Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = xa_load(&root->delayed_nodes, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the xarray. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the xarray at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the xarray, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123 void *ptr;
124
125again:
126 node = btrfs_get_delayed_node(btrfs_inode);
127 if (node)
128 return node;
129
130 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
131 if (!node)
132 return ERR_PTR(-ENOMEM);
133 btrfs_init_delayed_node(node, root, ino);
134
135 /* Cached in the inode and can be accessed. */
136 refcount_set(&node->refs, 2);
137
138 /* Allocate and reserve the slot, from now it can return a NULL from xa_load(). */
139 ret = xa_reserve(&root->delayed_nodes, ino, GFP_NOFS);
140 if (ret == -ENOMEM) {
141 kmem_cache_free(delayed_node_cache, node);
142 return ERR_PTR(-ENOMEM);
143 }
144 spin_lock(&root->inode_lock);
145 ptr = xa_load(&root->delayed_nodes, ino);
146 if (ptr) {
147 /* Somebody inserted it, go back and read it. */
148 spin_unlock(&root->inode_lock);
149 kmem_cache_free(delayed_node_cache, node);
150 node = NULL;
151 goto again;
152 }
153 ptr = xa_store(&root->delayed_nodes, ino, node, GFP_ATOMIC);
154 ASSERT(xa_err(ptr) != -EINVAL);
155 ASSERT(xa_err(ptr) != -ENOMEM);
156 ASSERT(ptr == NULL);
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159
160 return node;
161}
162
163/*
164 * Call it when holding delayed_node->mutex
165 *
166 * If mod = 1, add this node into the prepared list.
167 */
168static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 struct btrfs_delayed_node *node,
170 int mod)
171{
172 spin_lock(&root->lock);
173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
174 if (!list_empty(&node->p_list))
175 list_move_tail(&node->p_list, &root->prepare_list);
176 else if (mod)
177 list_add_tail(&node->p_list, &root->prepare_list);
178 } else {
179 list_add_tail(&node->n_list, &root->node_list);
180 list_add_tail(&node->p_list, &root->prepare_list);
181 refcount_inc(&node->refs); /* inserted into list */
182 root->nodes++;
183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
184 }
185 spin_unlock(&root->lock);
186}
187
188/* Call it when holding delayed_node->mutex */
189static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 struct btrfs_delayed_node *node)
191{
192 spin_lock(&root->lock);
193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
194 root->nodes--;
195 refcount_dec(&node->refs); /* not in the list */
196 list_del_init(&node->n_list);
197 if (!list_empty(&node->p_list))
198 list_del_init(&node->p_list);
199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
200 }
201 spin_unlock(&root->lock);
202}
203
204static struct btrfs_delayed_node *btrfs_first_delayed_node(
205 struct btrfs_delayed_root *delayed_root)
206{
207 struct list_head *p;
208 struct btrfs_delayed_node *node = NULL;
209
210 spin_lock(&delayed_root->lock);
211 if (list_empty(&delayed_root->node_list))
212 goto out;
213
214 p = delayed_root->node_list.next;
215 node = list_entry(p, struct btrfs_delayed_node, n_list);
216 refcount_inc(&node->refs);
217out:
218 spin_unlock(&delayed_root->lock);
219
220 return node;
221}
222
223static struct btrfs_delayed_node *btrfs_next_delayed_node(
224 struct btrfs_delayed_node *node)
225{
226 struct btrfs_delayed_root *delayed_root;
227 struct list_head *p;
228 struct btrfs_delayed_node *next = NULL;
229
230 delayed_root = node->root->fs_info->delayed_root;
231 spin_lock(&delayed_root->lock);
232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
233 /* not in the list */
234 if (list_empty(&delayed_root->node_list))
235 goto out;
236 p = delayed_root->node_list.next;
237 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238 goto out;
239 else
240 p = node->n_list.next;
241
242 next = list_entry(p, struct btrfs_delayed_node, n_list);
243 refcount_inc(&next->refs);
244out:
245 spin_unlock(&delayed_root->lock);
246
247 return next;
248}
249
250static void __btrfs_release_delayed_node(
251 struct btrfs_delayed_node *delayed_node,
252 int mod)
253{
254 struct btrfs_delayed_root *delayed_root;
255
256 if (!delayed_node)
257 return;
258
259 delayed_root = delayed_node->root->fs_info->delayed_root;
260
261 mutex_lock(&delayed_node->mutex);
262 if (delayed_node->count)
263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264 else
265 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266 mutex_unlock(&delayed_node->mutex);
267
268 if (refcount_dec_and_test(&delayed_node->refs)) {
269 struct btrfs_root *root = delayed_node->root;
270
271 spin_lock(&root->inode_lock);
272 /*
273 * Once our refcount goes to zero, nobody is allowed to bump it
274 * back up. We can delete it now.
275 */
276 ASSERT(refcount_read(&delayed_node->refs) == 0);
277 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
278 spin_unlock(&root->inode_lock);
279 kmem_cache_free(delayed_node_cache, delayed_node);
280 }
281}
282
283static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284{
285 __btrfs_release_delayed_node(node, 0);
286}
287
288static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 struct btrfs_delayed_root *delayed_root)
290{
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
301 refcount_inc(&node->refs);
302out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306}
307
308static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310{
311 __btrfs_release_delayed_node(node, 1);
312}
313
314static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
315 struct btrfs_delayed_node *node,
316 enum btrfs_delayed_item_type type)
317{
318 struct btrfs_delayed_item *item;
319
320 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
321 if (item) {
322 item->data_len = data_len;
323 item->type = type;
324 item->bytes_reserved = 0;
325 item->delayed_node = node;
326 RB_CLEAR_NODE(&item->rb_node);
327 INIT_LIST_HEAD(&item->log_list);
328 item->logged = false;
329 refcount_set(&item->refs, 1);
330 }
331 return item;
332}
333
334/*
335 * Look up the delayed item by key.
336 *
337 * @delayed_node: pointer to the delayed node
338 * @index: the dir index value to lookup (offset of a dir index key)
339 *
340 * Note: if we don't find the right item, we will return the prev item and
341 * the next item.
342 */
343static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
344 struct rb_root *root,
345 u64 index)
346{
347 struct rb_node *node = root->rb_node;
348 struct btrfs_delayed_item *delayed_item = NULL;
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
353 if (delayed_item->index < index)
354 node = node->rb_right;
355 else if (delayed_item->index > index)
356 node = node->rb_left;
357 else
358 return delayed_item;
359 }
360
361 return NULL;
362}
363
364static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
365 struct btrfs_delayed_item *ins)
366{
367 struct rb_node **p, *node;
368 struct rb_node *parent_node = NULL;
369 struct rb_root_cached *root;
370 struct btrfs_delayed_item *item;
371 bool leftmost = true;
372
373 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
374 root = &delayed_node->ins_root;
375 else
376 root = &delayed_node->del_root;
377
378 p = &root->rb_root.rb_node;
379 node = &ins->rb_node;
380
381 while (*p) {
382 parent_node = *p;
383 item = rb_entry(parent_node, struct btrfs_delayed_item,
384 rb_node);
385
386 if (item->index < ins->index) {
387 p = &(*p)->rb_right;
388 leftmost = false;
389 } else if (item->index > ins->index) {
390 p = &(*p)->rb_left;
391 } else {
392 return -EEXIST;
393 }
394 }
395
396 rb_link_node(node, parent_node, p);
397 rb_insert_color_cached(node, root, leftmost);
398
399 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
400 ins->index >= delayed_node->index_cnt)
401 delayed_node->index_cnt = ins->index + 1;
402
403 delayed_node->count++;
404 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
405 return 0;
406}
407
408static void finish_one_item(struct btrfs_delayed_root *delayed_root)
409{
410 int seq = atomic_inc_return(&delayed_root->items_seq);
411
412 /* atomic_dec_return implies a barrier */
413 if ((atomic_dec_return(&delayed_root->items) <
414 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
415 cond_wake_up_nomb(&delayed_root->wait);
416}
417
418static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
419{
420 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
421 struct rb_root_cached *root;
422 struct btrfs_delayed_root *delayed_root;
423
424 /* Not inserted, ignore it. */
425 if (RB_EMPTY_NODE(&delayed_item->rb_node))
426 return;
427
428 /* If it's in a rbtree, then we need to have delayed node locked. */
429 lockdep_assert_held(&delayed_node->mutex);
430
431 delayed_root = delayed_node->root->fs_info->delayed_root;
432
433 BUG_ON(!delayed_root);
434
435 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
436 root = &delayed_node->ins_root;
437 else
438 root = &delayed_node->del_root;
439
440 rb_erase_cached(&delayed_item->rb_node, root);
441 RB_CLEAR_NODE(&delayed_item->rb_node);
442 delayed_node->count--;
443
444 finish_one_item(delayed_root);
445}
446
447static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
448{
449 if (item) {
450 __btrfs_remove_delayed_item(item);
451 if (refcount_dec_and_test(&item->refs))
452 kfree(item);
453 }
454}
455
456static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
457 struct btrfs_delayed_node *delayed_node)
458{
459 struct rb_node *p;
460 struct btrfs_delayed_item *item = NULL;
461
462 p = rb_first_cached(&delayed_node->ins_root);
463 if (p)
464 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
465
466 return item;
467}
468
469static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
470 struct btrfs_delayed_node *delayed_node)
471{
472 struct rb_node *p;
473 struct btrfs_delayed_item *item = NULL;
474
475 p = rb_first_cached(&delayed_node->del_root);
476 if (p)
477 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
478
479 return item;
480}
481
482static struct btrfs_delayed_item *__btrfs_next_delayed_item(
483 struct btrfs_delayed_item *item)
484{
485 struct rb_node *p;
486 struct btrfs_delayed_item *next = NULL;
487
488 p = rb_next(&item->rb_node);
489 if (p)
490 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
491
492 return next;
493}
494
495static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
496 struct btrfs_delayed_item *item)
497{
498 struct btrfs_block_rsv *src_rsv;
499 struct btrfs_block_rsv *dst_rsv;
500 struct btrfs_fs_info *fs_info = trans->fs_info;
501 u64 num_bytes;
502 int ret;
503
504 if (!trans->bytes_reserved)
505 return 0;
506
507 src_rsv = trans->block_rsv;
508 dst_rsv = &fs_info->delayed_block_rsv;
509
510 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
511
512 /*
513 * Here we migrate space rsv from transaction rsv, since have already
514 * reserved space when starting a transaction. So no need to reserve
515 * qgroup space here.
516 */
517 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
518 if (!ret) {
519 trace_btrfs_space_reservation(fs_info, "delayed_item",
520 item->delayed_node->inode_id,
521 num_bytes, 1);
522 /*
523 * For insertions we track reserved metadata space by accounting
524 * for the number of leaves that will be used, based on the delayed
525 * node's curr_index_batch_size and index_item_leaves fields.
526 */
527 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
528 item->bytes_reserved = num_bytes;
529 }
530
531 return ret;
532}
533
534static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
535 struct btrfs_delayed_item *item)
536{
537 struct btrfs_block_rsv *rsv;
538 struct btrfs_fs_info *fs_info = root->fs_info;
539
540 if (!item->bytes_reserved)
541 return;
542
543 rsv = &fs_info->delayed_block_rsv;
544 /*
545 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
546 * to release/reserve qgroup space.
547 */
548 trace_btrfs_space_reservation(fs_info, "delayed_item",
549 item->delayed_node->inode_id,
550 item->bytes_reserved, 0);
551 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
552}
553
554static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
555 unsigned int num_leaves)
556{
557 struct btrfs_fs_info *fs_info = node->root->fs_info;
558 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
559
560 /* There are no space reservations during log replay, bail out. */
561 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
562 return;
563
564 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
565 bytes, 0);
566 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
567}
568
569static int btrfs_delayed_inode_reserve_metadata(
570 struct btrfs_trans_handle *trans,
571 struct btrfs_root *root,
572 struct btrfs_delayed_node *node)
573{
574 struct btrfs_fs_info *fs_info = root->fs_info;
575 struct btrfs_block_rsv *src_rsv;
576 struct btrfs_block_rsv *dst_rsv;
577 u64 num_bytes;
578 int ret;
579
580 src_rsv = trans->block_rsv;
581 dst_rsv = &fs_info->delayed_block_rsv;
582
583 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
584
585 /*
586 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
587 * which doesn't reserve space for speed. This is a problem since we
588 * still need to reserve space for this update, so try to reserve the
589 * space.
590 *
591 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
592 * we always reserve enough to update the inode item.
