return (entry < 0) ? -ENOMEM : entry;
2567}
2568
2569static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2570					      int entry)
2571{
2572	struct sh_eth_private *mdp = netdev_priv(ndev);
2573	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2574	int ret;
2575	u8 blank[ETH_ALEN];
2576
2577	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2578			 ~(1 << (31 - entry)), TSU_TEN);
2579
2580	memset(blank, 0, sizeof(blank));
2581	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2582	if (ret < 0)
2583		return ret;
2584	return 0;
2585}
2586
2587static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2588{
2589	struct sh_eth_private *mdp = netdev_priv(ndev);
2590	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2591	int i, ret;
2592
2593	if (!mdp->cd->tsu)
2594		return 0;
2595
2596	i = sh_eth_tsu_find_entry(ndev, addr);
2597	if (i < 0) {
2598		/* No entry found, create one */
2599		i = sh_eth_tsu_find_empty(ndev);
2600		if (i < 0)
2601			return -ENOMEM;
2602		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2603		if (ret < 0)
2604			return ret;
2605
2606		/* Enable the entry */
2607		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2608				 (1 << (31 - i)), TSU_TEN);
2609	}
2610
2611	/* Entry found or created, enable POST */
2612	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2613
2614	return 0;
2615}
2616
2617static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2618{
2619	struct sh_eth_private *mdp = netdev_priv(ndev);
2620	int i, ret;
2621
2622	if (!mdp->cd->tsu)
2623		return 0;
2624
2625	i = sh_eth_tsu_find_entry(ndev, addr);
2626	if (i) {
2627		/* Entry found */
2628		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2629			goto done;
2630
2631		/* Disable the entry if both ports was disabled */
2632		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2633		if (ret < 0)
2634			return ret;
2635	}
2636done:
2637	return 0;
2638}
2639
2640static int sh_eth_tsu_purge_all(struct net_device *ndev)
2641{
2642	struct sh_eth_private *mdp = netdev_priv(ndev);
2643	int i, ret;
2644
2645	if (!mdp->cd->tsu)
2646		return 0;
2647
2648	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2649		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2650			continue;
2651
2652		/* Disable the entry if both ports was disabled */
2653		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2654		if (ret < 0)
2655			return ret;
2656	}
2657
2658	return 0;
2659}
2660
2661static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2662{
2663	struct sh_eth_private *mdp = netdev_priv(ndev);
 
