Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = xa_load(&root->delayed_nodes, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the xarray. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the xarray at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the xarray, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123 void *ptr;
124
125again:
126 node = btrfs_get_delayed_node(btrfs_inode);
127 if (node)
128 return node;
129
130 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 if (!node)
132 return ERR_PTR(-ENOMEM);
133 btrfs_init_delayed_node(node, root, ino);
134
135 /* Cached in the inode and can be accessed. */
136 refcount_set(&node->refs, 2);
137
138 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
139 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
140 if (ret == -ENOMEM) {
141 kmem_cache_free(delayed_node_cache, node);
142 return ERR_PTR(-ENOMEM);
143 }
144 spin_lock(&root->inode_lock);
145 ptr = xa_load(&root->delayed_nodes, ino);
146 if (ptr) {
147 /* Somebody inserted it, go back and read it. */
148 spin_unlock(&root->inode_lock);
149 kmem_cache_free(delayed_node_cache, node);
150 node = NULL;
151 goto again;
152 }
153 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
154 ASSERT(xa_err(ptr) != -EINVAL);
155 ASSERT(xa_err(ptr) != -ENOMEM);
156 ASSERT(ptr == NULL);
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 }
201 spin_unlock(&root->lock);
202}
203
204static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
223static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270
271 spin_lock(&root->inode_lock);
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
278 spin_unlock(&root->inode_lock);
279 kmem_cache_free(delayed_node_cache, delayed_node);
280 }
281}
282
283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284{
285 __btrfs_release_delayed_node(node, 0);
286}
287
288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 struct btrfs_delayed_root *delayed_root)
290{
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
301 refcount_inc(&node->refs);
302out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306}
307
308static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310{
311 __btrfs_release_delayed_node(node, 1);
312}
313
314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
315 struct btrfs_delayed_node *node,
316 enum btrfs_delayed_item_type type)
317{
318 struct btrfs_delayed_item *item;
319
320 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->type = type;
324 item->bytes_reserved = 0;
325 item->delayed_node = node;
326 RB_CLEAR_NODE(&item->rb_node);
327 INIT_LIST_HEAD(&item->log_list);
328 item->logged = false;
329 refcount_set(&item->refs, 1);
330 }
331 return item;
332}
333
334/*
335 * Look up the delayed item by key.
336 *
337 * @delayed_node: pointer to the delayed node
338 * @index: the dir index value to lookup (offset of a dir index key)
339 *
340 * Note: if we don't find the right item, we will return the prev item and
341 * the next item.
342 */
343static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
344 struct rb_root *root,
345 u64 index)
346{
347 struct rb_node *node = root->rb_node;
348 struct btrfs_delayed_item *delayed_item = NULL;
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
353 if (delayed_item->index < index)
354 node = node->rb_right;
355 else if (delayed_item->index > index)
356 node = node->rb_left;
357 else
358 return delayed_item;
359 }
360
361 return NULL;
362}
363
364static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
365 struct btrfs_delayed_item *ins)
366{
367 struct rb_node **p, *node;
368 struct rb_node *parent_node = NULL;
369 struct rb_root_cached *root;
370 struct btrfs_delayed_item *item;
371 bool leftmost = true;
372
373 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
374 root = &delayed_node->ins_root;
375 else
376 root = &delayed_node->del_root;
377
378 p = &root->rb_root.rb_node;
379 node = &ins->rb_node;
380
381 while (*p) {
382 parent_node = *p;
383 item = rb_entry(parent_node, struct btrfs_delayed_item,
384 rb_node);
385
386 if (item->index < ins->index) {
387 p = &(*p)->rb_right;
388 leftmost = false;
389 } else if (item->index > ins->index) {
390 p = &(*p)->rb_left;
391 } else {
392 return -EEXIST;
393 }
394 }
395
396 rb_link_node(node, parent_node, p);
397 rb_insert_color_cached(node, root, leftmost);
398
399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
400 ins->index >= delayed_node->index_cnt)
401 delayed_node->index_cnt = ins->index + 1;
402
403 delayed_node->count++;
404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
405 return 0;
406}
407
408static void finish_one_item(struct btrfs_delayed_root *delayed_root)
409{
410 int seq = atomic_inc_return(&delayed_root->items_seq);
411
412 /* atomic_dec_return implies a barrier */
413 if ((atomic_dec_return(&delayed_root->items) <
414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
415 cond_wake_up_nomb(&delayed_root->wait);
416}
417
418static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
419{
420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
421 struct rb_root_cached *root;
422 struct btrfs_delayed_root *delayed_root;
423
424 /* Not inserted, ignore it. */
425 if (RB_EMPTY_NODE(&delayed_item->rb_node))
426 return;
427
428 /* If it's in a rbtree, then we need to have delayed node locked. */
429 lockdep_assert_held(&delayed_node->mutex);
430
431 delayed_root = delayed_node->root->fs_info->delayed_root;
432
433 BUG_ON(!delayed_root);
434
435 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
436 root = &delayed_node->ins_root;
437 else
438 root = &delayed_node->del_root;
439
440 rb_erase_cached(&delayed_item->rb_node, root);
441 RB_CLEAR_NODE(&delayed_item->rb_node);
442 delayed_node->count--;
443
444 finish_one_item(delayed_root);
445}
446
447static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
448{
449 if (item) {
450 __btrfs_remove_delayed_item(item);
451 if (refcount_dec_and_test(&item->refs))
452 kfree(item);
453 }
454}
455
456static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
457 struct btrfs_delayed_node *delayed_node)
458{
459 struct rb_node *p;
460 struct btrfs_delayed_item *item = NULL;
461
462 p = rb_first_cached(&delayed_node->ins_root);
463 if (p)
464 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
465
466 return item;
467}
468
469static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
470 struct btrfs_delayed_node *delayed_node)
471{
472 struct rb_node *p;
473 struct btrfs_delayed_item *item = NULL;
474
475 p = rb_first_cached(&delayed_node->del_root);
476 if (p)
477 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
478
479 return item;
480}
481
482static struct btrfs_delayed_item *__btrfs_next_delayed_item(
483 struct btrfs_delayed_item *item)
484{
485 struct rb_node *p;
486 struct btrfs_delayed_item *next = NULL;
487
488 p = rb_next(&item->rb_node);
489 if (p)
490 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
491
492 return next;
493}
494
495static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
496 struct btrfs_delayed_item *item)
497{
498 struct btrfs_block_rsv *src_rsv;
499 struct btrfs_block_rsv *dst_rsv;
500 struct btrfs_fs_info *fs_info = trans->fs_info;
501 u64 num_bytes;
502 int ret;
503
504 if (!trans->bytes_reserved)
505 return 0;
506
507 src_rsv = trans->block_rsv;
508 dst_rsv = &fs_info->delayed_block_rsv;
509
510 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
511
512 /*
513 * Here we migrate space rsv from transaction rsv, since have already
514 * reserved space when starting a transaction. So no need to reserve
515 * qgroup space here.
516 */
517 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
518 if (!ret) {
519 trace_btrfs_space_reservation(fs_info, "delayed_item",
520 item->delayed_node->inode_id,
521 num_bytes, 1);
522 /*
523 * For insertions we track reserved metadata space by accounting
524 * for the number of leaves that will be used, based on the delayed
525 * node's curr_index_batch_size and index_item_leaves fields.
526 */
527 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
528 item->bytes_reserved = num_bytes;
529 }
530
531 return ret;
532}
533
534static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
535 struct btrfs_delayed_item *item)
536{
537 struct btrfs_block_rsv *rsv;
538 struct btrfs_fs_info *fs_info = root->fs_info;
539
540 if (!item->bytes_reserved)
541 return;
542
543 rsv = &fs_info->delayed_block_rsv;
544 /*
545 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
546 * to release/reserve qgroup space.
547 */
548 trace_btrfs_space_reservation(fs_info, "delayed_item",
549 item->delayed_node->inode_id,
550 item->bytes_reserved, 0);
551 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
552}
553
554static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
555 unsigned int num_leaves)
556{
557 struct btrfs_fs_info *fs_info = node->root->fs_info;
558 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
559
560 /* There are no space reservations during log replay, bail out. */
561 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
562 return;
563
564 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
565 bytes, 0);
566 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
567}
568
569static int btrfs_delayed_inode_reserve_metadata(
570 struct btrfs_trans_handle *trans,
571 struct btrfs_root *root,
572 struct btrfs_delayed_node *node)
573{
574 struct btrfs_fs_info *fs_info = root->fs_info;
575 struct btrfs_block_rsv *src_rsv;
576 struct btrfs_block_rsv *dst_rsv;
577 u64 num_bytes;
578 int ret;
579
580 src_rsv = trans->block_rsv;
581 dst_rsv = &fs_info->delayed_block_rsv;
582
583 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
584
585 /*
586 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
587 * which doesn't reserve space for speed. This is a problem since we
588 * still need to reserve space for this update, so try to reserve the
589 * space.
590 *
591 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
592 * we always reserve enough to update the inode item.
593 */
594 if (!src_rsv || (!trans->bytes_reserved &&
595 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
596 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
597 BTRFS_QGROUP_RSV_META_PREALLOC, true);
598 if (ret < 0)
599 return ret;
600 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
601 BTRFS_RESERVE_NO_FLUSH);
602 /* NO_FLUSH could only fail with -ENOSPC */
603 ASSERT(ret == 0 || ret == -ENOSPC);
604 if (ret)
605 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
606 } else {
607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
608 }
609
610 if (!ret) {
611 trace_btrfs_space_reservation(fs_info, "delayed_inode",
612 node->inode_id, num_bytes, 1);
613 node->bytes_reserved = num_bytes;
614 }
615
616 return ret;
617}
618
619static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
620 struct btrfs_delayed_node *node,
621 bool qgroup_free)
622{
623 struct btrfs_block_rsv *rsv;
624
625 if (!node->bytes_reserved)
626 return;
627
628 rsv = &fs_info->delayed_block_rsv;
629 trace_btrfs_space_reservation(fs_info, "delayed_inode",
630 node->inode_id, node->bytes_reserved, 0);
631 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
632 if (qgroup_free)
633 btrfs_qgroup_free_meta_prealloc(node->root,
634 node->bytes_reserved);
635 else
636 btrfs_qgroup_convert_reserved_meta(node->root,
637 node->bytes_reserved);
638 node->bytes_reserved = 0;
639}
640
641/*
642 * Insert a single delayed item or a batch of delayed items, as many as possible
643 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
644 * in the rbtree, and if there's a gap between two consecutive dir index items,
645 * then it means at some point we had delayed dir indexes to add but they got
646 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
647 * into the subvolume tree. Dir index keys also have their offsets coming from a
648 * monotonically increasing counter, so we can't get new keys with an offset that
649 * fits within a gap between delayed dir index items.
650 */
651static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root,
653 struct btrfs_path *path,
654 struct btrfs_delayed_item *first_item)
655{
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct btrfs_delayed_node *node = first_item->delayed_node;
658 LIST_HEAD(item_list);
659 struct btrfs_delayed_item *curr;
660 struct btrfs_delayed_item *next;
661 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
662 struct btrfs_item_batch batch;
663 struct btrfs_key first_key;
664 const u32 first_data_size = first_item->data_len;
665 int total_size;
666 char *ins_data = NULL;
667 int ret;
668 bool continuous_keys_only = false;
669
670 lockdep_assert_held(&node->mutex);
671
672 /*
673 * During normal operation the delayed index offset is continuously
674 * increasing, so we can batch insert all items as there will not be any
675 * overlapping keys in the tree.
676 *
677 * The exception to this is log replay, where we may have interleaved
678 * offsets in the tree, so our batch needs to be continuous keys only in
679 * order to ensure we do not end up with out of order items in our leaf.
680 */
681 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
682 continuous_keys_only = true;
683
684 /*
685 * For delayed items to insert, we track reserved metadata bytes based
686 * on the number of leaves that we will use.
687 * See btrfs_insert_delayed_dir_index() and
688 * btrfs_delayed_item_reserve_metadata()).
689 */
690 ASSERT(first_item->bytes_reserved == 0);
691
692 list_add_tail(&first_item->tree_list, &item_list);
693 batch.total_data_size = first_data_size;
694 batch.nr = 1;
695 total_size = first_data_size + sizeof(struct btrfs_item);
696 curr = first_item;
697
698 while (true) {
699 int next_size;
700
701 next = __btrfs_next_delayed_item(curr);
702 if (!next)
703 break;
704
705 /*
706 * We cannot allow gaps in the key space if we're doing log
707 * replay.