593 */
594 if (!src_rsv || (!trans->bytes_reserved &&
595 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
596 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
597 BTRFS_QGROUP_RSV_META_PREALLOC, true);
598 if (ret < 0)
599 return ret;
600 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
601 BTRFS_RESERVE_NO_FLUSH);
602 /* NO_FLUSH could only fail with -ENOSPC */
603 ASSERT(ret == 0 || ret == -ENOSPC);
604 if (ret)
605 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
606 } else {
607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
608 }
609
610 if (!ret) {
611 trace_btrfs_space_reservation(fs_info, "delayed_inode",
612 node->inode_id, num_bytes, 1);
613 node->bytes_reserved = num_bytes;
614 }
615
616 return ret;
617}
618
619static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
620 struct btrfs_delayed_node *node,
621 bool qgroup_free)
622{
623 struct btrfs_block_rsv *rsv;
624
625 if (!node->bytes_reserved)
626 return;
627
628 rsv = &fs_info->delayed_block_rsv;
629 trace_btrfs_space_reservation(fs_info, "delayed_inode",
630 node->inode_id, node->bytes_reserved, 0);
631 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
632 if (qgroup_free)
633 btrfs_qgroup_free_meta_prealloc(node->root,
634 node->bytes_reserved);
635 else
636 btrfs_qgroup_convert_reserved_meta(node->root,
637 node->bytes_reserved);
638 node->bytes_reserved = 0;
639}
640
641/*
642 * Insert a single delayed item or a batch of delayed items, as many as possible
643 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
644 * in the rbtree, and if there's a gap between two consecutive dir index items,
645 * then it means at some point we had delayed dir indexes to add but they got
646 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
647 * into the subvolume tree. Dir index keys also have their offsets coming from a
648 * monotonically increasing counter, so we can't get new keys with an offset that
649 * fits within a gap between delayed dir index items.
650 */
651static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
652 struct btrfs_root *root,
653 struct btrfs_path *path,
654 struct btrfs_delayed_item *first_item)
655{
656 struct btrfs_fs_info *fs_info = root->fs_info;
657 struct btrfs_delayed_node *node = first_item->delayed_node;
658 LIST_HEAD(item_list);
659 struct btrfs_delayed_item *curr;
660 struct btrfs_delayed_item *next;
661 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
662 struct btrfs_item_batch batch;
663 struct btrfs_key first_key;
664 const u32 first_data_size = first_item->data_len;
665 int total_size;
666 char *ins_data = NULL;
667 int ret;
668 bool continuous_keys_only = false;
669
670 lockdep_assert_held(&node->mutex);
671
672 /*
673 * During normal operation the delayed index offset is continuously
674 * increasing, so we can batch insert all items as there will not be any
675 * overlapping keys in the tree.
676 *
677 * The exception to this is log replay, where we may have interleaved
678 * offsets in the tree, so our batch needs to be continuous keys only in
679 * order to ensure we do not end up with out of order items in our leaf.
680 */
681 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
682 continuous_keys_only = true;
683
684 /*
685 * For delayed items to insert, we track reserved metadata bytes based
686 * on the number of leaves that we will use.
687 * See btrfs_insert_delayed_dir_index() and
688 * btrfs_delayed_item_reserve_metadata()).
689 */
690 ASSERT(first_item->bytes_reserved == 0);
691
692 list_add_tail(&first_item->tree_list, &item_list);
693 batch.total_data_size = first_data_size;
694 batch.nr = 1;
695 total_size = first_data_size + sizeof(struct btrfs_item);
696 curr = first_item;
697
698 while (true) {
699 int next_size;
700
701 next = __btrfs_next_delayed_item(curr);
702 if (!next)
703 break;
704
705 /*
706 * We cannot allow gaps in the key space if we're doing log
707 * replay.
708 */
709 if (continuous_keys_only && (next->index != curr->index + 1))
710 break;
711
712 ASSERT(next->bytes_reserved == 0);
713
714 next_size = next->data_len + sizeof(struct btrfs_item);
715 if (total_size + next_size > max_size)
716 break;
717
718 list_add_tail(&next->tree_list, &item_list);
719 batch.nr++;
720 total_size += next_size;
721 batch.total_data_size += next->data_len;
722 curr = next;
723 }
724
725 if (batch.nr == 1) {
726 first_key.objectid = node->inode_id;
727 first_key.type = BTRFS_DIR_INDEX_KEY;
728 first_key.offset = first_item->index;
729 batch.keys = &first_key;
730 batch.data_sizes = &first_data_size;
731 } else {
732 struct btrfs_key *ins_keys;
733 u32 *ins_sizes;
734 int i = 0;
735
736 ins_data = kmalloc(batch.nr * sizeof(u32) +
737 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
738 if (!ins_data) {
739 ret = -ENOMEM;
740 goto out;
741 }
742 ins_sizes = (u32 *)ins_data;
743 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
744 batch.keys = ins_keys;
745 batch.data_sizes = ins_sizes;
746 list_for_each_entry(curr, &item_list, tree_list) {
747 ins_keys[i].objectid = node->inode_id;
748 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
749 ins_keys[i].offset = curr->index;
750 ins_sizes[i] = curr->data_len;
751 i++;
752 }
753 }
754
755 ret = btrfs_insert_empty_items(trans, root, path, &batch);
756 if (ret)
757 goto out;
758
759 list_for_each_entry(curr, &item_list, tree_list) {
760 char *data_ptr;
761
762 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
763 write_extent_buffer(path->nodes[0], &curr->data,
764 (unsigned long)data_ptr, curr->data_len);
765 path->slots[0]++;
766 }
767
768 /*
769 * Now release our path before releasing the delayed items and their
770 * metadata reservations, so that we don't block other tasks for more
771 * time than needed.
772 */
773 btrfs_release_path(path);
774
775 ASSERT(node->index_item_leaves > 0);
776
777 /*
778 * For normal operations we will batch an entire leaf's worth of delayed
779 * items, so if there are more items to process we can decrement
780 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
781 *
782 * However for log replay we may not have inserted an entire leaf's
783 * worth of items, we may have not had continuous items, so decrementing
784 * here would mess up the index_item_leaves accounting. For this case
785 * only clean up the accounting when there are no items left.
786 */
787 if (next && !continuous_keys_only) {
788 /*
789 * We inserted one batch of items into a leaf a there are more
790 * items to flush in a future batch, now release one unit of
791 * metadata space from the delayed block reserve, corresponding
792 * the leaf we just flushed to.
793 */
794 btrfs_delayed_item_release_leaves(node, 1);
795 node->index_item_leaves--;
796 } else if (!next) {
797 /*
798 * There are no more items to insert. We can have a number of
799 * reserved leaves > 1 here - this happens when many dir index
800 * items are added and then removed before they are flushed (file
801 * names with a very short life, never span a transaction). So
802 * release all remaining leaves.
803 */
804 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
805 node->index_item_leaves = 0;
806 }
807
808 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
809 list_del(&curr->tree_list);
810 btrfs_release_delayed_item(curr);
811 }
812out:
813 kfree(ins_data);
814 return ret;
815}
816
817static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 struct btrfs_path *path,
819 struct btrfs_root *root,
820 struct btrfs_delayed_node *node)
821{
822 int ret = 0;
823
824 while (ret == 0) {
825 struct btrfs_delayed_item *curr;
826
827 mutex_lock(&node->mutex);
828 curr = __btrfs_first_delayed_insertion_item(node);
829 if (!curr) {
830 mutex_unlock(&node->mutex);
831 break;
832 }
833 ret = btrfs_insert_delayed_item(trans, root, path, curr);
834 mutex_unlock(&node->mutex);
835 }
836
837 return ret;
838}
839
840static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root,
842 struct btrfs_path *path,
843 struct btrfs_delayed_item *item)
844{
845 const u64 ino = item->delayed_node->inode_id;
846 struct btrfs_fs_info *fs_info = root->fs_info;
847 struct btrfs_delayed_item *curr, *next;
848 struct extent_buffer *leaf = path->nodes[0];
849 LIST_HEAD(batch_list);
850 int nitems, slot, last_slot;
851 int ret;
852 u64 total_reserved_size = item->bytes_reserved;
853
854 ASSERT(leaf != NULL);
855
856 slot = path->slots[0];
857 last_slot = btrfs_header_nritems(leaf) - 1;
858 /*
859 * Our caller always gives us a path pointing to an existing item, so
860 * this can not happen.
861 */
862 ASSERT(slot <= last_slot);
863 if (WARN_ON(slot > last_slot))
864 return -ENOENT;
865
866 nitems = 1;
867 curr = item;
868 list_add_tail(&curr->tree_list, &batch_list);
869
870 /*
871 * Keep checking if the next delayed item matches the next item in the
872 * leaf - if so, we can add it to the batch of items to delete from the
873 * leaf.
874 */
875 while (slot < last_slot) {
876 struct btrfs_key key;
877
878 next = __btrfs_next_delayed_item(curr);
879 if (!next)
880 break;
881
882 slot++;
883 btrfs_item_key_to_cpu(leaf, &key, slot);
884 if (key.objectid != ino ||
885 key.type != BTRFS_DIR_INDEX_KEY ||
886 key.offset != next->index)
887 break;
888 nitems++;
889 curr = next;
890 list_add_tail(&curr->tree_list, &batch_list);
891 total_reserved_size += curr->bytes_reserved;
892 }
893
894 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
895 if (ret)
896 return ret;
897
898 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
899 if (total_reserved_size > 0) {
900 /*
901 * Check btrfs_delayed_item_reserve_metadata() to see why we
902 * don't need to release/reserve qgroup space.
903 */
904 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
905 total_reserved_size, 0);
906 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
907 total_reserved_size, NULL);
908 }
909
910 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
911 list_del(&curr->tree_list);
912 btrfs_release_delayed_item(curr);
913 }
914
915 return 0;
916}
917
918static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
919 struct btrfs_path *path,
920 struct btrfs_root *root,
921 struct btrfs_delayed_node *node)
922{
923 struct btrfs_key key;
924 int ret = 0;
925
926 key.objectid = node->inode_id;
927 key.type = BTRFS_DIR_INDEX_KEY;
928
929 while (ret == 0) {
930 struct btrfs_delayed_item *item;
931
932 mutex_lock(&node->mutex);
933 item = __btrfs_first_delayed_deletion_item(node);
934 if (!item) {
935 mutex_unlock(&node->mutex);
936 break;
937 }
938
939 key.offset = item->index;
940 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
941 if (ret > 0) {
942 /*
943 * There's no matching item in the leaf. This means we
944 * have already deleted this item in a past run of the
945 * delayed items. We ignore errors when running delayed
946 * items from an async context, through a work queue job
947 * running btrfs_async_run_delayed_root(), and don't
948 * release delayed items that failed to complete. This
949 * is because we will retry later, and at transaction
950 * commit time we always run delayed items and will
951 * then deal with errors if they fail to run again.
952 *
953 * So just release delayed items for which we can't find
954 * an item in the tree, and move to the next item.
955 */
956 btrfs_release_path(path);
957 btrfs_release_delayed_item(item);
958 ret = 0;
959 } else if (ret == 0) {
960 ret = btrfs_batch_delete_items(trans, root, path, item);
961 btrfs_release_path(path);
962 }
963
964 /*
965 * We unlock and relock on each iteration, this is to prevent
966 * blocking other tasks for too long while we are being run from
967 * the async context (work queue job). Those tasks are typically
968 * running system calls like creat/mkdir/rename/unlink/etc which
969 * need to add delayed items to this delayed node.
970 */
971 mutex_unlock(&node->mutex);
972 }
973
974 return ret;
975}
976
977static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
978{
979 struct btrfs_delayed_root *delayed_root;
980
981 if (delayed_node &&
982 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
983 BUG_ON(!delayed_node->root);
984 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
985 delayed_node->count--;
986
987 delayed_root = delayed_node->root->fs_info->delayed_root;
988 finish_one_item(delayed_root);
989 }
990}
991
992static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
993{
994
995 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
996 struct btrfs_delayed_root *delayed_root;
997
998 ASSERT(delayed_node->root);
999 delayed_node->count--;
1000
1001 delayed_root = delayed_node->root->fs_info->delayed_root;
1002 finish_one_item(delayed_root);
1003 }
1004}
1005
1006static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root,
1008 struct btrfs_path *path,
1009 struct btrfs_delayed_node *node)
1010{
1011 struct btrfs_fs_info *fs_info = root->fs_info;
1012 struct btrfs_key key;
1013 struct btrfs_inode_item *inode_item;
1014 struct extent_buffer *leaf;
1015 int mod;
1016 int ret;
1017
1018 key.objectid = node->inode_id;
1019 key.type = BTRFS_INODE_ITEM_KEY;
1020 key.offset = 0;
1021
1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1023 mod = -1;
1024 else
1025 mod = 1;
1026
1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1028 if (ret > 0)
1029 ret = -ENOENT;
1030 if (ret < 0)
1031 goto out;
1032
1033 leaf = path->nodes[0];
1034 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_inode_item);
1036 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1037 sizeof(struct btrfs_inode_item));
1038 btrfs_mark_buffer_dirty(trans, leaf);
1039
1040 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1041 goto out;
1042
1043 /*
1044 * Now we're going to delete the INODE_REF/EXTREF, which should be the
1045 * only one ref left. Check if the next item is an INODE_REF/EXTREF.
