Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
 
 
 
 
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
  35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
  40};
  41
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 
 528	int i, rc;
 529
 
 
 
 
 
 
 
 
 
 
 
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 
 
 
 
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 
 
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 
 
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, const u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, const u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
 
 
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
 
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
 
 
 
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300	spin_lock_bh(&efx->stats_lock);
1301	kfree(nic_data->mc_stats);
1302	nic_data->mc_stats = NULL;
1303	spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309	struct net_device *net_dev = efx->net_dev;
1310	netdev_features_t tun_feats, tso_feats;
1311	int rc;
1312
1313	if (nic_data->must_check_datapath_caps) {
1314		rc = efx_ef10_init_datapath_caps(efx);
1315		if (rc)
1316			return rc;
1317		nic_data->must_check_datapath_caps = false;
1318	}
1319
1320	if (efx->must_realloc_vis) {
1321		/* We cannot let the number of VIs change now */
1322		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323					nic_data->n_allocated_vis);
1324		if (rc)
1325			return rc;
1326		efx->must_realloc_vis = false;
1327	}
1328
1329	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330				     GFP_KERNEL);
1331	if (!nic_data->mc_stats)
1332		return -ENOMEM;
1333
1334	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336		if (rc == 0) {
1337			rc = efx_ef10_link_piobufs(efx);
1338			if (rc)
1339				efx_ef10_free_piobufs(efx);
1340		}
1341
1342		/* Log an error on failure, but this is non-fatal.
1343		 * Permission errors are less important - we've presumably
1344		 * had the PIO buffer licence removed.
1345		 */
1346		if (rc == -EPERM)
1347			netif_dbg(efx, drv, efx->net_dev,
1348				  "not permitted to restore PIO buffers\n");
1349		else if (rc)
1350			netif_err(efx, drv, efx->net_dev,
1351				  "failed to restore PIO buffers (%d)\n", rc);
1352		nic_data->must_restore_piobufs = false;
1353	}
1354
1355	/* encap features might change during reset if fw variant changed */
1356	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357		net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358	else
1359		net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361	tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362		    NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363	tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366		/* If this is first nic_init, or if it is a reset and a new fw
1367		 * variant has added new features, enable them by default.
1368		 * If the features are not new, maintain their current value.
1369		 */
1370		if (!(net_dev->hw_features & tun_feats))
1371			net_dev->features |= tun_feats;
1372		net_dev->hw_enc_features |= tun_feats | tso_feats;
1373		net_dev->hw_features |= tun_feats;
1374	} else {
1375		net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376		net_dev->hw_features &= ~tun_feats;
1377		net_dev->features &= ~tun_feats;
1378	}
1379
1380	/* don't fail init if RSS setup doesn't work */
1381	rc = efx->type->rx_push_rss_config(efx, false,
1382					   efx->rss_context.rx_indir_table, NULL);
1383
1384	return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391	unsigned int i;
1392#endif
1393
1394	/* All our allocations have been reset */
1395	efx->must_realloc_vis = true;
1396	efx_mcdi_filter_table_reset_mc_allocations(efx);
1397	nic_data->must_restore_piobufs = true;
1398	efx_ef10_forget_old_piobufs(efx);
1399	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401	/* Driver-created vswitches and vports must be re-created */
1402	nic_data->must_probe_vswitching = true;
1403	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405	if (nic_data->vf)
1406		for (i = 0; i < efx->vf_count; i++)
1407			nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413	if (reason == RESET_TYPE_MC_FAILURE)
1414		return RESET_TYPE_DATAPATH;
1415
1416	return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421	enum {
1422		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423				   ETH_RESET_SHARED_SHIFT),
1424		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427				 ETH_RESET_SHARED_SHIFT)
1428	};
1429
1430	/* We assume for now that our PCI function is permitted to
1431	 * reset everything.
1432	 */
1433
1434	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435		*flags &= ~EF10_RESET_MC;
1436		return RESET_TYPE_WORLD;
1437	}
1438
1439	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440		*flags &= ~EF10_RESET_PORT;
1441		return RESET_TYPE_ALL;
1442	}
1443
1444	/* no invisible reset implemented */
1445
1446	return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451	int rc = efx_mcdi_reset(efx, reset_type);
1452
1453	/* Unprivileged functions return -EPERM, but need to return success
1454	 * here so that the datapath is brought back up.
1455	 */
1456	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457		rc = 0;
1458
1459	/* If it was a port reset, trigger reallocation of MC resources.
1460	 * Note that on an MC reset nothing needs to be done now because we'll
1461	 * detect the MC reset later and handle it then.
1462	 * For an FLR, we never get an MC reset event, but the MC has reset all
1463	 * resources assigned to us, so we have to trigger reallocation now.
1464	 */
1465	if ((reset_type == RESET_TYPE_ALL ||
1466	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467		efx_ef10_table_reset_mc_allocations(efx);
1468	return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1472	[EF10_STAT_ ## ext_name] =				\
1473	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1475	[EF10_STAT_ ## int_name] =				\
1476	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name)				\
1478	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 
 
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498	EF10_OTHER_STAT(port_rx_good_bytes),
1499	EF10_OTHER_STAT(port_rx_bad_bytes),
1500	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1579			       (1ULL << EF10_STAT_port_tx_packets) |	\
1580			       (1ULL << EF10_STAT_port_tx_pause) |	\
1581			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1585			       (1ULL <<                                 \
1586				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1588			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1589			       (1ULL << EF10_STAT_port_rx_packets) |	\
1590			       (1ULL << EF10_STAT_port_rx_good) |	\
1591			       (1ULL << EF10_STAT_port_rx_bad) |	\
1592			       (1ULL << EF10_STAT_port_rx_pause) |	\
1593			       (1ULL << EF10_STAT_port_rx_control) |	\
1594			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1595			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1596			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1597			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1598			       (1ULL << EF10_STAT_port_rx_64) |		\
1599			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1600			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1601			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1602			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1606			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1608			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1610			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1618				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1619				 (1ULL << EF10_STAT_port_tx_64) |	\
1620				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632				  (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1638	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1639	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1640	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1641	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1642	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1643	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1644	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1645	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1646	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1647	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1648	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1649	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1658	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1659	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1660	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1661	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1662	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK (						\
1670	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1671	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1672	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1673	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1674	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1675	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1676	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1677	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1678	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1679	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1680	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1681	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1682	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1683	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1684	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1685	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693	if (!(efx->mcdi->fn_flags &
1694	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695		return 0;
1696
1697	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699		/* 8000 series have everything even at 40G */
1700		if (nic_data->datapath_caps2 &
1701		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703	} else {
1704		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705	}
1706
1707	if (nic_data->datapath_caps &
1708	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711	return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717	u64 raw_mask[2];
1718
1719	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721	/* Only show vadaptor stats when EVB capability is present */
1722	if (nic_data->datapath_caps &
1723	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726	} else {
1727		raw_mask[1] = 0;
1728	}
1729	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731		raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733	/* CTPIO stats appear in V3. Only show them on devices that actually
1734	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735	 * and we may be reporting the stats for the underlying port.
1736	 */
1737	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738	    (nic_data->datapath_caps2 &
1739	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744	mask[0] = raw_mask[0];
1745	mask[1] = raw_mask[1];
1746#else
1747	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748	mask[0] = raw_mask[0] & 0xffffffff;
1749	mask[1] = raw_mask[0] >> 32;
1750	mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758	efx_ef10_get_stat_mask(efx, mask);
1759	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760				      mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764				   struct ethtool_fec_stats *fec_stats)
1765{
1766	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1768	u64 *stats = nic_data->stats;
1769
1770	efx_ef10_get_stat_mask(efx, mask);
1771	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772		fec_stats->corrected_blocks.total =
1773			stats[EF10_STAT_fec_corrected_errors];
1774	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775		fec_stats->uncorrectable_blocks.total =
1776			stats[EF10_STAT_fec_uncorrected_errors];
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780					   struct rtnl_link_stats64 *core_stats)
1781{
1782	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784	u64 *stats = nic_data->stats;
1785	size_t stats_count = 0, index;
1786
1787	efx_ef10_get_stat_mask(efx, mask);
1788
1789	if (full_stats) {
1790		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791			if (efx_ef10_stat_desc[index].name) {
1792				*full_stats++ = stats[index];
1793				++stats_count;
1794			}
1795		}
1796	}
1797
1798	if (!core_stats)
1799		return stats_count;
1800
1801	if (nic_data->datapath_caps &
1802			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803		/* Use vadaptor stats. */
1804		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805					 stats[EF10_STAT_rx_multicast] +
1806					 stats[EF10_STAT_rx_broadcast];
1807		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808					 stats[EF10_STAT_tx_multicast] +
1809					 stats[EF10_STAT_tx_broadcast];
1810		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811				       stats[EF10_STAT_rx_multicast_bytes] +
1812				       stats[EF10_STAT_rx_broadcast_bytes];
1813		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814				       stats[EF10_STAT_tx_multicast_bytes] +
1815				       stats[EF10_STAT_tx_broadcast_bytes];
1816		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817					 stats[GENERIC_STAT_rx_noskb_drops];
1818		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1819		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1820		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821		core_stats->rx_errors = core_stats->rx_crc_errors;
1822		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823	} else {
1824		/* Use port stats. */
1825		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831					 stats[GENERIC_STAT_rx_noskb_drops];
1832		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833		core_stats->rx_length_errors =
1834				stats[EF10_STAT_port_rx_gtjumbo] +
1835				stats[EF10_STAT_port_rx_length_error];
1836		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837		core_stats->rx_frame_errors =
1838				stats[EF10_STAT_port_rx_align_error];
1839		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840		core_stats->rx_errors = (core_stats->rx_length_errors +
1841					 core_stats->rx_crc_errors +
1842					 core_stats->rx_frame_errors);
1843	}
1844
1845	return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849				       struct rtnl_link_stats64 *core_stats)
1850{
1851	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 
1853	u64 *stats = nic_data->stats;
 
1854
1855	efx_ef10_get_stat_mask(efx, mask);
1856
1857	/* If NIC was fini'd (probably resetting), then we can't read
1858	 * updated stats right now.
1859	 */
1860	if (nic_data->mc_stats) {
1861		efx_nic_copy_stats(efx, nic_data->mc_stats);
1862		efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863				     mask, stats, nic_data->mc_stats, false);
1864	}
 
 
 
 
1865
1866	/* Update derived statistics */
1867	efx_nic_fix_nodesc_drop_stat(efx,
1868				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1869	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872	 * Here we calculate port_rx_good_bytes.
1873	 */
1874	stats[EF10_STAT_port_rx_good_bytes] =
1875		stats[EF10_STAT_port_rx_bytes] -
1876		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1879	 * MC Firmware are done such that we should not see an increase in
1880	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881	 * does mean that the stat can decrease at times. Here we do not
1882	 * update the stat unless it has increased or has gone to zero
1883	 * (In the case of the NIC rebooting).
1884	 * Please see Bug 33781 for a discussion of why things work this way.
1885	 */
1886	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888	efx_update_sw_stats(efx, stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889
1890	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894	__must_hold(&efx->stats_lock)
1895{
1896	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899	__le64 generation_start, generation_end;
1900	u64 *stats = nic_data->stats;
1901	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902	struct efx_buffer stats_buf;
1903	__le64 *dma_stats;
1904	int rc;
1905
1906	spin_unlock_bh(&efx->stats_lock);
1907
 
 
 
 
 
 
 
 
 
1908	efx_ef10_get_stat_mask(efx, mask);
1909
1910	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911	if (rc) {
1912		spin_lock_bh(&efx->stats_lock);
1913		return rc;
1914	}
1915
1916	dma_stats = stats_buf.addr;
1917	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921			      MAC_STATS_IN_DMA, 1);
1922	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926				NULL, 0, NULL);
1927	spin_lock_bh(&efx->stats_lock);
1928	if (rc) {
1929		/* Expect ENOENT if DMA queues have not been set up */
1930		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932					       sizeof(inbuf), NULL, 0, rc);
1933		goto out;
1934	}
1935
1936	generation_end = dma_stats[efx->num_mac_stats - 1];
1937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938		WARN_ON_ONCE(1);
1939		goto out;
1940	}
1941	rmb();
1942	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943			     stats, stats_buf.addr, false);
1944	rmb();
1945	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946	if (generation_end != generation_start) {
1947		rc = -EAGAIN;
1948		goto out;
1949	}
1950
1951	efx_update_sw_stats(efx, stats);
1952out:
1953	/* releasing a DMA coherent buffer with BH disabled can panic */
1954	spin_unlock_bh(&efx->stats_lock);
1955	efx_nic_free_buffer(efx, &stats_buf);
1956	spin_lock_bh(&efx->stats_lock);
1957	return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961				       struct rtnl_link_stats64 *core_stats)
1962{
1963	if (efx_ef10_try_update_nic_stats_vf(efx))
1964		return 0;
1965
1966	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970					      struct rtnl_link_stats64 *core_stats)
1971{
1972	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974	/* In atomic context, cannot update HW stats.  Just update the
1975	 * software stats and return so the caller can continue.
1976	 */
1977	efx_update_sw_stats(efx, nic_data->stats);
1978	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983	struct efx_nic *efx = channel->efx;
1984	unsigned int mode, usecs;
1985	efx_dword_t timer_cmd;
1986
1987	if (channel->irq_moderation_us) {
1988		mode = 3;
1989		usecs = channel->irq_moderation_us;
1990	} else {
1991		mode = 0;
1992		usecs = 0;
1993	}
1994
1995	if (EFX_EF10_WORKAROUND_61265(efx)) {
1996		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997		unsigned int ns = usecs * 1000;
1998
1999		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000			       channel->channel);
2001		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006				   inbuf, sizeof(inbuf), 0, NULL, 0);
2007	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2012				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015				channel->channel);
2016	} else {
2017		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020				     ERF_DZ_TC_TIMER_VAL, ticks,
2021				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2022		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023				channel->channel);
2024	}
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028				struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032	return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037	wol->supported = 0;
2038	wol->wolopts = 0;
2039	memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044	if (type != 0)
2045		return -EINVAL;
2046	return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050				  const efx_dword_t *hdr, size_t hdr_len,
2051				  const efx_dword_t *sdu, size_t sdu_len)
2052{
2053	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054	u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056	memcpy(pdu, hdr, hdr_len);
2057	memcpy(pdu + hdr_len, sdu, sdu_len);
2058	wmb();
2059
2060	/* The hardware provides 'low' and 'high' (doorbell) registers
2061	 * for passing the 64-bit address of an MCDI request to
2062	 * firmware.  However the dwords are swapped by firmware.  The
2063	 * least significant bits of the doorbell are then 0 for all
2064	 * MCDI requests due to alignment.
2065	 */
2066	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067		    ER_DZ_MC_DB_LWRD);
2068	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069		    ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077	rmb();
2078	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083			    size_t offset, size_t outlen)
2084{
2085	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086	const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088	memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095	/* All our allocations have been reset */
2096	efx_ef10_table_reset_mc_allocations(efx);
2097
2098	/* The datapath firmware might have been changed */
2099	nic_data->must_check_datapath_caps = true;
2100
2101	/* MAC statistics have been cleared on the NIC; clear the local
2102	 * statistic that we update with efx_update_diff_stat().
2103	 */
2104	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110	int rc;
2111
2112	rc = efx_ef10_get_warm_boot_count(efx);
2113	if (rc < 0) {
2114		/* The firmware is presumably in the process of
2115		 * rebooting.  However, we are supposed to report each
2116		 * reboot just once, so we must only do that once we
2117		 * can read and store the updated warm boot count.
2118		 */
2119		return 0;
2120	}
2121
2122	if (rc == nic_data->warm_boot_count)
2123		return 0;
2124
2125	nic_data->warm_boot_count = rc;
2126	efx_ef10_mcdi_reboot_detected(efx);
2127
2128	return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt.  This routine schedules event
2134 * queue processing.  No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140	struct efx_msi_context *context = dev_id;
2141	struct efx_nic *efx = context->efx;
2142
2143	netif_vdbg(efx, intr, efx->net_dev,
2144		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147		/* Note test interrupts */
2148		if (context->index == efx->irq_level)
2149			efx->last_irq_cpu = raw_smp_processor_id();
2150
2151		/* Schedule processing of the channel */
2152		efx_schedule_channel_irq(efx->channel[context->index]);
2153	}
2154
2155	return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160	struct efx_nic *efx = dev_id;
2161	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162	struct efx_channel *channel;
2163	efx_dword_t reg;
2164	u32 queues;
2165
2166	/* Read the ISR which also ACKs the interrupts */
2167	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2168	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170	if (queues == 0)
2171		return IRQ_NONE;
2172
2173	if (likely(soft_enabled)) {
2174		/* Note test interrupts */
2175		if (queues & (1U << efx->irq_level))
2176			efx->last_irq_cpu = raw_smp_processor_id();
2177
2178		efx_for_each_channel(channel, efx) {
2179			if (queues & 1)
2180				efx_schedule_channel_irq(channel);
2181			queues >>= 1;
2182		}
2183	}
2184
2185	netif_vdbg(efx, intr, efx->net_dev,
2186		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189	return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197				    NULL) == 0)
2198		return -ENOTSUPP;
2199
2200	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209	/* low two bits of label are what we want for type */
2210	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211	tx_queue->type = tx_queue->label & 3;
2212	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213				    (tx_queue->ptr_mask + 1) *
2214				    sizeof(efx_qword_t),
2215				    GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220					 const efx_qword_t *txd)
2221{
2222	unsigned int write_ptr;
2223	efx_oword_t reg;
2224
2225	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227	reg.qword[0] = *txd;
2228	efx_writeo_page(tx_queue->efx, &reg,
2229			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235			 bool *data_mapped)
 
2236{
2237	struct efx_tx_buffer *buffer;
2238	u16 inner_ipv4_id = 0;
2239	u16 outer_ipv4_id = 0;
2240	struct tcphdr *tcp;
2241	struct iphdr *ip;
2242	u16 ip_tot_len;
 
2243	u32 seqnum;
2244	u32 mss;
2245
2246	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248	mss = skb_shinfo(skb)->gso_size;
2249
2250	if (unlikely(mss < 4)) {
2251		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252		return -EINVAL;
2253	}
2254
2255	if (skb->encapsulation) {
2256		if (!tx_queue->tso_encap)
2257			return -EINVAL;
2258		ip = ip_hdr(skb);
2259		if (ip->version == 4)
2260			outer_ipv4_id = ntohs(ip->id);
2261
2262		ip = inner_ip_hdr(skb);
2263		tcp = inner_tcp_hdr(skb);
2264	} else {
2265		ip = ip_hdr(skb);
2266		tcp = tcp_hdr(skb);
2267	}
2268
2269	/* 8000-series EF10 hardware requires that IP Total Length be
2270	 * greater than or equal to the value it will have in each segment
2271	 * (which is at most mss + 208 + TCP header length), but also less
2272	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2273	 * checksum calculation will be broken for encapsulated packets.
2274	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275	 * first requirement unless the MSS is ridiculously large (which
2276	 * should be impossible as the driver max MTU is 9216); it is
2277	 * guaranteed to satisfy the second as we only attempt TSO if
2278	 * inner_network_header <= 208.
2279	 */
2280	ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282				  (tcp->doff << 2u) > ip_tot_len);
2283
2284	if (ip->version == 4) {
2285		ip->tot_len = htons(ip_tot_len);
 
2286		ip->check = 0;
2287		inner_ipv4_id = ntohs(ip->id);
2288	} else {
2289		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
 
 
 
 
2290	}
2291
 
2292	seqnum = ntohl(tcp->seq);
2293
2294	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296	buffer->flags = EFX_TX_BUF_OPTION;
2297	buffer->len = 0;
2298	buffer->unmap_len = 0;
2299	EFX_POPULATE_QWORD_5(buffer->option,
2300			ESF_DZ_TX_DESC_IS_OPT, 1,
2301			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302			ESF_DZ_TX_TSO_OPTION_TYPE,
2303			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306			);
2307	++tx_queue->insert_count;
2308
2309	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311	buffer->flags = EFX_TX_BUF_OPTION;
2312	buffer->len = 0;
2313	buffer->unmap_len = 0;
2314	EFX_POPULATE_QWORD_5(buffer->option,
2315			ESF_DZ_TX_DESC_IS_OPT, 1,
2316			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317			ESF_DZ_TX_TSO_OPTION_TYPE,
2318			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320			ESF_DZ_TX_TSO_TCP_MSS, mss
2321			);
2322	++tx_queue->insert_count;
2323
2324	return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330	u32 tso_versions = 0;
2331
2332	if (nic_data->datapath_caps &
2333	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334		tso_versions |= BIT(1);
2335	if (nic_data->datapath_caps2 &
2336	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337		tso_versions |= BIT(2);
2338	return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
 
 
2345	struct efx_channel *channel = tx_queue->channel;
2346	struct efx_nic *efx = tx_queue->efx;
2347	struct efx_ef10_nic_data *nic_data;
 
 
 
2348	efx_qword_t *txd;
2349	int rc;
2350
2351	nic_data = efx->nic_data;
2352
2353	/* Only attempt to enable TX timestamping if we have the license for it,
2354	 * otherwise TXQ init will fail
2355	 */
2356	if (!(nic_data->licensed_features &
2357	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358		tx_queue->timestamping = false;
2359		/* Disable sync events on this channel. */
2360		if (efx->type->ptp_set_ts_sync_events)
2361			efx->type->ptp_set_ts_sync_events(efx, false, false);
2362	}
2363
2364	/* TSOv2 is a limited resource that can only be configured on a limited
2365	 * number of queues. TSO without checksum offload is not really a thing,
2366	 * so we only enable it for those queues.
2367	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368	 * for XDP tx.
2369	 */
2370	if (efx_has_cap(efx, TX_TSO_V2)) {
2371		if ((csum_offload || inner_csum) &&
2372		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373			tx_queue->tso_version = 2;
2374			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375				  channel->channel);
2376		}
2377	} else if (efx_has_cap(efx, TX_TSO)) {
2378		tx_queue->tso_version = 1;
2379	}
2380
2381	rc = efx_mcdi_tx_init(tx_queue);
2382	if (rc)
2383		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384
2385	/* A previous user of this TX queue might have set us up the
2386	 * bomb by writing a descriptor to the TX push collector but
2387	 * not the doorbell.  (Each collector belongs to a port, not a
2388	 * queue or function, so cannot easily be reset.)  We must
2389	 * attempt to push a no-op descriptor in its place.
2390	 */
2391	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392	tx_queue->insert_count = 1;
2393	txd = efx_tx_desc(tx_queue, 0);
2394	EFX_POPULATE_QWORD_7(*txd,
2395			     ESF_DZ_TX_DESC_IS_OPT, true,
2396			     ESF_DZ_TX_OPTION_TYPE,
2397			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403	tx_queue->write_count = 1;
2404
2405	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406		tx_queue->tso_encap = true;
 
 
 
 
 
2407
2408	wmb();
2409	efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411	return;
2412
2413fail:
2414	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415		    tx_queue->queue);
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421	unsigned int write_ptr;
2422	efx_dword_t reg;
2423
2424	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426	efx_writed_page(tx_queue->efx, &reg,
2427			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433					  dma_addr_t dma_addr, unsigned int len)
2434{
2435	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436		/* If we need to break across multiple descriptors we should
2437		 * stop at a page boundary. This assumes the length limit is
2438		 * greater than the page size.
2439		 */
2440		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444	}
2445
2446	return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451	unsigned int old_write_count = tx_queue->write_count;
2452	struct efx_tx_buffer *buffer;
2453	unsigned int write_ptr;
2454	efx_qword_t *txd;
2455
2456	tx_queue->xmit_pending = false;
2457	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458		return;
2459
2460	do {
2461		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462		buffer = &tx_queue->buffer[write_ptr];
2463		txd = efx_tx_desc(tx_queue, write_ptr);
2464		++tx_queue->write_count;
2465
2466		/* Create TX descriptor ring entry */
2467		if (buffer->flags & EFX_TX_BUF_OPTION) {
2468			*txd = buffer->option;
2469			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470				/* PIO descriptor */
2471				tx_queue->packet_write_count = tx_queue->write_count;
2472		} else {
2473			tx_queue->packet_write_count = tx_queue->write_count;
2474			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475			EFX_POPULATE_QWORD_3(
2476				*txd,
2477				ESF_DZ_TX_KER_CONT,
2478				buffer->flags & EFX_TX_BUF_CONT,
2479				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481		}
2482	} while (tx_queue->write_count != tx_queue->insert_count);
2483
2484	wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487		txd = efx_tx_desc(tx_queue,
2488				  old_write_count & tx_queue->ptr_mask);
2489		efx_ef10_push_tx_desc(tx_queue, txd);
2490		++tx_queue->pushes;
2491	} else {
2492		efx_ef10_notify_tx_desc(tx_queue);
2493	}
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2498	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499	unsigned int enabled, implemented;
2500	bool want_workaround_26807;
2501	int rc;
2502
2503	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504	if (rc == -ENOSYS) {
2505		/* GET_WORKAROUNDS was implemented before this workaround,
2506		 * thus it must be unavailable in this firmware.
2507		 */
2508		nic_data->workaround_26807 = false;
 
 
 
 
 
2509		return 0;
2510	}
2511	if (rc)
 
 
 
 
 
 
 
 
 
 
 
 
2512		return rc;
2513	want_workaround_26807 =
2514		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515	nic_data->workaround_26807 =
2516		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518	if (want_workaround_26807 && !nic_data->workaround_26807) {
2519		unsigned int flags;
2520
2521		rc = efx_mcdi_set_workaround(efx,
2522					     MC_CMD_WORKAROUND_BUG26807,
2523					     true, &flags);
2524		if (!rc) {
2525			if (flags &
2526			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527				netif_info(efx, drv, efx->net_dev,
2528					   "other functions on NIC have been reset\n");
2529
2530				/* With MCFW v4.6.x and earlier, the
2531				 * boot count will have incremented,
2532				 * so re-read the warm_boot_count
2533				 * value now to ensure this function
2534				 * doesn't think it has changed next
2535				 * time it checks.
2536				 */
2537				rc = efx_ef10_get_warm_boot_count(efx);
2538				if (rc >= 0) {
2539					nic_data->warm_boot_count = rc;
2540					rc = 0;
2541				}
2542			}
2543			nic_data->workaround_26807 = true;
2544		} else if (rc == -EPERM) {
2545			rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546		}
2547	}
2548	return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
 
 
2552{
2553	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554	int rc = efx_ef10_probe_multicast_chaining(efx);
2555	struct efx_mcdi_filter_vlan *vlan;
2556
2557	if (rc)
2558		return rc;
2559	down_write(&efx->filter_sem);
2560	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
 
 
2561
2562	if (rc)
2563		goto out_unlock;
 
 
 
 
 
2564
2565	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2567		if (rc)
2568			goto fail_add_vlan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569	}
2570	goto out_unlock;
2571
2572fail_add_vlan:
2573	efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575	up_write(&efx->filter_sem);
2576	return rc;
 
 
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2580{
2581	down_write(&efx->filter_sem);
2582	efx_mcdi_filter_table_remove(efx);
2583	up_write(&efx->filter_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590	struct efx_rx_buffer *rx_buf;
2591	efx_qword_t *rxd;
2592
2593	rxd = efx_rx_desc(rx_queue, index);
2594	rx_buf = efx_rx_buffer(rx_queue, index);
2595	EFX_POPULATE_QWORD_2(*rxd,
2596			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602	struct efx_nic *efx = rx_queue->efx;
2603	unsigned int write_count;
2604	efx_dword_t reg;
2605
2606	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607	write_count = rx_queue->added_count & ~7;
2608	if (rx_queue->notified_count == write_count)
2609		return;
2610
2611	do
2612		efx_ef10_build_rx_desc(
2613			rx_queue,
2614			rx_queue->notified_count & rx_queue->ptr_mask);
2615	while (++rx_queue->notified_count != write_count);
2616
2617	wmb();
2618	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619			     write_count & rx_queue->ptr_mask);
2620	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2621			efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630	efx_qword_t event;
2631
2632	EFX_POPULATE_QWORD_2(event,
2633			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639	 * already swapped the data to little-endian order.
2640	 */
2641	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642	       sizeof(efx_qword_t));
2643
2644	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645			   inbuf, sizeof(inbuf), 0,
2646			   efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651				  int rc, efx_dword_t *outbuf,
2652				  size_t outlen_actual)
2653{
2654	/* nothing to do */
2655}
2656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
 
 
 
 
 
2659	struct efx_nic *efx = channel->efx;
2660	struct efx_ef10_nic_data *nic_data;
2661	bool use_v2, cut_thru;
 
 
 
