Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DB8500 PRCM Unit driver
   4 *
   5 * Copyright (C) STMicroelectronics 2009
   6 * Copyright (C) ST-Ericsson SA 2010
   7 *
 
   8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  11 *
  12 * U8500 PRCM Unit interface driver
 
  13 */
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/err.h>
  20#include <linux/spinlock.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/completion.h>
  25#include <linux/irq.h>
  26#include <linux/jiffies.h>
  27#include <linux/bitops.h>
  28#include <linux/fs.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/platform_device.h>
  33#include <linux/uaccess.h>
  34#include <linux/mfd/core.h>
  35#include <linux/mfd/dbx500-prcmu.h>
  36#include <linux/mfd/abx500/ab8500.h>
  37#include <linux/regulator/db8500-prcmu.h>
  38#include <linux/regulator/machine.h>
  39#include "db8500-prcmu-regs.h"
 
 
 
  40
  41/* Index of different voltages to be used when accessing AVSData */
  42#define PRCM_AVS_BASE		0x2FC
  43#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  44#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  45#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  46#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  47#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  48#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  49#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  50#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  51#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  52#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  53#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  54#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  55#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  56
  57#define PRCM_AVS_VOLTAGE		0
  58#define PRCM_AVS_VOLTAGE_MASK		0x3f
  59#define PRCM_AVS_ISSLOWSTARTUP		6
  60#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  61#define PRCM_AVS_ISMODEENABLE		7
  62#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  63
  64#define PRCM_BOOT_STATUS	0xFFF
  65#define PRCM_ROMCODE_A2P	0xFFE
  66#define PRCM_ROMCODE_P2A	0xFFD
  67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  68
  69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70
  71#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  72#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  73#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  74#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  75#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  76#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  77#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  78#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  79
  80/* Req Mailboxes */
  81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  87
  88/* Ack Mailboxes */
  89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  95
  96/* Mailbox 0 headers */
  97#define MB0H_POWER_STATE_TRANS		0
  98#define MB0H_CONFIG_WAKEUPS_EXE		1
  99#define MB0H_READ_WAKEUP_ACK		3
 100#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 101
 102#define MB0H_WAKEUP_EXE 2
 103#define MB0H_WAKEUP_SLEEP 5
 104
 105/* Mailbox 0 REQs */
 106#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 107#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 108#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 109#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 110#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 111#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 112
 113/* Mailbox 0 ACKs */
 114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 115#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 116#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 117#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 118#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 119#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 121
 122/* Mailbox 1 headers */
 123#define MB1H_ARM_APE_OPP 0x0
 124#define MB1H_RESET_MODEM 0x2
 125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 127#define MB1H_RELEASE_USB_WAKEUP 0x5
 128#define MB1H_PLL_ON_OFF 0x6
 129
 130/* Mailbox 1 Requests */
 131#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 132#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 133#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 134#define PLL_SOC0_OFF	0x1
 135#define PLL_SOC0_ON	0x2
 136#define PLL_SOC1_OFF	0x4
 137#define PLL_SOC1_ON	0x8
 138
 139/* Mailbox 1 ACKs */
 140#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 141#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 143#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 144
 145/* Mailbox 2 headers */
 146#define MB2H_DPS	0x0
 147#define MB2H_AUTO_PWR	0x1
 148
 149/* Mailbox 2 REQs */
 150#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 151#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 152#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 153#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 154#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 155#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 156#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 157#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 158#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 159#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 160
 161/* Mailbox 2 ACKs */
 162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 163#define HWACC_PWR_ST_OK 0xFE
 164
 165/* Mailbox 3 headers */
 166#define MB3H_ANC	0x0
 167#define MB3H_SIDETONE	0x1
 168#define MB3H_SYSCLK	0xE
 169
 170/* Mailbox 3 Requests */
 171#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 172#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 173#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 174#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 177#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 178
 179/* Mailbox 4 headers */
 180#define MB4H_DDR_INIT	0x0
 181#define MB4H_MEM_ST	0x1
 182#define MB4H_HOTDOG	0x12
 183#define MB4H_HOTMON	0x13
 184#define MB4H_HOT_PERIOD	0x14
 185#define MB4H_A9WDOG_CONF 0x16
 186#define MB4H_A9WDOG_EN   0x17
 187#define MB4H_A9WDOG_DIS  0x18
 188#define MB4H_A9WDOG_LOAD 0x19
 189#define MB4H_A9WDOG_KICK 0x20
 190
 191/* Mailbox 4 Requests */
 192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 194#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 198#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 199#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 200#define HOTMON_CONFIG_LOW			BIT(0)
 201#define HOTMON_CONFIG_HIGH			BIT(1)
 202#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 203#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 204#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 205#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 206#define A9WDOG_AUTO_OFF_EN			BIT(7)
 207#define A9WDOG_AUTO_OFF_DIS			0
 208#define A9WDOG_ID_MASK				0xf
 209
 210/* Mailbox 5 Requests */
 211#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 212#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 213#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 214#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 217#define PRCMU_I2C_STOP_EN		BIT(3)
 218
 219/* Mailbox 5 ACKs */
 220#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 221#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 222#define I2C_WR_OK 0x1
 223#define I2C_RD_OK 0x2
 224
 225#define NUM_MB 8
 226#define MBOX_BIT BIT
 227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 228
 229/*
 230 * Wakeups/IRQs
 231 */
 232
 233#define WAKEUP_BIT_RTC BIT(0)
 234#define WAKEUP_BIT_RTT0 BIT(1)
 235#define WAKEUP_BIT_RTT1 BIT(2)
 236#define WAKEUP_BIT_HSI0 BIT(3)
 237#define WAKEUP_BIT_HSI1 BIT(4)
 238#define WAKEUP_BIT_CA_WAKE BIT(5)
 239#define WAKEUP_BIT_USB BIT(6)
 240#define WAKEUP_BIT_ABB BIT(7)
 241#define WAKEUP_BIT_ABB_FIFO BIT(8)
 242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 243#define WAKEUP_BIT_CA_SLEEP BIT(10)
 244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 246#define WAKEUP_BIT_ANC_OK BIT(13)
 247#define WAKEUP_BIT_SW_ERROR BIT(14)
 248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 249#define WAKEUP_BIT_ARM BIT(17)
 250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 253#define WAKEUP_BIT_GPIO0 BIT(23)
 254#define WAKEUP_BIT_GPIO1 BIT(24)
 255#define WAKEUP_BIT_GPIO2 BIT(25)
 256#define WAKEUP_BIT_GPIO3 BIT(26)
 257#define WAKEUP_BIT_GPIO4 BIT(27)
 258#define WAKEUP_BIT_GPIO5 BIT(28)
 259#define WAKEUP_BIT_GPIO6 BIT(29)
 260#define WAKEUP_BIT_GPIO7 BIT(30)
 261#define WAKEUP_BIT_GPIO8 BIT(31)
 262
 263static struct {
 264	bool valid;
 265	struct prcmu_fw_version version;
 266} fw_info;
 267
 268static struct irq_domain *db8500_irq_domain;
 269
 270/*
 271 * This vector maps irq numbers to the bits in the bit field used in
 272 * communication with the PRCMU firmware.
 273 *
 274 * The reason for having this is to keep the irq numbers contiguous even though
 275 * the bits in the bit field are not. (The bits also have a tendency to move
 276 * around, to further complicate matters.)
 277 */
 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 280
 281#define IRQ_PRCMU_RTC 0
 282#define IRQ_PRCMU_RTT0 1
 283#define IRQ_PRCMU_RTT1 2
 284#define IRQ_PRCMU_HSI0 3
 285#define IRQ_PRCMU_HSI1 4
 286#define IRQ_PRCMU_CA_WAKE 5
 287#define IRQ_PRCMU_USB 6
 288#define IRQ_PRCMU_ABB 7
 289#define IRQ_PRCMU_ABB_FIFO 8
 290#define IRQ_PRCMU_ARM 9
 291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 292#define IRQ_PRCMU_GPIO0 11
 293#define IRQ_PRCMU_GPIO1 12
 294#define IRQ_PRCMU_GPIO2 13
 295#define IRQ_PRCMU_GPIO3 14
 296#define IRQ_PRCMU_GPIO4 15
 297#define IRQ_PRCMU_GPIO5 16
 298#define IRQ_PRCMU_GPIO6 17
 299#define IRQ_PRCMU_GPIO7 18
 300#define IRQ_PRCMU_GPIO8 19
 301#define IRQ_PRCMU_CA_SLEEP 20
 302#define IRQ_PRCMU_HOTMON_LOW 21
 303#define IRQ_PRCMU_HOTMON_HIGH 22
 304#define NUM_PRCMU_WAKEUPS 23
 305
 306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 307	IRQ_ENTRY(RTC),
 308	IRQ_ENTRY(RTT0),
 309	IRQ_ENTRY(RTT1),
 310	IRQ_ENTRY(HSI0),
 311	IRQ_ENTRY(HSI1),
 312	IRQ_ENTRY(CA_WAKE),
 313	IRQ_ENTRY(USB),
 314	IRQ_ENTRY(ABB),
 315	IRQ_ENTRY(ABB_FIFO),
 316	IRQ_ENTRY(CA_SLEEP),
 317	IRQ_ENTRY(ARM),
 318	IRQ_ENTRY(HOTMON_LOW),
 319	IRQ_ENTRY(HOTMON_HIGH),
 320	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 321	IRQ_ENTRY(GPIO0),
 322	IRQ_ENTRY(GPIO1),
 323	IRQ_ENTRY(GPIO2),
 324	IRQ_ENTRY(GPIO3),
 325	IRQ_ENTRY(GPIO4),
 326	IRQ_ENTRY(GPIO5),
 327	IRQ_ENTRY(GPIO6),
 328	IRQ_ENTRY(GPIO7),
 329	IRQ_ENTRY(GPIO8)
 330};
 331
 332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 335	WAKEUP_ENTRY(RTC),
 336	WAKEUP_ENTRY(RTT0),
 337	WAKEUP_ENTRY(RTT1),
 338	WAKEUP_ENTRY(HSI0),
 339	WAKEUP_ENTRY(HSI1),
 340	WAKEUP_ENTRY(USB),
 341	WAKEUP_ENTRY(ABB),
 342	WAKEUP_ENTRY(ABB_FIFO),
 343	WAKEUP_ENTRY(ARM)
 344};
 345
 346/*
 347 * mb0_transfer - state needed for mailbox 0 communication.
 348 * @lock:		The transaction lock.
 349 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 350 *			the request data.
 351 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 352 * @req:		Request data that need to persist between requests.
 353 */
 354static struct {
 355	spinlock_t lock;
 356	spinlock_t dbb_irqs_lock;
 357	struct work_struct mask_work;
 358	struct mutex ac_wake_lock;
 359	struct completion ac_wake_work;
 360	struct {
 361		u32 dbb_irqs;
 362		u32 dbb_wakeups;
 363		u32 abb_events;
 364	} req;
 365} mb0_transfer;
 366
 367/*
 368 * mb1_transfer - state needed for mailbox 1 communication.
 369 * @lock:	The transaction lock.
 370 * @work:	The transaction completion structure.
 371 * @ape_opp:	The current APE OPP.
 372 * @ack:	Reply ("acknowledge") data.
 373 */
 374static struct {
 375	struct mutex lock;
 376	struct completion work;
 377	u8 ape_opp;
 378	struct {
 379		u8 header;
 380		u8 arm_opp;
 381		u8 ape_opp;
 382		u8 ape_voltage_status;
 383	} ack;
 384} mb1_transfer;
 385
 386/*
 387 * mb2_transfer - state needed for mailbox 2 communication.
 388 * @lock:            The transaction lock.
 389 * @work:            The transaction completion structure.
 390 * @auto_pm_lock:    The autonomous power management configuration lock.
 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 392 * @req:             Request data that need to persist between requests.
 393 * @ack:             Reply ("acknowledge") data.
 394 */
 395static struct {
 396	struct mutex lock;
 397	struct completion work;
 398	spinlock_t auto_pm_lock;
 399	bool auto_pm_enabled;
 400	struct {
 401		u8 status;
 402	} ack;
 403} mb2_transfer;
 404
 405/*
 406 * mb3_transfer - state needed for mailbox 3 communication.
 407 * @lock:		The request lock.
 408 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 409 * @sysclk_work:	Work structure used for sysclk requests.
 410 */
 411static struct {
 412	spinlock_t lock;
 413	struct mutex sysclk_lock;
 414	struct completion sysclk_work;
 415} mb3_transfer;
 416
 417/*
 418 * mb4_transfer - state needed for mailbox 4 communication.
 419 * @lock:	The transaction lock.
 420 * @work:	The transaction completion structure.
 421 */
 422static struct {
 423	struct mutex lock;
 424	struct completion work;
 425} mb4_transfer;
 426
 427/*
 428 * mb5_transfer - state needed for mailbox 5 communication.
 429 * @lock:	The transaction lock.
 430 * @work:	The transaction completion structure.
 431 * @ack:	Reply ("acknowledge") data.
 432 */
 433static struct {
 434	struct mutex lock;
 435	struct completion work;
 436	struct {
 437		u8 status;
 438		u8 value;
 439	} ack;
 440} mb5_transfer;
 441
 442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 443
 444/* Spinlocks */
 445static DEFINE_SPINLOCK(prcmu_lock);
 446static DEFINE_SPINLOCK(clkout_lock);
 447
 448/* Global var to runtime determine TCDM base for v2 or v1 */
 449static __iomem void *tcdm_base;
 450static __iomem void *prcmu_base;
 451
 452struct clk_mgt {
 453	u32 offset;
 454	u32 pllsw;
 455	int branch;
 456	bool clk38div;
 457};
 458
 459enum {
 460	PLL_RAW,
 461	PLL_FIX,
 462	PLL_DIV
 463};
 464
 465static DEFINE_SPINLOCK(clk_mgt_lock);
 466
 467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 468	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 470	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 471	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 472	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 475	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 476	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 477	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 478	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 483	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 484	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 485	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 487	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 488	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 489	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 491	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 492	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 493	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 494	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 495	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 496	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 498	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 499};
 500
 501struct dsiclk {
 502	u32 divsel_mask;
 503	u32 divsel_shift;
 504	u32 divsel;
 505};
 506
 507static struct dsiclk dsiclk[2] = {
 508	{
 509		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 510		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 511		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 512	},
 513	{
 514		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 515		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 516		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 517	}
 518};
 519
 520struct dsiescclk {
 521	u32 en;
 522	u32 div_mask;
 523	u32 div_shift;
 524};
 525
 526static struct dsiescclk dsiescclk[3] = {
 527	{
 528		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 529		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 530		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 531	},
 532	{
 533		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 534		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 535		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 536	},
 537	{
 538		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 539		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 540		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 541	}
 542};
 543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544u32 db8500_prcmu_read(unsigned int reg)
 545{
 546	return readl(prcmu_base + reg);
 547}
 548
 549void db8500_prcmu_write(unsigned int reg, u32 value)
 550{
 551	unsigned long flags;
 552
 553	spin_lock_irqsave(&prcmu_lock, flags);
 554	writel(value, (prcmu_base + reg));
 555	spin_unlock_irqrestore(&prcmu_lock, flags);
 556}
 557
 558void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 559{
 560	u32 val;
 561	unsigned long flags;
 562
 563	spin_lock_irqsave(&prcmu_lock, flags);
 564	val = readl(prcmu_base + reg);
 565	val = ((val & ~mask) | (value & mask));
 566	writel(val, (prcmu_base + reg));
 567	spin_unlock_irqrestore(&prcmu_lock, flags);
 568}
 569
 570struct prcmu_fw_version *prcmu_get_fw_version(void)
 571{
 572	return fw_info.valid ? &fw_info.version : NULL;
 573}
 574
 575static bool prcmu_is_ulppll_disabled(void)
 576{
 577	struct prcmu_fw_version *ver;
 578
 579	ver = prcmu_get_fw_version();
 580	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
 581}
 582
 583bool prcmu_has_arm_maxopp(void)
 584{
 585	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 586		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 587}
 588
 589/**
 590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 591 * @val: Value to be set, i.e. transition requested
 592 * Returns: 0 on success, -EINVAL on invalid argument
 593 *
 594 * This function is used to run the following power state sequences -
 595 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 596 */
 597int prcmu_set_rc_a2p(enum romcode_write val)
 598{
 599	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 600		return -EINVAL;
 601	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 602	return 0;
 603}
 604
 605/**
 606 * prcmu_get_rc_p2a - This function is used to get power state sequences
 607 * Returns: the power transition that has last happened
 608 *
 609 * This function can return the following transitions-
 610 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 611 */
 612enum romcode_read prcmu_get_rc_p2a(void)
 613{
 614	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 615}
 616
 617/**
 618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
 619 * Returns: Returns the current AP(ARM) power mode: init,
 620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 621 */
 622enum ap_pwrst prcmu_get_xp70_current_state(void)
 623{
 624	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 625}
 626
 627/**
 628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 629 * @clkout:	The CLKOUT number (0 or 1).
 630 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 631 * @div:	The divider to be applied.
 632 *
 633 * Configures one of the programmable clock outputs (CLKOUTs).
 634 * @div should be in the range [1,63] to request a configuration, or 0 to
 635 * inform that the configuration is no longer requested.
 636 */
 637int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 638{
 639	static int requests[2];
 640	int r = 0;
 641	unsigned long flags;
 642	u32 val;
 643	u32 bits;
 644	u32 mask;
 645	u32 div_mask;
 646
 647	BUG_ON(clkout > 1);
 648	BUG_ON(div > 63);
 649	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 650
 651	if (!div && !requests[clkout])
 652		return -EINVAL;
 653
 654	if (clkout == 0) {
 655		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 656		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 657		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 658			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 659	} else {
 660		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 661		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 662			PRCM_CLKOCR_CLK1TYPE);
 663		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 664			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 665	}
 666	bits &= mask;
 667
 668	spin_lock_irqsave(&clkout_lock, flags);
 669
 670	val = readl(PRCM_CLKOCR);
 671	if (val & div_mask) {
 672		if (div) {
 673			if ((val & mask) != bits) {
 674				r = -EBUSY;
 675				goto unlock_and_return;
 676			}
 677		} else {
 678			if ((val & mask & ~div_mask) != bits) {
 679				r = -EINVAL;
 680				goto unlock_and_return;
 681			}
 682		}
 683	}
 684	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 685	requests[clkout] += (div ? 1 : -1);
 686
 687unlock_and_return:
 688	spin_unlock_irqrestore(&clkout_lock, flags);
 689
 690	return r;
 691}
 692
 693int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 694{
 695	unsigned long flags;
 696
 697	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 698
 699	spin_lock_irqsave(&mb0_transfer.lock, flags);
 700
 701	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 702		cpu_relax();
 703
 704	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 705	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 706	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 707	writeb((keep_ulp_clk ? 1 : 0),
 708		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 709	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 710	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 711
 712	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 713
 714	return 0;
 715}
 716
 717u8 db8500_prcmu_get_power_state_result(void)
 718{
 719	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 720}
 721
 722/* This function should only be called while mb0_transfer.lock is held. */
 723static void config_wakeups(void)
 724{
 725	const u8 header[2] = {
 726		MB0H_CONFIG_WAKEUPS_EXE,
 727		MB0H_CONFIG_WAKEUPS_SLEEP
 728	};
 729	static u32 last_dbb_events;
 730	static u32 last_abb_events;
 731	u32 dbb_events;
 732	u32 abb_events;