1046 *
1047 * But if we're the last item already, release and search for the last
1048 * INODE_REF/EXTREF.
1049 */
1050 if (path->slots[0] + 1 >= btrfs_header_nritems(leaf)) {
1051 key.objectid = node->inode_id;
1052 key.type = BTRFS_INODE_EXTREF_KEY;
1053 key.offset = (u64)-1;
1054
1055 btrfs_release_path(path);
1056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1057 if (ret < 0)
1058 goto err_out;
1059 ASSERT(ret > 0);
1060 ASSERT(path->slots[0] > 0);
1061 ret = 0;
1062 path->slots[0]--;
1063 leaf = path->nodes[0];
1064 } else {
1065 path->slots[0]++;
1066 }
1067 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1068 if (key.objectid != node->inode_id)
1069 goto out;
1070 if (key.type != BTRFS_INODE_REF_KEY &&
1071 key.type != BTRFS_INODE_EXTREF_KEY)
1072 goto out;
1073
1074 /*
1075 * Delayed iref deletion is for the inode who has only one link,
1076 * so there is only one iref. The case that several irefs are
1077 * in the same item doesn't exist.
1078 */
1079 ret = btrfs_del_item(trans, root, path);
1080out:
1081 btrfs_release_delayed_iref(node);
1082 btrfs_release_path(path);
1083err_out:
1084 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1085 btrfs_release_delayed_inode(node);
1086
1087 /*
1088 * If we fail to update the delayed inode we need to abort the
1089 * transaction, because we could leave the inode with the improper
1090 * counts behind.
1091 */
1092 if (ret && ret != -ENOENT)
1093 btrfs_abort_transaction(trans, ret);
1094
1095 return ret;
1096}
1097
1098static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1099 struct btrfs_root *root,
1100 struct btrfs_path *path,
1101 struct btrfs_delayed_node *node)
1102{
1103 int ret;
1104
1105 mutex_lock(&node->mutex);
1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1107 mutex_unlock(&node->mutex);
1108 return 0;
1109 }
1110
1111 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1112 mutex_unlock(&node->mutex);
1113 return ret;
1114}
1115
1116static inline int
1117__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1118 struct btrfs_path *path,
1119 struct btrfs_delayed_node *node)
1120{
1121 int ret;
1122
1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1124 if (ret)
1125 return ret;
1126
1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1128 if (ret)
1129 return ret;
1130
1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1132 return ret;
1133}
1134
1135/*
1136 * Called when committing the transaction.
1137 * Returns 0 on success.
1138 * Returns < 0 on error and returns with an aborted transaction with any
1139 * outstanding delayed items cleaned up.
1140 */
1141static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1142{
1143 struct btrfs_fs_info *fs_info = trans->fs_info;
1144 struct btrfs_delayed_root *delayed_root;
1145 struct btrfs_delayed_node *curr_node, *prev_node;
1146 struct btrfs_path *path;
1147 struct btrfs_block_rsv *block_rsv;
1148 int ret = 0;
1149 bool count = (nr > 0);
1150
1151 if (TRANS_ABORTED(trans))
1152 return -EIO;
1153
1154 path = btrfs_alloc_path();
1155 if (!path)
1156 return -ENOMEM;
1157
1158 block_rsv = trans->block_rsv;
1159 trans->block_rsv = &fs_info->delayed_block_rsv;
1160
1161 delayed_root = fs_info->delayed_root;
1162
1163 curr_node = btrfs_first_delayed_node(delayed_root);
1164 while (curr_node && (!count || nr--)) {
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
1167 if (ret) {
1168 btrfs_abort_transaction(trans, ret);
1169 break;
1170 }
1171
1172 prev_node = curr_node;
1173 curr_node = btrfs_next_delayed_node(curr_node);
1174 /*
1175 * See the comment below about releasing path before releasing
1176 * node. If the commit of delayed items was successful the path
1177 * should always be released, but in case of an error, it may
1178 * point to locked extent buffers (a leaf at the very least).
1179 */
1180 ASSERT(path->nodes[0] == NULL);
1181 btrfs_release_delayed_node(prev_node);
1182 }
1183
1184 /*
1185 * Release the path to avoid a potential deadlock and lockdep splat when
1186 * releasing the delayed node, as that requires taking the delayed node's
1187 * mutex. If another task starts running delayed items before we take
1188 * the mutex, it will first lock the mutex and then it may try to lock
1189 * the same btree path (leaf).
1190 */
1191 btrfs_free_path(path);
1192
1193 if (curr_node)
1194 btrfs_release_delayed_node(curr_node);
1195 trans->block_rsv = block_rsv;
1196
1197 return ret;
1198}
1199
1200int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1201{
1202 return __btrfs_run_delayed_items(trans, -1);
1203}
1204
1205int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1206{
1207 return __btrfs_run_delayed_items(trans, nr);
1208}
1209
1210int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211 struct btrfs_inode *inode)
1212{
1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214 struct btrfs_path *path;
1215 struct btrfs_block_rsv *block_rsv;
1216 int ret;
1217
1218 if (!delayed_node)
1219 return 0;
1220
1221 mutex_lock(&delayed_node->mutex);
1222 if (!delayed_node->count) {
1223 mutex_unlock(&delayed_node->mutex);
1224 btrfs_release_delayed_node(delayed_node);
1225 return 0;
1226 }
1227 mutex_unlock(&delayed_node->mutex);
1228
1229 path = btrfs_alloc_path();
1230 if (!path) {
1231 btrfs_release_delayed_node(delayed_node);
1232 return -ENOMEM;
1233 }
1234
1235 block_rsv = trans->block_rsv;
1236 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1237
1238 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1239
1240 btrfs_release_delayed_node(delayed_node);
1241 btrfs_free_path(path);
1242 trans->block_rsv = block_rsv;
1243
1244 return ret;
1245}
1246
1247int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1248{
1249 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1250 struct btrfs_trans_handle *trans;
1251 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1252 struct btrfs_path *path;
1253 struct btrfs_block_rsv *block_rsv;
1254 int ret;
1255
1256 if (!delayed_node)
1257 return 0;
1258
1259 mutex_lock(&delayed_node->mutex);
1260 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1261 mutex_unlock(&delayed_node->mutex);
1262 btrfs_release_delayed_node(delayed_node);
1263 return 0;
1264 }
1265 mutex_unlock(&delayed_node->mutex);
1266
1267 trans = btrfs_join_transaction(delayed_node->root);
1268 if (IS_ERR(trans)) {
1269 ret = PTR_ERR(trans);
1270 goto out;
1271 }
1272
1273 path = btrfs_alloc_path();
1274 if (!path) {
1275 ret = -ENOMEM;
1276 goto trans_out;
1277 }
1278
1279 block_rsv = trans->block_rsv;
1280 trans->block_rsv = &fs_info->delayed_block_rsv;
1281
1282 mutex_lock(&delayed_node->mutex);
1283 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1284 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1285 path, delayed_node);
1286 else
1287 ret = 0;
1288 mutex_unlock(&delayed_node->mutex);
1289
1290 btrfs_free_path(path);
1291 trans->block_rsv = block_rsv;
1292trans_out:
1293 btrfs_end_transaction(trans);
1294 btrfs_btree_balance_dirty(fs_info);
1295out:
1296 btrfs_release_delayed_node(delayed_node);
1297
1298 return ret;
1299}
1300
1301void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1302{
1303 struct btrfs_delayed_node *delayed_node;
1304
1305 delayed_node = READ_ONCE(inode->delayed_node);
1306 if (!delayed_node)
1307 return;
1308
1309 inode->delayed_node = NULL;
1310 btrfs_release_delayed_node(delayed_node);
1311}
1312
1313struct btrfs_async_delayed_work {
1314 struct btrfs_delayed_root *delayed_root;
1315 int nr;
1316 struct btrfs_work work;
1317};
1318
1319static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1320{
1321 struct btrfs_async_delayed_work *async_work;
1322 struct btrfs_delayed_root *delayed_root;
1323 struct btrfs_trans_handle *trans;
1324 struct btrfs_path *path;
1325 struct btrfs_delayed_node *delayed_node = NULL;
1326 struct btrfs_root *root;
1327 struct btrfs_block_rsv *block_rsv;
1328 int total_done = 0;
1329
1330 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1331 delayed_root = async_work->delayed_root;
1332
1333 path = btrfs_alloc_path();
1334 if (!path)
1335 goto out;
1336
1337 do {
1338 if (atomic_read(&delayed_root->items) <
1339 BTRFS_DELAYED_BACKGROUND / 2)
1340 break;
1341
1342 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1343 if (!delayed_node)
1344 break;
1345
1346 root = delayed_node->root;
1347
1348 trans = btrfs_join_transaction(root);
1349 if (IS_ERR(trans)) {
1350 btrfs_release_path(path);
1351 btrfs_release_prepared_delayed_node(delayed_node);
1352 total_done++;
1353 continue;
1354 }
1355
1356 block_rsv = trans->block_rsv;
1357 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1358
1359 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1360
1361 trans->block_rsv = block_rsv;
1362 btrfs_end_transaction(trans);
1363 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1364
1365 btrfs_release_path(path);
1366 btrfs_release_prepared_delayed_node(delayed_node);
1367 total_done++;
1368
1369 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1370 || total_done < async_work->nr);
1371
1372 btrfs_free_path(path);
1373out:
1374 wake_up(&delayed_root->wait);
1375 kfree(async_work);
1376}
1377
1378
1379static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1380 struct btrfs_fs_info *fs_info, int nr)
1381{
1382 struct btrfs_async_delayed_work *async_work;
1383
1384 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1385 if (!async_work)
1386 return -ENOMEM;
1387
1388 async_work->delayed_root = delayed_root;
1389 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL);
1390 async_work->nr = nr;
1391
1392 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1393 return 0;
1394}
1395
1396void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1397{
1398 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1399}
1400
1401static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1402{
1403 int val = atomic_read(&delayed_root->items_seq);
1404
1405 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1406 return 1;
1407
1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409 return 1;
1410
1411 return 0;
1412}
1413
1414void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1415{
1416 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1417
1418 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1419 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1420 return;
1421
1422 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1423 int seq;
1424 int ret;
1425
1426 seq = atomic_read(&delayed_root->items_seq);
1427
1428 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1429 if (ret)
1430 return;
1431
1432 wait_event_interruptible(delayed_root->wait,
1433 could_end_wait(delayed_root, seq));
1434 return;
1435 }
1436
1437 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1438}
1439
1440static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1441{
1442 struct btrfs_fs_info *fs_info = trans->fs_info;
1443 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1444
1445 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1446 return;
1447
1448 /*
1449 * Adding the new dir index item does not require touching another
1450 * leaf, so we can release 1 unit of metadata that was previously
1451 * reserved when starting the transaction. This applies only to
1452 * the case where we had a transaction start and excludes the
1453 * transaction join case (when replaying log trees).
1454 */
1455 trace_btrfs_space_reservation(fs_info, "transaction",
1456 trans->transid, bytes, 0);
1457 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1458 ASSERT(trans->bytes_reserved >= bytes);
1459 trans->bytes_reserved -= bytes;
1460}
1461
1462/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1463int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1464 const char *name, int name_len,
1465 struct btrfs_inode *dir,
1466 struct btrfs_disk_key *disk_key, u8 flags,
1467 u64 index)
1468{
1469 struct btrfs_fs_info *fs_info = trans->fs_info;
1470 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1471 struct btrfs_delayed_node *delayed_node;
1472 struct btrfs_delayed_item *delayed_item;
1473 struct btrfs_dir_item *dir_item;
1474 bool reserve_leaf_space;
1475 u32 data_len;
1476 int ret;
1477
1478 delayed_node = btrfs_get_or_create_delayed_node(dir);
1479 if (IS_ERR(delayed_node))
1480 return PTR_ERR(delayed_node);
1481
1482 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1483 delayed_node,
1484 BTRFS_DELAYED_INSERTION_ITEM);
1485 if (!delayed_item) {
1486 ret = -ENOMEM;
1487 goto release_node;
1488 }
1489
1490 delayed_item->index = index;
1491
1492 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1493 dir_item->location = *disk_key;
1494 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1495 btrfs_set_stack_dir_data_len(dir_item, 0);
1496 btrfs_set_stack_dir_name_len(dir_item, name_len);
1497 btrfs_set_stack_dir_flags(dir_item, flags);
1498 memcpy((char *)(dir_item + 1), name, name_len);
1499
1500 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1501
1502 mutex_lock(&delayed_node->mutex);
1503
1504 /*
1505 * First attempt to insert the delayed item. This is to make the error
1506 * handling path simpler in case we fail (-EEXIST). There's no risk of
1507 * any other task coming in and running the delayed item before we do
1508 * the metadata space reservation below, because we are holding the
1509 * delayed node's mutex and that mutex must also be locked before the
1510 * node's delayed items can be run.
