Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = xa_load(&root->delayed_nodes, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the xarray. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the xarray at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the xarray, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123 void *ptr;
124
125again:
126 node = btrfs_get_delayed_node(btrfs_inode);
127 if (node)
128 return node;
129
130 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 if (!node)
132 return ERR_PTR(-ENOMEM);
133 btrfs_init_delayed_node(node, root, ino);
134
135 /* Cached in the inode and can be accessed. */
136 refcount_set(&node->refs, 2);
137
138 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
139 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
140 if (ret == -ENOMEM) {
141 kmem_cache_free(delayed_node_cache, node);
142 return ERR_PTR(-ENOMEM);
143 }
144 spin_lock(&root->inode_lock);
145 ptr = xa_load(&root->delayed_nodes, ino);
146 if (ptr) {
147 /* Somebody inserted it, go back and read it. */
148 spin_unlock(&root->inode_lock);
149 kmem_cache_free(delayed_node_cache, node);
150 node = NULL;
151 goto again;
152 }
153 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
154 ASSERT(xa_err(ptr) != -EINVAL);
155 ASSERT(xa_err(ptr) != -ENOMEM);
156 ASSERT(ptr == NULL);
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 }
201 spin_unlock(&root->lock);
202}
203
204static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
223static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270
271 spin_lock(&root->inode_lock);
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
278 spin_unlock(&root->inode_lock);
279 kmem_cache_free(delayed_node_cache, delayed_node);
280 }
281}
282
283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284{
285 __btrfs_release_delayed_node(node, 0);
286}
287
288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 struct btrfs_delayed_root *delayed_root)
290{
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
301 refcount_inc(&node->refs);
302out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306}
307
308static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310{
311 __btrfs_release_delayed_node(node, 1);
312}
313
314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
315 struct btrfs_delayed_node *node,
316 enum btrfs_delayed_item_type type)
317{
318 struct btrfs_delayed_item *item;
319
320 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->type = type;
324 item->bytes_reserved = 0;
325 item->delayed_node = node;
326 RB_CLEAR_NODE(&item->rb_node);
327 INIT_LIST_HEAD(&item->log_list);
328 item->logged = false;
329 refcount_set(&item->refs, 1);
330 }
331 return item;
332}
333
334/*
335 * Look up the delayed item by key.
336 *
337 * @delayed_node: pointer to the delayed node
338 * @index: the dir index value to lookup (offset of a dir index key)
339 *
340 * Note: if we don't find the right item, we will return the prev item and
341 * the next item.
342 */
343static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
344 struct rb_root *root,
345 u64 index)
346{
347 struct rb_node *node = root->rb_node;
348 struct btrfs_delayed_item *delayed_item = NULL;
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
353 if (delayed_item->index < index)
354 node = node->rb_right;
355 else if (delayed_item->index > index)
356 node = node->rb_left;
357 else
358 return delayed_item;
359 }
360
361 return NULL;
362}
363
364static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
365 struct btrfs_delayed_item *ins)
366{
367 struct rb_node **p, *node;
368 struct rb_node *parent_node = NULL;
369 struct rb_root_cached *root;
370 struct btrfs_delayed_item *item;
371 bool leftmost = true;
372
373 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
374 root = &delayed_node->ins_root;
375 else
376 root = &delayed_node->del_root;
377
378 p = &root->rb_root.rb_node;
379 node = &ins->rb_node;
380
381 while (*p) {
382 parent_node = *p;
383 item = rb_entry(parent_node, struct btrfs_delayed_item,
384 rb_node);
385
386 if (item->index < ins->index) {
387 p = &(*p)->rb_right;
388 leftmost = false;
389 } else if (item->index > ins->index) {
390 p = &(*p)->rb_left;
391 } else {
392 return -EEXIST;
393 }
394 }
395
396 rb_link_node(node, parent_node, p);
397 rb_insert_color_cached(node, root, leftmost);
398
399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
400 ins->index >= delayed_node->index_cnt)
401 delayed_node->index_cnt = ins->index + 1;
402
403 delayed_node->count++;
404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
405 return 0;
406}
407
408static void finish_one_item(struct btrfs_delayed_root *delayed_root)
409{
410 int seq = atomic_inc_return(&delayed_root->items_seq);
411
412 /* atomic_dec_return implies a barrier */
413 if ((atomic_dec_return(&delayed_root->items) <
414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
415 cond_wake_up_nomb(&delayed_root->wait);
416}
417
418static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
419{
420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
421 struct rb_root_cached *root;
422 struct btrfs_delayed_root *delayed_root;
423
424 /* Not inserted, ignore it. */
425 if (RB_EMPTY_NODE(&delayed_item->rb_node))
426 return;
427
428 /* If it's in a rbtree, then we need to have delayed node locked. */
429 lockdep_assert_held(&delayed_node->mutex);
430
431 delayed_root = delayed_node->root->fs_info->delayed_root;
432
433 BUG_ON(!delayed_root);
434
435 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
436 root = &delayed_node->ins_root;
437 else
438 root = &delayed_node->del_root;
439
440 rb_erase_cached(&delayed_item->rb_node, root);
441 RB_CLEAR_NODE(&delayed_item->rb_node);
442 delayed_node->count--;
443
444 finish_one_item(delayed_root);
445}
446
447static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
448{
449 if (item) {
450 __btrfs_remove_delayed_item(item);
451 if (refcount_dec_and_test(&item->refs))
452 kfree(item);
453 }
454}
455
456static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
457 struct btrfs_delayed_node *delayed_node)
458{
459 struct rb_node *p;
460 struct btrfs_delayed_item *item = NULL;
461
462 p = rb_first_cached(&delayed_node->ins_root);
463 if (p)
464 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
465
466 return item;
467}
468
469static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
470 struct btrfs_delayed_node *delayed_node)
471{
472 struct rb_node *p;
473 struct btrfs_delayed_item *item = NULL;
474
475 p = rb_first_cached(&delayed_node->del_root);
476 if (p)
477 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
478
479 return item;
480}
481
482static struct btrfs_delayed_item *__btrfs_next_delayed_item(
483 struct btrfs_delayed_item *item)
484{
485 struct rb_node *p;
486 struct btrfs_delayed_item *next = NULL;
487
488 p = rb_next(&item->rb_node);
489 if (p)
490 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
491
492 return next;
493}
494
495static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
496 struct btrfs_delayed_item *item)
497{
498 struct btrfs_block_rsv *src_rsv;
499 struct btrfs_block_rsv *dst_rsv;
500 struct btrfs_fs_info *fs_info = trans->fs_info;
501 u64 num_bytes;
502 int ret;
503
504 if (!trans->bytes_reserved)
505 return 0;
506
507 src_rsv = trans->block_rsv;
508 dst_rsv = &fs_info->delayed_block_rsv;
509
510 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
511
512 /*
513 * Here we migrate space rsv from transaction rsv, since have already
514 * reserved space when starting a transaction. So no need to reserve
515 * qgroup space here.
516 */
517 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
518 if (!ret) {
519 trace_btrfs_space_reservation(fs_info, "delayed_item",
520 item->delayed_node->inode_id,
521 num_bytes, 1);
522 /*
523 * For insertions we track reserved metadata space by accounting
524 * for the number of leaves that will be used, based on the delayed
525 * node's curr_index_batch_size and index_item_leaves fields.
526 */
527 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
528 item->bytes_reserved = num_bytes;
529 }
530
531 return ret;
532}
533
534static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
535 struct btrfs_delayed_item *item)
536{
537 struct btrfs_block_rsv *rsv;
538 struct btrfs_fs_info *fs_info = root->fs_info;
539
540 if (!item->bytes_reserved)
541 return;
542
543 rsv = &fs_info->delayed_block_rsv;
544 /*
545 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
546 * to release/reserve qgroup space.
547 */
548 trace_btrfs_space_reservation(fs_info, "delayed_item",
549 item->delayed_node->inode_id,
550 item->bytes_reserved, 0);
551 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
552}
553
554static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
555 unsigned int num_leaves)
556{
557 struct btrfs_fs_info *fs_info = node->root->fs_info;
558 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
559
560 /* There are no space reservations during log replay, bail out. */
561 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
562 return;
563
564 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
565 bytes, 0);
566 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
567}
568
569static int btrfs_delayed_inode_reserve_metadata(
570 struct btrfs_trans_handle *trans,
571 struct btrfs_root *root,
572 struct btrfs_delayed_node *node)
573{
574 struct btrfs_fs_info *fs_info = root->fs_info;
575 struct btrfs_block_rsv *src_rsv;
576 struct btrfs_block_rsv *dst_rsv;
577 u64 num_bytes;
578 int ret;
579
580 src_rsv = trans->block_rsv;
581 dst_rsv = &fs_info->delayed_block_rsv;
582
583 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
584
585 /*
586 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
587 * which doesn't reserve space for speed. This is a problem since we
588 * still need to reserve space for this update, so try to reserve the
589 * space.
590 *
591 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
592 * we always reserve enough to update the inode item.
593 */
594 if (!src_rsv || (!trans->bytes_reserved &&
595 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
596 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
597 BTRFS_QGROUP_RSV_META_PREALLOC, true);
598 if (ret < 0)
599 return ret;
600 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
601 BTRFS_RESERVE_NO_FLUSH);
602 /* NO_FLUSH could only fail with -ENOSPC */
603 ASSERT(ret == 0 || ret == -ENOSPC);
604 if (ret)
605 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
606 } else {
607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
608 }
609
610 if (!ret) {
611 trace_btrfs_space_reservation(fs_info, "delayed_inode",
612 node->inode_id, num_bytes, 1);
613 node->bytes_reserved = num_bytes;
614 }
615
616 return ret;
617}
618
619static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
620 struct btrfs_delayed_node *node,
621 bool qgroup_free)
622{
623 struct btrfs_block_rsv *rsv;
624
625 if (!node->bytes_reserved)
626 return;
627
628 rsv = &fs_info->delayed_block_rsv;
629 trace_btrfs_space_reservation(fs_info, "delayed_inode",
630 node->inode_id, node->bytes_reserved, 0);
631 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
632 if (qgroup_free)
633 btrfs_qgroup_free_meta_prealloc(node->root,
634 node->bytes_reserved);
635 else
636 btrfs_qgroup_convert_reserved_meta(node->root,
637 node->bytes_reserved);
638 node->bytes_reserved = 0;
639}
640
641/*
642 * Insert a single delayed item or a batch of delayed items, as many as possible
643 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
644 * in the rbtree, and if there's a gap between two consecutive dir index items,
645 * then it means at some point we had delayed dir indexes to add but they got
646 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
647 * into the subvolume tree. Dir index keys also have their offsets coming from a
648 * monotonically increasing counter, so we can't get new keys with an offset that
649 * fits within a gap between delayed dir index items.
650 */
651static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root,
653 struct btrfs_path *path,
654 struct btrfs_delayed_item *first_item)
655{
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct btrfs_delayed_node *node = first_item->delayed_node;
658 LIST_HEAD(item_list);
659 struct btrfs_delayed_item *curr;
660 struct btrfs_delayed_item *next;
661 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
662 struct btrfs_item_batch batch;
663 struct btrfs_key first_key;
664 const u32 first_data_size = first_item->data_len;
665 int total_size;
666 char *ins_data = NULL;
667 int ret;
668 bool continuous_keys_only = false;
669
670 lockdep_assert_held(&node->mutex);
671
672 /*
673 * During normal operation the delayed index offset is continuously
674 * increasing, so we can batch insert all items as there will not be any
675 * overlapping keys in the tree.
676 *
677 * The exception to this is log replay, where we may have interleaved
678 * offsets in the tree, so our batch needs to be continuous keys only in
679 * order to ensure we do not end up with out of order items in our leaf.
680 */
681 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
682 continuous_keys_only = true;
683
684 /*
685 * For delayed items to insert, we track reserved metadata bytes based
686 * on the number of leaves that we will use.
687 * See btrfs_insert_delayed_dir_index() and
688 * btrfs_delayed_item_reserve_metadata()).
689 */
690 ASSERT(first_item->bytes_reserved == 0);
691
692 list_add_tail(&first_item->tree_list, &item_list);
693 batch.total_data_size = first_data_size;
694 batch.nr = 1;
695 total_size = first_data_size + sizeof(struct btrfs_item);
696 curr = first_item;
697
698 while (true) {
699 int next_size;
700
701 next = __btrfs_next_delayed_item(curr);
702 if (!next)
703 break;
704
705 /*
706 * We cannot allow gaps in the key space if we're doing log
707 * replay.
708 */
709 if (continuous_keys_only && (next->index != curr->index + 1))
710 break;
711
712 ASSERT(next->bytes_reserved == 0);
713
714 next_size = next->data_len + sizeof(struct btrfs_item);
715 if (total_size + next_size > max_size)
716 break;
717
718 list_add_tail(&next->tree_list, &item_list);
719 batch.nr++;
720 total_size += next_size;
721 batch.total_data_size += next->data_len;
722 curr = next;
723 }
724
725 if (batch.nr == 1) {
726 first_key.objectid = node->inode_id;
727 first_key.type = BTRFS_DIR_INDEX_KEY;
728 first_key.offset = first_item->index;
729 batch.keys = &first_key;
730 batch.data_sizes = &first_data_size;
731 } else {
732 struct btrfs_key *ins_keys;
733 u32 *ins_sizes;
734 int i = 0;
735
736 ins_data = kmalloc(batch.nr * sizeof(u32) +
737 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
738 if (!ins_data) {
739 ret = -ENOMEM;
740 goto out;
741 }
742 ins_sizes = (u32 *)ins_data;
743 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
744 batch.keys = ins_keys;
745 batch.data_sizes = ins_sizes;
746 list_for_each_entry(curr, &item_list, tree_list) {
747 ins_keys[i].objectid = node->inode_id;
748 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
749 ins_keys[i].offset = curr->index;
750 ins_sizes[i] = curr->data_len;
751 i++;
752 }
753 }
754
755 ret = btrfs_insert_empty_items(trans, root, path, &batch);
756 if (ret)
757 goto out;
758
759 list_for_each_entry(curr, &item_list, tree_list) {
760 char *data_ptr;
761
762 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
763 write_extent_buffer(path->nodes[0], &curr->data,
764 (unsigned long)data_ptr, curr->data_len);
765 path->slots[0]++;
766 }
767
768 /*
769 * Now release our path before releasing the delayed items and their
770 * metadata reservations, so that we don't block other tasks for more
771 * time than needed.