 733	unsigned int i;
 734
 735	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 736	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 737
 738	abb_events = mb0_transfer.req.abb_events;
 739
 740	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 741		return;
 742
 743	for (i = 0; i < 2; i++) {
 744		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 745			cpu_relax();
 746		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 747		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 748		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 749		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 750	}
 751	last_dbb_events = dbb_events;
 752	last_abb_events = abb_events;
 753}
 754
 755void db8500_prcmu_enable_wakeups(u32 wakeups)
 756{
 757	unsigned long flags;
 758	u32 bits;
 759	int i;
 760
 761	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 762
 763	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 764		if (wakeups & BIT(i))
 765			bits |= prcmu_wakeup_bit[i];
 766	}
 767
 768	spin_lock_irqsave(&mb0_transfer.lock, flags);
 769
 770	mb0_transfer.req.dbb_wakeups = bits;
 771	config_wakeups();
 772
 773	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 774}
 775
 776void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 777{
 778	unsigned long flags;
 779
 780	spin_lock_irqsave(&mb0_transfer.lock, flags);
 781
 782	mb0_transfer.req.abb_events = abb_events;
 783	config_wakeups();
 784
 785	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 786}
 787
 788void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 789{
 790	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 791		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 792	else
 793		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 794}
 795
 796/**
 797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 798 * @opp: The new ARM operating point to which transition is to be made
 799 * Returns: 0 on success, non-zero on failure
 800 *
 801 * This function sets the operating point of the ARM.
 802 */
 803int db8500_prcmu_set_arm_opp(u8 opp)
 804{
 805	int r;
 806
 807	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 808		return -EINVAL;
 809
 810	r = 0;
 811
 812	mutex_lock(&mb1_transfer.lock);
 813
 814	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 815		cpu_relax();
 816
 817	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 818	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 819	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 820
 821	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 822	wait_for_completion(&mb1_transfer.work);
 823
 824	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 825		(mb1_transfer.ack.arm_opp != opp))
 826		r = -EIO;
 827
 828	mutex_unlock(&mb1_transfer.lock);
 829
 830	return r;
 831}
 832
 833/**
 834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 835 *
 836 * Returns: the current ARM OPP
 837 */
 838int db8500_prcmu_get_arm_opp(void)
 839{
 840	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 841}
 842
 843/**
 844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 845 *
 846 * Returns: the current DDR OPP
 847 */
 848int db8500_prcmu_get_ddr_opp(void)
 849{
 850	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 851}
 852
 853/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 854static void request_even_slower_clocks(bool enable)
 855{
 856	u32 clock_reg[] = {
 857		PRCM_ACLK_MGT,
 858		PRCM_DMACLK_MGT
 859	};
 860	unsigned long flags;
 861	unsigned int i;
 862
 863	spin_lock_irqsave(&clk_mgt_lock, flags);
 864
 865	/* Grab the HW semaphore. */
 866	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 867		cpu_relax();
 868
 869	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 870		u32 val;
 871		u32 div;
 872
 873		val = readl(prcmu_base + clock_reg[i]);
 874		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 875		if (enable) {
 876			if ((div <= 1) || (div > 15)) {
 877				pr_err("prcmu: Bad clock divider %d in %s\n",
 878					div, __func__);
 879				goto unlock_and_return;
 880			}
 881			div <<= 1;
 882		} else {
 883			if (div <= 2)
 884				goto unlock_and_return;
 885			div >>= 1;
 886		}
 887		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 888			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 889		writel(val, prcmu_base + clock_reg[i]);
 890	}
 891
 892unlock_and_return:
 893	/* Release the HW semaphore. */
 894	writel(0, PRCM_SEM);
 895
 896	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 897}
 898
 899/**
 900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
 901 * @opp: The new APE operating point to which transition is to be made
 902 * Returns: 0 on success, non-zero on failure
 903 *
 904 * This function sets the operating point of the APE.
 905 */
 906int db8500_prcmu_set_ape_opp(u8 opp)
 907{
 908	int r = 0;
 909
 910	if (opp == mb1_transfer.ape_opp)
 911		return 0;
 912
 913	mutex_lock(&mb1_transfer.lock);
 914
 915	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
 916		request_even_slower_clocks(false);
 917
 918	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
 919		goto skip_message;
 920
 921	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 922		cpu_relax();
 923
 924	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 925	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 926	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
 927		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
 928
 929	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 930	wait_for_completion(&mb1_transfer.work);
 931
 932	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 933		(mb1_transfer.ack.ape_opp != opp))
 934		r = -EIO;
 935
 936skip_message:
 937	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
 938		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
 939		request_even_slower_clocks(true);
 940	if (!r)
 941		mb1_transfer.ape_opp = opp;
 942
 943	mutex_unlock(&mb1_transfer.lock);
 944
 945	return r;
 946}
 947
 948/**
 949 * db8500_prcmu_get_ape_opp - get the current APE OPP
 950 *
 951 * Returns: the current APE OPP
 952 */
 953int db8500_prcmu_get_ape_opp(void)
 954{
 955	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 956}
 957
 958/**
 959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 960 * @enable: true to request the higher voltage, false to drop a request.
 961 *
 962 * Calls to this function to enable and disable requests must be balanced.
 963 */
 964int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
 965{
 966	int r = 0;
 967	u8 header;
 968	static unsigned int requests;
 969
 970	mutex_lock(&mb1_transfer.lock);
 971
 972	if (enable) {
 973		if (0 != requests++)
 974			goto unlock_and_return;
 975		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 976	} else {
 977		if (requests == 0) {
 978			r = -EIO;
 979			goto unlock_and_return;
 980		} else if (1 != requests--) {
 981			goto unlock_and_return;
 982		}
 983		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 984	}
 985
 986	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 987		cpu_relax();
 988
 989	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 990
 991	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 992	wait_for_completion(&mb1_transfer.work);
 993
 994	if ((mb1_transfer.ack.header != header) ||
 995		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 996		r = -EIO;
 997
 998unlock_and_return:
 999	mutex_unlock(&mb1_transfer.lock);
1000
1001	return r;
1002}
1003
1004/**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
1009int prcmu_release_usb_wakeup_state(void)
1010{
1011	int r = 0;
1012
1013	mutex_lock(&mb1_transfer.lock);
1014
1015	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016		cpu_relax();
1017
1018	writeb(MB1H_RELEASE_USB_WAKEUP,
1019		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022	wait_for_completion(&mb1_transfer.work);
1023
1024	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026		r = -EIO;
1027
1028	mutex_unlock(&mb1_transfer.lock);
1029
1030	return r;
1031}
1032
1033static int request_pll(u8 clock, bool enable)
1034{
1035	int r = 0;
1036
1037	if (clock == PRCMU_PLLSOC0)
1038		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039	else if (clock == PRCMU_PLLSOC1)
1040		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041	else
1042		return -EINVAL;
1043
1044	mutex_lock(&mb1_transfer.lock);
1045
1046	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047		cpu_relax();
1048
1049	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053	wait_for_completion(&mb1_transfer.work);
1054
1055	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056		r = -EIO;
1057
1058	mutex_unlock(&mb1_transfer.lock);
1059
1060	return r;
1061}
1062
1063/**
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1067 *
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1070 */
1071int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072{
1073	int r = 0;
1074	bool ram_retention = false;
1075	int i;
1076
1077	/* check argument */
1078	BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080	/* set flag if retention is possible */
1081	switch (epod_id) {
1082	case EPOD_ID_SVAMMDSP:
1083	case EPOD_ID_SIAMMDSP:
1084	case EPOD_ID_ESRAM12:
1085	case EPOD_ID_ESRAM34:
1086		ram_retention = true;
1087		break;
1088	}
1089
1090	/* check argument */
1091	BUG_ON(epod_state > EPOD_STATE_ON);
1092	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094	/* get lock */
1095	mutex_lock(&mb2_transfer.lock);
1096
1097	/* wait for mailbox */
1098	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099		cpu_relax();
1100
1101	/* fill in mailbox */
1102	for (i = 0; i < NUM_EPOD_ID; i++)
1103		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110	/*
1111	 * The current firmware version does not handle errors correctly,
1112	 * and we cannot recover if there is an error.
1113	 * This is expected to change when the firmware is updated.
1114	 */
1115	if (!wait_for_completion_timeout(&mb2_transfer.work,
1116			msecs_to_jiffies(20000))) {
1117		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118			__func__);
1119		r = -EIO;
1120		goto unlock_and_return;
1121	}
1122
1123	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124		r = -EIO;
1125
1126unlock_and_return:
1127	mutex_unlock(&mb2_transfer.lock);
1128	return r;
1129}
1130
1131/**
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle:  Configuration for ApIdle.
1135 */
1136void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137	struct prcmu_auto_pm_config *idle)
1138{
1139	u32 sleep_cfg;
1140	u32 idle_cfg;
1141	unsigned long flags;
1142
1143	BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161	/*
1162	 * The autonomous power management configuration is done through
1163	 * fields in mailbox 2, but these fields are only used as shared
1164	 * variables - i.e. there is no need to send a message.
1165	 */
1166	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169	mb2_transfer.auto_pm_enabled =
1170		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176}
1177EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179bool prcmu_is_auto_pm_enabled(void)
1180{
1181	return mb2_transfer.auto_pm_enabled;
1182}
1183
1184static int request_sysclk(bool enable)
1185{
1186	int r;
1187	unsigned long flags;
1188
1189	r = 0;
1190
1191	mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193	spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196		cpu_relax();
1197
1198	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205	/*
1206	 * The firmware only sends an ACK if we want to enable the
1207	 * SysClk, and it succeeds.
1208	 */
1209	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210			msecs_to_jiffies(20000))) {
1211		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212			__func__);
1213		r = -EIO;
1214	}
1215
1216	mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218	return r;
1219}
1220
1221static int request_timclk(bool enable)
1222{
1223	u32 val;
1224
1225	/*
1226	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227	 * PLL is disabled so we cannot use doze mode, this will
1228	 * stop the clock on this firmware.
1229	 */
1230	if (prcmu_is_ulppll_disabled())
1231		val = 0;
1232	else
1233		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235	if (!enable)
1236		val |= PRCM_TCR_STOP_TIMERS |
1237			PRCM_TCR_DOZE_MODE |
1238			PRCM_TCR_TENSEL_MASK;
1239
1240	writel(val, PRCM_TCR);
1241
1242	return 0;
1243}
1244
1245static int request_clock(u8 clock, bool enable)
1246{
1247	u32 val;
1248	unsigned long flags;
1249
1250	spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252	/* Grab the HW semaphore. */
1253	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254		cpu_relax();
1255
1256	val = readl(prcmu_base + clk_mgt[clock].offset);
1257	if (enable) {
1258		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259	} else {
1260		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262	}
1263	writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265	/* Release the HW semaphore. */
1266	writel(0, PRCM_SEM);
1267
1268	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270	return 0;
1271}
1272
1273static int request_sga_clock(u8 clock, bool enable)
1274{
1275	u32 val;
1276	int ret;
1277
1278	if (enable) {
1279		val = readl(PRCM_CGATING_BYPASS);
1280		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281	}
1282
1283	ret = request_clock(clock, enable);
1284
1285	if (!ret && !enable) {
1286		val = readl(PRCM_CGATING_BYPASS);
1287		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288	}
1289
1290	return ret;
1291}
1292
1293static inline bool plldsi_locked(void)
1294{
1295	return (readl(PRCM_PLLDSI_LOCKP) &
1296		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300}
1301
1302static int request_plldsi(bool enable)
1303{
1304	int r = 0;
1305	u32 val;
1306
1307	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311	val = readl(PRCM_PLLDSI_ENABLE);
1312	if (enable)
1313		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314	else
1315		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316	writel(val, PRCM_PLLDSI_ENABLE);
1317
1318	if (enable) {
1319		unsigned int i;
1320		bool locked = plldsi_locked();
1321
1322		for (i = 10; !locked && (i > 0); --i) {
1323			udelay(100);
1324			locked = plldsi_locked();
1325		}
1326		if (locked) {
1327			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328				PRCM_APE_RESETN_SET);
1329		} else {
1330			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332				PRCM_MMIP_LS_CLAMP_SET);
1333			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334			writel(val, PRCM_PLLDSI_ENABLE);
1335			r = -EAGAIN;
1336		}
1337	} else {
1338		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339	}
1340	return r;
1341}
1342
1343static int request_dsiclk(u8 n, bool enable)
1344{
1345	u32 val;
1346
1347	val = readl(PRCM_DSI_PLLOUT_SEL);
1348	val &= ~dsiclk[n].divsel_mask;
1349	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350		dsiclk[n].divsel_shift);
1351	writel(val, PRCM_DSI_PLLOUT_SEL);
1352	return 0;
1353}
1354
1355static int request_dsiescclk(u8 n, bool enable)
1356{
1357	u32 val;
1358
1359	val = readl(PRCM_DSITVCLK_DIV);
1360	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361	writel(val, PRCM_DSITVCLK_DIV);
1362	return 0;
1363}
1364
1365/**
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock:      The clock for which the request is made.
1368 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369 *
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1372 */
1373int db8500_prcmu_request_clock(u8 clock, bool enable)
1374{
1375	if (clock == PRCMU_SGACLK)
1376		return request_sga_clock(clock, enable);
1377	else if (clock < PRCMU_NUM_REG_CLOCKS)
1378		return request_clock(clock, enable);
1379	else if (clock == PRCMU_TIMCLK)
1380		return request_timclk(enable);
1381	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385	else if (clock == PRCMU_PLLDSI)
1386		return request_plldsi(enable);
1387	else if (clock == PRCMU_SYSCLK)
1388		return request_sysclk(enable);
1389	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390		return request_pll(clock, enable);
1391	else
1392		return -EINVAL;
1393}
1394
1395static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396	int branch)
1397{
1398	u64 rate;
1399	u32 val;
1400	u32 d;
1401	u32 div = 1;
1402
1403	val = readl(reg);
1404
1405	rate = src_rate;
1406	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409	if (d > 1)
1410		div *= d;
1411
1412	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413	if (d > 1)
1414		div *= d;
1415
1416	if (val & PRCM_PLL_FREQ_SELDIV2)
1417		div *= 2;
1418
1419	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420		(val & PRCM_PLL_FREQ_DIV2EN) &&
1421		((reg == PRCM_PLLSOC0_FREQ) ||
1422		 (reg == PRCM_PLLARM_FREQ) ||
1423		 (reg == PRCM_PLLDDR_FREQ))))
1424		div *= 2;
1425
1426	(void)do_div(rate, div);
1427
1428	return (unsigned long)rate;
1429}
1430
1431#define ROOT_CLOCK_RATE 38400000
1432
1433static unsigned long clock_rate(u8 clock)
1434{
1435	u32 val;
1436	u32 pllsw;
1437	unsigned long rate = ROOT_CLOCK_RATE;
1438
1439	val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441	if (val & PRCM_CLK_MGT_CLK38) {
1442		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443			rate /= 2;
1444		return rate;
1445	}
1446
1447	val |= clk_mgt[clock].pllsw;
1448	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456	else
1457		return 0;
1458
1459	if ((clock == PRCMU_SGACLK) &&
1460		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461		u64 r = (rate * 10);
1462
1463		(void)do_div(r, 25);
1464		return (unsigned long)r;
1465	}
1466	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467	if (val)
1468		return rate / val;
1469	else
1470		return 0;
1471}
1472
1473static unsigned long armss_rate(void)
1474{
1475	u32 r;
1476	unsigned long rate;
1477
1478	r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481		/* External ARMCLKFIX clock */
1482
1483		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485		/* Check PRCM_ARM_CHGCLKREQ divider */
1486		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487			rate /= 2;
1488
1489		/* Check PRCM_ARMCLKFIX_MGT divider */
1490		r = readl(PRCM_ARMCLKFIX_MGT);
1491		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492		rate /= r;
1493
1494	} else {/* ARM PLL */
1495		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496	}
1497
1498	return rate;
1499}
1500
1501static unsigned long dsiclk_rate(u8 n)
1502{
1503	u32 divsel;
1504	u32 div = 1;
1505
1506	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510		divsel = dsiclk[n].divsel;
1511	else
1512		dsiclk[n].divsel = divsel;
1513
1514	switch (divsel) {
1515	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516		div *= 2;
1517		fallthrough;
1518	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519		div *= 2;
1520		fallthrough;
1521	case PRCM_DSI_PLLOUT_SEL_PHI:
1522		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523			PLL_RAW) / div;
1524	default:
1525		return 0;
1526	}
1527}
1528
1529static unsigned long dsiescclk_rate(u8 n)
1530{
1531	u32 div;
1532
1533	div = readl(PRCM_DSITVCLK_DIV);
1534	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536}
1537
1538unsigned long prcmu_clock_rate(u8 clock)
1539{
1540	if (clock < PRCMU_NUM_REG_CLOCKS)
1541		return clock_rate(clock);
1542	else if (clock == PRCMU_TIMCLK)
1543		return prcmu_is_ulppll_disabled() ?
1544			32768 : ROOT_CLOCK_RATE / 16;
1545	else if (clock == PRCMU_SYSCLK)
1546		return ROOT_CLOCK_RATE;
1547	else if (clock == PRCMU_PLLSOC0)
1548		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549	else if (clock == PRCMU_PLLSOC1)
1550		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551	else if (clock == PRCMU_ARMSS)
1552		return armss_rate();
1553	else if (clock == PRCMU_PLLDDR)
1554		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555	else if (clock == PRCMU_PLLDSI)
1556		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557			PLL_RAW);
1558	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562	else
1563		return 0;
1564}
1565
1566static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567{
1568	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569		return ROOT_CLOCK_RATE;
1570	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577	else
1578		return 0;
1579}
1580
1581static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582{
1583	u32 div;
1584
1585	div = (src_rate / rate);
1586	if (div == 0)
1587		return 1;
1588	if (rate < (src_rate / div))
1589		div++;
1590	return div;
1591}
1592
1593static long round_clock_rate(u8 clock, unsigned long rate)
1594{
1595	u32 val;
1596	u32 div;
1597	unsigned long src_rate;
1598	long rounded_rate;
1599
1600	val = readl(prcmu_base + clk_mgt[clock].offset);
1601	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602		clk_mgt[clock].branch);
1603	div = clock_divider(src_rate, rate);
1604	if (val & PRCM_CLK_MGT_CLK38) {
1605		if (clk_mgt[clock].clk38div) {
1606			if (div > 2)
1607				div = 2;
1608		} else {
1609			div = 1;
1610		}
1611	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612		u64 r = (src_rate * 10);
1613
1614		(void)do_div(r, 25);
1615		if (r <= rate)
1616			return (unsigned long)r;
1617	}
1618	rounded_rate = (src_rate / min(div, (u32)31));
1619
1620	return rounded_rate;
1621}
1622
1623static const unsigned long db8500_armss_freqs[] = {
1624	199680000,
1625	399360000,
1626	798720000,
1627	998400000
1628};
1629
1630/* The DB8520 has slightly higher ARMSS max frequency */
1631static const unsigned long db8520_armss_freqs[] = {
1632	199680000,
1633	399360000,
1634	798720000,
1635	1152000000
1636};
1637
1638static long round_armss_rate(unsigned long rate)
1639{
1640	unsigned long freq = 0;
1641	const unsigned long *freqs;
1642	int nfreqs;
1643	int i;
1644
1645	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646		freqs = db8520_armss_freqs;
1647		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648	} else {
1649		freqs = db8500_armss_freqs;
1650		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651	}
1652
1653	/* Find the corresponding arm opp from the cpufreq table. */
1654	for (i = 0; i < nfreqs; i++) {
1655		freq = freqs[i];
1656		if (rate <= freq)
1657			break;
1658	}
1659
1660	/* Return the last valid value, even if a match was not found. */
1661	return freq;
1662}
1663
1664#define MIN_PLL_VCO_RATE 600000000ULL
1665#define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667static long round_plldsi_rate(unsigned long rate)