1511 */
1512 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1513 if (unlikely(ret)) {
1514 btrfs_err(trans->fs_info,
1515"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1516 name_len, name, index, btrfs_root_id(delayed_node->root),
1517 delayed_node->inode_id, dir->index_cnt,
1518 delayed_node->index_cnt, ret);
1519 btrfs_release_delayed_item(delayed_item);
1520 btrfs_release_dir_index_item_space(trans);
1521 mutex_unlock(&delayed_node->mutex);
1522 goto release_node;
1523 }
1524
1525 if (delayed_node->index_item_leaves == 0 ||
1526 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1527 delayed_node->curr_index_batch_size = data_len;
1528 reserve_leaf_space = true;
1529 } else {
1530 delayed_node->curr_index_batch_size += data_len;
1531 reserve_leaf_space = false;
1532 }
1533
1534 if (reserve_leaf_space) {
1535 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1536 /*
1537 * Space was reserved for a dir index item insertion when we
1538 * started the transaction, so getting a failure here should be
1539 * impossible.
1540 */
1541 if (WARN_ON(ret)) {
1542 btrfs_release_delayed_item(delayed_item);
1543 mutex_unlock(&delayed_node->mutex);
1544 goto release_node;
1545 }
1546
1547 delayed_node->index_item_leaves++;
1548 } else {
1549 btrfs_release_dir_index_item_space(trans);
1550 }
1551 mutex_unlock(&delayed_node->mutex);
1552
1553release_node:
1554 btrfs_release_delayed_node(delayed_node);
1555 return ret;
1556}
1557
1558static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1559 struct btrfs_delayed_node *node,
1560 u64 index)
1561{
1562 struct btrfs_delayed_item *item;
1563
1564 mutex_lock(&node->mutex);
1565 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1566 if (!item) {
1567 mutex_unlock(&node->mutex);
1568 return 1;
1569 }
1570
1571 /*
1572 * For delayed items to insert, we track reserved metadata bytes based
1573 * on the number of leaves that we will use.
1574 * See btrfs_insert_delayed_dir_index() and
1575 * btrfs_delayed_item_reserve_metadata()).
1576 */
1577 ASSERT(item->bytes_reserved == 0);
1578 ASSERT(node->index_item_leaves > 0);
1579
1580 /*
1581 * If there's only one leaf reserved, we can decrement this item from the
1582 * current batch, otherwise we can not because we don't know which leaf
1583 * it belongs to. With the current limit on delayed items, we rarely
1584 * accumulate enough dir index items to fill more than one leaf (even
1585 * when using a leaf size of 4K).
1586 */
1587 if (node->index_item_leaves == 1) {
1588 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1589
1590 ASSERT(node->curr_index_batch_size >= data_len);
1591 node->curr_index_batch_size -= data_len;
1592 }
1593
1594 btrfs_release_delayed_item(item);
1595
1596 /* If we now have no more dir index items, we can release all leaves. */
1597 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1598 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1599 node->index_item_leaves = 0;
1600 }
1601
1602 mutex_unlock(&node->mutex);
1603 return 0;
1604}
1605
1606int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1607 struct btrfs_inode *dir, u64 index)
1608{
1609 struct btrfs_delayed_node *node;
1610 struct btrfs_delayed_item *item;
1611 int ret;
1612
1613 node = btrfs_get_or_create_delayed_node(dir);
1614 if (IS_ERR(node))
1615 return PTR_ERR(node);
1616
1617 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1618 if (!ret)
1619 goto end;
1620
1621 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1622 if (!item) {
1623 ret = -ENOMEM;
1624 goto end;
1625 }
1626
1627 item->index = index;
1628
1629 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1630 /*
1631 * we have reserved enough space when we start a new transaction,
1632 * so reserving metadata failure is impossible.
1633 */
1634 if (ret < 0) {
1635 btrfs_err(trans->fs_info,
1636"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1637 btrfs_release_delayed_item(item);
1638 goto end;
1639 }
1640
1641 mutex_lock(&node->mutex);
1642 ret = __btrfs_add_delayed_item(node, item);
1643 if (unlikely(ret)) {
1644 btrfs_err(trans->fs_info,
1645 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1646 index, node->root->root_key.objectid,
1647 node->inode_id, ret);
1648 btrfs_delayed_item_release_metadata(dir->root, item);
1649 btrfs_release_delayed_item(item);
1650 }
1651 mutex_unlock(&node->mutex);
1652end:
1653 btrfs_release_delayed_node(node);
1654 return ret;
1655}
1656
1657int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1658{
1659 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1660
1661 if (!delayed_node)
1662 return -ENOENT;
1663
1664 /*
1665 * Since we have held i_mutex of this directory, it is impossible that
1666 * a new directory index is added into the delayed node and index_cnt
1667 * is updated now. So we needn't lock the delayed node.
1668 */
1669 if (!delayed_node->index_cnt) {
1670 btrfs_release_delayed_node(delayed_node);
1671 return -EINVAL;
1672 }
1673
1674 inode->index_cnt = delayed_node->index_cnt;
1675 btrfs_release_delayed_node(delayed_node);
1676 return 0;
1677}
1678
1679bool btrfs_readdir_get_delayed_items(struct inode *inode,
1680 u64 last_index,
1681 struct list_head *ins_list,
1682 struct list_head *del_list)
1683{
1684 struct btrfs_delayed_node *delayed_node;
1685 struct btrfs_delayed_item *item;
1686
1687 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1688 if (!delayed_node)
1689 return false;
1690
1691 /*
1692 * We can only do one readdir with delayed items at a time because of
1693 * item->readdir_list.
1694 */
1695 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1696 btrfs_inode_lock(BTRFS_I(inode), 0);
1697
1698 mutex_lock(&delayed_node->mutex);
1699 item = __btrfs_first_delayed_insertion_item(delayed_node);
1700 while (item && item->index <= last_index) {
1701 refcount_inc(&item->refs);
1702 list_add_tail(&item->readdir_list, ins_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705
1706 item = __btrfs_first_delayed_deletion_item(delayed_node);
1707 while (item && item->index <= last_index) {
1708 refcount_inc(&item->refs);
1709 list_add_tail(&item->readdir_list, del_list);
1710 item = __btrfs_next_delayed_item(item);
1711 }
1712 mutex_unlock(&delayed_node->mutex);
1713 /*
1714 * This delayed node is still cached in the btrfs inode, so refs
1715 * must be > 1 now, and we needn't check it is going to be freed
1716 * or not.
1717 *
1718 * Besides that, this function is used to read dir, we do not
1719 * insert/delete delayed items in this period. So we also needn't
1720 * requeue or dequeue this delayed node.
1721 */
1722 refcount_dec(&delayed_node->refs);
1723
1724 return true;
1725}
1726
1727void btrfs_readdir_put_delayed_items(struct inode *inode,
1728 struct list_head *ins_list,
1729 struct list_head *del_list)
1730{
1731 struct btrfs_delayed_item *curr, *next;
1732
1733 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1734 list_del(&curr->readdir_list);
1735 if (refcount_dec_and_test(&curr->refs))
1736 kfree(curr);
1737 }
1738
1739 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1740 list_del(&curr->readdir_list);
1741 if (refcount_dec_and_test(&curr->refs))
1742 kfree(curr);
1743 }
1744
1745 /*
1746 * The VFS is going to do up_read(), so we need to downgrade back to a
1747 * read lock.
1748 */
1749 downgrade_write(&inode->i_rwsem);
1750}
1751
1752int btrfs_should_delete_dir_index(struct list_head *del_list,
1753 u64 index)
1754{
1755 struct btrfs_delayed_item *curr;
1756 int ret = 0;
1757
1758 list_for_each_entry(curr, del_list, readdir_list) {
1759 if (curr->index > index)
1760 break;
1761 if (curr->index == index) {
1762 ret = 1;
1763 break;
1764 }
1765 }
1766 return ret;
1767}
1768
1769/*
1770 * Read dir info stored in the delayed tree.
1771 */
1772int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1773 struct list_head *ins_list)
1774{
1775 struct btrfs_dir_item *di;
1776 struct btrfs_delayed_item *curr, *next;
1777 struct btrfs_key location;
1778 char *name;
1779 int name_len;
1780 int over = 0;
1781 unsigned char d_type;
1782
1783 /*
1784 * Changing the data of the delayed item is impossible. So
1785 * we needn't lock them. And we have held i_mutex of the
1786 * directory, nobody can delete any directory indexes now.
1787 */
1788 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1789 list_del(&curr->readdir_list);
1790
1791 if (curr->index < ctx->pos) {
1792 if (refcount_dec_and_test(&curr->refs))
1793 kfree(curr);
1794 continue;
1795 }
1796
1797 ctx->pos = curr->index;
1798
1799 di = (struct btrfs_dir_item *)curr->data;
1800 name = (char *)(di + 1);
1801 name_len = btrfs_stack_dir_name_len(di);
1802
1803 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1804 btrfs_disk_key_to_cpu(&location, &di->location);
1805
1806 over = !dir_emit(ctx, name, name_len,
1807 location.objectid, d_type);
1808
1809 if (refcount_dec_and_test(&curr->refs))
1810 kfree(curr);
1811
1812 if (over)
1813 return 1;
1814 ctx->pos++;
1815 }
1816 return 0;
1817}
1818
1819static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1820 struct btrfs_inode_item *inode_item,
1821 struct inode *inode)
1822{
1823 u64 flags;
1824
1825 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1826 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1827 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1828 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1829 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1830 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1831 btrfs_set_stack_inode_generation(inode_item,
1832 BTRFS_I(inode)->generation);
1833 btrfs_set_stack_inode_sequence(inode_item,
1834 inode_peek_iversion(inode));
1835 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1836 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1837 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1838 BTRFS_I(inode)->ro_flags);
1839 btrfs_set_stack_inode_flags(inode_item, flags);
1840 btrfs_set_stack_inode_block_group(inode_item, 0);
1841
1842 btrfs_set_stack_timespec_sec(&inode_item->atime,
1843 inode_get_atime_sec(inode));
1844 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1845 inode_get_atime_nsec(inode));
1846
1847 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1848 inode_get_mtime_sec(inode));
1849 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1850 inode_get_mtime_nsec(inode));
1851
1852 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1853 inode_get_ctime_sec(inode));
1854 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1855 inode_get_ctime_nsec(inode));
1856
1857 btrfs_set_stack_timespec_sec(&inode_item->otime, BTRFS_I(inode)->i_otime_sec);
1858 btrfs_set_stack_timespec_nsec(&inode_item->otime, BTRFS_I(inode)->i_otime_nsec);
1859}
1860
1861int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1862{
1863 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1864 struct btrfs_delayed_node *delayed_node;
1865 struct btrfs_inode_item *inode_item;
1866
1867 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1868 if (!delayed_node)
1869 return -ENOENT;
1870
1871 mutex_lock(&delayed_node->mutex);
1872 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1873 mutex_unlock(&delayed_node->mutex);
1874 btrfs_release_delayed_node(delayed_node);
1875 return -ENOENT;
1876 }
1877
1878 inode_item = &delayed_node->inode_item;
1879
1880 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1881 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1882 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1883 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1884 round_up(i_size_read(inode), fs_info->sectorsize));
1885 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1886 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1887 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1888 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1889 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1890
1891 inode_set_iversion_queried(inode,
1892 btrfs_stack_inode_sequence(inode_item));
1893 inode->i_rdev = 0;
1894 *rdev = btrfs_stack_inode_rdev(inode_item);
1895 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1896 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1897
1898 inode_set_atime(inode, btrfs_stack_timespec_sec(&inode_item->atime),
1899 btrfs_stack_timespec_nsec(&inode_item->atime));
1900
1901 inode_set_mtime(inode, btrfs_stack_timespec_sec(&inode_item->mtime),
1902 btrfs_stack_timespec_nsec(&inode_item->mtime));
1903
1904 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime),
1905 btrfs_stack_timespec_nsec(&inode_item->ctime));
1906
1907 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(&inode_item->otime);
1908 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(&inode_item->otime);
1909
1910 inode->i_generation = BTRFS_I(inode)->generation;
1911 BTRFS_I(inode)->index_cnt = (u64)-1;
1912
1913 mutex_unlock(&delayed_node->mutex);
1914 btrfs_release_delayed_node(delayed_node);
1915 return 0;
1916}
1917
1918int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1919 struct btrfs_inode *inode)
1920{
1921 struct btrfs_root *root = inode->root;
1922 struct btrfs_delayed_node *delayed_node;
1923 int ret = 0;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 mutex_lock(&delayed_node->mutex);
1930 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1931 fill_stack_inode_item(trans, &delayed_node->inode_item,
1932 &inode->vfs_inode);
1933 goto release_node;
1934 }
1935
1936 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1937 if (ret)
1938 goto release_node;
1939
1940 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1941 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1942 delayed_node->count++;
1943 atomic_inc(&root->fs_info->delayed_root->items);
1944release_node:
1945 mutex_unlock(&delayed_node->mutex);
1946 btrfs_release_delayed_node(delayed_node);
1947 return ret;
1948}
1949
1950int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1951{
1952 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1953 struct btrfs_delayed_node *delayed_node;
1954
1955 /*
1956 * we don't do delayed inode updates during log recovery because it
1957 * leads to enospc problems. This means we also can't do
1958 * delayed inode refs
1959 */
1960 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1961 return -EAGAIN;
1962
1963 delayed_node = btrfs_get_or_create_delayed_node(inode);
1964 if (IS_ERR(delayed_node))
1965 return PTR_ERR(delayed_node);
1966
1967 /*
1968 * We don't reserve space for inode ref deletion is because:
1969 * - We ONLY do async inode ref deletion for the inode who has only
1970 * one link(i_nlink == 1), it means there is only one inode ref.