2664	u8 addr[ETH_ALEN];
2665	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2666	int i;
2667
2668	if (!mdp->cd->tsu)
2669		return;
2670
2671	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2672		sh_eth_tsu_read_entry(reg_offset, addr);
2673		if (is_multicast_ether_addr(addr))
2674			sh_eth_tsu_del_entry(ndev, addr);
2675	}
2676}
2677
2678/* Update promiscuous flag and multicast filter */
2679static void sh_eth_set_rx_mode(struct net_device *ndev)
2680{
2681	struct sh_eth_private *mdp = netdev_priv(ndev);
2682	u32 ecmr_bits;
2683	int mcast_all = 0;
2684	unsigned long flags;
2685
2686	spin_lock_irqsave(&mdp->lock, flags);
2687	/* Initial condition is MCT = 1, PRM = 0.
2688	 * Depending on ndev->flags, set PRM or clear MCT
2689	 */
2690	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2691	if (mdp->cd->tsu)
2692		ecmr_bits |= ECMR_MCT;
2693
2694	if (!(ndev->flags & IFF_MULTICAST)) {
2695		sh_eth_tsu_purge_mcast(ndev);
2696		mcast_all = 1;
2697	}
2698	if (ndev->flags & IFF_ALLMULTI) {
2699		sh_eth_tsu_purge_mcast(ndev);
2700		ecmr_bits &= ~ECMR_MCT;
2701		mcast_all = 1;
2702	}
2703
2704	if (ndev->flags & IFF_PROMISC) {
2705		sh_eth_tsu_purge_all(ndev);
2706		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2707	} else if (mdp->cd->tsu) {
2708		struct netdev_hw_addr *ha;
2709		netdev_for_each_mc_addr(ha, ndev) {
2710			if (mcast_all && is_multicast_ether_addr(ha->addr))
2711				continue;
2712
2713			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2714				if (!mcast_all) {
2715					sh_eth_tsu_purge_mcast(ndev);
2716					ecmr_bits &= ~ECMR_MCT;
2717					mcast_all = 1;
2718				}
2719			}
2720		}
2721	}
2722
2723	/* update the ethernet mode */
2724	sh_eth_write(ndev, ecmr_bits, ECMR);
2725
2726	spin_unlock_irqrestore(&mdp->lock, flags);
2727}
2728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2729static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2730{
2731	if (!mdp->port)
2732		return TSU_VTAG0;
2733	else
2734		return TSU_VTAG1;
2735}
2736
2737static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2738				  __be16 proto, u16 vid)
2739{
2740	struct sh_eth_private *mdp = netdev_priv(ndev);
2741	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2742
2743	if (unlikely(!mdp->cd->tsu))
2744		return -EPERM;
2745
2746	/* No filtering if vid = 0 */
2747	if (!vid)
2748		return 0;
2749
2750	mdp->vlan_num_ids++;
2751
2752	/* The controller has one VLAN tag HW filter. So, if the filter is
2753	 * already enabled, the driver disables it and the filte
2754	 */
2755	if (mdp->vlan_num_ids > 1) {
2756		/* disable VLAN filter */
2757		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2758		return 0;
2759	}
2760
2761	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2762			 vtag_reg_index);
2763
2764	return 0;
2765}
2766
2767static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2768				   __be16 proto, u16 vid)
2769{
2770	struct sh_eth_private *mdp = netdev_priv(ndev);
2771	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2772
2773	if (unlikely(!mdp->cd->tsu))
2774		return -EPERM;
2775
2776	/* No filtering if vid = 0 */
2777	if (!vid)
2778		return 0;
2779
2780	mdp->vlan_num_ids--;
2781	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2782
2783	return 0;
2784}
2785
2786/* SuperH's TSU register init function */
2787static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2788{
2789	if (sh_eth_is_rz_fast_ether(mdp)) {
2790		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2791		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2792				 TSU_FWSLC);	/* Enable POST registers */
2793		return;
2794	}
2795
2796	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2797	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2798	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2799	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2800	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2801	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2802	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2803	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2804	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2805	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2806	if (sh_eth_is_gether(mdp)) {
2807		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2808		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2809	} else {
2810		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2811		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2812	}
2813	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2814	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2815	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2816	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2817	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2818	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2819	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2820}
2821
2822/* MDIO bus release function */
2823static int sh_mdio_release(struct sh_eth_private *mdp)
2824{
2825	/* unregister mdio bus */
2826	mdiobus_unregister(mdp->mii_bus);
2827
2828	/* free bitbang info */
2829	free_mdio_bitbang(mdp->mii_bus);
2830
2831	return 0;
2832}
2833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834/* MDIO bus init function */
2835static int sh_mdio_init(struct sh_eth_private *mdp,
2836			struct sh_eth_plat_data *pd)
2837{
2838	int ret;
2839	struct bb_info *bitbang;
2840	struct platform_device *pdev = mdp->pdev;
2841	struct device *dev = &mdp->pdev->dev;
 
 
2842
2843	/* create bit control struct for PHY */
2844	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2845	if (!bitbang)
2846		return -ENOMEM;
2847
2848	/* bitbang init */
2849	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2850	bitbang->set_gate = pd->set_mdio_gate;
2851	bitbang->ctrl.ops = &bb_ops;
2852
2853	/* MII controller setting */
2854	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2855	if (!mdp->mii_bus)
2856		return -ENOMEM;
2857
 