708 */
709 if (continuous_keys_only && (next->index != curr->index + 1))
710 break;
711
712 ASSERT(next->bytes_reserved == 0);
713
714 next_size = next->data_len + sizeof(struct btrfs_item);
715 if (total_size + next_size > max_size)
716 break;
717
718 list_add_tail(&next->tree_list, &item_list);
719 batch.nr++;
720 total_size += next_size;
721 batch.total_data_size += next->data_len;
722 curr = next;
723 }
724
725 if (batch.nr == 1) {
726 first_key.objectid = node->inode_id;
727 first_key.type = BTRFS_DIR_INDEX_KEY;
728 first_key.offset = first_item->index;
729 batch.keys = &first_key;
730 batch.data_sizes = &first_data_size;
731 } else {
732 struct btrfs_key *ins_keys;
733 u32 *ins_sizes;
734 int i = 0;
735
736 ins_data = kmalloc(batch.nr * sizeof(u32) +
737 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
738 if (!ins_data) {
739 ret = -ENOMEM;
740 goto out;
741 }
742 ins_sizes = (u32 *)ins_data;
743 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
744 batch.keys = ins_keys;
745 batch.data_sizes = ins_sizes;
746 list_for_each_entry(curr, &item_list, tree_list) {
747 ins_keys[i].objectid = node->inode_id;
748 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
749 ins_keys[i].offset = curr->index;
750 ins_sizes[i] = curr->data_len;
751 i++;
752 }
753 }
754
755 ret = btrfs_insert_empty_items(trans, root, path, &batch);
756 if (ret)
757 goto out;
758
759 list_for_each_entry(curr, &item_list, tree_list) {
760 char *data_ptr;
761
762 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
763 write_extent_buffer(path->nodes[0], &curr->data,
764 (unsigned long)data_ptr, curr->data_len);
765 path->slots[0]++;
766 }
767
768 /*
769 * Now release our path before releasing the delayed items and their
770 * metadata reservations, so that we don't block other tasks for more
771 * time than needed.
772 */
773 btrfs_release_path(path);
774
775 ASSERT(node->index_item_leaves > 0);
776
777 /*
778 * For normal operations we will batch an entire leaf's worth of delayed
779 * items, so if there are more items to process we can decrement
780 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
781 *
782 * However for log replay we may not have inserted an entire leaf's
783 * worth of items, we may have not had continuous items, so decrementing
784 * here would mess up the index_item_leaves accounting. For this case
785 * only clean up the accounting when there are no items left.
786 */
787 if (next && !continuous_keys_only) {
788 /*
789 * We inserted one batch of items into a leaf a there are more
790 * items to flush in a future batch, now release one unit of
791 * metadata space from the delayed block reserve, corresponding
792 * the leaf we just flushed to.
793 */
794 btrfs_delayed_item_release_leaves(node, 1);
795 node->index_item_leaves--;
796 } else if (!next) {
797 /*
798 * There are no more items to insert. We can have a number of
799 * reserved leaves > 1 here - this happens when many dir index
800 * items are added and then removed before they are flushed (file
801 * names with a very short life, never span a transaction). So
802 * release all remaining leaves.
803 */
804 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
805 node->index_item_leaves = 0;
806 }
807
808 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
809 list_del(&curr->tree_list);
810 btrfs_release_delayed_item(curr);
811 }
812out:
813 kfree(ins_data);
814 return ret;
815}
816
817static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 struct btrfs_path *path,
819 struct btrfs_root *root,
820 struct btrfs_delayed_node *node)
821{
822 int ret = 0;
823
824 while (ret == 0) {
825 struct btrfs_delayed_item *curr;
826
827 mutex_lock(&node->mutex);
828 curr = __btrfs_first_delayed_insertion_item(node);
829 if (!curr) {
830 mutex_unlock(&node->mutex);
831 break;
832 }
833 ret = btrfs_insert_delayed_item(trans, root, path, curr);
834 mutex_unlock(&node->mutex);
835 }
836
837 return ret;
838}
839
840static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
844{
845 const u64 ino = item->delayed_node->inode_id;
846 struct btrfs_fs_info *fs_info = root->fs_info;
847 struct btrfs_delayed_item *curr, *next;
848 struct extent_buffer *leaf = path->nodes[0];
849 LIST_HEAD(batch_list);
850 int nitems, slot, last_slot;
851 int ret;
852 u64 total_reserved_size = item->bytes_reserved;
853
854 ASSERT(leaf != NULL);
855
856 slot = path->slots[0];
857 last_slot = btrfs_header_nritems(leaf) - 1;
858 /*
859 * Our caller always gives us a path pointing to an existing item, so
860 * this can not happen.
861 */
862 ASSERT(slot <= last_slot);
863 if (WARN_ON(slot > last_slot))
864 return -ENOENT;
865
866 nitems = 1;
867 curr = item;
868 list_add_tail(&curr->tree_list, &batch_list);
869
870 /*
871 * Keep checking if the next delayed item matches the next item in the
872 * leaf - if so, we can add it to the batch of items to delete from the
873 * leaf.
874 */
875 while (slot < last_slot) {
876 struct btrfs_key key;
877
878 next = __btrfs_next_delayed_item(curr);
879 if (!next)
880 break;
881
882 slot++;
883 btrfs_item_key_to_cpu(leaf, &key, slot);
884 if (key.objectid != ino ||
885 key.type != BTRFS_DIR_INDEX_KEY ||
886 key.offset != next->index)
887 break;
888 nitems++;
889 curr = next;
890 list_add_tail(&curr->tree_list, &batch_list);
891 total_reserved_size += curr->bytes_reserved;
892 }
893
894 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
895 if (ret)
896 return ret;
897
898 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
899 if (total_reserved_size > 0) {
900 /*
901 * Check btrfs_delayed_item_reserve_metadata() to see why we
902 * don't need to release/reserve qgroup space.
903 */
904 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
905 total_reserved_size, 0);
906 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
907 total_reserved_size, NULL);
908 }
909
910 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
911 list_del(&curr->tree_list);
912 btrfs_release_delayed_item(curr);
913 }
914
915 return 0;
916}
917
918static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
919 struct btrfs_path *path,
920 struct btrfs_root *root,
921 struct btrfs_delayed_node *node)
922{
923 struct btrfs_key key;
924 int ret = 0;
925
926 key.objectid = node->inode_id;
927 key.type = BTRFS_DIR_INDEX_KEY;
928
929 while (ret == 0) {
930 struct btrfs_delayed_item *item;
931
932 mutex_lock(&node->mutex);
933 item = __btrfs_first_delayed_deletion_item(node);
934 if (!item) {
935 mutex_unlock(&node->mutex);
936 break;
937 }
938
939 key.offset = item->index;
940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
941 if (ret > 0) {
942 /*
943 * There's no matching item in the leaf. This means we
944 * have already deleted this item in a past run of the
945 * delayed items. We ignore errors when running delayed
946 * items from an async context, through a work queue job
947 * running btrfs_async_run_delayed_root(), and don't
948 * release delayed items that failed to complete. This
949 * is because we will retry later, and at transaction
950 * commit time we always run delayed items and will
951 * then deal with errors if they fail to run again.
952 *
953 * So just release delayed items for which we can't find
954 * an item in the tree, and move to the next item.
955 */
956 btrfs_release_path(path);
957 btrfs_release_delayed_item(item);
958 ret = 0;
959 } else if (ret == 0) {
960 ret = btrfs_batch_delete_items(trans, root, path, item);
961 btrfs_release_path(path);
962 }
963
964 /*
965 * We unlock and relock on each iteration, this is to prevent
966 * blocking other tasks for too long while we are being run from
967 * the async context (work queue job). Those tasks are typically
968 * running system calls like creat/mkdir/rename/unlink/etc which
969 * need to add delayed items to this delayed node.
970 */
971 mutex_unlock(&node->mutex);
972 }
973
974 return ret;
975}
976
977static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
978{
979 struct btrfs_delayed_root *delayed_root;
980
981 if (delayed_node &&
982 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
983 BUG_ON(!delayed_node->root);
984 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
985 delayed_node->count--;
986
987 delayed_root = delayed_node->root->fs_info->delayed_root;
988 finish_one_item(delayed_root);
989 }
990}
991
992static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
993{
994
995 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
996 struct btrfs_delayed_root *delayed_root;
997
998 ASSERT(delayed_node->root);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003 }
1004}
1005
1006static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root,
1008 struct btrfs_path *path,
1009 struct btrfs_delayed_node *node)
1010{
1011 struct btrfs_fs_info *fs_info = root->fs_info;
1012 struct btrfs_key key;
1013 struct btrfs_inode_item *inode_item;
1014 struct extent_buffer *leaf;
1015 int mod;
1016 int ret;
1017
1018 key.objectid = node->inode_id;
1019 key.type = BTRFS_INODE_ITEM_KEY;
1020 key.offset = 0;
1021
1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1023 mod = -1;
1024 else
1025 mod = 1;
1026
1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1028 if (ret > 0)
1029 ret = -ENOENT;
1030 if (ret < 0)
1031 goto out;
1032
1033 leaf = path->nodes[0];
1034 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_inode_item);
1036 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1037 sizeof(struct btrfs_inode_item));
1038 btrfs_mark_buffer_dirty(trans, leaf);
1039
1040 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1041 goto out;
1042
1043 /*
1044 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1045 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1046 *
1047 * But if we're the last item already, release and search for the last
1048 * INODE_REF/EXTREF.
1049 */
1050 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1051 key.objectid = node->inode_id;
1052 key.type = BTRFS_INODE_EXTREF_KEY;
1053 key.offset = (u64)-1;
1054
1055 btrfs_release_path(path);
1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1057 if (ret < 0)
1058 goto err_out;
1059 ASSERT(ret > 0);
1060 ASSERT(path->slots[0] > 0);
1061 ret = 0;
1062 path->slots[0]--;
1063 leaf = path->nodes[0];
1064 } else {
1065 path->slots[0]++;
1066 }
1067 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1068 if (key.objectid != node->inode_id)
1069 goto out;
1070 if (key.type != BTRFS_INODE_REF_KEY &&
1071 key.type != BTRFS_INODE_EXTREF_KEY)
1072 goto out;
1073
1074 /*
1075 * Delayed iref deletion is for the inode who has only one link,
1076 * so there is only one iref. The case that several irefs are
1077 * in the same item doesn't exist.
1078 */
1079 ret = btrfs_del_item(trans, root, path);
1080out:
1081 btrfs_release_delayed_iref(node);
1082 btrfs_release_path(path);
1083err_out:
1084 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1085 btrfs_release_delayed_inode(node);
1086
1087 /*
1088 * If we fail to update the delayed inode we need to abort the
1089 * transaction, because we could leave the inode with the improper
1090 * counts behind.
1091 */
1092 if (ret && ret != -ENOENT)
1093 btrfs_abort_transaction(trans, ret);
1094
1095 return ret;
1096}
1097
1098static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root,
1100 struct btrfs_path *path,
1101 struct btrfs_delayed_node *node)
1102{
1103 int ret;
1104
1105 mutex_lock(&node->mutex);
1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1107 mutex_unlock(&node->mutex);
1108 return 0;
1109 }
1110
1111 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112 mutex_unlock(&node->mutex);
1113 return ret;
1114}
1115
1116static inline int
1117__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118 struct btrfs_path *path,
1119 struct btrfs_delayed_node *node)
1120{
1121 int ret;
1122
1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1133}
1134
1135/*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
1141static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1142{
1143 struct btrfs_fs_info *fs_info = trans->fs_info;
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
1147 struct btrfs_block_rsv *block_rsv;
1148 int ret = 0;
1149 bool count = (nr > 0);
1150
1151 if (TRANS_ABORTED(trans))
1152 return -EIO;
1153
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157
1158 block_rsv = trans->block_rsv;
1159 trans->block_rsv = &fs_info->delayed_block_rsv;
1160
1161 delayed_root = fs_info->delayed_root;
1162
1163 curr_node = btrfs_first_delayed_node(delayed_root);
1164 while (curr_node && (!count || nr--)) {
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
1167 if (ret) {
1168 btrfs_abort_transaction(trans, ret);
1169 break;
1170 }
1171
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
1174 /*
1175 * See the comment below about releasing path before releasing
1176 * node. If the commit of delayed items was successful the path
1177 * should always be released, but in case of an error, it may
1178 * point to locked extent buffers (a leaf at the very least).
1179 */
1180 ASSERT(path->nodes[0] == NULL);
1181 btrfs_release_delayed_node(prev_node);
1182 }
1183
1184 /*
1185 * Release the path to avoid a potential deadlock and lockdep splat when
1186 * releasing the delayed node, as that requires taking the delayed node's
1187 * mutex. If another task starts running delayed items before we take
1188 * the mutex, it will first lock the mutex and then it may try to lock
1189 * the same btree path (leaf).