 
2662
2663	nic_data = efx->nic_data;
2664	use_v2 = nic_data->datapath_caps2 &
2665			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666	cut_thru = !(nic_data->datapath_caps &
2667			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672					   unsigned int rx_queue_label)
2673{
2674	struct efx_nic *efx = rx_queue->efx;
2675
2676	netif_info(efx, hw, efx->net_dev,
2677		   "rx event arrived on queue %d labeled as queue %u\n",
2678		   efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685			     unsigned int actual, unsigned int expected)
2686{
2687	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688	struct efx_nic *efx = rx_queue->efx;
2689
2690	netif_info(efx, hw, efx->net_dev,
2691		   "dropped %d events (index=%d expected=%d)\n",
2692		   dropped, actual, expected);
2693
2694	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700	unsigned int rx_desc_ptr;
2701
2702	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703		  "scattered RX aborted (dropping %u buffers)\n",
2704		  rx_queue->scatter_n);
2705
2706	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709		      0, EFX_RX_PKT_DISCARD);
2710
2711	rx_queue->removed_count += rx_queue->scatter_n;
2712	rx_queue->scatter_n = 0;
2713	rx_queue->scatter_len = 0;
2714	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718					   unsigned int n_packets,
2719					   unsigned int rx_encap_hdr,
2720					   unsigned int rx_l3_class,
2721					   unsigned int rx_l4_class,
2722					   const efx_qword_t *event)
2723{
2724	struct efx_nic *efx = channel->efx;
2725	bool handled = false;
2726
2727	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729			if (!efx->loopback_selftest)
2730				channel->n_rx_eth_crc_err += n_packets;
2731			return EFX_RX_PKT_DISCARD;
2732		}
2733		handled = true;
2734	}
2735	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741			netdev_WARN(efx->net_dev,
2742				    "invalid class for RX_IPCKSUM_ERR: event="
2743				    EFX_QWORD_FMT "\n",
2744				    EFX_QWORD_VAL(*event));
2745		if (!efx->loopback_selftest)
2746			*(rx_encap_hdr ?
2747			  &channel->n_rx_outer_ip_hdr_chksum_err :
2748			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749		return 0;
2750	}
2751	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757			netdev_WARN(efx->net_dev,
2758				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759				    EFX_QWORD_FMT "\n",
2760				    EFX_QWORD_VAL(*event));
2761		if (!efx->loopback_selftest)
2762			*(rx_encap_hdr ?
2763			  &channel->n_rx_outer_tcp_udp_chksum_err :
2764			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765		return 0;
2766	}
2767	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768		if (unlikely(!rx_encap_hdr))
2769			netdev_WARN(efx->net_dev,
2770				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771				    EFX_QWORD_FMT "\n",
2772				    EFX_QWORD_VAL(*event));
2773		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777			netdev_WARN(efx->net_dev,
2778				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779				    EFX_QWORD_FMT "\n",
2780				    EFX_QWORD_VAL(*event));
2781		if (!efx->loopback_selftest)
2782			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783		return 0;
2784	}
2785	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786		if (unlikely(!rx_encap_hdr))
2787			netdev_WARN(efx->net_dev,
2788				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789				    EFX_QWORD_FMT "\n",
2790				    EFX_QWORD_VAL(*event));
2791		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795			netdev_WARN(efx->net_dev,
2796				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797				    EFX_QWORD_FMT "\n",
2798				    EFX_QWORD_VAL(*event));
2799		if (!efx->loopback_selftest)
2800			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801		return 0;
2802	}
2803
2804	WARN_ON(!handled); /* No error bits were recognised */
2805	return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809				    const efx_qword_t *event)
2810{
2811	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813	unsigned int n_descs, n_packets, i;
2814	struct efx_nic *efx = channel->efx;
2815	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816	struct efx_rx_queue *rx_queue;
2817	efx_qword_t errors;
2818	bool rx_cont;
2819	u16 flags = 0;
2820
2821	if (unlikely(READ_ONCE(efx->reset_pending)))
2822		return 0;
2823
2824	/* Basic packet information */
2825	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831	rx_encap_hdr =
2832		nic_data->datapath_caps &
2833			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835		ESE_EZ_ENCAP_HDR_NONE;
2836
2837	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839			    EFX_QWORD_FMT "\n",
2840			    EFX_QWORD_VAL(*event));
2841
2842	rx_queue = efx_channel_get_rx_queue(channel);
2843
2844	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850	if (n_descs != rx_queue->scatter_n + 1) {
2851		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853		/* detect rx abort */
2854		if (unlikely(n_descs == rx_queue->scatter_n)) {
2855			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856				netdev_WARN(efx->net_dev,
2857					    "invalid RX abort: scatter_n=%u event="
2858					    EFX_QWORD_FMT "\n",
2859					    rx_queue->scatter_n,
2860					    EFX_QWORD_VAL(*event));
2861			efx_ef10_handle_rx_abort(rx_queue);
2862			return 0;
2863		}
2864
2865		/* Check that RX completion merging is valid, i.e.
2866		 * the current firmware supports it and this is a
2867		 * non-scattered packet.
2868		 */
2869		if (!(nic_data->datapath_caps &
2870		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871		    rx_queue->scatter_n != 0 || rx_cont) {
2872			efx_ef10_handle_rx_bad_lbits(
2873				rx_queue, next_ptr_lbits,
2874				(rx_queue->removed_count +
2875				 rx_queue->scatter_n + 1) &
2876				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877			return 0;
2878		}
2879
2880		/* Merged completion for multiple non-scattered packets */
2881		rx_queue->scatter_n = 1;
2882		rx_queue->scatter_len = 0;
2883		n_packets = n_descs;
2884		++channel->n_rx_merge_events;
2885		channel->n_rx_merge_packets += n_packets;
2886		flags |= EFX_RX_PKT_PREFIX_LEN;
2887	} else {
2888		++rx_queue->scatter_n;
2889		rx_queue->scatter_len += rx_bytes;
2890		if (rx_cont)
2891			return 0;
2892		n_packets = 1;
2893	}
2894
2895	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2897				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900	EFX_AND_QWORD(errors, *event, errors);
2901	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903							 rx_encap_hdr,
2904							 rx_l3_class, rx_l4_class,
2905							 event);
2906	} else {
2907		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910		switch (rx_encap_hdr) {
2911		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913			if (tcpudp)
2914				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915			break;
2916		case ESE_EZ_ENCAP_HDR_GRE:
2917		case ESE_EZ_ENCAP_HDR_NONE:
2918			if (tcpudp)
2919				flags |= EFX_RX_PKT_CSUMMED;
2920			break;
2921		default:
2922			netdev_WARN(efx->net_dev,
2923				    "unknown encapsulation type: event="
2924				    EFX_QWORD_FMT "\n",
2925				    EFX_QWORD_VAL(*event));
2926		}
2927	}
2928
2929	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930		flags |= EFX_RX_PKT_TCP;
2931
2932	channel->irq_mod_score += 2 * n_packets;
2933
2934	/* Handle received packet(s) */
2935	for (i = 0; i < n_packets; i++) {
2936		efx_rx_packet(rx_queue,
2937			      rx_queue->removed_count & rx_queue->ptr_mask,
2938			      rx_queue->scatter_n, rx_queue->scatter_len,
2939			      flags);
2940		rx_queue->removed_count += rx_queue->scatter_n;
2941	}
2942
2943	rx_queue->scatter_n = 0;
2944	rx_queue->scatter_len = 0;
2945
2946	return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951	u32 tstamp;
2952
2953	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954	tstamp <<= 16;
2955	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957	return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963	struct efx_nic *efx = channel->efx;
2964	struct efx_tx_queue *tx_queue;
2965	unsigned int tx_ev_desc_ptr;
2966	unsigned int tx_ev_q_label;
2967	unsigned int tx_ev_type;
2968	int work_done;
2969	u64 ts_part;
2970
2971	if (unlikely(READ_ONCE(efx->reset_pending)))
2972		return 0;
2973
2974	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975		return 0;
2976
2977	/* Get the transmit queue */
 
2978	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
 
 
 
 
2980
2981	if (!tx_queue->timestamping) {
2982		/* Transmit completion */
2983		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984		return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2985	}
2986
2987	/* Transmit timestamps are only available for 8XXX series. They result
2988	 * in up to three events per packet. These occur in order, and are:
2989	 *  - the normal completion event (may be omitted)
2990	 *  - the low part of the timestamp
2991	 *  - the high part of the timestamp
2992	 *
2993	 * It's possible for multiple completion events to appear before the
2994	 * corresponding timestamps. So we can for example get:
2995	 *  COMP N
2996	 *  COMP N+1
2997	 *  TS_LO N
2998	 *  TS_HI N
2999	 *  TS_LO N+1
3000	 *  TS_HI N+1
3001	 *
3002	 * In addition it's also possible for the adjacent completions to be
3003	 * merged, so we may not see COMP N above. As such, the completion
3004	 * events are not very useful here.
3005	 *
3006	 * Each part of the timestamp is itself split across two 16 bit
3007	 * fields in the event.
3008	 */
3009	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010	work_done = 0;
3011
3012	switch (tx_ev_type) {
3013	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014		/* Ignore this event - see above. */
3015		break;
3016
3017	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018		ts_part = efx_ef10_extract_event_ts(event);
3019		tx_queue->completed_timestamp_minor = ts_part;
3020		break;
3021
3022	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023		ts_part = efx_ef10_extract_event_ts(event);
3024		tx_queue->completed_timestamp_major = ts_part;
3025
3026		efx_xmit_done_single(tx_queue);
3027		work_done = 1;
3028		break;
3029
3030	default:
3031		netif_err(efx, hw, efx->net_dev,
3032			  "channel %d unknown tx event type %d (data "
3033			  EFX_QWORD_FMT ")\n",
3034			  channel->channel, tx_ev_type,
3035			  EFX_QWORD_VAL(*event));
3036		break;
3037	}
3038
3039	return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045	struct efx_nic *efx = channel->efx;
3046	int subcode;
3047
3048	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050	switch (subcode) {
3051	case ESE_DZ_DRV_TIMER_EV:
3052	case ESE_DZ_DRV_WAKE_UP_EV:
3053		break;
3054	case ESE_DZ_DRV_START_UP_EV:
3055		/* event queue init complete. ok. */
3056		break;
3057	default:
3058		netif_err(efx, hw, efx->net_dev,
3059			  "channel %d unknown driver event type %d"
3060			  " (data " EFX_QWORD_FMT ")\n",
3061			  channel->channel, subcode,
3062			  EFX_QWORD_VAL(*event));
3063
3064	}
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068						   efx_qword_t *event)
3069{
3070	struct efx_nic *efx = channel->efx;
3071	u32 subcode;
3072
3073	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075	switch (subcode) {
3076	case EFX_EF10_TEST:
3077		channel->event_test_cpu = raw_smp_processor_id();
3078		break;
3079	case EFX_EF10_REFILL:
3080		/* The queue must be empty, so we won't receive any rx
3081		 * events, so efx_process_channel() won't refill the
3082		 * queue. Refill it here
3083		 */
3084		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085		break;
3086	default:
3087		netif_err(efx, hw, efx->net_dev,
3088			  "channel %d unknown driver event type %u"
3089			  " (data " EFX_QWORD_FMT ")\n",
3090			  channel->channel, (unsigned) subcode,
3091			  EFX_QWORD_VAL(*event));
3092	}
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099	struct efx_nic *efx = channel->efx;
3100	efx_qword_t event, *p_event;
3101	unsigned int read_ptr;
3102	int spent_tx = 0;
3103	int spent = 0;
3104	int ev_code;
 
 
3105
3106	if (quota <= 0)
3107		return spent;
3108
3109	read_ptr = channel->eventq_read_ptr;
3110
3111	for (;;) {
3112		p_event = efx_event(channel, read_ptr);
3113		event = *p_event;
3114
3115		if (!efx_event_present(&event))
3116			break;
3117
3118		EFX_SET_QWORD(*p_event);
3119
3120		++read_ptr;
3121
3122		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124		netif_vdbg(efx, drv, efx->net_dev,
3125			   "processing event on %d " EFX_QWORD_FMT "\n",
3126			   channel->channel, EFX_QWORD_VAL(event));
3127
3128		switch (ev_code) {
3129		case ESE_DZ_EV_CODE_MCDI_EV:
3130			efx_mcdi_process_event(channel, &event);
3131			break;
3132		case ESE_DZ_EV_CODE_RX_EV:
3133			spent += efx_ef10_handle_rx_event(channel, &event);
3134			if (spent >= quota) {
3135				/* XXX can we split a merged event to
3136				 * avoid going over-quota?
3137				 */
3138				spent = quota;
3139				goto out;
3140			}
3141			break;
3142		case ESE_DZ_EV_CODE_TX_EV:
3143			spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144			if (spent_tx >= EFX_NAPI_MAX_TX) {
3145				spent = quota;
3146				goto out;
 
 
3147			}
3148			break;
3149		case ESE_DZ_EV_CODE_DRIVER_EV:
3150			efx_ef10_handle_driver_event(channel, &event);
3151			if (++spent == quota)
3152				goto out;
3153			break;
3154		case EFX_EF10_DRVGEN_EV:
3155			efx_ef10_handle_driver_generated_event(channel, &event);
3156			break;
3157		default:
3158			netif_err(efx, hw, efx->net_dev,
3159				  "channel %d unknown event type %d"
3160				  " (data " EFX_QWORD_FMT ")\n",
3161				  channel->channel, ev_code,
3162				  EFX_QWORD_VAL(event));
3163		}
3164	}
3165
3166out:
3167	channel->eventq_read_ptr = read_ptr;
3168	return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173	struct efx_nic *efx = channel->efx;
3174	efx_dword_t rptr;
3175
3176	if (EFX_EF10_WORKAROUND_35388(efx)) {
3177		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184				     ERF_DD_EVQ_IND_RPTR,
3185				     (channel->eventq_read_ptr &
3186				      channel->eventq_mask) >>
3187				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3188		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189				channel->channel);
3190		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192				     ERF_DD_EVQ_IND_RPTR,
3193				     channel->eventq_read_ptr &
3194				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196				channel->channel);
3197	} else {
3198		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199				     channel->eventq_read_ptr &
3200				     channel->eventq_mask);
3201		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202	}
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208	struct efx_nic *efx = channel->efx;
3209	efx_qword_t event;
3210	int rc;
3211
3212	EFX_POPULATE_QWORD_2(event,
3213			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219	 * already swapped the data to little-endian order.
3220	 */
3221	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222	       sizeof(efx_qword_t));
3223
3224	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225			  NULL, 0, NULL);
3226	if (rc != 0)
3227		goto fail;
3228
3229	return;
3230
3231fail:
3232	WARN_ON(true);
3233	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238	atomic_set(&efx->active_queues, 0);
3239}
3240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3242{
3243	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244	u8 mac_old[ETH_ALEN];
3245	int rc, rc2;
3246
3247	/* Only reconfigure a PF-created vport */
3248	if (is_zero_ether_addr(nic_data->vport_mac))
3249		return 0;
3250
3251	efx_device_detach_sync(efx);
3252	efx_net_stop(efx->net_dev);
 
3253	efx_ef10_filter_table_remove(efx);
 
3254
3255	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256	if (rc)
3257		goto restore_filters;
3258
3259	ether_addr_copy(mac_old, nic_data->vport_mac);
3260	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261				    nic_data->vport_mac);
3262	if (rc)
3263		goto restore_vadaptor;
3264
3265	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266				    efx->net_dev->dev_addr);
3267	if (!rc) {
3268		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3269	} else {
3270		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271		if (rc2) {
3272			/* Failed to add original MAC, so clear vport_mac */
3273			eth_zero_addr(nic_data->vport_mac);
3274			goto reset_nic;
3275		}
3276	}
3277
3278restore_vadaptor:
3279	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280	if (rc2)
3281		goto reset_nic;
3282restore_filters:
 
3283	rc2 = efx_ef10_filter_table_probe(efx);
 
3284	if (rc2)
3285		goto reset_nic;
3286
3287	rc2 = efx_net_open(efx->net_dev);
3288	if (rc2)
3289		goto reset_nic;
3290
3291	efx_device_attach_if_not_resetting(efx);
3292
3293	return rc;
3294
3295reset_nic:
3296	netif_err(efx, drv, efx->net_dev,
3297		  "Failed to restore when changing MAC address - scheduling reset\n");
3298	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300	return rc ? rc : rc2;
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
 
 
 
 
3304{
3305	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306	bool was_enabled = efx->port_enabled;
3307	int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310	/* If this function is a VF and we have access to the parent PF,
3311	 * then use the PF control path to attempt to change the VF MAC address.
3312	 */
3313	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314		struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316		u8 mac[ETH_ALEN];
3317
3318		/* net_dev->dev_addr can be zeroed by efx_net_stop in
3319		 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
 
 
 
 
 
 
3320		 */
3321		ether_addr_copy(mac, efx->net_dev->dev_addr);
 
 
3322
3323		rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324		if (!rc)
3325			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326
3327		netif_dbg(efx, drv, efx->net_dev,
3328			  "Updating VF mac via PF failed (%d), setting directly\n",
3329			  rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3330	}
3331#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3332
3333	efx_device_detach_sync(efx);
3334	efx_net_stop(efx->net_dev);
3335
3336	mutex_lock(&efx->mac_lock);
 
3337	efx_ef10_filter_table_remove(efx);
3338
3339	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340			efx->net_dev->dev_addr);
3341	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342		       efx->vport_id);
3343	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344				sizeof(inbuf), NULL, 0, NULL);
3345
3346	efx_ef10_filter_table_probe(efx);
 
3347	mutex_unlock(&efx->mac_lock);
3348
3349	if (was_enabled)
3350		efx_net_open(efx->net_dev);
3351	efx_device_attach_if_not_resetting(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353	if (rc == -EPERM) {
3354		netif_err(efx, drv, efx->net_dev,
3355			  "Cannot change MAC address; use sfboot to enable"
3356			  " mac-spoofing on this interface\n");
3357	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359		 * fall-back to the method of changing the MAC address on the
3360		 * vport.  This only applies to PFs because such versions of
3361		 * MCFW do not support VFs.
3362		 */
3363		rc = efx_ef10_vport_set_mac_address(efx);
3364	} else if (rc) {
3365		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366				       sizeof(inbuf), NULL, 0, rc);
3367	}
3368
3369	return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3373{
3374	WARN_ON(!mutex_is_locked(&efx->mac_lock));
3375
3376	efx_mcdi_filter_sync_rx_mode(efx);
3377
3378	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379		return efx_mcdi_set_mtu(efx);
3380	return efx_mcdi_set_mac(efx);
3381}
3382
 
 
 
 
 
 
 
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389			    NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398	int rc;
3399	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400	size_t outlen;
3401	u32 result;
3402
3403	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404			   outbuf, sizeof(outbuf), &outlen);
3405	if (rc != 0)
3406		return rc;
3407
3408	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409		return -EIO;
3410
3411	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412	switch (result) {
3413	case MC_CMD_POLL_BIST_PASSED:
3414		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415		return 0;
3416	case MC_CMD_POLL_BIST_TIMEOUT:
3417		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418		return -EIO;
3419	case MC_CMD_POLL_BIST_FAILED:
3420		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421		return -EIO;
3422	default:
3423		netif_err(efx, hw, efx->net_dev,
3424			  "BIST returned unknown result %u", result);
3425		return -EIO;
3426	}
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431	int rc;
3432
3433	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435	rc = efx_ef10_start_bist(efx, bist_type);
3436	if (rc != 0)
3437		return rc;
3438
3439	return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445	int rc, rc2;
3446
3447	efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450			  NULL, 0, NULL, 0, NULL);
3451	if (rc != 0)
3452		goto out;
3453
3454	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460	if (rc == -EPERM)
3461		rc = 0;
3462	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463	return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469	u16 type, type_mask;
3470	u8 port;
3471	const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3476	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3477	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3478	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3479	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3480	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3481	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3482	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3483	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3484	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3485	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3486	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3487	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3488	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3489	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3490	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3491	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3492	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497					struct efx_mcdi_mtd_partition *part,
3498					unsigned int type,
3499					unsigned long *found)
3500{
3501	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503	const struct efx_ef10_nvram_type_info *info;
3504	size_t size, erase_size, outlen;
3505	int type_idx = 0;
3506	bool protected;
3507	int rc;
3508
3509	for (type_idx = 0; ; type_idx++) {
3510		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
 
3511			return -ENODEV;
3512		info = efx_ef10_nvram_types + type_idx;
3513		if ((type & ~info->type_mask) == info->type)
3514			break;
3515	}
3516	if (info->port != efx_port_num(efx))
3517		return -ENODEV;
3518
3519	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520	if (rc)
3521		return rc;
3522	if (protected &&
3523	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525		/* Hide protected partitions that don't provide defaults. */
3526		return -ENODEV;
3527
3528	if (protected)
3529		/* Protected partitions are read only. */
3530		erase_size = 0;
3531
3532	/* If we've already exposed a partition of this type, hide this
3533	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3534	 * so we can't act on the duplicate.
3535	 */
3536	if (__test_and_set_bit(type_idx, found))
3537		return -EEXIST;
3538
3539	part->nvram_type = type;
3540
3541	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543			  outbuf, sizeof(outbuf), &outlen);
3544	if (rc)
3545		return rc;
3546	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547		return -EIO;
3548	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550		part->fw_subtype = MCDI_DWORD(outbuf,
3551					      NVRAM_METADATA_OUT_SUBTYPE);
3552
3553	part->common.dev_type_name = "EF10 NVRAM manager";
3554	part->common.type_name = info->name;
3555
3556	part->common.mtd.type = MTD_NORFLASH;
3557	part->common.mtd.flags = MTD_CAP_NORFLASH;
3558	part->common.mtd.size = size;
3559	part->common.mtd.erasesize = erase_size;
3560	/* sfc_status is read-only */
3561	if (!erase_size)
3562		part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564	return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571	struct efx_mcdi_mtd_partition *parts;
3572	size_t outlen, n_parts_total, i, n_parts;
3573	unsigned int type;
3574	int rc;
3575
3576	ASSERT_RTNL();
3577
3578	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580			  outbuf, sizeof(outbuf), &outlen);
3581	if (rc)
3582		return rc;
3583	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584		return -EIO;
3585
3586	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587	if (n_parts_total >
3588	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589		return -EIO;
3590
3591	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592	if (!parts)
3593		return -ENOMEM;
3594
3595	n_parts = 0;
3596	for (i = 0; i < n_parts_total; i++) {
3597		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598					i);
3599		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600						  found);
3601		if (rc == -EEXIST || rc == -ENODEV)
3602			continue;
3603		if (rc)
3604			goto fail;
3605		n_parts++;
3606	}
3607
3608	if (!n_parts) {
3609		kfree(parts);
3610		return 0;
3611	}
3612
3613	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615	if (rc)
3616		kfree(parts);
3617	return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628					    u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631					   bool temp)
3632{
3633	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634	int rc;
3635
3636	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3638	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639		return 0;
3640	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645		       channel->channel);
3646
3647	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650	if (rc != 0)
3651		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652						    SYNC_EVENTS_DISABLED;
3653
3654	return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658					    bool temp)
3659{
3660	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661	int rc;
3662
3663	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665		return 0;
3666	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668		return 0;
3669	}
3670	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671					    SYNC_EVENTS_DISABLED;
3672
3673	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678		       channel->channel);
3679
3680	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683	return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687					   bool temp)
3688{
3689	int (*set)(struct efx_channel *channel, bool temp);
3690	struct efx_channel *channel;
3691
3692	set = en ?
3693	      efx_ef10_rx_enable_timestamping :
3694	      efx_ef10_rx_disable_timestamping;
3695
3696	channel = efx_ptp_channel(efx);
3697	if (channel) {
3698		int rc = set(channel, temp);
3699		if (en && rc != 0) {
3700			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701			return rc;
3702		}
3703	}
3704
3705	return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709					 struct kernel_hwtstamp_config *init)
3710{
3711	return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715				      struct kernel_hwtstamp_config *init)
3716{
3717	int rc;
3718
3719	switch (init->rx_filter) {
3720	case HWTSTAMP_FILTER_NONE:
3721		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722		/* if TX timestamping is still requested then leave PTP on */
3723		return efx_ptp_change_mode(efx,
3724					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3725	case HWTSTAMP_FILTER_ALL:
3726	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738	case HWTSTAMP_FILTER_NTP_ALL:
3739		init->rx_filter = HWTSTAMP_FILTER_ALL;
3740		rc = efx_ptp_change_mode(efx, true, 0);
3741		if (!rc)
3742			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743		if (rc)
3744			efx_ptp_change_mode(efx, false, 0);
3745		return rc;
3746	default:
3747		return -ERANGE;
3748	}
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752				     struct netdev_phys_item_id *ppid)
3753{
3754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756	if (!is_valid_ether_addr(nic_data->port_id))
3757		return -EOPNOTSUPP;
3758
3759	ppid->id_len = ETH_ALEN;
3760	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762	return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767	if (proto != htons(ETH_P_8021Q))
3768		return -EINVAL;
3769
3770	return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775	if (proto != htons(ETH_P_8021Q))
3776		return -EINVAL;
3777
3778	return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791	bool will_reset = false;
3792	size_t num_entries = 0;
3793	size_t inlen, outlen;
3794	size_t i;
3795	int rc;
3796	efx_dword_t flags_and_num_entries;
3797
3798	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800	nic_data->udp_tunnels_dirty = false;
3801
3802	if (!(nic_data->datapath_caps &
3803	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804		efx_device_attach_if_not_resetting(efx);
3805		return 0;
3806	}
3807
3808	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812		if (nic_data->udp_tunnels[i].type !=
3813		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814			efx_dword_t entry;
3815
3816			EFX_POPULATE_DWORD_2(entry,
3817				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818					ntohs(nic_data->udp_tunnels[i].port),
3819				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820					nic_data->udp_tunnels[i].type);
3821			*_MCDI_ARRAY_DWORD(inbuf,
3822				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823				num_entries++) = entry;
3824		}
3825	}
3826
3827	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829		     EFX_WORD_1_LBN);
3830	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831		     EFX_WORD_1_WIDTH);
3832	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834				!!unloading,
3835			     EFX_WORD_1, num_entries);
3836	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837		flags_and_num_entries;
3838
3839	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843	if (rc == -EIO) {
3844		/* Most likely the MC rebooted due to another function also
3845		 * setting its tunnel port list. Mark the tunnel port list as
3846		 * dirty, so it will be pushed upon coming up from the reboot.
3847		 */
3848		nic_data->udp_tunnels_dirty = true;
3849		return 0;
3850	}
3851
3852	if (rc) {
3853		/* expected not available on unprivileged functions */
3854		if (rc != -EPERM)
3855			netif_warn(efx, drv, efx->net_dev,
3856				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859		netif_info(efx, drv, efx->net_dev,
3860			   "Rebooting MC due to UDP tunnel port list change\n");
3861		will_reset = true;
3862		if (unloading)
3863			/* Delay for the MC reset to complete. This will make
3864			 * unloading other functions a bit smoother. This is a
3865			 * race, but the other unload will work whichever way
3866			 * it goes, this just avoids an unnecessary error
3867			 * message.
3868			 */
3869			msleep(100);
3870	}
3871	if (!will_reset && !unloading) {
3872		/* The caller will have detached, relying on the MC reset to
3873		 * trigger a re-attach.  Since there won't be an MC reset, we
3874		 * have to do the attach ourselves.
3875		 */
3876		efx_device_attach_if_not_resetting(efx);
3877	}
3878
3879	return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885	int rc = 0;
3886
3887	mutex_lock(&nic_data->udp_tunnels_lock);
3888	if (nic_data->udp_tunnels_dirty) {
3889		/* Make sure all TX are stopped while we modify the table, else
3890		 * we might race against an efx_features_check().
3891		 */
3892		efx_device_detach_sync(efx);
3893		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894	}
3895	mutex_unlock(&nic_data->udp_tunnels_lock);
3896	return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900				     unsigned int table, unsigned int entry,
3901				     struct udp_tunnel_info *ti)
3902{
3903	struct efx_nic *efx = efx_netdev_priv(dev);
3904	struct efx_ef10_nic_data *nic_data;
3905	int efx_tunnel_type, rc;
3906
3907	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909	else
3910		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3911
3912	nic_data = efx->nic_data;
3913	if (!(nic_data->datapath_caps &
3914	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915		return -EOPNOTSUPP;
3916
3917	mutex_lock(&nic_data->udp_tunnels_lock);
3918	/* Make sure all TX are stopped while we add to the table, else we
3919	 * might race against an efx_features_check().
3920	 */
3921	efx_device_detach_sync(efx);
3922	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923	nic_data->udp_tunnels[entry].port = ti->port;
3924	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925	mutex_unlock(&nic_data->udp_tunnels_lock);
3926
3927	return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table.  However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938	size_t i;
3939
3940	if (!(nic_data->datapath_caps &
3941	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942		return false;
3943
3944	if (nic_data->udp_tunnels_dirty)
3945		/* SW table may not match HW state, so just assume we can't
3946		 * use any UDP tunnel offloads.
3947		 */
3948		return false;
3949
3950	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951		if (nic_data->udp_tunnels[i].type !=
3952		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953		    nic_data->udp_tunnels[i].port == port)
3954			return true;
3955
3956	return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960				       unsigned int table, unsigned int entry,
3961				       struct udp_tunnel_info *ti)
3962{
3963	struct efx_nic *efx = efx_netdev_priv(dev);
3964	struct efx_ef10_nic_data *nic_data;
3965	int rc;
3966
3967	nic_data = efx->nic_data;
3968
3969	mutex_lock(&nic_data->udp_tunnels_lock);
3970	/* Make sure all TX are stopped while we remove from the table, else we
3971	 * might race against an efx_features_check().
3972	 */
3973	efx_device_detach_sync(efx);
3974	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975	nic_data->udp_tunnels[entry].port = 0;
3976	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977	mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979	return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983	.set_port	= efx_ef10_udp_tnl_set_port,
3984	.unset_port	= efx_ef10_udp_tnl_unset_port,
3985	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986	.tables         = {
3987		{
3988			.n_entries = 16,
3989			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990					UDP_TUNNEL_TYPE_GENEVE,
3991		},
3992	},
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version.  Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999					      size_t len)
4000{
4001	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003	return scnprintf(buf, len, " rx%x tx%x",
4004			 nic_data->rx_dpcpu_fw_id,
4005			 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009				    u8 flag,
4010				    u32 offset)
4011{
4012	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014	switch (offset) {
4015	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016		return nic_data->datapath_caps & BIT_ULL(flag);
4017	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018		return nic_data->datapath_caps2 & BIT_ULL(flag);
4019	default:
4020		return 0;
4021	}
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026	unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028	/* There is no difference between PFs and VFs. The side is based on
4029	 * the maximum link speed of a given NIC.
4030	 */
4031	switch (efx->pci_dev->device & 0xfff) {
4032	case 0x0903:	/* Farmingdale can do up to 10G */
4033		break;
4034	case 0x0923:	/* Greenport can do up to 40G */
4035	case 0x0a03:	/* Medford can do up to 40G */
4036		ret *= 4;
4037		break;
4038	default:	/* Medford2 can do up to 100G */
4039		ret *= 10;
4040	}
4041
4042	if (IS_ENABLED(CONFIG_PPC64))
4043		ret *= 4;
4044
4045	return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES		\
4049	(NETIF_F_IP_CSUM |		\
4050	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4051	 NETIF_F_IPV6_CSUM |		\
4052	 NETIF_F_RXHASH |		\
4053	 NETIF_F_NTUPLE |		\
4054	 NETIF_F_SG |			\
4055	 NETIF_F_RXCSUM |		\
4056	 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059	.is_vf = true,
4060	.mem_bar = efx_ef10_vf_mem_bar,
4061	.mem_map_size = efx_ef10_mem_map_size,
4062	.probe = efx_ef10_probe_vf,
4063	.remove = efx_ef10_remove,
4064	.dimension_resources = efx_ef10_dimension_resources,
4065	.init = efx_ef10_init_nic,
4066	.fini = efx_ef10_fini_nic,
4067	.map_reset_reason = efx_ef10_map_reset_reason,
4068	.map_reset_flags = efx_ef10_map_reset_flags,
4069	.reset = efx_ef10_reset,
4070	.probe_port = efx_mcdi_port_probe,
4071	.remove_port = efx_mcdi_port_remove,
4072	.fini_dmaq = efx_fini_dmaq,
4073	.prepare_flr = efx_ef10_prepare_flr,
4074	.finish_flr = efx_port_dummy_op_void,
4075	.describe_stats = efx_ef10_describe_stats,
4076	.update_stats = efx_ef10_update_stats_vf,
4077	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078	.start_stats = efx_port_dummy_op_void,
4079	.pull_stats = efx_port_dummy_op_void,
4080	.stop_stats = efx_port_dummy_op_void,
 