1668{
1669	long rounded_rate = 0;
1670	unsigned long src_rate;
1671	unsigned long rem;
1672	u32 r;
1673
1674	src_rate = clock_rate(PRCMU_HDMICLK);
1675	rem = rate;
1676
1677	for (r = 7; (rem > 0) && (r > 0); r--) {
1678		u64 d;
1679
1680		d = (r * rate);
1681		(void)do_div(d, src_rate);
1682		if (d < 6)
1683			d = 6;
1684		else if (d > 255)
1685			d = 255;
1686		d *= src_rate;
1687		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689			continue;
1690		(void)do_div(d, r);
1691		if (rate < d) {
1692			if (rounded_rate == 0)
1693				rounded_rate = (long)d;
1694			break;
1695		}
1696		if ((rate - d) < rem) {
1697			rem = (rate - d);
1698			rounded_rate = (long)d;
1699		}
1700	}
1701	return rounded_rate;
1702}
1703
1704static long round_dsiclk_rate(unsigned long rate)
1705{
1706	u32 div;
1707	unsigned long src_rate;
1708	long rounded_rate;
1709
1710	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711		PLL_RAW);
1712	div = clock_divider(src_rate, rate);
1713	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715	return rounded_rate;
1716}
1717
1718static long round_dsiescclk_rate(unsigned long rate)
1719{
1720	u32 div;
1721	unsigned long src_rate;
1722	long rounded_rate;
1723
1724	src_rate = clock_rate(PRCMU_TVCLK);
1725	div = clock_divider(src_rate, rate);
1726	rounded_rate = (src_rate / min(div, (u32)255));
1727
1728	return rounded_rate;
1729}
1730
1731long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732{
1733	if (clock < PRCMU_NUM_REG_CLOCKS)
1734		return round_clock_rate(clock, rate);
1735	else if (clock == PRCMU_ARMSS)
1736		return round_armss_rate(rate);
1737	else if (clock == PRCMU_PLLDSI)
1738		return round_plldsi_rate(rate);
1739	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740		return round_dsiclk_rate(rate);
1741	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742		return round_dsiescclk_rate(rate);
1743	else
1744		return (long)prcmu_clock_rate(clock);
1745}
1746
1747static void set_clock_rate(u8 clock, unsigned long rate)
1748{
1749	u32 val;
1750	u32 div;
1751	unsigned long src_rate;
1752	unsigned long flags;
1753
1754	spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756	/* Grab the HW semaphore. */
1757	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758		cpu_relax();
1759
1760	val = readl(prcmu_base + clk_mgt[clock].offset);
1761	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762		clk_mgt[clock].branch);
1763	div = clock_divider(src_rate, rate);
1764	if (val & PRCM_CLK_MGT_CLK38) {
1765		if (clk_mgt[clock].clk38div) {
1766			if (div > 1)
1767				val |= PRCM_CLK_MGT_CLK38DIV;
1768			else
1769				val &= ~PRCM_CLK_MGT_CLK38DIV;
1770		}
1771	} else if (clock == PRCMU_SGACLK) {
1772		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774		if (div == 3) {
1775			u64 r = (src_rate * 10);
1776
1777			(void)do_div(r, 25);
1778			if (r <= rate) {
1779				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780				div = 0;
1781			}
1782		}
1783		val |= min(div, (u32)31);
1784	} else {
1785		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786		val |= min(div, (u32)31);
1787	}
1788	writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790	/* Release the HW semaphore. */
1791	writel(0, PRCM_SEM);
1792
1793	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794}
1795
1796static int set_armss_rate(unsigned long rate)
1797{
1798	unsigned long freq;
1799	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800	const unsigned long *freqs;
1801	int nfreqs;
1802	int i;
1803
1804	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805		freqs = db8520_armss_freqs;
1806		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807	} else {
1808		freqs = db8500_armss_freqs;
1809		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810	}
1811
1812	/* Find the corresponding arm opp from the cpufreq table. */
1813	for (i = 0; i < nfreqs; i++) {
1814		freq = freqs[i];
1815		if (rate == freq)
1816			break;
1817	}
1818
1819	if (rate != freq)
1820		return -EINVAL;
1821
1822	/* Set the new arm opp. */
1823	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824	return db8500_prcmu_set_arm_opp(opps[i]);
1825}
1826
1827static int set_plldsi_rate(unsigned long rate)
1828{
1829	unsigned long src_rate;
1830	unsigned long rem;
1831	u32 pll_freq = 0;
1832	u32 r;
1833
1834	src_rate = clock_rate(PRCMU_HDMICLK);
1835	rem = rate;
1836
1837	for (r = 7; (rem > 0) && (r > 0); r--) {
1838		u64 d;
1839		u64 hwrate;
1840
1841		d = (r * rate);
1842		(void)do_div(d, src_rate);
1843		if (d < 6)
1844			d = 6;
1845		else if (d > 255)
1846			d = 255;
1847		hwrate = (d * src_rate);
1848		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850			continue;
1851		(void)do_div(hwrate, r);
1852		if (rate < hwrate) {
1853			if (pll_freq == 0)
1854				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855					(r << PRCM_PLL_FREQ_R_SHIFT));
1856			break;
1857		}
1858		if ((rate - hwrate) < rem) {
1859			rem = (rate - hwrate);
1860			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861				(r << PRCM_PLL_FREQ_R_SHIFT));
1862		}
1863	}
1864	if (pll_freq == 0)
1865		return -EINVAL;
1866
1867	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868	writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870	return 0;
1871}
1872
1873static void set_dsiclk_rate(u8 n, unsigned long rate)
1874{
1875	u32 val;
1876	u32 div;
1877
1878	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885	val = readl(PRCM_DSI_PLLOUT_SEL);
1886	val &= ~dsiclk[n].divsel_mask;
1887	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888	writel(val, PRCM_DSI_PLLOUT_SEL);
1889}
1890
1891static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892{
1893	u32 val;
1894	u32 div;
1895
1896	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897	val = readl(PRCM_DSITVCLK_DIV);
1898	val &= ~dsiescclk[n].div_mask;
1899	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900	writel(val, PRCM_DSITVCLK_DIV);
1901}
1902
1903int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904{
1905	if (clock < PRCMU_NUM_REG_CLOCKS)
1906		set_clock_rate(clock, rate);
1907	else if (clock == PRCMU_ARMSS)
1908		return set_armss_rate(rate);
1909	else if (clock == PRCMU_PLLDSI)
1910		return set_plldsi_rate(rate);
1911	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915	return 0;
1916}
1917
1918int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919{
1920	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922		return -EINVAL;
1923
1924	mutex_lock(&mb4_transfer.lock);
1925
1926	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927		cpu_relax();
1928
1929	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932	writeb(DDR_PWR_STATE_ON,
1933	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937	wait_for_completion(&mb4_transfer.work);
1938
1939	mutex_unlock(&mb4_transfer.lock);
1940
1941	return 0;
1942}
1943
1944int db8500_prcmu_config_hotdog(u8 threshold)
1945{
1946	mutex_lock(&mb4_transfer.lock);
1947
1948	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949		cpu_relax();
1950
1951	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955	wait_for_completion(&mb4_transfer.work);
1956
1957	mutex_unlock(&mb4_transfer.lock);
1958
1959	return 0;
1960}
1961
1962int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963{
1964	mutex_lock(&mb4_transfer.lock);
1965
1966	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967		cpu_relax();
1968
1969	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976	wait_for_completion(&mb4_transfer.work);
1977
1978	mutex_unlock(&mb4_transfer.lock);
1979
1980	return 0;
1981}
1982EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984static int config_hot_period(u16 val)
1985{
1986	mutex_lock(&mb4_transfer.lock);
1987
1988	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989		cpu_relax();
1990
1991	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995	wait_for_completion(&mb4_transfer.work);
1996
1997	mutex_unlock(&mb4_transfer.lock);
1998
1999	return 0;
2000}
2001
2002int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003{
2004	if (cycles32k == 0xFFFF)
2005		return -EINVAL;
2006
2007	return config_hot_period(cycles32k);
2008}
2009EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011int db8500_prcmu_stop_temp_sense(void)
2012{
2013	return config_hot_period(0xFFFF);
2014}
2015EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018{
2019
2020	mutex_lock(&mb4_transfer.lock);
2021
2022	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023		cpu_relax();
2024
2025	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033	wait_for_completion(&mb4_transfer.work);
2034
2035	mutex_unlock(&mb4_transfer.lock);
2036
2037	return 0;
2038
2039}
2040
2041int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042{
2043	BUG_ON(num == 0 || num > 0xf);
2044	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046			    A9WDOG_AUTO_OFF_DIS);
2047}
2048EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050int db8500_prcmu_enable_a9wdog(u8 id)
2051{
2052	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053}
2054EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056int db8500_prcmu_disable_a9wdog(u8 id)
2057{
2058	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059}
2060EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062int db8500_prcmu_kick_a9wdog(u8 id)
2063{
2064	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065}
2066EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068/*
2069 * timeout is 28 bit, in ms.
2070 */
2071int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072{
2073	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074			    (id & A9WDOG_ID_MASK) |
2075			    /*
2076			     * Put the lowest 28 bits of timeout at
2077			     * offset 4. Four first bits are used for id.
2078			     */
2079			    (u8)((timeout << 4) & 0xf0),
2080			    (u8)((timeout >> 4) & 0xff),
2081			    (u8)((timeout >> 12) & 0xff),
2082			    (u8)((timeout >> 20) & 0xff));
2083}
2084EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086/**
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave:	The I2C slave address.
2089 * @reg:	The (start) register address.
2090 * @value:	The read out value(s).
2091 * @size:	The number of registers to read.
2092 *
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2095 */
2096int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097{
2098	int r;
2099
2100	if (size != 1)
2101		return -EINVAL;
2102
2103	mutex_lock(&mb5_transfer.lock);
2104
2105	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106		cpu_relax();
2107
2108	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116	if (!wait_for_completion_timeout(&mb5_transfer.work,
2117				msecs_to_jiffies(20000))) {
2118		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119			__func__);
2120		r = -EIO;
2121	} else {
2122		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123	}
2124
2125	if (!r)
2126		*value = mb5_transfer.ack.value;
2127
2128	mutex_unlock(&mb5_transfer.lock);
2129
2130	return r;
2131}
2132
2133/**
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave:	The I2C slave address.
2136 * @reg:	The (start) register address.
2137 * @value:	The value(s) to write.
2138 * @mask:	The mask(s) to use.
2139 * @size:	The number of registers to write.
2140 *
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2145 */
2146int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147{
2148	int r;
2149
2150	if (size != 1)
2151		return -EINVAL;
2152
2153	mutex_lock(&mb5_transfer.lock);
2154
2155	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156		cpu_relax();
2157
2158	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166	if (!wait_for_completion_timeout(&mb5_transfer.work,
2167				msecs_to_jiffies(20000))) {
2168		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169			__func__);
2170		r = -EIO;
2171	} else {
2172		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173	}
2174
2175	mutex_unlock(&mb5_transfer.lock);
2176
2177	return r;
2178}
2179
2180/**
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave:	The I2C slave address.
2183 * @reg:	The (start) register address.
2184 * @value:	The value(s) to write.
2185 * @size:	The number of registers to write.
2186 *
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2189 */
2190int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191{
2192	u8 mask = ~0;
2193
2194	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195}
2196
2197/**
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199 */
2200int prcmu_ac_wake_req(void)
2201{
2202	u32 val;
2203	int ret = 0;
2204
2205	mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207	val = readl(PRCM_HOSTACCESS_REQ);
2208	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209		goto unlock_and_return;
2210
2211	atomic_set(&ac_wake_req_state, 1);
2212
2213	/*
2214	 * Force Modem Wake-up before hostaccess_req ping-pong.
2215	 * It prevents Modem to enter in Sleep while acking the hostaccess
2216	 * request. The 31us delay has been calculated by HWI.
2217	 */
2218	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219	writel(val, PRCM_HOSTACCESS_REQ);
2220
2221	udelay(31);
2222
2223	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224	writel(val, PRCM_HOSTACCESS_REQ);
2225
2226	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227			msecs_to_jiffies(5000))) {
2228		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229			__func__);
2230		ret = -EFAULT;
2231	}
2232
2233unlock_and_return:
2234	mutex_unlock(&mb0_transfer.ac_wake_lock);
2235	return ret;
2236}
2237
2238/**
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240 */
2241void prcmu_ac_sleep_req(void)
2242{
2243	u32 val;
2244
2245	mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247	val = readl(PRCM_HOSTACCESS_REQ);
2248	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249		goto unlock_and_return;
2250
2251	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252		PRCM_HOSTACCESS_REQ);
2253
2254	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255			msecs_to_jiffies(5000))) {
2256		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257			__func__);
2258	}
2259
2260	atomic_set(&ac_wake_req_state, 0);
2261
2262unlock_and_return:
2263	mutex_unlock(&mb0_transfer.ac_wake_lock);
2264}
2265
2266bool db8500_prcmu_is_ac_wake_requested(void)
2267{
2268	return (atomic_read(&ac_wake_req_state) != 0);
2269}
2270
2271/**
2272 * db8500_prcmu_system_reset - System reset
2273 *
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2276 *
2277 * @reset_code: The reason for system reset
2278 */
2279void db8500_prcmu_system_reset(u16 reset_code)
2280{
2281	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282	writel(1, PRCM_APE_SOFTRST);
2283}
2284
2285/**
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287 *
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2289 * last restart.
2290 */
2291u16 db8500_prcmu_get_reset_code(void)
2292{
2293	return readw(tcdm_base + PRCM_SW_RST_REASON);
2294}
2295
2296/**
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298 */
2299void db8500_prcmu_modem_reset(void)
2300{
2301	mutex_lock(&mb1_transfer.lock);
2302
2303	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304		cpu_relax();
2305
2306	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308	wait_for_completion(&mb1_transfer.work);
2309
2310	/*
2311	 * No need to check return from PRCMU as modem should go in reset state
2312	 * This state is already managed by upper layer
2313	 */
2314
2315	mutex_unlock(&mb1_transfer.lock);
2316}
2317
2318static void ack_dbb_wakeup(void)
2319{
2320	unsigned long flags;
2321
2322	spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325		cpu_relax();
2326
2327	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331}
2332
2333static inline void print_unknown_header_warning(u8 n, u8 header)
2334{
2335	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336		header, n);
2337}
2338
2339static bool read_mailbox_0(void)
2340{
2341	bool r;
2342	u32 ev;
2343	unsigned int n;
2344	u8 header;
2345
2346	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347	switch (header) {
2348	case MB0H_WAKEUP_EXE:
2349	case MB0H_WAKEUP_SLEEP:
2350		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352		else
2353			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356			complete(&mb0_transfer.ac_wake_work);
2357		if (ev & WAKEUP_BIT_SYSCLK_OK)
2358			complete(&mb3_transfer.sysclk_work);
2359
2360		ev &= mb0_transfer.req.dbb_irqs;
2361
2362		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363			if (ev & prcmu_irq_bit[n])
2364				generic_handle_domain_irq(db8500_irq_domain, n);
2365		}
2366		r = true;
2367		break;
2368	default:
2369		print_unknown_header_warning(0, header);
2370		r = false;
2371		break;
2372	}
2373	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374	return r;
2375}
2376
2377static bool read_mailbox_1(void)
2378{
2379	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383		PRCM_ACK_MB1_CURRENT_APE_OPP);
2384	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387	complete(&mb1_transfer.work);
2388	return false;
2389}
2390
2391static bool read_mailbox_2(void)
2392{
2393	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395	complete(&mb2_transfer.work);
2396	return false;
2397}
2398
2399static bool read_mailbox_3(void)
2400{
2401	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402	return false;
2403}
2404
2405static bool read_mailbox_4(void)
2406{
2407	u8 header;
2408	bool do_complete = true;
2409
2410	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411	switch (header) {
2412	case MB4H_MEM_ST:
2413	case MB4H_HOTDOG:
2414	case MB4H_HOTMON:
2415	case MB4H_HOT_PERIOD:
2416	case MB4H_A9WDOG_CONF:
2417	case MB4H_A9WDOG_EN:
2418	case MB4H_A9WDOG_DIS:
2419	case MB4H_A9WDOG_LOAD:
2420	case MB4H_A9WDOG_KICK:
2421		break;
2422	default:
2423		print_unknown_header_warning(4, header);
2424		do_complete = false;
2425		break;
2426	}
2427
2428	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430	if (do_complete)
2431		complete(&mb4_transfer.work);
2432
2433	return false;
2434}
2435
2436static bool read_mailbox_5(void)
2437{
2438	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441	complete(&mb5_transfer.work);
2442	return false;
2443}
2444
2445static bool read_mailbox_6(void)
2446{
2447	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448	return false;
2449}
2450
2451static bool read_mailbox_7(void)
2452{
2453	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454	return false;
2455}
2456
2457static bool (* const read_mailbox[NUM_MB])(void) = {
2458	read_mailbox_0,
2459	read_mailbox_1,
2460	read_mailbox_2,
2461	read_mailbox_3,
2462	read_mailbox_4,
2463	read_mailbox_5,
2464	read_mailbox_6,
2465	read_mailbox_7
2466};
2467
2468static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469{
2470	u32 bits;
2471	u8 n;
2472	irqreturn_t r;
2473
2474	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475	if (unlikely(!bits))
2476		return IRQ_NONE;
2477
2478	r = IRQ_HANDLED;
2479	for (n = 0; bits; n++) {
2480		if (bits & MBOX_BIT(n)) {
2481			bits -= MBOX_BIT(n);
2482			if (read_mailbox[n]())
2483				r = IRQ_WAKE_THREAD;
2484		}
2485	}
2486	return r;
2487}
2488
2489static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490{
2491	ack_dbb_wakeup();
2492	return IRQ_HANDLED;
2493}
2494
2495static void prcmu_mask_work(struct work_struct *work)
2496{
2497	unsigned long flags;
2498
2499	spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501	config_wakeups();
2502
2503	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504}
2505
2506static void prcmu_irq_mask(struct irq_data *d)
2507{
2508	unsigned long flags;
2509
2510	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517		schedule_work(&mb0_transfer.mask_work);
2518}
2519
2520static void prcmu_irq_unmask(struct irq_data *d)
2521{
2522	unsigned long flags;
2523
2524	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531		schedule_work(&mb0_transfer.mask_work);
2532}
2533
2534static void noop(struct irq_data *d)
2535{
2536}
2537
2538static struct irq_chip prcmu_irq_chip = {
2539	.name		= "prcmu",
2540	.irq_disable	= prcmu_irq_mask,
2541	.irq_ack	= noop,
2542	.irq_mask	= prcmu_irq_mask,
2543	.irq_unmask	= prcmu_irq_unmask,
2544};
2545
2546static char *fw_project_name(u32 project)
2547{
2548	switch (project) {
2549	case PRCMU_FW_PROJECT_U8500:
2550		return "U8500";
2551	case PRCMU_FW_PROJECT_U8400:
2552		return "U8400";
2553	case PRCMU_FW_PROJECT_U9500:
2554		return "U9500";
2555	case PRCMU_FW_PROJECT_U8500_MBB:
2556		return "U8500 MBB";
2557	case PRCMU_FW_PROJECT_U8500_C1:
2558		return "U8500 C1";
2559	case PRCMU_FW_PROJECT_U8500_C2:
2560		return "U8500 C2";
2561	case PRCMU_FW_PROJECT_U8500_C3:
2562		return "U8500 C3";
2563	case PRCMU_FW_PROJECT_U8500_C4:
2564		return "U8500 C4";
2565	case PRCMU_FW_PROJECT_U9500_MBL:
2566		return "U9500 MBL";
2567	case PRCMU_FW_PROJECT_U8500_SSG1:
2568		return "U8500 Samsung 1";
2569	case PRCMU_FW_PROJECT_U8500_MBL2:
2570		return "U8500 MBL2";
2571	case PRCMU_FW_PROJECT_U8520:
2572		return "U8520 MBL";
2573	case PRCMU_FW_PROJECT_U8420:
2574		return "U8420";
2575	case PRCMU_FW_PROJECT_U8500_SSG2:
2576		return "U8500 Samsung 2";
2577	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578		return "U8420-sysclk";
2579	case PRCMU_FW_PROJECT_U9540:
2580		return "U9540";
2581	case PRCMU_FW_PROJECT_A9420:
2582		return "A9420";
2583	case PRCMU_FW_PROJECT_L8540:
2584		return "L8540";
2585	case PRCMU_FW_PROJECT_L8580:
2586		return "L8580";
2587	default:
2588		return "Unknown";
2589	}
2590}
2591
2592static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593				irq_hw_number_t hwirq)
2594{
2595	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596				handle_simple_irq);
2597
2598	return 0;
2599}
2600
2601static const struct irq_domain_ops db8500_irq_ops = {
2602	.map    = db8500_irq_map,
2603	.xlate  = irq_domain_xlate_twocell,
2604};
2605
2606static int db8500_irq_init(struct device_node *np)
2607{
2608	int i;
2609
2610	db8500_irq_domain = irq_domain_add_simple(
2611		np, NUM_PRCMU_WAKEUPS, 0,
2612		&db8500_irq_ops, NULL);
2613
2614	if (!db8500_irq_domain) {
2615		pr_err("Failed to create irqdomain\n");
2616		return -ENOSYS;
2617	}
2618
2619	/* All wakeups will be used, so create mappings for all */
2620	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621		irq_create_mapping(db8500_irq_domain, i);
2622
2623	return 0;
2624}
2625
2626static void dbx500_fw_version_init(struct device_node *np)
 