1190 */
1191 btrfs_free_path(path);
1192
1193 if (curr_node)
1194 btrfs_release_delayed_node(curr_node);
1195 trans->block_rsv = block_rsv;
1196
1197 return ret;
1198}
1199
1200int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1201{
1202 return __btrfs_run_delayed_items(trans, -1);
1203}
1204
1205int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1206{
1207 return __btrfs_run_delayed_items(trans, nr);
1208}
1209
1210int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211 struct btrfs_inode *inode)
1212{
1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214 struct btrfs_path *path;
1215 struct btrfs_block_rsv *block_rsv;
1216 int ret;
1217
1218 if (!delayed_node)
1219 return 0;
1220
1221 mutex_lock(&delayed_node->mutex);
1222 if (!delayed_node->count) {
1223 mutex_unlock(&delayed_node->mutex);
1224 btrfs_release_delayed_node(delayed_node);
1225 return 0;
1226 }
1227 mutex_unlock(&delayed_node->mutex);
1228
1229 path = btrfs_alloc_path();
1230 if (!path) {
1231 btrfs_release_delayed_node(delayed_node);
1232 return -ENOMEM;
1233 }
1234
1235 block_rsv = trans->block_rsv;
1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1237
1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1239
1240 btrfs_release_delayed_node(delayed_node);
1241 btrfs_free_path(path);
1242 trans->block_rsv = block_rsv;
1243
1244 return ret;
1245}
1246
1247int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1248{
1249 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1250 struct btrfs_trans_handle *trans;
1251 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1252 struct btrfs_path *path;
1253 struct btrfs_block_rsv *block_rsv;
1254 int ret;
1255
1256 if (!delayed_node)
1257 return 0;
1258
1259 mutex_lock(&delayed_node->mutex);
1260 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1261 mutex_unlock(&delayed_node->mutex);
1262 btrfs_release_delayed_node(delayed_node);
1263 return 0;
1264 }
1265 mutex_unlock(&delayed_node->mutex);
1266
1267 trans = btrfs_join_transaction(delayed_node->root);
1268 if (IS_ERR(trans)) {
1269 ret = PTR_ERR(trans);
1270 goto out;
1271 }
1272
1273 path = btrfs_alloc_path();
1274 if (!path) {
1275 ret = -ENOMEM;
1276 goto trans_out;
1277 }
1278
1279 block_rsv = trans->block_rsv;
1280 trans->block_rsv = &fs_info->delayed_block_rsv;
1281
1282 mutex_lock(&delayed_node->mutex);
1283 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1284 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1285 path, delayed_node);
1286 else
1287 ret = 0;
1288 mutex_unlock(&delayed_node->mutex);
1289
1290 btrfs_free_path(path);
1291 trans->block_rsv = block_rsv;
1292trans_out:
1293 btrfs_end_transaction(trans);
1294 btrfs_btree_balance_dirty(fs_info);
1295out:
1296 btrfs_release_delayed_node(delayed_node);
1297
1298 return ret;
1299}
1300
1301void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1302{
1303 struct btrfs_delayed_node *delayed_node;
1304
1305 delayed_node = READ_ONCE(inode->delayed_node);
1306 if (!delayed_node)
1307 return;
1308
1309 inode->delayed_node = NULL;
1310 btrfs_release_delayed_node(delayed_node);
1311}
1312
1313struct btrfs_async_delayed_work {
1314 struct btrfs_delayed_root *delayed_root;
1315 int nr;
1316 struct btrfs_work work;
1317};
1318
1319static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1320{
1321 struct btrfs_async_delayed_work *async_work;
1322 struct btrfs_delayed_root *delayed_root;
1323 struct btrfs_trans_handle *trans;
1324 struct btrfs_path *path;
1325 struct btrfs_delayed_node *delayed_node = NULL;
1326 struct btrfs_root *root;
1327 struct btrfs_block_rsv *block_rsv;
1328 int total_done = 0;
1329
1330 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1331 delayed_root = async_work->delayed_root;
1332
1333 path = btrfs_alloc_path();
1334 if (!path)
1335 goto out;
1336
1337 do {
1338 if (atomic_read(&delayed_root->items) <
1339 BTRFS_DELAYED_BACKGROUND / 2)
1340 break;
1341
1342 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1343 if (!delayed_node)
1344 break;
1345
1346 root = delayed_node->root;
1347
1348 trans = btrfs_join_transaction(root);
1349 if (IS_ERR(trans)) {
1350 btrfs_release_path(path);
1351 btrfs_release_prepared_delayed_node(delayed_node);
1352 total_done++;
1353 continue;
1354 }
1355
1356 block_rsv = trans->block_rsv;
1357 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1358
1359 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1360
1361 trans->block_rsv = block_rsv;
1362 btrfs_end_transaction(trans);
1363 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1364
1365 btrfs_release_path(path);
1366 btrfs_release_prepared_delayed_node(delayed_node);
1367 total_done++;
1368
1369 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1370 || total_done < async_work->nr);
1371
1372 btrfs_free_path(path);
1373out:
1374 wake_up(&delayed_root->wait);
1375 kfree(async_work);
1376}
1377
1378
1379static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1380 struct btrfs_fs_info *fs_info, int nr)
1381{
1382 struct btrfs_async_delayed_work *async_work;
1383
1384 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1385 if (!async_work)
1386 return -ENOMEM;
1387
1388 async_work->delayed_root = delayed_root;
1389 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1390 async_work->nr = nr;
1391
1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1393 return 0;
1394}
1395
1396void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1397{
1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1399}
1400
1401static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1402{
1403 int val = atomic_read(&delayed_root->items_seq);
1404
1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1406 return 1;
1407
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 return 1;
1410
1411 return 0;
1412}
1413
1414void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1415{
1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1417
1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1420 return;
1421
1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1423 int seq;
1424 int ret;
1425
1426 seq = atomic_read(&delayed_root->items_seq);
1427
1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1429 if (ret)
1430 return;
1431
1432 wait_event_interruptible(delayed_root->wait,
1433 could_end_wait(delayed_root, seq));
1434 return;
1435 }
1436
1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1438}
1439
1440static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1441{
1442 struct btrfs_fs_info *fs_info = trans->fs_info;
1443 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1444
1445 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1446 return;
1447
1448 /*
1449 * Adding the new dir index item does not require touching another
1450 * leaf, so we can release 1 unit of metadata that was previously
1451 * reserved when starting the transaction. This applies only to
1452 * the case where we had a transaction start and excludes the
1453 * transaction join case (when replaying log trees).
1454 */
1455 trace_btrfs_space_reservation(fs_info, "transaction",
1456 trans->transid, bytes, 0);
1457 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1458 ASSERT(trans->bytes_reserved >= bytes);
1459 trans->bytes_reserved -= bytes;
1460}
1461
1462/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1463int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1464 const char *name, int name_len,
1465 struct btrfs_inode *dir,
1466 struct btrfs_disk_key *disk_key, u8 flags,
1467 u64 index)
1468{
1469 struct btrfs_fs_info *fs_info = trans->fs_info;
1470 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1471 struct btrfs_delayed_node *delayed_node;
1472 struct btrfs_delayed_item *delayed_item;
1473 struct btrfs_dir_item *dir_item;
1474 bool reserve_leaf_space;
1475 u32 data_len;
1476 int ret;
1477
1478 delayed_node = btrfs_get_or_create_delayed_node(dir);
1479 if (IS_ERR(delayed_node))
1480 return PTR_ERR(delayed_node);
1481
1482 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1483 delayed_node,
1484 BTRFS_DELAYED_INSERTION_ITEM);
1485 if (!delayed_item) {
1486 ret = -ENOMEM;
1487 goto release_node;
1488 }
1489
1490 delayed_item->index = index;
1491
1492 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1493 dir_item->location = *disk_key;
1494 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1495 btrfs_set_stack_dir_data_len(dir_item, 0);
1496 btrfs_set_stack_dir_name_len(dir_item, name_len);
1497 btrfs_set_stack_dir_flags(dir_item, flags);
1498 memcpy((char *)(dir_item + 1), name, name_len);
1499
1500 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1501
1502 mutex_lock(&delayed_node->mutex);
1503
1504 /*
1505 * First attempt to insert the delayed item. This is to make the error
1506 * handling path simpler in case we fail (-EEXIST). There's no risk of
1507 * any other task coming in and running the delayed item before we do
1508 * the metadata space reservation below, because we are holding the
1509 * delayed node's mutex and that mutex must also be locked before the
1510 * node's delayed items can be run.
1511 */
1512 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1513 if (unlikely(ret)) {
1514 btrfs_err(trans->fs_info,
1515"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1516 name_len, name, index, btrfs_root_id(delayed_node->root),
1517 delayed_node->inode_id, dir->index_cnt,
1518 delayed_node->index_cnt, ret);
1519 btrfs_release_delayed_item(delayed_item);
1520 btrfs_release_dir_index_item_space(trans);
1521 mutex_unlock(&delayed_node->mutex);
1522 goto release_node;
1523 }
1524
1525 if (delayed_node->index_item_leaves == 0 ||
1526 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1527 delayed_node->curr_index_batch_size = data_len;
1528 reserve_leaf_space = true;
1529 } else {
1530 delayed_node->curr_index_batch_size += data_len;
1531 reserve_leaf_space = false;
1532 }
1533
1534 if (reserve_leaf_space) {
1535 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1536 /*
1537 * Space was reserved for a dir index item insertion when we
1538 * started the transaction, so getting a failure here should be
1539 * impossible.
1540 */
1541 if (WARN_ON(ret)) {
1542 btrfs_release_delayed_item(delayed_item);
1543 mutex_unlock(&delayed_node->mutex);
1544 goto release_node;
1545 }
1546
1547 delayed_node->index_item_leaves++;
1548 } else {
1549 btrfs_release_dir_index_item_space(trans);
1550 }
1551 mutex_unlock(&delayed_node->mutex);
1552
1553release_node:
1554 btrfs_release_delayed_node(delayed_node);
1555 return ret;
1556}
1557
1558static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1559 struct btrfs_delayed_node *node,
1560 u64 index)
1561{
1562 struct btrfs_delayed_item *item;
1563
1564 mutex_lock(&node->mutex);
1565 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1566 if (!item) {
1567 mutex_unlock(&node->mutex);
1568 return 1;
1569 }
1570
1571 /*
1572 * For delayed items to insert, we track reserved metadata bytes based
1573 * on the number of leaves that we will use.
1574 * See btrfs_insert_delayed_dir_index() and
1575 * btrfs_delayed_item_reserve_metadata()).
1576 */
1577 ASSERT(item->bytes_reserved == 0);
1578 ASSERT(node->index_item_leaves > 0);
1579
1580 /*
1581 * If there's only one leaf reserved, we can decrement this item from the
1582 * current batch, otherwise we can not because we don't know which leaf
1583 * it belongs to. With the current limit on delayed items, we rarely
1584 * accumulate enough dir index items to fill more than one leaf (even
1585 * when using a leaf size of 4K).
1586 */
1587 if (node->index_item_leaves == 1) {
1588 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1589
1590 ASSERT(node->curr_index_batch_size >= data_len);
1591 node->curr_index_batch_size -= data_len;
1592 }
1593
1594 btrfs_release_delayed_item(item);
1595
1596 /* If we now have no more dir index items, we can release all leaves. */
1597 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1598 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1599 node->index_item_leaves = 0;
1600 }
1601
1602 mutex_unlock(&node->mutex);
1603 return 0;
1604}
1605
1606int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1607 struct btrfs_inode *dir, u64 index)
1608{
1609 struct btrfs_delayed_node *node;
1610 struct btrfs_delayed_item *item;
1611 int ret;
1612
1613 node = btrfs_get_or_create_delayed_node(dir);
1614 if (IS_ERR(node))
1615 return PTR_ERR(node);
1616
1617 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1618 if (!ret)
1619 goto end;
1620
1621 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1622 if (!item) {
1623 ret = -ENOMEM;
1624 goto end;
1625 }
1626
1627 item->index = index;
1628
1629 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1630 /*
1631 * we have reserved enough space when we start a new transaction,
1632 * so reserving metadata failure is impossible.
1633 */
1634 if (ret < 0) {
1635 btrfs_err(trans->fs_info,
1636"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1637 btrfs_release_delayed_item(item);
1638 goto end;
1639 }
1640
1641 mutex_lock(&node->mutex);
1642 ret = __btrfs_add_delayed_item(node, item);
1643 if (unlikely(ret)) {
1644 btrfs_err(trans->fs_info,
1645 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1646 index, node->root->root_key.objectid,
1647 node->inode_id, ret);
1648 btrfs_delayed_item_release_metadata(dir->root, item);
1649 btrfs_release_delayed_item(item);
1650 }
1651 mutex_unlock(&node->mutex);
1652end:
1653 btrfs_release_delayed_node(node);
1654 return ret;
1655}
1656
1657int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1658{
1659 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1660
1661 if (!delayed_node)
1662 return -ENOENT;
1663
1664 /*
1665 * Since we have held i_mutex of this directory, it is impossible that
1666 * a new directory index is added into the delayed node and index_cnt
1667 * is updated now. So we needn't lock the delayed node.
1668 */
1669 if (!delayed_node->index_cnt) {
1670 btrfs_release_delayed_node(delayed_node);
1671 return -EINVAL;
1672 }
1673
1674 inode->index_cnt = delayed_node->index_cnt;
1675 btrfs_release_delayed_node(delayed_node);
1676 return 0;
1677}
1678
1679bool btrfs_readdir_get_delayed_items(struct inode *inode,
1680 u64 last_index,
1681 struct list_head *ins_list,
1682 struct list_head *del_list)
1683{
1684 struct btrfs_delayed_node *delayed_node;
1685 struct btrfs_delayed_item *item;
1686
1687 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1688 if (!delayed_node)
1689 return false;
1690
1691 /*
1692 * We can only do one readdir with delayed items at a time because of
1693 * item->readdir_list.