4081	.push_irq_moderation = efx_ef10_push_irq_moderation,
4082	.reconfigure_mac = efx_ef10_mac_reconfigure,
4083	.check_mac_fault = efx_mcdi_mac_check_fault,
4084	.reconfigure_port = efx_mcdi_port_reconfigure,
4085	.get_wol = efx_ef10_get_wol_vf,
4086	.set_wol = efx_ef10_set_wol_vf,
4087	.resume_wol = efx_port_dummy_op_void,
4088	.mcdi_request = efx_ef10_mcdi_request,
4089	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090	.mcdi_read_response = efx_ef10_mcdi_read_response,
4091	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093	.irq_enable_master = efx_port_dummy_op_void,
4094	.irq_test_generate = efx_ef10_irq_test_generate,
4095	.irq_disable_non_ev = efx_port_dummy_op_void,
4096	.irq_handle_msi = efx_ef10_msi_interrupt,
4097	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4098	.tx_probe = efx_ef10_tx_probe,
4099	.tx_init = efx_ef10_tx_init,
4100	.tx_remove = efx_mcdi_tx_remove,
4101	.tx_write = efx_ef10_tx_write,
4102	.tx_limit_len = efx_ef10_tx_limit_len,
4103	.tx_enqueue = __efx_enqueue_skb,
4104	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106	.rx_probe = efx_mcdi_rx_probe,
4107	.rx_init = efx_mcdi_rx_init,
4108	.rx_remove = efx_mcdi_rx_remove,
4109	.rx_write = efx_ef10_rx_write,
4110	.rx_defer_refill = efx_ef10_rx_defer_refill,
4111	.rx_packet = __efx_rx_packet,
4112	.ev_probe = efx_mcdi_ev_probe,
4113	.ev_init = efx_ef10_ev_init,
4114	.ev_fini = efx_mcdi_ev_fini,
4115	.ev_remove = efx_mcdi_ev_remove,
4116	.ev_process = efx_ef10_ev_process,
4117	.ev_read_ack = efx_ef10_ev_read_ack,
4118	.ev_test_generate = efx_ef10_ev_test_generate,
4119	.filter_table_probe = efx_ef10_filter_table_probe,
4120	.filter_table_restore = efx_mcdi_filter_table_restore,
4121	.filter_table_remove = efx_ef10_filter_table_remove,
4122	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123	.filter_insert = efx_mcdi_filter_insert,
4124	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4125	.filter_get_safe = efx_mcdi_filter_get_safe,
4126	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4127	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
 
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134	.mtd_probe = efx_port_dummy_op_int,
4135#endif
4136	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4142	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4143	.vswitching_remove = efx_ef10_vswitching_remove_vf,
 
4144#endif
4145	.get_mac_address = efx_ef10_get_mac_address_vf,
4146	.set_mac_address = efx_ef10_set_mac_address,
4147
4148	.get_phys_port_id = efx_ef10_get_phys_port_id,
4149	.revision = EFX_REV_HUNT_A0,
4150	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154	.can_rx_scatter = true,
4155	.always_rx_scatter = true,
4156	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4157	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158	.offload_features = EF10_OFFLOAD_FEATURES,
4159	.mcdi_max_ver = 2,
4160	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162			    1 << HWTSTAMP_FILTER_ALL,
4163	.rx_hash_key_size = 40,
4164	.check_caps = ef10_check_caps,
4165	.print_additional_fwver = efx_ef10_print_additional_fwver,
4166	.sensor_event = efx_mcdi_sensor_event,
4167	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171	.is_vf = false,
4172	.mem_bar = efx_ef10_pf_mem_bar,
4173	.mem_map_size = efx_ef10_mem_map_size,
4174	.probe = efx_ef10_probe_pf,
4175	.remove = efx_ef10_remove,
4176	.dimension_resources = efx_ef10_dimension_resources,
4177	.init = efx_ef10_init_nic,
4178	.fini = efx_ef10_fini_nic,
4179	.map_reset_reason = efx_ef10_map_reset_reason,
4180	.map_reset_flags = efx_ef10_map_reset_flags,
4181	.reset = efx_ef10_reset,
4182	.probe_port = efx_mcdi_port_probe,
4183	.remove_port = efx_mcdi_port_remove,
4184	.fini_dmaq = efx_fini_dmaq,
4185	.prepare_flr = efx_ef10_prepare_flr,
4186	.finish_flr = efx_port_dummy_op_void,
4187	.describe_stats = efx_ef10_describe_stats,
4188	.update_stats = efx_ef10_update_stats_pf,
4189	.start_stats = efx_mcdi_mac_start_stats,
4190	.pull_stats = efx_mcdi_mac_pull_stats,
4191	.stop_stats = efx_mcdi_mac_stop_stats,
 
4192	.push_irq_moderation = efx_ef10_push_irq_moderation,
4193	.reconfigure_mac = efx_ef10_mac_reconfigure,
4194	.check_mac_fault = efx_mcdi_mac_check_fault,
4195	.reconfigure_port = efx_mcdi_port_reconfigure,
4196	.get_wol = efx_ef10_get_wol,
4197	.set_wol = efx_ef10_set_wol,
4198	.resume_wol = efx_port_dummy_op_void,
4199	.get_fec_stats = efx_ef10_get_fec_stats,
4200	.test_chip = efx_ef10_test_chip,
4201	.test_nvram = efx_mcdi_nvram_test_all,
4202	.mcdi_request = efx_ef10_mcdi_request,
4203	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204	.mcdi_read_response = efx_ef10_mcdi_read_response,
4205	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207	.irq_enable_master = efx_port_dummy_op_void,
4208	.irq_test_generate = efx_ef10_irq_test_generate,
4209	.irq_disable_non_ev = efx_port_dummy_op_void,
4210	.irq_handle_msi = efx_ef10_msi_interrupt,
4211	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4212	.tx_probe = efx_ef10_tx_probe,
4213	.tx_init = efx_ef10_tx_init,
4214	.tx_remove = efx_mcdi_tx_remove,
4215	.tx_write = efx_ef10_tx_write,
4216	.tx_limit_len = efx_ef10_tx_limit_len,
4217	.tx_enqueue = __efx_enqueue_skb,
4218	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223	.rx_probe = efx_mcdi_rx_probe,
4224	.rx_init = efx_mcdi_rx_init,
4225	.rx_remove = efx_mcdi_rx_remove,
4226	.rx_write = efx_ef10_rx_write,
4227	.rx_defer_refill = efx_ef10_rx_defer_refill,
4228	.rx_packet = __efx_rx_packet,
4229	.ev_probe = efx_mcdi_ev_probe,
4230	.ev_init = efx_ef10_ev_init,
4231	.ev_fini = efx_mcdi_ev_fini,
4232	.ev_remove = efx_mcdi_ev_remove,
4233	.ev_process = efx_ef10_ev_process,
4234	.ev_read_ack = efx_ef10_ev_read_ack,
4235	.ev_test_generate = efx_ef10_ev_test_generate,
4236	.filter_table_probe = efx_ef10_filter_table_probe,
4237	.filter_table_restore = efx_mcdi_filter_table_restore,
4238	.filter_table_remove = efx_ef10_filter_table_remove,
4239	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240	.filter_insert = efx_mcdi_filter_insert,
4241	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4242	.filter_get_safe = efx_mcdi_filter_get_safe,
4243	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4244	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
 
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251	.mtd_probe = efx_ef10_mtd_probe,
4252	.mtd_rename = efx_mcdi_mtd_rename,
4253	.mtd_read = efx_mcdi_mtd_read,
4254	.mtd_erase = efx_mcdi_mtd_erase,
4255	.mtd_write = efx_mcdi_mtd_write,
4256	.mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4264	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4265#ifdef CONFIG_SFC_SRIOV
4266	.sriov_configure = efx_ef10_sriov_configure,
4267	.sriov_init = efx_ef10_sriov_init,
4268	.sriov_fini = efx_ef10_sriov_fini,
4269	.sriov_wanted = efx_ef10_sriov_wanted,
 
 
4270	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4276	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4277	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279	.get_mac_address = efx_ef10_get_mac_address_pf,
4280	.set_mac_address = efx_ef10_set_mac_address,
4281	.tso_versions = efx_ef10_tso_versions,
4282
4283	.get_phys_port_id = efx_ef10_get_phys_port_id,
4284	.revision = EFX_REV_HUNT_A0,
4285	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289	.can_rx_scatter = true,
4290	.always_rx_scatter = true,
4291	.option_descriptors = true,
4292	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4293	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294	.offload_features = EF10_OFFLOAD_FEATURES,
4295	.mcdi_max_ver = 2,
4296	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298			    1 << HWTSTAMP_FILTER_ALL,
4299	.rx_hash_key_size = 40,
4300	.check_caps = ef10_check_caps,
4301	.print_additional_fwver = efx_ef10_print_additional_fwver,
4302	.sensor_event = efx_mcdi_sensor_event,
4303	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
v4.10.11
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2012-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10#include "net_driver.h"
 
 
  11#include "ef10_regs.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "mcdi_pcol.h"
 
 
 
  15#include "nic.h"
 
  16#include "workarounds.h"
  17#include "selftest.h"
  18#include "ef10_sriov.h"
  19#include <linux/in.h>
  20#include <linux/jhash.h>
  21#include <linux/wait.h>
  22#include <linux/workqueue.h>
 
  23
  24/* Hardware control for EF10 architecture including 'Huntington'. */
  25
  26#define EFX_EF10_DRVGEN_EV		7
  27enum {
  28	EFX_EF10_TEST = 1,
  29	EFX_EF10_REFILL,
  30};
  31
  32/* The reserved RSS context value */
  33#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
  34/* The maximum size of a shared RSS context */
  35/* TODO: this should really be from the mcdi protocol export */
  36#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
  37
  38/* The filter table(s) are managed by firmware and we have write-only
  39 * access.  When removing filters we must identify them to the
  40 * firmware by a 64-bit handle, but this is too wide for Linux kernel
  41 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  42 * be able to tell in advance whether a requested insertion will
  43 * replace an existing filter.  Therefore we maintain a software hash
  44 * table, which should be at least as large as the hardware hash
  45 * table.
  46 *
  47 * Huntington has a single 8K filter table shared between all filter
  48 * types and both ports.
  49 */
  50#define HUNT_FILTER_TBL_ROWS 8192
  51
  52#define EFX_EF10_FILTER_ID_INVALID 0xffff
  53
  54#define EFX_EF10_FILTER_DEV_UC_MAX	32
  55#define EFX_EF10_FILTER_DEV_MC_MAX	256
  56
  57/* VLAN list entry */
  58struct efx_ef10_vlan {
  59	struct list_head list;
  60	u16 vid;
  61};
  62
  63/* Per-VLAN filters information */
  64struct efx_ef10_filter_vlan {
  65	struct list_head list;
  66	u16 vid;
  67	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
  68	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
  69	u16 ucdef;
  70	u16 bcast;
  71	u16 mcdef;
  72};
  73
  74struct efx_ef10_dev_addr {
  75	u8 addr[ETH_ALEN];
  76};
  77
  78struct efx_ef10_filter_table {
  79/* The MCDI match masks supported by this fw & hw, in order of priority */
  80	u32 rx_match_mcdi_flags[
  81		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
  82	unsigned int rx_match_count;
  83
  84	struct {
  85		unsigned long spec;	/* pointer to spec plus flag bits */
  86/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
  87 * used to mark and sweep MAC filters for the device address lists.
  88 */
  89#define EFX_EF10_FILTER_FLAG_BUSY	1UL
  90#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
  91#define EFX_EF10_FILTER_FLAGS		3UL
  92		u64 handle;		/* firmware handle */
  93	} *entry;
  94	wait_queue_head_t waitq;
  95/* Shadow of net_device address lists, guarded by mac_lock */
  96	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
  97	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
  98	int dev_uc_count;
  99	int dev_mc_count;
 100	bool uc_promisc;
 101	bool mc_promisc;
 102/* Whether in multicast promiscuous mode when last changed */
 103	bool mc_promisc_last;
 104	bool vlan_filter;
 105	struct list_head vlan_list;
 106};
 107
 108/* An arbitrary search limit for the software hash table */
 109#define EFX_EF10_FILTER_SEARCH_LIMIT 200
 110
 111static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
 112static void efx_ef10_filter_table_remove(struct efx_nic *efx);
 113static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
 114static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
 115					      struct efx_ef10_filter_vlan *vlan);
 116static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
 117
 118static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
 119{
 120	efx_dword_t reg;
 121
 122	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
 123	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
 124		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
 125}
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
 128{
 129	int bar;
 130
 131	bar = efx->type->mem_bar;
 132	return resource_size(&efx->pci_dev->resource[bar]);
 133}
 134
 135static bool efx_ef10_is_vf(struct efx_nic *efx)
 136{
 137	return efx->type->is_vf;
 138}
 139
 140static int efx_ef10_get_pf_index(struct efx_nic *efx)
 141{
 142	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 143	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 144	size_t outlen;
 145	int rc;
 146
 147	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 148			  sizeof(outbuf), &outlen);
 149	if (rc)
 150		return rc;
 151	if (outlen < sizeof(outbuf))
 152		return -EIO;
 153
 154	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
 155	return 0;
 156}
 157
 158#ifdef CONFIG_SFC_SRIOV
 159static int efx_ef10_get_vf_index(struct efx_nic *efx)
 160{
 161	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
 162	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 163	size_t outlen;
 164	int rc;
 165
 166	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
 167			  sizeof(outbuf), &outlen);
 168	if (rc)
 169		return rc;
 170	if (outlen < sizeof(outbuf))
 171		return -EIO;
 172
 173	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 174	return 0;
 175}
 176#endif
 177
 178static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 179{
 180	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
 181	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 182	size_t outlen;
 183	int rc;
 184
 185	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 186
 187	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 188			  outbuf, sizeof(outbuf), &outlen);
 189	if (rc)
 190		return rc;
 191	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 192		netif_err(efx, drv, efx->net_dev,
 193			  "unable to read datapath firmware capabilities\n");
 194		return -EIO;
 195	}
 196
 197	nic_data->datapath_caps =
 198		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 199
 200	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN)
 201		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 202				GET_CAPABILITIES_V2_OUT_FLAGS2);
 203	else
 
 
 204		nic_data->datapath_caps2 = 0;
 
 
 205
 206	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 207	 */
 208	nic_data->rx_dpcpu_fw_id =
 209		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 210	nic_data->tx_dpcpu_fw_id =
 211		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 212
 213	if (!(nic_data->datapath_caps &
 214	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 215		netif_err(efx, probe, efx->net_dev,
 216			  "current firmware does not support an RX prefix\n");
 217		return -ENODEV;
 218	}
 219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220	return 0;
 221}
 222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 224{
 225	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 226	int rc;
 227
 228	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 229			  outbuf, sizeof(outbuf), NULL);
 230	if (rc)
 231		return rc;
 232	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 233	return rc > 0 ? rc : -ERANGE;
 234}
 235
 236static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 237{
 238	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 239	unsigned int implemented;
 240	unsigned int enabled;
 241	int rc;
 242
 243	nic_data->workaround_35388 = false;
 244	nic_data->workaround_61265 = false;
 245
 246	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 247
 248	if (rc == -ENOSYS) {
 249		/* Firmware without GET_WORKAROUNDS - not a problem. */
 250		rc = 0;
 251	} else if (rc == 0) {
 252		/* Bug61265 workaround is always enabled if implemented. */
 253		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 254			nic_data->workaround_61265 = true;
 255
 256		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 257			nic_data->workaround_35388 = true;
 258		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 259			/* Workaround is implemented but not enabled.
 260			 * Try to enable it.
 261			 */
 262			rc = efx_mcdi_set_workaround(efx,
 263						     MC_CMD_WORKAROUND_BUG35388,
 264						     true, NULL);
 265			if (rc == 0)
 266				nic_data->workaround_35388 = true;
 267			/* If we failed to set the workaround just carry on. */
 268			rc = 0;
 269		}
 270	}
 271
 272	netif_dbg(efx, probe, efx->net_dev,
 273		  "workaround for bug 35388 is %sabled\n",
 274		  nic_data->workaround_35388 ? "en" : "dis");
 275	netif_dbg(efx, probe, efx->net_dev,
 276		  "workaround for bug 61265 is %sabled\n",
 277		  nic_data->workaround_61265 ? "en" : "dis");
 278
 279	return rc;
 280}
 281
 282static void efx_ef10_process_timer_config(struct efx_nic *efx,
 283					  const efx_dword_t *data)
 284{
 285	unsigned int max_count;
 286
 287	if (EFX_EF10_WORKAROUND_61265(efx)) {
 288		efx->timer_quantum_ns = MCDI_DWORD(data,
 289			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 290		efx->timer_max_ns = MCDI_DWORD(data,
 291			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 292	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 293		efx->timer_quantum_ns = MCDI_DWORD(data,
 294			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 295		max_count = MCDI_DWORD(data,
 296			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 297		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 298	} else {
 299		efx->timer_quantum_ns = MCDI_DWORD(data,
 300			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 301		max_count = MCDI_DWORD(data,
 302			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 303		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 304	}
 305
 306	netif_dbg(efx, probe, efx->net_dev,
 307		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 308		  efx->timer_quantum_ns, efx->timer_max_ns);
 309}
 310
 311static int efx_ef10_get_timer_config(struct efx_nic *efx)
 312{
 313	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 314	int rc;
 315
 316	rc = efx_ef10_get_timer_workarounds(efx);
 317	if (rc)
 318		return rc;
 319
 320	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 321				outbuf, sizeof(outbuf), NULL);
 322
 323	if (rc == 0) {
 324		efx_ef10_process_timer_config(efx, outbuf);
 325	} else if (rc == -ENOSYS || rc == -EPERM) {
 326		/* Not available - fall back to Huntington defaults. */
 327		unsigned int quantum;
 328
 329		rc = efx_ef10_get_sysclk_freq(efx);
 330		if (rc < 0)
 331			return rc;
 332
 333		quantum = 1536000 / rc; /* 1536 cycles */
 334		efx->timer_quantum_ns = quantum;
 335		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 336		rc = 0;
 337	} else {
 338		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 339				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 340				       NULL, 0, rc);
 341	}
 342
 343	return rc;
 344}
 345
 346static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 347{
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 349	size_t outlen;
 350	int rc;
 351
 352	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 353
 354	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 355			  outbuf, sizeof(outbuf), &outlen);
 356	if (rc)
 357		return rc;
 358	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 359		return -EIO;
 360
 361	ether_addr_copy(mac_address,
 362			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 363	return 0;
 364}
 365
 366static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 367{
 368	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 369	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 370	size_t outlen;
 371	int num_addrs, rc;
 372
 373	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 374		       EVB_PORT_ID_ASSIGNED);
 375	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 376			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 377
 378	if (rc)
 379		return rc;
 380	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 381		return -EIO;
 382
 383	num_addrs = MCDI_DWORD(outbuf,
 384			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 385
 386	WARN_ON(num_addrs != 1);
 387
 388	ether_addr_copy(mac_address,
 389			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 390
 391	return 0;
 392}
 393
 394static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
 395					       struct device_attribute *attr,
 396					       char *buf)
 397{
 398	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 399
 400	return sprintf(buf, "%d\n",
 401		       ((efx->mcdi->fn_flags) &
 402			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 403		       ? 1 : 0);
 404}
 405
 406static ssize_t efx_ef10_show_primary_flag(struct device *dev,
 407					  struct device_attribute *attr,
 408					  char *buf)
 409{
 410	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
 411
 412	return sprintf(buf, "%d\n",
 413		       ((efx->mcdi->fn_flags) &
 414			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 415		       ? 1 : 0);
 416}
 417
 418static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 419{
 420	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 421	struct efx_ef10_vlan *vlan;
 422
 423	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 424
 425	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 426		if (vlan->vid == vid)
 427			return vlan;
 428	}
 429
 430	return NULL;
 431}
 432
 433static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 434{
 435	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 436	struct efx_ef10_vlan *vlan;
 437	int rc;
 438
 439	mutex_lock(&nic_data->vlan_lock);
 440
 441	vlan = efx_ef10_find_vlan(efx, vid);
 442	if (vlan) {
 443		/* We add VID 0 on init. 8021q adds it on module init
 444		 * for all interfaces with VLAN filtring feature.
 445		 */
 446		if (vid == 0)
 447			goto done_unlock;
 448		netif_warn(efx, drv, efx->net_dev,
 449			   "VLAN %u already added\n", vid);
 450		rc = -EALREADY;
 451		goto fail_exist;
 452	}
 453
 454	rc = -ENOMEM;
 455	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 456	if (!vlan)
 457		goto fail_alloc;
 458
 459	vlan->vid = vid;
 460
 461	list_add_tail(&vlan->list, &nic_data->vlan_list);
 462
 463	if (efx->filter_state) {
 464		mutex_lock(&efx->mac_lock);
 465		down_write(&efx->filter_sem);
 466		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
 467		up_write(&efx->filter_sem);
 468		mutex_unlock(&efx->mac_lock);
 469		if (rc)
 470			goto fail_filter_add_vlan;
 471	}
 472
 473done_unlock:
 474	mutex_unlock(&nic_data->vlan_lock);
 475	return 0;
 476
 477fail_filter_add_vlan:
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480fail_alloc:
 481fail_exist:
 482	mutex_unlock(&nic_data->vlan_lock);
 483	return rc;
 484}
 485
 486static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 487				       struct efx_ef10_vlan *vlan)
 488{
 489	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 490
 491	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 492
 493	if (efx->filter_state) {
 494		down_write(&efx->filter_sem);
 495		efx_ef10_filter_del_vlan(efx, vlan->vid);
 496		up_write(&efx->filter_sem);
 497	}
 498
 499	list_del(&vlan->list);
 500	kfree(vlan);
 501}
 502
 503static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 504{
 505	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 506	struct efx_ef10_vlan *vlan;
 507	int rc = 0;
 508
 509	/* 8021q removes VID 0 on module unload for all interfaces
 510	 * with VLAN filtering feature. We need to keep it to receive
 511	 * untagged traffic.
 512	 */
 513	if (vid == 0)
 514		return 0;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517
 518	vlan = efx_ef10_find_vlan(efx, vid);
 519	if (!vlan) {
 520		netif_err(efx, drv, efx->net_dev,
 521			  "VLAN %u to be deleted not found\n", vid);
 522		rc = -ENOENT;
 523	} else {
 524		efx_ef10_del_vlan_internal(efx, vlan);
 525	}
 526
 527	mutex_unlock(&nic_data->vlan_lock);
 528
 529	return rc;
 530}
 531
 532static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 533{
 534	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 535	struct efx_ef10_vlan *vlan, *next_vlan;
 536
 537	mutex_lock(&nic_data->vlan_lock);
 538	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 539		efx_ef10_del_vlan_internal(efx, vlan);
 540	mutex_unlock(&nic_data->vlan_lock);
 541}
 542
 543static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
 544		   NULL);
 545static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
 546
 547static int efx_ef10_probe(struct efx_nic *efx)
 548{
 549	struct efx_ef10_nic_data *nic_data;
 550	struct net_device *net_dev = efx->net_dev;
 551	int i, rc;
 552
 553	/* We can have one VI for each 8K region.  However, until we
 554	 * use TX option descriptors we need two TX queues per channel.
 555	 */
 556	efx->max_channels = min_t(unsigned int,
 557				  EFX_MAX_CHANNELS,
 558				  efx_ef10_mem_map_size(efx) /
 559				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
 560	efx->max_tx_channels = efx->max_channels;
 561	if (WARN_ON(efx->max_channels == 0))
 562		return -EIO;
 563
 564	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 565	if (!nic_data)
 566		return -ENOMEM;
 567	efx->nic_data = nic_data;
 568
 569	/* we assume later that we can copy from this buffer in dwords */
 570	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 571
 572	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 573				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 574	if (rc)
 575		goto fail1;
 576
 577	/* Get the MC's warm boot count.  In case it's rebooting right
 578	 * now, be prepared to retry.
 579	 */
 580	i = 0;
 581	for (;;) {
 582		rc = efx_ef10_get_warm_boot_count(efx);
 583		if (rc >= 0)
 584			break;
 585		if (++i == 5)
 586			goto fail2;
 587		ssleep(1);
 588	}
 589	nic_data->warm_boot_count = rc;
 590
 591	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
 592
 593	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
 594
 595	/* In case we're recovering from a crash (kexec), we want to
 596	 * cancel any outstanding request by the previous user of this
 597	 * function.  We send a special message using the least
 598	 * significant bits of the 'high' (doorbell) register.
 599	 */
 600	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 601
 602	rc = efx_mcdi_init(efx);
 603	if (rc)
 604		goto fail2;
 605
 
 
 
 
 
 606	/* Reset (most) configuration for this function */
 607	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 608	if (rc)
 609		goto fail3;
 610
 611	/* Enable event logging */
 612	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 613	if (rc)
 614		goto fail3;
 615
 616	rc = device_create_file(&efx->pci_dev->dev,
 617				&dev_attr_link_control_flag);
 618	if (rc)
 619		goto fail3;
 620
 621	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 622	if (rc)
 623		goto fail4;
 624
 625	rc = efx_ef10_get_pf_index(efx);
 626	if (rc)
 627		goto fail5;
 628
 629	rc = efx_ef10_init_datapath_caps(efx);
 630	if (rc < 0)
 631		goto fail5;
 632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633	efx->rx_packet_len_offset =
 634		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 635
 
 
 