2627{
 
2628	void __iomem *tcpm_base;
2629	u32 version;
2630
2631	tcpm_base = of_iomap(np, 1);
 
 
 
 
 
 
 
2632	if (!tcpm_base) {
2633		pr_err("no prcmu tcpm mem region provided\n");
2634		return;
2635	}
2636
2637	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638	fw_info.version.project = (version & 0xFF);
2639	fw_info.version.api_version = (version >> 8) & 0xFF;
2640	fw_info.version.func_version = (version >> 16) & 0xFF;
2641	fw_info.version.errata = (version >> 24) & 0xFF;
2642	strscpy(fw_info.version.project_name,
2643		fw_project_name(fw_info.version.project),
2644		sizeof(fw_info.version.project_name));
2645	fw_info.valid = true;
2646	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647		fw_info.version.project_name,
2648		fw_info.version.project,
2649		fw_info.version.api_version,
2650		fw_info.version.func_version,
2651		fw_info.version.errata);
2652	iounmap(tcpm_base);
2653}
2654
2655void __init db8500_prcmu_early_init(void)
2656{
2657	/*
2658	 * This is a temporary remap to bring up the clocks. It is
2659	 * subsequently replaces with a real remap. After the merge of
2660	 * the mailbox subsystem all of this early code goes away, and the
2661	 * clock driver can probe independently. An early initcall will
2662	 * still be needed, but it can be diverted into drivers/clk/ux500.
2663	 */
2664	struct device_node *np;
2665
2666	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667	prcmu_base = of_iomap(np, 0);
2668	if (!prcmu_base) {
2669		of_node_put(np);
2670		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671		return;
2672	}
2673	dbx500_fw_version_init(np);
2674	of_node_put(np);
2675
2676	spin_lock_init(&mb0_transfer.lock);
2677	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678	mutex_init(&mb0_transfer.ac_wake_lock);
2679	init_completion(&mb0_transfer.ac_wake_work);
2680	mutex_init(&mb1_transfer.lock);
2681	init_completion(&mb1_transfer.work);
2682	mb1_transfer.ape_opp = APE_NO_CHANGE;
2683	mutex_init(&mb2_transfer.lock);
2684	init_completion(&mb2_transfer.work);
2685	spin_lock_init(&mb2_transfer.auto_pm_lock);
2686	spin_lock_init(&mb3_transfer.lock);
2687	mutex_init(&mb3_transfer.sysclk_lock);
2688	init_completion(&mb3_transfer.sysclk_work);
2689	mutex_init(&mb4_transfer.lock);
2690	init_completion(&mb4_transfer.work);
2691	mutex_init(&mb5_transfer.lock);
2692	init_completion(&mb5_transfer.work);
2693
2694	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695}
2696
2697static void init_prcm_registers(void)
2698{
2699	u32 val;
2700
2701	val = readl(PRCM_A9PL_FORCE_CLKEN);
2702	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705}
2706
2707/*
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 */
2710static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711	REGULATOR_SUPPLY("v-ape", NULL),
2712	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717	/* "v-mmc" changed to "vcore" in the mainline kernel */
2718	REGULATOR_SUPPLY("vcore", "sdi0"),
2719	REGULATOR_SUPPLY("vcore", "sdi1"),
2720	REGULATOR_SUPPLY("vcore", "sdi2"),
2721	REGULATOR_SUPPLY("vcore", "sdi3"),
2722	REGULATOR_SUPPLY("vcore", "sdi4"),
2723	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725	/* "v-uart" changed to "vcore" in the mainline kernel */
2726	REGULATOR_SUPPLY("vcore", "uart0"),
2727	REGULATOR_SUPPLY("vcore", "uart1"),
2728	REGULATOR_SUPPLY("vcore", "uart2"),
2729	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732};
2733
2734static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736	/* AV8100 regulator */
2737	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738};
2739
2740static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742	REGULATOR_SUPPLY("vsupply", "mcde"),
2743};
2744
2745/* SVA MMDSP regulator switch */
2746static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748};
2749
2750/* SVA pipe regulator switch */
2751static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753};
2754
2755/* SIA MMDSP regulator switch */
2756static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758};
2759
2760/* SIA pipe regulator switch */
2761static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763};
2764
2765static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766	REGULATOR_SUPPLY("v-mali", NULL),
2767};
2768
2769/* ESRAM1 and 2 regulator switch */
2770static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771	REGULATOR_SUPPLY("esram12", "cm_control"),
2772};
2773
2774/* ESRAM3 and 4 regulator switch */
2775static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776	REGULATOR_SUPPLY("v-esram34", "mcde"),
2777	REGULATOR_SUPPLY("esram34", "cm_control"),
2778	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779};
2780
2781static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782	[DB8500_REGULATOR_VAPE] = {
2783		.constraints = {
2784			.name = "db8500-vape",
2785			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786			.always_on = true,
2787		},
2788		.consumer_supplies = db8500_vape_consumers,
2789		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790	},
2791	[DB8500_REGULATOR_VARM] = {
2792		.constraints = {
2793			.name = "db8500-varm",
2794			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795		},
2796	},
2797	[DB8500_REGULATOR_VMODEM] = {
2798		.constraints = {
2799			.name = "db8500-vmodem",
2800			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801		},
2802	},
2803	[DB8500_REGULATOR_VPLL] = {
2804		.constraints = {
2805			.name = "db8500-vpll",
2806			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807		},
2808	},
2809	[DB8500_REGULATOR_VSMPS1] = {
2810		.constraints = {
2811			.name = "db8500-vsmps1",
2812			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813		},
2814	},
2815	[DB8500_REGULATOR_VSMPS2] = {
2816		.constraints = {
2817			.name = "db8500-vsmps2",
2818			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819		},
2820		.consumer_supplies = db8500_vsmps2_consumers,
2821		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822	},
2823	[DB8500_REGULATOR_VSMPS3] = {
2824		.constraints = {
2825			.name = "db8500-vsmps3",
2826			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827		},
2828	},
2829	[DB8500_REGULATOR_VRF1] = {
2830		.constraints = {
2831			.name = "db8500-vrf1",
2832			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833		},
2834	},
2835	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836		/* dependency to u8500-vape is handled outside regulator framework */
2837		.constraints = {
2838			.name = "db8500-sva-mmdsp",
2839			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840		},
2841		.consumer_supplies = db8500_svammdsp_consumers,
2842		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843	},
2844	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845		.constraints = {
2846			/* "ret" means "retention" */
2847			.name = "db8500-sva-mmdsp-ret",
2848			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849		},
2850	},
2851	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852		/* dependency to u8500-vape is handled outside regulator framework */
2853		.constraints = {
2854			.name = "db8500-sva-pipe",
2855			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856		},
2857		.consumer_supplies = db8500_svapipe_consumers,
2858		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859	},
2860	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861		/* dependency to u8500-vape is handled outside regulator framework */
2862		.constraints = {
2863			.name = "db8500-sia-mmdsp",
2864			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865		},
2866		.consumer_supplies = db8500_siammdsp_consumers,
2867		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868	},
2869	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870		.constraints = {
2871			.name = "db8500-sia-mmdsp-ret",
2872			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873		},
2874	},
2875	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876		/* dependency to u8500-vape is handled outside regulator framework */
2877		.constraints = {
2878			.name = "db8500-sia-pipe",
2879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880		},
2881		.consumer_supplies = db8500_siapipe_consumers,
2882		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883	},
2884	[DB8500_REGULATOR_SWITCH_SGA] = {
2885		.supply_regulator = "db8500-vape",
2886		.constraints = {
2887			.name = "db8500-sga",
2888			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889		},
2890		.consumer_supplies = db8500_sga_consumers,
2891		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893	},
2894	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895		.supply_regulator = "db8500-vape",
2896		.constraints = {
2897			.name = "db8500-b2r2-mcde",
2898			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899		},
2900		.consumer_supplies = db8500_b2r2_mcde_consumers,
2901		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902	},
2903	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904		/*
2905		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906		 * no need to hold Vape
2907		 */
2908		.constraints = {
2909			.name = "db8500-esram12",
2910			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911		},
2912		.consumer_supplies = db8500_esram12_consumers,
2913		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914	},
2915	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916		.constraints = {
2917			.name = "db8500-esram12-ret",
2918			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919		},
2920	},
2921	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922		/*
2923		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924		 * no need to hold Vape
2925		 */
2926		.constraints = {
2927			.name = "db8500-esram34",
2928			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929		},
2930		.consumer_supplies = db8500_esram34_consumers,
2931		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932	},
2933	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934		.constraints = {
2935			.name = "db8500-esram34-ret",
2936			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937		},
2938	},
2939};
2940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941static const struct mfd_cell common_prcmu_devs[] = {
2942	MFD_CELL_NAME("db8500_wdt"),
2943	MFD_CELL_NAME("db8500-cpuidle"),
 
 
 
 
2944};
2945
2946static const struct mfd_cell db8500_prcmu_devs[] = {
2947	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948		    &db8500_regulators, sizeof(db8500_regulators), 0,
2949		    "stericsson,db8500-prcmu-regulator"),
2950	MFD_CELL_OF("db8500-thermal",
2951		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2952};
2953
 
 
 
 
 
 
 
 
2954static int db8500_prcmu_register_ab8500(struct device *parent)
2955{
2956	struct device_node *np;
2957	struct resource ab850x_resource;
2958	const struct mfd_cell ab8500_cell = {
2959		.name = "ab8500-core",
2960		.of_compatible = "stericsson,ab8500",
2961		.id = AB8500_VERSION_AB8500,
2962		.resources = &ab850x_resource,
2963		.num_resources = 1,
2964	};
2965	const struct mfd_cell ab8505_cell = {
2966		.name = "ab8505-core",
2967		.of_compatible = "stericsson,ab8505",
2968		.id = AB8500_VERSION_AB8505,
2969		.resources = &ab850x_resource,
2970		.num_resources = 1,
2971	};
2972	const struct mfd_cell *ab850x_cell;
2973
2974	if (!parent->of_node)
2975		return -ENODEV;
2976
2977	/* Look up the device node, sneak the IRQ out of it */
2978	for_each_child_of_node(parent->of_node, np) {
2979		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980			ab850x_cell = &ab8500_cell;
2981			break;
2982		}
2983		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984			ab850x_cell = &ab8505_cell;
2985			break;
2986		}
2987	}
2988	if (!np) {
2989		dev_info(parent, "could not find AB850X node in the device tree\n");
2990		return -ENODEV;
2991	}
2992	of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995}
2996
 
 
 
 
2997static int db8500_prcmu_probe(struct platform_device *pdev)
2998{
2999	struct device_node *np = pdev->dev.of_node;
3000	int irq = 0, err = 0;
3001	struct resource *res;
3002
3003	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004	if (!res) {
3005		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006		return -EINVAL;
3007	}
3008	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009	if (!prcmu_base) {
3010		dev_err(&pdev->dev,
3011			"failed to ioremap prcmu register memory\n");
3012		return -ENOMEM;
3013	}
3014	init_prcm_registers();
 
3015	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016	if (!res) {
3017		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018		return -EINVAL;
3019	}
3020	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021			resource_size(res));
3022	if (!tcdm_base) {
3023		dev_err(&pdev->dev,
3024			"failed to ioremap prcmu-tcdm register memory\n");
3025		return -ENOMEM;
3026	}
3027
3028	/* Clean up the mailbox interrupts after pre-kernel code. */
3029	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031	irq = platform_get_irq(pdev, 0);
3032	if (irq <= 0)
 
3033		return irq;
 
3034
3035	err = request_threaded_irq(irq, prcmu_irq_handler,
3036	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037	if (err < 0) {
3038		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039		return err;
3040	}
3041
3042	db8500_irq_init(np);
3043
3044	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
 
 
3046	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048	if (err) {
3049		pr_err("prcmu: Failed to add subdevices\n");
3050		return err;
3051	}
3052
3053	/* TODO: Remove restriction when clk definitions are available. */
3054	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057				      db8500_irq_domain);
3058		if (err) {
3059			mfd_remove_devices(&pdev->dev);
3060			pr_err("prcmu: Failed to add subdevices\n");
3061			return err;
3062		}
3063	}
3064
3065	err = db8500_prcmu_register_ab8500(&pdev->dev);
3066	if (err) {
3067		mfd_remove_devices(&pdev->dev);
3068		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069		return err;
3070	}
3071
3072	pr_info("DB8500 PRCMU initialized\n");
3073	return err;
3074}
3075static const struct of_device_id db8500_prcmu_match[] = {
3076	{ .compatible = "stericsson,db8500-prcmu"},
3077	{ },
3078};
3079
3080static struct platform_driver db8500_prcmu_driver = {
3081	.driver = {
3082		.name = "db8500-prcmu",
3083		.of_match_table = db8500_prcmu_match,
3084	},
3085	.probe = db8500_prcmu_probe,
3086};
3087
3088static int __init db8500_prcmu_init(void)
3089{
3090	return platform_driver_register(&db8500_prcmu_driver);
3091}
 