1694 */
1695 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1696 btrfs_inode_lock(BTRFS_I(inode), 0);
1697
1698 mutex_lock(&delayed_node->mutex);
1699 item = __btrfs_first_delayed_insertion_item(delayed_node);
1700 while (item && item->index <= last_index) {
1701 refcount_inc(&item->refs);
1702 list_add_tail(&item->readdir_list, ins_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705
1706 item = __btrfs_first_delayed_deletion_item(delayed_node);
1707 while (item && item->index <= last_index) {
1708 refcount_inc(&item->refs);
1709 list_add_tail(&item->readdir_list, del_list);
1710 item = __btrfs_next_delayed_item(item);
1711 }
1712 mutex_unlock(&delayed_node->mutex);
1713 /*
1714 * This delayed node is still cached in the btrfs inode, so refs
1715 * must be > 1 now, and we needn't check it is going to be freed
1716 * or not.
1717 *
1718 * Besides that, this function is used to read dir, we do not
1719 * insert/delete delayed items in this period. So we also needn't
1720 * requeue or dequeue this delayed node.
1721 */
1722 refcount_dec(&delayed_node->refs);
1723
1724 return true;
1725}
1726
1727void btrfs_readdir_put_delayed_items(struct inode *inode,
1728 struct list_head *ins_list,
1729 struct list_head *del_list)
1730{
1731 struct btrfs_delayed_item *curr, *next;
1732
1733 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1734 list_del(&curr->readdir_list);
1735 if (refcount_dec_and_test(&curr->refs))
1736 kfree(curr);
1737 }
1738
1739 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1740 list_del(&curr->readdir_list);
1741 if (refcount_dec_and_test(&curr->refs))
1742 kfree(curr);
1743 }
1744
1745 /*
1746 * The VFS is going to do up_read(), so we need to downgrade back to a
1747 * read lock.
1748 */
1749 downgrade_write(&inode->i_rwsem);
1750}
1751
1752int btrfs_should_delete_dir_index(struct list_head *del_list,
1753 u64 index)
1754{
1755 struct btrfs_delayed_item *curr;
1756 int ret = 0;
1757
1758 list_for_each_entry(curr, del_list, readdir_list) {
1759 if (curr->index > index)
1760 break;
1761 if (curr->index == index) {
1762 ret = 1;
1763 break;
1764 }
1765 }
1766 return ret;
1767}
1768
1769/*
1770 * Read dir info stored in the delayed tree.
1771 */
1772int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1773 struct list_head *ins_list)
1774{
1775 struct btrfs_dir_item *di;
1776 struct btrfs_delayed_item *curr, *next;
1777 struct btrfs_key location;
1778 char *name;
1779 int name_len;
1780 int over = 0;
1781 unsigned char d_type;
1782
1783 /*
1784 * Changing the data of the delayed item is impossible. So
1785 * we needn't lock them. And we have held i_mutex of the
1786 * directory, nobody can delete any directory indexes now.
1787 */
1788 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1789 list_del(&curr->readdir_list);
1790
1791 if (curr->index < ctx->pos) {
1792 if (refcount_dec_and_test(&curr->refs))
1793 kfree(curr);
1794 continue;
1795 }
1796
1797 ctx->pos = curr->index;
1798
1799 di = (struct btrfs_dir_item *)curr->data;
1800 name = (char *)(di + 1);
1801 name_len = btrfs_stack_dir_name_len(di);
1802
1803 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1804 btrfs_disk_key_to_cpu(&location, &di->location);
1805
1806 over = !dir_emit(ctx, name, name_len,
1807 location.objectid, d_type);
1808
1809 if (refcount_dec_and_test(&curr->refs))
1810 kfree(curr);
1811
1812 if (over)
1813 return 1;
1814 ctx->pos++;
1815 }
1816 return 0;
1817}
1818
1819static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_inode_item *inode_item,
1821 struct inode *inode)
1822{
1823 u64 flags;
1824
1825 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1826 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1827 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1828 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1829 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1830 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1831 btrfs_set_stack_inode_generation(inode_item,
1832 BTRFS_I(inode)->generation);
1833 btrfs_set_stack_inode_sequence(inode_item,
1834 inode_peek_iversion(inode));
1835 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1836 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1837 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1838 BTRFS_I(inode)->ro_flags);
1839 btrfs_set_stack_inode_flags(inode_item, flags);
1840 btrfs_set_stack_inode_block_group(inode_item, 0);
1841
1842 btrfs_set_stack_timespec_sec(&inode_item->atime,
1843 inode_get_atime_sec(inode));
1844 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1845 inode_get_atime_nsec(inode));
1846
1847 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1848 inode_get_mtime_sec(inode));
1849 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1850 inode_get_mtime_nsec(inode));
1851
1852 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1853 inode_get_ctime_sec(inode));
1854 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1855 inode_get_ctime_nsec(inode));
1856
1857 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1858 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1859}
1860
1861int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1862{
1863 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1864 struct btrfs_delayed_node *delayed_node;
1865 struct btrfs_inode_item *inode_item;
1866
1867 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1868 if (!delayed_node)
1869 return -ENOENT;
1870
1871 mutex_lock(&delayed_node->mutex);
1872 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1873 mutex_unlock(&delayed_node->mutex);
1874 btrfs_release_delayed_node(delayed_node);
1875 return -ENOENT;
1876 }
1877
1878 inode_item = &delayed_node->inode_item;
1879
1880 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1881 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1882 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1883 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1884 round_up(i_size_read(inode), fs_info->sectorsize));
1885 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1886 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1887 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1888 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1889 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1890
1891 inode_set_iversion_queried(inode,
1892 btrfs_stack_inode_sequence(inode_item));
1893 inode->i_rdev = 0;
1894 *rdev = btrfs_stack_inode_rdev(inode_item);
1895 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1896 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1897
1898 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1899 btrfs_stack_timespec_nsec(&inode_item->atime));
1900
1901 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1902 btrfs_stack_timespec_nsec(&inode_item->mtime));
1903
1904 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1905 btrfs_stack_timespec_nsec(&inode_item->ctime));
1906
1907 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1908 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1909
1910 inode->i_generation = BTRFS_I(inode)->generation;
1911 BTRFS_I(inode)->index_cnt = (u64)-1;
1912
1913 mutex_unlock(&delayed_node->mutex);
1914 btrfs_release_delayed_node(delayed_node);
1915 return 0;
1916}
1917
1918int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1919 struct btrfs_inode *inode)
1920{
1921 struct btrfs_root *root = inode->root;
1922 struct btrfs_delayed_node *delayed_node;
1923 int ret = 0;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 mutex_lock(&delayed_node->mutex);
1930 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1931 fill_stack_inode_item(trans, &delayed_node->inode_item,
1932 &inode->vfs_inode);
1933 goto release_node;
1934 }
1935
1936 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1937 if (ret)
1938 goto release_node;
1939
1940 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1941 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1942 delayed_node->count++;
1943 atomic_inc(&root->fs_info->delayed_root->items);
1944release_node:
1945 mutex_unlock(&delayed_node->mutex);
1946 btrfs_release_delayed_node(delayed_node);
1947 return ret;
1948}
1949
1950int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1951{
1952 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1953 struct btrfs_delayed_node *delayed_node;
1954
1955 /*
1956 * we don't do delayed inode updates during log recovery because it
1957 * leads to enospc problems. This means we also can't do
1958 * delayed inode refs
1959 */
1960 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1961 return -EAGAIN;
1962
1963 delayed_node = btrfs_get_or_create_delayed_node(inode);
1964 if (IS_ERR(delayed_node))
1965 return PTR_ERR(delayed_node);
1966
1967 /*
1968 * We don't reserve space for inode ref deletion is because:
1969 * - We ONLY do async inode ref deletion for the inode who has only
1970 * one link(i_nlink == 1), it means there is only one inode ref.
1971 * And in most case, the inode ref and the inode item are in the
1972 * same leaf, and we will deal with them at the same time.
1973 * Since we are sure we will reserve the space for the inode item,
1974 * it is unnecessary to reserve space for inode ref deletion.
1975 * - If the inode ref and the inode item are not in the same leaf,
1976 * We also needn't worry about enospc problem, because we reserve
1977 * much more space for the inode update than it needs.
1978 * - At the worst, we can steal some space from the global reservation.
1979 * It is very rare.
1980 */
1981 mutex_lock(&delayed_node->mutex);
1982 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1983 goto release_node;
1984
1985 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1986 delayed_node->count++;
1987 atomic_inc(&fs_info->delayed_root->items);
1988release_node:
1989 mutex_unlock(&delayed_node->mutex);
1990 btrfs_release_delayed_node(delayed_node);
1991 return 0;
1992}
1993
1994static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1995{
1996 struct btrfs_root *root = delayed_node->root;
1997 struct btrfs_fs_info *fs_info = root->fs_info;
1998 struct btrfs_delayed_item *curr_item, *prev_item;
1999
2000 mutex_lock(&delayed_node->mutex);
2001 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2002 while (curr_item) {
2003 prev_item = curr_item;
2004 curr_item = __btrfs_next_delayed_item(prev_item);
2005 btrfs_release_delayed_item(prev_item);
2006 }
2007
2008 if (delayed_node->index_item_leaves > 0) {
2009 btrfs_delayed_item_release_leaves(delayed_node,
2010 delayed_node->index_item_leaves);
2011 delayed_node->index_item_leaves = 0;
2012 }
2013
2014 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2015 while (curr_item) {
2016 btrfs_delayed_item_release_metadata(root, curr_item);
2017 prev_item = curr_item;
2018 curr_item = __btrfs_next_delayed_item(prev_item);
2019 btrfs_release_delayed_item(prev_item);
2020 }
2021
2022 btrfs_release_delayed_iref(delayed_node);
2023
2024 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2025 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2026 btrfs_release_delayed_inode(delayed_node);
2027 }
2028 mutex_unlock(&delayed_node->mutex);
2029}
2030
2031void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2032{
2033 struct btrfs_delayed_node *delayed_node;
2034
2035 delayed_node = btrfs_get_delayed_node(inode);
2036 if (!delayed_node)
2037 return;
2038
2039 __btrfs_kill_delayed_node(delayed_node);
2040 btrfs_release_delayed_node(delayed_node);
2041}
2042
2043void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2044{
2045 unsigned long index = 0;
2046 struct btrfs_delayed_node *delayed_nodes[8];
2047
2048 while (1) {
2049 struct btrfs_delayed_node *node;
2050 int count;
2051
2052 spin_lock(&root->inode_lock);
2053 if (xa_empty(&root->delayed_nodes)) {
2054 spin_unlock(&root->inode_lock);
2055 return;
2056 }
2057
2058 count = 0;
2059 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2060 /*
2061 * Don't increase refs in case the node is dead and
2062 * about to be removed from the tree in the loop below
2063 */
2064 if (refcount_inc_not_zero(&node->refs)) {
2065 delayed_nodes[count] = node;
2066 count++;
2067 }
2068 if (count >= ARRAY_SIZE(delayed_nodes))
2069 break;
2070 }
2071 spin_unlock(&root->inode_lock);
2072 index++;
2073
2074 for (int i = 0; i < count; i++) {
2075 __btrfs_kill_delayed_node(delayed_nodes[i]);
2076 btrfs_release_delayed_node(delayed_nodes[i]);
2077 }
2078 }
2079}
2080
2081void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2082{
2083 struct btrfs_delayed_node *curr_node, *prev_node;
2084
2085 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2086 while (curr_node) {
2087 __btrfs_kill_delayed_node(curr_node);
2088
2089 prev_node = curr_node;
2090 curr_node = btrfs_next_delayed_node(curr_node);
2091 btrfs_release_delayed_node(prev_node);
2092 }
2093}
2094
2095void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2096 struct list_head *ins_list,
2097 struct list_head *del_list)
2098{
2099 struct btrfs_delayed_node *node;
2100 struct btrfs_delayed_item *item;
2101
2102 node = btrfs_get_delayed_node(inode);
2103 if (!node)
2104 return;
2105
2106 mutex_lock(&node->mutex);
2107 item = __btrfs_first_delayed_insertion_item(node);
2108 while (item) {
2109 /*
2110 * It's possible that the item is already in a log list. This
2111 * can happen in case two tasks are trying to log the same
2112 * directory. For example if we have tasks A and task B:
2113 *
2114 * Task A collected the delayed items into a log list while
2115 * under the inode's log_mutex (at btrfs_log_inode()), but it
2116 * only releases the items after logging the inodes they point
2117 * to (if they are new inodes), which happens after unlocking
2118 * the log mutex;
2119 *
2120 * Task B enters btrfs_log_inode() and acquires the log_mutex
2121 * of the same directory inode, before task B releases the
2122 * delayed items. This can happen for example when logging some
2123 * inode we need to trigger logging of its parent directory, so
2124 * logging two files that have the same parent directory can
2125 * lead to this.
2126 *
2127 * If this happens, just ignore delayed items already in a log
2128 * list. All the tasks logging the directory are under a log
2129 * transaction and whichever finishes first can not sync the log
2130 * before the other completes and leaves the log transaction.