 
 636	rc = efx_mcdi_port_get_number(efx);
 637	if (rc < 0)
 638		goto fail5;
 639	efx->port_num = rc;
 640	net_dev->dev_port = rc;
 641
 642	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 643	if (rc)
 644		goto fail5;
 645
 646	rc = efx_ef10_get_timer_config(efx);
 647	if (rc < 0)
 648		goto fail5;
 649
 650	rc = efx_mcdi_mon_probe(efx);
 651	if (rc && rc != -EPERM)
 652		goto fail5;
 653
 654	efx_ptp_probe(efx, NULL);
 655
 656#ifdef CONFIG_SFC_SRIOV
 657	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 658		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 659		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 660
 661		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 662	} else
 663#endif
 664		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 665
 666	INIT_LIST_HEAD(&nic_data->vlan_list);
 667	mutex_init(&nic_data->vlan_lock);
 668
 669	/* Add unspecified VID to support VLAN filtering being disabled */
 670	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 671	if (rc)
 672		goto fail_add_vid_unspec;
 673
 674	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 675	 * traffic.  It is added automatically if 8021q module is loaded,
 676	 * but we can't rely on it since module may be not loaded.
 677	 */
 678	rc = efx_ef10_add_vlan(efx, 0);
 679	if (rc)
 680		goto fail_add_vid_0;
 681
 
 
 
 
 
 
 682	return 0;
 683
 684fail_add_vid_0:
 685	efx_ef10_cleanup_vlans(efx);
 686fail_add_vid_unspec:
 687	mutex_destroy(&nic_data->vlan_lock);
 688	efx_ptp_remove(efx);
 689	efx_mcdi_mon_remove(efx);
 690fail5:
 691	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 692fail4:
 693	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 694fail3:
 
 
 
 
 
 
 
 
 695	efx_mcdi_fini(efx);
 696fail2:
 697	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 698fail1:
 699	kfree(nic_data);
 700	efx->nic_data = NULL;
 701	return rc;
 702}
 703
 704static int efx_ef10_free_vis(struct efx_nic *efx)
 705{
 706	MCDI_DECLARE_BUF_ERR(outbuf);
 707	size_t outlen;
 708	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 709				    outbuf, sizeof(outbuf), &outlen);
 710
 711	/* -EALREADY means nothing to free, so ignore */
 712	if (rc == -EALREADY)
 713		rc = 0;
 714	if (rc)
 715		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 716				       rc);
 717	return rc;
 718}
 719
 720#ifdef EFX_USE_PIO
 721
 722static void efx_ef10_free_piobufs(struct efx_nic *efx)
 723{
 724	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 725	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 726	unsigned int i;
 727	int rc;
 728
 729	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 730
 731	for (i = 0; i < nic_data->n_piobufs; i++) {
 732		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 733			       nic_data->piobuf_handle[i]);
 734		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 735				  NULL, 0, NULL);
 736		WARN_ON(rc);
 737	}
 738
 739	nic_data->n_piobufs = 0;
 740}
 741
 742static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 743{
 744	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 745	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 746	unsigned int i;
 747	size_t outlen;
 748	int rc = 0;
 749
 750	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 751
 752	for (i = 0; i < n; i++) {
 753		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 754					outbuf, sizeof(outbuf), &outlen);
 755		if (rc) {
 756			/* Don't display the MC error if we didn't have space
 757			 * for a VF.
 758			 */
 759			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 760				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 761						       0, outbuf, outlen, rc);
 762			break;
 763		}
 764		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 765			rc = -EIO;
 766			break;
 767		}
 768		nic_data->piobuf_handle[i] =
 769			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 770		netif_dbg(efx, probe, efx->net_dev,
 771			  "allocated PIO buffer %u handle %x\n", i,
 772			  nic_data->piobuf_handle[i]);
 773	}
 774
 775	nic_data->n_piobufs = i;
 776	if (rc)
 777		efx_ef10_free_piobufs(efx);
 778	return rc;
 779}
 780
 781static int efx_ef10_link_piobufs(struct efx_nic *efx)
 782{
 783	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 784	_MCDI_DECLARE_BUF(inbuf,
 785			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
 786			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
 787	struct efx_channel *channel;
 788	struct efx_tx_queue *tx_queue;
 789	unsigned int offset, index;
 790	int rc;
 791
 792	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 793	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 794
 795	memset(inbuf, 0, sizeof(inbuf));
 796
 797	/* Link a buffer to each VI in the write-combining mapping */
 798	for (index = 0; index < nic_data->n_piobufs; ++index) {
 799		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 800			       nic_data->piobuf_handle[index]);
 801		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 802			       nic_data->pio_write_vi_base + index);
 803		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 804				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 805				  NULL, 0, NULL);
 806		if (rc) {
 807			netif_err(efx, drv, efx->net_dev,
 808				  "failed to link VI %u to PIO buffer %u (%d)\n",
 809				  nic_data->pio_write_vi_base + index, index,
 810				  rc);
 811			goto fail;
 812		}
 813		netif_dbg(efx, probe, efx->net_dev,
 814			  "linked VI %u to PIO buffer %u\n",
 815			  nic_data->pio_write_vi_base + index, index);
 816	}
 817
 818	/* Link a buffer to each TX queue */
 819	efx_for_each_channel(channel, efx) {
 
 
 
 
 
 
 
 820		efx_for_each_channel_tx_queue(tx_queue, channel) {
 821			/* We assign the PIO buffers to queues in
 822			 * reverse order to allow for the following
 823			 * special case.
 824			 */
 825			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 826				   tx_queue->channel->channel - 1) *
 827				  efx_piobuf_size);
 828			index = offset / ER_DZ_TX_PIOBUF_SIZE;
 829			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
 830
 831			/* When the host page size is 4K, the first
 832			 * host page in the WC mapping may be within
 833			 * the same VI page as the last TX queue.  We
 834			 * can only link one buffer to each VI.
 835			 */
 836			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 837				BUG_ON(index != 0);
 838				rc = 0;
 839			} else {
 840				MCDI_SET_DWORD(inbuf,
 841					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 842					       nic_data->piobuf_handle[index]);
 843				MCDI_SET_DWORD(inbuf,
 844					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 845					       tx_queue->queue);
 846				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 847						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 848						  NULL, 0, NULL);
 849			}
 850
 851			if (rc) {
 852				/* This is non-fatal; the TX path just
 853				 * won't use PIO for this queue
 854				 */
 855				netif_err(efx, drv, efx->net_dev,
 856					  "failed to link VI %u to PIO buffer %u (%d)\n",
 857					  tx_queue->queue, index, rc);
 858				tx_queue->piobuf = NULL;
 859			} else {
 860				tx_queue->piobuf =
 861					nic_data->pio_write_base +
 862					index * EFX_VI_PAGE_SIZE + offset;
 863				tx_queue->piobuf_offset = offset;
 864				netif_dbg(efx, probe, efx->net_dev,
 865					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 866					  tx_queue->queue, index,
 867					  tx_queue->piobuf_offset,
 868					  tx_queue->piobuf);
 869			}
 870		}
 871	}
 872
 873	return 0;
 874
 875fail:
 
 
 
 
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_ef10_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_ef10_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 
 
 
 
 
 
 
 
 
 964	efx_mcdi_fini(efx);
 965	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 966	kfree(nic_data);
 967}
 968
 969static int efx_ef10_probe_pf(struct efx_nic *efx)
 970{
 971	return efx_ef10_probe(efx);
 972}
 973
 974int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 975			    u32 *port_flags, u32 *vadaptor_flags,
 976			    unsigned int *vlan_tags)
 977{
 978	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 979	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 980	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 981	size_t outlen;
 982	int rc;
 983
 984	if (nic_data->datapath_caps &
 985	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 986		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 987			       port_id);
 988
 989		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 990				  outbuf, sizeof(outbuf), &outlen);
 991		if (rc)
 992			return rc;
 993
 994		if (outlen < sizeof(outbuf)) {
 995			rc = -EIO;
 996			return rc;
 997		}
 998	}
 999
1000	if (port_flags)
1001		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1002	if (vadaptor_flags)
1003		*vadaptor_flags =
1004			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1005	if (vlan_tags)
1006		*vlan_tags =
1007			MCDI_DWORD(outbuf,
1008				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1009
1010	return 0;
1011}
1012
1013int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1014{
1015	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1016
1017	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1018	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1019			    NULL, 0, NULL);
1020}
1021
1022int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vport_add_mac(struct efx_nic *efx,
1032			   unsigned int port_id, u8 *mac)
1033{
1034	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1035
1036	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1037	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1038
1039	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1040			    sizeof(inbuf), NULL, 0, NULL);
1041}
1042
1043int efx_ef10_vport_del_mac(struct efx_nic *efx,
1044			   unsigned int port_id, u8 *mac)
1045{
1046	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1047
1048	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1049	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1050
1051	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1052			    sizeof(inbuf), NULL, 0, NULL);
1053}
1054
1055#ifdef CONFIG_SFC_SRIOV
1056static int efx_ef10_probe_vf(struct efx_nic *efx)
1057{
1058	int rc;
1059	struct pci_dev *pci_dev_pf;
1060
1061	/* If the parent PF has no VF data structure, it doesn't know about this
1062	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1063	 * if the PF driver is unloaded while the VF is assigned to a guest.
 
1064	 */
1065	pci_dev_pf = efx->pci_dev->physfn;
1066	if (pci_dev_pf) {
1067		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1068		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1069
1070		if (!nic_data_pf->vf) {
1071			netif_info(efx, drv, efx->net_dev,
1072				   "The VF cannot link to its parent PF; "
1073				   "please destroy and re-create the VF\n");
1074			return -EBUSY;
1075		}
1076	}
1077
1078	rc = efx_ef10_probe(efx);
1079	if (rc)
1080		return rc;
1081
1082	rc = efx_ef10_get_vf_index(efx);
1083	if (rc)
1084		goto fail;
1085
1086	if (efx->pci_dev->is_virtfn) {
1087		if (efx->pci_dev->physfn) {
1088			struct efx_nic *efx_pf =
1089				pci_get_drvdata(efx->pci_dev->physfn);
1090			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1091			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1092
1093			nic_data_p->vf[nic_data->vf_index].efx = efx;
1094			nic_data_p->vf[nic_data->vf_index].pci_dev =
1095				efx->pci_dev;
1096		} else
1097			netif_info(efx, drv, efx->net_dev,
1098				   "Could not get the PF id from VF\n");
1099	}
1100
1101	return 0;
1102
1103fail:
1104	efx_ef10_remove(efx);
1105	return rc;
1106}
1107#else
1108static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1109{
1110	return 0;
1111}
1112#endif
1113
1114static int efx_ef10_alloc_vis(struct efx_nic *efx,
1115			      unsigned int min_vis, unsigned int max_vis)
1116{
1117	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
1118	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
1119	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1120	size_t outlen;
1121	int rc;
1122
1123	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
1124	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
1125	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
1126			  outbuf, sizeof(outbuf), &outlen);
1127	if (rc != 0)
1128		return rc;
1129
1130	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
1131		return -EIO;
1132
1133	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
1134		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
1135
1136	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
1137	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
1138	return 0;
1139}
1140
1141/* Note that the failure path of this function does not free
1142 * resources, as this will be done by efx_ef10_remove().
1143 */
1144static int efx_ef10_dimension_resources(struct efx_nic *efx)
1145{
 
 
 
1146	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1147	unsigned int uc_mem_map_size, wc_mem_map_size;
1148	unsigned int min_vis = max(EFX_TXQ_TYPES,
1149				   efx_separate_tx_channels ? 2 : 1);
1150	unsigned int channel_vis, pio_write_vi_base, max_vis;
1151	void __iomem *membase;
1152	int rc;
1153
1154	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
 
 
 
 
 
 
 
 
 
1155
1156#ifdef EFX_USE_PIO
1157	/* Try to allocate PIO buffers if wanted and if the full
1158	 * number of PIO buffers would be sufficient to allocate one
1159	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1160	 * are only a small number of PIO buffers shared between all
1161	 * functions of the controller.
1162	 */
1163	if (efx_piobuf_size != 0 &&
1164	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1165	    efx->n_tx_channels) {
1166		unsigned int n_piobufs =
1167			DIV_ROUND_UP(efx->n_tx_channels,
1168				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
1169
1170		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1171		if (rc)
 
 
 
 
 
 
1172			netif_err(efx, probe, efx->net_dev,
1173				  "failed to allocate PIO buffers (%d)\n", rc);
1174		else
1175			netif_dbg(efx, probe, efx->net_dev,
1176				  "allocated %u PIO buffers\n", n_piobufs);
1177	}
1178#else
1179	nic_data->n_piobufs = 0;
1180#endif
1181
1182	/* PIO buffers should be mapped with write-combining enabled,
1183	 * and we want to make single UC and WC mappings rather than
1184	 * several of each (in fact that's the only option if host
1185	 * page size is >4K).  So we may allocate some extra VIs just
1186	 * for writing PIO buffers through.
1187	 *
1188	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1189	 * first half of the next VI.  Then the WC mapping begins with
1190	 * the second half of this last VI.
1191	 */
1192	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1193				     ER_DZ_TX_PIOBUF);
1194	if (nic_data->n_piobufs) {
1195		/* pio_write_vi_base rounds down to give the number of complete
1196		 * VIs inside the UC mapping.
1197		 */
1198		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
1199		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1200					       nic_data->n_piobufs) *
1201					      EFX_VI_PAGE_SIZE) -
1202				   uc_mem_map_size);
1203		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1204	} else {
1205		pio_write_vi_base = 0;
1206		wc_mem_map_size = 0;
1207		max_vis = channel_vis;
1208	}
1209
1210	/* In case the last attached driver failed to free VIs, do it now */
1211	rc = efx_ef10_free_vis(efx);
1212	if (rc != 0)
1213		return rc;
1214
1215	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1216	if (rc != 0)
1217		return rc;
1218
1219	if (nic_data->n_allocated_vis < channel_vis) {
1220		netif_info(efx, drv, efx->net_dev,
1221			   "Could not allocate enough VIs to satisfy RSS"
1222			   " requirements. Performance may not be optimal.\n");
1223		/* We didn't get the VIs to populate our channels.
1224		 * We could keep what we got but then we'd have more
1225		 * interrupts than we need.
1226		 * Instead calculate new max_channels and restart
1227		 */
1228		efx->max_channels = nic_data->n_allocated_vis;
1229		efx->max_tx_channels =
1230			nic_data->n_allocated_vis / EFX_TXQ_TYPES;
1231
1232		efx_ef10_free_vis(efx);
1233		return -EAGAIN;
1234	}
1235
1236	/* If we didn't get enough VIs to map all the PIO buffers, free the
1237	 * PIO buffers
1238	 */
1239	if (nic_data->n_piobufs &&
1240	    nic_data->n_allocated_vis <
1241	    pio_write_vi_base + nic_data->n_piobufs) {
1242		netif_dbg(efx, probe, efx->net_dev,
1243			  "%u VIs are not sufficient to map %u PIO buffers\n",
1244			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1245		efx_ef10_free_piobufs(efx);
1246	}
1247
1248	/* Shrink the original UC mapping of the memory BAR */
1249	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
1250	if (!membase) {
1251		netif_err(efx, probe, efx->net_dev,
1252			  "could not shrink memory BAR to %x\n",
1253			  uc_mem_map_size);
1254		return -ENOMEM;
1255	}
1256	iounmap(efx->membase);
1257	efx->membase = membase;
1258
1259	/* Set up the WC mapping if needed */
1260	if (wc_mem_map_size) {
1261		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1262						  uc_mem_map_size,
1263						  wc_mem_map_size);
1264		if (!nic_data->wc_membase) {
1265			netif_err(efx, probe, efx->net_dev,
1266				  "could not allocate WC mapping of size %x\n",
1267				  wc_mem_map_size);
1268			return -ENOMEM;
1269		}
1270		nic_data->pio_write_vi_base = pio_write_vi_base;
1271		nic_data->pio_write_base =
1272			nic_data->wc_membase +
1273			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
1274			 uc_mem_map_size);
1275
1276		rc = efx_ef10_link_piobufs(efx);
1277		if (rc)
1278			efx_ef10_free_piobufs(efx);
1279	}
1280
1281	netif_dbg(efx, probe, efx->net_dev,
1282		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1283		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1284		  nic_data->wc_membase, wc_mem_map_size);
1285
1286	return 0;
1287}
1288
 
 
 
 
 
 
 
 
 
 
1289static int efx_ef10_init_nic(struct efx_nic *efx)
1290{
1291	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
1292	int rc;
1293
1294	if (nic_data->must_check_datapath_caps) {
1295		rc = efx_ef10_init_datapath_caps(efx);
1296		if (rc)
1297			return rc;
1298		nic_data->must_check_datapath_caps = false;
1299	}
1300
1301	if (nic_data->must_realloc_vis) {
1302		/* We cannot let the number of VIs change now */
1303		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1304					nic_data->n_allocated_vis);
1305		if (rc)
1306			return rc;
1307		nic_data->must_realloc_vis = false;
1308	}
1309
 
 
 
 
 
1310	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1311		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1312		if (rc == 0) {
1313			rc = efx_ef10_link_piobufs(efx);
1314			if (rc)
1315				efx_ef10_free_piobufs(efx);
1316		}
1317
1318		/* Log an error on failure, but this is non-fatal */
1319		if (rc)
 
 
 
 
 
 
1320			netif_err(efx, drv, efx->net_dev,
1321				  "failed to restore PIO buffers (%d)\n", rc);
1322		nic_data->must_restore_piobufs = false;
1323	}
1324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325	/* don't fail init if RSS setup doesn't work */
1326	rc = efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
1327	efx->rss_active = (rc == 0);
1328
1329	return 0;
1330}
1331
1332static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
1333{
1334	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1335#ifdef CONFIG_SFC_SRIOV
1336	unsigned int i;
1337#endif
1338
1339	/* All our allocations have been reset */
1340	nic_data->must_realloc_vis = true;
1341	nic_data->must_restore_filters = true;
1342	nic_data->must_restore_piobufs = true;
1343	efx_ef10_forget_old_piobufs(efx);
1344	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1345
1346	/* Driver-created vswitches and vports must be re-created */
1347	nic_data->must_probe_vswitching = true;
1348	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1349#ifdef CONFIG_SFC_SRIOV
1350	if (nic_data->vf)
1351		for (i = 0; i < efx->vf_count; i++)
1352			nic_data->vf[i].vport_id = 0;
1353#endif
1354}
1355
1356static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1357{
1358	if (reason == RESET_TYPE_MC_FAILURE)
1359		return RESET_TYPE_DATAPATH;
1360
1361	return efx_mcdi_map_reset_reason(reason);
1362}
1363
1364static int efx_ef10_map_reset_flags(u32 *flags)
1365{
1366	enum {
1367		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1368				   ETH_RESET_SHARED_SHIFT),
1369		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1370				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1371				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1372				 ETH_RESET_SHARED_SHIFT)
1373	};
1374
1375	/* We assume for now that our PCI function is permitted to
1376	 * reset everything.
1377	 */
1378
1379	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1380		*flags &= ~EF10_RESET_MC;
1381		return RESET_TYPE_WORLD;
1382	}
1383
1384	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1385		*flags &= ~EF10_RESET_PORT;
1386		return RESET_TYPE_ALL;
1387	}
1388
1389	/* no invisible reset implemented */
1390
1391	return -EINVAL;
1392}
1393
1394static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1395{
1396	int rc = efx_mcdi_reset(efx, reset_type);
1397
1398	/* Unprivileged functions return -EPERM, but need to return success
1399	 * here so that the datapath is brought back up.
1400	 */
1401	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1402		rc = 0;
1403
1404	/* If it was a port reset, trigger reallocation of MC resources.
1405	 * Note that on an MC reset nothing needs to be done now because we'll
1406	 * detect the MC reset later and handle it then.
1407	 * For an FLR, we never get an MC reset event, but the MC has reset all
1408	 * resources assigned to us, so we have to trigger reallocation now.
1409	 */
1410	if ((reset_type == RESET_TYPE_ALL ||
1411	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1412		efx_ef10_reset_mc_allocations(efx);
1413	return rc;
1414}
1415
1416#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1417	[EF10_STAT_ ## ext_name] =				\
1418	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1419#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1420	[EF10_STAT_ ## int_name] =				\
1421	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1422#define EF10_OTHER_STAT(ext_name)				\
1423	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1424#define GENERIC_SW_STAT(ext_name)				\
1425	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1426
1427static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1428	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1429	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1430	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1431	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1432	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1433	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1434	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1435	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1436	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1437	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1438	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1439	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1440	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1441	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1442	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1443	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1444	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1445	EF10_OTHER_STAT(port_rx_good_bytes),
1446	EF10_OTHER_STAT(port_rx_bad_bytes),
1447	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1448	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1449	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1450	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1451	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1452	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1453	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1454	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1455	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1456	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1457	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1458	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1459	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1460	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1461	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1462	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1463	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1464	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1465	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1466	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1467	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1468	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1469	GENERIC_SW_STAT(rx_nodesc_trunc),
1470	GENERIC_SW_STAT(rx_noskb_drops),
1471	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1472	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1473	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1474	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1475	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1476	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1477	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1478	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1479	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1480	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1481	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1482	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1483	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1484	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1485	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1486	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1487	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1488	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1489	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1490	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1491	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1492	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1493	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1494	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1495	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1496	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1497	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1498	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1499	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1500	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501};
1502
1503#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1504			       (1ULL << EF10_STAT_port_tx_packets) |	\
1505			       (1ULL << EF10_STAT_port_tx_pause) |	\
1506			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1507			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1508			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1509			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1510			       (1ULL <<                                 \
1511				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1512			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1513			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1514			       (1ULL << EF10_STAT_port_rx_packets) |	\
1515			       (1ULL << EF10_STAT_port_rx_good) |	\
1516			       (1ULL << EF10_STAT_port_rx_bad) |	\
1517			       (1ULL << EF10_STAT_port_rx_pause) |	\
1518			       (1ULL << EF10_STAT_port_rx_control) |	\
1519			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1520			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1521			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1522			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1523			       (1ULL << EF10_STAT_port_rx_64) |		\
1524			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1525			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1526			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1527			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1528			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1529			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1530			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1531			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1532			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1533			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1534			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1535			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1536
1537/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1538 * For a 10G/40G switchable port we do not expose these because they might
1539 * not include all the packets they should.
1540 * On 8000 series NICs these statistics are always provided.
1541 */
1542#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1543				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1544				 (1ULL << EF10_STAT_port_tx_64) |	\
1545				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1546				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1547				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1548				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1549				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1550				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1551
1552/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1553 * switchable port we do expose these because the errors will otherwise
1554 * be silent.
1555 */
1556#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1557				  (1ULL << EF10_STAT_port_rx_length_error))
1558
1559/* These statistics are only provided if the firmware supports the
1560 * capability PM_AND_RXDP_COUNTERS.
1561 */
1562#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1563	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1564	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1565	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1566	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1567	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1568	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1569	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1570	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1571	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1572	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1573	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1574	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1577{
1578	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1579	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1580	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1581
1582	if (!(efx->mcdi->fn_flags &
1583	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1584		return 0;
1585
1586	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1587		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1588		/* 8000 series have everything even at 40G */
1589		if (nic_data->datapath_caps2 &
1590		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1591			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1592	} else {
1593		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1594	}
1595
1596	if (nic_data->datapath_caps &
1597	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1598		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1599
1600	return raw_mask;
1601}
1602
1603static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1604{
1605	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1606	u64 raw_mask[2];
1607
1608	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1609
1610	/* Only show vadaptor stats when EVB capability is present */
1611	if (nic_data->datapath_caps &
1612	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1613		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1614		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1615	} else {
1616		raw_mask[1] = 0;
1617	}
 
 
 
 
 
 
 
 
 
 
 
 
1618
1619#if BITS_PER_LONG == 64
1620	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1621	mask[0] = raw_mask[0];
1622	mask[1] = raw_mask[1];
1623#else
1624	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1625	mask[0] = raw_mask[0] & 0xffffffff;
1626	mask[1] = raw_mask[0] >> 32;
1627	mask[2] = raw_mask[1] & 0xffffffff;
1628#endif
1629}
1630
1631static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1632{
1633	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1634
1635	efx_ef10_get_stat_mask(efx, mask);
1636	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1637				      mask, names);
1638}
1639
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1640static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1641					   struct rtnl_link_stats64 *core_stats)
1642{
1643	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1644	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1645	u64 *stats = nic_data->stats;
1646	size_t stats_count = 0, index;
1647
1648	efx_ef10_get_stat_mask(efx, mask);
1649
1650	if (full_stats) {
1651		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1652			if (efx_ef10_stat_desc[index].name) {
1653				*full_stats++ = stats[index];
1654				++stats_count;
1655			}
1656		}
1657	}
1658
1659	if (!core_stats)
1660		return stats_count;
1661
1662	if (nic_data->datapath_caps &
1663			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1664		/* Use vadaptor stats. */
1665		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1666					 stats[EF10_STAT_rx_multicast] +
1667					 stats[EF10_STAT_rx_broadcast];
1668		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1669					 stats[EF10_STAT_tx_multicast] +
1670					 stats[EF10_STAT_tx_broadcast];
1671		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1672				       stats[EF10_STAT_rx_multicast_bytes] +
1673				       stats[EF10_STAT_rx_broadcast_bytes];
1674		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1675				       stats[EF10_STAT_tx_multicast_bytes] +
1676				       stats[EF10_STAT_tx_broadcast_bytes];
1677		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1678					 stats[GENERIC_STAT_rx_noskb_drops];
1679		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1680		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1681		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1682		core_stats->rx_errors = core_stats->rx_crc_errors;
1683		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1684	} else {
1685		/* Use port stats. */
1686		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1687		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1688		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1689		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1690		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1691					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1692					 stats[GENERIC_STAT_rx_noskb_drops];
1693		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1694		core_stats->rx_length_errors =
1695				stats[EF10_STAT_port_rx_gtjumbo] +
1696				stats[EF10_STAT_port_rx_length_error];
1697		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1698		core_stats->rx_frame_errors =
1699				stats[EF10_STAT_port_rx_align_error];
1700		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1701		core_stats->rx_errors = (core_stats->rx_length_errors +
1702					 core_stats->rx_crc_errors +
1703					 core_stats->rx_frame_errors);
1704	}
1705
1706	return stats_count;
1707}
1708
1709static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
 
1710{
1711	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1712	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1713	__le64 generation_start, generation_end;
1714	u64 *stats = nic_data->stats;
1715	__le64 *dma_stats;
1716
1717	efx_ef10_get_stat_mask(efx, mask);
1718
1719	dma_stats = efx->stats_buffer.addr;
1720
1721	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1722	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1723		return 0;
1724	rmb();
1725	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1726			     stats, efx->stats_buffer.addr, false);
1727	rmb();
1728	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1729	if (generation_end != generation_start)
1730		return -EAGAIN;
1731
1732	/* Update derived statistics */
1733	efx_nic_fix_nodesc_drop_stat(efx,
1734				     &stats[EF10_STAT_port_rx_nodesc_drops]);
 
 
 
 
 
1735	stats[EF10_STAT_port_rx_good_bytes] =
1736		stats[EF10_STAT_port_rx_bytes] -
1737		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
 
 
 
 
 
 
 
 
 
1738	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1739			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1740	efx_update_sw_stats(efx, stats);
1741	return 0;
1742}
1743
1744
1745static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1746				       struct rtnl_link_stats64 *core_stats)
1747{
1748	int retry;
1749
1750	/* If we're unlucky enough to read statistics during the DMA, wait
1751	 * up to 10ms for it to finish (typically takes <500us)
1752	 */
1753	for (retry = 0; retry < 100; ++retry) {
1754		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1755			break;
1756		udelay(100);
1757	}
1758
1759	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1760}
1761
1762static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
 
1763{
1764	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1765	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1766	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767	__le64 generation_start, generation_end;
1768	u64 *stats = nic_data->stats;
1769	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1770	struct efx_buffer stats_buf;
1771	__le64 *dma_stats;
1772	int rc;
1773
1774	spin_unlock_bh(&efx->stats_lock);
1775
1776	if (in_interrupt()) {
1777		/* If in atomic context, cannot update stats.  Just update the
1778		 * software stats and return so the caller can continue.
1779		 */
1780		spin_lock_bh(&efx->stats_lock);
1781		efx_update_sw_stats(efx, stats);
1782		return 0;
1783	}
1784
1785	efx_ef10_get_stat_mask(efx, mask);
1786
1787	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1788	if (rc) {
1789		spin_lock_bh(&efx->stats_lock);
1790		return rc;
1791	}
1792
1793	dma_stats = stats_buf.addr;
1794	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1795
1796	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1797	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1798			      MAC_STATS_IN_DMA, 1);
1799	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1800	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1801
1802	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1803				NULL, 0, NULL);
1804	spin_lock_bh(&efx->stats_lock);
1805	if (rc) {
1806		/* Expect ENOENT if DMA queues have not been set up */
1807		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1808			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1809					       sizeof(inbuf), NULL, 0, rc);
1810		goto out;
1811	}
1812
1813	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1814	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1815		WARN_ON_ONCE(1);
1816		goto out;
1817	}
1818	rmb();
1819	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1820			     stats, stats_buf.addr, false);
1821	rmb();
1822	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1823	if (generation_end != generation_start) {
1824		rc = -EAGAIN;
1825		goto out;
1826	}
1827
1828	efx_update_sw_stats(efx, stats);
1829out:
 