772 */
773 btrfs_release_path(path);
774
775 ASSERT(node->index_item_leaves > 0);
776
777 /*
778 * For normal operations we will batch an entire leaf's worth of delayed
779 * items, so if there are more items to process we can decrement
780 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
781 *
782 * However for log replay we may not have inserted an entire leaf's
783 * worth of items, we may have not had continuous items, so decrementing
784 * here would mess up the index_item_leaves accounting. For this case
785 * only clean up the accounting when there are no items left.
786 */
787 if (next && !continuous_keys_only) {
788 /*
789 * We inserted one batch of items into a leaf a there are more
790 * items to flush in a future batch, now release one unit of
791 * metadata space from the delayed block reserve, corresponding
792 * the leaf we just flushed to.
793 */
794 btrfs_delayed_item_release_leaves(node, 1);
795 node->index_item_leaves--;
796 } else if (!next) {
797 /*
798 * There are no more items to insert. We can have a number of
799 * reserved leaves > 1 here - this happens when many dir index
800 * items are added and then removed before they are flushed (file
801 * names with a very short life, never span a transaction). So
802 * release all remaining leaves.
803 */
804 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
805 node->index_item_leaves = 0;
806 }
807
808 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
809 list_del(&curr->tree_list);
810 btrfs_release_delayed_item(curr);
811 }
812out:
813 kfree(ins_data);
814 return ret;
815}
816
817static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 struct btrfs_path *path,
819 struct btrfs_root *root,
820 struct btrfs_delayed_node *node)
821{
822 int ret = 0;
823
824 while (ret == 0) {
825 struct btrfs_delayed_item *curr;
826
827 mutex_lock(&node->mutex);
828 curr = __btrfs_first_delayed_insertion_item(node);
829 if (!curr) {
830 mutex_unlock(&node->mutex);
831 break;
832 }
833 ret = btrfs_insert_delayed_item(trans, root, path, curr);
834 mutex_unlock(&node->mutex);
835 }
836
837 return ret;
838}
839
840static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
844{
845 const u64 ino = item->delayed_node->inode_id;
846 struct btrfs_fs_info *fs_info = root->fs_info;
847 struct btrfs_delayed_item *curr, *next;
848 struct extent_buffer *leaf = path->nodes[0];
849 LIST_HEAD(batch_list);
850 int nitems, slot, last_slot;
851 int ret;
852 u64 total_reserved_size = item->bytes_reserved;
853
854 ASSERT(leaf != NULL);
855
856 slot = path->slots[0];
857 last_slot = btrfs_header_nritems(leaf) - 1;
858 /*
859 * Our caller always gives us a path pointing to an existing item, so
860 * this can not happen.
861 */
862 ASSERT(slot <= last_slot);
863 if (WARN_ON(slot > last_slot))
864 return -ENOENT;
865
866 nitems = 1;
867 curr = item;
868 list_add_tail(&curr->tree_list, &batch_list);
869
870 /*
871 * Keep checking if the next delayed item matches the next item in the
872 * leaf - if so, we can add it to the batch of items to delete from the
873 * leaf.
874 */
875 while (slot < last_slot) {
876 struct btrfs_key key;
877
878 next = __btrfs_next_delayed_item(curr);
879 if (!next)
880 break;
881
882 slot++;
883 btrfs_item_key_to_cpu(leaf, &key, slot);
884 if (key.objectid != ino ||
885 key.type != BTRFS_DIR_INDEX_KEY ||
886 key.offset != next->index)
887 break;
888 nitems++;
889 curr = next;
890 list_add_tail(&curr->tree_list, &batch_list);
891 total_reserved_size += curr->bytes_reserved;
892 }
893
894 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
895 if (ret)
896 return ret;
897
898 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
899 if (total_reserved_size > 0) {
900 /*
901 * Check btrfs_delayed_item_reserve_metadata() to see why we
902 * don't need to release/reserve qgroup space.
903 */
904 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
905 total_reserved_size, 0);
906 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
907 total_reserved_size, NULL);
908 }
909
910 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
911 list_del(&curr->tree_list);
912 btrfs_release_delayed_item(curr);
913 }
914
915 return 0;
916}
917
918static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
919 struct btrfs_path *path,
920 struct btrfs_root *root,
921 struct btrfs_delayed_node *node)
922{
923 struct btrfs_key key;
924 int ret = 0;
925
926 key.objectid = node->inode_id;
927 key.type = BTRFS_DIR_INDEX_KEY;
928
929 while (ret == 0) {
930 struct btrfs_delayed_item *item;
931
932 mutex_lock(&node->mutex);
933 item = __btrfs_first_delayed_deletion_item(node);
934 if (!item) {
935 mutex_unlock(&node->mutex);
936 break;
937 }
938
939 key.offset = item->index;
940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
941 if (ret > 0) {
942 /*
943 * There's no matching item in the leaf. This means we
944 * have already deleted this item in a past run of the
945 * delayed items. We ignore errors when running delayed
946 * items from an async context, through a work queue job
947 * running btrfs_async_run_delayed_root(), and don't
948 * release delayed items that failed to complete. This
949 * is because we will retry later, and at transaction
950 * commit time we always run delayed items and will
951 * then deal with errors if they fail to run again.
952 *
953 * So just release delayed items for which we can't find
954 * an item in the tree, and move to the next item.
955 */
956 btrfs_release_path(path);
957 btrfs_release_delayed_item(item);
958 ret = 0;
959 } else if (ret == 0) {
960 ret = btrfs_batch_delete_items(trans, root, path, item);
961 btrfs_release_path(path);
962 }
963
964 /*
965 * We unlock and relock on each iteration, this is to prevent
966 * blocking other tasks for too long while we are being run from
967 * the async context (work queue job). Those tasks are typically
968 * running system calls like creat/mkdir/rename/unlink/etc which
969 * need to add delayed items to this delayed node.
970 */
971 mutex_unlock(&node->mutex);
972 }
973
974 return ret;
975}
976
977static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
978{
979 struct btrfs_delayed_root *delayed_root;
980
981 if (delayed_node &&
982 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
983 BUG_ON(!delayed_node->root);
984 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
985 delayed_node->count--;
986
987 delayed_root = delayed_node->root->fs_info->delayed_root;
988 finish_one_item(delayed_root);
989 }
990}
991
992static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
993{
994
995 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
996 struct btrfs_delayed_root *delayed_root;
997
998 ASSERT(delayed_node->root);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003 }
1004}
1005
1006static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root,
1008 struct btrfs_path *path,
1009 struct btrfs_delayed_node *node)
1010{
1011 struct btrfs_fs_info *fs_info = root->fs_info;
1012 struct btrfs_key key;
1013 struct btrfs_inode_item *inode_item;
1014 struct extent_buffer *leaf;
1015 int mod;
1016 int ret;
1017
1018 key.objectid = node->inode_id;
1019 key.type = BTRFS_INODE_ITEM_KEY;
1020 key.offset = 0;
1021
1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1023 mod = -1;
1024 else
1025 mod = 1;
1026
1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1028 if (ret > 0)
1029 ret = -ENOENT;
1030 if (ret < 0)
1031 goto out;
1032
1033 leaf = path->nodes[0];
1034 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_inode_item);
1036 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1037 sizeof(struct btrfs_inode_item));
1038 btrfs_mark_buffer_dirty(trans, leaf);
1039
1040 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1041 goto out;
1042
1043 /*
1044 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1045 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1046 *
1047 * But if we're the last item already, release and search for the last
1048 * INODE_REF/EXTREF.
1049 */
1050 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1051 key.objectid = node->inode_id;
1052 key.type = BTRFS_INODE_EXTREF_KEY;
1053 key.offset = (u64)-1;
1054
1055 btrfs_release_path(path);
1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1057 if (ret < 0)
1058 goto err_out;
1059 ASSERT(ret > 0);
1060 ASSERT(path->slots[0] > 0);
1061 ret = 0;
1062 path->slots[0]--;
1063 leaf = path->nodes[0];
1064 } else {
1065 path->slots[0]++;
1066 }
1067 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1068 if (key.objectid != node->inode_id)
1069 goto out;
1070 if (key.type != BTRFS_INODE_REF_KEY &&
1071 key.type != BTRFS_INODE_EXTREF_KEY)
1072 goto out;
1073
1074 /*
1075 * Delayed iref deletion is for the inode who has only one link,
1076 * so there is only one iref. The case that several irefs are
1077 * in the same item doesn't exist.
1078 */
1079 ret = btrfs_del_item(trans, root, path);
1080out:
1081 btrfs_release_delayed_iref(node);
1082 btrfs_release_path(path);
1083err_out:
1084 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1085 btrfs_release_delayed_inode(node);
1086
1087 /*
1088 * If we fail to update the delayed inode we need to abort the
1089 * transaction, because we could leave the inode with the improper
1090 * counts behind.
1091 */
1092 if (ret && ret != -ENOENT)
1093 btrfs_abort_transaction(trans, ret);
1094
1095 return ret;
1096}
1097
1098static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root,
1100 struct btrfs_path *path,
1101 struct btrfs_delayed_node *node)
1102{
1103 int ret;
1104
1105 mutex_lock(&node->mutex);
1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1107 mutex_unlock(&node->mutex);
1108 return 0;
1109 }
1110
1111 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112 mutex_unlock(&node->mutex);
1113 return ret;
1114}
1115
1116static inline int
1117__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118 struct btrfs_path *path,
1119 struct btrfs_delayed_node *node)
1120{
1121 int ret;
1122
1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1133}
1134
1135/*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
1141static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1142{
1143 struct btrfs_fs_info *fs_info = trans->fs_info;
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
1147 struct btrfs_block_rsv *block_rsv;
1148 int ret = 0;
1149 bool count = (nr > 0);
1150
1151 if (TRANS_ABORTED(trans))
1152 return -EIO;
1153
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157
1158 block_rsv = trans->block_rsv;
1159 trans->block_rsv = &fs_info->delayed_block_rsv;
1160
1161 delayed_root = fs_info->delayed_root;
1162
1163 curr_node = btrfs_first_delayed_node(delayed_root);
1164 while (curr_node && (!count || nr--)) {
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
1167 if (ret) {
1168 btrfs_abort_transaction(trans, ret);
1169 break;
1170 }
1171
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
1174 /*
1175 * See the comment below about releasing path before releasing
1176 * node. If the commit of delayed items was successful the path
1177 * should always be released, but in case of an error, it may
1178 * point to locked extent buffers (a leaf at the very least).
1179 */
1180 ASSERT(path->nodes[0] == NULL);
1181 btrfs_release_delayed_node(prev_node);
1182 }
1183
1184 /*
1185 * Release the path to avoid a potential deadlock and lockdep splat when
1186 * releasing the delayed node, as that requires taking the delayed node's
1187 * mutex. If another task starts running delayed items before we take
1188 * the mutex, it will first lock the mutex and then it may try to lock
1189 * the same btree path (leaf).