2131 */
2132 if (!item->logged && list_empty(&item->log_list)) {
2133 refcount_inc(&item->refs);
2134 list_add_tail(&item->log_list, ins_list);
2135 }
2136 item = __btrfs_next_delayed_item(item);
2137 }
2138
2139 item = __btrfs_first_delayed_deletion_item(node);
2140 while (item) {
2141 /* It may be non-empty, for the same reason mentioned above. */
2142 if (!item->logged && list_empty(&item->log_list)) {
2143 refcount_inc(&item->refs);
2144 list_add_tail(&item->log_list, del_list);
2145 }
2146 item = __btrfs_next_delayed_item(item);
2147 }
2148 mutex_unlock(&node->mutex);
2149
2150 /*
2151 * We are called during inode logging, which means the inode is in use
2152 * and can not be evicted before we finish logging the inode. So we never
2153 * have the last reference on the delayed inode.
2154 * Also, we don't use btrfs_release_delayed_node() because that would
2155 * requeue the delayed inode (change its order in the list of prepared
2156 * nodes) and we don't want to do such change because we don't create or
2157 * delete delayed items.
2158 */
2159 ASSERT(refcount_read(&node->refs) > 1);
2160 refcount_dec(&node->refs);
2161}
2162
2163void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2164 struct list_head *ins_list,
2165 struct list_head *del_list)
2166{
2167 struct btrfs_delayed_node *node;
2168 struct btrfs_delayed_item *item;
2169 struct btrfs_delayed_item *next;
2170
2171 node = btrfs_get_delayed_node(inode);
2172 if (!node)
2173 return;
2174
2175 mutex_lock(&node->mutex);
2176
2177 list_for_each_entry_safe(item, next, ins_list, log_list) {
2178 item->logged = true;
2179 list_del_init(&item->log_list);
2180 if (refcount_dec_and_test(&item->refs))
2181 kfree(item);
2182 }
2183
2184 list_for_each_entry_safe(item, next, del_list, log_list) {
2185 item->logged = true;
2186 list_del_init(&item->log_list);
2187 if (refcount_dec_and_test(&item->refs))
2188 kfree(item);
2189 }
2190
2191 mutex_unlock(&node->mutex);
2192
2193 /*
2194 * We are called during inode logging, which means the inode is in use
2195 * and can not be evicted before we finish logging the inode. So we never
2196 * have the last reference on the delayed inode.
2197 * Also, we don't use btrfs_release_delayed_node() because that would
2198 * requeue the delayed inode (change its order in the list of prepared
2199 * nodes) and we don't want to do such change because we don't create or
2200 * delete delayed items.
2201 */
2202 ASSERT(refcount_read(&node->refs) > 1);
2203 refcount_dec(&node->refs);
2204}
1/*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20#include <linux/slab.h>
21#include "delayed-inode.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "ctree.h"
25
26#define BTRFS_DELAYED_WRITEBACK 512
27#define BTRFS_DELAYED_BACKGROUND 128
28#define BTRFS_DELAYED_BATCH 16
29
30static struct kmem_cache *delayed_node_cache;
31
32int __init btrfs_delayed_inode_init(void)
33{
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42}
43
44void btrfs_delayed_inode_exit(void)
45{
46 kmem_cache_destroy(delayed_node_cache);
47}
48
49static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52{
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
61}
62
63static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66{
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73}
74
75static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
76{
77 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
78 struct btrfs_root *root = btrfs_inode->root;
79 u64 ino = btrfs_ino(inode);
80 struct btrfs_delayed_node *node;
81
82 node = ACCESS_ONCE(btrfs_inode->delayed_node);
83 if (node) {
84 atomic_inc(&node->refs);
85 return node;
86 }
87
88 spin_lock(&root->inode_lock);
89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 if (node) {
91 if (btrfs_inode->delayed_node) {
92 atomic_inc(&node->refs); /* can be accessed */
93 BUG_ON(btrfs_inode->delayed_node != node);
94 spin_unlock(&root->inode_lock);
95 return node;
96 }
97 btrfs_inode->delayed_node = node;
98 /* can be accessed and cached in the inode */
99 atomic_add(2, &node->refs);
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 spin_unlock(&root->inode_lock);
104
105 return NULL;
106}
107
108/* Will return either the node or PTR_ERR(-ENOMEM) */
109static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 struct inode *inode)
111{
112 struct btrfs_delayed_node *node;
113 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
114 struct btrfs_root *root = btrfs_inode->root;
115 u64 ino = btrfs_ino(inode);
116 int ret;
117
118again:
119 node = btrfs_get_delayed_node(inode);
120 if (node)
121 return node;
122
123 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
124 if (!node)
125 return ERR_PTR(-ENOMEM);
126 btrfs_init_delayed_node(node, root, ino);
127
128 /* cached in the btrfs inode and can be accessed */
129 atomic_add(2, &node->refs);
130
131 ret = radix_tree_preload(GFP_NOFS);
132 if (ret) {
133 kmem_cache_free(delayed_node_cache, node);
134 return ERR_PTR(ret);
135 }
136
137 spin_lock(&root->inode_lock);
138 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
139 if (ret == -EEXIST) {
140 spin_unlock(&root->inode_lock);
141 kmem_cache_free(delayed_node_cache, node);
142 radix_tree_preload_end();
143 goto again;
144 }
145 btrfs_inode->delayed_node = node;
146 spin_unlock(&root->inode_lock);
147 radix_tree_preload_end();
148
149 return node;
150}
151
152/*
153 * Call it when holding delayed_node->mutex
154 *
155 * If mod = 1, add this node into the prepared list.
156 */
157static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
158 struct btrfs_delayed_node *node,
159 int mod)
160{
161 spin_lock(&root->lock);
162 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
163 if (!list_empty(&node->p_list))
164 list_move_tail(&node->p_list, &root->prepare_list);
165 else if (mod)
166 list_add_tail(&node->p_list, &root->prepare_list);
167 } else {
168 list_add_tail(&node->n_list, &root->node_list);
169 list_add_tail(&node->p_list, &root->prepare_list);
170 atomic_inc(&node->refs); /* inserted into list */
171 root->nodes++;
172 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
173 }
174 spin_unlock(&root->lock);
175}
176
177/* Call it when holding delayed_node->mutex */
178static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
179 struct btrfs_delayed_node *node)
180{
181 spin_lock(&root->lock);
182 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
183 root->nodes--;
184 atomic_dec(&node->refs); /* not in the list */
185 list_del_init(&node->n_list);
186 if (!list_empty(&node->p_list))
187 list_del_init(&node->p_list);
188 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
189 }
190 spin_unlock(&root->lock);
191}
192
193static struct btrfs_delayed_node *btrfs_first_delayed_node(
194 struct btrfs_delayed_root *delayed_root)
195{
196 struct list_head *p;
197 struct btrfs_delayed_node *node = NULL;
198
199 spin_lock(&delayed_root->lock);
200 if (list_empty(&delayed_root->node_list))
201 goto out;
202
203 p = delayed_root->node_list.next;
204 node = list_entry(p, struct btrfs_delayed_node, n_list);
205 atomic_inc(&node->refs);
206out:
207 spin_unlock(&delayed_root->lock);
208
209 return node;
210}
211
212static struct btrfs_delayed_node *btrfs_next_delayed_node(
213 struct btrfs_delayed_node *node)
214{
215 struct btrfs_delayed_root *delayed_root;
216 struct list_head *p;
217 struct btrfs_delayed_node *next = NULL;
218
219 delayed_root = node->root->fs_info->delayed_root;
220 spin_lock(&delayed_root->lock);
221 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
222 /* not in the list */
223 if (list_empty(&delayed_root->node_list))
224 goto out;
225 p = delayed_root->node_list.next;
226 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
227 goto out;
228 else
229 p = node->n_list.next;
230
231 next = list_entry(p, struct btrfs_delayed_node, n_list);
232 atomic_inc(&next->refs);
233out:
234 spin_unlock(&delayed_root->lock);
235
236 return next;
237}
238
239static void __btrfs_release_delayed_node(
240 struct btrfs_delayed_node *delayed_node,
241 int mod)
242{
243 struct btrfs_delayed_root *delayed_root;
244
245 if (!delayed_node)
246 return;
247
248 delayed_root = delayed_node->root->fs_info->delayed_root;
249
250 mutex_lock(&delayed_node->mutex);
251 if (delayed_node->count)
252 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
253 else
254 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
255 mutex_unlock(&delayed_node->mutex);
256
257 if (atomic_dec_and_test(&delayed_node->refs)) {
258 bool free = false;
259 struct btrfs_root *root = delayed_node->root;
260 spin_lock(&root->inode_lock);
261 if (atomic_read(&delayed_node->refs) == 0) {
262 radix_tree_delete(&root->delayed_nodes_tree,
263 delayed_node->inode_id);
264 free = true;
265 }
266 spin_unlock(&root->inode_lock);
267 if (free)
268 kmem_cache_free(delayed_node_cache, delayed_node);
269 }
270}
271
272static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
273{
274 __btrfs_release_delayed_node(node, 0);
275}
276
277static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
278 struct btrfs_delayed_root *delayed_root)
279{
280 struct list_head *p;
281 struct btrfs_delayed_node *node = NULL;
282
283 spin_lock(&delayed_root->lock);
284 if (list_empty(&delayed_root->prepare_list))
285 goto out;
286
287 p = delayed_root->prepare_list.next;
288 list_del_init(p);
289 node = list_entry(p, struct btrfs_delayed_node, p_list);
290 atomic_inc(&node->refs);
291out:
292 spin_unlock(&delayed_root->lock);
293
294 return node;
295}
296
297static inline void btrfs_release_prepared_delayed_node(
298 struct btrfs_delayed_node *node)
299{
300 __btrfs_release_delayed_node(node, 1);
301}
302
303static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
304{
305 struct btrfs_delayed_item *item;
306 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
307 if (item) {
308 item->data_len = data_len;
309 item->ins_or_del = 0;
310 item->bytes_reserved = 0;
311 item->delayed_node = NULL;
312 atomic_set(&item->refs, 1);
313 }
314 return item;
315}
316
317/*
318 * __btrfs_lookup_delayed_item - look up the delayed item by key
319 * @delayed_node: pointer to the delayed node
320 * @key: the key to look up
321 * @prev: used to store the prev item if the right item isn't found
322 * @next: used to store the next item if the right item isn't found
323 *
324 * Note: if we don't find the right item, we will return the prev item and
325 * the next item.