 
1830	efx_nic_free_buffer(efx, &stats_buf);
 
1831	return rc;
1832}
1833
1834static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1835				       struct rtnl_link_stats64 *core_stats)
1836{
1837	if (efx_ef10_try_update_nic_stats_vf(efx))
1838		return 0;
1839
1840	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1841}
1842
 
 
 
 
 
 
 
 
 
 
 
 
1843static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1844{
1845	struct efx_nic *efx = channel->efx;
1846	unsigned int mode, usecs;
1847	efx_dword_t timer_cmd;
1848
1849	if (channel->irq_moderation_us) {
1850		mode = 3;
1851		usecs = channel->irq_moderation_us;
1852	} else {
1853		mode = 0;
1854		usecs = 0;
1855	}
1856
1857	if (EFX_EF10_WORKAROUND_61265(efx)) {
1858		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1859		unsigned int ns = usecs * 1000;
1860
1861		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1862			       channel->channel);
1863		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1864		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1865		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1866
1867		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1868				   inbuf, sizeof(inbuf), 0, NULL, 0);
1869	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
1870		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1871
1872		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1873				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1874				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1875				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1876		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1877				channel->channel);
1878	} else {
1879		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1880
1881		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1882				     ERF_DZ_TC_TIMER_VAL, ticks);
 
1883		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1884				channel->channel);
1885	}
1886}
1887
1888static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1889				struct ethtool_wolinfo *wol) {}
1890
1891static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1892{
1893	return -EOPNOTSUPP;
1894}
1895
1896static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1897{
1898	wol->supported = 0;
1899	wol->wolopts = 0;
1900	memset(&wol->sopass, 0, sizeof(wol->sopass));
1901}
1902
1903static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1904{
1905	if (type != 0)
1906		return -EINVAL;
1907	return 0;
1908}
1909
1910static void efx_ef10_mcdi_request(struct efx_nic *efx,
1911				  const efx_dword_t *hdr, size_t hdr_len,
1912				  const efx_dword_t *sdu, size_t sdu_len)
1913{
1914	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1915	u8 *pdu = nic_data->mcdi_buf.addr;
1916
1917	memcpy(pdu, hdr, hdr_len);
1918	memcpy(pdu + hdr_len, sdu, sdu_len);
1919	wmb();
1920
1921	/* The hardware provides 'low' and 'high' (doorbell) registers
1922	 * for passing the 64-bit address of an MCDI request to
1923	 * firmware.  However the dwords are swapped by firmware.  The
1924	 * least significant bits of the doorbell are then 0 for all
1925	 * MCDI requests due to alignment.
1926	 */
1927	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1928		    ER_DZ_MC_DB_LWRD);
1929	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1930		    ER_DZ_MC_DB_HWRD);
1931}
1932
1933static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1934{
1935	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1936	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1937
1938	rmb();
1939	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1940}
1941
1942static void
1943efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1944			    size_t offset, size_t outlen)
1945{
1946	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1947	const u8 *pdu = nic_data->mcdi_buf.addr;
1948
1949	memcpy(outbuf, pdu + offset, outlen);
1950}
1951
1952static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
1953{
1954	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1955
1956	/* All our allocations have been reset */
1957	efx_ef10_reset_mc_allocations(efx);
1958
1959	/* The datapath firmware might have been changed */
1960	nic_data->must_check_datapath_caps = true;
1961
1962	/* MAC statistics have been cleared on the NIC; clear the local
1963	 * statistic that we update with efx_update_diff_stat().
1964	 */
1965	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1966}
1967
1968static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1969{
1970	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1971	int rc;
1972
1973	rc = efx_ef10_get_warm_boot_count(efx);
1974	if (rc < 0) {
1975		/* The firmware is presumably in the process of
1976		 * rebooting.  However, we are supposed to report each
1977		 * reboot just once, so we must only do that once we
1978		 * can read and store the updated warm boot count.
1979		 */
1980		return 0;
1981	}
1982
1983	if (rc == nic_data->warm_boot_count)
1984		return 0;
1985
1986	nic_data->warm_boot_count = rc;
1987	efx_ef10_mcdi_reboot_detected(efx);
1988
1989	return -EIO;
1990}
1991
1992/* Handle an MSI interrupt
1993 *
1994 * Handle an MSI hardware interrupt.  This routine schedules event
1995 * queue processing.  No interrupt acknowledgement cycle is necessary.
1996 * Also, we never need to check that the interrupt is for us, since
1997 * MSI interrupts cannot be shared.
1998 */
1999static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2000{
2001	struct efx_msi_context *context = dev_id;
2002	struct efx_nic *efx = context->efx;
2003
2004	netif_vdbg(efx, intr, efx->net_dev,
2005		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2006
2007	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
2008		/* Note test interrupts */
2009		if (context->index == efx->irq_level)
2010			efx->last_irq_cpu = raw_smp_processor_id();
2011
2012		/* Schedule processing of the channel */
2013		efx_schedule_channel_irq(efx->channel[context->index]);
2014	}
2015
2016	return IRQ_HANDLED;
2017}
2018
2019static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2020{
2021	struct efx_nic *efx = dev_id;
2022	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
2023	struct efx_channel *channel;
2024	efx_dword_t reg;
2025	u32 queues;
2026
2027	/* Read the ISR which also ACKs the interrupts */
2028	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2029	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2030
2031	if (queues == 0)
2032		return IRQ_NONE;
2033
2034	if (likely(soft_enabled)) {
2035		/* Note test interrupts */
2036		if (queues & (1U << efx->irq_level))
2037			efx->last_irq_cpu = raw_smp_processor_id();
2038
2039		efx_for_each_channel(channel, efx) {
2040			if (queues & 1)
2041				efx_schedule_channel_irq(channel);
2042			queues >>= 1;
2043		}
2044	}
2045
2046	netif_vdbg(efx, intr, efx->net_dev,
2047		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2048		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2049
2050	return IRQ_HANDLED;
2051}
2052
2053static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2054{
2055	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2056
2057	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2058				    NULL) == 0)
2059		return -ENOTSUPP;
2060
2061	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2062
2063	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2064	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2065			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2066}
2067
2068static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2069{
2070	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
 
 
 
2071				    (tx_queue->ptr_mask + 1) *
2072				    sizeof(efx_qword_t),
2073				    GFP_KERNEL);
2074}
2075
2076/* This writes to the TX_DESC_WPTR and also pushes data */
2077static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2078					 const efx_qword_t *txd)
2079{
2080	unsigned int write_ptr;
2081	efx_oword_t reg;
2082
2083	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2084	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2085	reg.qword[0] = *txd;
2086	efx_writeo_page(tx_queue->efx, &reg,
2087			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2088}
2089
2090/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2091 */
2092static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2093				struct sk_buff *skb,
2094				bool *data_mapped)
2095{
2096	struct efx_tx_buffer *buffer;
 
 
2097	struct tcphdr *tcp;
2098	struct iphdr *ip;
2099
2100	u16 ipv4_id;
2101	u32 seqnum;
2102	u32 mss;
2103
2104	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2105
2106	mss = skb_shinfo(skb)->gso_size;
2107
2108	if (unlikely(mss < 4)) {
2109		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2110		return -EINVAL;
2111	}
2112
2113	ip = ip_hdr(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2114	if (ip->version == 4) {
2115		/* Modify IPv4 header if needed. */
2116		ip->tot_len = 0;
2117		ip->check = 0;
2118		ipv4_id = ip->id;
2119	} else {
2120		/* Modify IPv6 header if needed. */
2121		struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2122
2123		ipv6->payload_len = 0;
2124		ipv4_id = 0;
2125	}
2126
2127	tcp = tcp_hdr(skb);
2128	seqnum = ntohl(tcp->seq);
2129
2130	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2131
2132	buffer->flags = EFX_TX_BUF_OPTION;
2133	buffer->len = 0;
2134	buffer->unmap_len = 0;
2135	EFX_POPULATE_QWORD_5(buffer->option,
2136			ESF_DZ_TX_DESC_IS_OPT, 1,
2137			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2138			ESF_DZ_TX_TSO_OPTION_TYPE,
2139			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2140			ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2141			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2142			);
2143	++tx_queue->insert_count;
2144
2145	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2146
2147	buffer->flags = EFX_TX_BUF_OPTION;
2148	buffer->len = 0;
2149	buffer->unmap_len = 0;
2150	EFX_POPULATE_QWORD_4(buffer->option,
2151			ESF_DZ_TX_DESC_IS_OPT, 1,
2152			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2153			ESF_DZ_TX_TSO_OPTION_TYPE,
2154			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
 
2155			ESF_DZ_TX_TSO_TCP_MSS, mss
2156			);
2157	++tx_queue->insert_count;
2158
2159	return 0;
2160}
2161
2162static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2163{
2164	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2165	u32 tso_versions = 0;
2166
2167	if (nic_data->datapath_caps &
2168	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2169		tso_versions |= BIT(1);
2170	if (nic_data->datapath_caps2 &
2171	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2172		tso_versions |= BIT(2);
2173	return tso_versions;
2174}
2175
2176static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2177{
2178	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2179						       EFX_BUF_SIZE));
2180	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
2181	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
2182	struct efx_channel *channel = tx_queue->channel;
2183	struct efx_nic *efx = tx_queue->efx;
2184	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2185	bool tso_v2 = false;
2186	size_t inlen;
2187	dma_addr_t dma_addr;
2188	efx_qword_t *txd;
2189	int rc;
2190	int i;
2191	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
 
 
 
 
 
 
 
 
 
 
 
2192
2193	/* TSOv2 is a limited resource that can only be configured on a limited
2194	 * number of queues. TSO without checksum offload is not really a thing,
2195	 * so we only enable it for those queues.
 
 
2196	 */
2197	if (csum_offload && (nic_data->datapath_caps2 &
2198			(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))) {
2199		tso_v2 = true;
2200		netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2201				channel->channel);
 
 
 
 
2202	}
2203
2204	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
2205	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
2206	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
2207	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
2208	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
2209	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
2210
2211	dma_addr = tx_queue->txd.buf.dma_addr;
2212
2213	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
2214		  tx_queue->queue, entries, (u64)dma_addr);
2215
2216	for (i = 0; i < entries; ++i) {
2217		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
2218		dma_addr += EFX_BUF_SIZE;
2219	}
2220
2221	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
2222
2223	do {
2224		MCDI_POPULATE_DWORD_3(inbuf, INIT_TXQ_IN_FLAGS,
2225				/* This flag was removed from mcdi_pcol.h for
2226				 * the non-_EXT version of INIT_TXQ.  However,
2227				 * firmware still honours it.
2228				 */
2229				INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, tso_v2,
2230				INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
2231				INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
2232
2233		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2234					NULL, 0, NULL);
2235		if (rc == -ENOSPC && tso_v2) {
2236			/* Retry without TSOv2 if we're short on contexts. */
2237			tso_v2 = false;
2238			netif_warn(efx, probe, efx->net_dev,
2239				   "TSOv2 context not available to segment in hardware. TCP performance may be reduced.\n");
2240		} else if (rc) {
2241			efx_mcdi_display_error(efx, MC_CMD_INIT_TXQ,
2242					       MC_CMD_INIT_TXQ_EXT_IN_LEN,
2243					       NULL, 0, rc);
2244			goto fail;
2245		}
2246	} while (rc);
2247
2248	/* A previous user of this TX queue might have set us up the
2249	 * bomb by writing a descriptor to the TX push collector but
2250	 * not the doorbell.  (Each collector belongs to a port, not a
2251	 * queue or function, so cannot easily be reset.)  We must
2252	 * attempt to push a no-op descriptor in its place.
2253	 */
2254	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2255	tx_queue->insert_count = 1;
2256	txd = efx_tx_desc(tx_queue, 0);
2257	EFX_POPULATE_QWORD_4(*txd,
2258			     ESF_DZ_TX_DESC_IS_OPT, true,
2259			     ESF_DZ_TX_OPTION_TYPE,
2260			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2261			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2262			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
 
 
 
2263	tx_queue->write_count = 1;
2264
2265	if (tso_v2) {
2266		tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2267		tx_queue->tso_version = 2;
2268	} else if (nic_data->datapath_caps &
2269			(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2270		tx_queue->tso_version = 1;
2271	}
2272
2273	wmb();
2274	efx_ef10_push_tx_desc(tx_queue, txd);
2275
2276	return;
2277
2278fail:
2279	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2280		    tx_queue->queue);
2281}
2282
2283static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
2284{
2285	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2286	MCDI_DECLARE_BUF_ERR(outbuf);
2287	struct efx_nic *efx = tx_queue->efx;
2288	size_t outlen;
2289	int rc;
2290
2291	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
2292		       tx_queue->queue);
2293
2294	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2295			  outbuf, sizeof(outbuf), &outlen);
2296
2297	if (rc && rc != -EALREADY)
2298		goto fail;
2299
2300	return;
2301
2302fail:
2303	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
2304			       outbuf, outlen, rc);
2305}
2306
2307static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
2308{
2309	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
2310}
2311
2312/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2313static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2314{
2315	unsigned int write_ptr;
2316	efx_dword_t reg;
2317
2318	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2319	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2320	efx_writed_page(tx_queue->efx, &reg,
2321			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2322}
2323
2324#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2325
2326static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2327					  dma_addr_t dma_addr, unsigned int len)
2328{
2329	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2330		/* If we need to break across multiple descriptors we should
2331		 * stop at a page boundary. This assumes the length limit is
2332		 * greater than the page size.
2333		 */
2334		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2335
2336		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2337		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2338	}
2339
2340	return len;
2341}
2342
2343static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2344{
2345	unsigned int old_write_count = tx_queue->write_count;
2346	struct efx_tx_buffer *buffer;
2347	unsigned int write_ptr;
2348	efx_qword_t *txd;
2349
2350	tx_queue->xmit_more_available = false;
2351	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2352		return;
2353
2354	do {
2355		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2356		buffer = &tx_queue->buffer[write_ptr];
2357		txd = efx_tx_desc(tx_queue, write_ptr);
2358		++tx_queue->write_count;
2359
2360		/* Create TX descriptor ring entry */
2361		if (buffer->flags & EFX_TX_BUF_OPTION) {
2362			*txd = buffer->option;
 
 
 
2363		} else {
 
2364			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2365			EFX_POPULATE_QWORD_3(
2366				*txd,
2367				ESF_DZ_TX_KER_CONT,
2368				buffer->flags & EFX_TX_BUF_CONT,
2369				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2370				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2371		}
2372	} while (tx_queue->write_count != tx_queue->insert_count);
2373
2374	wmb(); /* Ensure descriptors are written before they are fetched */
2375
2376	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2377		txd = efx_tx_desc(tx_queue,
2378				  old_write_count & tx_queue->ptr_mask);
2379		efx_ef10_push_tx_desc(tx_queue, txd);
2380		++tx_queue->pushes;
2381	} else {
2382		efx_ef10_notify_tx_desc(tx_queue);
2383	}
2384}
2385
2386#define RSS_MODE_HASH_ADDRS	(1 << RSS_MODE_HASH_SRC_ADDR_LBN |\
2387				 1 << RSS_MODE_HASH_DST_ADDR_LBN)
2388#define RSS_MODE_HASH_PORTS	(1 << RSS_MODE_HASH_SRC_PORT_LBN |\
2389				 1 << RSS_MODE_HASH_DST_PORT_LBN)
2390#define RSS_CONTEXT_FLAGS_DEFAULT	(1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV4_EN_LBN |\
2391					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV4_EN_LBN |\
2392					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_IPV6_EN_LBN |\
2393					 1 << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TOEPLITZ_TCPV6_EN_LBN |\
2394					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV4_RSS_MODE_LBN |\
2395					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN |\
2396					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV4_RSS_MODE_LBN |\
2397					 (RSS_MODE_HASH_ADDRS | RSS_MODE_HASH_PORTS) << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_TCP_IPV6_RSS_MODE_LBN |\
2398					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN |\
2399					 RSS_MODE_HASH_ADDRS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_OTHER_IPV6_RSS_MODE_LBN)
2400
2401static int efx_ef10_get_rss_flags(struct efx_nic *efx, u32 context, u32 *flags)
2402{
2403	/* Firmware had a bug (sfc bug 61952) where it would not actually
2404	 * fill in the flags field in the response to MC_CMD_RSS_CONTEXT_GET_FLAGS.
2405	 * This meant that it would always contain whatever was previously
2406	 * in the MCDI buffer.  Fortunately, all firmware versions with
2407	 * this bug have the same default flags value for a newly-allocated
2408	 * RSS context, and the only time we want to get the flags is just
2409	 * after allocating.  Moreover, the response has a 32-bit hole
2410	 * where the context ID would be in the request, so we can use an
2411	 * overlength buffer in the request and pre-fill the flags field
2412	 * with what we believe the default to be.  Thus if the firmware
2413	 * has the bug, it will leave our pre-filled value in the flags
2414	 * field of the response, and we will get the right answer.
2415	 *
2416	 * However, this does mean that this function should NOT be used if
2417	 * the RSS context flags might not be their defaults - it is ONLY
2418	 * reliably correct for a newly-allocated RSS context.
2419	 */
2420	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2421	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN);
2422	size_t outlen;
2423	int rc;
2424
2425	/* Check we have a hole for the context ID */
2426	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_GET_FLAGS_IN_LEN != MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_FLAGS_OFST);
2427	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_IN_RSS_CONTEXT_ID, context);
2428	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS,
2429		       RSS_CONTEXT_FLAGS_DEFAULT);
2430	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_GET_FLAGS, inbuf,
2431			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2432	if (rc == 0) {
2433		if (outlen < MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_LEN)
2434			rc = -EIO;
2435		else
2436			*flags = MCDI_DWORD(outbuf, RSS_CONTEXT_GET_FLAGS_OUT_FLAGS);
2437	}
2438	return rc;
2439}
2440
2441/* Attempt to enable 4-tuple UDP hashing on the specified RSS context.
2442 * If we fail, we just leave the RSS context at its default hash settings,
2443 * which is safe but may slightly reduce performance.
2444 * Defaults are 4-tuple for TCP and 2-tuple for UDP and other-IP, so we
2445 * just need to set the UDP ports flags (for both IP versions).
2446 */
2447static void efx_ef10_set_rss_flags(struct efx_nic *efx, u32 context)
2448{
2449	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_SET_FLAGS_IN_LEN);
2450	u32 flags;
2451
2452	BUILD_BUG_ON(MC_CMD_RSS_CONTEXT_SET_FLAGS_OUT_LEN != 0);
2453
2454	if (efx_ef10_get_rss_flags(efx, context, &flags) != 0)
2455		return;
2456	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_RSS_CONTEXT_ID, context);
2457	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV4_RSS_MODE_LBN;
2458	flags |= RSS_MODE_HASH_PORTS << MC_CMD_RSS_CONTEXT_GET_FLAGS_OUT_UDP_IPV6_RSS_MODE_LBN;
2459	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_SET_FLAGS_IN_FLAGS, flags);
2460	if (!efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_FLAGS, inbuf, sizeof(inbuf),
2461			  NULL, 0, NULL))
2462		/* Succeeded, so UDP 4-tuple is now enabled */
2463		efx->rx_hash_udp_4tuple = true;
2464}
2465
2466static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
2467				      bool exclusive, unsigned *context_size)
2468{
2469	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
2470	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2471	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2472	size_t outlen;
 
2473	int rc;
2474	u32 alloc_type = exclusive ?
2475				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
2476				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
2477	unsigned rss_spread = exclusive ?
2478				efx->rss_spread :
2479				min(rounddown_pow_of_two(efx->rss_spread),
2480				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
2481
2482	if (!exclusive && rss_spread == 1) {
2483		*context = EFX_EF10_RSS_CONTEXT_INVALID;
2484		if (context_size)
2485			*context_size = 1;
2486		return 0;
2487	}
2488
2489	if (nic_data->datapath_caps &
2490	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
2491		return -EOPNOTSUPP;
2492
2493	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2494		       nic_data->vport_id);
2495	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
2496	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2497
2498	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
2499		outbuf, sizeof(outbuf), &outlen);
2500	if (rc != 0)
2501		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502
2503	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
2504		return -EIO;
2505
2506	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
2507
2508	if (context_size)
2509		*context_size = rss_spread;
2510
2511	if (nic_data->datapath_caps &
2512	    1 << MC_CMD_GET_CAPABILITIES_OUT_ADDITIONAL_RSS_MODES_LBN)
2513		efx_ef10_set_rss_flags(efx, *context);
2514
2515	return 0;
2516}
2517
2518static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
2519{
2520	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
2521	int rc;
2522
2523	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
2524		       context);
2525
2526	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
2527			    NULL, 0, NULL);
2528	WARN_ON(rc != 0);
2529}
2530
2531static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
2532				       const u32 *rx_indir_table)
2533{
2534	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
2535	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
2536	int i, rc;
2537
2538	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
2539		       context);
2540	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
2541		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
2542
2543	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
2544		MCDI_PTR(tablebuf,
2545			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2546				(u8) rx_indir_table[i];
2547
2548	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
2549			  sizeof(tablebuf), NULL, 0, NULL);
2550	if (rc != 0)
2551		return rc;
2552
2553	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
2554		       context);
2555	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
2556		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
2557	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
2558		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
2559			efx->rx_hash_key[i];
2560
2561	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
2562			    sizeof(keybuf), NULL, 0, NULL);
2563}
2564
2565static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
2566{
2567	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2568
2569	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2570		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
2571	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
2572}
2573
2574static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
2575					      unsigned *context_size)
2576{
2577	u32 new_rx_rss_context;
2578	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2579	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2580					    false, context_size);
2581
2582	if (rc != 0)
2583		return rc;
2584
2585	nic_data->rx_rss_context = new_rx_rss_context;
2586	nic_data->rx_rss_context_exclusive = false;
2587	efx_set_default_rx_indir_table(efx);
2588	return 0;
2589}
2590
2591static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
2592						 const u32 *rx_indir_table)
2593{
2594	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2595	int rc;
2596	u32 new_rx_rss_context;
2597
2598	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
2599	    !nic_data->rx_rss_context_exclusive) {
2600		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
2601						true, NULL);
2602		if (rc == -EOPNOTSUPP)
2603			return rc;
2604		else if (rc != 0)
2605			goto fail1;
2606	} else {
2607		new_rx_rss_context = nic_data->rx_rss_context;
2608	}
2609
2610	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2611					 rx_indir_table);
2612	if (rc != 0)
2613		goto fail2;
2614
2615	if (nic_data->rx_rss_context != new_rx_rss_context)
2616		efx_ef10_rx_free_indir_table(efx);
2617	nic_data->rx_rss_context = new_rx_rss_context;
2618	nic_data->rx_rss_context_exclusive = true;
2619	if (rx_indir_table != efx->rx_indir_table)
2620		memcpy(efx->rx_indir_table, rx_indir_table,
2621		       sizeof(efx->rx_indir_table));
2622	return 0;
2623
2624fail2:
2625	if (new_rx_rss_context != nic_data->rx_rss_context)
2626		efx_ef10_free_rss_context(efx, new_rx_rss_context);
2627fail1:
2628	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2629	return rc;
2630}
2631
2632static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2633					  const u32 *rx_indir_table)
2634{
2635	int rc;
2636
2637	if (efx->rss_spread == 1)
2638		return 0;
2639
2640	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2641
2642	if (rc == -ENOBUFS && !user) {
2643		unsigned context_size;
2644		bool mismatch = false;
2645		size_t i;
2646
2647		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2648		     i++)
2649			mismatch = rx_indir_table[i] !=
2650				ethtool_rxfh_indir_default(i, efx->rss_spread);
2651
2652		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2653		if (rc == 0) {
2654			if (context_size != efx->rss_spread)
2655				netif_warn(efx, probe, efx->net_dev,
2656					   "Could not allocate an exclusive RSS"
2657					   " context; allocated a shared one of"
2658					   " different size."
2659					   " Wanted %u, got %u.\n",
2660					   efx->rss_spread, context_size);
2661			else if (mismatch)
2662				netif_warn(efx, probe, efx->net_dev,
2663					   "Could not allocate an exclusive RSS"
2664					   " context; allocated a shared one but"
2665					   " could not apply custom"
2666					   " indirection.\n");
2667			else
2668				netif_info(efx, probe, efx->net_dev,
2669					   "Could not allocate an exclusive RSS"
2670					   " context; allocated a shared one.\n");
2671		}
2672	}
2673	return rc;
2674}
2675
2676static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2677					  const u32 *rx_indir_table
2678					  __attribute__ ((unused)))
2679{
2680	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
2681
2682	if (user)
2683		return -EOPNOTSUPP;
2684	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2685		return 0;
2686	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2687}
2688
2689static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2690{
2691	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2692				    (rx_queue->ptr_mask + 1) *
2693				    sizeof(efx_qword_t),
2694				    GFP_KERNEL);
2695}
2696
2697static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2698{
2699	MCDI_DECLARE_BUF(inbuf,
2700			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2701						EFX_BUF_SIZE));
2702	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2703	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2704	struct efx_nic *efx = rx_queue->efx;
2705	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2706	size_t inlen;
2707	dma_addr_t dma_addr;
2708	int rc;
2709	int i;
2710	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2711
2712	rx_queue->scatter_n = 0;
2713	rx_queue->scatter_len = 0;
2714
2715	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2716	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2717	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2718	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2719		       efx_rx_queue_index(rx_queue));
2720	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2721			      INIT_RXQ_IN_FLAG_PREFIX, 1,
2722			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2723	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2724	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2725
2726	dma_addr = rx_queue->rxd.buf.dma_addr;
2727
2728	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2729		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2730
2731	for (i = 0; i < entries; ++i) {
2732		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2733		dma_addr += EFX_BUF_SIZE;
2734	}
 