1971 * And in most case, the inode ref and the inode item are in the
1972 * same leaf, and we will deal with them at the same time.
1973 * Since we are sure we will reserve the space for the inode item,
1974 * it is unnecessary to reserve space for inode ref deletion.
1975 * - If the inode ref and the inode item are not in the same leaf,
1976 * We also needn't worry about enospc problem, because we reserve
1977 * much more space for the inode update than it needs.
1978 * - At the worst, we can steal some space from the global reservation.
1979 * It is very rare.
1980 */
1981 mutex_lock(&delayed_node->mutex);
1982 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1983 goto release_node;
1984
1985 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1986 delayed_node->count++;
1987 atomic_inc(&fs_info->delayed_root->items);
1988release_node:
1989 mutex_unlock(&delayed_node->mutex);
1990 btrfs_release_delayed_node(delayed_node);
1991 return 0;
1992}
1993
1994static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1995{
1996 struct btrfs_root *root = delayed_node->root;
1997 struct btrfs_fs_info *fs_info = root->fs_info;
1998 struct btrfs_delayed_item *curr_item, *prev_item;
1999
2000 mutex_lock(&delayed_node->mutex);
2001 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
2002 while (curr_item) {
2003 prev_item = curr_item;
2004 curr_item = __btrfs_next_delayed_item(prev_item);
2005 btrfs_release_delayed_item(prev_item);
2006 }
2007
2008 if (delayed_node->index_item_leaves > 0) {
2009 btrfs_delayed_item_release_leaves(delayed_node,
2010 delayed_node->index_item_leaves);
2011 delayed_node->index_item_leaves = 0;
2012 }
2013
2014 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2015 while (curr_item) {
2016 btrfs_delayed_item_release_metadata(root, curr_item);
2017 prev_item = curr_item;
2018 curr_item = __btrfs_next_delayed_item(prev_item);
2019 btrfs_release_delayed_item(prev_item);
2020 }
2021
2022 btrfs_release_delayed_iref(delayed_node);
2023
2024 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2025 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
2026 btrfs_release_delayed_inode(delayed_node);
2027 }
2028 mutex_unlock(&delayed_node->mutex);
2029}
2030
2031void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2032{
2033 struct btrfs_delayed_node *delayed_node;
2034
2035 delayed_node = btrfs_get_delayed_node(inode);
2036 if (!delayed_node)
2037 return;
2038
2039 __btrfs_kill_delayed_node(delayed_node);
2040 btrfs_release_delayed_node(delayed_node);
2041}
2042
2043void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2044{
2045 unsigned long index = 0;
2046 struct btrfs_delayed_node *delayed_nodes[8];
2047
2048 while (1) {
2049 struct btrfs_delayed_node *node;
2050 int count;
2051
2052 spin_lock(&root->inode_lock);
2053 if (xa_empty(&root->delayed_nodes)) {
2054 spin_unlock(&root->inode_lock);
2055 return;
2056 }
2057
2058 count = 0;
2059 xa_for_each_start(&root->delayed_nodes, index, node, index) {
2060 /*
2061 * Don't increase refs in case the node is dead and
2062 * about to be removed from the tree in the loop below
2063 */
2064 if (refcount_inc_not_zero(&node->refs)) {
2065 delayed_nodes[count] = node;
2066 count++;
2067 }
2068 if (count >= ARRAY_SIZE(delayed_nodes))
2069 break;
2070 }
2071 spin_unlock(&root->inode_lock);
2072 index++;
2073
2074 for (int i = 0; i < count; i++) {
2075 __btrfs_kill_delayed_node(delayed_nodes[i]);
2076 btrfs_release_delayed_node(delayed_nodes[i]);
2077 }
2078 }
2079}
2080
2081void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2082{
2083 struct btrfs_delayed_node *curr_node, *prev_node;
2084
2085 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2086 while (curr_node) {
2087 __btrfs_kill_delayed_node(curr_node);
2088
2089 prev_node = curr_node;
2090 curr_node = btrfs_next_delayed_node(curr_node);
2091 btrfs_release_delayed_node(prev_node);
2092 }
2093}
2094
2095void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2096 struct list_head *ins_list,
2097 struct list_head *del_list)
2098{
2099 struct btrfs_delayed_node *node;
2100 struct btrfs_delayed_item *item;
2101
2102 node = btrfs_get_delayed_node(inode);
2103 if (!node)
2104 return;
2105
2106 mutex_lock(&node->mutex);
2107 item = __btrfs_first_delayed_insertion_item(node);
2108 while (item) {
2109 /*
2110 * It's possible that the item is already in a log list. This
2111 * can happen in case two tasks are trying to log the same
2112 * directory. For example if we have tasks A and task B:
2113 *
2114 * Task A collected the delayed items into a log list while
2115 * under the inode's log_mutex (at btrfs_log_inode()), but it
2116 * only releases the items after logging the inodes they point
2117 * to (if they are new inodes), which happens after unlocking
2118 * the log mutex;
2119 *
2120 * Task B enters btrfs_log_inode() and acquires the log_mutex
2121 * of the same directory inode, before task B releases the
2122 * delayed items. This can happen for example when logging some
2123 * inode we need to trigger logging of its parent directory, so
2124 * logging two files that have the same parent directory can
2125 * lead to this.
2126 *
2127 * If this happens, just ignore delayed items already in a log
2128 * list. All the tasks logging the directory are under a log
2129 * transaction and whichever finishes first can not sync the log
2130 * before the other completes and leaves the log transaction.
2131 */
2132 if (!item->logged && list_empty(&item->log_list)) {
2133 refcount_inc(&item->refs);
2134 list_add_tail(&item->log_list, ins_list);
2135 }
2136 item = __btrfs_next_delayed_item(item);
2137 }
2138
2139 item = __btrfs_first_delayed_deletion_item(node);
2140 while (item) {
2141 /* It may be non-empty, for the same reason mentioned above. */
2142 if (!item->logged && list_empty(&item->log_list)) {
2143 refcount_inc(&item->refs);
2144 list_add_tail(&item->log_list, del_list);
2145 }
2146 item = __btrfs_next_delayed_item(item);
2147 }
2148 mutex_unlock(&node->mutex);
2149
2150 /*
2151 * We are called during inode logging, which means the inode is in use
2152 * and can not be evicted before we finish logging the inode. So we never
2153 * have the last reference on the delayed inode.
2154 * Also, we don't use btrfs_release_delayed_node() because that would
2155 * requeue the delayed inode (change its order in the list of prepared
2156 * nodes) and we don't want to do such change because we don't create or
2157 * delete delayed items.
2158 */
2159 ASSERT(refcount_read(&node->refs) > 1);
2160 refcount_dec(&node->refs);
2161}
2162
2163void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2164 struct list_head *ins_list,
2165 struct list_head *del_list)
2166{
2167 struct btrfs_delayed_node *node;
2168 struct btrfs_delayed_item *item;
2169 struct btrfs_delayed_item *next;
2170
2171 node = btrfs_get_delayed_node(inode);
2172 if (!node)
2173 return;
2174
2175 mutex_lock(&node->mutex);
2176
2177 list_for_each_entry_safe(item, next, ins_list, log_list) {
2178 item->logged = true;
2179 list_del_init(&item->log_list);
2180 if (refcount_dec_and_test(&item->refs))
2181 kfree(item);
2182 }
2183
2184 list_for_each_entry_safe(item, next, del_list, log_list) {
2185 item->logged = true;
2186 list_del_init(&item->log_list);
2187 if (refcount_dec_and_test(&item->refs))
2188 kfree(item);
2189 }
2190
2191 mutex_unlock(&node->mutex);
2192
2193 /*
2194 * We are called during inode logging, which means the inode is in use
2195 * and can not be evicted before we finish logging the inode. So we never
2196 * have the last reference on the delayed inode.
2197 * Also, we don't use btrfs_release_delayed_node() because that would
2198 * requeue the delayed inode (change its order in the list of prepared
2199 * nodes) and we don't want to do such change because we don't create or
2200 * delete delayed items.
2201 */
2202 ASSERT(refcount_read(&node->refs) > 1);
2203 refcount_dec(&node->refs);
2204}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 refcount_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 }
180 spin_unlock(&root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 refcount_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197}
198
199static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(&node->refs);
212out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216}
217
218static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(&next->refs);
239out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
263 if (refcount_dec_and_test(&delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
265
266 spin_lock(&root->inode_lock);
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(node, 0);
282}
283
284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(&node->refs);
298out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(node, 1);
308}
309
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
313{
314 struct btrfs_delayed_item *item;
315
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
319 item->type = type;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328}
329
330/*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index: the dir index value to lookup (offset of a dir index key)
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 u64 index)
341{
342 struct rb_node *node = root->rb_node;
343 struct btrfs_delayed_item *delayed_item = NULL;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 if (delayed_item->index < index)
349 node = node->rb_right;
350 else if (delayed_item->index > index)
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
356 return NULL;
357}
358
359static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 struct btrfs_delayed_item *ins)
361{
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
364 struct rb_root_cached *root;
365 struct btrfs_delayed_item *item;
366 bool leftmost = true;
367
368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 root = &delayed_node->ins_root;
370 else
371 root = &delayed_node->del_root;
372
373 p = &root->rb_root.rb_node;
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
381 if (item->index < ins->index) {
382 p = &(*p)->rb_right;
383 leftmost = false;
384 } else if (item->index > ins->index) {
385 p = &(*p)->rb_left;
386 } else {
387 return -EEXIST;
388 }
389 }
390
391 rb_link_node(node, parent_node, p);
392 rb_insert_color_cached(node, root, leftmost);
393
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401}
402
403static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404{
405 int seq = atomic_inc_return(&delayed_root->items_seq);
406
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
411}
412
413static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414{
415 struct rb_root_cached *root;
416 struct btrfs_delayed_root *delayed_root;
417
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
420 return;
421
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423
424 BUG_ON(!delayed_root);
425
426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 root = &delayed_item->delayed_node->ins_root;
428 else
429 root = &delayed_item->delayed_node->del_root;
430
431 rb_erase_cached(&delayed_item->rb_node, root);
432 RB_CLEAR_NODE(&delayed_item->rb_node);
433 delayed_item->delayed_node->count--;
434
435 finish_one_item(delayed_root);
436}
437
438static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439{
440 if (item) {
441 __btrfs_remove_delayed_item(item);
442 if (refcount_dec_and_test(&item->refs))
443 kfree(item);
444 }
445}
446
447static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 struct btrfs_delayed_node *delayed_node)
449{
450 struct rb_node *p;
451 struct btrfs_delayed_item *item = NULL;
452
453 p = rb_first_cached(&delayed_node->ins_root);
454 if (p)
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456
457 return item;
458}
459
460static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
462{
463 struct rb_node *p;
464 struct btrfs_delayed_item *item = NULL;
465
466 p = rb_first_cached(&delayed_node->del_root);
467 if (p)
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469
470 return item;
471}
472
473static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 struct btrfs_delayed_item *item)
475{
476 struct rb_node *p;
477 struct btrfs_delayed_item *next = NULL;
478
479 p = rb_next(&item->rb_node);
480 if (p)
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482
483 return next;
484}
485
486static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 struct btrfs_delayed_item *item)
488{
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
491 struct btrfs_fs_info *fs_info = trans->fs_info;
492 u64 num_bytes;
493 int ret;
494
495 if (!trans->bytes_reserved)
496 return 0;
497
498 src_rsv = trans->block_rsv;
499 dst_rsv = &fs_info->delayed_block_rsv;
500
501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
502
503 /*
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
506 * qgroup space here.