326 */
327static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
328 struct rb_root *root,
329 struct btrfs_key *key,
330 struct btrfs_delayed_item **prev,
331 struct btrfs_delayed_item **next)
332{
333 struct rb_node *node, *prev_node = NULL;
334 struct btrfs_delayed_item *delayed_item = NULL;
335 int ret = 0;
336
337 node = root->rb_node;
338
339 while (node) {
340 delayed_item = rb_entry(node, struct btrfs_delayed_item,
341 rb_node);
342 prev_node = node;
343 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
344 if (ret < 0)
345 node = node->rb_right;
346 else if (ret > 0)
347 node = node->rb_left;
348 else
349 return delayed_item;
350 }
351
352 if (prev) {
353 if (!prev_node)
354 *prev = NULL;
355 else if (ret < 0)
356 *prev = delayed_item;
357 else if ((node = rb_prev(prev_node)) != NULL) {
358 *prev = rb_entry(node, struct btrfs_delayed_item,
359 rb_node);
360 } else
361 *prev = NULL;
362 }
363
364 if (next) {
365 if (!prev_node)
366 *next = NULL;
367 else if (ret > 0)
368 *next = delayed_item;
369 else if ((node = rb_next(prev_node)) != NULL) {
370 *next = rb_entry(node, struct btrfs_delayed_item,
371 rb_node);
372 } else
373 *next = NULL;
374 }
375 return NULL;
376}
377
378static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
379 struct btrfs_delayed_node *delayed_node,
380 struct btrfs_key *key)
381{
382 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
383 NULL, NULL);
384}
385
386static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
387 struct btrfs_delayed_item *ins,
388 int action)
389{
390 struct rb_node **p, *node;
391 struct rb_node *parent_node = NULL;
392 struct rb_root *root;
393 struct btrfs_delayed_item *item;
394 int cmp;
395
396 if (action == BTRFS_DELAYED_INSERTION_ITEM)
397 root = &delayed_node->ins_root;
398 else if (action == BTRFS_DELAYED_DELETION_ITEM)
399 root = &delayed_node->del_root;
400 else
401 BUG();
402 p = &root->rb_node;
403 node = &ins->rb_node;
404
405 while (*p) {
406 parent_node = *p;
407 item = rb_entry(parent_node, struct btrfs_delayed_item,
408 rb_node);
409
410 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
411 if (cmp < 0)
412 p = &(*p)->rb_right;
413 else if (cmp > 0)
414 p = &(*p)->rb_left;
415 else
416 return -EEXIST;
417 }
418
419 rb_link_node(node, parent_node, p);
420 rb_insert_color(node, root);
421 ins->delayed_node = delayed_node;
422 ins->ins_or_del = action;
423
424 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
425 action == BTRFS_DELAYED_INSERTION_ITEM &&
426 ins->key.offset >= delayed_node->index_cnt)
427 delayed_node->index_cnt = ins->key.offset + 1;
428
429 delayed_node->count++;
430 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
431 return 0;
432}
433
434static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
435 struct btrfs_delayed_item *item)
436{
437 return __btrfs_add_delayed_item(node, item,
438 BTRFS_DELAYED_INSERTION_ITEM);
439}
440
441static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
442 struct btrfs_delayed_item *item)
443{
444 return __btrfs_add_delayed_item(node, item,
445 BTRFS_DELAYED_DELETION_ITEM);
446}
447
448static void finish_one_item(struct btrfs_delayed_root *delayed_root)
449{
450 int seq = atomic_inc_return(&delayed_root->items_seq);
451
452 /*
453 * atomic_dec_return implies a barrier for waitqueue_active
454 */
455 if ((atomic_dec_return(&delayed_root->items) <
456 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
457 waitqueue_active(&delayed_root->wait))
458 wake_up(&delayed_root->wait);
459}
460
461static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
462{
463 struct rb_root *root;
464 struct btrfs_delayed_root *delayed_root;
465
466 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
467
468 BUG_ON(!delayed_root);
469 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
470 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
471
472 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
473 root = &delayed_item->delayed_node->ins_root;
474 else
475 root = &delayed_item->delayed_node->del_root;
476
477 rb_erase(&delayed_item->rb_node, root);
478 delayed_item->delayed_node->count--;
479
480 finish_one_item(delayed_root);
481}
482
483static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
484{
485 if (item) {
486 __btrfs_remove_delayed_item(item);
487 if (atomic_dec_and_test(&item->refs))
488 kfree(item);
489 }
490}
491
492static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
493 struct btrfs_delayed_node *delayed_node)
494{
495 struct rb_node *p;
496 struct btrfs_delayed_item *item = NULL;
497
498 p = rb_first(&delayed_node->ins_root);
499 if (p)
500 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
501
502 return item;
503}
504
505static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
506 struct btrfs_delayed_node *delayed_node)
507{
508 struct rb_node *p;
509 struct btrfs_delayed_item *item = NULL;
510
511 p = rb_first(&delayed_node->del_root);
512 if (p)
513 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
514
515 return item;
516}
517
518static struct btrfs_delayed_item *__btrfs_next_delayed_item(
519 struct btrfs_delayed_item *item)
520{
521 struct rb_node *p;
522 struct btrfs_delayed_item *next = NULL;
523
524 p = rb_next(&item->rb_node);
525 if (p)
526 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
527
528 return next;
529}
530
531static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
532 struct btrfs_fs_info *fs_info,
533 struct btrfs_delayed_item *item)
534{
535 struct btrfs_block_rsv *src_rsv;
536 struct btrfs_block_rsv *dst_rsv;
537 u64 num_bytes;
538 int ret;
539
540 if (!trans->bytes_reserved)
541 return 0;
542
543 src_rsv = trans->block_rsv;
544 dst_rsv = &fs_info->delayed_block_rsv;
545
546 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
547 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
548 if (!ret) {
549 trace_btrfs_space_reservation(fs_info, "delayed_item",
550 item->key.objectid,
551 num_bytes, 1);
552 item->bytes_reserved = num_bytes;
553 }
554
555 return ret;
556}
557
558static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
559 struct btrfs_delayed_item *item)
560{
561 struct btrfs_block_rsv *rsv;
562
563 if (!item->bytes_reserved)
564 return;
565
566 rsv = &fs_info->delayed_block_rsv;
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid, item->bytes_reserved,
569 0);
570 btrfs_block_rsv_release(fs_info, rsv,
571 item->bytes_reserved);
572}
573
574static int btrfs_delayed_inode_reserve_metadata(
575 struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct inode *inode,
578 struct btrfs_delayed_node *node)
579{
580 struct btrfs_fs_info *fs_info = root->fs_info;
581 struct btrfs_block_rsv *src_rsv;
582 struct btrfs_block_rsv *dst_rsv;
583 u64 num_bytes;
584 int ret;
585 bool release = false;
586
587 src_rsv = trans->block_rsv;
588 dst_rsv = &fs_info->delayed_block_rsv;
589
590 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
591
592 /*
593 * If our block_rsv is the delalloc block reserve then check and see if
594 * we have our extra reservation for updating the inode. If not fall
595 * through and try to reserve space quickly.
596 *
597 * We used to try and steal from the delalloc block rsv or the global
598 * reserve, but we'd steal a full reservation, which isn't kind. We are
599 * here through delalloc which means we've likely just cowed down close
600 * to the leaf that contains the inode, so we would steal less just
601 * doing the fallback inode update, so if we do end up having to steal
602 * from the global block rsv we hopefully only steal one or two blocks
603 * worth which is less likely to hurt us.
604 */
605 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
606 spin_lock(&BTRFS_I(inode)->lock);
607 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
608 &BTRFS_I(inode)->runtime_flags))
609 release = true;
610 else
611 src_rsv = NULL;
612 spin_unlock(&BTRFS_I(inode)->lock);
613 }
614
615 /*
616 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
617 * which doesn't reserve space for speed. This is a problem since we
618 * still need to reserve space for this update, so try to reserve the
619 * space.
620 *
621 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
622 * we're accounted for.
623 */
624 if (!src_rsv || (!trans->bytes_reserved &&
625 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
626 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
627 BTRFS_RESERVE_NO_FLUSH);
628 /*
629 * Since we're under a transaction reserve_metadata_bytes could
630 * try to commit the transaction which will make it return
631 * EAGAIN to make us stop the transaction we have, so return
632 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
633 */
634 if (ret == -EAGAIN)
635 ret = -ENOSPC;
636 if (!ret) {
637 node->bytes_reserved = num_bytes;
638 trace_btrfs_space_reservation(fs_info,
639 "delayed_inode",
640 btrfs_ino(inode),
641 num_bytes, 1);
642 }
643 return ret;
644 }
645
646 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
647
648 /*
649 * Migrate only takes a reservation, it doesn't touch the size of the
650 * block_rsv. This is to simplify people who don't normally have things
651 * migrated from their block rsv. If they go to release their
652 * reservation, that will decrease the size as well, so if migrate
653 * reduced size we'd end up with a negative size. But for the
654 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
655 * but we could in fact do this reserve/migrate dance several times
656 * between the time we did the original reservation and we'd clean it
657 * up. So to take care of this, release the space for the meta
658 * reservation here. I think it may be time for a documentation page on
659 * how block rsvs. work.
660 */
661 if (!ret) {
662 trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 btrfs_ino(inode), num_bytes, 1);
664 node->bytes_reserved = num_bytes;
665 }
666
667 if (release) {
668 trace_btrfs_space_reservation(fs_info, "delalloc",
669 btrfs_ino(inode), num_bytes, 0);
670 btrfs_block_rsv_release(fs_info, src_rsv, num_bytes);
671 }
672
673 return ret;
674}
675
676static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
677 struct btrfs_delayed_node *node)
678{
679 struct btrfs_block_rsv *rsv;
680
681 if (!node->bytes_reserved)
682 return;
683
684 rsv = &fs_info->delayed_block_rsv;
685 trace_btrfs_space_reservation(fs_info, "delayed_inode",
686 node->inode_id, node->bytes_reserved, 0);
687 btrfs_block_rsv_release(fs_info, rsv,
688 node->bytes_reserved);
689 node->bytes_reserved = 0;
690}
691
692/*
693 * This helper will insert some continuous items into the same leaf according
694 * to the free space of the leaf.
695 */
696static int btrfs_batch_insert_items(struct btrfs_root *root,
697 struct btrfs_path *path,
698 struct btrfs_delayed_item *item)
699{
700 struct btrfs_fs_info *fs_info = root->fs_info;
701 struct btrfs_delayed_item *curr, *next;
702 int free_space;
703 int total_data_size = 0, total_size = 0;
704 struct extent_buffer *leaf;
705 char *data_ptr;
706 struct btrfs_key *keys;
707 u32 *data_size;
708 struct list_head head;
709 int slot;
710 int nitems;
711 int i;
712 int ret = 0;
713
714 BUG_ON(!path->nodes[0]);
715
716 leaf = path->nodes[0];
717 free_space = btrfs_leaf_free_space(fs_info, leaf);
718 INIT_LIST_HEAD(&head);
719
720 next = item;
721 nitems = 0;
722
723 /*
724 * count the number of the continuous items that we can insert in batch
725 */
726 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
727 free_space) {
728 total_data_size += next->data_len;
729 total_size += next->data_len + sizeof(struct btrfs_item);
730 list_add_tail(&next->tree_list, &head);
731 nitems++;
732
733 curr = next;
734 next = __btrfs_next_delayed_item(curr);
735 if (!next)
736 break;
737
738 if (!btrfs_is_continuous_delayed_item(curr, next))
739 break;
740 }
741
742 if (!nitems) {
743 ret = 0;
744 goto out;
745 }
746
747 /*
748 * we need allocate some memory space, but it might cause the task
749 * to sleep, so we set all locked nodes in the path to blocking locks
750 * first.
751 */
752 btrfs_set_path_blocking(path);
753
754 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
755 if (!keys) {
756 ret = -ENOMEM;
757 goto out;
758 }
759
760 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
761 if (!data_size) {
762 ret = -ENOMEM;
763 goto error;
764 }
765
766 /* get keys of all the delayed items */
767 i = 0;
768 list_for_each_entry(next, &head, tree_list) {
769 keys[i] = next->key;
770 data_size[i] = next->data_len;
771 i++;
772 }
773
774 /* reset all the locked nodes in the patch to spinning locks. */
775 btrfs_clear_path_blocking(path, NULL, 0);
776
777 /* insert the keys of the items */
778 setup_items_for_insert(root, path, keys, data_size,
779 total_data_size, total_size, nitems);
780
781 /* insert the dir index items */
782 slot = path->slots[0];
783 list_for_each_entry_safe(curr, next, &head, tree_list) {
784 data_ptr = btrfs_item_ptr(leaf, slot, char);
785 write_extent_buffer(leaf, &curr->data,
786 (unsigned long)data_ptr,
787 curr->data_len);
788 slot++;
789
790 btrfs_delayed_item_release_metadata(fs_info, curr);
791
792 list_del(&curr->tree_list);
793 btrfs_release_delayed_item(curr);
794 }
795
796error:
797 kfree(data_size);
798 kfree(keys);
799out:
800 return ret;
801}
802
803/*
804 * This helper can just do simple insertion that needn't extend item for new
805 * data, such as directory name index insertion, inode insertion.
806 */
807static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
808 struct btrfs_root *root,
809 struct btrfs_path *path,
810 struct btrfs_delayed_item *delayed_item)
811{
812 struct btrfs_fs_info *fs_info = root->fs_info;
813 struct extent_buffer *leaf;
814 char *ptr;
815 int ret;
816
817 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
818 delayed_item->data_len);
819 if (ret < 0 && ret != -EEXIST)
820 return ret;
821
822 leaf = path->nodes[0];
823
824 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
825
826 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
827 delayed_item->data_len);
828 btrfs_mark_buffer_dirty(leaf);
829
830 btrfs_delayed_item_release_metadata(fs_info, delayed_item);
831 return 0;
832}
833
834/*
835 * we insert an item first, then if there are some continuous items, we try
836 * to insert those items into the same leaf.
837 */
838static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
839 struct btrfs_path *path,
840 struct btrfs_root *root,
841 struct btrfs_delayed_node *node)
842{
843 struct btrfs_delayed_item *curr, *prev;
844 int ret = 0;
845
846do_again:
847 mutex_lock(&node->mutex);
848 curr = __btrfs_first_delayed_insertion_item(node);
849 if (!curr)
850 goto insert_end;
851
852 ret = btrfs_insert_delayed_item(trans, root, path, curr);
853 if (ret < 0) {
854 btrfs_release_path(path);
855 goto insert_end;
856 }
857
858 prev = curr;
859 curr = __btrfs_next_delayed_item(prev);
860 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
861 /* insert the continuous items into the same leaf */
862 path->slots[0]++;
863 btrfs_batch_insert_items(root, path, curr);
864 }
865 btrfs_release_delayed_item(prev);
866 btrfs_mark_buffer_dirty(path->nodes[0]);
867
868 btrfs_release_path(path);
869 mutex_unlock(&node->mutex);
870 goto do_again;
871
872insert_end:
873 mutex_unlock(&node->mutex);
874 return ret;
875}
876
877static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
878 struct btrfs_root *root,
879 struct btrfs_path *path,
880 struct btrfs_delayed_item *item)
881{
882 struct btrfs_fs_info *fs_info = root->fs_info;
883 struct btrfs_delayed_item *curr, *next;
884 struct extent_buffer *leaf;
885 struct btrfs_key key;
886 struct list_head head;
887 int nitems, i, last_item;
888 int ret = 0;
889
890 BUG_ON(!path->nodes[0]);
891
892 leaf = path->nodes[0];
893
894 i = path->slots[0];
895 last_item = btrfs_header_nritems(leaf) - 1;
896 if (i > last_item)
897 return -ENOENT; /* FIXME: Is errno suitable? */
898
899 next = item;
900 INIT_LIST_HEAD(&head);
901 btrfs_item_key_to_cpu(leaf, &key, i);
902 nitems = 0;
903 /*
904 * count the number of the dir index items that we can delete in batch
905 */
906 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
907 list_add_tail(&next->tree_list, &head);
908 nitems++;
909
910 curr = next;
911 next = __btrfs_next_delayed_item(curr);
912 if (!next)
913 break;
914
915 if (!btrfs_is_continuous_delayed_item(curr, next))
916 break;
917
918 i++;
919 if (i > last_item)
920 break;
921 btrfs_item_key_to_cpu(leaf, &key, i);
922 }
923
924 if (!nitems)
925 return 0;
926
927 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
928 if (ret)
929 goto out;
930
931 list_for_each_entry_safe(curr, next, &head, tree_list) {
932 btrfs_delayed_item_release_metadata(fs_info, curr);
933 list_del(&curr->tree_list);
934 btrfs_release_delayed_item(curr);
935 }
936
937out:
938 return ret;
939}
940
941static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
942 struct btrfs_path *path,
943 struct btrfs_root *root,
944 struct btrfs_delayed_node *node)
945{
946 struct btrfs_delayed_item *curr, *prev;
947 int ret = 0;
948
949do_again:
950 mutex_lock(&node->mutex);
951 curr = __btrfs_first_delayed_deletion_item(node);
952 if (!curr)
953 goto delete_fail;
954
955 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
956 if (ret < 0)
957 goto delete_fail;
958 else if (ret > 0) {
959 /*
960 * can't find the item which the node points to, so this node
961 * is invalid, just drop it.