2735
2736	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2737
2738	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2739			  NULL, 0, NULL);
2740	if (rc)
2741		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2742			    efx_rx_queue_index(rx_queue));
2743}
2744
2745static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2746{
2747	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2748	MCDI_DECLARE_BUF_ERR(outbuf);
2749	struct efx_nic *efx = rx_queue->efx;
2750	size_t outlen;
2751	int rc;
2752
2753	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2754		       efx_rx_queue_index(rx_queue));
2755
2756	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2757			  outbuf, sizeof(outbuf), &outlen);
2758
2759	if (rc && rc != -EALREADY)
2760		goto fail;
2761
2762	return;
2763
2764fail:
2765	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2766			       outbuf, outlen, rc);
2767}
2768
2769static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2770{
2771	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2772}
2773
2774/* This creates an entry in the RX descriptor queue */
2775static inline void
2776efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2777{
2778	struct efx_rx_buffer *rx_buf;
2779	efx_qword_t *rxd;
2780
2781	rxd = efx_rx_desc(rx_queue, index);
2782	rx_buf = efx_rx_buffer(rx_queue, index);
2783	EFX_POPULATE_QWORD_2(*rxd,
2784			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2785			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2786}
2787
2788static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2789{
2790	struct efx_nic *efx = rx_queue->efx;
2791	unsigned int write_count;
2792	efx_dword_t reg;
2793
2794	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2795	write_count = rx_queue->added_count & ~7;
2796	if (rx_queue->notified_count == write_count)
2797		return;
2798
2799	do
2800		efx_ef10_build_rx_desc(
2801			rx_queue,
2802			rx_queue->notified_count & rx_queue->ptr_mask);
2803	while (++rx_queue->notified_count != write_count);
2804
2805	wmb();
2806	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2807			     write_count & rx_queue->ptr_mask);
2808	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2809			efx_rx_queue_index(rx_queue));
2810}
2811
2812static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2813
2814static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2815{
2816	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2817	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2818	efx_qword_t event;
2819
2820	EFX_POPULATE_QWORD_2(event,
2821			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2822			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2823
2824	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2825
2826	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2827	 * already swapped the data to little-endian order.
2828	 */
2829	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2830	       sizeof(efx_qword_t));
2831
2832	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2833			   inbuf, sizeof(inbuf), 0,
2834			   efx_ef10_rx_defer_refill_complete, 0);
2835}
2836
2837static void
2838efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2839				  int rc, efx_dword_t *outbuf,
2840				  size_t outlen_actual)
2841{
2842	/* nothing to do */
2843}
2844
2845static int efx_ef10_ev_probe(struct efx_channel *channel)
2846{
2847	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2848				    (channel->eventq_mask + 1) *
2849				    sizeof(efx_qword_t),
2850				    GFP_KERNEL);
2851}
2852
2853static void efx_ef10_ev_fini(struct efx_channel *channel)
2854{
2855	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2856	MCDI_DECLARE_BUF_ERR(outbuf);
2857	struct efx_nic *efx = channel->efx;
2858	size_t outlen;
2859	int rc;
2860
2861	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2862
2863	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2864			  outbuf, sizeof(outbuf), &outlen);
2865
2866	if (rc && rc != -EALREADY)
2867		goto fail;
2868
2869	return;
2870
2871fail:
2872	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2873			       outbuf, outlen, rc);
2874}
2875
2876static int efx_ef10_ev_init(struct efx_channel *channel)
2877{
2878	MCDI_DECLARE_BUF(inbuf,
2879			 MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2880						   EFX_BUF_SIZE));
2881	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
2882	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2883	struct efx_nic *efx = channel->efx;
2884	struct efx_ef10_nic_data *nic_data;
2885	size_t inlen, outlen;
2886	unsigned int enabled, implemented;
2887	dma_addr_t dma_addr;
2888	int rc;
2889	int i;
2890
2891	nic_data = efx->nic_data;
2892
2893	/* Fill event queue with all ones (i.e. empty events) */
2894	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2895
2896	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2897	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2898	/* INIT_EVQ expects index in vector table, not absolute */
2899	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2900	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2901		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2902	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2903	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2904	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2905		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2906	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2907
2908	if (nic_data->datapath_caps2 &
2909	    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
2910		/* Use the new generic approach to specifying event queue
2911		 * configuration, requesting lower latency or higher throughput.
2912		 * The options that actually get used appear in the output.
2913		 */
2914		MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
2915				      INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
2916				      INIT_EVQ_V2_IN_FLAG_TYPE,
2917				      MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
2918	} else {
2919		bool cut_thru = !(nic_data->datapath_caps &
2920			1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2921
2922		MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2923				      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2924				      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2925				      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2926				      INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
2927	}
2928
2929	dma_addr = channel->eventq.buf.dma_addr;
2930	for (i = 0; i < entries; ++i) {
2931		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2932		dma_addr += EFX_BUF_SIZE;
2933	}
2934
2935	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2936
2937	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2938			  outbuf, sizeof(outbuf), &outlen);
2939
2940	if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
2941		netif_dbg(efx, drv, efx->net_dev,
2942			  "Channel %d using event queue flags %08x\n",
2943			  channel->channel,
2944			  MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
2945
2946	/* IRQ return is ignored */
2947	if (channel->channel || rc)
2948		return rc;
2949
2950	/* Successfully created event queue on channel 0 */
2951	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2952	if (rc == -ENOSYS) {
2953		/* GET_WORKAROUNDS was implemented before this workaround,
2954		 * thus it must be unavailable in this firmware.
2955		 */
2956		nic_data->workaround_26807 = false;
2957		rc = 0;
2958	} else if (rc) {
2959		goto fail;
2960	} else {
2961		nic_data->workaround_26807 =
2962			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2963
2964		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2965		    !nic_data->workaround_26807) {
2966			unsigned int flags;
2967
2968			rc = efx_mcdi_set_workaround(efx,
2969						     MC_CMD_WORKAROUND_BUG26807,
2970						     true, &flags);
2971
2972			if (!rc) {
2973				if (flags &
2974				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2975					netif_info(efx, drv, efx->net_dev,
2976						   "other functions on NIC have been reset\n");
2977
2978					/* With MCFW v4.6.x and earlier, the
2979					 * boot count will have incremented,
2980					 * so re-read the warm_boot_count
2981					 * value now to ensure this function
2982					 * doesn't think it has changed next
2983					 * time it checks.
2984					 */
2985					rc = efx_ef10_get_warm_boot_count(efx);
2986					if (rc >= 0) {
2987						nic_data->warm_boot_count = rc;
2988						rc = 0;
2989					}
2990				}
2991				nic_data->workaround_26807 = true;
2992			} else if (rc == -EPERM) {
2993				rc = 0;
2994			}
2995		}
2996	}
2997
2998	if (!rc)
2999		return 0;
3000
3001fail:
3002	efx_ef10_ev_fini(channel);
3003	return rc;
3004}
3005
3006static void efx_ef10_ev_remove(struct efx_channel *channel)
3007{
3008	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
3009}
3010
3011static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
3012					   unsigned int rx_queue_label)
3013{
3014	struct efx_nic *efx = rx_queue->efx;
3015
3016	netif_info(efx, hw, efx->net_dev,
3017		   "rx event arrived on queue %d labeled as queue %u\n",
3018		   efx_rx_queue_index(rx_queue), rx_queue_label);
3019
3020	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3021}
3022
3023static void
3024efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
3025			     unsigned int actual, unsigned int expected)
3026{
3027	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
3028	struct efx_nic *efx = rx_queue->efx;
3029
3030	netif_info(efx, hw, efx->net_dev,
3031		   "dropped %d events (index=%d expected=%d)\n",
3032		   dropped, actual, expected);
3033
3034	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
3035}
3036
3037/* partially received RX was aborted. clean up. */
3038static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
3039{
3040	unsigned int rx_desc_ptr;
3041
3042	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
3043		  "scattered RX aborted (dropping %u buffers)\n",
3044		  rx_queue->scatter_n);
3045
3046	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
3047
3048	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
3049		      0, EFX_RX_PKT_DISCARD);
3050
3051	rx_queue->removed_count += rx_queue->scatter_n;
3052	rx_queue->scatter_n = 0;
3053	rx_queue->scatter_len = 0;
3054	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
3055}
3056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3057static int efx_ef10_handle_rx_event(struct efx_channel *channel,
3058				    const efx_qword_t *event)
3059{
3060	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
 
3061	unsigned int n_descs, n_packets, i;
3062	struct efx_nic *efx = channel->efx;
 
3063	struct efx_rx_queue *rx_queue;
 
3064	bool rx_cont;
3065	u16 flags = 0;
3066
3067	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3068		return 0;
3069
3070	/* Basic packet information */
3071	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
3072	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
3073	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
3074	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
 
3075	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
 
 
 
 
 
3076
3077	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
3078		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
3079			    EFX_QWORD_FMT "\n",
3080			    EFX_QWORD_VAL(*event));
3081
3082	rx_queue = efx_channel_get_rx_queue(channel);
3083
3084	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
3085		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
3086
3087	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
3088		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3089
3090	if (n_descs != rx_queue->scatter_n + 1) {
3091		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3092
3093		/* detect rx abort */
3094		if (unlikely(n_descs == rx_queue->scatter_n)) {
3095			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
3096				netdev_WARN(efx->net_dev,
3097					    "invalid RX abort: scatter_n=%u event="
3098					    EFX_QWORD_FMT "\n",
3099					    rx_queue->scatter_n,
3100					    EFX_QWORD_VAL(*event));
3101			efx_ef10_handle_rx_abort(rx_queue);
3102			return 0;
3103		}
3104
3105		/* Check that RX completion merging is valid, i.e.
3106		 * the current firmware supports it and this is a
3107		 * non-scattered packet.
3108		 */
3109		if (!(nic_data->datapath_caps &
3110		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
3111		    rx_queue->scatter_n != 0 || rx_cont) {
3112			efx_ef10_handle_rx_bad_lbits(
3113				rx_queue, next_ptr_lbits,
3114				(rx_queue->removed_count +
3115				 rx_queue->scatter_n + 1) &
3116				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
3117			return 0;
3118		}
3119
3120		/* Merged completion for multiple non-scattered packets */
3121		rx_queue->scatter_n = 1;
3122		rx_queue->scatter_len = 0;
3123		n_packets = n_descs;
3124		++channel->n_rx_merge_events;
3125		channel->n_rx_merge_packets += n_packets;
3126		flags |= EFX_RX_PKT_PREFIX_LEN;
3127	} else {
3128		++rx_queue->scatter_n;
3129		rx_queue->scatter_len += rx_bytes;
3130		if (rx_cont)
3131			return 0;
3132		n_packets = 1;
3133	}
3134
3135	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
3136		flags |= EFX_RX_PKT_DISCARD;
 
 
 
 
 
 
 
 
 
 
 
 
3137
3138	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
3139		channel->n_rx_ip_hdr_chksum_err += n_packets;
3140	} else if (unlikely(EFX_QWORD_FIELD(*event,
3141					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
3142		channel->n_rx_tcp_udp_chksum_err += n_packets;
3143	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
3144		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
3145		flags |= EFX_RX_PKT_CSUMMED;
 
 
 
 
 
 
 
 
 
3146	}
3147
3148	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
3149		flags |= EFX_RX_PKT_TCP;
3150
3151	channel->irq_mod_score += 2 * n_packets;
3152
3153	/* Handle received packet(s) */
3154	for (i = 0; i < n_packets; i++) {
3155		efx_rx_packet(rx_queue,
3156			      rx_queue->removed_count & rx_queue->ptr_mask,
3157			      rx_queue->scatter_n, rx_queue->scatter_len,
3158			      flags);
3159		rx_queue->removed_count += rx_queue->scatter_n;
3160	}
3161
3162	rx_queue->scatter_n = 0;
3163	rx_queue->scatter_len = 0;
3164
3165	return n_packets;
3166}
3167
 
 
 
 
 
 
 
 
 
 
 
3168static int
3169efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
3170{
3171	struct efx_nic *efx = channel->efx;
3172	struct efx_tx_queue *tx_queue;
3173	unsigned int tx_ev_desc_ptr;
3174	unsigned int tx_ev_q_label;
3175	int tx_descs = 0;
 
 
3176
3177	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
3178		return 0;
3179
3180	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
3181		return 0;
3182
3183	/* Transmit completion */
3184	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
3185	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
3186	tx_queue = efx_channel_get_tx_queue(channel,
3187					    tx_ev_q_label % EFX_TXQ_TYPES);
3188	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
3189		    tx_queue->ptr_mask);
3190	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
3191
3192	return tx_descs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3193}
3194
3195static void
3196efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3197{
3198	struct efx_nic *efx = channel->efx;
3199	int subcode;
3200
3201	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3202
3203	switch (subcode) {
3204	case ESE_DZ_DRV_TIMER_EV:
3205	case ESE_DZ_DRV_WAKE_UP_EV:
3206		break;
3207	case ESE_DZ_DRV_START_UP_EV:
3208		/* event queue init complete. ok. */
3209		break;
3210	default:
3211		netif_err(efx, hw, efx->net_dev,
3212			  "channel %d unknown driver event type %d"
3213			  " (data " EFX_QWORD_FMT ")\n",
3214			  channel->channel, subcode,
3215			  EFX_QWORD_VAL(*event));
3216
3217	}
3218}
3219
3220static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3221						   efx_qword_t *event)
3222{
3223	struct efx_nic *efx = channel->efx;
3224	u32 subcode;
3225
3226	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3227
3228	switch (subcode) {
3229	case EFX_EF10_TEST:
3230		channel->event_test_cpu = raw_smp_processor_id();
3231		break;
3232	case EFX_EF10_REFILL:
3233		/* The queue must be empty, so we won't receive any rx
3234		 * events, so efx_process_channel() won't refill the
3235		 * queue. Refill it here
3236		 */
3237		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3238		break;
3239	default:
3240		netif_err(efx, hw, efx->net_dev,
3241			  "channel %d unknown driver event type %u"
3242			  " (data " EFX_QWORD_FMT ")\n",
3243			  channel->channel, (unsigned) subcode,
3244			  EFX_QWORD_VAL(*event));
3245	}
3246}
3247
 
 
3248static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3249{
3250	struct efx_nic *efx = channel->efx;
3251	efx_qword_t event, *p_event;
3252	unsigned int read_ptr;
 