507 */
508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
509 if (!ret) {
510 trace_btrfs_space_reservation(fs_info, "delayed_item",
511 item->delayed_node->inode_id,
512 num_bytes, 1);
513 /*
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
517 */
518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 item->bytes_reserved = num_bytes;
520 }
521
522 return ret;
523}
524
525static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 struct btrfs_delayed_item *item)
527{
528 struct btrfs_block_rsv *rsv;
529 struct btrfs_fs_info *fs_info = root->fs_info;
530
531 if (!item->bytes_reserved)
532 return;
533
534 rsv = &fs_info->delayed_block_rsv;
535 /*
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
538 */
539 trace_btrfs_space_reservation(fs_info, "delayed_item",
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
543}
544
545static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
547{
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 return;
554
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 bytes, 0);
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558}
559
560static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
564{
565 struct btrfs_fs_info *fs_info = root->fs_info;
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
568 u64 num_bytes;
569 int ret;
570
571 src_rsv = trans->block_rsv;
572 dst_rsv = &fs_info->delayed_block_rsv;
573
574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
575
576 /*
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
580 * space.
581 *
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 * we always reserve enough to update the inode item.
584 */
585 if (!src_rsv || (!trans->bytes_reserved &&
586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
589 if (ret < 0)
590 return ret;
591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 BTRFS_RESERVE_NO_FLUSH);
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
595 if (ret)
596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
597 } else {
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
599 }
600
601 if (!ret) {
602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 node->inode_id, num_bytes, 1);
604 node->bytes_reserved = num_bytes;
605 }
606
607 return ret;
608}
609
610static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 struct btrfs_delayed_node *node,
612 bool qgroup_free)
613{
614 struct btrfs_block_rsv *rsv;
615
616 if (!node->bytes_reserved)
617 return;
618
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 node->inode_id, node->bytes_reserved, 0);
622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
623 if (qgroup_free)
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
626 else
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
629 node->bytes_reserved = 0;
630}
631
632/*
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
641 */
642static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
646{
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
649 LIST_HEAD(item_list);
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 struct btrfs_item_batch batch;
654 struct btrfs_key first_key;
655 const u32 first_data_size = first_item->data_len;
656 int total_size;
657 char *ins_data = NULL;
658 int ret;
659 bool continuous_keys_only = false;
660
661 lockdep_assert_held(&node->mutex);
662
663 /*
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
667 *
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
671 */
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
674
675 /*
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
680 */
681 ASSERT(first_item->bytes_reserved == 0);
682
683 list_add_tail(&first_item->tree_list, &item_list);
684 batch.total_data_size = first_data_size;
685 batch.nr = 1;
686 total_size = first_data_size + sizeof(struct btrfs_item);
687 curr = first_item;
688
689 while (true) {
690 int next_size;
691
692 next = __btrfs_next_delayed_item(curr);
693 if (!next)
694 break;
695
696 /*
697 * We cannot allow gaps in the key space if we're doing log
698 * replay.
699 */
700 if (continuous_keys_only && (next->index != curr->index + 1))
701 break;
702
703 ASSERT(next->bytes_reserved == 0);
704
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
707 break;
708
709 list_add_tail(&next->tree_list, &item_list);
710 batch.nr++;
711 total_size += next_size;
712 batch.total_data_size += next->data_len;
713 curr = next;
714 }
715
716 if (batch.nr == 1) {
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
721 batch.data_sizes = &first_data_size;
722 } else {
723 struct btrfs_key *ins_keys;
724 u32 *ins_sizes;
725 int i = 0;
726
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
729 if (!ins_data) {
730 ret = -ENOMEM;
731 goto out;
732 }
733 ins_sizes = (u32 *)ins_data;
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
741 ins_sizes[i] = curr->data_len;
742 i++;
743 }
744 }
745
746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
747 if (ret)
748 goto out;
749
750 list_for_each_entry(curr, &item_list, tree_list) {
751 char *data_ptr;
752
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
756 path->slots[0]++;
757 }
758
759 /*
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
762 * time than needed.
763 */
764 btrfs_release_path(path);
765
766 ASSERT(node->index_item_leaves > 0);
767
768 /*
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 *
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
777 */
778 if (next && !continuous_keys_only) {
779 /*
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
784 */
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
787 } else if (!next) {
788 /*
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
794 */
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
797 }
798
799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
802 }
803out:
804 kfree(ins_data);
805 return ret;
806}
807
808static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
812{
813 int ret = 0;
814
815 while (ret == 0) {
816 struct btrfs_delayed_item *curr;
817
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr) {
821 mutex_unlock(&node->mutex);
822 break;
823 }
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
826 }
827
828 return ret;
829}
830
831static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
835{
836 const u64 ino = item->delayed_node->inode_id;
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_delayed_item *curr, *next;
839 struct extent_buffer *leaf = path->nodes[0];
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
842 int ret;
843 u64 total_reserved_size = item->bytes_reserved;
844
845 ASSERT(leaf != NULL);
846
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
849 /*
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
852 */
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
855 return -ENOENT;
856
857 nitems = 1;
858 curr = item;
859 list_add_tail(&curr->tree_list, &batch_list);
860
861 /*
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
864 * leaf.
865 */
866 while (slot < last_slot) {
867 struct btrfs_key key;
868
869 next = __btrfs_next_delayed_item(curr);
870 if (!next)
871 break;
872
873 slot++;
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
878 break;
879 nitems++;
880 curr = next;
881 list_add_tail(&curr->tree_list, &batch_list);
882 total_reserved_size += curr->bytes_reserved;
883 }
884
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 if (ret)
887 return ret;
888
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
891 /*
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
894 */
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
899 }
900
901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
904 }
905
906 return 0;
907}
908
909static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
913{
914 struct btrfs_key key;
915 int ret = 0;
916
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
919
920 while (ret == 0) {
921 struct btrfs_delayed_item *item;
922
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
925 if (!item) {
926 mutex_unlock(&node->mutex);
927 break;
928 }
929
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
932 if (ret > 0) {
933 /*
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
943 *
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
946 */
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
949 ret = 0;
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
953 }
954
955 /*
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
961 */
962 mutex_unlock(&node->mutex);
963 }
964
965 return ret;
966}
967
968static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969{
970 struct btrfs_delayed_root *delayed_root;
971
972 if (delayed_node &&
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 BUG_ON(!delayed_node->root);
975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 delayed_node->count--;
977
978 delayed_root = delayed_node->root->fs_info->delayed_root;
979 finish_one_item(delayed_root);
980 }
981}
982
983static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984{
985
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
988
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995}
996
997static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
1001{
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
1006 int mod;
1007 int ret;
1008
1009 key.objectid = node->inode_id;
1010 key.type = BTRFS_INODE_ITEM_KEY;
1011 key.offset = 0;
1012
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 mod = -1;
1015 else
1016 mod = 1;
1017
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 if (ret > 0)
1020 ret = -ENOENT;
1021 if (ret < 0)
1022 goto out;
1023
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
1030
1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1032 goto out;
1033
1034 path->slots[0]++;
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 goto search;
1037again:
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1040 goto out;
1041
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1044 goto out;
1045
1046 /*
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1050 */
1051 btrfs_del_item(trans, root, path);
1052out:
1053 btrfs_release_delayed_iref(node);
1054 btrfs_release_path(path);
1055err_out:
1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 btrfs_release_delayed_inode(node);
1058
1059 /*
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1062 * counts behind.
1063 */
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1066
1067 return ret;
1068
1069search:
1070 btrfs_release_path(path);
1071
1072 key.type = BTRFS_INODE_EXTREF_KEY;
1073 key.offset = -1;
1074
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 if (ret < 0)
1077 goto err_out;
1078 ASSERT(ret);
1079
1080 ret = 0;
1081 leaf = path->nodes[0];
1082 path->slots[0]--;
1083 goto again;
1084}
1085
1086static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1090{
1091 int ret;
1092
1093 mutex_lock(&node->mutex);
1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 mutex_unlock(&node->mutex);
1096 return 0;
1097 }
1098
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1101 return ret;
1102}
1103
1104static inline int
1105__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108{
1109 int ret;
1110
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 return ret;
1121}
1122
1123/*
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1128 */
1129static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1130{
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
1135 struct btrfs_block_rsv *block_rsv;
1136 int ret = 0;
1137 bool count = (nr > 0);
1138
1139 if (TRANS_ABORTED(trans))
1140 return -EIO;
1141
1142 path = btrfs_alloc_path();
1143 if (!path)
1144 return -ENOMEM;
1145
1146 block_rsv = trans->block_rsv;
1147 trans->block_rsv = &fs_info->delayed_block_rsv;
1148
1149 delayed_root = fs_info->delayed_root;
1150
1151 curr_node = btrfs_first_delayed_node(delayed_root);
1152 while (curr_node && (!count || nr--)) {
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 curr_node);
1155 if (ret) {
1156 btrfs_release_delayed_node(curr_node);
1157 curr_node = NULL;
1158 btrfs_abort_transaction(trans, ret);
1159 break;
1160 }
1161
1162 prev_node = curr_node;
1163 curr_node = btrfs_next_delayed_node(curr_node);
1164 btrfs_release_delayed_node(prev_node);
1165 }
1166
1167 if (curr_node)
1168 btrfs_release_delayed_node(curr_node);
1169 btrfs_free_path(path);
1170 trans->block_rsv = block_rsv;
1171
1172 return ret;
1173}
1174
1175int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176{
1177 return __btrfs_run_delayed_items(trans, -1);
1178}
1179
1180int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181{
1182 return __btrfs_run_delayed_items(trans, nr);
1183}
1184
1185int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 struct btrfs_inode *inode)
1187{
1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 struct btrfs_path *path;
1190 struct btrfs_block_rsv *block_rsv;
1191 int ret;
1192
1193 if (!delayed_node)
1194 return 0;
1195
1196 mutex_lock(&delayed_node->mutex);
1197 if (!delayed_node->count) {
1198 mutex_unlock(&delayed_node->mutex);
1199 btrfs_release_delayed_node(delayed_node);
1200 return 0;
1201 }
1202 mutex_unlock(&delayed_node->mutex);
1203
1204 path = btrfs_alloc_path();
1205 if (!path) {
1206 btrfs_release_delayed_node(delayed_node);
1207 return -ENOMEM;
1208 }
1209
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
1215 btrfs_release_delayed_node(delayed_node);
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1218
1219 return ret;
1220}
1221
1222int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223{
1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 struct btrfs_trans_handle *trans;
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1245 goto out;
1246 }
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto trans_out;
1252 }
1253
1254 block_rsv = trans->block_rsv;
1255 trans->block_rsv = &fs_info->delayed_block_rsv;
1256
1257 mutex_lock(&delayed_node->mutex);