3092core_initcall(db8500_prcmu_init);
v4.10.11
 
   1/*
 
 
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
 
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
  27#include <linux/of.h>
 
  28#include <linux/of_irq.h>
  29#include <linux/platform_device.h>
  30#include <linux/uaccess.h>
  31#include <linux/mfd/core.h>
  32#include <linux/mfd/dbx500-prcmu.h>
  33#include <linux/mfd/abx500/ab8500.h>
  34#include <linux/regulator/db8500-prcmu.h>
  35#include <linux/regulator/machine.h>
  36#include <linux/cpufreq.h>
  37#include <linux/platform_data/ux500_wdt.h>
  38#include <linux/platform_data/db8500_thermal.h>
  39#include "dbx500-prcmu-regs.h"
  40
  41/* Index of different voltages to be used when accessing AVSData */
  42#define PRCM_AVS_BASE		0x2FC
  43#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  44#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  45#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  46#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  47#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  48#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  49#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  50#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  51#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  52#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  53#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  54#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  55#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  56
  57#define PRCM_AVS_VOLTAGE		0
  58#define PRCM_AVS_VOLTAGE_MASK		0x3f
  59#define PRCM_AVS_ISSLOWSTARTUP		6
  60#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  61#define PRCM_AVS_ISMODEENABLE		7
  62#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  63
  64#define PRCM_BOOT_STATUS	0xFFF
  65#define PRCM_ROMCODE_A2P	0xFFE
  66#define PRCM_ROMCODE_P2A	0xFFD
  67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  68
  69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70
  71#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  72#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  73#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  74#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  75#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  76#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  77#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  78#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  79
  80/* Req Mailboxes */
  81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  87
  88/* Ack Mailboxes */
  89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  95
  96/* Mailbox 0 headers */
  97#define MB0H_POWER_STATE_TRANS		0
  98#define MB0H_CONFIG_WAKEUPS_EXE		1
  99#define MB0H_READ_WAKEUP_ACK		3
 100#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 101
 102#define MB0H_WAKEUP_EXE 2
 103#define MB0H_WAKEUP_SLEEP 5
 104
 105/* Mailbox 0 REQs */
 106#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 107#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 108#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 109#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 110#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 111#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 112
 113/* Mailbox 0 ACKs */
 114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 115#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 116#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 117#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 118#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 119#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 121
 122/* Mailbox 1 headers */
 123#define MB1H_ARM_APE_OPP 0x0
 124#define MB1H_RESET_MODEM 0x2
 125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 127#define MB1H_RELEASE_USB_WAKEUP 0x5
 128#define MB1H_PLL_ON_OFF 0x6
 129
 130/* Mailbox 1 Requests */
 131#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 132#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 133#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 134#define PLL_SOC0_OFF	0x1
 135#define PLL_SOC0_ON	0x2
 136#define PLL_SOC1_OFF	0x4
 137#define PLL_SOC1_ON	0x8
 138
 139/* Mailbox 1 ACKs */
 140#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 141#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 143#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 144
 145/* Mailbox 2 headers */
 146#define MB2H_DPS	0x0
 147#define MB2H_AUTO_PWR	0x1
 148
 149/* Mailbox 2 REQs */
 150#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 151#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 152#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 153#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 154#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 155#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 156#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 157#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 158#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 159#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 160
 161/* Mailbox 2 ACKs */
 162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 163#define HWACC_PWR_ST_OK 0xFE
 164
 165/* Mailbox 3 headers */
 166#define MB3H_ANC	0x0
 167#define MB3H_SIDETONE	0x1
 168#define MB3H_SYSCLK	0xE
 169
 170/* Mailbox 3 Requests */
 171#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 172#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 173#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 174#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 177#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 178
 179/* Mailbox 4 headers */
 180#define MB4H_DDR_INIT	0x0
 181#define MB4H_MEM_ST	0x1
 182#define MB4H_HOTDOG	0x12
 183#define MB4H_HOTMON	0x13
 184#define MB4H_HOT_PERIOD	0x14
 185#define MB4H_A9WDOG_CONF 0x16
 186#define MB4H_A9WDOG_EN   0x17
 187#define MB4H_A9WDOG_DIS  0x18
 188#define MB4H_A9WDOG_LOAD 0x19
 189#define MB4H_A9WDOG_KICK 0x20
 190
 191/* Mailbox 4 Requests */
 192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 194#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 198#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 199#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 200#define HOTMON_CONFIG_LOW			BIT(0)
 201#define HOTMON_CONFIG_HIGH			BIT(1)
 202#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 203#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 204#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 205#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 206#define A9WDOG_AUTO_OFF_EN			BIT(7)
 207#define A9WDOG_AUTO_OFF_DIS			0
 208#define A9WDOG_ID_MASK				0xf
 209
 210/* Mailbox 5 Requests */
 211#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 212#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 213#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 214#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 217#define PRCMU_I2C_STOP_EN		BIT(3)
 218
 219/* Mailbox 5 ACKs */
 220#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 221#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 222#define I2C_WR_OK 0x1
 223#define I2C_RD_OK 0x2
 224
 225#define NUM_MB 8
 226#define MBOX_BIT BIT
 227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 228
 229/*
 230 * Wakeups/IRQs
 231 */
 232
 233#define WAKEUP_BIT_RTC BIT(0)
 234#define WAKEUP_BIT_RTT0 BIT(1)
 235#define WAKEUP_BIT_RTT1 BIT(2)
 236#define WAKEUP_BIT_HSI0 BIT(3)
 237#define WAKEUP_BIT_HSI1 BIT(4)
 238#define WAKEUP_BIT_CA_WAKE BIT(5)
 239#define WAKEUP_BIT_USB BIT(6)
 240#define WAKEUP_BIT_ABB BIT(7)
 241#define WAKEUP_BIT_ABB_FIFO BIT(8)
 242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 243#define WAKEUP_BIT_CA_SLEEP BIT(10)
 244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 246#define WAKEUP_BIT_ANC_OK BIT(13)
 247#define WAKEUP_BIT_SW_ERROR BIT(14)
 248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 249#define WAKEUP_BIT_ARM BIT(17)
 250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 253#define WAKEUP_BIT_GPIO0 BIT(23)
 254#define WAKEUP_BIT_GPIO1 BIT(24)
 255#define WAKEUP_BIT_GPIO2 BIT(25)
 256#define WAKEUP_BIT_GPIO3 BIT(26)
 257#define WAKEUP_BIT_GPIO4 BIT(27)
 258#define WAKEUP_BIT_GPIO5 BIT(28)
 259#define WAKEUP_BIT_GPIO6 BIT(29)
 260#define WAKEUP_BIT_GPIO7 BIT(30)
 261#define WAKEUP_BIT_GPIO8 BIT(31)
 262
 263static struct {
 264	bool valid;
 265	struct prcmu_fw_version version;
 266} fw_info;
 267
 268static struct irq_domain *db8500_irq_domain;
 269
 270/*
 271 * This vector maps irq numbers to the bits in the bit field used in
 272 * communication with the PRCMU firmware.
 273 *
 274 * The reason for having this is to keep the irq numbers contiguous even though
 275 * the bits in the bit field are not. (The bits also have a tendency to move
 276 * around, to further complicate matters.)
 277 */
 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 280
 281#define IRQ_PRCMU_RTC 0
 282#define IRQ_PRCMU_RTT0 1
 283#define IRQ_PRCMU_RTT1 2
 284#define IRQ_PRCMU_HSI0 3
 285#define IRQ_PRCMU_HSI1 4
 286#define IRQ_PRCMU_CA_WAKE 5
 287#define IRQ_PRCMU_USB 6
 288#define IRQ_PRCMU_ABB 7
 289#define IRQ_PRCMU_ABB_FIFO 8
 290#define IRQ_PRCMU_ARM 9
 291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 292#define IRQ_PRCMU_GPIO0 11
 293#define IRQ_PRCMU_GPIO1 12
 294#define IRQ_PRCMU_GPIO2 13
 295#define IRQ_PRCMU_GPIO3 14
 296#define IRQ_PRCMU_GPIO4 15
 297#define IRQ_PRCMU_GPIO5 16
 298#define IRQ_PRCMU_GPIO6 17
 299#define IRQ_PRCMU_GPIO7 18
 300#define IRQ_PRCMU_GPIO8 19
 301#define IRQ_PRCMU_CA_SLEEP 20
 302#define IRQ_PRCMU_HOTMON_LOW 21
 303#define IRQ_PRCMU_HOTMON_HIGH 22
 304#define NUM_PRCMU_WAKEUPS 23
 305
 306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 307	IRQ_ENTRY(RTC),
 308	IRQ_ENTRY(RTT0),
 309	IRQ_ENTRY(RTT1),
 310	IRQ_ENTRY(HSI0),
 311	IRQ_ENTRY(HSI1),
 312	IRQ_ENTRY(CA_WAKE),
 313	IRQ_ENTRY(USB),
 314	IRQ_ENTRY(ABB),
 315	IRQ_ENTRY(ABB_FIFO),
 316	IRQ_ENTRY(CA_SLEEP),
 317	IRQ_ENTRY(ARM),
 318	IRQ_ENTRY(HOTMON_LOW),
 319	IRQ_ENTRY(HOTMON_HIGH),
 320	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 321	IRQ_ENTRY(GPIO0),
 322	IRQ_ENTRY(GPIO1),
 323	IRQ_ENTRY(GPIO2),
 324	IRQ_ENTRY(GPIO3),
 325	IRQ_ENTRY(GPIO4),
 326	IRQ_ENTRY(GPIO5),
 327	IRQ_ENTRY(GPIO6),
 328	IRQ_ENTRY(GPIO7),
 329	IRQ_ENTRY(GPIO8)
 330};
 331
 332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 335	WAKEUP_ENTRY(RTC),
 336	WAKEUP_ENTRY(RTT0),
 337	WAKEUP_ENTRY(RTT1),
 338	WAKEUP_ENTRY(HSI0),
 339	WAKEUP_ENTRY(HSI1),
 340	WAKEUP_ENTRY(USB),
 341	WAKEUP_ENTRY(ABB),
 342	WAKEUP_ENTRY(ABB_FIFO),
 343	WAKEUP_ENTRY(ARM)
 344};
 345
 346/*
 347 * mb0_transfer - state needed for mailbox 0 communication.
 348 * @lock:		The transaction lock.
 349 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 350 *			the request data.
 351 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 352 * @req:		Request data that need to persist between requests.
 353 */
 354static struct {
 355	spinlock_t lock;
 356	spinlock_t dbb_irqs_lock;
 357	struct work_struct mask_work;
 358	struct mutex ac_wake_lock;
 359	struct completion ac_wake_work;
 360	struct {
 361		u32 dbb_irqs;
 362		u32 dbb_wakeups;
 363		u32 abb_events;
 364	} req;
 365} mb0_transfer;
 366
 367/*
 368 * mb1_transfer - state needed for mailbox 1 communication.
 369 * @lock:	The transaction lock.
 370 * @work:	The transaction completion structure.
 371 * @ape_opp:	The current APE OPP.
 372 * @ack:	Reply ("acknowledge") data.
 373 */
 374static struct {
 375	struct mutex lock;
 376	struct completion work;
 377	u8 ape_opp;
 378	struct {
 379		u8 header;
 380		u8 arm_opp;
 381		u8 ape_opp;
 382		u8 ape_voltage_status;
 383	} ack;
 384} mb1_transfer;
 385
 386/*
 387 * mb2_transfer - state needed for mailbox 2 communication.
 388 * @lock:            The transaction lock.
 389 * @work:            The transaction completion structure.
 390 * @auto_pm_lock:    The autonomous power management configuration lock.
 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 392 * @req:             Request data that need to persist between requests.
 393 * @ack:             Reply ("acknowledge") data.
 394 */
 395static struct {
 396	struct mutex lock;
 397	struct completion work;
 398	spinlock_t auto_pm_lock;
 399	bool auto_pm_enabled;
 400	struct {
 401		u8 status;
 402	} ack;
 403} mb2_transfer;
 404
 405/*
 406 * mb3_transfer - state needed for mailbox 3 communication.
 407 * @lock:		The request lock.
 408 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 409 * @sysclk_work:	Work structure used for sysclk requests.
 410 */
 411static struct {
 412	spinlock_t lock;
 413	struct mutex sysclk_lock;
 414	struct completion sysclk_work;
 415} mb3_transfer;
 416
 417/*
 418 * mb4_transfer - state needed for mailbox 4 communication.
 419 * @lock:	The transaction lock.
 420 * @work:	The transaction completion structure.
 421 */
 422static struct {
 423	struct mutex lock;
 424	struct completion work;
 425} mb4_transfer;
 426
 427/*
 428 * mb5_transfer - state needed for mailbox 5 communication.
 429 * @lock:	The transaction lock.
 430 * @work:	The transaction completion structure.
 431 * @ack:	Reply ("acknowledge") data.
 432 */
 433static struct {
 434	struct mutex lock;
 435	struct completion work;
 436	struct {
 437		u8 status;
 438		u8 value;
 439	} ack;
 440} mb5_transfer;
 441
 442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 443
 444/* Spinlocks */
 445static DEFINE_SPINLOCK(prcmu_lock);
 446static DEFINE_SPINLOCK(clkout_lock);
 447
 448/* Global var to runtime determine TCDM base for v2 or v1 */
 449static __iomem void *tcdm_base;
 450static __iomem void *prcmu_base;
 451
 452struct clk_mgt {
 453	u32 offset;
 454	u32 pllsw;
 455	int branch;
 456	bool clk38div;
 457};
 458
 459enum {
 460	PLL_RAW,
 461	PLL_FIX,
 462	PLL_DIV
 463};
 464
 465static DEFINE_SPINLOCK(clk_mgt_lock);
 466
 467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 468	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 470	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 471	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 472	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 475	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 476	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 477	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 478	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 483	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 484	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 485	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 487	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 488	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 489	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 491	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 492	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 493	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 494	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 495	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 496	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 498	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 499};
 500
 501struct dsiclk {
 502	u32 divsel_mask;
 503	u32 divsel_shift;
 504	u32 divsel;
 505};
 506
 507static struct dsiclk dsiclk[2] = {
 508	{
 509		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 510		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 511		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 512	},
 513	{
 514		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 515		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 516		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 517	}
 518};
 519
 520struct dsiescclk {
 521	u32 en;
 522	u32 div_mask;
 523	u32 div_shift;
 524};
 525
 526static struct dsiescclk dsiescclk[3] = {
 527	{
 528		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 529		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 530		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 531	},
 532	{
 533		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 534		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 535		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 536	},
 537	{
 538		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 539		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 540		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 541	}
 542};
 543
 544
 545/*
 546* Used by MCDE to setup all necessary PRCMU registers
 547*/
 548#define PRCMU_RESET_DSIPLL		0x00004000
 549#define PRCMU_UNCLAMP_DSIPLL		0x00400800
 550
 551#define PRCMU_CLK_PLL_DIV_SHIFT		0
 552#define PRCMU_CLK_PLL_SW_SHIFT		5
 553#define PRCMU_CLK_38			(1 << 9)
 554#define PRCMU_CLK_38_SRC		(1 << 10)
 555#define PRCMU_CLK_38_DIV		(1 << 11)
 556
 557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 558#define PRCMU_DSI_CLOCK_SETTING		0x0000008C
 559
 560/* DPI 50000000 Hz */
 561#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 562					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 563#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
 564
 565/* D=101, N=1, R=4, SELDIV2=0 */
 566#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
 567
 568#define PRCMU_ENABLE_PLLDSI		0x00000001
 569#define PRCMU_DISABLE_PLLDSI		0x00000000
 570#define PRCMU_RELEASE_RESET_DSS		0x0000400C
 571#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
 572/* ESC clk, div0=1, div1=1, div2=3 */
 573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
 574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
 575#define PRCMU_DSI_RESET_SW		0x00000007
 576
 577#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
 578
 579int db8500_prcmu_enable_dsipll(void)
 580{
 581	int i;
 582
 583	/* Clear DSIPLL_RESETN */
 584	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
 585	/* Unclamp DSIPLL in/out */
 586	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
 587
 588	/* Set DSI PLL FREQ */
 589	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
 590	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
 591	/* Enable Escape clocks */
 592	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 593
 594	/* Start DSI PLL */
 595	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 596	/* Reset DSI PLL */
 597	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
 598	for (i = 0; i < 10; i++) {
 599		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
 600					== PRCMU_PLLDSI_LOCKP_LOCKED)
 601			break;
 602		udelay(100);
 603	}
 604	/* Set DSIPLL_RESETN */
 605	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
 606	return 0;
 607}
 608
 609int db8500_prcmu_disable_dsipll(void)
 610{
 611	/* Disable dsi pll */
 612	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 613	/* Disable  escapeclock */
 614	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 615	return 0;
 616}
 617
 618int db8500_prcmu_set_display_clocks(void)
 619{
 620	unsigned long flags;
 621
 622	spin_lock_irqsave(&clk_mgt_lock, flags);
 623
 624	/* Grab the HW semaphore. */
 625	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 626		cpu_relax();
 627
 628	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
 629	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
 630	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
 631
 632	/* Release the HW semaphore. */
 633	writel(0, PRCM_SEM);
 634
 635	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 636
 637	return 0;
 638}
 639
 640u32 db8500_prcmu_read(unsigned int reg)
 641{
 642	return readl(prcmu_base + reg);
 643}
 644
 645void db8500_prcmu_write(unsigned int reg, u32 value)
 646{
 647	unsigned long flags;
 648
 649	spin_lock_irqsave(&prcmu_lock, flags);
 650	writel(value, (prcmu_base + reg));
 651	spin_unlock_irqrestore(&prcmu_lock, flags);
 652}
 653
 654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 655{
 656	u32 val;
 657	unsigned long flags;
 658
 659	spin_lock_irqsave(&prcmu_lock, flags);
 660	val = readl(prcmu_base + reg);
 661	val = ((val & ~mask) | (value & mask));
 662	writel(val, (prcmu_base + reg));
 663	spin_unlock_irqrestore(&prcmu_lock, flags);
 664}
 665
 666struct prcmu_fw_version *prcmu_get_fw_version(void)
 667{
 668	return fw_info.valid ? &fw_info.version : NULL;
 669}
 670
 
 
 
 
 
 
 