1190 */
1191 btrfs_free_path(path);
1192
1193 if (curr_node)
1194 btrfs_release_delayed_node(curr_node);
1195 trans->block_rsv = block_rsv;
1196
1197 return ret;
1198}
1199
1200int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1201{
1202 return __btrfs_run_delayed_items(trans, -1);
1203}
1204
1205int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1206{
1207 return __btrfs_run_delayed_items(trans, nr);
1208}
1209
1210int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211 struct btrfs_inode *inode)
1212{
1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214 struct btrfs_path *path;
1215 struct btrfs_block_rsv *block_rsv;
1216 int ret;
1217
1218 if (!delayed_node)
1219 return 0;
1220
1221 mutex_lock(&delayed_node->mutex);
1222 if (!delayed_node->count) {
1223 mutex_unlock(&delayed_node->mutex);
1224 btrfs_release_delayed_node(delayed_node);
1225 return 0;
1226 }
1227 mutex_unlock(&delayed_node->mutex);
1228
1229 path = btrfs_alloc_path();
1230 if (!path) {
1231 btrfs_release_delayed_node(delayed_node);
1232 return -ENOMEM;
1233 }
1234
1235 block_rsv = trans->block_rsv;
1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1237
1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1239
1240 btrfs_release_delayed_node(delayed_node);
1241 btrfs_free_path(path);
1242 trans->block_rsv = block_rsv;
1243
1244 return ret;
1245}
1246
1247int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1248{
1249 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1250 struct btrfs_trans_handle *trans;
1251 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1252 struct btrfs_path *path;
1253 struct btrfs_block_rsv *block_rsv;
1254 int ret;
1255
1256 if (!delayed_node)
1257 return 0;
1258
1259 mutex_lock(&delayed_node->mutex);
1260 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1261 mutex_unlock(&delayed_node->mutex);
1262 btrfs_release_delayed_node(delayed_node);
1263 return 0;
1264 }
1265 mutex_unlock(&delayed_node->mutex);
1266
1267 trans = btrfs_join_transaction(delayed_node->root);
1268 if (IS_ERR(trans)) {
1269 ret = PTR_ERR(trans);
1270 goto out;
1271 }
1272
1273 path = btrfs_alloc_path();
1274 if (!path) {
1275 ret = -ENOMEM;
1276 goto trans_out;
1277 }
1278
1279 block_rsv = trans->block_rsv;
1280 trans->block_rsv = &fs_info->delayed_block_rsv;
1281
1282 mutex_lock(&delayed_node->mutex);
1283 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1284 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1285 path, delayed_node);
1286 else
1287 ret = 0;
1288 mutex_unlock(&delayed_node->mutex);
1289
1290 btrfs_free_path(path);
1291 trans->block_rsv = block_rsv;
1292trans_out:
1293 btrfs_end_transaction(trans);
1294 btrfs_btree_balance_dirty(fs_info);
1295out:
1296 btrfs_release_delayed_node(delayed_node);
1297
1298 return ret;
1299}
1300
1301void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1302{
1303 struct btrfs_delayed_node *delayed_node;
1304
1305 delayed_node = READ_ONCE(inode->delayed_node);
1306 if (!delayed_node)
1307 return;
1308
1309 inode->delayed_node = NULL;
1310 btrfs_release_delayed_node(delayed_node);
1311}
1312
1313struct btrfs_async_delayed_work {
1314 struct btrfs_delayed_root *delayed_root;
1315 int nr;
1316 struct btrfs_work work;
1317};
1318
1319static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1320{
1321 struct btrfs_async_delayed_work *async_work;
1322 struct btrfs_delayed_root *delayed_root;
1323 struct btrfs_trans_handle *trans;
1324 struct btrfs_path *path;
1325 struct btrfs_delayed_node *delayed_node = NULL;
1326 struct btrfs_root *root;
1327 struct btrfs_block_rsv *block_rsv;
1328 int total_done = 0;
1329
1330 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1331 delayed_root = async_work->delayed_root;
1332
1333 path = btrfs_alloc_path();
1334 if (!path)
1335 goto out;
1336
1337 do {
1338 if (atomic_read(&delayed_root->items) <
1339 BTRFS_DELAYED_BACKGROUND / 2)
1340 break;
1341
1342 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1343 if (!delayed_node)
1344 break;
1345
1346 root = delayed_node->root;
1347
1348 trans = btrfs_join_transaction(root);
1349 if (IS_ERR(trans)) {
1350 btrfs_release_path(path);
1351 btrfs_release_prepared_delayed_node(delayed_node);
1352 total_done++;
1353 continue;
1354 }
1355
1356 block_rsv = trans->block_rsv;
1357 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1358
1359 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1360
1361 trans->block_rsv = block_rsv;
1362 btrfs_end_transaction(trans);
1363 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1364
1365 btrfs_release_path(path);
1366 btrfs_release_prepared_delayed_node(delayed_node);
1367 total_done++;
1368
1369 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1370 || total_done < async_work->nr);
1371
1372 btrfs_free_path(path);
1373out:
1374 wake_up(&delayed_root->wait);
1375 kfree(async_work);
1376}
1377
1378
1379static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1380 struct btrfs_fs_info *fs_info, int nr)
1381{
1382 struct btrfs_async_delayed_work *async_work;
1383
1384 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1385 if (!async_work)
1386 return -ENOMEM;
1387
1388 async_work->delayed_root = delayed_root;
1389 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1390 async_work->nr = nr;
1391
1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1393 return 0;
1394}
1395
1396void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1397{
1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1399}
1400
1401static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1402{
1403 int val = atomic_read(&delayed_root->items_seq);
1404
1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1406 return 1;
1407
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 return 1;
1410
1411 return 0;
1412}
1413
1414void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1415{
1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1417
1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1420 return;
1421
1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1423 int seq;
1424 int ret;
1425
1426 seq = atomic_read(&delayed_root->items_seq);
1427
1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1429 if (ret)
1430 return;
1431
1432 wait_event_interruptible(delayed_root->wait,
1433 could_end_wait(delayed_root, seq));
1434 return;
1435 }
1436
1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1438}
1439
1440static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1441{
1442 struct btrfs_fs_info *fs_info = trans->fs_info;
1443 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1444
1445 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1446 return;
1447
1448 /*
1449 * Adding the new dir index item does not require touching another
1450 * leaf, so we can release 1 unit of metadata that was previously
1451 * reserved when starting the transaction. This applies only to
1452 * the case where we had a transaction start and excludes the
1453 * transaction join case (when replaying log trees).
1454 */
1455 trace_btrfs_space_reservation(fs_info, "transaction",
1456 trans->transid, bytes, 0);
1457 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1458 ASSERT(trans->bytes_reserved >= bytes);
1459 trans->bytes_reserved -= bytes;
1460}
1461
1462/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1463int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1464 const char *name, int name_len,
1465 struct btrfs_inode *dir,
1466 struct btrfs_disk_key *disk_key, u8 flags,
1467 u64 index)
1468{
1469 struct btrfs_fs_info *fs_info = trans->fs_info;
1470 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1471 struct btrfs_delayed_node *delayed_node;
1472 struct btrfs_delayed_item *delayed_item;
1473 struct btrfs_dir_item *dir_item;
1474 bool reserve_leaf_space;
1475 u32 data_len;
1476 int ret;
1477
1478 delayed_node = btrfs_get_or_create_delayed_node(dir);
1479 if (IS_ERR(delayed_node))
1480 return PTR_ERR(delayed_node);
1481
1482 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1483 delayed_node,
1484 BTRFS_DELAYED_INSERTION_ITEM);
1485 if (!delayed_item) {
1486 ret = -ENOMEM;
1487 goto release_node;
1488 }
1489
1490 delayed_item->index = index;
1491
1492 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1493 dir_item->location = *disk_key;
1494 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1495 btrfs_set_stack_dir_data_len(dir_item, 0);
1496 btrfs_set_stack_dir_name_len(dir_item, name_len);
1497 btrfs_set_stack_dir_flags(dir_item, flags);
1498 memcpy((char *)(dir_item + 1), name, name_len);
1499
1500 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1501
1502 mutex_lock(&delayed_node->mutex);
1503
1504 /*
1505 * First attempt to insert the delayed item. This is to make the error
1506 * handling path simpler in case we fail (-EEXIST). There's no risk of
1507 * any other task coming in and running the delayed item before we do
1508 * the metadata space reservation below, because we are holding the
1509 * delayed node's mutex and that mutex must also be locked before the
1510 * node's delayed items can be run.
1511 */
1512 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1513 if (unlikely(ret)) {
1514 btrfs_err(trans->fs_info,
1515"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1516 name_len, name, index, btrfs_root_id(delayed_node->root),
1517 delayed_node->inode_id, dir->index_cnt,
1518 delayed_node->index_cnt, ret);
1519 btrfs_release_delayed_item(delayed_item);
1520 btrfs_release_dir_index_item_space(trans);
1521 mutex_unlock(&delayed_node->mutex);
1522 goto release_node;
1523 }
1524
1525 if (delayed_node->index_item_leaves == 0 ||
1526 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1527 delayed_node->curr_index_batch_size = data_len;
1528 reserve_leaf_space = true;
1529 } else {
1530 delayed_node->curr_index_batch_size += data_len;
1531 reserve_leaf_space = false;
1532 }
1533
1534 if (reserve_leaf_space) {
1535 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1536 /*
1537 * Space was reserved for a dir index item insertion when we
1538 * started the transaction, so getting a failure here should be
1539 * impossible.
1540 */
1541 if (WARN_ON(ret)) {
1542 btrfs_release_delayed_item(delayed_item);
1543 mutex_unlock(&delayed_node->mutex);
1544 goto release_node;
1545 }
1546
1547 delayed_node->index_item_leaves++;
1548 } else {
1549 btrfs_release_dir_index_item_space(trans);
1550 }
1551 mutex_unlock(&delayed_node->mutex);
1552
1553release_node:
1554 btrfs_release_delayed_node(delayed_node);
1555 return ret;
1556}
1557
1558static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1559 struct btrfs_delayed_node *node,
1560 u64 index)
1561{
1562 struct btrfs_delayed_item *item;
1563
1564 mutex_lock(&node->mutex);
1565 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1566 if (!item) {
1567 mutex_unlock(&node->mutex);
1568 return 1;
1569 }
1570
1571 /*
1572 * For delayed items to insert, we track reserved metadata bytes based
1573 * on the number of leaves that we will use.
1574 * See btrfs_insert_delayed_dir_index() and
1575 * btrfs_delayed_item_reserve_metadata()).
1576 */
1577 ASSERT(item->bytes_reserved == 0);
1578 ASSERT(node->index_item_leaves > 0);
1579
1580 /*
1581 * If there's only one leaf reserved, we can decrement this item from the
1582 * current batch, otherwise we can not because we don't know which leaf
1583 * it belongs to. With the current limit on delayed items, we rarely
1584 * accumulate enough dir index items to fill more than one leaf (even
1585 * when using a leaf size of 4K).
1586 */
1587 if (node->index_item_leaves == 1) {
1588 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1589
1590 ASSERT(node->curr_index_batch_size >= data_len);
1591 node->curr_index_batch_size -= data_len;
1592 }
1593
1594 btrfs_release_delayed_item(item);
1595
1596 /* If we now have no more dir index items, we can release all leaves. */
1597 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1598 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1599 node->index_item_leaves = 0;
1600 }
1601
1602 mutex_unlock(&node->mutex);
1603 return 0;
1604}
1605
1606int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1607 struct btrfs_inode *dir, u64 index)
1608{
1609 struct btrfs_delayed_node *node;
1610 struct btrfs_delayed_item *item;
1611 int ret;
1612
1613 node = btrfs_get_or_create_delayed_node(dir);
1614 if (IS_ERR(node))
1615 return PTR_ERR(node);
1616
1617 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1618 if (!ret)
1619 goto end;
1620
1621 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1622 if (!item) {
1623 ret = -ENOMEM;
1624 goto end;
1625 }
1626
1627 item->index = index;
1628
1629 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1630 /*
1631 * we have reserved enough space when we start a new transaction,
1632 * so reserving metadata failure is impossible.
1633 */
1634 if (ret < 0) {
1635 btrfs_err(trans->fs_info,
1636"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1637 btrfs_release_delayed_item(item);
1638 goto end;
1639 }
1640
1641 mutex_lock(&node->mutex);
1642 ret = __btrfs_add_delayed_item(node, item);
1643 if (unlikely(ret)) {
1644 btrfs_err(trans->fs_info,
1645 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1646 index, node->root->root_key.objectid,
1647 node->inode_id, ret);
1648 btrfs_delayed_item_release_metadata(dir->root, item);
1649 btrfs_release_delayed_item(item);
1650 }
1651 mutex_unlock(&node->mutex);
1652end:
1653 btrfs_release_delayed_node(node);
1654 return ret;
1655}
1656
1657int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1658{
1659 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1660
1661 if (!delayed_node)
1662 return -ENOENT;
1663
1664 /*
1665 * Since we have held i_mutex of this directory, it is impossible that
1666 * a new directory index is added into the delayed node and index_cnt
1667 * is updated now. So we needn't lock the delayed node.
1668 */
1669 if (!delayed_node->index_cnt) {
1670 btrfs_release_delayed_node(delayed_node);
1671 return -EINVAL;
1672 }
1673
1674 inode->index_cnt = delayed_node->index_cnt;
1675 btrfs_release_delayed_node(delayed_node);
1676 return 0;
1677}
1678
1679bool btrfs_readdir_get_delayed_items(struct inode *inode,
1680 u64 last_index,
1681 struct list_head *ins_list,
1682 struct list_head *del_list)
1683{
1684 struct btrfs_delayed_node *delayed_node;
1685 struct btrfs_delayed_item *item;
1686
1687 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1688 if (!delayed_node)
1689 return false;
1690
1691 /*
1692 * We can only do one readdir with delayed items at a time because of
1693 * item->readdir_list.
1694 */
1695 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1696 btrfs_inode_lock(BTRFS_I(inode), 0);
1697
1698 mutex_lock(&delayed_node->mutex);
1699 item = __btrfs_first_delayed_insertion_item(delayed_node);
1700 while (item && item->index <= last_index) {
1701 refcount_inc(&item->refs);
1702 list_add_tail(&item->readdir_list, ins_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705
1706 item = __btrfs_first_delayed_deletion_item(delayed_node);
1707 while (item && item->index <= last_index) {
1708 refcount_inc(&item->refs);
1709 list_add_tail(&item->readdir_list, del_list);
1710 item = __btrfs_next_delayed_item(item);
1711 }
1712 mutex_unlock(&delayed_node->mutex);
1713 /*
1714 * This delayed node is still cached in the btrfs inode, so refs
1715 * must be > 1 now, and we needn't check it is going to be freed
1716 * or not.
1717 *
1718 * Besides that, this function is used to read dir, we do not
1719 * insert/delete delayed items in this period. So we also needn't
1720 * requeue or dequeue this delayed node.