962 */
963 prev = curr;
964 curr = __btrfs_next_delayed_item(prev);
965 btrfs_release_delayed_item(prev);
966 ret = 0;
967 btrfs_release_path(path);
968 if (curr) {
969 mutex_unlock(&node->mutex);
970 goto do_again;
971 } else
972 goto delete_fail;
973 }
974
975 btrfs_batch_delete_items(trans, root, path, curr);
976 btrfs_release_path(path);
977 mutex_unlock(&node->mutex);
978 goto do_again;
979
980delete_fail:
981 btrfs_release_path(path);
982 mutex_unlock(&node->mutex);
983 return ret;
984}
985
986static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
987{
988 struct btrfs_delayed_root *delayed_root;
989
990 if (delayed_node &&
991 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
992 BUG_ON(!delayed_node->root);
993 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
994 delayed_node->count--;
995
996 delayed_root = delayed_node->root->fs_info->delayed_root;
997 finish_one_item(delayed_root);
998 }
999}
1000
1001static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1002{
1003 struct btrfs_delayed_root *delayed_root;
1004
1005 ASSERT(delayed_node->root);
1006 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1007 delayed_node->count--;
1008
1009 delayed_root = delayed_node->root->fs_info->delayed_root;
1010 finish_one_item(delayed_root);
1011}
1012
1013static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014 struct btrfs_root *root,
1015 struct btrfs_path *path,
1016 struct btrfs_delayed_node *node)
1017{
1018 struct btrfs_fs_info *fs_info = root->fs_info;
1019 struct btrfs_key key;
1020 struct btrfs_inode_item *inode_item;
1021 struct extent_buffer *leaf;
1022 int mod;
1023 int ret;
1024
1025 key.objectid = node->inode_id;
1026 key.type = BTRFS_INODE_ITEM_KEY;
1027 key.offset = 0;
1028
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 mod = -1;
1031 else
1032 mod = 1;
1033
1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 if (ret > 0) {
1036 btrfs_release_path(path);
1037 return -ENOENT;
1038 } else if (ret < 0) {
1039 return ret;
1040 }
1041
1042 leaf = path->nodes[0];
1043 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_inode_item);
1045 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 sizeof(struct btrfs_inode_item));
1047 btrfs_mark_buffer_dirty(leaf);
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto no_iref;
1051
1052 path->slots[0]++;
1053 if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 goto search;
1055again:
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 if (key.objectid != node->inode_id)
1058 goto out;
1059
1060 if (key.type != BTRFS_INODE_REF_KEY &&
1061 key.type != BTRFS_INODE_EXTREF_KEY)
1062 goto out;
1063
1064 /*
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1068 */
1069 btrfs_del_item(trans, root, path);
1070out:
1071 btrfs_release_delayed_iref(node);
1072no_iref:
1073 btrfs_release_path(path);
1074err_out:
1075 btrfs_delayed_inode_release_metadata(fs_info, node);
1076 btrfs_release_delayed_inode(node);
1077
1078 return ret;
1079
1080search:
1081 btrfs_release_path(path);
1082
1083 key.type = BTRFS_INODE_EXTREF_KEY;
1084 key.offset = -1;
1085 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1086 if (ret < 0)
1087 goto err_out;
1088 ASSERT(ret);
1089
1090 ret = 0;
1091 leaf = path->nodes[0];
1092 path->slots[0]--;
1093 goto again;
1094}
1095
1096static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 struct btrfs_delayed_node *node)
1100{
1101 int ret;
1102
1103 mutex_lock(&node->mutex);
1104 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1105 mutex_unlock(&node->mutex);
1106 return 0;
1107 }
1108
1109 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1110 mutex_unlock(&node->mutex);
1111 return ret;
1112}
1113
1114static inline int
1115__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1116 struct btrfs_path *path,
1117 struct btrfs_delayed_node *node)
1118{
1119 int ret;
1120
1121 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1122 if (ret)
1123 return ret;
1124
1125 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1130 return ret;
1131}
1132
1133/*
1134 * Called when committing the transaction.
1135 * Returns 0 on success.
1136 * Returns < 0 on error and returns with an aborted transaction with any
1137 * outstanding delayed items cleaned up.
1138 */
1139static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1140 struct btrfs_fs_info *fs_info, int nr)
1141{
1142 struct btrfs_delayed_root *delayed_root;
1143 struct btrfs_delayed_node *curr_node, *prev_node;
1144 struct btrfs_path *path;
1145 struct btrfs_block_rsv *block_rsv;
1146 int ret = 0;
1147 bool count = (nr > 0);
1148
1149 if (trans->aborted)
1150 return -EIO;
1151
1152 path = btrfs_alloc_path();
1153 if (!path)
1154 return -ENOMEM;
1155 path->leave_spinning = 1;
1156
1157 block_rsv = trans->block_rsv;
1158 trans->block_rsv = &fs_info->delayed_block_rsv;
1159
1160 delayed_root = fs_info->delayed_root;
1161
1162 curr_node = btrfs_first_delayed_node(delayed_root);
1163 while (curr_node && (!count || (count && nr--))) {
1164 ret = __btrfs_commit_inode_delayed_items(trans, path,
1165 curr_node);
1166 if (ret) {
1167 btrfs_release_delayed_node(curr_node);
1168 curr_node = NULL;
1169 btrfs_abort_transaction(trans, ret);
1170 break;
1171 }
1172
1173 prev_node = curr_node;
1174 curr_node = btrfs_next_delayed_node(curr_node);
1175 btrfs_release_delayed_node(prev_node);
1176 }
1177
1178 if (curr_node)
1179 btrfs_release_delayed_node(curr_node);
1180 btrfs_free_path(path);
1181 trans->block_rsv = block_rsv;
1182
1183 return ret;
1184}
1185
1186int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1187 struct btrfs_fs_info *fs_info)
1188{
1189 return __btrfs_run_delayed_items(trans, fs_info, -1);
1190}
1191
1192int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1193 struct btrfs_fs_info *fs_info, int nr)
1194{
1195 return __btrfs_run_delayed_items(trans, fs_info, nr);
1196}
1197
1198int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct inode *inode)
1200{
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1221 }
1222 path->leave_spinning = 1;
1223
1224 block_rsv = trans->block_rsv;
1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1226
1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1228
1229 btrfs_release_delayed_node(delayed_node);
1230 btrfs_free_path(path);
1231 trans->block_rsv = block_rsv;
1232
1233 return ret;
1234}
1235
1236int btrfs_commit_inode_delayed_inode(struct inode *inode)
1237{
1238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1244
1245 if (!delayed_node)
1246 return 0;
1247
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1253 }
1254 mutex_unlock(&delayed_node->mutex);
1255
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1260 }
1261
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1266 }
1267 path->leave_spinning = 1;
1268
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &fs_info->delayed_block_rsv;
1271
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1279
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282trans_out:
1283 btrfs_end_transaction(trans);
1284 btrfs_btree_balance_dirty(fs_info);
1285out:
1286 btrfs_release_delayed_node(delayed_node);
1287
1288 return ret;
1289}
1290
1291void btrfs_remove_delayed_node(struct inode *inode)
1292{
1293 struct btrfs_delayed_node *delayed_node;
1294
1295 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 if (!delayed_node)
1297 return;
1298
1299 BTRFS_I(inode)->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1301}
1302
1303struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1307};
1308
1309static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310{
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1319
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1326
1327again:
1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 goto free_path;
1330
1331 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 if (!delayed_node)
1333 goto free_path;
1334
1335 path->leave_spinning = 1;
1336 root = delayed_node->root;
1337
1338 trans = btrfs_join_transaction(root);
1339 if (IS_ERR(trans))
1340 goto release_path;
1341
1342 block_rsv = trans->block_rsv;
1343 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346
1347 trans->block_rsv = block_rsv;
1348 btrfs_end_transaction(trans);
1349 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1350
1351release_path:
1352 btrfs_release_path(path);
1353 total_done++;
1354
1355 btrfs_release_prepared_delayed_node(delayed_node);
1356 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357 total_done < async_work->nr)
1358 goto again;
1359
1360free_path:
1361 btrfs_free_path(path);
1362out:
1363 wake_up(&delayed_root->wait);
1364 kfree(async_work);
1365}
1366
1367
1368static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369 struct btrfs_fs_info *fs_info, int nr)
1370{
1371 struct btrfs_async_delayed_work *async_work;
1372
1373 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 return 0;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 btrfs_async_run_delayed_root, NULL, NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397 int val = atomic_read(&delayed_root->items_seq);
1398
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1401
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1413 return;
1414
1415 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416 int seq;
1417 int ret;
1418
1419 seq = atomic_read(&delayed_root->items_seq);
1420
1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1422 if (ret)
1423 return;
1424
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
1427 return;
1428 }
1429
1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433/* Will return 0 or -ENOMEM */
1434int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1435 struct btrfs_fs_info *fs_info,
1436 const char *name, int name_len,
1437 struct inode *dir,
1438 struct btrfs_disk_key *disk_key, u8 type,
1439 u64 index)
1440{
1441 struct btrfs_delayed_node *delayed_node;
1442 struct btrfs_delayed_item *delayed_item;
1443 struct btrfs_dir_item *dir_item;
1444 int ret;
1445
1446 delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 if (IS_ERR(delayed_node))
1448 return PTR_ERR(delayed_node);
1449
1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 if (!delayed_item) {
1452 ret = -ENOMEM;
1453 goto release_node;
1454 }
1455
1456 delayed_item->key.objectid = btrfs_ino(dir);
1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 delayed_item->key.offset = index;
1459
1460 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 dir_item->location = *disk_key;
1462 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 btrfs_set_stack_dir_data_len(dir_item, 0);
1464 btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 btrfs_set_stack_dir_type(dir_item, type);
1466 memcpy((char *)(dir_item + 1), name, name_len);
1467
1468 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1469 /*
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1472 */
1473 BUG_ON(ret);
1474
1475
1476 mutex_lock(&delayed_node->mutex);
1477 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1478 if (unlikely(ret)) {
1479 btrfs_err(fs_info,
1480 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1481 name_len, name, delayed_node->root->objectid,
1482 delayed_node->inode_id, ret);
1483 BUG();
1484 }
1485 mutex_unlock(&delayed_node->mutex);
1486
1487release_node:
1488 btrfs_release_delayed_node(delayed_node);
1489 return ret;
1490}
1491
1492static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1493 struct btrfs_delayed_node *node,
1494 struct btrfs_key *key)
1495{
1496 struct btrfs_delayed_item *item;
1497
1498 mutex_lock(&node->mutex);
1499 item = __btrfs_lookup_delayed_insertion_item(node, key);
1500 if (!item) {
1501 mutex_unlock(&node->mutex);
1502 return 1;
1503 }
1504
1505 btrfs_delayed_item_release_metadata(fs_info, item);
1506 btrfs_release_delayed_item(item);
1507 mutex_unlock(&node->mutex);
1508 return 0;
1509}
1510
1511int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1512 struct btrfs_fs_info *fs_info,
1513 struct inode *dir, u64 index)
1514{
1515 struct btrfs_delayed_node *node;
1516 struct btrfs_delayed_item *item;
1517 struct btrfs_key item_key;
1518 int ret;
1519
1520 node = btrfs_get_or_create_delayed_node(dir);
1521 if (IS_ERR(node))
1522 return PTR_ERR(node);
1523
1524 item_key.objectid = btrfs_ino(dir);
1525 item_key.type = BTRFS_DIR_INDEX_KEY;
1526 item_key.offset = index;
1527
1528 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1529 if (!ret)
1530 goto end;
1531
1532 item = btrfs_alloc_delayed_item(0);
1533 if (!item) {
1534 ret = -ENOMEM;
1535 goto end;
1536 }
1537
1538 item->key = item_key;
1539
1540 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1541 /*
1542 * we have reserved enough space when we start a new transaction,
1543 * so reserving metadata failure is impossible.