 
3253	int ev_code;
3254	int tx_descs = 0;
3255	int spent = 0;
3256
3257	if (quota <= 0)
3258		return spent;
3259
3260	read_ptr = channel->eventq_read_ptr;
3261
3262	for (;;) {
3263		p_event = efx_event(channel, read_ptr);
3264		event = *p_event;
3265
3266		if (!efx_event_present(&event))
3267			break;
3268
3269		EFX_SET_QWORD(*p_event);
3270
3271		++read_ptr;
3272
3273		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3274
3275		netif_vdbg(efx, drv, efx->net_dev,
3276			   "processing event on %d " EFX_QWORD_FMT "\n",
3277			   channel->channel, EFX_QWORD_VAL(event));
3278
3279		switch (ev_code) {
3280		case ESE_DZ_EV_CODE_MCDI_EV:
3281			efx_mcdi_process_event(channel, &event);
3282			break;
3283		case ESE_DZ_EV_CODE_RX_EV:
3284			spent += efx_ef10_handle_rx_event(channel, &event);
3285			if (spent >= quota) {
3286				/* XXX can we split a merged event to
3287				 * avoid going over-quota?
3288				 */
3289				spent = quota;
3290				goto out;
3291			}
3292			break;
3293		case ESE_DZ_EV_CODE_TX_EV:
3294			tx_descs += efx_ef10_handle_tx_event(channel, &event);
3295			if (tx_descs > efx->txq_entries) {
3296				spent = quota;
3297				goto out;
3298			} else if (++spent == quota) {
3299				goto out;
3300			}
3301			break;
3302		case ESE_DZ_EV_CODE_DRIVER_EV:
3303			efx_ef10_handle_driver_event(channel, &event);
3304			if (++spent == quota)
3305				goto out;
3306			break;
3307		case EFX_EF10_DRVGEN_EV:
3308			efx_ef10_handle_driver_generated_event(channel, &event);
3309			break;
3310		default:
3311			netif_err(efx, hw, efx->net_dev,
3312				  "channel %d unknown event type %d"
3313				  " (data " EFX_QWORD_FMT ")\n",
3314				  channel->channel, ev_code,
3315				  EFX_QWORD_VAL(event));
3316		}
3317	}
3318
3319out:
3320	channel->eventq_read_ptr = read_ptr;
3321	return spent;
3322}
3323
3324static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3325{
3326	struct efx_nic *efx = channel->efx;
3327	efx_dword_t rptr;
3328
3329	if (EFX_EF10_WORKAROUND_35388(efx)) {
3330		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3331			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3332		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3333			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3334
3335		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3336				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3337				     ERF_DD_EVQ_IND_RPTR,
3338				     (channel->eventq_read_ptr &
3339				      channel->eventq_mask) >>
3340				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3341		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3342				channel->channel);
3343		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3344				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3345				     ERF_DD_EVQ_IND_RPTR,
3346				     channel->eventq_read_ptr &
3347				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3348		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3349				channel->channel);
3350	} else {
3351		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3352				     channel->eventq_read_ptr &
3353				     channel->eventq_mask);
3354		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3355	}
3356}
3357
3358static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3359{
3360	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3361	struct efx_nic *efx = channel->efx;
3362	efx_qword_t event;
3363	int rc;
3364
3365	EFX_POPULATE_QWORD_2(event,
3366			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3367			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3368
3369	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3370
3371	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3372	 * already swapped the data to little-endian order.
3373	 */
3374	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3375	       sizeof(efx_qword_t));
3376
3377	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3378			  NULL, 0, NULL);
3379	if (rc != 0)
3380		goto fail;
3381
3382	return;
3383
3384fail:
3385	WARN_ON(true);
3386	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3387}
3388
3389void efx_ef10_handle_drain_event(struct efx_nic *efx)
3390{
3391	if (atomic_dec_and_test(&efx->active_queues))
3392		wake_up(&efx->flush_wq);
3393
3394	WARN_ON(atomic_read(&efx->active_queues) < 0);
3395}
3396
3397static int efx_ef10_fini_dmaq(struct efx_nic *efx)
3398{
3399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3400	struct efx_channel *channel;
3401	struct efx_tx_queue *tx_queue;
3402	struct efx_rx_queue *rx_queue;
3403	int pending;
3404
3405	/* If the MC has just rebooted, the TX/RX queues will have already been
3406	 * torn down, but efx->active_queues needs to be set to zero.
3407	 */
3408	if (nic_data->must_realloc_vis) {
3409		atomic_set(&efx->active_queues, 0);
3410		return 0;
3411	}
3412
3413	/* Do not attempt to write to the NIC during EEH recovery */
3414	if (efx->state != STATE_RECOVERY) {
3415		efx_for_each_channel(channel, efx) {
3416			efx_for_each_channel_rx_queue(rx_queue, channel)
3417				efx_ef10_rx_fini(rx_queue);
3418			efx_for_each_channel_tx_queue(tx_queue, channel)
3419				efx_ef10_tx_fini(tx_queue);
3420		}
3421
3422		wait_event_timeout(efx->flush_wq,
3423				   atomic_read(&efx->active_queues) == 0,
3424				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
3425		pending = atomic_read(&efx->active_queues);
3426		if (pending) {
3427			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
3428				  pending);
3429			return -ETIMEDOUT;
3430		}
3431	}
3432
3433	return 0;
3434}
3435
3436static void efx_ef10_prepare_flr(struct efx_nic *efx)
3437{
3438	atomic_set(&efx->active_queues, 0);
3439}
3440
3441static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
3442				  const struct efx_filter_spec *right)
3443{
3444	if ((left->match_flags ^ right->match_flags) |
3445	    ((left->flags ^ right->flags) &
3446	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
3447		return false;
3448
3449	return memcmp(&left->outer_vid, &right->outer_vid,
3450		      sizeof(struct efx_filter_spec) -
3451		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
3452}
3453
3454static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
3455{
3456	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
3457	return jhash2((const u32 *)&spec->outer_vid,
3458		      (sizeof(struct efx_filter_spec) -
3459		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
3460		      0);
3461	/* XXX should we randomise the initval? */
3462}
3463
3464/* Decide whether a filter should be exclusive or else should allow
3465 * delivery to additional recipients.  Currently we decide that
3466 * filters for specific local unicast MAC and IP addresses are
3467 * exclusive.
3468 */
3469static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
3470{
3471	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
3472	    !is_multicast_ether_addr(spec->loc_mac))
3473		return true;
3474
3475	if ((spec->match_flags &
3476	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
3477	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
3478		if (spec->ether_type == htons(ETH_P_IP) &&
3479		    !ipv4_is_multicast(spec->loc_host[0]))
3480			return true;
3481		if (spec->ether_type == htons(ETH_P_IPV6) &&
3482		    ((const u8 *)spec->loc_host)[0] != 0xff)
3483			return true;
3484	}
3485
3486	return false;
3487}
3488
3489static struct efx_filter_spec *
3490efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
3491			   unsigned int filter_idx)
3492{
3493	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
3494					  ~EFX_EF10_FILTER_FLAGS);
3495}
3496
3497static unsigned int
3498efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
3499			   unsigned int filter_idx)
3500{
3501	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
3502}
3503
3504static void
3505efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
3506			  unsigned int filter_idx,
3507			  const struct efx_filter_spec *spec,
3508			  unsigned int flags)
3509{
3510	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
3511}
3512
3513static void efx_ef10_filter_push_prep(struct efx_nic *efx,
3514				      const struct efx_filter_spec *spec,
3515				      efx_dword_t *inbuf, u64 handle,
3516				      bool replacing)
3517{
3518	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3519	u32 flags = spec->flags;
3520
3521	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
3522
3523	/* Remove RSS flag if we don't have an RSS context. */
3524	if (flags & EFX_FILTER_FLAG_RX_RSS &&
3525	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
3526	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
3527		flags &= ~EFX_FILTER_FLAG_RX_RSS;
3528
3529	if (replacing) {
3530		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3531			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
3532		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
3533	} else {
3534		u32 match_fields = 0;
3535
3536		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3537			       efx_ef10_filter_is_exclusive(spec) ?
3538			       MC_CMD_FILTER_OP_IN_OP_INSERT :
3539			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
3540
3541		/* Convert match flags and values.  Unlike almost
3542		 * everything else in MCDI, these fields are in
3543		 * network byte order.
3544		 */
3545		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
3546			match_fields |=
3547				is_multicast_ether_addr(spec->loc_mac) ?
3548				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
3549				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
3550#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
3551		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
3552			match_fields |=					     \
3553				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
3554				mcdi_field ## _LBN;			     \
3555			BUILD_BUG_ON(					     \
3556				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
3557				sizeof(spec->gen_field));		     \
3558			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
3559			       &spec->gen_field, sizeof(spec->gen_field));   \
3560		}
3561		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
3562		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
3563		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
3564		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
3565		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
3566		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
3567		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
3568		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
3569		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
3570		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
3571#undef COPY_FIELD
3572		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
3573			       match_fields);
3574	}
3575
3576	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3577	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
3578		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3579		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
3580		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3581	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3582	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
3583		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
3584	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
3585		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
3586		       0 : spec->dmaq_id);
3587	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
3588		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3589		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
3590		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
3591	if (flags & EFX_FILTER_FLAG_RX_RSS)
3592		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
3593			       spec->rss_context !=
3594			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
3595			       spec->rss_context : nic_data->rx_rss_context);
3596}
3597
3598static int efx_ef10_filter_push(struct efx_nic *efx,
3599				const struct efx_filter_spec *spec,
3600				u64 *handle, bool replacing)
3601{
3602	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3603	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
3604	int rc;
3605
3606	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
3607	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3608			  outbuf, sizeof(outbuf), NULL);
3609	if (rc == 0)
3610		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3611	if (rc == -ENOSPC)
3612		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3613	return rc;
3614}
3615
3616static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3617{
3618	unsigned int match_flags = spec->match_flags;
3619	u32 mcdi_flags = 0;
3620
3621	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
3622		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
3623		mcdi_flags |=
3624			is_multicast_ether_addr(spec->loc_mac) ?
3625			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
3626			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
3627	}
3628
3629#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) {			\
3630		unsigned int old_match_flags = match_flags;		\
3631		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
3632		if (match_flags != old_match_flags)			\
3633			mcdi_flags |=					\
3634				(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
3635				 mcdi_field ## _LBN);			\
3636	}
3637	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
3638	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
3639	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
3640	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
3641	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
3642	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
3643	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
3644	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
3645	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
3646	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
3647#undef MAP_FILTER_TO_MCDI_FLAG
3648
3649	/* Did we map them all? */
3650	WARN_ON_ONCE(match_flags);
3651
3652	return mcdi_flags;
3653}
3654
3655static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
3656			       const struct efx_filter_spec *spec)
3657{
3658	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3659	unsigned int match_pri;
3660
3661	for (match_pri = 0;
3662	     match_pri < table->rx_match_count;
3663	     match_pri++)
3664		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3665			return match_pri;
3666
3667	return -EPROTONOSUPPORT;
3668}
3669
3670static s32 efx_ef10_filter_insert(struct efx_nic *efx,
3671				  struct efx_filter_spec *spec,
3672				  bool replace_equal)
3673{
3674	struct efx_ef10_filter_table *table = efx->filter_state;
3675	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3676	struct efx_filter_spec *saved_spec;
3677	unsigned int match_pri, hash;
3678	unsigned int priv_flags;
3679	bool replacing = false;
3680	int ins_index = -1;
3681	DEFINE_WAIT(wait);
3682	bool is_mc_recip;
3683	s32 rc;
3684
3685	/* For now, only support RX filters */
3686	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3687	    EFX_FILTER_FLAG_RX)
3688		return -EINVAL;
3689
3690	rc = efx_ef10_filter_pri(table, spec);
3691	if (rc < 0)
3692		return rc;
3693	match_pri = rc;
3694
3695	hash = efx_ef10_filter_hash(spec);
3696	is_mc_recip = efx_filter_is_mc_recipient(spec);
3697	if (is_mc_recip)
3698		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3699
3700	/* Find any existing filters with the same match tuple or
3701	 * else a free slot to insert at.  If any of them are busy,
3702	 * we have to wait and retry.
3703	 */
3704	for (;;) {
3705		unsigned int depth = 1;
3706		unsigned int i;
3707
3708		spin_lock_bh(&efx->filter_lock);
3709
3710		for (;;) {
3711			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3712			saved_spec = efx_ef10_filter_entry_spec(table, i);
3713
3714			if (!saved_spec) {
3715				if (ins_index < 0)
3716					ins_index = i;
3717			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
3718				if (table->entry[i].spec &
3719				    EFX_EF10_FILTER_FLAG_BUSY)
3720					break;
3721				if (spec->priority < saved_spec->priority &&
3722				    spec->priority != EFX_FILTER_PRI_AUTO) {
3723					rc = -EPERM;
3724					goto out_unlock;
3725				}
3726				if (!is_mc_recip) {
3727					/* This is the only one */
3728					if (spec->priority ==
3729					    saved_spec->priority &&
3730					    !replace_equal) {
3731						rc = -EEXIST;
3732						goto out_unlock;
3733					}
3734					ins_index = i;
3735					goto found;
3736				} else if (spec->priority >
3737					   saved_spec->priority ||
3738					   (spec->priority ==
3739					    saved_spec->priority &&
3740					    replace_equal)) {
3741					if (ins_index < 0)
3742						ins_index = i;
3743					else
3744						__set_bit(depth, mc_rem_map);
3745				}
3746			}
3747
3748			/* Once we reach the maximum search depth, use
3749			 * the first suitable slot or return -EBUSY if
3750			 * there was none
3751			 */
3752			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3753				if (ins_index < 0) {
3754					rc = -EBUSY;
3755					goto out_unlock;
3756				}
3757				goto found;
3758			}
3759
3760			++depth;
3761		}
3762
3763		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3764		spin_unlock_bh(&efx->filter_lock);
3765		schedule();
3766	}
3767
3768found:
3769	/* Create a software table entry if necessary, and mark it
3770	 * busy.  We might yet fail to insert, but any attempt to
3771	 * insert a conflicting filter while we're waiting for the
3772	 * firmware must find the busy entry.
3773	 */
3774	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3775	if (saved_spec) {
3776		if (spec->priority == EFX_FILTER_PRI_AUTO &&
3777		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3778			/* Just make sure it won't be removed */
3779			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3780				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3781			table->entry[ins_index].spec &=
3782				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3783			rc = ins_index;
3784			goto out_unlock;
3785		}
3786		replacing = true;
3787		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3788	} else {
3789		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3790		if (!saved_spec) {
3791			rc = -ENOMEM;
3792			goto out_unlock;
3793		}
3794		*saved_spec = *spec;
3795		priv_flags = 0;
3796	}
3797	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3798				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3799
3800	/* Mark lower-priority multicast recipients busy prior to removal */
3801	if (is_mc_recip) {
3802		unsigned int depth, i;
3803
3804		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3805			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3806			if (test_bit(depth, mc_rem_map))
3807				table->entry[i].spec |=
3808					EFX_EF10_FILTER_FLAG_BUSY;
3809		}
3810	}
3811
3812	spin_unlock_bh(&efx->filter_lock);
3813
3814	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3815				  replacing);
3816
3817	/* Finalise the software table entry */
3818	spin_lock_bh(&efx->filter_lock);
3819	if (rc == 0) {
3820		if (replacing) {
3821			/* Update the fields that may differ */
3822			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3823				saved_spec->flags |=
3824					EFX_FILTER_FLAG_RX_OVER_AUTO;
3825			saved_spec->priority = spec->priority;
3826			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3827			saved_spec->flags |= spec->flags;
3828			saved_spec->rss_context = spec->rss_context;
3829			saved_spec->dmaq_id = spec->dmaq_id;
3830		}
3831	} else if (!replacing) {
3832		kfree(saved_spec);
3833		saved_spec = NULL;
3834	}
3835	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3836
3837	/* Remove and finalise entries for lower-priority multicast
3838	 * recipients
3839	 */
3840	if (is_mc_recip) {
3841		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3842		unsigned int depth, i;
3843
3844		memset(inbuf, 0, sizeof(inbuf));
3845
3846		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3847			if (!test_bit(depth, mc_rem_map))
3848				continue;
3849
3850			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3851			saved_spec = efx_ef10_filter_entry_spec(table, i);
3852			priv_flags = efx_ef10_filter_entry_flags(table, i);
3853
3854			if (rc == 0) {
3855				spin_unlock_bh(&efx->filter_lock);
3856				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3857					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3858				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3859					       table->entry[i].handle);
3860				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3861						  inbuf, sizeof(inbuf),
3862						  NULL, 0, NULL);
3863				spin_lock_bh(&efx->filter_lock);
3864			}
3865
3866			if (rc == 0) {
3867				kfree(saved_spec);
3868				saved_spec = NULL;
3869				priv_flags = 0;
3870			} else {
3871				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3872			}
3873			efx_ef10_filter_set_entry(table, i, saved_spec,
3874						  priv_flags);
3875		}
3876	}
3877
3878	/* If successful, return the inserted filter ID */
3879	if (rc == 0)
3880		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3881
3882	wake_up_all(&table->waitq);
3883out_unlock:
3884	spin_unlock_bh(&efx->filter_lock);
3885	finish_wait(&table->waitq, &wait);
3886	return rc;
3887}
3888
3889static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3890{
3891	/* no need to do anything here on EF10 */
3892}
3893
3894/* Remove a filter.
3895 * If !by_index, remove by ID
3896 * If by_index, remove by index
3897 * Filter ID may come from userland and must be range-checked.
3898 */
3899static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3900					   unsigned int priority_mask,
3901					   u32 filter_id, bool by_index)
3902{
3903	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3904	struct efx_ef10_filter_table *table = efx->filter_state;
3905	MCDI_DECLARE_BUF(inbuf,
3906			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3907			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3908	struct efx_filter_spec *spec;
3909	DEFINE_WAIT(wait);
3910	int rc;
3911
3912	/* Find the software table entry and mark it busy.  Don't
3913	 * remove it yet; any attempt to update while we're waiting
3914	 * for the firmware must find the busy entry.
3915	 */
3916	for (;;) {
3917		spin_lock_bh(&efx->filter_lock);
3918		if (!(table->entry[filter_idx].spec &
3919		      EFX_EF10_FILTER_FLAG_BUSY))
3920			break;
3921		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3922		spin_unlock_bh(&efx->filter_lock);
3923		schedule();
3924	}
3925
3926	spec = efx_ef10_filter_entry_spec(table, filter_idx);
3927	if (!spec ||
3928	    (!by_index &&
3929	     efx_ef10_filter_pri(table, spec) !=
3930	     filter_id / HUNT_FILTER_TBL_ROWS)) {
3931		rc = -ENOENT;
3932		goto out_unlock;
3933	}
3934
3935	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3936	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3937		/* Just remove flags */
3938		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3939		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3940		rc = 0;
3941		goto out_unlock;
3942	}
3943
3944	if (!(priority_mask & (1U << spec->priority))) {
3945		rc = -ENOENT;
3946		goto out_unlock;
3947	}
3948
3949	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3950	spin_unlock_bh(&efx->filter_lock);
3951
3952	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3953		/* Reset to an automatic filter */
3954
3955		struct efx_filter_spec new_spec = *spec;
3956
3957		new_spec.priority = EFX_FILTER_PRI_AUTO;
3958		new_spec.flags = (EFX_FILTER_FLAG_RX |
3959				  (efx_rss_enabled(efx) ?
3960				   EFX_FILTER_FLAG_RX_RSS : 0));
3961		new_spec.dmaq_id = 0;
3962		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3963		rc = efx_ef10_filter_push(efx, &new_spec,
3964					  &table->entry[filter_idx].handle,
3965					  true);
3966
3967		spin_lock_bh(&efx->filter_lock);
3968		if (rc == 0)
3969			*spec = new_spec;
3970	} else {
3971		/* Really remove the filter */
3972
3973		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3974			       efx_ef10_filter_is_exclusive(spec) ?
3975			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3976			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3977		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3978			       table->entry[filter_idx].handle);
3979		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3980				  inbuf, sizeof(inbuf), NULL, 0, NULL);
3981
3982		spin_lock_bh(&efx->filter_lock);
3983		if (rc == 0) {
3984			kfree(spec);
3985			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3986		}
3987	}
3988
3989	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3990	wake_up_all(&table->waitq);
3991out_unlock:
3992	spin_unlock_bh(&efx->filter_lock);
3993	finish_wait(&table->waitq, &wait);
3994	return rc;
3995}
3996
3997static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3998				       enum efx_filter_priority priority,
3999				       u32 filter_id)
4000{
4001	return efx_ef10_filter_remove_internal(efx, 1U << priority,
4002					       filter_id, false);
4003}
4004
4005static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
4006{
4007	return filter_id % HUNT_FILTER_TBL_ROWS;
4008}
4009
4010static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
4011					  enum efx_filter_priority priority,
4012					  u32 filter_id)
4013{
4014	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
4015		return;
4016	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
4017}
4018
4019static int efx_ef10_filter_get_safe(struct efx_nic *efx,
4020				    enum efx_filter_priority priority,
4021				    u32 filter_id, struct efx_filter_spec *spec)
4022{
4023	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
4024	struct efx_ef10_filter_table *table = efx->filter_state;
4025	const struct efx_filter_spec *saved_spec;
4026	int rc;
4027
4028	spin_lock_bh(&efx->filter_lock);
4029	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
4030	if (saved_spec && saved_spec->priority == priority &&
4031	    efx_ef10_filter_pri(table, saved_spec) ==
4032	    filter_id / HUNT_FILTER_TBL_ROWS) {
4033		*spec = *saved_spec;
4034		rc = 0;
4035	} else {
4036		rc = -ENOENT;
4037	}
4038	spin_unlock_bh(&efx->filter_lock);
4039	return rc;
4040}
4041
4042static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
4043				     enum efx_filter_priority priority)
4044{
4045	unsigned int priority_mask;
4046	unsigned int i;
4047	int rc;
4048
4049	priority_mask = (((1U << (priority + 1)) - 1) &
4050			 ~(1U << EFX_FILTER_PRI_AUTO));
4051
4052	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4053		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
4054						     i, true);
4055		if (rc && rc != -ENOENT)
4056			return rc;
4057	}
4058
4059	return 0;
4060}
4061
4062static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
4063					 enum efx_filter_priority priority)
4064{
4065	struct efx_ef10_filter_table *table = efx->filter_state;
4066	unsigned int filter_idx;
4067	s32 count = 0;
4068
4069	spin_lock_bh(&efx->filter_lock);
4070	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4071		if (table->entry[filter_idx].spec &&
4072		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
4073		    priority)
4074			++count;
4075	}
4076	spin_unlock_bh(&efx->filter_lock);
4077	return count;
4078}
4079
4080static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
4081{
4082	struct efx_ef10_filter_table *table = efx->filter_state;
4083
4084	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
4085}
4086
4087static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
4088				      enum efx_filter_priority priority,
4089				      u32 *buf, u32 size)
4090{
4091	struct efx_ef10_filter_table *table = efx->filter_state;
4092	struct efx_filter_spec *spec;
4093	unsigned int filter_idx;
4094	s32 count = 0;
4095
4096	spin_lock_bh(&efx->filter_lock);
4097	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4098		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4099		if (spec && spec->priority == priority) {
4100			if (count == size) {
4101				count = -EMSGSIZE;
4102				break;
4103			}
4104			buf[count++] = (efx_ef10_filter_pri(table, spec) *
4105					HUNT_FILTER_TBL_ROWS +
4106					filter_idx);
4107		}
4108	}
4109	spin_unlock_bh(&efx->filter_lock);
4110	return count;
4111}
4112
4113#ifdef CONFIG_RFS_ACCEL
4114
4115static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
4116
4117static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
4118				      struct efx_filter_spec *spec)
4119{
4120	struct efx_ef10_filter_table *table = efx->filter_state;
4121	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4122	struct efx_filter_spec *saved_spec;
4123	unsigned int hash, i, depth = 1;
4124	bool replacing = false;
4125	int ins_index = -1;
4126	u64 cookie;
4127	s32 rc;
4128
4129	/* Must be an RX filter without RSS and not for a multicast
4130	 * destination address (RFS only works for connected sockets).
4131	 * These restrictions allow us to pass only a tiny amount of
4132	 * data through to the completion function.
4133	 */
4134	EFX_WARN_ON_PARANOID(spec->flags !=
4135			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
4136	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
4137	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
4138
4139	hash = efx_ef10_filter_hash(spec);
4140
4141	spin_lock_bh(&efx->filter_lock);
4142
4143	/* Find any existing filter with the same match tuple or else
4144	 * a free slot to insert at.  If an existing filter is busy,
4145	 * we have to give up.
4146	 */
4147	for (;;) {
4148		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
4149		saved_spec = efx_ef10_filter_entry_spec(table, i);
4150
4151		if (!saved_spec) {
4152			if (ins_index < 0)
4153				ins_index = i;
4154		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
4155			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
4156				rc = -EBUSY;
4157				goto fail_unlock;
4158			}
4159			if (spec->priority < saved_spec->priority) {
4160				rc = -EPERM;
4161				goto fail_unlock;
4162			}
4163			ins_index = i;
4164			break;
4165		}
4166
4167		/* Once we reach the maximum search depth, use the
4168		 * first suitable slot or return -EBUSY if there was
4169		 * none
4170		 */
4171		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
4172			if (ins_index < 0) {
4173				rc = -EBUSY;
4174				goto fail_unlock;
4175			}
4176			break;
4177		}
4178
4179		++depth;
4180	}
4181
4182	/* Create a software table entry if necessary, and mark it
4183	 * busy.  We might yet fail to insert, but any attempt to
4184	 * insert a conflicting filter while we're waiting for the
4185	 * firmware must find the busy entry.
4186	 */
4187	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
4188	if (saved_spec) {
4189		replacing = true;
4190	} else {
4191		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
4192		if (!saved_spec) {
4193			rc = -ENOMEM;
4194			goto fail_unlock;
4195		}
4196		*saved_spec = *spec;
4197	}
4198	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
4199				  EFX_EF10_FILTER_FLAG_BUSY);
4200
4201	spin_unlock_bh(&efx->filter_lock);
4202
4203	/* Pack up the variables needed on completion */
4204	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
4205
4206	efx_ef10_filter_push_prep(efx, spec, inbuf,
4207				  table->entry[ins_index].handle, replacing);
4208	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
4209			   MC_CMD_FILTER_OP_OUT_LEN,
4210			   efx_ef10_filter_rfs_insert_complete, cookie);
4211
4212	return ins_index;
4213
4214fail_unlock:
4215	spin_unlock_bh(&efx->filter_lock);
4216	return rc;
4217}
4218
4219static void
4220efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
4221				    int rc, efx_dword_t *outbuf,
4222				    size_t outlen_actual)
4223{
4224	struct efx_ef10_filter_table *table = efx->filter_state;
4225	unsigned int ins_index, dmaq_id;
4226	struct efx_filter_spec *spec;
4227	bool replacing;
4228
4229	/* Unpack the cookie */
4230	replacing = cookie >> 31;
4231	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
4232	dmaq_id = cookie & 0xffff;
4233
4234	spin_lock_bh(&efx->filter_lock);
4235	spec = efx_ef10_filter_entry_spec(table, ins_index);
4236	if (rc == 0) {
4237		table->entry[ins_index].handle =
4238			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
4239		if (replacing)
4240			spec->dmaq_id = dmaq_id;
4241	} else if (!replacing) {
4242		kfree(spec);
4243		spec = NULL;
4244	}
4245	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
4246	spin_unlock_bh(&efx->filter_lock);
4247
4248	wake_up_all(&table->waitq);
4249}
4250
4251static void
4252efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4253				    unsigned long filter_idx,
4254				    int rc, efx_dword_t *outbuf,
4255				    size_t outlen_actual);
4256
4257static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
4258					   unsigned int filter_idx)
4259{
4260	struct efx_ef10_filter_table *table = efx->filter_state;
4261	struct efx_filter_spec *spec =
4262		efx_ef10_filter_entry_spec(table, filter_idx);
4263	MCDI_DECLARE_BUF(inbuf,
4264			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
4265			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
4266
4267	if (!spec ||
4268	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
4269	    spec->priority != EFX_FILTER_PRI_HINT ||
4270	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
4271				 flow_id, filter_idx))
4272		return false;
4273
4274	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4275		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
4276	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4277		       table->entry[filter_idx].handle);
4278	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
4279			       efx_ef10_filter_rfs_expire_complete, filter_idx))
4280		return false;
4281
4282	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4283	return true;
4284}
4285
4286static void
4287efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
4288				    unsigned long filter_idx,
4289				    int rc, efx_dword_t *outbuf,
4290				    size_t outlen_actual)
4291{
4292	struct efx_ef10_filter_table *table = efx->filter_state;
4293	struct efx_filter_spec *spec =
4294		efx_ef10_filter_entry_spec(table, filter_idx);
4295
4296	spin_lock_bh(&efx->filter_lock);
4297	if (rc == 0) {
4298		kfree(spec);
4299		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4300	}
4301	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
4302	wake_up_all(&table->waitq);
4303	spin_unlock_bh(&efx->filter_lock);
4304}
4305
4306#endif /* CONFIG_RFS_ACCEL */
4307
4308static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
4309{
4310	int match_flags = 0;
4311
4312#define MAP_FLAG(gen_flag, mcdi_field) {				\
4313		u32 old_mcdi_flags = mcdi_flags;			\
4314		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
4315				mcdi_field ## _LBN);			\
4316		if (mcdi_flags != old_mcdi_flags)			\
4317			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
4318	}
4319	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
4320	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
4321	MAP_FLAG(REM_HOST, SRC_IP);
4322	MAP_FLAG(LOC_HOST, DST_IP);
4323	MAP_FLAG(REM_MAC, SRC_MAC);
4324	MAP_FLAG(REM_PORT, SRC_PORT);
4325	MAP_FLAG(LOC_MAC, DST_MAC);
4326	MAP_FLAG(LOC_PORT, DST_PORT);
4327	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
4328	MAP_FLAG(INNER_VID, INNER_VLAN);
4329	MAP_FLAG(OUTER_VID, OUTER_VLAN);
4330	MAP_FLAG(IP_PROTO, IP_PROTO);
4331#undef MAP_FLAG
4332
4333	/* Did we map them all? */
4334	if (mcdi_flags)
4335		return -EINVAL;
4336
4337	return match_flags;
4338}
4339
4340static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
4341{
4342	struct efx_ef10_filter_table *table = efx->filter_state;
4343	struct efx_ef10_filter_vlan *vlan, *next_vlan;
4344
4345	/* See comment in efx_ef10_filter_table_remove() */
4346	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4347		return;
4348
4349	if (!table)
4350		return;
4351
4352	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
4353		efx_ef10_filter_del_vlan_internal(efx, vlan);
4354}
4355
4356static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
4357					    enum efx_filter_match_flags match_flags)
4358{
4359	unsigned int match_pri;
4360	int mf;
4361
4362	for (match_pri = 0;
4363	     match_pri < table->rx_match_count;
4364	     match_pri++) {
4365		mf = efx_ef10_filter_match_flags_from_mcdi(
4366				table->rx_match_mcdi_flags[match_pri]);
4367		if (mf == match_flags)
4368			return true;
4369	}
4370
4371	return false;
4372}
4373
4374static int efx_ef10_filter_table_probe(struct efx_nic *efx)
4375{
4376	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
4377	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4378	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4379	struct net_device *net_dev = efx->net_dev;
4380	unsigned int pd_match_pri, pd_match_count;
4381	struct efx_ef10_filter_table *table;
4382	struct efx_ef10_vlan *vlan;
4383	size_t outlen;
4384	int rc;
4385
4386	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4387		return -EINVAL;
4388
4389	if (efx->filter_state) /* already probed */
4390		return 0;
4391
4392	table = kzalloc(sizeof(*table), GFP_KERNEL);
4393	if (!table)
4394		return -ENOMEM;
4395
4396	/* Find out which RX filter types are supported, and their priorities */
4397	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
4398		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
4399	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
4400			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
4401			  &outlen);
4402	if (rc)
4403		goto fail;
4404	pd_match_count = MCDI_VAR_ARRAY_LEN(
4405		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
4406	table->rx_match_count = 0;
4407
4408	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
4409		u32 mcdi_flags =
4410			MCDI_ARRAY_DWORD(
4411				outbuf,
4412				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
4413				pd_match_pri);
4414		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
4415		if (rc < 0) {
4416			netif_dbg(efx, probe, efx->net_dev,
4417				  "%s: fw flags %#x pri %u not supported in driver\n",
4418				  __func__, mcdi_flags, pd_match_pri);
4419		} else {
4420			netif_dbg(efx, probe, efx->net_dev,
4421				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
4422				  __func__, mcdi_flags, pd_match_pri,
4423				  rc, table->rx_match_count);
4424			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
4425			table->rx_match_count++;
4426		}
4427	}
4428
4429	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
4430	    !(efx_ef10_filter_match_supported(table,
4431		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
4432	      efx_ef10_filter_match_supported(table,
4433		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
4434		netif_info(efx, probe, net_dev,
4435			   "VLAN filters are not supported in this firmware variant\n");
4436		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4437		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4438		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4439	}
4440
4441	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
4442	if (!table->entry) {
4443		rc = -ENOMEM;
4444		goto fail;
4445	}
4446
4447	table->mc_promisc_last = false;
4448	table->vlan_filter =
4449		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4450	INIT_LIST_HEAD(&table->vlan_list);
4451
4452	efx->filter_state = table;
4453	init_waitqueue_head(&table->waitq);
4454
4455	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
4456		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
4457		if (rc)
4458			goto fail_add_vlan;
4459	}
4460
4461	return 0;
4462
4463fail_add_vlan:
4464	efx_ef10_filter_cleanup_vlans(efx);
4465	efx->filter_state = NULL;
4466fail:
4467	kfree(table);
4468	return rc;
4469}
4470
4471/* Caller must hold efx->filter_sem for read if race against
4472 * efx_ef10_filter_table_remove() is possible
4473 */
4474static void efx_ef10_filter_table_restore(struct efx_nic *efx)
4475{
4476	struct efx_ef10_filter_table *table = efx->filter_state;
4477	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4478	struct efx_filter_spec *spec;
4479	unsigned int filter_idx;
4480	bool failed = false;
4481	int rc;
4482
4483	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
4484
4485	if (!nic_data->must_restore_filters)
4486		return;
4487
4488	if (!table)
4489		return;
4490
4491	spin_lock_bh(&efx->filter_lock);
4492
4493	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4494		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4495		if (!spec)
4496			continue;
4497
4498		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
4499		spin_unlock_bh(&efx->filter_lock);
4500
4501		rc = efx_ef10_filter_push(efx, spec,
4502					  &table->entry[filter_idx].handle,
4503					  false);
4504		if (rc)
4505			failed = true;
4506
4507		spin_lock_bh(&efx->filter_lock);
4508		if (rc) {
4509			kfree(spec);
4510			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
4511		} else {
4512			table->entry[filter_idx].spec &=
4513				~EFX_EF10_FILTER_FLAG_BUSY;
4514		}
4515	}
4516
4517	spin_unlock_bh(&efx->filter_lock);
4518
4519	if (failed)
4520		netif_err(efx, hw, efx->net_dev,
4521			  "unable to restore all filters\n");
4522	else
4523		nic_data->must_restore_filters = false;
4524}
4525
4526static void efx_ef10_filter_table_remove(struct efx_nic *efx)
4527{
4528	struct efx_ef10_filter_table *table = efx->filter_state;
4529	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
4530	struct efx_filter_spec *spec;
4531	unsigned int filter_idx;
4532	int rc;
4533
4534	efx_ef10_filter_cleanup_vlans(efx);
4535	efx->filter_state = NULL;
4536	/* If we were called without locking, then it's not safe to free
4537	 * the table as others might be using it.  So we just WARN, leak
4538	 * the memory, and potentially get an inconsistent filter table
4539	 * state.
4540	 * This should never actually happen.
4541	 */
4542	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
4543		return;
4544
4545	if (!table)
4546		return;
4547
4548	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
4549		spec = efx_ef10_filter_entry_spec(table, filter_idx);
4550		if (!spec)
4551			continue;
4552
4553		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
4554			       efx_ef10_filter_is_exclusive(spec) ?
4555			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
4556			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
4557		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
4558			       table->entry[filter_idx].handle);
4559		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
4560					sizeof(inbuf), NULL, 0, NULL);
4561		if (rc)
4562			netif_info(efx, drv, efx->net_dev,
4563				   "%s: filter %04x remove failed\n",
4564				   __func__, filter_idx);
4565		kfree(spec);
4566	}
4567
4568	vfree(table->entry);
4569	kfree(table);
4570}
4571
4572static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
4573{
4574	struct efx_ef10_filter_table *table = efx->filter_state;
4575	unsigned int filter_idx;
4576
4577	if (*id != EFX_EF10_FILTER_ID_INVALID) {
4578		filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
4579		if (!table->entry[filter_idx].spec)
4580			netif_dbg(efx, drv, efx->net_dev,
4581				  "marked null spec old %04x:%04x\n", *id,
4582				  filter_idx);
4583		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
4584		*id = EFX_EF10_FILTER_ID_INVALID;
4585	}
4586}
4587
4588/* Mark old per-VLAN filters that may need to be removed */
4589static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
4590					   struct efx_ef10_filter_vlan *vlan)
4591{
4592	struct efx_ef10_filter_table *table = efx->filter_state;
4593	unsigned int i;
4594
4595	for (i = 0; i < table->dev_uc_count; i++)
4596		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
4597	for (i = 0; i < table->dev_mc_count; i++)
4598		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
4599	efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
4600	efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
4601	efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
4602}
4603
4604/* Mark old filters that may need to be removed.
4605 * Caller must hold efx->filter_sem for read if race against
4606 * efx_ef10_filter_table_remove() is possible
4607 */
4608static void efx_ef10_filter_mark_old(struct efx_nic *efx)
4609{
4610	struct efx_ef10_filter_table *table = efx->filter_state;
4611	struct efx_ef10_filter_vlan *vlan;
4612
4613	spin_lock_bh(&efx->filter_lock);
4614	list_for_each_entry(vlan, &table->vlan_list, list)
4615		_efx_ef10_filter_vlan_mark_old(efx, vlan);
4616	spin_unlock_bh(&efx->filter_lock);
4617}
4618
4619static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
4620{
4621	struct efx_ef10_filter_table *table = efx->filter_state;
4622	struct net_device *net_dev = efx->net_dev;
4623	struct netdev_hw_addr *uc;
4624	int addr_count;
4625	unsigned int i;
4626
4627	addr_count = netdev_uc_count(net_dev);
4628	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
4629	table->dev_uc_count = 1 + addr_count;
4630	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
4631	i = 1;
4632	netdev_for_each_uc_addr(uc, net_dev) {
4633		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
4634			table->uc_promisc = true;
4635			break;
4636		}
4637		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
4638		i++;
4639	}
4640}
4641
4642static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
4643{
4644	struct efx_ef10_filter_table *table = efx->filter_state;
4645	struct net_device *net_dev = efx->net_dev;
4646	struct netdev_hw_addr *mc;
4647	unsigned int i, addr_count;
4648
4649	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
4650
4651	addr_count = netdev_mc_count(net_dev);
4652	i = 0;
4653	netdev_for_each_mc_addr(mc, net_dev) {
4654		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
4655			table->mc_promisc = true;
4656			break;
4657		}
4658		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
4659		i++;
4660	}
4661
4662	table->dev_mc_count = i;
4663}
4664
4665static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
4666					    struct efx_ef10_filter_vlan *vlan,
4667					    bool multicast, bool rollback)
4668{
4669	struct efx_ef10_filter_table *table = efx->filter_state;
4670	struct efx_ef10_dev_addr *addr_list;
4671	enum efx_filter_flags filter_flags;
4672	struct efx_filter_spec spec;
4673	u8 baddr[ETH_ALEN];
4674	unsigned int i, j;
4675	int addr_count;
4676	u16 *ids;
4677	int rc;
4678
4679	if (multicast) {
4680		addr_list = table->dev_mc_list;
4681		addr_count = table->dev_mc_count;
4682		ids = vlan->mc;
4683	} else {
4684		addr_list = table->dev_uc_list;
4685		addr_count = table->dev_uc_count;
4686		ids = vlan->uc;
4687	}
4688
4689	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4690
4691	/* Insert/renew filters */
4692	for (i = 0; i < addr_count; i++) {
4693		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4694		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
4695		rc = efx_ef10_filter_insert(efx, &spec, true);
4696		if (rc < 0) {
4697			if (rollback) {
4698				netif_info(efx, drv, efx->net_dev,
4699					   "efx_ef10_filter_insert failed rc=%d\n",
4700					   rc);
4701				/* Fall back to promiscuous */
4702				for (j = 0; j < i; j++) {
4703					efx_ef10_filter_remove_unsafe(
4704						efx, EFX_FILTER_PRI_AUTO,
4705						ids[j]);
4706					ids[j] = EFX_EF10_FILTER_ID_INVALID;
4707				}
4708				return rc;
4709			} else {
4710				/* mark as not inserted, and carry on */
4711				rc = EFX_EF10_FILTER_ID_INVALID;
4712			}
4713		}
4714		ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
4715	}
4716
4717	if (multicast && rollback) {
4718		/* Also need an Ethernet broadcast filter */
4719		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4720		eth_broadcast_addr(baddr);
4721		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4722		rc = efx_ef10_filter_insert(efx, &spec, true);
4723		if (rc < 0) {
4724			netif_warn(efx, drv, efx->net_dev,
4725				   "Broadcast filter insert failed rc=%d\n", rc);
4726			/* Fall back to promiscuous */
4727			for (j = 0; j < i; j++) {
4728				efx_ef10_filter_remove_unsafe(
4729					efx, EFX_FILTER_PRI_AUTO,
4730					ids[j]);
4731				ids[j] = EFX_EF10_FILTER_ID_INVALID;
4732			}
4733			return rc;
4734		} else {
4735			EFX_WARN_ON_PARANOID(vlan->bcast !=
4736					     EFX_EF10_FILTER_ID_INVALID);
4737			vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4738		}
4739	}
4740
4741	return 0;
4742}
4743
4744static int efx_ef10_filter_insert_def(struct efx_nic *efx,
4745				      struct efx_ef10_filter_vlan *vlan,
4746				      bool multicast, bool rollback)
4747{
4748	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4749	enum efx_filter_flags filter_flags;
4750	struct efx_filter_spec spec;
4751	u8 baddr[ETH_ALEN];
4752	int rc;
4753
4754	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
4755
4756	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4757
4758	if (multicast)
4759		efx_filter_set_mc_def(&spec);
4760	else
4761		efx_filter_set_uc_def(&spec);
4762
4763	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
4764		efx_filter_set_eth_local(&spec, vlan->vid, NULL);
4765
4766	rc = efx_ef10_filter_insert(efx, &spec, true);
4767	if (rc < 0) {
4768		netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
4769			     efx->net_dev,
4770			     "%scast mismatch filter insert failed rc=%d\n",
4771			     multicast ? "Multi" : "Uni", rc);
4772	} else if (multicast) {
4773		EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
4774		vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
4775		if (!nic_data->workaround_26807) {
4776			/* Also need an Ethernet broadcast filter */
4777			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4778					   filter_flags, 0);
4779			eth_broadcast_addr(baddr);
4780			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4781			rc = efx_ef10_filter_insert(efx, &spec, true);
4782			if (rc < 0) {
4783				netif_warn(efx, drv, efx->net_dev,
4784					   "Broadcast filter insert failed rc=%d\n",
4785					   rc);
4786				if (rollback) {
4787					/* Roll back the mc_def filter */
4788					efx_ef10_filter_remove_unsafe(
4789							efx, EFX_FILTER_PRI_AUTO,
4790							vlan->mcdef);
4791					vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4792					return rc;
4793				}
4794			} else {
4795				EFX_WARN_ON_PARANOID(vlan->bcast !=
4796						     EFX_EF10_FILTER_ID_INVALID);
4797				vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4798			}
4799		}
4800		rc = 0;
4801	} else {
4802		EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
4803		vlan->ucdef = rc;
4804		rc = 0;
4805	}
4806	return rc;
4807}
4808
4809/* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
4810 * flag or removes these filters, we don't need to hold the filter_lock while
4811 * scanning for these filters.
4812 */
4813static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4814{
4815	struct efx_ef10_filter_table *table = efx->filter_state;
4816	int remove_failed = 0;
4817	int remove_noent = 0;
4818	int rc;
4819	int i;
4820
4821	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4822		if (ACCESS_ONCE(table->entry[i].spec) &
4823		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4824			rc = efx_ef10_filter_remove_internal(efx,
4825					1U << EFX_FILTER_PRI_AUTO, i, true);
4826			if (rc == -ENOENT)
4827				remove_noent++;
4828			else if (rc)
4829				remove_failed++;
4830		}
4831	}
4832
4833	if (remove_failed)
4834		netif_info(efx, drv, efx->net_dev,
4835			   "%s: failed to remove %d filters\n",
4836			   __func__, remove_failed);
4837	if (remove_noent)
4838		netif_info(efx, drv, efx->net_dev,
4839			   "%s: failed to remove %d non-existent filters\n",
4840			   __func__, remove_noent);
4841}
4842
4843static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4844{
4845	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4846	u8 mac_old[ETH_ALEN];
4847	int rc, rc2;
4848
4849	/* Only reconfigure a PF-created vport */
4850	if (is_zero_ether_addr(nic_data->vport_mac))
4851		return 0;
4852
4853	efx_device_detach_sync(efx);
4854	efx_net_stop(efx->net_dev);
4855	down_write(&efx->filter_sem);
4856	efx_ef10_filter_table_remove(efx);
4857	up_write(&efx->filter_sem);
4858
4859	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4860	if (rc)
4861		goto restore_filters;
4862
4863	ether_addr_copy(mac_old, nic_data->vport_mac);
4864	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4865				    nic_data->vport_mac);
4866	if (rc)
4867		goto restore_vadaptor;
4868
4869	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4870				    efx->net_dev->dev_addr);
4871	if (!rc) {
4872		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4873	} else {
4874		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4875		if (rc2) {
4876			/* Failed to add original MAC, so clear vport_mac */
4877			eth_zero_addr(nic_data->vport_mac);
4878			goto reset_nic;
4879		}
4880	}
4881
4882restore_vadaptor:
4883	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4884	if (rc2)
4885		goto reset_nic;
4886restore_filters:
4887	down_write(&efx->filter_sem);
4888	rc2 = efx_ef10_filter_table_probe(efx);
4889	up_write(&efx->filter_sem);
4890	if (rc2)
4891		goto reset_nic;
4892
4893	rc2 = efx_net_open(efx->net_dev);
4894	if (rc2)
4895		goto reset_nic;
4896
4897	netif_device_attach(efx->net_dev);
4898
4899	return rc;
4900
4901reset_nic:
4902	netif_err(efx, drv, efx->net_dev,
4903		  "Failed to restore when changing MAC address - scheduling reset\n");
4904	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4905
4906	return rc ? rc : rc2;
4907}
4908
4909/* Caller must hold efx->filter_sem for read if race against
4910 * efx_ef10_filter_table_remove() is possible
4911 */
4912static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
4913					      struct efx_ef10_filter_vlan *vlan)
4914{
4915	struct efx_ef10_filter_table *table = efx->filter_state;
4916	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
4917
4918	/* Do not install unspecified VID if VLAN filtering is enabled.
4919	 * Do not install all specified VIDs if VLAN filtering is disabled.
 