 
 671bool prcmu_has_arm_maxopp(void)
 672{
 673	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 674		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 675}
 676
 677/**
 678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 679 * @val: Value to be set, i.e. transition requested
 680 * Returns: 0 on success, -EINVAL on invalid argument
 681 *
 682 * This function is used to run the following power state sequences -
 683 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 684 */
 685int prcmu_set_rc_a2p(enum romcode_write val)
 686{
 687	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 688		return -EINVAL;
 689	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 690	return 0;
 691}
 692
 693/**
 694 * prcmu_get_rc_p2a - This function is used to get power state sequences
 695 * Returns: the power transition that has last happened
 696 *
 697 * This function can return the following transitions-
 698 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 699 */
 700enum romcode_read prcmu_get_rc_p2a(void)
 701{
 702	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 703}
 704
 705/**
 706 * prcmu_get_current_mode - Return the current XP70 power mode
 707 * Returns: Returns the current AP(ARM) power mode: init,
 708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 709 */
 710enum ap_pwrst prcmu_get_xp70_current_state(void)
 711{
 712	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 713}
 714
 715/**
 716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 717 * @clkout:	The CLKOUT number (0 or 1).
 718 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 719 * @div:	The divider to be applied.
 720 *
 721 * Configures one of the programmable clock outputs (CLKOUTs).
 722 * @div should be in the range [1,63] to request a configuration, or 0 to
 723 * inform that the configuration is no longer requested.
 724 */
 725int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 726{
 727	static int requests[2];
 728	int r = 0;
 729	unsigned long flags;
 730	u32 val;
 731	u32 bits;
 732	u32 mask;
 733	u32 div_mask;
 734
 735	BUG_ON(clkout > 1);
 736	BUG_ON(div > 63);
 737	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 738
 739	if (!div && !requests[clkout])
 740		return -EINVAL;
 741
 742	if (clkout == 0) {
 743		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 744		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 745		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 746			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 747	} else {
 748		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 749		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 750			PRCM_CLKOCR_CLK1TYPE);
 751		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 752			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 753	}
 754	bits &= mask;
 755
 756	spin_lock_irqsave(&clkout_lock, flags);
 757
 758	val = readl(PRCM_CLKOCR);
 759	if (val & div_mask) {
 760		if (div) {
 761			if ((val & mask) != bits) {
 762				r = -EBUSY;
 763				goto unlock_and_return;
 764			}
 765		} else {
 766			if ((val & mask & ~div_mask) != bits) {
 767				r = -EINVAL;
 768				goto unlock_and_return;
 769			}
 770		}
 771	}
 772	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 773	requests[clkout] += (div ? 1 : -1);
 774
 775unlock_and_return:
 776	spin_unlock_irqrestore(&clkout_lock, flags);
 777
 778	return r;
 779}
 780
 781int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 782{
 783	unsigned long flags;
 784
 785	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 786
 787	spin_lock_irqsave(&mb0_transfer.lock, flags);
 788
 789	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 790		cpu_relax();
 791
 792	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 793	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 794	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 795	writeb((keep_ulp_clk ? 1 : 0),
 796		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 797	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 798	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 799
 800	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 801
 802	return 0;
 803}
 804
 805u8 db8500_prcmu_get_power_state_result(void)
 806{
 807	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 808}
 809
 810/* This function should only be called while mb0_transfer.lock is held. */
 811static void config_wakeups(void)
 812{
 813	const u8 header[2] = {
 814		MB0H_CONFIG_WAKEUPS_EXE,
 815		MB0H_CONFIG_WAKEUPS_SLEEP
 816	};
 817	static u32 last_dbb_events;
 818	static u32 last_abb_events;
 819	u32 dbb_events;
 820	u32 abb_events;
 821	unsigned int i;
 822
 823	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 824	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 825
 826	abb_events = mb0_transfer.req.abb_events;
 827
 828	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 829		return;
 830
 831	for (i = 0; i < 2; i++) {
 832		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 833			cpu_relax();
 834		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 835		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 836		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 837		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 838	}
 839	last_dbb_events = dbb_events;
 840	last_abb_events = abb_events;
 841}
 842
 843void db8500_prcmu_enable_wakeups(u32 wakeups)
 844{
 845	unsigned long flags;
 846	u32 bits;
 847	int i;
 848
 849	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 850
 851	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 852		if (wakeups & BIT(i))
 853			bits |= prcmu_wakeup_bit[i];
 854	}
 855
 856	spin_lock_irqsave(&mb0_transfer.lock, flags);
 857
 858	mb0_transfer.req.dbb_wakeups = bits;
 859	config_wakeups();
 860
 861	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 862}
 863
 864void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 865{
 866	unsigned long flags;
 867
 868	spin_lock_irqsave(&mb0_transfer.lock, flags);
 869
 870	mb0_transfer.req.abb_events = abb_events;
 871	config_wakeups();
 872
 873	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 874}
 875
 876void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 877{
 878	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 879		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 880	else
 881		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 882}
 883
 884/**
 885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 886 * @opp: The new ARM operating point to which transition is to be made
 887 * Returns: 0 on success, non-zero on failure
 888 *
 889 * This function sets the the operating point of the ARM.
 890 */
 891int db8500_prcmu_set_arm_opp(u8 opp)
 892{
 893	int r;
 894
 895	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 896		return -EINVAL;
 897
 898	r = 0;
 899
 900	mutex_lock(&mb1_transfer.lock);
 901
 902	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 903		cpu_relax();
 904
 905	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 906	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 907	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 908
 909	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 910	wait_for_completion(&mb1_transfer.work);
 911
 912	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 913		(mb1_transfer.ack.arm_opp != opp))
 914		r = -EIO;
 915
 916	mutex_unlock(&mb1_transfer.lock);
 917
 918	return r;
 919}
 920
 921/**
 922 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 923 *
 924 * Returns: the current ARM OPP
 925 */
 926int db8500_prcmu_get_arm_opp(void)
 927{
 928	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 929}
 930
 931/**
 932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 933 *
 934 * Returns: the current DDR OPP
 935 */
 936int db8500_prcmu_get_ddr_opp(void)
 937{
 938	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 939}
 940
 941/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 942static void request_even_slower_clocks(bool enable)
 943{
 944	u32 clock_reg[] = {
 945		PRCM_ACLK_MGT,
 946		PRCM_DMACLK_MGT
 947	};
 948	unsigned long flags;
 949	unsigned int i;
 950
 951	spin_lock_irqsave(&clk_mgt_lock, flags);
 952
 953	/* Grab the HW semaphore. */
 954	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 955		cpu_relax();
 956
 957	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 958		u32 val;
 959		u32 div;
 960
 961		val = readl(prcmu_base + clock_reg[i]);
 962		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 963		if (enable) {
 964			if ((div <= 1) || (div > 15)) {
 965				pr_err("prcmu: Bad clock divider %d in %s\n",
 966					div, __func__);
 967				goto unlock_and_return;
 968			}
 969			div <<= 1;
 970		} else {
 971			if (div <= 2)
 972				goto unlock_and_return;
 973			div >>= 1;
 974		}
 975		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 976			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 977		writel(val, prcmu_base + clock_reg[i]);
 978	}
 979
 980unlock_and_return:
 981	/* Release the HW semaphore. */
 982	writel(0, PRCM_SEM);
 983
 984	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 985}
 986
 987/**
 988 * db8500_set_ape_opp - set the appropriate APE OPP
 989 * @opp: The new APE operating point to which transition is to be made
 990 * Returns: 0 on success, non-zero on failure
 991 *
 992 * This function sets the operating point of the APE.
 993 */
 994int db8500_prcmu_set_ape_opp(u8 opp)
 995{
 996	int r = 0;
 997
 998	if (opp == mb1_transfer.ape_opp)
 999		return 0;
1000
1001	mutex_lock(&mb1_transfer.lock);
1002
1003	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004		request_even_slower_clocks(false);
1005
1006	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007		goto skip_message;
1008
1009	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010		cpu_relax();
1011
1012	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016
1017	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018	wait_for_completion(&mb1_transfer.work);
1019
1020	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021		(mb1_transfer.ack.ape_opp != opp))
1022		r = -EIO;
1023
1024skip_message:
1025	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027		request_even_slower_clocks(true);
1028	if (!r)
1029		mb1_transfer.ape_opp = opp;
1030
1031	mutex_unlock(&mb1_transfer.lock);
1032
1033	return r;
1034}
1035
1036/**
1037 * db8500_prcmu_get_ape_opp - get the current APE OPP
1038 *
1039 * Returns: the current APE OPP
1040 */
1041int db8500_prcmu_get_ape_opp(void)
1042{
1043	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044}
1045
1046/**
1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048 * @enable: true to request the higher voltage, false to drop a request.
1049 *
1050 * Calls to this function to enable and disable requests must be balanced.
1051 */
1052int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053{
1054	int r = 0;
1055	u8 header;
1056	static unsigned int requests;
1057
1058	mutex_lock(&mb1_transfer.lock);
1059
1060	if (enable) {
1061		if (0 != requests++)
1062			goto unlock_and_return;
1063		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064	} else {
1065		if (requests == 0) {
1066			r = -EIO;
1067			goto unlock_and_return;
1068		} else if (1 != requests--) {
1069			goto unlock_and_return;
1070		}
1071		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072	}
1073
1074	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075		cpu_relax();
1076
1077	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078
1079	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080	wait_for_completion(&mb1_transfer.work);
1081
1082	if ((mb1_transfer.ack.header != header) ||
1083		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084		r = -EIO;
1085
1086unlock_and_return:
1087	mutex_unlock(&mb1_transfer.lock);
1088
1089	return r;
1090}
1091
1092/**
1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094 *
1095 * This function releases the power state requirements of a USB wakeup.
1096 */
1097int prcmu_release_usb_wakeup_state(void)
1098{
1099	int r = 0;
1100
1101	mutex_lock(&mb1_transfer.lock);
1102
1103	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104		cpu_relax();
1105
1106	writeb(MB1H_RELEASE_USB_WAKEUP,
1107		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110	wait_for_completion(&mb1_transfer.work);
1111
1112	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114		r = -EIO;
1115
1116	mutex_unlock(&mb1_transfer.lock);
1117
1118	return r;
1119}
1120
1121static int request_pll(u8 clock, bool enable)
1122{
1123	int r = 0;
1124
1125	if (clock == PRCMU_PLLSOC0)
1126		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127	else if (clock == PRCMU_PLLSOC1)
1128		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129	else
1130		return -EINVAL;
1131
1132	mutex_lock(&mb1_transfer.lock);
1133
1134	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135		cpu_relax();
1136
1137	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139
1140	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141	wait_for_completion(&mb1_transfer.work);
1142
1143	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144		r = -EIO;
1145
1146	mutex_unlock(&mb1_transfer.lock);
1147
1148	return r;
1149}
1150
1151/**
1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153 * @epod_id: The EPOD to set
1154 * @epod_state: The new EPOD state
1155 *
1156 * This function sets the state of a EPOD (power domain). It may not be called
1157 * from interrupt context.
1158 */
1159int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160{
1161	int r = 0;
1162	bool ram_retention = false;
1163	int i;
1164
1165	/* check argument */
1166	BUG_ON(epod_id >= NUM_EPOD_ID);
1167
1168	/* set flag if retention is possible */
1169	switch (epod_id) {
1170	case EPOD_ID_SVAMMDSP:
1171	case EPOD_ID_SIAMMDSP:
1172	case EPOD_ID_ESRAM12:
1173	case EPOD_ID_ESRAM34:
1174		ram_retention = true;
1175		break;
1176	}
1177
1178	/* check argument */
1179	BUG_ON(epod_state > EPOD_STATE_ON);
1180	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181
1182	/* get lock */
1183	mutex_lock(&mb2_transfer.lock);
1184
1185	/* wait for mailbox */
1186	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187		cpu_relax();
1188
1189	/* fill in mailbox */
1190	for (i = 0; i < NUM_EPOD_ID; i++)
1191		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193
1194	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195
1196	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197
1198	/*
1199	 * The current firmware version does not handle errors correctly,
1200	 * and we cannot recover if there is an error.
1201	 * This is expected to change when the firmware is updated.
1202	 */
1203	if (!wait_for_completion_timeout(&mb2_transfer.work,
1204			msecs_to_jiffies(20000))) {
1205		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206			__func__);
1207		r = -EIO;
1208		goto unlock_and_return;
1209	}
1210
1211	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212		r = -EIO;
1213
1214unlock_and_return:
1215	mutex_unlock(&mb2_transfer.lock);
1216	return r;
1217}
1218
1219/**
1220 * prcmu_configure_auto_pm - Configure autonomous power management.
1221 * @sleep: Configuration for ApSleep.
1222 * @idle:  Configuration for ApIdle.
1223 */
1224void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225	struct prcmu_auto_pm_config *idle)
1226{
1227	u32 sleep_cfg;
1228	u32 idle_cfg;
1229	unsigned long flags;
1230
1231	BUG_ON((sleep == NULL) || (idle == NULL));
1232
1233	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239
1240	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246
1247	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248
1249	/*
1250	 * The autonomous power management configuration is done through
1251	 * fields in mailbox 2, but these fields are only used as shared
1252	 * variables - i.e. there is no need to send a message.
1253	 */
1254	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256
1257	mb2_transfer.auto_pm_enabled =
1258		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262
1263	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264}
1265EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266
1267bool prcmu_is_auto_pm_enabled(void)
1268{
1269	return mb2_transfer.auto_pm_enabled;
1270}
1271
1272static int request_sysclk(bool enable)
1273{
1274	int r;
1275	unsigned long flags;
1276
1277	r = 0;
1278
1279	mutex_lock(&mb3_transfer.sysclk_lock);
1280
1281	spin_lock_irqsave(&mb3_transfer.lock, flags);
1282
1283	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284		cpu_relax();
1285
1286	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287
1288	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290
1291	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292
1293	/*
1294	 * The firmware only sends an ACK if we want to enable the
1295	 * SysClk, and it succeeds.
1296	 */
1297	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298			msecs_to_jiffies(20000))) {
1299		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300			__func__);
1301		r = -EIO;
1302	}
1303
1304	mutex_unlock(&mb3_transfer.sysclk_lock);
1305
1306	return r;
1307}
1308
1309static int request_timclk(bool enable)
1310{
1311	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
 
 
 
 
 
 
 
 
 
 
1312
1313	if (!enable)
1314		val |= PRCM_TCR_STOP_TIMERS;
 
 
 
1315	writel(val, PRCM_TCR);
1316
1317	return 0;
1318}
1319
1320static int request_clock(u8 clock, bool enable)
1321{
1322	u32 val;
1323	unsigned long flags;
1324
1325	spin_lock_irqsave(&clk_mgt_lock, flags);
1326
1327	/* Grab the HW semaphore. */
1328	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329		cpu_relax();
1330
1331	val = readl(prcmu_base + clk_mgt[clock].offset);
1332	if (enable) {
1333		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334	} else {
1335		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337	}
1338	writel(val, prcmu_base + clk_mgt[clock].offset);
1339
1340	/* Release the HW semaphore. */
1341	writel(0, PRCM_SEM);
1342
1343	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344
1345	return 0;
1346}
1347
1348static int request_sga_clock(u8 clock, bool enable)
1349{
1350	u32 val;
1351	int ret;
1352
1353	if (enable) {
1354		val = readl(PRCM_CGATING_BYPASS);
1355		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356	}
1357
1358	ret = request_clock(clock, enable);
1359
1360	if (!ret && !enable) {
1361		val = readl(PRCM_CGATING_BYPASS);
1362		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363	}
1364
1365	return ret;
1366}
1367
1368static inline bool plldsi_locked(void)
1369{
1370	return (readl(PRCM_PLLDSI_LOCKP) &
1371		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375}
1376
1377static int request_plldsi(bool enable)
1378{
1379	int r = 0;
1380	u32 val;
1381
1382	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385
1386	val = readl(PRCM_PLLDSI_ENABLE);
1387	if (enable)
1388		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389	else
1390		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391	writel(val, PRCM_PLLDSI_ENABLE);
1392
1393	if (enable) {
1394		unsigned int i;
1395		bool locked = plldsi_locked();
1396
1397		for (i = 10; !locked && (i > 0); --i) {
1398			udelay(100);
1399			locked = plldsi_locked();
1400		}
1401		if (locked) {
1402			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403				PRCM_APE_RESETN_SET);
1404		} else {
1405			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407				PRCM_MMIP_LS_CLAMP_SET);
1408			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409			writel(val, PRCM_PLLDSI_ENABLE);
1410			r = -EAGAIN;
1411		}
1412	} else {
1413		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414	}
1415	return r;
1416}
1417
1418static int request_dsiclk(u8 n, bool enable)
1419{
1420	u32 val;
1421
1422	val = readl(PRCM_DSI_PLLOUT_SEL);
1423	val &= ~dsiclk[n].divsel_mask;
1424	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425		dsiclk[n].divsel_shift);
1426	writel(val, PRCM_DSI_PLLOUT_SEL);
1427	return 0;
1428}
1429
1430static int request_dsiescclk(u8 n, bool enable)
1431{
1432	u32 val;
1433
1434	val = readl(PRCM_DSITVCLK_DIV);
1435	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436	writel(val, PRCM_DSITVCLK_DIV);
1437	return 0;
1438}
1439
1440/**
1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442 * @clock:      The clock for which the request is made.
1443 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1444 *
1445 * This function should only be used by the clock implementation.
1446 * Do not use it from any other place!
1447 */
1448int db8500_prcmu_request_clock(u8 clock, bool enable)
1449{
1450	if (clock == PRCMU_SGACLK)
1451		return request_sga_clock(clock, enable);
1452	else if (clock < PRCMU_NUM_REG_CLOCKS)
1453		return request_clock(clock, enable);
1454	else if (clock == PRCMU_TIMCLK)
1455		return request_timclk(enable);
1456	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460	else if (clock == PRCMU_PLLDSI)
1461		return request_plldsi(enable);
1462	else if (clock == PRCMU_SYSCLK)
1463		return request_sysclk(enable);
1464	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465		return request_pll(clock, enable);
1466	else
1467		return -EINVAL;
1468}
1469
1470static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471	int branch)
1472{
1473	u64 rate;
1474	u32 val;
1475	u32 d;
1476	u32 div = 1;
1477
1478	val = readl(reg);
1479
1480	rate = src_rate;
1481	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482
1483	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484	if (d > 1)
1485		div *= d;
1486
1487	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488	if (d > 1)
1489		div *= d;
1490
1491	if (val & PRCM_PLL_FREQ_SELDIV2)
1492		div *= 2;
1493
1494	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495		(val & PRCM_PLL_FREQ_DIV2EN) &&
1496		((reg == PRCM_PLLSOC0_FREQ) ||
1497		 (reg == PRCM_PLLARM_FREQ) ||
1498		 (reg == PRCM_PLLDDR_FREQ))))
1499		div *= 2;
1500
1501	(void)do_div(rate, div);
1502
1503	return (unsigned long)rate;
1504}
1505
1506#define ROOT_CLOCK_RATE 38400000
1507
1508static unsigned long clock_rate(u8 clock)
1509{
1510	u32 val;
1511	u32 pllsw;
1512	unsigned long rate = ROOT_CLOCK_RATE;
1513
1514	val = readl(prcmu_base + clk_mgt[clock].offset);
1515
1516	if (val & PRCM_CLK_MGT_CLK38) {
1517		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518			rate /= 2;
1519		return rate;
1520	}
1521
1522	val |= clk_mgt[clock].pllsw;
1523	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524
1525	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531	else
1532		return 0;
1533
1534	if ((clock == PRCMU_SGACLK) &&
1535		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536		u64 r = (rate * 10);
1537
1538		(void)do_div(r, 25);
1539		return (unsigned long)r;
1540	}
1541	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542	if (val)
1543		return rate / val;
1544	else
1545		return 0;
1546}
1547
1548static unsigned long armss_rate(void)
1549{
1550	u32 r;
1551	unsigned long rate;
1552
1553	r = readl(PRCM_ARM_CHGCLKREQ);
1554
1555	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556		/* External ARMCLKFIX clock */
1557
1558		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559
1560		/* Check PRCM_ARM_CHGCLKREQ divider */
1561		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562			rate /= 2;
1563
1564		/* Check PRCM_ARMCLKFIX_MGT divider */
1565		r = readl(PRCM_ARMCLKFIX_MGT);
1566		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567		rate /= r;
1568
1569	} else {/* ARM PLL */
1570		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571	}
1572
1573	return rate;
1574}
1575
1576static unsigned long dsiclk_rate(u8 n)
1577{
1578	u32 divsel;
1579	u32 div = 1;
1580
1581	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583
1584	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585		divsel = dsiclk[n].divsel;
1586	else
1587		dsiclk[n].divsel = divsel;
1588
1589	switch (divsel) {
1590	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591		div *= 2;
 
1592	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1593		div *= 2;
 
1594	case PRCM_DSI_PLLOUT_SEL_PHI:
1595		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1596			PLL_RAW) / div;
1597	default:
1598		return 0;
1599	}
1600}
1601
1602static unsigned long dsiescclk_rate(u8 n)
1603{
1604	u32 div;
1605
1606	div = readl(PRCM_DSITVCLK_DIV);
1607	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1608	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1609}
1610
1611unsigned long prcmu_clock_rate(u8 clock)
1612{
1613	if (clock < PRCMU_NUM_REG_CLOCKS)
1614		return clock_rate(clock);
1615	else if (clock == PRCMU_TIMCLK)
1616		return ROOT_CLOCK_RATE / 16;
 
1617	else if (clock == PRCMU_SYSCLK)
1618		return ROOT_CLOCK_RATE;
1619	else if (clock == PRCMU_PLLSOC0)
1620		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1621	else if (clock == PRCMU_PLLSOC1)
1622		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623	else if (clock == PRCMU_ARMSS)
1624		return armss_rate();
1625	else if (clock == PRCMU_PLLDDR)
1626		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1627	else if (clock == PRCMU_PLLDSI)
1628		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1629			PLL_RAW);
1630	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1631		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1632	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1633		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1634	else
1635		return 0;
1636}
1637
1638static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1639{
1640	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1641		return ROOT_CLOCK_RATE;
1642	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1643	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1644		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1645	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1646		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1647	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1648		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1649	else
1650		return 0;
1651}
1652
1653static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1654{
1655	u32 div;
1656
1657	div = (src_rate / rate);
1658	if (div == 0)
1659		return 1;
1660	if (rate < (src_rate / div))
1661		div++;
1662	return div;
1663}
1664
1665static long round_clock_rate(u8 clock, unsigned long rate)
1666{
1667	u32 val;
1668	u32 div;
1669	unsigned long src_rate;
1670	long rounded_rate;
1671
1672	val = readl(prcmu_base + clk_mgt[clock].offset);
1673	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1674		clk_mgt[clock].branch);
1675	div = clock_divider(src_rate, rate);
1676	if (val & PRCM_CLK_MGT_CLK38) {
1677		if (clk_mgt[clock].clk38div) {
1678			if (div > 2)
1679				div = 2;
1680		} else {
1681			div = 1;
1682		}
1683	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1684		u64 r = (src_rate * 10);
1685
1686		(void)do_div(r, 25);
1687		if (r <= rate)
1688			return (unsigned long)r;
1689	}
1690	rounded_rate = (src_rate / min(div, (u32)31));
1691
1692	return rounded_rate;
1693}
1694
1695/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1696static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1697	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
1698	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
1699	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
1700	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1701	{ .frequency = CPUFREQ_TABLE_END,},
 