1258 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1259 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1260 path, delayed_node);
1261 else
1262 ret = 0;
1263 mutex_unlock(&delayed_node->mutex);
1264
1265 btrfs_free_path(path);
1266 trans->block_rsv = block_rsv;
1267trans_out:
1268 btrfs_end_transaction(trans);
1269 btrfs_btree_balance_dirty(fs_info);
1270out:
1271 btrfs_release_delayed_node(delayed_node);
1272
1273 return ret;
1274}
1275
1276void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1277{
1278 struct btrfs_delayed_node *delayed_node;
1279
1280 delayed_node = READ_ONCE(inode->delayed_node);
1281 if (!delayed_node)
1282 return;
1283
1284 inode->delayed_node = NULL;
1285 btrfs_release_delayed_node(delayed_node);
1286}
1287
1288struct btrfs_async_delayed_work {
1289 struct btrfs_delayed_root *delayed_root;
1290 int nr;
1291 struct btrfs_work work;
1292};
1293
1294static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1295{
1296 struct btrfs_async_delayed_work *async_work;
1297 struct btrfs_delayed_root *delayed_root;
1298 struct btrfs_trans_handle *trans;
1299 struct btrfs_path *path;
1300 struct btrfs_delayed_node *delayed_node = NULL;
1301 struct btrfs_root *root;
1302 struct btrfs_block_rsv *block_rsv;
1303 int total_done = 0;
1304
1305 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1306 delayed_root = async_work->delayed_root;
1307
1308 path = btrfs_alloc_path();
1309 if (!path)
1310 goto out;
1311
1312 do {
1313 if (atomic_read(&delayed_root->items) <
1314 BTRFS_DELAYED_BACKGROUND / 2)
1315 break;
1316
1317 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1318 if (!delayed_node)
1319 break;
1320
1321 root = delayed_node->root;
1322
1323 trans = btrfs_join_transaction(root);
1324 if (IS_ERR(trans)) {
1325 btrfs_release_path(path);
1326 btrfs_release_prepared_delayed_node(delayed_node);
1327 total_done++;
1328 continue;
1329 }
1330
1331 block_rsv = trans->block_rsv;
1332 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1333
1334 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1335
1336 trans->block_rsv = block_rsv;
1337 btrfs_end_transaction(trans);
1338 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1339
1340 btrfs_release_path(path);
1341 btrfs_release_prepared_delayed_node(delayed_node);
1342 total_done++;
1343
1344 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1345 || total_done < async_work->nr);
1346
1347 btrfs_free_path(path);
1348out:
1349 wake_up(&delayed_root->wait);
1350 kfree(async_work);
1351}
1352
1353
1354static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1355 struct btrfs_fs_info *fs_info, int nr)
1356{
1357 struct btrfs_async_delayed_work *async_work;
1358
1359 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 if (!async_work)
1361 return -ENOMEM;
1362
1363 async_work->delayed_root = delayed_root;
1364 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1365 NULL);
1366 async_work->nr = nr;
1367
1368 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1369 return 0;
1370}
1371
1372void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1373{
1374 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1375}
1376
1377static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1378{
1379 int val = atomic_read(&delayed_root->items_seq);
1380
1381 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1382 return 1;
1383
1384 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1385 return 1;
1386
1387 return 0;
1388}
1389
1390void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1391{
1392 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1393
1394 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1395 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1396 return;
1397
1398 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1399 int seq;
1400 int ret;
1401
1402 seq = atomic_read(&delayed_root->items_seq);
1403
1404 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1405 if (ret)
1406 return;
1407
1408 wait_event_interruptible(delayed_root->wait,
1409 could_end_wait(delayed_root, seq));
1410 return;
1411 }
1412
1413 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1414}
1415
1416/* Will return 0 or -ENOMEM */
1417int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1418 const char *name, int name_len,
1419 struct btrfs_inode *dir,
1420 struct btrfs_disk_key *disk_key, u8 flags,
1421 u64 index)
1422{
1423 struct btrfs_fs_info *fs_info = trans->fs_info;
1424 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
1428 bool reserve_leaf_space;
1429 u32 data_len;
1430 int ret;
1431
1432 delayed_node = btrfs_get_or_create_delayed_node(dir);
1433 if (IS_ERR(delayed_node))
1434 return PTR_ERR(delayed_node);
1435
1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1437 delayed_node,
1438 BTRFS_DELAYED_INSERTION_ITEM);
1439 if (!delayed_item) {
1440 ret = -ENOMEM;
1441 goto release_node;
1442 }
1443
1444 delayed_item->index = index;
1445
1446 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1447 dir_item->location = *disk_key;
1448 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1449 btrfs_set_stack_dir_data_len(dir_item, 0);
1450 btrfs_set_stack_dir_name_len(dir_item, name_len);
1451 btrfs_set_stack_dir_flags(dir_item, flags);
1452 memcpy((char *)(dir_item + 1), name, name_len);
1453
1454 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1455
1456 mutex_lock(&delayed_node->mutex);
1457
1458 if (delayed_node->index_item_leaves == 0 ||
1459 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1460 delayed_node->curr_index_batch_size = data_len;
1461 reserve_leaf_space = true;
1462 } else {
1463 delayed_node->curr_index_batch_size += data_len;
1464 reserve_leaf_space = false;
1465 }
1466
1467 if (reserve_leaf_space) {
1468 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1469 /*
1470 * Space was reserved for a dir index item insertion when we
1471 * started the transaction, so getting a failure here should be
1472 * impossible.
1473 */
1474 if (WARN_ON(ret)) {
1475 mutex_unlock(&delayed_node->mutex);
1476 btrfs_release_delayed_item(delayed_item);
1477 goto release_node;
1478 }
1479
1480 delayed_node->index_item_leaves++;
1481 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1482 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1483
1484 /*
1485 * Adding the new dir index item does not require touching another
1486 * leaf, so we can release 1 unit of metadata that was previously
1487 * reserved when starting the transaction. This applies only to
1488 * the case where we had a transaction start and excludes the
1489 * transaction join case (when replaying log trees).
1490 */
1491 trace_btrfs_space_reservation(fs_info, "transaction",
1492 trans->transid, bytes, 0);
1493 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1494 ASSERT(trans->bytes_reserved >= bytes);
1495 trans->bytes_reserved -= bytes;
1496 }
1497
1498 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1499 if (unlikely(ret)) {
1500 btrfs_err(trans->fs_info,
1501 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1502 name_len, name, delayed_node->root->root_key.objectid,
1503 delayed_node->inode_id, ret);
1504 BUG();
1505 }
1506 mutex_unlock(&delayed_node->mutex);
1507
1508release_node:
1509 btrfs_release_delayed_node(delayed_node);
1510 return ret;
1511}
1512
1513static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1514 struct btrfs_delayed_node *node,
1515 u64 index)
1516{
1517 struct btrfs_delayed_item *item;
1518
1519 mutex_lock(&node->mutex);
1520 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1521 if (!item) {
1522 mutex_unlock(&node->mutex);
1523 return 1;
1524 }
1525
1526 /*
1527 * For delayed items to insert, we track reserved metadata bytes based
1528 * on the number of leaves that we will use.
1529 * See btrfs_insert_delayed_dir_index() and
1530 * btrfs_delayed_item_reserve_metadata()).
1531 */
1532 ASSERT(item->bytes_reserved == 0);
1533 ASSERT(node->index_item_leaves > 0);
1534
1535 /*
1536 * If there's only one leaf reserved, we can decrement this item from the
1537 * current batch, otherwise we can not because we don't know which leaf
1538 * it belongs to. With the current limit on delayed items, we rarely
1539 * accumulate enough dir index items to fill more than one leaf (even
1540 * when using a leaf size of 4K).
1541 */
1542 if (node->index_item_leaves == 1) {
1543 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1544
1545 ASSERT(node->curr_index_batch_size >= data_len);
1546 node->curr_index_batch_size -= data_len;
1547 }
1548
1549 btrfs_release_delayed_item(item);
1550
1551 /* If we now have no more dir index items, we can release all leaves. */
1552 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1553 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1554 node->index_item_leaves = 0;
1555 }
1556
1557 mutex_unlock(&node->mutex);
1558 return 0;
1559}
1560
1561int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1562 struct btrfs_inode *dir, u64 index)
1563{
1564 struct btrfs_delayed_node *node;
1565 struct btrfs_delayed_item *item;
1566 int ret;
1567
1568 node = btrfs_get_or_create_delayed_node(dir);
1569 if (IS_ERR(node))
1570 return PTR_ERR(node);
1571
1572 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1573 if (!ret)
1574 goto end;
1575
1576 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1577 if (!item) {
1578 ret = -ENOMEM;
1579 goto end;
1580 }
1581
1582 item->index = index;
1583
1584 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1585 /*
1586 * we have reserved enough space when we start a new transaction,
1587 * so reserving metadata failure is impossible.
1588 */
1589 if (ret < 0) {
1590 btrfs_err(trans->fs_info,
1591"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1592 btrfs_release_delayed_item(item);
1593 goto end;
1594 }
1595
1596 mutex_lock(&node->mutex);
1597 ret = __btrfs_add_delayed_item(node, item);
1598 if (unlikely(ret)) {
1599 btrfs_err(trans->fs_info,
1600 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1601 index, node->root->root_key.objectid,
1602 node->inode_id, ret);
1603 btrfs_delayed_item_release_metadata(dir->root, item);
1604 btrfs_release_delayed_item(item);
1605 }
1606 mutex_unlock(&node->mutex);
1607end:
1608 btrfs_release_delayed_node(node);
1609 return ret;
1610}
1611
1612int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1613{
1614 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1615
1616 if (!delayed_node)
1617 return -ENOENT;
1618
1619 /*
1620 * Since we have held i_mutex of this directory, it is impossible that
1621 * a new directory index is added into the delayed node and index_cnt
1622 * is updated now. So we needn't lock the delayed node.
1623 */
1624 if (!delayed_node->index_cnt) {
1625 btrfs_release_delayed_node(delayed_node);
1626 return -EINVAL;
1627 }
1628
1629 inode->index_cnt = delayed_node->index_cnt;
1630 btrfs_release_delayed_node(delayed_node);
1631 return 0;
1632}
1633
1634bool btrfs_readdir_get_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1637{
1638 struct btrfs_delayed_node *delayed_node;
1639 struct btrfs_delayed_item *item;
1640
1641 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1642 if (!delayed_node)
1643 return false;
1644
1645 /*
1646 * We can only do one readdir with delayed items at a time because of
1647 * item->readdir_list.
1648 */
1649 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1650 btrfs_inode_lock(BTRFS_I(inode), 0);
1651
1652 mutex_lock(&delayed_node->mutex);
1653 item = __btrfs_first_delayed_insertion_item(delayed_node);
1654 while (item) {
1655 refcount_inc(&item->refs);
1656 list_add_tail(&item->readdir_list, ins_list);
1657 item = __btrfs_next_delayed_item(item);
1658 }
1659
1660 item = __btrfs_first_delayed_deletion_item(delayed_node);
1661 while (item) {
1662 refcount_inc(&item->refs);
1663 list_add_tail(&item->readdir_list, del_list);
1664 item = __btrfs_next_delayed_item(item);
1665 }
1666 mutex_unlock(&delayed_node->mutex);
1667 /*
1668 * This delayed node is still cached in the btrfs inode, so refs
1669 * must be > 1 now, and we needn't check it is going to be freed
1670 * or not.
1671 *
1672 * Besides that, this function is used to read dir, we do not
1673 * insert/delete delayed items in this period. So we also needn't
1674 * requeue or dequeue this delayed node.
1675 */
1676 refcount_dec(&delayed_node->refs);
1677
1678 return true;
1679}
1680
1681void btrfs_readdir_put_delayed_items(struct inode *inode,
1682 struct list_head *ins_list,
1683 struct list_head *del_list)
1684{
1685 struct btrfs_delayed_item *curr, *next;
1686
1687 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 list_del(&curr->readdir_list);
1689 if (refcount_dec_and_test(&curr->refs))
1690 kfree(curr);
1691 }
1692
1693 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1694 list_del(&curr->readdir_list);
1695 if (refcount_dec_and_test(&curr->refs))
1696 kfree(curr);
1697 }
1698
1699 /*
1700 * The VFS is going to do up_read(), so we need to downgrade back to a
1701 * read lock.
1702 */
1703 downgrade_write(&inode->i_rwsem);
1704}
1705
1706int btrfs_should_delete_dir_index(struct list_head *del_list,
1707 u64 index)
1708{
1709 struct btrfs_delayed_item *curr;
1710 int ret = 0;
1711
1712 list_for_each_entry(curr, del_list, readdir_list) {
1713 if (curr->index > index)
1714 break;
1715 if (curr->index == index) {
1716 ret = 1;
1717 break;
1718 }
1719 }
1720 return ret;
1721}
1722
1723/*
1724 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1725 *
1726 */
1727int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1728 struct list_head *ins_list)
1729{
1730 struct btrfs_dir_item *di;
1731 struct btrfs_delayed_item *curr, *next;
1732 struct btrfs_key location;
1733 char *name;
1734 int name_len;
1735 int over = 0;
1736 unsigned char d_type;
1737
1738 if (list_empty(ins_list))
1739 return 0;
1740
1741 /*
1742 * Changing the data of the delayed item is impossible. So
1743 * we needn't lock them. And we have held i_mutex of the
1744 * directory, nobody can delete any directory indexes now.