 
 
 
 
 
2858	/* Hook up MII support for ethtool */
2859	mdp->mii_bus->name = "sh_mii";
2860	mdp->mii_bus->parent = dev;
2861	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2862		 pdev->name, pdev->id);
2863
2864	/* register MDIO bus */
2865	if (dev->of_node) {
2866		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2867	} else {
2868		if (pd->phy_irq > 0)
2869			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2870
2871		ret = mdiobus_register(mdp->mii_bus);
2872	}
2873
 
2874	if (ret)
2875		goto out_free_bus;
2876
 
 
 
 
 
 
 
 
2877	return 0;
2878
2879out_free_bus:
2880	free_mdio_bitbang(mdp->mii_bus);
2881	return ret;
2882}
2883
2884static const u16 *sh_eth_get_register_offset(int register_type)
2885{
2886	const u16 *reg_offset = NULL;
2887
2888	switch (register_type) {
2889	case SH_ETH_REG_GIGABIT:
2890		reg_offset = sh_eth_offset_gigabit;
2891		break;
2892	case SH_ETH_REG_FAST_RZ:
2893		reg_offset = sh_eth_offset_fast_rz;
2894		break;
2895	case SH_ETH_REG_FAST_RCAR:
2896		reg_offset = sh_eth_offset_fast_rcar;
2897		break;
2898	case SH_ETH_REG_FAST_SH4:
2899		reg_offset = sh_eth_offset_fast_sh4;
2900		break;
2901	case SH_ETH_REG_FAST_SH3_SH2:
2902		reg_offset = sh_eth_offset_fast_sh3_sh2;
2903		break;
2904	}
2905
2906	return reg_offset;
2907}
2908
2909static const struct net_device_ops sh_eth_netdev_ops = {
2910	.ndo_open		= sh_eth_open,
2911	.ndo_stop		= sh_eth_close,
2912	.ndo_start_xmit		= sh_eth_start_xmit,
2913	.ndo_get_stats		= sh_eth_get_stats,
2914	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2915	.ndo_tx_timeout		= sh_eth_tx_timeout,
2916	.ndo_do_ioctl		= sh_eth_do_ioctl,
 
2917	.ndo_validate_addr	= eth_validate_addr,
2918	.ndo_set_mac_address	= eth_mac_addr,
 
2919};
2920
2921static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2922	.ndo_open		= sh_eth_open,
2923	.ndo_stop		= sh_eth_close,
2924	.ndo_start_xmit		= sh_eth_start_xmit,
2925	.ndo_get_stats		= sh_eth_get_stats,
2926	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2927	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2928	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2929	.ndo_tx_timeout		= sh_eth_tx_timeout,
2930	.ndo_do_ioctl		= sh_eth_do_ioctl,
 
2931	.ndo_validate_addr	= eth_validate_addr,
2932	.ndo_set_mac_address	= eth_mac_addr,
 
2933};
2934
2935#ifdef CONFIG_OF
2936static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2937{
2938	struct device_node *np = dev->of_node;
2939	struct sh_eth_plat_data *pdata;
2940	const char *mac_addr;
 
2941
2942	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2943	if (!pdata)
2944		return NULL;
2945
2946	pdata->phy_interface = of_get_phy_mode(np);
 
 
 
2947
2948	mac_addr = of_get_mac_address(np);
2949	if (mac_addr)
2950		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2951
2952	pdata->no_ether_link =
2953		of_property_read_bool(np, "renesas,no-ether-link");
2954	pdata->ether_link_active_low =
2955		of_property_read_bool(np, "renesas,ether-link-active-low");
2956
2957	return pdata;
2958}
2959
2960static const struct of_device_id sh_eth_match_table[] = {
2961	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2962	{ .compatible = "renesas,ether-r8a7743", .data = &r8a779x_data },
2963	{ .compatible = "renesas,ether-r8a7745", .data = &r8a779x_data },
2964	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2965	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2966	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2967	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2968	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2969	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
 