1544 */
1545 BUG_ON(ret);
1546
1547 mutex_lock(&node->mutex);
1548 ret = __btrfs_add_delayed_deletion_item(node, item);
1549 if (unlikely(ret)) {
1550 btrfs_err(fs_info,
1551 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1552 index, node->root->objectid, node->inode_id, ret);
1553 BUG();
1554 }
1555 mutex_unlock(&node->mutex);
1556end:
1557 btrfs_release_delayed_node(node);
1558 return ret;
1559}
1560
1561int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1562{
1563 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1564
1565 if (!delayed_node)
1566 return -ENOENT;
1567
1568 /*
1569 * Since we have held i_mutex of this directory, it is impossible that
1570 * a new directory index is added into the delayed node and index_cnt
1571 * is updated now. So we needn't lock the delayed node.
1572 */
1573 if (!delayed_node->index_cnt) {
1574 btrfs_release_delayed_node(delayed_node);
1575 return -EINVAL;
1576 }
1577
1578 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1579 btrfs_release_delayed_node(delayed_node);
1580 return 0;
1581}
1582
1583bool btrfs_readdir_get_delayed_items(struct inode *inode,
1584 struct list_head *ins_list,
1585 struct list_head *del_list)
1586{
1587 struct btrfs_delayed_node *delayed_node;
1588 struct btrfs_delayed_item *item;
1589
1590 delayed_node = btrfs_get_delayed_node(inode);
1591 if (!delayed_node)
1592 return false;
1593
1594 /*
1595 * We can only do one readdir with delayed items at a time because of
1596 * item->readdir_list.
1597 */
1598 inode_unlock_shared(inode);
1599 inode_lock(inode);
1600
1601 mutex_lock(&delayed_node->mutex);
1602 item = __btrfs_first_delayed_insertion_item(delayed_node);
1603 while (item) {
1604 atomic_inc(&item->refs);
1605 list_add_tail(&item->readdir_list, ins_list);
1606 item = __btrfs_next_delayed_item(item);
1607 }
1608
1609 item = __btrfs_first_delayed_deletion_item(delayed_node);
1610 while (item) {
1611 atomic_inc(&item->refs);
1612 list_add_tail(&item->readdir_list, del_list);
1613 item = __btrfs_next_delayed_item(item);
1614 }
1615 mutex_unlock(&delayed_node->mutex);
1616 /*
1617 * This delayed node is still cached in the btrfs inode, so refs
1618 * must be > 1 now, and we needn't check it is going to be freed
1619 * or not.
1620 *
1621 * Besides that, this function is used to read dir, we do not
1622 * insert/delete delayed items in this period. So we also needn't
1623 * requeue or dequeue this delayed node.
1624 */
1625 atomic_dec(&delayed_node->refs);
1626
1627 return true;
1628}
1629
1630void btrfs_readdir_put_delayed_items(struct inode *inode,
1631 struct list_head *ins_list,
1632 struct list_head *del_list)
1633{
1634 struct btrfs_delayed_item *curr, *next;
1635
1636 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1637 list_del(&curr->readdir_list);
1638 if (atomic_dec_and_test(&curr->refs))
1639 kfree(curr);
1640 }
1641
1642 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1643 list_del(&curr->readdir_list);
1644 if (atomic_dec_and_test(&curr->refs))
1645 kfree(curr);
1646 }
1647
1648 /*
1649 * The VFS is going to do up_read(), so we need to downgrade back to a
1650 * read lock.
1651 */
1652 downgrade_write(&inode->i_rwsem);
1653}
1654
1655int btrfs_should_delete_dir_index(struct list_head *del_list,
1656 u64 index)
1657{
1658 struct btrfs_delayed_item *curr, *next;
1659 int ret;
1660
1661 if (list_empty(del_list))
1662 return 0;
1663
1664 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1665 if (curr->key.offset > index)
1666 break;
1667
1668 list_del(&curr->readdir_list);
1669 ret = (curr->key.offset == index);
1670
1671 if (atomic_dec_and_test(&curr->refs))
1672 kfree(curr);
1673
1674 if (ret)
1675 return 1;
1676 else
1677 continue;
1678 }
1679 return 0;
1680}
1681
1682/*
1683 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1684 *
1685 */
1686int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1687 struct list_head *ins_list)
1688{
1689 struct btrfs_dir_item *di;
1690 struct btrfs_delayed_item *curr, *next;
1691 struct btrfs_key location;
1692 char *name;
1693 int name_len;
1694 int over = 0;
1695 unsigned char d_type;
1696
1697 if (list_empty(ins_list))
1698 return 0;
1699
1700 /*
1701 * Changing the data of the delayed item is impossible. So
1702 * we needn't lock them. And we have held i_mutex of the
1703 * directory, nobody can delete any directory indexes now.
1704 */
1705 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1706 list_del(&curr->readdir_list);
1707
1708 if (curr->key.offset < ctx->pos) {
1709 if (atomic_dec_and_test(&curr->refs))
1710 kfree(curr);
1711 continue;
1712 }
1713
1714 ctx->pos = curr->key.offset;
1715
1716 di = (struct btrfs_dir_item *)curr->data;
1717 name = (char *)(di + 1);
1718 name_len = btrfs_stack_dir_name_len(di);
1719
1720 d_type = btrfs_filetype_table[di->type];
1721 btrfs_disk_key_to_cpu(&location, &di->location);
1722
1723 over = !dir_emit(ctx, name, name_len,
1724 location.objectid, d_type);
1725
1726 if (atomic_dec_and_test(&curr->refs))
1727 kfree(curr);
1728
1729 if (over)
1730 return 1;
1731 }
1732 return 0;
1733}
1734
1735static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1736 struct btrfs_inode_item *inode_item,
1737 struct inode *inode)
1738{
1739 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1740 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1741 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1742 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1743 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1744 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1745 btrfs_set_stack_inode_generation(inode_item,
1746 BTRFS_I(inode)->generation);
1747 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1748 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1749 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1750 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1751 btrfs_set_stack_inode_block_group(inode_item, 0);
1752
1753 btrfs_set_stack_timespec_sec(&inode_item->atime,
1754 inode->i_atime.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1756 inode->i_atime.tv_nsec);
1757
1758 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1759 inode->i_mtime.tv_sec);
1760 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1761 inode->i_mtime.tv_nsec);
1762
1763 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1764 inode->i_ctime.tv_sec);
1765 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1766 inode->i_ctime.tv_nsec);
1767
1768 btrfs_set_stack_timespec_sec(&inode_item->otime,
1769 BTRFS_I(inode)->i_otime.tv_sec);
1770 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1771 BTRFS_I(inode)->i_otime.tv_nsec);
1772}
1773
1774int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1775{
1776 struct btrfs_delayed_node *delayed_node;
1777 struct btrfs_inode_item *inode_item;
1778
1779 delayed_node = btrfs_get_delayed_node(inode);
1780 if (!delayed_node)
1781 return -ENOENT;
1782
1783 mutex_lock(&delayed_node->mutex);
1784 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1785 mutex_unlock(&delayed_node->mutex);
1786 btrfs_release_delayed_node(delayed_node);
1787 return -ENOENT;
1788 }
1789
1790 inode_item = &delayed_node->inode_item;
1791
1792 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1793 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1794 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1795 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1796 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1797 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1798 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1799 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1800
1801 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1802 inode->i_rdev = 0;
1803 *rdev = btrfs_stack_inode_rdev(inode_item);
1804 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1805
1806 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1807 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1808
1809 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1810 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1811
1812 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1813 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1814
1815 BTRFS_I(inode)->i_otime.tv_sec =
1816 btrfs_stack_timespec_sec(&inode_item->otime);
1817 BTRFS_I(inode)->i_otime.tv_nsec =
1818 btrfs_stack_timespec_nsec(&inode_item->otime);
1819
1820 inode->i_generation = BTRFS_I(inode)->generation;
1821 BTRFS_I(inode)->index_cnt = (u64)-1;
1822
1823 mutex_unlock(&delayed_node->mutex);
1824 btrfs_release_delayed_node(delayed_node);
1825 return 0;
1826}
1827
1828int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1829 struct btrfs_root *root, struct inode *inode)
1830{
1831 struct btrfs_delayed_node *delayed_node;
1832 int ret = 0;
1833
1834 delayed_node = btrfs_get_or_create_delayed_node(inode);
1835 if (IS_ERR(delayed_node))
1836 return PTR_ERR(delayed_node);
1837
1838 mutex_lock(&delayed_node->mutex);
1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1840 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1841 goto release_node;
1842 }
1843
1844 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1845 delayed_node);
1846 if (ret)
1847 goto release_node;
1848
1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1851 delayed_node->count++;
1852 atomic_inc(&root->fs_info->delayed_root->items);
1853release_node:
1854 mutex_unlock(&delayed_node->mutex);
1855 btrfs_release_delayed_node(delayed_node);
1856 return ret;
1857}
1858
1859int btrfs_delayed_delete_inode_ref(struct inode *inode)
1860{
1861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1862 struct btrfs_delayed_node *delayed_node;
1863
1864 /*
1865 * we don't do delayed inode updates during log recovery because it
1866 * leads to enospc problems. This means we also can't do
1867 * delayed inode refs
1868 */
1869 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1870 return -EAGAIN;
1871
1872 delayed_node = btrfs_get_or_create_delayed_node(inode);
1873 if (IS_ERR(delayed_node))
1874 return PTR_ERR(delayed_node);
1875
1876 /*
1877 * We don't reserve space for inode ref deletion is because:
1878 * - We ONLY do async inode ref deletion for the inode who has only
1879 * one link(i_nlink == 1), it means there is only one inode ref.
1880 * And in most case, the inode ref and the inode item are in the
1881 * same leaf, and we will deal with them at the same time.
1882 * Since we are sure we will reserve the space for the inode item,
1883 * it is unnecessary to reserve space for inode ref deletion.
1884 * - If the inode ref and the inode item are not in the same leaf,
1885 * We also needn't worry about enospc problem, because we reserve
1886 * much more space for the inode update than it needs.
1887 * - At the worst, we can steal some space from the global reservation.
1888 * It is very rare.
1889 */
1890 mutex_lock(&delayed_node->mutex);
1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1892 goto release_node;
1893
1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1895 delayed_node->count++;
1896 atomic_inc(&fs_info->delayed_root->items);
1897release_node:
1898 mutex_unlock(&delayed_node->mutex);
1899 btrfs_release_delayed_node(delayed_node);
1900 return 0;
1901}
1902
1903static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1904{
1905 struct btrfs_root *root = delayed_node->root;
1906 struct btrfs_fs_info *fs_info = root->fs_info;
1907 struct btrfs_delayed_item *curr_item, *prev_item;
1908
1909 mutex_lock(&delayed_node->mutex);
1910 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1911 while (curr_item) {
1912 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1913 prev_item = curr_item;
1914 curr_item = __btrfs_next_delayed_item(prev_item);
1915 btrfs_release_delayed_item(prev_item);
1916 }
1917
1918 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1919 while (curr_item) {
1920 btrfs_delayed_item_release_metadata(fs_info, curr_item);
1921 prev_item = curr_item;
1922 curr_item = __btrfs_next_delayed_item(prev_item);
1923 btrfs_release_delayed_item(prev_item);
1924 }
1925
1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1927 btrfs_release_delayed_iref(delayed_node);
1928
1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1930 btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1931 btrfs_release_delayed_inode(delayed_node);
1932 }
1933 mutex_unlock(&delayed_node->mutex);
1934}
1935
1936void btrfs_kill_delayed_inode_items(struct inode *inode)
1937{
1938 struct btrfs_delayed_node *delayed_node;
1939
1940 delayed_node = btrfs_get_delayed_node(inode);
1941 if (!delayed_node)
1942 return;
1943
1944 __btrfs_kill_delayed_node(delayed_node);
1945 btrfs_release_delayed_node(delayed_node);
1946}
1947
1948void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1949{
1950 u64 inode_id = 0;
1951 struct btrfs_delayed_node *delayed_nodes[8];
1952 int i, n;
1953
1954 while (1) {
1955 spin_lock(&root->inode_lock);
1956 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1957 (void **)delayed_nodes, inode_id,
1958 ARRAY_SIZE(delayed_nodes));
1959 if (!n) {
1960 spin_unlock(&root->inode_lock);
1961 break;
1962 }
1963
1964 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1965
1966 for (i = 0; i < n; i++)
1967 atomic_inc(&delayed_nodes[i]->refs);
1968 spin_unlock(&root->inode_lock);
1969
1970 for (i = 0; i < n; i++) {
1971 __btrfs_kill_delayed_node(delayed_nodes[i]);
1972 btrfs_release_delayed_node(delayed_nodes[i]);
1973 }
1974 }
1975}
1976
1977void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1978{
1979 struct btrfs_delayed_node *curr_node, *prev_node;
1980
1981 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1982 while (curr_node) {
1983 __btrfs_kill_delayed_node(curr_node);
1984
1985 prev_node = curr_node;
1986 curr_node = btrfs_next_delayed_node(curr_node);
1987 btrfs_release_delayed_node(prev_node);
1988 }
1989}
1990