4920	 */
4921	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
4922		return;
 
 
4923
4924	/* Insert/renew unicast filters */
4925	if (table->uc_promisc) {
4926		efx_ef10_filter_insert_def(efx, vlan, false, false);
4927		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
4928	} else {
4929		/* If any of the filters failed to insert, fall back to
4930		 * promiscuous mode - add in the uc_def filter.  But keep
4931		 * our individual unicast filters.
4932		 */
4933		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
4934			efx_ef10_filter_insert_def(efx, vlan, false, false);
4935	}
4936
4937	/* Insert/renew multicast filters */
4938	/* If changing promiscuous state with cascaded multicast filters, remove
4939	 * old filters first, so that packets are dropped rather than duplicated
4940	 */
4941	if (nic_data->workaround_26807 &&
4942	    table->mc_promisc_last != table->mc_promisc)
4943		efx_ef10_filter_remove_old(efx);
4944	if (table->mc_promisc) {
4945		if (nic_data->workaround_26807) {
4946			/* If we failed to insert promiscuous filters, rollback
4947			 * and fall back to individual multicast filters
4948			 */
4949			if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
4950				/* Changing promisc state, so remove old filters */
4951				efx_ef10_filter_remove_old(efx);
4952				efx_ef10_filter_insert_addr_list(efx, vlan,
4953								 true, false);
4954			}
4955		} else {
4956			/* If we failed to insert promiscuous filters, don't
4957			 * rollback.  Regardless, also insert the mc_list
4958			 */
4959			efx_ef10_filter_insert_def(efx, vlan, true, false);
4960			efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
4961		}
4962	} else {
4963		/* If any filters failed to insert, rollback and fall back to
4964		 * promiscuous mode - mc_def filter and maybe broadcast.  If
4965		 * that fails, roll back again and insert as many of our
4966		 * individual multicast filters as we can.
4967		 */
4968		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
4969			/* Changing promisc state, so remove old filters */
4970			if (nic_data->workaround_26807)
4971				efx_ef10_filter_remove_old(efx);
4972			if (efx_ef10_filter_insert_def(efx, vlan, true, true))
4973				efx_ef10_filter_insert_addr_list(efx, vlan,
4974								 true, false);
4975		}
4976	}
4977}
4978
4979/* Caller must hold efx->filter_sem for read if race against
4980 * efx_ef10_filter_table_remove() is possible
4981 */
4982static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4983{
4984	struct efx_ef10_filter_table *table = efx->filter_state;
4985	struct net_device *net_dev = efx->net_dev;
4986	struct efx_ef10_filter_vlan *vlan;
4987	bool vlan_filter;
4988
4989	if (!efx_dev_registered(efx))
4990		return;
4991
4992	if (!table)
4993		return;
4994
4995	efx_ef10_filter_mark_old(efx);
4996
4997	/* Copy/convert the address lists; add the primary station
4998	 * address and broadcast address
4999	 */
5000	netif_addr_lock_bh(net_dev);
5001	efx_ef10_filter_uc_addr_list(efx);
5002	efx_ef10_filter_mc_addr_list(efx);
5003	netif_addr_unlock_bh(net_dev);
5004
5005	/* If VLAN filtering changes, all old filters are finally removed.
5006	 * Do it in advance to avoid conflicts for unicast untagged and
5007	 * VLAN 0 tagged filters.
5008	 */
5009	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
5010	if (table->vlan_filter != vlan_filter) {
5011		table->vlan_filter = vlan_filter;
5012		efx_ef10_filter_remove_old(efx);
5013	}
5014
5015	list_for_each_entry(vlan, &table->vlan_list, list)
5016		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5017
5018	efx_ef10_filter_remove_old(efx);
5019	table->mc_promisc_last = table->mc_promisc;
5020}
5021
5022static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
5023{
5024	struct efx_ef10_filter_table *table = efx->filter_state;
5025	struct efx_ef10_filter_vlan *vlan;
5026
5027	WARN_ON(!rwsem_is_locked(&efx->filter_sem));
5028
5029	list_for_each_entry(vlan, &table->vlan_list, list) {
5030		if (vlan->vid == vid)
5031			return vlan;
5032	}
5033
5034	return NULL;
5035}
5036
5037static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
5038{
5039	struct efx_ef10_filter_table *table = efx->filter_state;
5040	struct efx_ef10_filter_vlan *vlan;
5041	unsigned int i;
5042
5043	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5044		return -EINVAL;
5045
5046	vlan = efx_ef10_filter_find_vlan(efx, vid);
5047	if (WARN_ON(vlan)) {
5048		netif_err(efx, drv, efx->net_dev,
5049			  "VLAN %u already added\n", vid);
5050		return -EALREADY;
5051	}
5052
5053	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
5054	if (!vlan)
5055		return -ENOMEM;
5056
5057	vlan->vid = vid;
5058
5059	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5060		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
5061	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5062		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
5063	vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
5064	vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
5065	vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
5066
5067	list_add_tail(&vlan->list, &table->vlan_list);
5068
5069	if (efx_dev_registered(efx))
5070		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
5071
5072	return 0;
5073}
5074
5075static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
5076					      struct efx_ef10_filter_vlan *vlan)
5077{
5078	unsigned int i;
5079
5080	/* See comment in efx_ef10_filter_table_remove() */
5081	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5082		return;
5083
5084	list_del(&vlan->list);
5085
5086	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
5087		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5088					      vlan->uc[i]);
5089	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
5090		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
5091					      vlan->mc[i]);
5092	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
5093	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
5094	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
5095
5096	kfree(vlan);
5097}
5098
5099static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
5100{
5101	struct efx_ef10_filter_vlan *vlan;
5102
5103	/* See comment in efx_ef10_filter_table_remove() */
5104	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
5105		return;
5106
5107	vlan = efx_ef10_filter_find_vlan(efx, vid);
5108	if (!vlan) {
5109		netif_err(efx, drv, efx->net_dev,
5110			  "VLAN %u not found in filter state\n", vid);
5111		return;
5112	}
5113
5114	efx_ef10_filter_del_vlan_internal(efx, vlan);
5115}
5116
5117static int efx_ef10_set_mac_address(struct efx_nic *efx)
5118{
5119	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
5120	struct efx_ef10_nic_data *nic_data = efx->nic_data;
5121	bool was_enabled = efx->port_enabled;
5122	int rc;
5123
5124	efx_device_detach_sync(efx);
5125	efx_net_stop(efx->net_dev);
5126
5127	mutex_lock(&efx->mac_lock);
5128	down_write(&efx->filter_sem);
5129	efx_ef10_filter_table_remove(efx);
5130
5131	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
5132			efx->net_dev->dev_addr);
5133	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
5134		       nic_data->vport_id);
5135	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
5136				sizeof(inbuf), NULL, 0, NULL);
5137
5138	efx_ef10_filter_table_probe(efx);
5139	up_write(&efx->filter_sem);
5140	mutex_unlock(&efx->mac_lock);
5141
5142	if (was_enabled)
5143		efx_net_open(efx->net_dev);
5144	netif_device_attach(efx->net_dev);
5145
5146#ifdef CONFIG_SFC_SRIOV
5147	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
5148		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
5149
5150		if (rc == -EPERM) {
5151			struct efx_nic *efx_pf;
5152
5153			/* Switch to PF and change MAC address on vport */
5154			efx_pf = pci_get_drvdata(pci_dev_pf);
5155
5156			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
5157						       nic_data->vf_index,
5158						       efx->net_dev->dev_addr);
5159		} else if (!rc) {
5160			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
5161			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
5162			unsigned int i;
5163
5164			/* MAC address successfully changed by VF (with MAC
5165			 * spoofing) so update the parent PF if possible.
5166			 */
5167			for (i = 0; i < efx_pf->vf_count; ++i) {
5168				struct ef10_vf *vf = nic_data->vf + i;
5169
5170				if (vf->efx == efx) {
5171					ether_addr_copy(vf->mac,
5172							efx->net_dev->dev_addr);
5173					return 0;
5174				}
5175			}
5176		}
5177	} else
5178#endif
5179	if (rc == -EPERM) {
5180		netif_err(efx, drv, efx->net_dev,
5181			  "Cannot change MAC address; use sfboot to enable"
5182			  " mac-spoofing on this interface\n");
5183	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
5184		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
5185		 * fall-back to the method of changing the MAC address on the
5186		 * vport.  This only applies to PFs because such versions of
5187		 * MCFW do not support VFs.
5188		 */
5189		rc = efx_ef10_vport_set_mac_address(efx);
5190	} else {
5191		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
5192				       sizeof(inbuf), NULL, 0, rc);
5193	}
5194
5195	return rc;
5196}
5197
5198static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
5199{
5200	efx_ef10_filter_sync_rx_mode(efx);
 
 
5201
 
 
5202	return efx_mcdi_set_mac(efx);
5203}
5204
5205static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
5206{
5207	efx_ef10_filter_sync_rx_mode(efx);
5208
5209	return 0;
5210}
5211
5212static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
5213{
5214	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
5215
5216	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
5217	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
5218			    NULL, 0, NULL);
5219}
5220
5221/* MC BISTs follow a different poll mechanism to phy BISTs.
5222 * The BIST is done in the poll handler on the MC, and the MCDI command
5223 * will block until the BIST is done.
5224 */
5225static int efx_ef10_poll_bist(struct efx_nic *efx)
5226{
5227	int rc;
5228	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
5229	size_t outlen;
5230	u32 result;
5231
5232	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
5233			   outbuf, sizeof(outbuf), &outlen);
5234	if (rc != 0)
5235		return rc;
5236
5237	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
5238		return -EIO;
5239
5240	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
5241	switch (result) {
5242	case MC_CMD_POLL_BIST_PASSED:
5243		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
5244		return 0;
5245	case MC_CMD_POLL_BIST_TIMEOUT:
5246		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
5247		return -EIO;
5248	case MC_CMD_POLL_BIST_FAILED:
5249		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
5250		return -EIO;
5251	default:
5252		netif_err(efx, hw, efx->net_dev,
5253			  "BIST returned unknown result %u", result);
5254		return -EIO;
5255	}
5256}
5257
5258static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
5259{
5260	int rc;
5261
5262	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
5263
5264	rc = efx_ef10_start_bist(efx, bist_type);
5265	if (rc != 0)
5266		return rc;
5267
5268	return efx_ef10_poll_bist(efx);
5269}
5270
5271static int
5272efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
5273{
5274	int rc, rc2;
5275
5276	efx_reset_down(efx, RESET_TYPE_WORLD);
5277
5278	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
5279			  NULL, 0, NULL, 0, NULL);
5280	if (rc != 0)
5281		goto out;
5282
5283	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
5284	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
5285
5286	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
5287
5288out:
5289	if (rc == -EPERM)
5290		rc = 0;
5291	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
5292	return rc ? rc : rc2;
5293}
5294
5295#ifdef CONFIG_SFC_MTD
5296
5297struct efx_ef10_nvram_type_info {
5298	u16 type, type_mask;
5299	u8 port;
5300	const char *name;
5301};
5302
5303static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
5304	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
5305	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
5306	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
5307	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
5308	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
5309	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
5310	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
5311	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
5312	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
5313	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
5314	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
 
 
 
 
 
 
 
5315};
 
5316
5317static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
5318					struct efx_mcdi_mtd_partition *part,
5319					unsigned int type)
 
5320{
5321	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
5322	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
5323	const struct efx_ef10_nvram_type_info *info;
5324	size_t size, erase_size, outlen;
 
5325	bool protected;
5326	int rc;
5327
5328	for (info = efx_ef10_nvram_types; ; info++) {
5329		if (info ==
5330		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
5331			return -ENODEV;
 
5332		if ((type & ~info->type_mask) == info->type)
5333			break;
5334	}
5335	if (info->port != efx_port_num(efx))
5336		return -ENODEV;
5337
5338	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
5339	if (rc)
5340		return rc;
 
 
 
 
 
 
5341	if (protected)
5342		return -ENODEV; /* hide it */
 
 
 
 
 
 
 
 
5343
5344	part->nvram_type = type;
5345
5346	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
5347	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
5348			  outbuf, sizeof(outbuf), &outlen);
5349	if (rc)
5350		return rc;
5351	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
5352		return -EIO;
5353	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
5354	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
5355		part->fw_subtype = MCDI_DWORD(outbuf,
5356					      NVRAM_METADATA_OUT_SUBTYPE);
5357
5358	part->common.dev_type_name = "EF10 NVRAM manager";
5359	part->common.type_name = info->name;
5360
5361	part->common.mtd.type = MTD_NORFLASH;
5362	part->common.mtd.flags = MTD_CAP_NORFLASH;
5363	part->common.mtd.size = size;
5364	part->common.mtd.erasesize = erase_size;
 
 
 
5365
5366	return 0;
5367}
5368
5369static int efx_ef10_mtd_probe(struct efx_nic *efx)
5370{
5371	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
 
5372	struct efx_mcdi_mtd_partition *parts;
5373	size_t outlen, n_parts_total, i, n_parts;
5374	unsigned int type;
5375	int rc;
5376
5377	ASSERT_RTNL();
5378
5379	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
5380	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
5381			  outbuf, sizeof(outbuf), &outlen);
5382	if (rc)
5383		return rc;
5384	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
5385		return -EIO;
5386
5387	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
5388	if (n_parts_total >
5389	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
5390		return -EIO;
5391
5392	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
5393	if (!parts)
5394		return -ENOMEM;
5395
5396	n_parts = 0;
5397	for (i = 0; i < n_parts_total; i++) {
5398		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
5399					i);
5400		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
5401		if (rc == 0)
5402			n_parts++;
5403		else if (rc != -ENODEV)
 
5404			goto fail;
 
 
 
 
 
 
5405	}
5406
5407	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
5408fail:
5409	if (rc)
5410		kfree(parts);
5411	return rc;
5412}
5413
5414#endif /* CONFIG_SFC_MTD */
5415
5416static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
5417{
5418	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
5419}
5420
5421static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
5422					    u32 host_time) {}
5423
5424static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
5425					   bool temp)
5426{
5427	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
5428	int rc;
5429
5430	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
5431	    channel->sync_events_state == SYNC_EVENTS_VALID ||
5432	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
5433		return 0;
5434	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
5435
5436	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
5437	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5438	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
5439		       channel->channel);
5440
5441	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5442			  inbuf, sizeof(inbuf), NULL, 0, NULL);
5443
5444	if (rc != 0)
5445		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5446						    SYNC_EVENTS_DISABLED;
5447
5448	return rc;
5449}
5450
5451static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
5452					    bool temp)
5453{
5454	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
5455	int rc;
5456
5457	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
5458	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
5459		return 0;
5460	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
5461		channel->sync_events_state = SYNC_EVENTS_DISABLED;
5462		return 0;
5463	}
5464	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
5465					    SYNC_EVENTS_DISABLED;
5466
5467	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
5468	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
5469	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
5470		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
5471	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
5472		       channel->channel);
5473
5474	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
5475			  inbuf, sizeof(inbuf), NULL, 0, NULL);
5476
5477	return rc;
5478}
5479
5480static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
5481					   bool temp)
5482{
5483	int (*set)(struct efx_channel *channel, bool temp);
5484	struct efx_channel *channel;
5485
5486	set = en ?
5487	      efx_ef10_rx_enable_timestamping :
5488	      efx_ef10_rx_disable_timestamping;
5489
5490	efx_for_each_channel(channel, efx) {
 
5491		int rc = set(channel, temp);
5492		if (en && rc != 0) {
5493			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
5494			return rc;
5495		}
5496	}
5497
5498	return 0;
5499}
5500
5501static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
5502					 struct hwtstamp_config *init)
5503{
5504	return -EOPNOTSUPP;
5505}
5506
5507static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
5508				      struct hwtstamp_config *init)
5509{
5510	int rc;
5511
5512	switch (init->rx_filter) {
5513	case HWTSTAMP_FILTER_NONE:
5514		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
5515		/* if TX timestamping is still requested then leave PTP on */
5516		return efx_ptp_change_mode(efx,
5517					   init->tx_type != HWTSTAMP_TX_OFF, 0);
5518	case HWTSTAMP_FILTER_ALL:
5519	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5520	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5521	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5522	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5523	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5524	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5525	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5526	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5527	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5528	case HWTSTAMP_FILTER_PTP_V2_EVENT:
5529	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5530	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 
5531		init->rx_filter = HWTSTAMP_FILTER_ALL;
5532		rc = efx_ptp_change_mode(efx, true, 0);
5533		if (!rc)
5534			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
5535		if (rc)
5536			efx_ptp_change_mode(efx, false, 0);
5537		return rc;
5538	default:
5539		return -ERANGE;
5540	}
5541}
5542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5543static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5544{
5545	if (proto != htons(ETH_P_8021Q))
5546		return -EINVAL;
5547
5548	return efx_ef10_add_vlan(efx, vid);
5549}
5550
5551static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
5552{
5553	if (proto != htons(ETH_P_8021Q))
5554		return -EINVAL;
5555
5556	return efx_ef10_del_vlan(efx, vid);
5557}
5558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5559#define EF10_OFFLOAD_FEATURES		\
5560	(NETIF_F_IP_CSUM |		\
5561	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
5562	 NETIF_F_IPV6_CSUM |		\
5563	 NETIF_F_RXHASH |		\
5564	 NETIF_F_NTUPLE)
 
 
 
5565
5566const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
5567	.is_vf = true,
5568	.mem_bar = EFX_MEM_VF_BAR,
5569	.mem_map_size = efx_ef10_mem_map_size,
5570	.probe = efx_ef10_probe_vf,
5571	.remove = efx_ef10_remove,
5572	.dimension_resources = efx_ef10_dimension_resources,
5573	.init = efx_ef10_init_nic,
5574	.fini = efx_port_dummy_op_void,
5575	.map_reset_reason = efx_ef10_map_reset_reason,
5576	.map_reset_flags = efx_ef10_map_reset_flags,
5577	.reset = efx_ef10_reset,
5578	.probe_port = efx_mcdi_port_probe,
5579	.remove_port = efx_mcdi_port_remove,
5580	.fini_dmaq = efx_ef10_fini_dmaq,
5581	.prepare_flr = efx_ef10_prepare_flr,
5582	.finish_flr = efx_port_dummy_op_void,
5583	.describe_stats = efx_ef10_describe_stats,
5584	.update_stats = efx_ef10_update_stats_vf,
 
5585	.start_stats = efx_port_dummy_op_void,
5586	.pull_stats = efx_port_dummy_op_void,
5587	.stop_stats = efx_port_dummy_op_void,
5588	.set_id_led = efx_mcdi_set_id_led,
5589	.push_irq_moderation = efx_ef10_push_irq_moderation,
5590	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
5591	.check_mac_fault = efx_mcdi_mac_check_fault,
5592	.reconfigure_port = efx_mcdi_port_reconfigure,
5593	.get_wol = efx_ef10_get_wol_vf,
5594	.set_wol = efx_ef10_set_wol_vf,
5595	.resume_wol = efx_port_dummy_op_void,
5596	.mcdi_request = efx_ef10_mcdi_request,
5597	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
5598	.mcdi_read_response = efx_ef10_mcdi_read_response,
5599	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5600	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5601	.irq_enable_master = efx_port_dummy_op_void,
5602	.irq_test_generate = efx_ef10_irq_test_generate,
5603	.irq_disable_non_ev = efx_port_dummy_op_void,
5604	.irq_handle_msi = efx_ef10_msi_interrupt,
5605	.irq_handle_legacy = efx_ef10_legacy_interrupt,
5606	.tx_probe = efx_ef10_tx_probe,
5607	.tx_init = efx_ef10_tx_init,
5608	.tx_remove = efx_ef10_tx_remove,
5609	.tx_write = efx_ef10_tx_write,
5610	.tx_limit_len = efx_ef10_tx_limit_len,
5611	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
5612	.rx_probe = efx_ef10_rx_probe,
5613	.rx_init = efx_ef10_rx_init,
5614	.rx_remove = efx_ef10_rx_remove,
 
 
5615	.rx_write = efx_ef10_rx_write,
5616	.rx_defer_refill = efx_ef10_rx_defer_refill,
5617	.ev_probe = efx_ef10_ev_probe,
 
5618	.ev_init = efx_ef10_ev_init,
5619	.ev_fini = efx_ef10_ev_fini,
5620	.ev_remove = efx_ef10_ev_remove,
5621	.ev_process = efx_ef10_ev_process,
5622	.ev_read_ack = efx_ef10_ev_read_ack,
5623	.ev_test_generate = efx_ef10_ev_test_generate,
5624	.filter_table_probe = efx_ef10_filter_table_probe,
5625	.filter_table_restore = efx_ef10_filter_table_restore,
5626	.filter_table_remove = efx_ef10_filter_table_remove,
5627	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5628	.filter_insert = efx_ef10_filter_insert,
5629	.filter_remove_safe = efx_ef10_filter_remove_safe,
5630	.filter_get_safe = efx_ef10_filter_get_safe,
5631	.filter_clear_rx = efx_ef10_filter_clear_rx,
5632	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
5633	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5634	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5635#ifdef CONFIG_RFS_ACCEL
5636	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
5637	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5638#endif
5639#ifdef CONFIG_SFC_MTD
5640	.mtd_probe = efx_port_dummy_op_int,
5641#endif
5642	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
5643	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
5644	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5645	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5646#ifdef CONFIG_SFC_SRIOV
5647	.vswitching_probe = efx_ef10_vswitching_probe_vf,
5648	.vswitching_restore = efx_ef10_vswitching_restore_vf,
5649	.vswitching_remove = efx_ef10_vswitching_remove_vf,
5650	.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
5651#endif
5652	.get_mac_address = efx_ef10_get_mac_address_vf,
5653	.set_mac_address = efx_ef10_set_mac_address,
5654
 
5655	.revision = EFX_REV_HUNT_A0,
5656	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5657	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5658	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5659	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5660	.can_rx_scatter = true,
5661	.always_rx_scatter = true,
5662	.max_interrupt_mode = EFX_INT_MODE_MSIX,
5663	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5664	.offload_features = EF10_OFFLOAD_FEATURES,
5665	.mcdi_max_ver = 2,
5666	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5667	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5668			    1 << HWTSTAMP_FILTER_ALL,
 
 
 
 
 
5669};
5670
5671const struct efx_nic_type efx_hunt_a0_nic_type = {
5672	.is_vf = false,
5673	.mem_bar = EFX_MEM_BAR,
5674	.mem_map_size = efx_ef10_mem_map_size,
5675	.probe = efx_ef10_probe_pf,
5676	.remove = efx_ef10_remove,
5677	.dimension_resources = efx_ef10_dimension_resources,
5678	.init = efx_ef10_init_nic,
5679	.fini = efx_port_dummy_op_void,
5680	.map_reset_reason = efx_ef10_map_reset_reason,
5681	.map_reset_flags = efx_ef10_map_reset_flags,
5682	.reset = efx_ef10_reset,
5683	.probe_port = efx_mcdi_port_probe,
5684	.remove_port = efx_mcdi_port_remove,
5685	.fini_dmaq = efx_ef10_fini_dmaq,
5686	.prepare_flr = efx_ef10_prepare_flr,
5687	.finish_flr = efx_port_dummy_op_void,
5688	.describe_stats = efx_ef10_describe_stats,
5689	.update_stats = efx_ef10_update_stats_pf,
5690	.start_stats = efx_mcdi_mac_start_stats,
5691	.pull_stats = efx_mcdi_mac_pull_stats,
5692	.stop_stats = efx_mcdi_mac_stop_stats,
5693	.set_id_led = efx_mcdi_set_id_led,
5694	.push_irq_moderation = efx_ef10_push_irq_moderation,
5695	.reconfigure_mac = efx_ef10_mac_reconfigure,
5696	.check_mac_fault = efx_mcdi_mac_check_fault,
5697	.reconfigure_port = efx_mcdi_port_reconfigure,
5698	.get_wol = efx_ef10_get_wol,
5699	.set_wol = efx_ef10_set_wol,
5700	.resume_wol = efx_port_dummy_op_void,
 
5701	.test_chip = efx_ef10_test_chip,
5702	.test_nvram = efx_mcdi_nvram_test_all,
5703	.mcdi_request = efx_ef10_mcdi_request,
5704	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
5705	.mcdi_read_response = efx_ef10_mcdi_read_response,
5706	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5707	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5708	.irq_enable_master = efx_port_dummy_op_void,
5709	.irq_test_generate = efx_ef10_irq_test_generate,
5710	.irq_disable_non_ev = efx_port_dummy_op_void,
5711	.irq_handle_msi = efx_ef10_msi_interrupt,
5712	.irq_handle_legacy = efx_ef10_legacy_interrupt,
5713	.tx_probe = efx_ef10_tx_probe,
5714	.tx_init = efx_ef10_tx_init,
5715	.tx_remove = efx_ef10_tx_remove,
5716	.tx_write = efx_ef10_tx_write,
5717	.tx_limit_len = efx_ef10_tx_limit_len,
5718	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
5719	.rx_probe = efx_ef10_rx_probe,
5720	.rx_init = efx_ef10_rx_init,
5721	.rx_remove = efx_ef10_rx_remove,
 
 
 
 
 
5722	.rx_write = efx_ef10_rx_write,
5723	.rx_defer_refill = efx_ef10_rx_defer_refill,
5724	.ev_probe = efx_ef10_ev_probe,
 
5725	.ev_init = efx_ef10_ev_init,
5726	.ev_fini = efx_ef10_ev_fini,
5727	.ev_remove = efx_ef10_ev_remove,
5728	.ev_process = efx_ef10_ev_process,
5729	.ev_read_ack = efx_ef10_ev_read_ack,
5730	.ev_test_generate = efx_ef10_ev_test_generate,
5731	.filter_table_probe = efx_ef10_filter_table_probe,
5732	.filter_table_restore = efx_ef10_filter_table_restore,
5733	.filter_table_remove = efx_ef10_filter_table_remove,
5734	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
5735	.filter_insert = efx_ef10_filter_insert,
5736	.filter_remove_safe = efx_ef10_filter_remove_safe,
5737	.filter_get_safe = efx_ef10_filter_get_safe,
5738	.filter_clear_rx = efx_ef10_filter_clear_rx,
5739	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
5740	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
5741	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
5742#ifdef CONFIG_RFS_ACCEL
5743	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
5744	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
5745#endif
5746#ifdef CONFIG_SFC_MTD
5747	.mtd_probe = efx_ef10_mtd_probe,
5748	.mtd_rename = efx_mcdi_mtd_rename,
5749	.mtd_read = efx_mcdi_mtd_read,
5750	.mtd_erase = efx_mcdi_mtd_erase,
5751	.mtd_write = efx_mcdi_mtd_write,
5752	.mtd_sync = efx_mcdi_mtd_sync,
5753#endif
5754	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
5755	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
5756	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
5757	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
5758	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
 
 
5759#ifdef CONFIG_SFC_SRIOV
5760	.sriov_configure = efx_ef10_sriov_configure,
5761	.sriov_init = efx_ef10_sriov_init,
5762	.sriov_fini = efx_ef10_sriov_fini,
5763	.sriov_wanted = efx_ef10_sriov_wanted,
5764	.sriov_reset = efx_ef10_sriov_reset,
5765	.sriov_flr = efx_ef10_sriov_flr,
5766	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
5767	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
5768	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
5769	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
5770	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
5771	.vswitching_probe = efx_ef10_vswitching_probe_pf,
5772	.vswitching_restore = efx_ef10_vswitching_restore_pf,
5773	.vswitching_remove = efx_ef10_vswitching_remove_pf,
5774#endif
5775	.get_mac_address = efx_ef10_get_mac_address_pf,
5776	.set_mac_address = efx_ef10_set_mac_address,
5777	.tso_versions = efx_ef10_tso_versions,
5778
 
5779	.revision = EFX_REV_HUNT_A0,
5780	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
5781	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
5782	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5783	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5784	.can_rx_scatter = true,
5785	.always_rx_scatter = true,
5786	.max_interrupt_mode = EFX_INT_MODE_MSIX,
 
5787	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5788	.offload_features = EF10_OFFLOAD_FEATURES,
5789	.mcdi_max_ver = 2,
5790	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5791	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
5792			    1 << HWTSTAMP_FILTER_ALL,
 
 
 
 
 
5793};