1721 */
1722 refcount_dec(&delayed_node->refs);
1723
1724 return true;
1725}
1726
1727void btrfs_readdir_put_delayed_items(struct inode *inode,
1728 struct list_head *ins_list,
1729 struct list_head *del_list)
1730{
1731 struct btrfs_delayed_item *curr, *next;
1732
1733 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1734 list_del(&curr->readdir_list);
1735 if (refcount_dec_and_test(&curr->refs))
1736 kfree(curr);
1737 }
1738
1739 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1740 list_del(&curr->readdir_list);
1741 if (refcount_dec_and_test(&curr->refs))
1742 kfree(curr);
1743 }
1744
1745 /*
1746 * The VFS is going to do up_read(), so we need to downgrade back to a
1747 * read lock.
1748 */
1749 downgrade_write(&inode->i_rwsem);
1750}
1751
1752int btrfs_should_delete_dir_index(struct list_head *del_list,
1753 u64 index)
1754{
1755 struct btrfs_delayed_item *curr;
1756 int ret = 0;
1757
1758 list_for_each_entry(curr, del_list, readdir_list) {
1759 if (curr->index > index)
1760 break;
1761 if (curr->index == index) {
1762 ret = 1;
1763 break;
1764 }
1765 }
1766 return ret;
1767}
1768
1769/*
1770 * Read dir info stored in the delayed tree.
1771 */
1772int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1773 struct list_head *ins_list)
1774{
1775 struct btrfs_dir_item *di;
1776 struct btrfs_delayed_item *curr, *next;
1777 struct btrfs_key location;
1778 char *name;
1779 int name_len;
1780 int over = 0;
1781 unsigned char d_type;
1782
1783 /*
1784 * Changing the data of the delayed item is impossible. So
1785 * we needn't lock them. And we have held i_mutex of the
1786 * directory, nobody can delete any directory indexes now.
1787 */
1788 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1789 list_del(&curr->readdir_list);
1790
1791 if (curr->index < ctx->pos) {
1792 if (refcount_dec_and_test(&curr->refs))
1793 kfree(curr);
1794 continue;
1795 }
1796
1797 ctx->pos = curr->index;
1798
1799 di = (struct btrfs_dir_item *)curr->data;
1800 name = (char *)(di + 1);
1801 name_len = btrfs_stack_dir_name_len(di);
1802
1803 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1804 btrfs_disk_key_to_cpu(&location, &di->location);
1805
1806 over = !dir_emit(ctx, name, name_len,
1807 location.objectid, d_type);
1808
1809 if (refcount_dec_and_test(&curr->refs))
1810 kfree(curr);
1811
1812 if (over)
1813 return 1;
1814 ctx->pos++;
1815 }
1816 return 0;
1817}
1818
1819static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_inode_item *inode_item,
1821 struct inode *inode)
1822{
1823 u64 flags;
1824
1825 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1826 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1827 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1828 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1829 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1830 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1831 btrfs_set_stack_inode_generation(inode_item,
1832 BTRFS_I(inode)->generation);
1833 btrfs_set_stack_inode_sequence(inode_item,
1834 inode_peek_iversion(inode));
1835 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1836 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1837 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1838 BTRFS_I(inode)->ro_flags);
1839 btrfs_set_stack_inode_flags(inode_item, flags);
1840 btrfs_set_stack_inode_block_group(inode_item, 0);
1841
1842 btrfs_set_stack_timespec_sec(&inode_item->atime,
1843 inode_get_atime_sec(inode));
1844 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1845 inode_get_atime_nsec(inode));
1846
1847 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1848 inode_get_mtime_sec(inode));
1849 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1850 inode_get_mtime_nsec(inode));
1851
1852 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1853 inode_get_ctime_sec(inode));
1854 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1855 inode_get_ctime_nsec(inode));
1856
1857 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1858 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1859}
1860
1861int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1862{
1863 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1864 struct btrfs_delayed_node *delayed_node;
1865 struct btrfs_inode_item *inode_item;
1866
1867 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1868 if (!delayed_node)
1869 return -ENOENT;
1870
1871 mutex_lock(&delayed_node->mutex);
1872 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1873 mutex_unlock(&delayed_node->mutex);
1874 btrfs_release_delayed_node(delayed_node);
1875 return -ENOENT;
1876 }
1877
1878 inode_item = &delayed_node->inode_item;
1879
1880 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1881 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1882 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1883 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1884 round_up(i_size_read(inode), fs_info->sectorsize));
1885 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1886 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1887 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1888 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1889 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1890
1891 inode_set_iversion_queried(inode,
1892 btrfs_stack_inode_sequence(inode_item));
1893 inode->i_rdev = 0;
1894 *rdev = btrfs_stack_inode_rdev(inode_item);
1895 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1896 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1897
1898 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1899 btrfs_stack_timespec_nsec(&inode_item->atime));
1900
1901 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1902 btrfs_stack_timespec_nsec(&inode_item->mtime));
1903
1904 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1905 btrfs_stack_timespec_nsec(&inode_item->ctime));
1906
1907 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1908 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1909
1910 inode->i_generation = BTRFS_I(inode)->generation;
1911 BTRFS_I(inode)->index_cnt = (u64)-1;
1912
1913 mutex_unlock(&delayed_node->mutex);
1914 btrfs_release_delayed_node(delayed_node);
1915 return 0;
1916}
1917
1918int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1919 struct btrfs_inode *inode)
1920{
1921 struct btrfs_root *root = inode->root;
1922 struct btrfs_delayed_node *delayed_node;
1923 int ret = 0;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 mutex_lock(&delayed_node->mutex);
1930 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1931 fill_stack_inode_item(trans, &delayed_node->inode_item,
1932 &inode->vfs_inode);
1933 goto release_node;
1934 }
1935
1936 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1937 if (ret)
1938 goto release_node;
1939
1940 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1941 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1942 delayed_node->count++;
1943 atomic_inc(&root->fs_info->delayed_root->items);
1944release_node:
1945 mutex_unlock(&delayed_node->mutex);
1946 btrfs_release_delayed_node(delayed_node);
1947 return ret;
1948}
1949
1950int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1951{
1952 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1953 struct btrfs_delayed_node *delayed_node;
1954
1955 /*
1956 * we don't do delayed inode updates during log recovery because it
1957 * leads to enospc problems. This means we also can't do
1958 * delayed inode refs
1959 */
1960 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1961 return -EAGAIN;
1962
1963 delayed_node = btrfs_get_or_create_delayed_node(inode);
1964 if (IS_ERR(delayed_node))
1965 return PTR_ERR(delayed_node);
1966
1967 /*
1968 * We don't reserve space for inode ref deletion is because:
1969 * - We ONLY do async inode ref deletion for the inode who has only
1970 * one link(i_nlink == 1), it means there is only one inode ref.
1971 * And in most case, the inode ref and the inode item are in the
1972 * same leaf, and we will deal with them at the same time.
1973 * Since we are sure we will reserve the space for the inode item,
1974 * it is unnecessary to reserve space for inode ref deletion.
1975 * - If the inode ref and the inode item are not in the same leaf,
1976 * We also needn't worry about enospc problem, because we reserve
1977 * much more space for the inode update than it needs.
1978 * - At the worst, we can steal some space from the global reservation.
1979 * It is very rare.
1980 */
1981 mutex_lock(&delayed_node->mutex);
1982 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1983 goto release_node;
1984
1985 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1986 delayed_node->count++;
1987 atomic_inc(&fs_info->delayed_root->items);
1988release_node:
1989 mutex_unlock(&delayed_node->mutex);
1990 btrfs_release_delayed_node(delayed_node);
1991 return 0;
1992}
1993
1994static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1995{
1996 struct btrfs_root *root = delayed_node->root;
1997 struct btrfs_fs_info *fs_info = root->fs_info;
1998 struct btrfs_delayed_item *curr_item, *prev_item;
1999
2000 mutex_lock(&delayed_node->mutex);
2001 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2002 while (curr_item) {
2003 prev_item = curr_item;
2004 curr_item = __btrfs_next_delayed_item(prev_item);
2005 btrfs_release_delayed_item(prev_item);
2006 }
2007
2008 if (delayed_node->index_item_leaves > 0) {
2009 btrfs_delayed_item_release_leaves(delayed_node,
2010 delayed_node->index_item_leaves);
2011 delayed_node->index_item_leaves = 0;
2012 }
2013
2014 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2015 while (curr_item) {
2016 btrfs_delayed_item_release_metadata(root, curr_item);
2017 prev_item = curr_item;
2018 curr_item = __btrfs_next_delayed_item(prev_item);
2019 btrfs_release_delayed_item(prev_item);
2020 }
2021
2022 btrfs_release_delayed_iref(delayed_node);
2023
2024 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2025 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2026 btrfs_release_delayed_inode(delayed_node);
2027 }
2028 mutex_unlock(&delayed_node->mutex);
2029}
2030
2031void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2032{
2033 struct btrfs_delayed_node *delayed_node;
2034
2035 delayed_node = btrfs_get_delayed_node(inode);
2036 if (!delayed_node)
2037 return;
2038
2039 __btrfs_kill_delayed_node(delayed_node);
2040 btrfs_release_delayed_node(delayed_node);
2041}
2042
2043void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2044{
2045 unsigned long index = 0;
2046 struct btrfs_delayed_node *delayed_nodes[8];
2047
2048 while (1) {
2049 struct btrfs_delayed_node *node;
2050 int count;
2051
2052 spin_lock(&root->inode_lock);
2053 if (xa_empty(&root->delayed_nodes)) {
2054 spin_unlock(&root->inode_lock);
2055 return;
2056 }
2057
2058 count = 0;
2059 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2060 /*
2061 * Don't increase refs in case the node is dead and
2062 * about to be removed from the tree in the loop below
2063 */
2064 if (refcount_inc_not_zero(&node->refs)) {
2065 delayed_nodes[count] = node;
2066 count++;
2067 }
2068 if (count >= ARRAY_SIZE(delayed_nodes))
2069 break;
2070 }
2071 spin_unlock(&root->inode_lock);
2072 index++;
2073
2074 for (int i = 0; i < count; i++) {
2075 __btrfs_kill_delayed_node(delayed_nodes[i]);
2076 btrfs_release_delayed_node(delayed_nodes[i]);
2077 }
2078 }
2079}
2080
2081void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2082{
2083 struct btrfs_delayed_node *curr_node, *prev_node;
2084
2085 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2086 while (curr_node) {
2087 __btrfs_kill_delayed_node(curr_node);
2088
2089 prev_node = curr_node;
2090 curr_node = btrfs_next_delayed_node(curr_node);
2091 btrfs_release_delayed_node(prev_node);
2092 }
2093}
2094
2095void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2096 struct list_head *ins_list,
2097 struct list_head *del_list)
2098{
2099 struct btrfs_delayed_node *node;
2100 struct btrfs_delayed_item *item;
2101
2102 node = btrfs_get_delayed_node(inode);
2103 if (!node)
2104 return;
2105
2106 mutex_lock(&node->mutex);
2107 item = __btrfs_first_delayed_insertion_item(node);
2108 while (item) {
2109 /*
2110 * It's possible that the item is already in a log list. This
2111 * can happen in case two tasks are trying to log the same
2112 * directory. For example if we have tasks A and task B:
2113 *
2114 * Task A collected the delayed items into a log list while
2115 * under the inode's log_mutex (at btrfs_log_inode()), but it
2116 * only releases the items after logging the inodes they point
2117 * to (if they are new inodes), which happens after unlocking
2118 * the log mutex;
2119 *
2120 * Task B enters btrfs_log_inode() and acquires the log_mutex
2121 * of the same directory inode, before task B releases the
2122 * delayed items. This can happen for example when logging some
2123 * inode we need to trigger logging of its parent directory, so
2124 * logging two files that have the same parent directory can
2125 * lead to this.
2126 *
2127 * If this happens, just ignore delayed items already in a log
2128 * list. All the tasks logging the directory are under a log
2129 * transaction and whichever finishes first can not sync the log
2130 * before the other completes and leaves the log transaction.
2131 */
2132 if (!item->logged && list_empty(&item->log_list)) {
2133 refcount_inc(&item->refs);
2134 list_add_tail(&item->log_list, ins_list);
2135 }
2136 item = __btrfs_next_delayed_item(item);
2137 }
2138
2139 item = __btrfs_first_delayed_deletion_item(node);
2140 while (item) {
2141 /* It may be non-empty, for the same reason mentioned above. */
2142 if (!item->logged && list_empty(&item->log_list)) {
2143 refcount_inc(&item->refs);
2144 list_add_tail(&item->log_list, del_list);
2145 }
2146 item = __btrfs_next_delayed_item(item);
2147 }
2148 mutex_unlock(&node->mutex);
2149
2150 /*
2151 * We are called during inode logging, which means the inode is in use
2152 * and can not be evicted before we finish logging the inode. So we never
2153 * have the last reference on the delayed inode.
2154 * Also, we don't use btrfs_release_delayed_node() because that would
2155 * requeue the delayed inode (change its order in the list of prepared
2156 * nodes) and we don't want to do such change because we don't create or
2157 * delete delayed items.
2158 */
2159 ASSERT(refcount_read(&node->refs) > 1);
2160 refcount_dec(&node->refs);
2161}
2162
2163void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2164 struct list_head *ins_list,
2165 struct list_head *del_list)
2166{
2167 struct btrfs_delayed_node *node;
2168 struct btrfs_delayed_item *item;
2169 struct btrfs_delayed_item *next;
2170
2171 node = btrfs_get_delayed_node(inode);
2172 if (!node)
2173 return;
2174
2175 mutex_lock(&node->mutex);
2176
2177 list_for_each_entry_safe(item, next, ins_list, log_list) {
2178 item->logged = true;
2179 list_del_init(&item->log_list);
2180 if (refcount_dec_and_test(&item->refs))
2181 kfree(item);
2182 }
2183
2184 list_for_each_entry_safe(item, next, del_list, log_list) {
2185 item->logged = true;
2186 list_del_init(&item->log_list);
2187 if (refcount_dec_and_test(&item->refs))
2188 kfree(item);
2189 }
2190
2191 mutex_unlock(&node->mutex);
2192
2193 /*
2194 * We are called during inode logging, which means the inode is in use
2195 * and can not be evicted before we finish logging the inode. So we never
2196 * have the last reference on the delayed inode.