1745 */
1746 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1747 list_del(&curr->readdir_list);
1748
1749 if (curr->index < ctx->pos) {
1750 if (refcount_dec_and_test(&curr->refs))
1751 kfree(curr);
1752 continue;
1753 }
1754
1755 ctx->pos = curr->index;
1756
1757 di = (struct btrfs_dir_item *)curr->data;
1758 name = (char *)(di + 1);
1759 name_len = btrfs_stack_dir_name_len(di);
1760
1761 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1762 btrfs_disk_key_to_cpu(&location, &di->location);
1763
1764 over = !dir_emit(ctx, name, name_len,
1765 location.objectid, d_type);
1766
1767 if (refcount_dec_and_test(&curr->refs))
1768 kfree(curr);
1769
1770 if (over)
1771 return 1;
1772 ctx->pos++;
1773 }
1774 return 0;
1775}
1776
1777static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1778 struct btrfs_inode_item *inode_item,
1779 struct inode *inode)
1780{
1781 u64 flags;
1782
1783 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1784 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1785 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1786 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1787 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1788 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1789 btrfs_set_stack_inode_generation(inode_item,
1790 BTRFS_I(inode)->generation);
1791 btrfs_set_stack_inode_sequence(inode_item,
1792 inode_peek_iversion(inode));
1793 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1794 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1795 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1796 BTRFS_I(inode)->ro_flags);
1797 btrfs_set_stack_inode_flags(inode_item, flags);
1798 btrfs_set_stack_inode_block_group(inode_item, 0);
1799
1800 btrfs_set_stack_timespec_sec(&inode_item->atime,
1801 inode->i_atime.tv_sec);
1802 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1803 inode->i_atime.tv_nsec);
1804
1805 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1806 inode->i_mtime.tv_sec);
1807 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1808 inode->i_mtime.tv_nsec);
1809
1810 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1811 inode->i_ctime.tv_sec);
1812 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1813 inode->i_ctime.tv_nsec);
1814
1815 btrfs_set_stack_timespec_sec(&inode_item->otime,
1816 BTRFS_I(inode)->i_otime.tv_sec);
1817 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1818 BTRFS_I(inode)->i_otime.tv_nsec);
1819}
1820
1821int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1822{
1823 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1824 struct btrfs_delayed_node *delayed_node;
1825 struct btrfs_inode_item *inode_item;
1826
1827 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1828 if (!delayed_node)
1829 return -ENOENT;
1830
1831 mutex_lock(&delayed_node->mutex);
1832 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1833 mutex_unlock(&delayed_node->mutex);
1834 btrfs_release_delayed_node(delayed_node);
1835 return -ENOENT;
1836 }
1837
1838 inode_item = &delayed_node->inode_item;
1839
1840 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1841 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1842 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1843 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1844 round_up(i_size_read(inode), fs_info->sectorsize));
1845 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1846 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1847 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1848 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1849 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1850
1851 inode_set_iversion_queried(inode,
1852 btrfs_stack_inode_sequence(inode_item));
1853 inode->i_rdev = 0;
1854 *rdev = btrfs_stack_inode_rdev(inode_item);
1855 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1856 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1857
1858 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1859 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1860
1861 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1862 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1863
1864 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1865 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1866
1867 BTRFS_I(inode)->i_otime.tv_sec =
1868 btrfs_stack_timespec_sec(&inode_item->otime);
1869 BTRFS_I(inode)->i_otime.tv_nsec =
1870 btrfs_stack_timespec_nsec(&inode_item->otime);
1871
1872 inode->i_generation = BTRFS_I(inode)->generation;
1873 BTRFS_I(inode)->index_cnt = (u64)-1;
1874
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1877 return 0;
1878}
1879
1880int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881 struct btrfs_root *root,
1882 struct btrfs_inode *inode)
1883{
1884 struct btrfs_delayed_node *delayed_node;
1885 int ret = 0;
1886
1887 delayed_node = btrfs_get_or_create_delayed_node(inode);
1888 if (IS_ERR(delayed_node))
1889 return PTR_ERR(delayed_node);
1890
1891 mutex_lock(&delayed_node->mutex);
1892 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1893 fill_stack_inode_item(trans, &delayed_node->inode_item,
1894 &inode->vfs_inode);
1895 goto release_node;
1896 }
1897
1898 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1899 if (ret)
1900 goto release_node;
1901
1902 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1903 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1904 delayed_node->count++;
1905 atomic_inc(&root->fs_info->delayed_root->items);
1906release_node:
1907 mutex_unlock(&delayed_node->mutex);
1908 btrfs_release_delayed_node(delayed_node);
1909 return ret;
1910}
1911
1912int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1913{
1914 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1915 struct btrfs_delayed_node *delayed_node;
1916
1917 /*
1918 * we don't do delayed inode updates during log recovery because it
1919 * leads to enospc problems. This means we also can't do
1920 * delayed inode refs
1921 */
1922 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1923 return -EAGAIN;
1924
1925 delayed_node = btrfs_get_or_create_delayed_node(inode);
1926 if (IS_ERR(delayed_node))
1927 return PTR_ERR(delayed_node);
1928
1929 /*
1930 * We don't reserve space for inode ref deletion is because:
1931 * - We ONLY do async inode ref deletion for the inode who has only
1932 * one link(i_nlink == 1), it means there is only one inode ref.
1933 * And in most case, the inode ref and the inode item are in the
1934 * same leaf, and we will deal with them at the same time.
1935 * Since we are sure we will reserve the space for the inode item,
1936 * it is unnecessary to reserve space for inode ref deletion.
1937 * - If the inode ref and the inode item are not in the same leaf,
1938 * We also needn't worry about enospc problem, because we reserve
1939 * much more space for the inode update than it needs.
1940 * - At the worst, we can steal some space from the global reservation.
1941 * It is very rare.
1942 */
1943 mutex_lock(&delayed_node->mutex);
1944 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1945 goto release_node;
1946
1947 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1948 delayed_node->count++;
1949 atomic_inc(&fs_info->delayed_root->items);
1950release_node:
1951 mutex_unlock(&delayed_node->mutex);
1952 btrfs_release_delayed_node(delayed_node);
1953 return 0;
1954}
1955
1956static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1957{
1958 struct btrfs_root *root = delayed_node->root;
1959 struct btrfs_fs_info *fs_info = root->fs_info;
1960 struct btrfs_delayed_item *curr_item, *prev_item;
1961
1962 mutex_lock(&delayed_node->mutex);
1963 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1964 while (curr_item) {
1965 prev_item = curr_item;
1966 curr_item = __btrfs_next_delayed_item(prev_item);
1967 btrfs_release_delayed_item(prev_item);
1968 }
1969
1970 if (delayed_node->index_item_leaves > 0) {
1971 btrfs_delayed_item_release_leaves(delayed_node,
1972 delayed_node->index_item_leaves);
1973 delayed_node->index_item_leaves = 0;
1974 }
1975
1976 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1977 while (curr_item) {
1978 btrfs_delayed_item_release_metadata(root, curr_item);
1979 prev_item = curr_item;
1980 curr_item = __btrfs_next_delayed_item(prev_item);
1981 btrfs_release_delayed_item(prev_item);
1982 }
1983
1984 btrfs_release_delayed_iref(delayed_node);
1985
1986 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1987 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1988 btrfs_release_delayed_inode(delayed_node);
1989 }
1990 mutex_unlock(&delayed_node->mutex);
1991}
1992
1993void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1994{
1995 struct btrfs_delayed_node *delayed_node;
1996
1997 delayed_node = btrfs_get_delayed_node(inode);
1998 if (!delayed_node)
1999 return;
2000
2001 __btrfs_kill_delayed_node(delayed_node);
2002 btrfs_release_delayed_node(delayed_node);
2003}
2004
2005void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2006{
2007 u64 inode_id = 0;
2008 struct btrfs_delayed_node *delayed_nodes[8];
2009 int i, n;
2010
2011 while (1) {
2012 spin_lock(&root->inode_lock);
2013 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2014 (void **)delayed_nodes, inode_id,
2015 ARRAY_SIZE(delayed_nodes));
2016 if (!n) {
2017 spin_unlock(&root->inode_lock);
2018 break;
2019 }
2020
2021 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2022 for (i = 0; i < n; i++) {
2023 /*
2024 * Don't increase refs in case the node is dead and
2025 * about to be removed from the tree in the loop below
2026 */
2027 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2028 delayed_nodes[i] = NULL;
2029 }
2030 spin_unlock(&root->inode_lock);
2031
2032 for (i = 0; i < n; i++) {
2033 if (!delayed_nodes[i])
2034 continue;
2035 __btrfs_kill_delayed_node(delayed_nodes[i]);
2036 btrfs_release_delayed_node(delayed_nodes[i]);
2037 }
2038 }
2039}
2040
2041void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2042{
2043 struct btrfs_delayed_node *curr_node, *prev_node;
2044
2045 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2046 while (curr_node) {
2047 __btrfs_kill_delayed_node(curr_node);
2048
2049 prev_node = curr_node;
2050 curr_node = btrfs_next_delayed_node(curr_node);
2051 btrfs_release_delayed_node(prev_node);
2052 }
2053}
2054
2055void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2056 struct list_head *ins_list,
2057 struct list_head *del_list)
2058{
2059 struct btrfs_delayed_node *node;
2060 struct btrfs_delayed_item *item;
2061
2062 node = btrfs_get_delayed_node(inode);
2063 if (!node)
2064 return;
2065
2066 mutex_lock(&node->mutex);
2067 item = __btrfs_first_delayed_insertion_item(node);
2068 while (item) {
2069 /*
2070 * It's possible that the item is already in a log list. This
2071 * can happen in case two tasks are trying to log the same
2072 * directory. For example if we have tasks A and task B:
2073 *
2074 * Task A collected the delayed items into a log list while
2075 * under the inode's log_mutex (at btrfs_log_inode()), but it
2076 * only releases the items after logging the inodes they point
2077 * to (if they are new inodes), which happens after unlocking
2078 * the log mutex;
2079 *
2080 * Task B enters btrfs_log_inode() and acquires the log_mutex
2081 * of the same directory inode, before task B releases the
2082 * delayed items. This can happen for example when logging some
2083 * inode we need to trigger logging of its parent directory, so
2084 * logging two files that have the same parent directory can
2085 * lead to this.
2086 *
2087 * If this happens, just ignore delayed items already in a log
2088 * list. All the tasks logging the directory are under a log
2089 * transaction and whichever finishes first can not sync the log
2090 * before the other completes and leaves the log transaction.
2091 */
2092 if (!item->logged && list_empty(&item->log_list)) {
2093 refcount_inc(&item->refs);
2094 list_add_tail(&item->log_list, ins_list);
2095 }
2096 item = __btrfs_next_delayed_item(item);
2097 }
2098
2099 item = __btrfs_first_delayed_deletion_item(node);
2100 while (item) {
2101 /* It may be non-empty, for the same reason mentioned above. */
2102 if (!item->logged && list_empty(&item->log_list)) {
2103 refcount_inc(&item->refs);
2104 list_add_tail(&item->log_list, del_list);
2105 }
2106 item = __btrfs_next_delayed_item(item);
2107 }
2108 mutex_unlock(&node->mutex);
2109
2110 /*
2111 * We are called during inode logging, which means the inode is in use
2112 * and can not be evicted before we finish logging the inode. So we never
2113 * have the last reference on the delayed inode.
2114 * Also, we don't use btrfs_release_delayed_node() because that would
2115 * requeue the delayed inode (change its order in the list of prepared
2116 * nodes) and we don't want to do such change because we don't create or
2117 * delete delayed items.
2118 */
2119 ASSERT(refcount_read(&node->refs) > 1);
2120 refcount_dec(&node->refs);
2121}
2122
2123void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2124 struct list_head *ins_list,
2125 struct list_head *del_list)
2126{
2127 struct btrfs_delayed_node *node;
2128 struct btrfs_delayed_item *item;
2129 struct btrfs_delayed_item *next;
2130
2131 node = btrfs_get_delayed_node(inode);
2132 if (!node)
2133 return;
2134
2135 mutex_lock(&node->mutex);
2136
2137 list_for_each_entry_safe(item, next, ins_list, log_list) {
2138 item->logged = true;
2139 list_del_init(&item->log_list);
2140 if (refcount_dec_and_test(&item->refs))
2141 kfree(item);
2142 }
2143
2144 list_for_each_entry_safe(item, next, del_list, log_list) {
2145 item->logged = true;
2146 list_del_init(&item->log_list);
2147 if (refcount_dec_and_test(&item->refs))
2148 kfree(item);
2149 }
2150
2151 mutex_unlock(&node->mutex);
2152
2153 /*
2154 * We are called during inode logging, which means the inode is in use
2155 * and can not be evicted before we finish logging the inode. So we never
2156 * have the last reference on the delayed inode.
2157 * Also, we don't use btrfs_release_delayed_node() because that would
2158 * requeue the delayed inode (change its order in the list of prepared
2159 * nodes) and we don't want to do such change because we don't create or
2160 * delete delayed items.
2161 */
2162 ASSERT(refcount_read(&node->refs) > 1);
2163 refcount_dec(&node->refs);
2164}