2970	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
 
 
 
2971	{ }
2972};
2973MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2974#else
2975static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2976{
2977	return NULL;
2978}
2979#endif
2980
2981static int sh_eth_drv_probe(struct platform_device *pdev)
2982{
2983	struct resource *res;
2984	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2985	const struct platform_device_id *id = platform_get_device_id(pdev);
2986	struct sh_eth_private *mdp;
2987	struct net_device *ndev;
2988	int ret, devno;
2989
2990	/* get base addr */
2991	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2992
2993	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
2994	if (!ndev)
2995		return -ENOMEM;
2996
2997	pm_runtime_enable(&pdev->dev);
2998	pm_runtime_get_sync(&pdev->dev);
2999
3000	devno = pdev->id;
3001	if (devno < 0)
3002		devno = 0;
3003
3004	ret = platform_get_irq(pdev, 0);
3005	if (ret < 0)
3006		goto out_release;
3007	ndev->irq = ret;
3008
3009	SET_NETDEV_DEV(ndev, &pdev->dev);
3010
3011	mdp = netdev_priv(ndev);
3012	mdp->num_tx_ring = TX_RING_SIZE;
3013	mdp->num_rx_ring = RX_RING_SIZE;
3014	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3015	if (IS_ERR(mdp->addr)) {
3016		ret = PTR_ERR(mdp->addr);
3017		goto out_release;
3018	}
3019
3020	ndev->base_addr = res->start;
3021
3022	spin_lock_init(&mdp->lock);
3023	mdp->pdev = pdev;
3024
3025	if (pdev->dev.of_node)
3026		pd = sh_eth_parse_dt(&pdev->dev);
3027	if (!pd) {
3028		dev_err(&pdev->dev, "no platform data\n");
3029		ret = -EINVAL;
3030		goto out_release;
3031	}
3032
3033	/* get PHY ID */
3034	mdp->phy_id = pd->phy;
3035	mdp->phy_interface = pd->phy_interface;
3036	mdp->no_ether_link = pd->no_ether_link;
3037	mdp->ether_link_active_low = pd->ether_link_active_low;
3038
3039	/* set cpu data */
3040	if (id)
3041		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3042	else
3043		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3044
3045	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3046	if (!mdp->reg_offset) {
3047		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3048			mdp->cd->register_type);
3049		ret = -EINVAL;
3050		goto out_release;
3051	}
3052	sh_eth_set_default_cpu_data(mdp->cd);
3053
 
 
 
 
 
 
 
 
 
 
 
 
3054	/* set function */
3055	if (mdp->cd->tsu)
3056		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3057	else
3058		ndev->netdev_ops = &sh_eth_netdev_ops;
3059	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3060	ndev->watchdog_timeo = TX_TIMEOUT;
3061
3062	/* debug message level */
3063	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3064
3065	/* read and set MAC address */
3066	read_mac_address(ndev, pd->mac_addr);
3067	if (!is_valid_ether_addr(ndev->dev_addr)) {
3068		dev_warn(&pdev->dev,
3069			 "no valid MAC address supplied, using a random one.\n");
3070		eth_hw_addr_random(ndev);
3071	}
3072
3073	/* ioremap the TSU registers */
3074	if (mdp->cd->tsu) {
 
3075		struct resource *rtsu;
 