 
 
 
 
 
1702};
1703
1704static long round_armss_rate(unsigned long rate)
1705{
1706	struct cpufreq_frequency_table *pos;
1707	long freq = 0;
 
 
1708
1709	/* cpufreq table frequencies is in KHz. */
1710	rate = rate / 1000;
 
 
 
 
 
1711
1712	/* Find the corresponding arm opp from the cpufreq table. */
1713	cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1714		freq = pos->frequency;
1715		if (freq == rate)
1716			break;
1717	}
1718
1719	/* Return the last valid value, even if a match was not found. */
1720	return freq * 1000;
1721}
1722
1723#define MIN_PLL_VCO_RATE 600000000ULL
1724#define MAX_PLL_VCO_RATE 1680640000ULL
1725
1726static long round_plldsi_rate(unsigned long rate)
1727{
1728	long rounded_rate = 0;
1729	unsigned long src_rate;
1730	unsigned long rem;
1731	u32 r;
1732
1733	src_rate = clock_rate(PRCMU_HDMICLK);
1734	rem = rate;
1735
1736	for (r = 7; (rem > 0) && (r > 0); r--) {
1737		u64 d;
1738
1739		d = (r * rate);
1740		(void)do_div(d, src_rate);
1741		if (d < 6)
1742			d = 6;
1743		else if (d > 255)
1744			d = 255;
1745		d *= src_rate;
1746		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1747			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1748			continue;
1749		(void)do_div(d, r);
1750		if (rate < d) {
1751			if (rounded_rate == 0)
1752				rounded_rate = (long)d;
1753			break;
1754		}
1755		if ((rate - d) < rem) {
1756			rem = (rate - d);
1757			rounded_rate = (long)d;
1758		}
1759	}
1760	return rounded_rate;
1761}
1762
1763static long round_dsiclk_rate(unsigned long rate)
1764{
1765	u32 div;
1766	unsigned long src_rate;
1767	long rounded_rate;
1768
1769	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1770		PLL_RAW);
1771	div = clock_divider(src_rate, rate);
1772	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1773
1774	return rounded_rate;
1775}
1776
1777static long round_dsiescclk_rate(unsigned long rate)
1778{
1779	u32 div;
1780	unsigned long src_rate;
1781	long rounded_rate;
1782
1783	src_rate = clock_rate(PRCMU_TVCLK);
1784	div = clock_divider(src_rate, rate);
1785	rounded_rate = (src_rate / min(div, (u32)255));
1786
1787	return rounded_rate;
1788}
1789
1790long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1791{
1792	if (clock < PRCMU_NUM_REG_CLOCKS)
1793		return round_clock_rate(clock, rate);
1794	else if (clock == PRCMU_ARMSS)
1795		return round_armss_rate(rate);
1796	else if (clock == PRCMU_PLLDSI)
1797		return round_plldsi_rate(rate);
1798	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1799		return round_dsiclk_rate(rate);
1800	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1801		return round_dsiescclk_rate(rate);
1802	else
1803		return (long)prcmu_clock_rate(clock);
1804}
1805
1806static void set_clock_rate(u8 clock, unsigned long rate)
1807{
1808	u32 val;
1809	u32 div;
1810	unsigned long src_rate;
1811	unsigned long flags;
1812
1813	spin_lock_irqsave(&clk_mgt_lock, flags);
1814
1815	/* Grab the HW semaphore. */
1816	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1817		cpu_relax();
1818
1819	val = readl(prcmu_base + clk_mgt[clock].offset);
1820	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1821		clk_mgt[clock].branch);
1822	div = clock_divider(src_rate, rate);
1823	if (val & PRCM_CLK_MGT_CLK38) {
1824		if (clk_mgt[clock].clk38div) {
1825			if (div > 1)
1826				val |= PRCM_CLK_MGT_CLK38DIV;
1827			else
1828				val &= ~PRCM_CLK_MGT_CLK38DIV;
1829		}
1830	} else if (clock == PRCMU_SGACLK) {
1831		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1832			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1833		if (div == 3) {
1834			u64 r = (src_rate * 10);
1835
1836			(void)do_div(r, 25);
1837			if (r <= rate) {
1838				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1839				div = 0;
1840			}
1841		}
1842		val |= min(div, (u32)31);
1843	} else {
1844		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1845		val |= min(div, (u32)31);
1846	}
1847	writel(val, prcmu_base + clk_mgt[clock].offset);
1848
1849	/* Release the HW semaphore. */
1850	writel(0, PRCM_SEM);
1851
1852	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1853}
1854
1855static int set_armss_rate(unsigned long rate)
1856{
1857	struct cpufreq_frequency_table *pos;
 
 
 
 
1858
1859	/* cpufreq table frequencies is in KHz. */
1860	rate = rate / 1000;
 
 
 
 
 
1861
1862	/* Find the corresponding arm opp from the cpufreq table. */
1863	cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1864		if (pos->frequency == rate)
 
1865			break;
 
1866
1867	if (pos->frequency != rate)
1868		return -EINVAL;
1869
1870	/* Set the new arm opp. */
1871	return db8500_prcmu_set_arm_opp(pos->driver_data);
 
1872}
1873
1874static int set_plldsi_rate(unsigned long rate)
1875{
1876	unsigned long src_rate;
1877	unsigned long rem;
1878	u32 pll_freq = 0;
1879	u32 r;
1880
1881	src_rate = clock_rate(PRCMU_HDMICLK);
1882	rem = rate;
1883
1884	for (r = 7; (rem > 0) && (r > 0); r--) {
1885		u64 d;
1886		u64 hwrate;
1887
1888		d = (r * rate);
1889		(void)do_div(d, src_rate);
1890		if (d < 6)
1891			d = 6;
1892		else if (d > 255)
1893			d = 255;
1894		hwrate = (d * src_rate);
1895		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1896			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1897			continue;
1898		(void)do_div(hwrate, r);
1899		if (rate < hwrate) {
1900			if (pll_freq == 0)
1901				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1902					(r << PRCM_PLL_FREQ_R_SHIFT));
1903			break;
1904		}
1905		if ((rate - hwrate) < rem) {
1906			rem = (rate - hwrate);
1907			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1908				(r << PRCM_PLL_FREQ_R_SHIFT));
1909		}
1910	}
1911	if (pll_freq == 0)
1912		return -EINVAL;
1913
1914	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1915	writel(pll_freq, PRCM_PLLDSI_FREQ);
1916
1917	return 0;
1918}
1919
1920static void set_dsiclk_rate(u8 n, unsigned long rate)
1921{
1922	u32 val;
1923	u32 div;
1924
1925	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1926			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1927
1928	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1929			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1930			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1931
1932	val = readl(PRCM_DSI_PLLOUT_SEL);
1933	val &= ~dsiclk[n].divsel_mask;
1934	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1935	writel(val, PRCM_DSI_PLLOUT_SEL);
1936}
1937
1938static void set_dsiescclk_rate(u8 n, unsigned long rate)
1939{
1940	u32 val;
1941	u32 div;
1942
1943	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1944	val = readl(PRCM_DSITVCLK_DIV);
1945	val &= ~dsiescclk[n].div_mask;
1946	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1947	writel(val, PRCM_DSITVCLK_DIV);
1948}
1949
1950int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1951{
1952	if (clock < PRCMU_NUM_REG_CLOCKS)
1953		set_clock_rate(clock, rate);
1954	else if (clock == PRCMU_ARMSS)
1955		return set_armss_rate(rate);
1956	else if (clock == PRCMU_PLLDSI)
1957		return set_plldsi_rate(rate);
1958	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1959		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1960	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1961		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1962	return 0;
1963}
1964
1965int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1966{
1967	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1968	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1969		return -EINVAL;
1970
1971	mutex_lock(&mb4_transfer.lock);
1972
1973	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1974		cpu_relax();
1975
1976	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1977	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1978	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1979	writeb(DDR_PWR_STATE_ON,
1980	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1981	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1982
1983	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1984	wait_for_completion(&mb4_transfer.work);
1985
1986	mutex_unlock(&mb4_transfer.lock);
1987
1988	return 0;
1989}
1990
1991int db8500_prcmu_config_hotdog(u8 threshold)
1992{
1993	mutex_lock(&mb4_transfer.lock);
1994
1995	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996		cpu_relax();
1997
1998	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1999	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2000
2001	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2002	wait_for_completion(&mb4_transfer.work);
2003
2004	mutex_unlock(&mb4_transfer.lock);
2005
2006	return 0;
2007}
2008
2009int db8500_prcmu_config_hotmon(u8 low, u8 high)
2010{
2011	mutex_lock(&mb4_transfer.lock);
2012
2013	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2014		cpu_relax();
2015
2016	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2017	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2018	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2019		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2020	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2021
2022	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2023	wait_for_completion(&mb4_transfer.work);
2024
2025	mutex_unlock(&mb4_transfer.lock);
2026
2027	return 0;
2028}
2029EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2030
2031static int config_hot_period(u16 val)
2032{
2033	mutex_lock(&mb4_transfer.lock);
2034
2035	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036		cpu_relax();
2037
2038	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2039	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040
2041	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042	wait_for_completion(&mb4_transfer.work);
2043
2044	mutex_unlock(&mb4_transfer.lock);
2045
2046	return 0;
2047}
2048
2049int db8500_prcmu_start_temp_sense(u16 cycles32k)
2050{
2051	if (cycles32k == 0xFFFF)
2052		return -EINVAL;
2053
2054	return config_hot_period(cycles32k);
2055}
2056EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2057
2058int db8500_prcmu_stop_temp_sense(void)
2059{
2060	return config_hot_period(0xFFFF);
2061}
2062EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2063
2064static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2065{
2066
2067	mutex_lock(&mb4_transfer.lock);
2068
2069	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2070		cpu_relax();
2071
2072	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2073	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2074	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2075	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2076
2077	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2078
2079	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2080	wait_for_completion(&mb4_transfer.work);
2081
2082	mutex_unlock(&mb4_transfer.lock);
2083
2084	return 0;
2085
2086}
2087
2088int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2089{
2090	BUG_ON(num == 0 || num > 0xf);
2091	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2092			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2093			    A9WDOG_AUTO_OFF_DIS);
2094}
2095EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2096
2097int db8500_prcmu_enable_a9wdog(u8 id)
2098{
2099	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2100}
2101EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2102
2103int db8500_prcmu_disable_a9wdog(u8 id)
2104{
2105	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2106}
2107EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2108
2109int db8500_prcmu_kick_a9wdog(u8 id)
2110{
2111	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2112}
2113EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2114
2115/*
2116 * timeout is 28 bit, in ms.
2117 */
2118int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2119{
2120	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2121			    (id & A9WDOG_ID_MASK) |
2122			    /*
2123			     * Put the lowest 28 bits of timeout at
2124			     * offset 4. Four first bits are used for id.
2125			     */
2126			    (u8)((timeout << 4) & 0xf0),
2127			    (u8)((timeout >> 4) & 0xff),
2128			    (u8)((timeout >> 12) & 0xff),
2129			    (u8)((timeout >> 20) & 0xff));
2130}
2131EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2132
2133/**
2134 * prcmu_abb_read() - Read register value(s) from the ABB.
2135 * @slave:	The I2C slave address.
2136 * @reg:	The (start) register address.
2137 * @value:	The read out value(s).
2138 * @size:	The number of registers to read.
2139 *
2140 * Reads register value(s) from the ABB.
2141 * @size has to be 1 for the current firmware version.
2142 */
2143int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2144{
2145	int r;
2146
2147	if (size != 1)
2148		return -EINVAL;
2149
2150	mutex_lock(&mb5_transfer.lock);
2151
2152	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2153		cpu_relax();
2154
2155	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2156	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2157	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2158	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2159	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2160
2161	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2162
2163	if (!wait_for_completion_timeout(&mb5_transfer.work,
2164				msecs_to_jiffies(20000))) {
2165		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2166			__func__);
2167		r = -EIO;
2168	} else {
2169		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2170	}
2171
2172	if (!r)
2173		*value = mb5_transfer.ack.value;
2174
2175	mutex_unlock(&mb5_transfer.lock);
2176
2177	return r;
2178}
2179
2180/**
2181 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2182 * @slave:	The I2C slave address.
2183 * @reg:	The (start) register address.
2184 * @value:	The value(s) to write.
2185 * @mask:	The mask(s) to use.
2186 * @size:	The number of registers to write.
2187 *
2188 * Writes masked register value(s) to the ABB.
2189 * For each @value, only the bits set to 1 in the corresponding @mask
2190 * will be written. The other bits are not changed.
2191 * @size has to be 1 for the current firmware version.
2192 */
2193int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2194{
2195	int r;
2196
2197	if (size != 1)
2198		return -EINVAL;
2199
2200	mutex_lock(&mb5_transfer.lock);
2201
2202	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2203		cpu_relax();
2204
2205	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2206	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2207	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2208	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2209	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2210
2211	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2212
2213	if (!wait_for_completion_timeout(&mb5_transfer.work,
2214				msecs_to_jiffies(20000))) {
2215		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2216			__func__);
2217		r = -EIO;
2218	} else {
2219		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2220	}
2221
2222	mutex_unlock(&mb5_transfer.lock);
2223
2224	return r;
2225}
2226
2227/**
2228 * prcmu_abb_write() - Write register value(s) to the ABB.
2229 * @slave:	The I2C slave address.
2230 * @reg:	The (start) register address.
2231 * @value:	The value(s) to write.
2232 * @size:	The number of registers to write.
2233 *
2234 * Writes register value(s) to the ABB.
2235 * @size has to be 1 for the current firmware version.
2236 */
2237int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2238{
2239	u8 mask = ~0;
2240
2241	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2242}
2243
2244/**
2245 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2246 */
2247int prcmu_ac_wake_req(void)
2248{
2249	u32 val;
2250	int ret = 0;
2251
2252	mutex_lock(&mb0_transfer.ac_wake_lock);
2253
2254	val = readl(PRCM_HOSTACCESS_REQ);
2255	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2256		goto unlock_and_return;
2257
2258	atomic_set(&ac_wake_req_state, 1);
2259
2260	/*
2261	 * Force Modem Wake-up before hostaccess_req ping-pong.
2262	 * It prevents Modem to enter in Sleep while acking the hostaccess
2263	 * request. The 31us delay has been calculated by HWI.
2264	 */
2265	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2266	writel(val, PRCM_HOSTACCESS_REQ);
2267
2268	udelay(31);
2269
2270	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2271	writel(val, PRCM_HOSTACCESS_REQ);
2272
2273	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2274			msecs_to_jiffies(5000))) {
2275		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2276			__func__);
2277		ret = -EFAULT;
2278	}
2279
2280unlock_and_return:
2281	mutex_unlock(&mb0_transfer.ac_wake_lock);
2282	return ret;
2283}
2284
2285/**
2286 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2287 */
2288void prcmu_ac_sleep_req(void)
2289{
2290	u32 val;
2291
2292	mutex_lock(&mb0_transfer.ac_wake_lock);
2293
2294	val = readl(PRCM_HOSTACCESS_REQ);
2295	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2296		goto unlock_and_return;
2297
2298	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2299		PRCM_HOSTACCESS_REQ);
2300
2301	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2302			msecs_to_jiffies(5000))) {
2303		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2304			__func__);
2305	}
2306
2307	atomic_set(&ac_wake_req_state, 0);
2308
2309unlock_and_return:
2310	mutex_unlock(&mb0_transfer.ac_wake_lock);
2311}
2312
2313bool db8500_prcmu_is_ac_wake_requested(void)
2314{
2315	return (atomic_read(&ac_wake_req_state) != 0);
2316}
2317
2318/**
2319 * db8500_prcmu_system_reset - System reset
2320 *
2321 * Saves the reset reason code and then sets the APE_SOFTRST register which
2322 * fires interrupt to fw
 