2197 * Also, we don't use btrfs_release_delayed_node() because that would
2198 * requeue the delayed inode (change its order in the list of prepared
2199 * nodes) and we don't want to do such change because we don't create or
2200 * delete delayed items.
2201 */
2202 ASSERT(refcount_read(&node->refs) > 1);
2203 refcount_dec(&node->refs);
2204}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "delayed-inode.h"
12#include "disk-io.h"
13#include "transaction.h"
14#include "ctree.h"
15#include "qgroup.h"
16#include "locking.h"
17
18#define BTRFS_DELAYED_WRITEBACK 512
19#define BTRFS_DELAYED_BACKGROUND 128
20#define BTRFS_DELAYED_BATCH 16
21
22static struct kmem_cache *delayed_node_cache;
23
24int __init btrfs_delayed_inode_init(void)
25{
26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 sizeof(struct btrfs_delayed_node),
28 0,
29 SLAB_MEM_SPREAD,
30 NULL);
31 if (!delayed_node_cache)
32 return -ENOMEM;
33 return 0;
34}
35
36void __cold btrfs_delayed_inode_exit(void)
37{
38 kmem_cache_destroy(delayed_node_cache);
39}
40
41static inline void btrfs_init_delayed_node(
42 struct btrfs_delayed_node *delayed_node,
43 struct btrfs_root *root, u64 inode_id)
44{
45 delayed_node->root = root;
46 delayed_node->inode_id = inode_id;
47 refcount_set(&delayed_node->refs, 0);
48 delayed_node->ins_root = RB_ROOT_CACHED;
49 delayed_node->del_root = RB_ROOT_CACHED;
50 mutex_init(&delayed_node->mutex);
51 INIT_LIST_HEAD(&delayed_node->n_list);
52 INIT_LIST_HEAD(&delayed_node->p_list);
53}
54
55static inline int btrfs_is_continuous_delayed_item(
56 struct btrfs_delayed_item *item1,
57 struct btrfs_delayed_item *item2)
58{
59 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 item1->key.objectid == item2->key.objectid &&
61 item1->key.type == item2->key.type &&
62 item1->key.offset + 1 == item2->key.offset)
63 return 1;
64 return 0;
65}
66
67static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 struct btrfs_inode *btrfs_inode)
69{
70 struct btrfs_root *root = btrfs_inode->root;
71 u64 ino = btrfs_ino(btrfs_inode);
72 struct btrfs_delayed_node *node;
73
74 node = READ_ONCE(btrfs_inode->delayed_node);
75 if (node) {
76 refcount_inc(&node->refs);
77 return node;
78 }
79
80 spin_lock(&root->inode_lock);
81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82
83 if (node) {
84 if (btrfs_inode->delayed_node) {
85 refcount_inc(&node->refs); /* can be accessed */
86 BUG_ON(btrfs_inode->delayed_node != node);
87 spin_unlock(&root->inode_lock);
88 return node;
89 }
90
91 /*
92 * It's possible that we're racing into the middle of removing
93 * this node from the radix tree. In this case, the refcount
94 * was zero and it should never go back to one. Just return
95 * NULL like it was never in the radix at all; our release
96 * function is in the process of removing it.
97 *
98 * Some implementations of refcount_inc refuse to bump the
99 * refcount once it has hit zero. If we don't do this dance
100 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 * of actually bumping the refcount.
102 *
103 * If this node is properly in the radix, we want to bump the
104 * refcount twice, once for the inode and once for this get
105 * operation.
106 */
107 if (refcount_inc_not_zero(&node->refs)) {
108 refcount_inc(&node->refs);
109 btrfs_inode->delayed_node = node;
110 } else {
111 node = NULL;
112 }
113
114 spin_unlock(&root->inode_lock);
115 return node;
116 }
117 spin_unlock(&root->inode_lock);
118
119 return NULL;
120}
121
122/* Will return either the node or PTR_ERR(-ENOMEM) */
123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 struct btrfs_inode *btrfs_inode)
125{
126 struct btrfs_delayed_node *node;
127 struct btrfs_root *root = btrfs_inode->root;
128 u64 ino = btrfs_ino(btrfs_inode);
129 int ret;
130
131again:
132 node = btrfs_get_delayed_node(btrfs_inode);
133 if (node)
134 return node;
135
136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 if (!node)
138 return ERR_PTR(-ENOMEM);
139 btrfs_init_delayed_node(node, root, ino);
140
141 /* cached in the btrfs inode and can be accessed */
142 refcount_set(&node->refs, 2);
143
144 ret = radix_tree_preload(GFP_NOFS);
145 if (ret) {
146 kmem_cache_free(delayed_node_cache, node);
147 return ERR_PTR(ret);
148 }
149
150 spin_lock(&root->inode_lock);
151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 if (ret == -EEXIST) {
153 spin_unlock(&root->inode_lock);
154 kmem_cache_free(delayed_node_cache, node);
155 radix_tree_preload_end();
156 goto again;
157 }
158 btrfs_inode->delayed_node = node;
159 spin_unlock(&root->inode_lock);
160 radix_tree_preload_end();
161
162 return node;
163}
164
165/*
166 * Call it when holding delayed_node->mutex
167 *
168 * If mod = 1, add this node into the prepared list.
169 */
170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 struct btrfs_delayed_node *node,
172 int mod)
173{
174 spin_lock(&root->lock);
175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 if (!list_empty(&node->p_list))
177 list_move_tail(&node->p_list, &root->prepare_list);
178 else if (mod)
179 list_add_tail(&node->p_list, &root->prepare_list);
180 } else {
181 list_add_tail(&node->n_list, &root->node_list);
182 list_add_tail(&node->p_list, &root->prepare_list);
183 refcount_inc(&node->refs); /* inserted into list */
184 root->nodes++;
185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 }
187 spin_unlock(&root->lock);
188}
189
190/* Call it when holding delayed_node->mutex */
191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 struct btrfs_delayed_node *node)
193{
194 spin_lock(&root->lock);
195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 root->nodes--;
197 refcount_dec(&node->refs); /* not in the list */
198 list_del_init(&node->n_list);
199 if (!list_empty(&node->p_list))
200 list_del_init(&node->p_list);
201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 }
203 spin_unlock(&root->lock);
204}
205
206static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 struct btrfs_delayed_root *delayed_root)
208{
209 struct list_head *p;
210 struct btrfs_delayed_node *node = NULL;
211
212 spin_lock(&delayed_root->lock);
213 if (list_empty(&delayed_root->node_list))
214 goto out;
215
216 p = delayed_root->node_list.next;
217 node = list_entry(p, struct btrfs_delayed_node, n_list);
218 refcount_inc(&node->refs);
219out:
220 spin_unlock(&delayed_root->lock);
221
222 return node;
223}
224
225static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 struct btrfs_delayed_node *node)
227{
228 struct btrfs_delayed_root *delayed_root;
229 struct list_head *p;
230 struct btrfs_delayed_node *next = NULL;
231
232 delayed_root = node->root->fs_info->delayed_root;
233 spin_lock(&delayed_root->lock);
234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 /* not in the list */
236 if (list_empty(&delayed_root->node_list))
237 goto out;
238 p = delayed_root->node_list.next;
239 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 goto out;
241 else
242 p = node->n_list.next;
243
244 next = list_entry(p, struct btrfs_delayed_node, n_list);
245 refcount_inc(&next->refs);
246out:
247 spin_unlock(&delayed_root->lock);
248
249 return next;
250}
251
252static void __btrfs_release_delayed_node(
253 struct btrfs_delayed_node *delayed_node,
254 int mod)
255{
256 struct btrfs_delayed_root *delayed_root;
257
258 if (!delayed_node)
259 return;
260
261 delayed_root = delayed_node->root->fs_info->delayed_root;
262
263 mutex_lock(&delayed_node->mutex);
264 if (delayed_node->count)
265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 else
267 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 mutex_unlock(&delayed_node->mutex);
269
270 if (refcount_dec_and_test(&delayed_node->refs)) {
271 struct btrfs_root *root = delayed_node->root;
272
273 spin_lock(&root->inode_lock);
274 /*
275 * Once our refcount goes to zero, nobody is allowed to bump it
276 * back up. We can delete it now.
277 */
278 ASSERT(refcount_read(&delayed_node->refs) == 0);
279 radix_tree_delete(&root->delayed_nodes_tree,
280 delayed_node->inode_id);
281 spin_unlock(&root->inode_lock);
282 kmem_cache_free(delayed_node_cache, delayed_node);
283 }
284}
285
286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287{
288 __btrfs_release_delayed_node(node, 0);
289}
290
291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 struct btrfs_delayed_root *delayed_root)
293{
294 struct list_head *p;
295 struct btrfs_delayed_node *node = NULL;
296
297 spin_lock(&delayed_root->lock);
298 if (list_empty(&delayed_root->prepare_list))
299 goto out;
300
301 p = delayed_root->prepare_list.next;
302 list_del_init(p);
303 node = list_entry(p, struct btrfs_delayed_node, p_list);
304 refcount_inc(&node->refs);
305out:
306 spin_unlock(&delayed_root->lock);
307
308 return node;
309}
310
311static inline void btrfs_release_prepared_delayed_node(
312 struct btrfs_delayed_node *node)
313{
314 __btrfs_release_delayed_node(node, 1);
315}
316
317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318{
319 struct btrfs_delayed_item *item;
320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->ins_or_del = 0;
324 item->bytes_reserved = 0;
325 item->delayed_node = NULL;
326 refcount_set(&item->refs, 1);
327 }
328 return item;
329}
330
331/*
332 * __btrfs_lookup_delayed_item - look up the delayed item by key
333 * @delayed_node: pointer to the delayed node
334 * @key: the key to look up
335 * @prev: used to store the prev item if the right item isn't found
336 * @next: used to store the next item if the right item isn't found
337 *
338 * Note: if we don't find the right item, we will return the prev item and
339 * the next item.
340 */
341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 struct rb_root *root,
343 struct btrfs_key *key,
344 struct btrfs_delayed_item **prev,
345 struct btrfs_delayed_item **next)
346{
347 struct rb_node *node, *prev_node = NULL;
348 struct btrfs_delayed_item *delayed_item = NULL;
349 int ret = 0;
350
351 node = root->rb_node;
352
353 while (node) {
354 delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 rb_node);
356 prev_node = node;
357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 if (ret < 0)
359 node = node->rb_right;
360 else if (ret > 0)
361 node = node->rb_left;
362 else
363 return delayed_item;
364 }
365
366 if (prev) {
367 if (!prev_node)
368 *prev = NULL;
369 else if (ret < 0)
370 *prev = delayed_item;
371 else if ((node = rb_prev(prev_node)) != NULL) {
372 *prev = rb_entry(node, struct btrfs_delayed_item,
373 rb_node);
374 } else
375 *prev = NULL;
376 }
377
378 if (next) {
379 if (!prev_node)
380 *next = NULL;
381 else if (ret > 0)
382 *next = delayed_item;
383 else if ((node = rb_next(prev_node)) != NULL) {
384 *next = rb_entry(node, struct btrfs_delayed_item,
385 rb_node);
386 } else
387 *next = NULL;
388 }
389 return NULL;
390}
391
392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 struct btrfs_delayed_node *delayed_node,
394 struct btrfs_key *key)
395{
396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 NULL, NULL);
398}
399
400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 struct btrfs_delayed_item *ins,
402 int action)
403{
404 struct rb_node **p, *node;
405 struct rb_node *parent_node = NULL;
406 struct rb_root_cached *root;
407 struct btrfs_delayed_item *item;
408 int cmp;
409 bool leftmost = true;
410
411 if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 root = &delayed_node->ins_root;
413 else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 root = &delayed_node->del_root;
415 else
416 BUG();
417 p = &root->rb_root.rb_node;
418 node = &ins->rb_node;
419
420 while (*p) {
421 parent_node = *p;
422 item = rb_entry(parent_node, struct btrfs_delayed_item,
423 rb_node);
424
425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 if (cmp < 0) {
427 p = &(*p)->rb_right;
428 leftmost = false;
429 } else if (cmp > 0) {
430 p = &(*p)->rb_left;
431 } else {
432 return -EEXIST;
433 }
434 }
435
436 rb_link_node(node, parent_node, p);
437 rb_insert_color_cached(node, root, leftmost);
438 ins->delayed_node = delayed_node;
439 ins->ins_or_del = action;
440
441 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 action == BTRFS_DELAYED_INSERTION_ITEM &&
443 ins->key.offset >= delayed_node->index_cnt)
444 delayed_node->index_cnt = ins->key.offset + 1;
445
446 delayed_node->count++;
447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 return 0;
449}
450
451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 struct btrfs_delayed_item *item)
453{
454 return __btrfs_add_delayed_item(node, item,
455 BTRFS_DELAYED_INSERTION_ITEM);
456}
457
458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 struct btrfs_delayed_item *item)
460{
461 return __btrfs_add_delayed_item(node, item,
462 BTRFS_DELAYED_DELETION_ITEM);
463}
464
465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466{
467 int seq = atomic_inc_return(&delayed_root->items_seq);
468
469 /* atomic_dec_return implies a barrier */
470 if ((atomic_dec_return(&delayed_root->items) <
471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 cond_wake_up_nomb(&delayed_root->wait);
473}
474
475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476{
477 struct rb_root_cached *root;
478 struct btrfs_delayed_root *delayed_root;
479
480 /* Not associated with any delayed_node */
481 if (!delayed_item->delayed_node)
482 return;
483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484
485 BUG_ON(!delayed_root);
486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488
489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 root = &delayed_item->delayed_node->ins_root;
491 else
492 root = &delayed_item->delayed_node->del_root;
493
494 rb_erase_cached(&delayed_item->rb_node, root);
495 delayed_item->delayed_node->count--;
496
497 finish_one_item(delayed_root);
498}
499
500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501{
502 if (item) {
503 __btrfs_remove_delayed_item(item);
504 if (refcount_dec_and_test(&item->refs))
505 kfree(item);
506 }
507}
508
509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 struct btrfs_delayed_node *delayed_node)
511{
512 struct rb_node *p;
513 struct btrfs_delayed_item *item = NULL;
514
515 p = rb_first_cached(&delayed_node->ins_root);
516 if (p)
517 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518
519 return item;
520}
521
522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 struct btrfs_delayed_node *delayed_node)
524{
525 struct rb_node *p;
526 struct btrfs_delayed_item *item = NULL;
527
528 p = rb_first_cached(&delayed_node->del_root);
529 if (p)
530 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531
532 return item;
533}
534
535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 struct btrfs_delayed_item *item)
537{
538 struct rb_node *p;
539 struct btrfs_delayed_item *next = NULL;
540
541 p = rb_next(&item->rb_node);
542 if (p)
543 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544
545 return next;
546}
547
548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 struct btrfs_root *root,
550 struct btrfs_delayed_item *item)
551{
552 struct btrfs_block_rsv *src_rsv;
553 struct btrfs_block_rsv *dst_rsv;
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 u64 num_bytes;
556 int ret;
557
558 if (!trans->bytes_reserved)
559 return 0;
560
561 src_rsv = trans->block_rsv;
562 dst_rsv = &fs_info->delayed_block_rsv;
563
564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565
566 /*
567 * Here we migrate space rsv from transaction rsv, since have already
568 * reserved space when starting a transaction. So no need to reserve
569 * qgroup space here.