3076		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3077		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3078		if (IS_ERR(mdp->tsu_addr)) {
3079			ret = PTR_ERR(mdp->tsu_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3080			goto out_release;
3081		}
3082		mdp->port = devno % 2;
3083		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3084	}
3085
3086	/* initialize first or needed device */
3087	if (!devno || pd->needs_init) {
3088		if (mdp->cd->chip_reset)
3089			mdp->cd->chip_reset(ndev);
3090
3091		if (mdp->cd->tsu) {
3092			/* TSU init (Init only)*/
3093			sh_eth_tsu_init(mdp);
3094		}
3095	}
3096
3097	if (mdp->cd->rmiimode)
3098		sh_eth_write(ndev, 0x1, RMIIMODE);
3099
3100	/* MDIO bus init */
3101	ret = sh_mdio_init(mdp, pd);
3102	if (ret) {
3103		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3104		goto out_release;
3105	}
3106
3107	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3108
3109	/* network device register */
3110	ret = register_netdev(ndev);
3111	if (ret)
3112		goto out_napi_del;
3113
 
 
 
3114	/* print device information */
3115	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3116		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3117
3118	pm_runtime_put(&pdev->dev);
3119	platform_set_drvdata(pdev, ndev);
3120
3121	return ret;
3122
3123out_napi_del:
3124	netif_napi_del(&mdp->napi);
3125	sh_mdio_release(mdp);
3126
3127out_release:
3128	/* net_dev free */
3129	if (ndev)
3130		free_netdev(ndev);
3131
3132	pm_runtime_put(&pdev->dev);
3133	pm_runtime_disable(&pdev->dev);
3134	return ret;
3135}
3136
3137static int sh_eth_drv_remove(struct platform_device *pdev)
3138{
3139	struct net_device *ndev = platform_get_drvdata(pdev);
3140	struct sh_eth_private *mdp = netdev_priv(ndev);
3141
3142	unregister_netdev(ndev);
3143	netif_napi_del(&mdp->napi);
3144	sh_mdio_release(mdp);
3145	pm_runtime_disable(&pdev->dev);
3146	free_netdev(ndev);
3147
3148	return 0;
3149}
3150
3151#ifdef CONFIG_PM
3152#ifdef CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153static int sh_eth_suspend(struct device *dev)
3154{
3155	struct net_device *ndev = dev_get_drvdata(dev);
3156	int ret = 0;
 
 
 
 
3157
3158	if (netif_running(ndev)) {
3159		netif_device_detach(ndev);
 
 
 
3160		ret = sh_eth_close(ndev);
3161	}
3162
3163	return ret;
3164}
3165
3166static int sh_eth_resume(struct device *dev)
3167{
3168	struct net_device *ndev = dev_get_drvdata(dev);
3169	int ret = 0;
 
 
 
 
3170
3171	if (netif_running(ndev)) {
 
 
3172		ret = sh_eth_open(ndev);
3173		if (ret < 0)
3174			return ret;
3175		netif_device_attach(ndev);
3176	}
 
3177
3178	return ret;
3179}
3180#endif
3181
3182static int sh_eth_runtime_nop(struct device *dev)
3183{
3184	/* Runtime PM callback shared between ->runtime_suspend()
3185	 * and ->runtime_resume(). Simply returns success.
3186	 *
3187	 * This driver re-initializes all registers after
3188	 * pm_runtime_get_sync() anyway so there is no need
3189	 * to save and restore registers here.
3190	 */
3191	return 0;
3192}
3193
3194static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3195	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3196	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3197};
3198#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3199#else
3200#define SH_ETH_PM_OPS NULL
3201#endif
3202
3203static struct platform_device_id sh_eth_id_table[] = {
3204	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3205	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3206	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3207	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3208	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3209	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3210	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3211	{ }
3212};
3213MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3214
3215static struct platform_driver sh_eth_driver = {
3216	.probe = sh_eth_drv_probe,
3217	.remove = sh_eth_drv_remove,
3218	.id_table = sh_eth_id_table,
3219	.driver = {
3220		   .name = CARDNAME,
3221		   .pm = SH_ETH_PM_OPS,
3222		   .of_match_table = of_match_ptr(sh_eth_match_table),
3223	},
3224};
3225
3226module_platform_driver(sh_eth_driver);
3227
3228MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3229MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3230MODULE_LICENSE("GPL v2");