570 */
571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 if (!ret) {
573 trace_btrfs_space_reservation(fs_info, "delayed_item",
574 item->key.objectid,
575 num_bytes, 1);
576 item->bytes_reserved = num_bytes;
577 }
578
579 return ret;
580}
581
582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
584{
585 struct btrfs_block_rsv *rsv;
586 struct btrfs_fs_info *fs_info = root->fs_info;
587
588 if (!item->bytes_reserved)
589 return;
590
591 rsv = &fs_info->delayed_block_rsv;
592 /*
593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 * to release/reserve qgroup space.
595 */
596 trace_btrfs_space_reservation(fs_info, "delayed_item",
597 item->key.objectid, item->bytes_reserved,
598 0);
599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600}
601
602static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607{
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta_prealloc(root,
631 fs_info->nodesize, true);
632 if (ret < 0)
633 return ret;
634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 BTRFS_RESERVE_NO_FLUSH);
636 /*
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 */
642 if (ret == -EAGAIN) {
643 ret = -ENOSPC;
644 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 }
646 if (!ret) {
647 node->bytes_reserved = num_bytes;
648 trace_btrfs_space_reservation(fs_info,
649 "delayed_inode",
650 btrfs_ino(inode),
651 num_bytes, 1);
652 } else {
653 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
654 }
655 return ret;
656 }
657
658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 if (!ret) {
660 trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 btrfs_ino(inode), num_bytes, 1);
662 node->bytes_reserved = num_bytes;
663 }
664
665 return ret;
666}
667
668static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 struct btrfs_delayed_node *node,
670 bool qgroup_free)
671{
672 struct btrfs_block_rsv *rsv;
673
674 if (!node->bytes_reserved)
675 return;
676
677 rsv = &fs_info->delayed_block_rsv;
678 trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 node->inode_id, node->bytes_reserved, 0);
680 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
681 if (qgroup_free)
682 btrfs_qgroup_free_meta_prealloc(node->root,
683 node->bytes_reserved);
684 else
685 btrfs_qgroup_convert_reserved_meta(node->root,
686 node->bytes_reserved);
687 node->bytes_reserved = 0;
688}
689
690/*
691 * This helper will insert some continuous items into the same leaf according
692 * to the free space of the leaf.
693 */
694static int btrfs_batch_insert_items(struct btrfs_root *root,
695 struct btrfs_path *path,
696 struct btrfs_delayed_item *item)
697{
698 struct btrfs_delayed_item *curr, *next;
699 int free_space;
700 int total_data_size = 0, total_size = 0;
701 struct extent_buffer *leaf;
702 char *data_ptr;
703 struct btrfs_key *keys;
704 u32 *data_size;
705 struct list_head head;
706 int slot;
707 int nitems;
708 int i;
709 int ret = 0;
710
711 BUG_ON(!path->nodes[0]);
712
713 leaf = path->nodes[0];
714 free_space = btrfs_leaf_free_space(leaf);
715 INIT_LIST_HEAD(&head);
716
717 next = item;
718 nitems = 0;
719
720 /*
721 * count the number of the continuous items that we can insert in batch
722 */
723 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
724 free_space) {
725 total_data_size += next->data_len;
726 total_size += next->data_len + sizeof(struct btrfs_item);
727 list_add_tail(&next->tree_list, &head);
728 nitems++;
729
730 curr = next;
731 next = __btrfs_next_delayed_item(curr);
732 if (!next)
733 break;
734
735 if (!btrfs_is_continuous_delayed_item(curr, next))
736 break;
737 }
738
739 if (!nitems) {
740 ret = 0;
741 goto out;
742 }
743
744 /*
745 * we need allocate some memory space, but it might cause the task
746 * to sleep, so we set all locked nodes in the path to blocking locks
747 * first.
748 */
749 btrfs_set_path_blocking(path);
750
751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
752 if (!keys) {
753 ret = -ENOMEM;
754 goto out;
755 }
756
757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
758 if (!data_size) {
759 ret = -ENOMEM;
760 goto error;
761 }
762
763 /* get keys of all the delayed items */
764 i = 0;
765 list_for_each_entry(next, &head, tree_list) {
766 keys[i] = next->key;
767 data_size[i] = next->data_len;
768 i++;
769 }
770
771 /* insert the keys of the items */
772 setup_items_for_insert(root, path, keys, data_size,
773 total_data_size, total_size, nitems);
774
775 /* insert the dir index items */
776 slot = path->slots[0];
777 list_for_each_entry_safe(curr, next, &head, tree_list) {
778 data_ptr = btrfs_item_ptr(leaf, slot, char);
779 write_extent_buffer(leaf, &curr->data,
780 (unsigned long)data_ptr,
781 curr->data_len);
782 slot++;
783
784 btrfs_delayed_item_release_metadata(root, curr);
785
786 list_del(&curr->tree_list);
787 btrfs_release_delayed_item(curr);
788 }
789
790error:
791 kfree(data_size);
792 kfree(keys);
793out:
794 return ret;
795}
796
797/*
798 * This helper can just do simple insertion that needn't extend item for new
799 * data, such as directory name index insertion, inode insertion.
800 */
801static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 struct btrfs_root *root,
803 struct btrfs_path *path,
804 struct btrfs_delayed_item *delayed_item)
805{
806 struct extent_buffer *leaf;
807 unsigned int nofs_flag;
808 char *ptr;
809 int ret;
810
811 nofs_flag = memalloc_nofs_save();
812 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
813 delayed_item->data_len);
814 memalloc_nofs_restore(nofs_flag);
815 if (ret < 0 && ret != -EEXIST)
816 return ret;
817
818 leaf = path->nodes[0];
819
820 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
821
822 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
823 delayed_item->data_len);
824 btrfs_mark_buffer_dirty(leaf);
825
826 btrfs_delayed_item_release_metadata(root, delayed_item);
827 return 0;
828}
829
830/*
831 * we insert an item first, then if there are some continuous items, we try
832 * to insert those items into the same leaf.
833 */
834static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
835 struct btrfs_path *path,
836 struct btrfs_root *root,
837 struct btrfs_delayed_node *node)
838{
839 struct btrfs_delayed_item *curr, *prev;
840 int ret = 0;
841
842do_again:
843 mutex_lock(&node->mutex);
844 curr = __btrfs_first_delayed_insertion_item(node);
845 if (!curr)
846 goto insert_end;
847
848 ret = btrfs_insert_delayed_item(trans, root, path, curr);
849 if (ret < 0) {
850 btrfs_release_path(path);
851 goto insert_end;
852 }
853
854 prev = curr;
855 curr = __btrfs_next_delayed_item(prev);
856 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
857 /* insert the continuous items into the same leaf */
858 path->slots[0]++;
859 btrfs_batch_insert_items(root, path, curr);
860 }
861 btrfs_release_delayed_item(prev);
862 btrfs_mark_buffer_dirty(path->nodes[0]);
863
864 btrfs_release_path(path);
865 mutex_unlock(&node->mutex);
866 goto do_again;
867
868insert_end:
869 mutex_unlock(&node->mutex);
870 return ret;
871}
872
873static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
874 struct btrfs_root *root,
875 struct btrfs_path *path,
876 struct btrfs_delayed_item *item)
877{
878 struct btrfs_delayed_item *curr, *next;
879 struct extent_buffer *leaf;
880 struct btrfs_key key;
881 struct list_head head;
882 int nitems, i, last_item;
883 int ret = 0;
884
885 BUG_ON(!path->nodes[0]);
886
887 leaf = path->nodes[0];
888
889 i = path->slots[0];
890 last_item = btrfs_header_nritems(leaf) - 1;
891 if (i > last_item)
892 return -ENOENT; /* FIXME: Is errno suitable? */
893
894 next = item;
895 INIT_LIST_HEAD(&head);
896 btrfs_item_key_to_cpu(leaf, &key, i);
897 nitems = 0;
898 /*
899 * count the number of the dir index items that we can delete in batch
900 */
901 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
902 list_add_tail(&next->tree_list, &head);
903 nitems++;
904
905 curr = next;
906 next = __btrfs_next_delayed_item(curr);
907 if (!next)
908 break;
909
910 if (!btrfs_is_continuous_delayed_item(curr, next))
911 break;
912
913 i++;
914 if (i > last_item)
915 break;
916 btrfs_item_key_to_cpu(leaf, &key, i);
917 }
918
919 if (!nitems)
920 return 0;
921
922 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
923 if (ret)
924 goto out;
925
926 list_for_each_entry_safe(curr, next, &head, tree_list) {
927 btrfs_delayed_item_release_metadata(root, curr);
928 list_del(&curr->tree_list);
929 btrfs_release_delayed_item(curr);
930 }
931
932out:
933 return ret;
934}
935
936static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
937 struct btrfs_path *path,
938 struct btrfs_root *root,
939 struct btrfs_delayed_node *node)
940{
941 struct btrfs_delayed_item *curr, *prev;
942 unsigned int nofs_flag;
943 int ret = 0;
944
945do_again:
946 mutex_lock(&node->mutex);
947 curr = __btrfs_first_delayed_deletion_item(node);
948 if (!curr)
949 goto delete_fail;
950
951 nofs_flag = memalloc_nofs_save();
952 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
953 memalloc_nofs_restore(nofs_flag);
954 if (ret < 0)
955 goto delete_fail;
956 else if (ret > 0) {
957 /*
958 * can't find the item which the node points to, so this node
959 * is invalid, just drop it.
960 */
961 prev = curr;
962 curr = __btrfs_next_delayed_item(prev);
963 btrfs_release_delayed_item(prev);
964 ret = 0;
965 btrfs_release_path(path);
966 if (curr) {
967 mutex_unlock(&node->mutex);
968 goto do_again;
969 } else
970 goto delete_fail;
971 }
972
973 btrfs_batch_delete_items(trans, root, path, curr);
974 btrfs_release_path(path);
975 mutex_unlock(&node->mutex);
976 goto do_again;
977
978delete_fail:
979 btrfs_release_path(path);
980 mutex_unlock(&node->mutex);
981 return ret;
982}
983
984static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
985{
986 struct btrfs_delayed_root *delayed_root;
987
988 if (delayed_node &&
989 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
990 BUG_ON(!delayed_node->root);
991 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
992 delayed_node->count--;
993
994 delayed_root = delayed_node->root->fs_info->delayed_root;
995 finish_one_item(delayed_root);
996 }
997}
998
999static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1000{
1001 struct btrfs_delayed_root *delayed_root;
1002
1003 ASSERT(delayed_node->root);
1004 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1005 delayed_node->count--;
1006
1007 delayed_root = delayed_node->root->fs_info->delayed_root;
1008 finish_one_item(delayed_root);
1009}
1010
1011static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1012 struct btrfs_root *root,
1013 struct btrfs_path *path,
1014 struct btrfs_delayed_node *node)
1015{
1016 struct btrfs_fs_info *fs_info = root->fs_info;
1017 struct btrfs_key key;
1018 struct btrfs_inode_item *inode_item;
1019 struct extent_buffer *leaf;
1020 unsigned int nofs_flag;
1021 int mod;
1022 int ret;
1023
1024 key.objectid = node->inode_id;
1025 key.type = BTRFS_INODE_ITEM_KEY;
1026 key.offset = 0;
1027
1028 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 mod = -1;
1030 else
1031 mod = 1;
1032
1033 nofs_flag = memalloc_nofs_save();
1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1035 memalloc_nofs_restore(nofs_flag);
1036 if (ret > 0) {
1037 btrfs_release_path(path);
1038 return -ENOENT;
1039 } else if (ret < 0) {
1040 return ret;
1041 }
1042
1043 leaf = path->nodes[0];
1044 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_inode_item);
1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 sizeof(struct btrfs_inode_item));
1048 btrfs_mark_buffer_dirty(leaf);
1049
1050 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051 goto no_iref;
1052
1053 path->slots[0]++;
1054 if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 goto search;
1056again:
1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 if (key.objectid != node->inode_id)
1059 goto out;
1060
1061 if (key.type != BTRFS_INODE_REF_KEY &&
1062 key.type != BTRFS_INODE_EXTREF_KEY)
1063 goto out;
1064
1065 /*
1066 * Delayed iref deletion is for the inode who has only one link,
1067 * so there is only one iref. The case that several irefs are
1068 * in the same item doesn't exist.
1069 */
1070 btrfs_del_item(trans, root, path);
1071out:
1072 btrfs_release_delayed_iref(node);
1073no_iref:
1074 btrfs_release_path(path);
1075err_out:
1076 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1077 btrfs_release_delayed_inode(node);
1078
1079 return ret;
1080
1081search:
1082 btrfs_release_path(path);
1083
1084 key.type = BTRFS_INODE_EXTREF_KEY;
1085 key.offset = -1;
1086
1087 nofs_flag = memalloc_nofs_save();
1088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1089 memalloc_nofs_restore(nofs_flag);
1090 if (ret < 0)
1091 goto err_out;
1092 ASSERT(ret);
1093
1094 ret = 0;
1095 leaf = path->nodes[0];
1096 path->slots[0]--;
1097 goto again;
1098}
1099
1100static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1101 struct btrfs_root *root,
1102 struct btrfs_path *path,
1103 struct btrfs_delayed_node *node)
1104{
1105 int ret;
1106
1107 mutex_lock(&node->mutex);
1108 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1109 mutex_unlock(&node->mutex);
1110 return 0;
1111 }
1112
1113 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1114 mutex_unlock(&node->mutex);
1115 return ret;
1116}
1117
1118static inline int
1119__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1120 struct btrfs_path *path,
1121 struct btrfs_delayed_node *node)
1122{
1123 int ret;
1124
1125 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1126 if (ret)
1127 return ret;
1128
1129 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1130 if (ret)
1131 return ret;
1132
1133 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1134 return ret;
1135}
1136
1137/*
1138 * Called when committing the transaction.
1139 * Returns 0 on success.
1140 * Returns < 0 on error and returns with an aborted transaction with any
1141 * outstanding delayed items cleaned up.
1142 */
1143static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1144{
1145 struct btrfs_fs_info *fs_info = trans->fs_info;
1146 struct btrfs_delayed_root *delayed_root;
1147 struct btrfs_delayed_node *curr_node, *prev_node;
1148 struct btrfs_path *path;
1149 struct btrfs_block_rsv *block_rsv;
1150 int ret = 0;
1151 bool count = (nr > 0);
1152
1153 if (TRANS_ABORTED(trans))
1154 return -EIO;
1155
1156 path = btrfs_alloc_path();
1157 if (!path)
1158 return -ENOMEM;
1159 path->leave_spinning = 1;
1160
1161 block_rsv = trans->block_rsv;
1162 trans->block_rsv = &fs_info->delayed_block_rsv;
1163
1164 delayed_root = fs_info->delayed_root;
1165
1166 curr_node = btrfs_first_delayed_node(delayed_root);
1167 while (curr_node && (!count || (count && nr--))) {
1168 ret = __btrfs_commit_inode_delayed_items(trans, path,
1169 curr_node);
1170 if (ret) {
1171 btrfs_release_delayed_node(curr_node);
1172 curr_node = NULL;
1173 btrfs_abort_transaction(trans, ret);
1174 break;
1175 }
1176
1177 prev_node = curr_node;
1178 curr_node = btrfs_next_delayed_node(curr_node);
1179 btrfs_release_delayed_node(prev_node);
1180 }
1181
1182 if (curr_node)
1183 btrfs_release_delayed_node(curr_node);
1184 btrfs_free_path(path);
1185 trans->block_rsv = block_rsv;
1186
1187 return ret;
1188}
1189
1190int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1191{
1192 return __btrfs_run_delayed_items(trans, -1);
1193}
1194
1195int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1196{
1197 return __btrfs_run_delayed_items(trans, nr);
1198}
1199
1200int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1201 struct btrfs_inode *inode)
1202{
1203 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1204 struct btrfs_path *path;
1205 struct btrfs_block_rsv *block_rsv;
1206 int ret;
1207
1208 if (!delayed_node)
1209 return 0;
1210
1211 mutex_lock(&delayed_node->mutex);
1212 if (!delayed_node->count) {
1213 mutex_unlock(&delayed_node->mutex);
1214 btrfs_release_delayed_node(delayed_node);
1215 return 0;
1216 }
1217 mutex_unlock(&delayed_node->mutex);
1218
1219 path = btrfs_alloc_path();
1220 if (!path) {
1221 btrfs_release_delayed_node(delayed_node);
1222 return -ENOMEM;
1223 }
1224 path->leave_spinning = 1;
1225
1226 block_rsv = trans->block_rsv;
1227 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228
1229 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1230
1231 btrfs_release_delayed_node(delayed_node);
1232 btrfs_free_path(path);
1233 trans->block_rsv = block_rsv;
1234
1235 return ret;
1236}
1237
1238int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1239{
1240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1241 struct btrfs_trans_handle *trans;
1242 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1243 struct btrfs_path *path;
1244 struct btrfs_block_rsv *block_rsv;
1245 int ret;
1246
1247 if (!delayed_node)
1248 return 0;
1249
1250 mutex_lock(&delayed_node->mutex);
1251 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1252 mutex_unlock(&delayed_node->mutex);
1253 btrfs_release_delayed_node(delayed_node);
1254 return 0;
1255 }
1256 mutex_unlock(&delayed_node->mutex);
1257
1258 trans = btrfs_join_transaction(delayed_node->root);
1259 if (IS_ERR(trans)) {
1260 ret = PTR_ERR(trans);
1261 goto out;
1262 }
1263
1264 path = btrfs_alloc_path();
1265 if (!path) {
1266 ret = -ENOMEM;
1267 goto trans_out;
1268 }
1269 path->leave_spinning = 1;
1270
1271 block_rsv = trans->block_rsv;
1272 trans->block_rsv = &fs_info->delayed_block_rsv;
1273
1274 mutex_lock(&delayed_node->mutex);
1275 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1276 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1277 path, delayed_node);
1278 else
1279 ret = 0;
1280 mutex_unlock(&delayed_node->mutex);
1281
1282 btrfs_free_path(path);
1283 trans->block_rsv = block_rsv;
1284trans_out:
1285 btrfs_end_transaction(trans);
1286 btrfs_btree_balance_dirty(fs_info);
1287out:
1288 btrfs_release_delayed_node(delayed_node);
1289
1290 return ret;
1291}
1292
1293void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1294{
1295 struct btrfs_delayed_node *delayed_node;
1296
1297 delayed_node = READ_ONCE(inode->delayed_node);
1298 if (!delayed_node)
1299 return;
1300
1301 inode->delayed_node = NULL;
1302 btrfs_release_delayed_node(delayed_node);
1303}
1304
1305struct btrfs_async_delayed_work {
1306 struct btrfs_delayed_root *delayed_root;
1307 int nr;
1308 struct btrfs_work work;
1309};
1310
1311static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1312{
1313 struct btrfs_async_delayed_work *async_work;
1314 struct btrfs_delayed_root *delayed_root;
1315 struct btrfs_trans_handle *trans;
1316 struct btrfs_path *path;
1317 struct btrfs_delayed_node *delayed_node = NULL;
1318 struct btrfs_root *root;
1319 struct btrfs_block_rsv *block_rsv;
1320 int total_done = 0;
1321
1322 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1323 delayed_root = async_work->delayed_root;
1324
1325 path = btrfs_alloc_path();
1326 if (!path)
1327 goto out;
1328
1329 do {
1330 if (atomic_read(&delayed_root->items) <
1331 BTRFS_DELAYED_BACKGROUND / 2)
1332 break;
1333
1334 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1335 if (!delayed_node)
1336 break;
1337
1338 path->leave_spinning = 1;
1339 root = delayed_node->root;
1340
1341 trans = btrfs_join_transaction(root);
1342 if (IS_ERR(trans)) {
1343 btrfs_release_path(path);
1344 btrfs_release_prepared_delayed_node(delayed_node);
1345 total_done++;
1346 continue;
1347 }
1348
1349 block_rsv = trans->block_rsv;
1350 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351
1352 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1353
1354 trans->block_rsv = block_rsv;
1355 btrfs_end_transaction(trans);
1356 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1357
1358 btrfs_release_path(path);
1359 btrfs_release_prepared_delayed_node(delayed_node);
1360 total_done++;
1361
1362 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 || total_done < async_work->nr);
1364
1365 btrfs_free_path(path);
1366out:
1367 wake_up(&delayed_root->wait);
1368 kfree(async_work);
1369}
1370
1371
1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 struct btrfs_fs_info *fs_info, int nr)
1374{
1375 struct btrfs_async_delayed_work *async_work;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1383 NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388}
1389
1390void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1391{
1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1393}
1394
1395static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1396{
1397 int val = atomic_read(&delayed_root->items_seq);
1398
1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1400 return 1;
1401
1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1403 return 1;
1404
1405 return 0;
1406}
1407
1408void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1409{
1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1411
1412 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1413 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1414 return;
1415
1416 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1417 int seq;
1418 int ret;
1419
1420 seq = atomic_read(&delayed_root->items_seq);
1421
1422 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1423 if (ret)
1424 return;
1425
1426 wait_event_interruptible(delayed_root->wait,
1427 could_end_wait(delayed_root, seq));
1428 return;
1429 }
1430
1431 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1432}
1433
1434/* Will return 0 or -ENOMEM */
1435int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1436 const char *name, int name_len,
1437 struct btrfs_inode *dir,
1438 struct btrfs_disk_key *disk_key, u8 type,
1439 u64 index)
1440{
1441 struct btrfs_delayed_node *delayed_node;
1442 struct btrfs_delayed_item *delayed_item;
1443 struct btrfs_dir_item *dir_item;
1444 int ret;
1445
1446 delayed_node = btrfs_get_or_create_delayed_node(dir);
1447 if (IS_ERR(delayed_node))
1448 return PTR_ERR(delayed_node);
1449
1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1451 if (!delayed_item) {
1452 ret = -ENOMEM;
1453 goto release_node;
1454 }
1455
1456 delayed_item->key.objectid = btrfs_ino(dir);
1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1458 delayed_item->key.offset = index;
1459
1460 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1461 dir_item->location = *disk_key;
1462 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1463 btrfs_set_stack_dir_data_len(dir_item, 0);
1464 btrfs_set_stack_dir_name_len(dir_item, name_len);
1465 btrfs_set_stack_dir_type(dir_item, type);
1466 memcpy((char *)(dir_item + 1), name, name_len);
1467
1468 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1469 /*
1470 * we have reserved enough space when we start a new transaction,
1471 * so reserving metadata failure is impossible
1472 */
1473 BUG_ON(ret);
1474
1475 mutex_lock(&delayed_node->mutex);
1476 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1477 if (unlikely(ret)) {
1478 btrfs_err(trans->fs_info,
1479 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1480 name_len, name, delayed_node->root->root_key.objectid,
1481 delayed_node->inode_id, ret);
1482 BUG();
1483 }
1484 mutex_unlock(&delayed_node->mutex);
1485
1486release_node:
1487 btrfs_release_delayed_node(delayed_node);
1488 return ret;
1489}
1490
1491static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1492 struct btrfs_delayed_node *node,
1493 struct btrfs_key *key)
1494{
1495 struct btrfs_delayed_item *item;
1496
1497 mutex_lock(&node->mutex);
1498 item = __btrfs_lookup_delayed_insertion_item(node, key);
1499 if (!item) {
1500 mutex_unlock(&node->mutex);
1501 return 1;
1502 }
1503
1504 btrfs_delayed_item_release_metadata(node->root, item);
1505 btrfs_release_delayed_item(item);
1506 mutex_unlock(&node->mutex);
1507 return 0;
1508}
1509
1510int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1511 struct btrfs_inode *dir, u64 index)
1512{
1513 struct btrfs_delayed_node *node;
1514 struct btrfs_delayed_item *item;
1515 struct btrfs_key item_key;
1516 int ret;
1517
1518 node = btrfs_get_or_create_delayed_node(dir);
1519 if (IS_ERR(node))
1520 return PTR_ERR(node);
1521
1522 item_key.objectid = btrfs_ino(dir);
1523 item_key.type = BTRFS_DIR_INDEX_KEY;
1524 item_key.offset = index;
1525
1526 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1527 &item_key);
1528 if (!ret)
1529 goto end;
1530
1531 item = btrfs_alloc_delayed_item(0);
1532 if (!item) {
1533 ret = -ENOMEM;
1534 goto end;
1535 }
1536
1537 item->key = item_key;
1538
1539 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1540 /*
1541 * we have reserved enough space when we start a new transaction,
1542 * so reserving metadata failure is impossible.
1543 */
1544 if (ret < 0) {
1545 btrfs_err(trans->fs_info,
1546"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1547 btrfs_release_delayed_item(item);
1548 goto end;
1549 }
1550
1551 mutex_lock(&node->mutex);
1552 ret = __btrfs_add_delayed_deletion_item(node, item);
1553 if (unlikely(ret)) {
1554 btrfs_err(trans->fs_info,
1555 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556 index, node->root->root_key.objectid,
1557 node->inode_id, ret);
1558 btrfs_delayed_item_release_metadata(dir->root, item);
1559 btrfs_release_delayed_item(item);
1560 }
1561 mutex_unlock(&node->mutex);
1562end:
1563 btrfs_release_delayed_node(node);
1564 return ret;
1565}
1566
1567int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1568{
1569 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1570
1571 if (!delayed_node)
1572 return -ENOENT;
1573
1574 /*
1575 * Since we have held i_mutex of this directory, it is impossible that
1576 * a new directory index is added into the delayed node and index_cnt
1577 * is updated now. So we needn't lock the delayed node.
1578 */
1579 if (!delayed_node->index_cnt) {
1580 btrfs_release_delayed_node(delayed_node);
1581 return -EINVAL;
1582 }
1583
1584 inode->index_cnt = delayed_node->index_cnt;
1585 btrfs_release_delayed_node(delayed_node);
1586 return 0;
1587}
1588
1589bool btrfs_readdir_get_delayed_items(struct inode *inode,
1590 struct list_head *ins_list,
1591 struct list_head *del_list)
1592{
1593 struct btrfs_delayed_node *delayed_node;
1594 struct btrfs_delayed_item *item;
1595
1596 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1597 if (!delayed_node)
1598 return false;
1599
1600 /*
1601 * We can only do one readdir with delayed items at a time because of
1602 * item->readdir_list.
1603 */
1604 inode_unlock_shared(inode);
1605 inode_lock(inode);
1606
1607 mutex_lock(&delayed_node->mutex);
1608 item = __btrfs_first_delayed_insertion_item(delayed_node);
1609 while (item) {
1610 refcount_inc(&item->refs);
1611 list_add_tail(&item->readdir_list, ins_list);
1612 item = __btrfs_next_delayed_item(item);
1613 }
1614
1615 item = __btrfs_first_delayed_deletion_item(delayed_node);
1616 while (item) {
1617 refcount_inc(&item->refs);
1618 list_add_tail(&item->readdir_list, del_list);
1619 item = __btrfs_next_delayed_item(item);
1620 }
1621 mutex_unlock(&delayed_node->mutex);
1622 /*
1623 * This delayed node is still cached in the btrfs inode, so refs
1624 * must be > 1 now, and we needn't check it is going to be freed
1625 * or not.
1626 *
1627 * Besides that, this function is used to read dir, we do not
1628 * insert/delete delayed items in this period. So we also needn't
1629 * requeue or dequeue this delayed node.
1630 */
1631 refcount_dec(&delayed_node->refs);
1632
1633 return true;
1634}
1635
1636void btrfs_readdir_put_delayed_items(struct inode *inode,
1637 struct list_head *ins_list,
1638 struct list_head *del_list)
1639{
1640 struct btrfs_delayed_item *curr, *next;
1641
1642 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1643 list_del(&curr->readdir_list);
1644 if (refcount_dec_and_test(&curr->refs))
1645 kfree(curr);
1646 }
1647
1648 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1649 list_del(&curr->readdir_list);
1650 if (refcount_dec_and_test(&curr->refs))
1651 kfree(curr);
1652 }
1653
1654 /*
1655 * The VFS is going to do up_read(), so we need to downgrade back to a
1656 * read lock.
1657 */
1658 downgrade_write(&inode->i_rwsem);
1659}
1660
1661int btrfs_should_delete_dir_index(struct list_head *del_list,
1662 u64 index)
1663{
1664 struct btrfs_delayed_item *curr;
1665 int ret = 0;
1666
1667 list_for_each_entry(curr, del_list, readdir_list) {
1668 if (curr->key.offset > index)
1669 break;
1670 if (curr->key.offset == index) {
1671 ret = 1;
1672 break;
1673 }
1674 }
1675 return ret;
1676}
1677
1678/*
1679 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1680 *
1681 */
1682int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1683 struct list_head *ins_list)
1684{
1685 struct btrfs_dir_item *di;
1686 struct btrfs_delayed_item *curr, *next;
1687 struct btrfs_key location;
1688 char *name;
1689 int name_len;
1690 int over = 0;
1691 unsigned char d_type;
1692
1693 if (list_empty(ins_list))
1694 return 0;
1695
1696 /*
1697 * Changing the data of the delayed item is impossible. So
1698 * we needn't lock them. And we have held i_mutex of the
1699 * directory, nobody can delete any directory indexes now.
1700 */
1701 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1702 list_del(&curr->readdir_list);
1703
1704 if (curr->key.offset < ctx->pos) {
1705 if (refcount_dec_and_test(&curr->refs))
1706 kfree(curr);
1707 continue;
1708 }
1709
1710 ctx->pos = curr->key.offset;
1711
1712 di = (struct btrfs_dir_item *)curr->data;
1713 name = (char *)(di + 1);
1714 name_len = btrfs_stack_dir_name_len(di);
1715
1716 d_type = fs_ftype_to_dtype(di->type);
1717 btrfs_disk_key_to_cpu(&location, &di->location);
1718
1719 over = !dir_emit(ctx, name, name_len,
1720 location.objectid, d_type);
1721
1722 if (refcount_dec_and_test(&curr->refs))
1723 kfree(curr);
1724
1725 if (over)
1726 return 1;
1727 ctx->pos++;
1728 }
1729 return 0;
1730}
1731
1732static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1733 struct btrfs_inode_item *inode_item,
1734 struct inode *inode)
1735{
1736 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1737 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1738 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1739 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1740 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1741 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1742 btrfs_set_stack_inode_generation(inode_item,
1743 BTRFS_I(inode)->generation);
1744 btrfs_set_stack_inode_sequence(inode_item,
1745 inode_peek_iversion(inode));
1746 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1747 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1748 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1749 btrfs_set_stack_inode_block_group(inode_item, 0);
1750
1751 btrfs_set_stack_timespec_sec(&inode_item->atime,
1752 inode->i_atime.tv_sec);
1753 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1754 inode->i_atime.tv_nsec);
1755
1756 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1757 inode->i_mtime.tv_sec);
1758 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1759 inode->i_mtime.tv_nsec);
1760
1761 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1762 inode->i_ctime.tv_sec);
1763 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1764 inode->i_ctime.tv_nsec);
1765
1766 btrfs_set_stack_timespec_sec(&inode_item->otime,
1767 BTRFS_I(inode)->i_otime.tv_sec);
1768 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1769 BTRFS_I(inode)->i_otime.tv_nsec);
1770}
1771
1772int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1773{
1774 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1775 struct btrfs_delayed_node *delayed_node;
1776 struct btrfs_inode_item *inode_item;
1777
1778 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1779 if (!delayed_node)
1780 return -ENOENT;
1781
1782 mutex_lock(&delayed_node->mutex);
1783 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1784 mutex_unlock(&delayed_node->mutex);
1785 btrfs_release_delayed_node(delayed_node);
1786 return -ENOENT;
1787 }
1788
1789 inode_item = &delayed_node->inode_item;
1790
1791 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1792 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1793 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1794 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1795 round_up(i_size_read(inode), fs_info->sectorsize));
1796 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1797 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1798 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1799 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1800 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1801
1802 inode_set_iversion_queried(inode,
1803 btrfs_stack_inode_sequence(inode_item));
1804 inode->i_rdev = 0;
1805 *rdev = btrfs_stack_inode_rdev(inode_item);
1806 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1807
1808 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1809 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1810
1811 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1812 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1813
1814 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1815 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1816
1817 BTRFS_I(inode)->i_otime.tv_sec =
1818 btrfs_stack_timespec_sec(&inode_item->otime);
1819 BTRFS_I(inode)->i_otime.tv_nsec =
1820 btrfs_stack_timespec_nsec(&inode_item->otime);
1821
1822 inode->i_generation = BTRFS_I(inode)->generation;
1823 BTRFS_I(inode)->index_cnt = (u64)-1;
1824
1825 mutex_unlock(&delayed_node->mutex);
1826 btrfs_release_delayed_node(delayed_node);
1827 return 0;
1828}
1829
1830int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1831 struct btrfs_root *root, struct inode *inode)
1832{
1833 struct btrfs_delayed_node *delayed_node;
1834 int ret = 0;
1835
1836 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1837 if (IS_ERR(delayed_node))
1838 return PTR_ERR(delayed_node);
1839
1840 mutex_lock(&delayed_node->mutex);
1841 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1842 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1843 goto release_node;
1844 }
1845
1846 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1847 delayed_node);
1848 if (ret)
1849 goto release_node;
1850
1851 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1852 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1853 delayed_node->count++;
1854 atomic_inc(&root->fs_info->delayed_root->items);
1855release_node:
1856 mutex_unlock(&delayed_node->mutex);
1857 btrfs_release_delayed_node(delayed_node);
1858 return ret;
1859}
1860
1861int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1862{
1863 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1864 struct btrfs_delayed_node *delayed_node;
1865
1866 /*
1867 * we don't do delayed inode updates during log recovery because it
1868 * leads to enospc problems. This means we also can't do
1869 * delayed inode refs
1870 */
1871 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1872 return -EAGAIN;
1873
1874 delayed_node = btrfs_get_or_create_delayed_node(inode);
1875 if (IS_ERR(delayed_node))
1876 return PTR_ERR(delayed_node);
1877
1878 /*
1879 * We don't reserve space for inode ref deletion is because:
1880 * - We ONLY do async inode ref deletion for the inode who has only
1881 * one link(i_nlink == 1), it means there is only one inode ref.
1882 * And in most case, the inode ref and the inode item are in the
1883 * same leaf, and we will deal with them at the same time.
1884 * Since we are sure we will reserve the space for the inode item,
1885 * it is unnecessary to reserve space for inode ref deletion.
1886 * - If the inode ref and the inode item are not in the same leaf,
1887 * We also needn't worry about enospc problem, because we reserve
1888 * much more space for the inode update than it needs.
1889 * - At the worst, we can steal some space from the global reservation.
1890 * It is very rare.
1891 */
1892 mutex_lock(&delayed_node->mutex);
1893 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1894 goto release_node;
1895
1896 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1897 delayed_node->count++;
1898 atomic_inc(&fs_info->delayed_root->items);
1899release_node:
1900 mutex_unlock(&delayed_node->mutex);
1901 btrfs_release_delayed_node(delayed_node);
1902 return 0;
1903}
1904
1905static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1906{
1907 struct btrfs_root *root = delayed_node->root;
1908 struct btrfs_fs_info *fs_info = root->fs_info;
1909 struct btrfs_delayed_item *curr_item, *prev_item;
1910
1911 mutex_lock(&delayed_node->mutex);
1912 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1913 while (curr_item) {
1914 btrfs_delayed_item_release_metadata(root, curr_item);
1915 prev_item = curr_item;
1916 curr_item = __btrfs_next_delayed_item(prev_item);
1917 btrfs_release_delayed_item(prev_item);
1918 }
1919
1920 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1921 while (curr_item) {
1922 btrfs_delayed_item_release_metadata(root, curr_item);
1923 prev_item = curr_item;
1924 curr_item = __btrfs_next_delayed_item(prev_item);
1925 btrfs_release_delayed_item(prev_item);
1926 }
1927
1928 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1929 btrfs_release_delayed_iref(delayed_node);
1930
1931 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1932 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1933 btrfs_release_delayed_inode(delayed_node);
1934 }
1935 mutex_unlock(&delayed_node->mutex);
1936}
1937
1938void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1939{
1940 struct btrfs_delayed_node *delayed_node;
1941
1942 delayed_node = btrfs_get_delayed_node(inode);
1943 if (!delayed_node)
1944 return;
1945
1946 __btrfs_kill_delayed_node(delayed_node);
1947 btrfs_release_delayed_node(delayed_node);
1948}
1949
1950void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1951{
1952 u64 inode_id = 0;
1953 struct btrfs_delayed_node *delayed_nodes[8];
1954 int i, n;
1955
1956 while (1) {
1957 spin_lock(&root->inode_lock);
1958 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1959 (void **)delayed_nodes, inode_id,
1960 ARRAY_SIZE(delayed_nodes));
1961 if (!n) {
1962 spin_unlock(&root->inode_lock);
1963 break;
1964 }
1965
1966 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1967 for (i = 0; i < n; i++) {
1968 /*
1969 * Don't increase refs in case the node is dead and
1970 * about to be removed from the tree in the loop below
1971 */
1972 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1973 delayed_nodes[i] = NULL;
1974 }
1975 spin_unlock(&root->inode_lock);
1976
1977 for (i = 0; i < n; i++) {
1978 if (!delayed_nodes[i])
1979 continue;
1980 __btrfs_kill_delayed_node(delayed_nodes[i]);
1981 btrfs_release_delayed_node(delayed_nodes[i]);
1982 }
1983 }
1984}
1985
1986void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1987{
1988 struct btrfs_delayed_node *curr_node, *prev_node;
1989
1990 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1991 while (curr_node) {
1992 __btrfs_kill_delayed_node(curr_node);
1993
1994 prev_node = curr_node;
1995 curr_node = btrfs_next_delayed_node(curr_node);
1996 btrfs_release_delayed_node(prev_node);
1997 }
1998}
1999