 
2323 */
2324void db8500_prcmu_system_reset(u16 reset_code)
2325{
2326	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2327	writel(1, PRCM_APE_SOFTRST);
2328}
2329
2330/**
2331 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2332 *
2333 * Retrieves the reset reason code stored by prcmu_system_reset() before
2334 * last restart.
2335 */
2336u16 db8500_prcmu_get_reset_code(void)
2337{
2338	return readw(tcdm_base + PRCM_SW_RST_REASON);
2339}
2340
2341/**
2342 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2343 */
2344void db8500_prcmu_modem_reset(void)
2345{
2346	mutex_lock(&mb1_transfer.lock);
2347
2348	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2349		cpu_relax();
2350
2351	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2352	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2353	wait_for_completion(&mb1_transfer.work);
2354
2355	/*
2356	 * No need to check return from PRCMU as modem should go in reset state
2357	 * This state is already managed by upper layer
2358	 */
2359
2360	mutex_unlock(&mb1_transfer.lock);
2361}
2362
2363static void ack_dbb_wakeup(void)
2364{
2365	unsigned long flags;
2366
2367	spin_lock_irqsave(&mb0_transfer.lock, flags);
2368
2369	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2370		cpu_relax();
2371
2372	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2373	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2374
2375	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2376}
2377
2378static inline void print_unknown_header_warning(u8 n, u8 header)
2379{
2380	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2381		header, n);
2382}
2383
2384static bool read_mailbox_0(void)
2385{
2386	bool r;
2387	u32 ev;
2388	unsigned int n;
2389	u8 header;
2390
2391	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2392	switch (header) {
2393	case MB0H_WAKEUP_EXE:
2394	case MB0H_WAKEUP_SLEEP:
2395		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2396			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2397		else
2398			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2399
2400		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2401			complete(&mb0_transfer.ac_wake_work);
2402		if (ev & WAKEUP_BIT_SYSCLK_OK)
2403			complete(&mb3_transfer.sysclk_work);
2404
2405		ev &= mb0_transfer.req.dbb_irqs;
2406
2407		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2408			if (ev & prcmu_irq_bit[n])
2409				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2410		}
2411		r = true;
2412		break;
2413	default:
2414		print_unknown_header_warning(0, header);
2415		r = false;
2416		break;
2417	}
2418	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2419	return r;
2420}
2421
2422static bool read_mailbox_1(void)
2423{
2424	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2425	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2426		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2427	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2428		PRCM_ACK_MB1_CURRENT_APE_OPP);
2429	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2430		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2431	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2432	complete(&mb1_transfer.work);
2433	return false;
2434}
2435
2436static bool read_mailbox_2(void)
2437{
2438	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2439	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2440	complete(&mb2_transfer.work);
2441	return false;
2442}
2443
2444static bool read_mailbox_3(void)
2445{
2446	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2447	return false;
2448}
2449
2450static bool read_mailbox_4(void)
2451{
2452	u8 header;
2453	bool do_complete = true;
2454
2455	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2456	switch (header) {
2457	case MB4H_MEM_ST:
2458	case MB4H_HOTDOG:
2459	case MB4H_HOTMON:
2460	case MB4H_HOT_PERIOD:
2461	case MB4H_A9WDOG_CONF:
2462	case MB4H_A9WDOG_EN:
2463	case MB4H_A9WDOG_DIS:
2464	case MB4H_A9WDOG_LOAD:
2465	case MB4H_A9WDOG_KICK:
2466		break;
2467	default:
2468		print_unknown_header_warning(4, header);
2469		do_complete = false;
2470		break;
2471	}
2472
2473	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2474
2475	if (do_complete)
2476		complete(&mb4_transfer.work);
2477
2478	return false;
2479}
2480
2481static bool read_mailbox_5(void)
2482{
2483	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2484	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2485	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2486	complete(&mb5_transfer.work);
2487	return false;
2488}
2489
2490static bool read_mailbox_6(void)
2491{
2492	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2493	return false;
2494}
2495
2496static bool read_mailbox_7(void)
2497{
2498	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2499	return false;
2500}
2501
2502static bool (* const read_mailbox[NUM_MB])(void) = {
2503	read_mailbox_0,
2504	read_mailbox_1,
2505	read_mailbox_2,
2506	read_mailbox_3,
2507	read_mailbox_4,
2508	read_mailbox_5,
2509	read_mailbox_6,
2510	read_mailbox_7
2511};
2512
2513static irqreturn_t prcmu_irq_handler(int irq, void *data)
2514{
2515	u32 bits;
2516	u8 n;
2517	irqreturn_t r;
2518
2519	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2520	if (unlikely(!bits))
2521		return IRQ_NONE;
2522
2523	r = IRQ_HANDLED;
2524	for (n = 0; bits; n++) {
2525		if (bits & MBOX_BIT(n)) {
2526			bits -= MBOX_BIT(n);
2527			if (read_mailbox[n]())
2528				r = IRQ_WAKE_THREAD;
2529		}
2530	}
2531	return r;
2532}
2533
2534static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2535{
2536	ack_dbb_wakeup();
2537	return IRQ_HANDLED;
2538}
2539
2540static void prcmu_mask_work(struct work_struct *work)
2541{
2542	unsigned long flags;
2543
2544	spin_lock_irqsave(&mb0_transfer.lock, flags);
2545
2546	config_wakeups();
2547
2548	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2549}
2550
2551static void prcmu_irq_mask(struct irq_data *d)
2552{
2553	unsigned long flags;
2554
2555	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2556
2557	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2558
2559	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2560
2561	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2562		schedule_work(&mb0_transfer.mask_work);
2563}
2564
2565static void prcmu_irq_unmask(struct irq_data *d)
2566{
2567	unsigned long flags;
2568
2569	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2570
2571	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2572
2573	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2574
2575	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2576		schedule_work(&mb0_transfer.mask_work);
2577}
2578
2579static void noop(struct irq_data *d)
2580{
2581}
2582
2583static struct irq_chip prcmu_irq_chip = {
2584	.name		= "prcmu",
2585	.irq_disable	= prcmu_irq_mask,
2586	.irq_ack	= noop,
2587	.irq_mask	= prcmu_irq_mask,
2588	.irq_unmask	= prcmu_irq_unmask,
2589};
2590
2591static __init char *fw_project_name(u32 project)
2592{
2593	switch (project) {
2594	case PRCMU_FW_PROJECT_U8500:
2595		return "U8500";
2596	case PRCMU_FW_PROJECT_U8400:
2597		return "U8400";
2598	case PRCMU_FW_PROJECT_U9500:
2599		return "U9500";
2600	case PRCMU_FW_PROJECT_U8500_MBB:
2601		return "U8500 MBB";
2602	case PRCMU_FW_PROJECT_U8500_C1:
2603		return "U8500 C1";
2604	case PRCMU_FW_PROJECT_U8500_C2:
2605		return "U8500 C2";
2606	case PRCMU_FW_PROJECT_U8500_C3:
2607		return "U8500 C3";
2608	case PRCMU_FW_PROJECT_U8500_C4:
2609		return "U8500 C4";
2610	case PRCMU_FW_PROJECT_U9500_MBL:
2611		return "U9500 MBL";
2612	case PRCMU_FW_PROJECT_U8500_MBL:
2613		return "U8500 MBL";
2614	case PRCMU_FW_PROJECT_U8500_MBL2:
2615		return "U8500 MBL2";
2616	case PRCMU_FW_PROJECT_U8520:
2617		return "U8520 MBL";
2618	case PRCMU_FW_PROJECT_U8420:
2619		return "U8420";
 
 
 
 
2620	case PRCMU_FW_PROJECT_U9540:
2621		return "U9540";
2622	case PRCMU_FW_PROJECT_A9420:
2623		return "A9420";
2624	case PRCMU_FW_PROJECT_L8540:
2625		return "L8540";
2626	case PRCMU_FW_PROJECT_L8580:
2627		return "L8580";
2628	default:
2629		return "Unknown";
2630	}
2631}
2632
2633static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2634				irq_hw_number_t hwirq)
2635{
2636	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2637				handle_simple_irq);
2638
2639	return 0;
2640}
2641
2642static const struct irq_domain_ops db8500_irq_ops = {
2643	.map    = db8500_irq_map,
2644	.xlate  = irq_domain_xlate_twocell,
2645};
2646
2647static int db8500_irq_init(struct device_node *np)
2648{
2649	int i;
2650
2651	db8500_irq_domain = irq_domain_add_simple(
2652		np, NUM_PRCMU_WAKEUPS, 0,
2653		&db8500_irq_ops, NULL);
2654
2655	if (!db8500_irq_domain) {
2656		pr_err("Failed to create irqdomain\n");
2657		return -ENOSYS;
2658	}
2659
2660	/* All wakeups will be used, so create mappings for all */
2661	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2662		irq_create_mapping(db8500_irq_domain, i);
2663
2664	return 0;
2665}
2666
2667static void dbx500_fw_version_init(struct platform_device *pdev,
2668			    u32 version_offset)
2669{
2670	struct resource *res;
2671	void __iomem *tcpm_base;
2672	u32 version;
2673
2674	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2675					   "prcmu-tcpm");
2676	if (!res) {
2677		dev_err(&pdev->dev,
2678			"Error: no prcmu tcpm memory region provided\n");
2679		return;
2680	}
2681	tcpm_base = ioremap(res->start, resource_size(res));
2682	if (!tcpm_base) {
2683		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2684		return;
2685	}
2686
2687	version = readl(tcpm_base + version_offset);
2688	fw_info.version.project = (version & 0xFF);
2689	fw_info.version.api_version = (version >> 8) & 0xFF;
2690	fw_info.version.func_version = (version >> 16) & 0xFF;
2691	fw_info.version.errata = (version >> 24) & 0xFF;
2692	strncpy(fw_info.version.project_name,
2693		fw_project_name(fw_info.version.project),
2694		PRCMU_FW_PROJECT_NAME_LEN);
2695	fw_info.valid = true;
2696	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2697		fw_info.version.project_name,
2698		fw_info.version.project,
2699		fw_info.version.api_version,
2700		fw_info.version.func_version,
2701		fw_info.version.errata);
2702	iounmap(tcpm_base);
2703}
2704
2705void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2706{
2707	/*
2708	 * This is a temporary remap to bring up the clocks. It is
2709	 * subsequently replaces with a real remap. After the merge of
2710	 * the mailbox subsystem all of this early code goes away, and the
2711	 * clock driver can probe independently. An early initcall will
2712	 * still be needed, but it can be diverted into drivers/clk/ux500.
2713	 */
2714	prcmu_base = ioremap(phy_base, size);
2715	if (!prcmu_base)
 
 
 
 
2716		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
 
 
 
 
2717
2718	spin_lock_init(&mb0_transfer.lock);
2719	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2720	mutex_init(&mb0_transfer.ac_wake_lock);
2721	init_completion(&mb0_transfer.ac_wake_work);
2722	mutex_init(&mb1_transfer.lock);
2723	init_completion(&mb1_transfer.work);
2724	mb1_transfer.ape_opp = APE_NO_CHANGE;
2725	mutex_init(&mb2_transfer.lock);
2726	init_completion(&mb2_transfer.work);
2727	spin_lock_init(&mb2_transfer.auto_pm_lock);
2728	spin_lock_init(&mb3_transfer.lock);
2729	mutex_init(&mb3_transfer.sysclk_lock);
2730	init_completion(&mb3_transfer.sysclk_work);
2731	mutex_init(&mb4_transfer.lock);
2732	init_completion(&mb4_transfer.work);
2733	mutex_init(&mb5_transfer.lock);
2734	init_completion(&mb5_transfer.work);
2735
2736	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2737}
2738
2739static void __init init_prcm_registers(void)
2740{
2741	u32 val;
2742
2743	val = readl(PRCM_A9PL_FORCE_CLKEN);
2744	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2745		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2746	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2747}
2748
2749/*
2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2751 */
2752static struct regulator_consumer_supply db8500_vape_consumers[] = {
2753	REGULATOR_SUPPLY("v-ape", NULL),
2754	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2755	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2756	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2757	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2758	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2759	/* "v-mmc" changed to "vcore" in the mainline kernel */
2760	REGULATOR_SUPPLY("vcore", "sdi0"),
2761	REGULATOR_SUPPLY("vcore", "sdi1"),
2762	REGULATOR_SUPPLY("vcore", "sdi2"),
2763	REGULATOR_SUPPLY("vcore", "sdi3"),
2764	REGULATOR_SUPPLY("vcore", "sdi4"),
2765	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2766	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2767	/* "v-uart" changed to "vcore" in the mainline kernel */
2768	REGULATOR_SUPPLY("vcore", "uart0"),
2769	REGULATOR_SUPPLY("vcore", "uart1"),
2770	REGULATOR_SUPPLY("vcore", "uart2"),
2771	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2772	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2773	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2774};
2775
2776static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2777	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2778	/* AV8100 regulator */
2779	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2780};
2781
2782static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2783	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2784	REGULATOR_SUPPLY("vsupply", "mcde"),
2785};
2786
2787/* SVA MMDSP regulator switch */
2788static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2789	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2790};
2791
2792/* SVA pipe regulator switch */
2793static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2794	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2795};
2796
2797/* SIA MMDSP regulator switch */
2798static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2799	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2800};
2801
2802/* SIA pipe regulator switch */
2803static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2804	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2805};
2806
2807static struct regulator_consumer_supply db8500_sga_consumers[] = {
2808	REGULATOR_SUPPLY("v-mali", NULL),
2809};
2810
2811/* ESRAM1 and 2 regulator switch */
2812static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2813	REGULATOR_SUPPLY("esram12", "cm_control"),
2814};
2815
2816/* ESRAM3 and 4 regulator switch */
2817static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2818	REGULATOR_SUPPLY("v-esram34", "mcde"),
2819	REGULATOR_SUPPLY("esram34", "cm_control"),
2820	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2821};
2822
2823static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2824	[DB8500_REGULATOR_VAPE] = {
2825		.constraints = {
2826			.name = "db8500-vape",
2827			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828			.always_on = true,
2829		},
2830		.consumer_supplies = db8500_vape_consumers,
2831		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2832	},
2833	[DB8500_REGULATOR_VARM] = {
2834		.constraints = {
2835			.name = "db8500-varm",
2836			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2837		},
2838	},
2839	[DB8500_REGULATOR_VMODEM] = {
2840		.constraints = {
2841			.name = "db8500-vmodem",
2842			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2843		},
2844	},
2845	[DB8500_REGULATOR_VPLL] = {
2846		.constraints = {
2847			.name = "db8500-vpll",
2848			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849		},
2850	},
2851	[DB8500_REGULATOR_VSMPS1] = {
2852		.constraints = {
2853			.name = "db8500-vsmps1",
2854			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2855		},
2856	},
2857	[DB8500_REGULATOR_VSMPS2] = {
2858		.constraints = {
2859			.name = "db8500-vsmps2",
2860			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2861		},
2862		.consumer_supplies = db8500_vsmps2_consumers,
2863		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2864	},
2865	[DB8500_REGULATOR_VSMPS3] = {
2866		.constraints = {
2867			.name = "db8500-vsmps3",
2868			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869		},
2870	},
2871	[DB8500_REGULATOR_VRF1] = {
2872		.constraints = {
2873			.name = "db8500-vrf1",
2874			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875		},
2876	},
2877	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2878		/* dependency to u8500-vape is handled outside regulator framework */
2879		.constraints = {
2880			.name = "db8500-sva-mmdsp",
2881			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2882		},
2883		.consumer_supplies = db8500_svammdsp_consumers,
2884		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2885	},
2886	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2887		.constraints = {
2888			/* "ret" means "retention" */
2889			.name = "db8500-sva-mmdsp-ret",
2890			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891		},
2892	},
2893	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2894		/* dependency to u8500-vape is handled outside regulator framework */
2895		.constraints = {
2896			.name = "db8500-sva-pipe",
2897			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898		},
2899		.consumer_supplies = db8500_svapipe_consumers,
2900		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2901	},
2902	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2903		/* dependency to u8500-vape is handled outside regulator framework */
2904		.constraints = {
2905			.name = "db8500-sia-mmdsp",
2906			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2907		},
2908		.consumer_supplies = db8500_siammdsp_consumers,
2909		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2910	},
2911	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2912		.constraints = {
2913			.name = "db8500-sia-mmdsp-ret",
2914			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2915		},
2916	},
2917	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2918		/* dependency to u8500-vape is handled outside regulator framework */
2919		.constraints = {
2920			.name = "db8500-sia-pipe",
2921			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2922		},
2923		.consumer_supplies = db8500_siapipe_consumers,
2924		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2925	},
2926	[DB8500_REGULATOR_SWITCH_SGA] = {
2927		.supply_regulator = "db8500-vape",
2928		.constraints = {
2929			.name = "db8500-sga",
2930			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2931		},
2932		.consumer_supplies = db8500_sga_consumers,
2933		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2934
2935	},
2936	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2937		.supply_regulator = "db8500-vape",
2938		.constraints = {
2939			.name = "db8500-b2r2-mcde",
2940			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941		},
2942		.consumer_supplies = db8500_b2r2_mcde_consumers,
2943		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2944	},
2945	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2946		/*
2947		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2948		 * no need to hold Vape
2949		 */
2950		.constraints = {
2951			.name = "db8500-esram12",
2952			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953		},
2954		.consumer_supplies = db8500_esram12_consumers,
2955		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2956	},
2957	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2958		.constraints = {
2959			.name = "db8500-esram12-ret",
2960			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961		},
2962	},
2963	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2964		/*
2965		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2966		 * no need to hold Vape
2967		 */
2968		.constraints = {
2969			.name = "db8500-esram34",
2970			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2971		},
2972		.consumer_supplies = db8500_esram34_consumers,
2973		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2974	},
2975	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2976		.constraints = {
2977			.name = "db8500-esram34-ret",
2978			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2979		},
2980	},
2981};
2982
2983static struct ux500_wdt_data db8500_wdt_pdata = {
2984	.timeout = 600, /* 10 minutes */
2985	.has_28_bits_resolution = true,
2986};
2987/*
2988 * Thermal Sensor
2989 */
2990
2991static struct resource db8500_thsens_resources[] = {
2992	{
2993		.name = "IRQ_HOTMON_LOW",
2994		.start  = IRQ_PRCMU_HOTMON_LOW,
2995		.end    = IRQ_PRCMU_HOTMON_LOW,
2996		.flags  = IORESOURCE_IRQ,
2997	},
2998	{
2999		.name = "IRQ_HOTMON_HIGH",
3000		.start  = IRQ_PRCMU_HOTMON_HIGH,
3001		.end    = IRQ_PRCMU_HOTMON_HIGH,
3002		.flags  = IORESOURCE_IRQ,
3003	},
3004};
3005
3006static struct db8500_thsens_platform_data db8500_thsens_data = {
3007	.trip_points[0] = {
3008		.temp = 70000,
3009		.type = THERMAL_TRIP_ACTIVE,
3010		.cdev_name = {
3011			[0] = "thermal-cpufreq-0",
3012		},
3013	},
3014	.trip_points[1] = {
3015		.temp = 75000,
3016		.type = THERMAL_TRIP_ACTIVE,
3017		.cdev_name = {
3018			[0] = "thermal-cpufreq-0",
3019		},
3020	},
3021	.trip_points[2] = {
3022		.temp = 80000,
3023		.type = THERMAL_TRIP_ACTIVE,
3024		.cdev_name = {
3025			[0] = "thermal-cpufreq-0",
3026		},
3027	},
3028	.trip_points[3] = {
3029		.temp = 85000,
3030		.type = THERMAL_TRIP_CRITICAL,
3031	},
3032	.num_trips = 4,
3033};
3034
3035static const struct mfd_cell common_prcmu_devs[] = {
3036	{
3037		.name = "ux500_wdt",
3038		.platform_data = &db8500_wdt_pdata,
3039		.pdata_size = sizeof(db8500_wdt_pdata),
3040		.id = -1,
3041	},
3042};
3043
3044static const struct mfd_cell db8500_prcmu_devs[] = {
3045	{
3046		.name = "db8500-prcmu-regulators",
3047		.of_compatible = "stericsson,db8500-prcmu-regulator",
3048		.platform_data = &db8500_regulators,
3049		.pdata_size = sizeof(db8500_regulators),
3050	},
3051	{
3052		.name = "cpufreq-ux500",
3053		.of_compatible = "stericsson,cpufreq-ux500",
3054		.platform_data = &db8500_cpufreq_table,
3055		.pdata_size = sizeof(db8500_cpufreq_table),
3056	},
3057	{
3058		.name = "cpuidle-dbx500",
3059		.of_compatible = "stericsson,cpuidle-dbx500",
3060	},
3061	{
3062		.name = "db8500-thermal",
3063		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3064		.resources = db8500_thsens_resources,
3065		.platform_data = &db8500_thsens_data,
3066		.pdata_size = sizeof(db8500_thsens_data),
3067	},
3068};
3069
3070static void db8500_prcmu_update_cpufreq(void)
3071{
3072	if (prcmu_has_arm_maxopp()) {
3073		db8500_cpufreq_table[3].frequency = 1000000;
3074		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3075	}
3076}
3077
3078static int db8500_prcmu_register_ab8500(struct device *parent)
3079{
3080	struct device_node *np;
3081	struct resource ab8500_resource;
3082	const struct mfd_cell ab8500_cell = {
3083		.name = "ab8500-core",
3084		.of_compatible = "stericsson,ab8500",
3085		.id = AB8500_VERSION_AB8500,
3086		.resources = &ab8500_resource,
 
 
 
 
 
 
 
3087		.num_resources = 1,
3088	};
 
3089
3090	if (!parent->of_node)
3091		return -ENODEV;
3092
3093	/* Look up the device node, sneak the IRQ out of it */
3094	for_each_child_of_node(parent->of_node, np) {
3095		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
 
3096			break;
 
 
 
 
 
3097	}
3098	if (!np) {
3099		dev_info(parent, "could not find AB8500 node in the device tree\n");
3100		return -ENODEV;
3101	}
3102	of_irq_to_resource_table(np, &ab8500_resource, 1);
3103
3104	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3105}
3106
3107/**
3108 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3109 *
3110 */
3111static int db8500_prcmu_probe(struct platform_device *pdev)
3112{
3113	struct device_node *np = pdev->dev.of_node;
3114	int irq = 0, err = 0;
3115	struct resource *res;
3116
3117	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3118	if (!res) {
3119		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3120		return -EINVAL;
3121	}
3122	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3123	if (!prcmu_base) {
3124		dev_err(&pdev->dev,
3125			"failed to ioremap prcmu register memory\n");
3126		return -ENOMEM;
3127	}
3128	init_prcm_registers();
3129	dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3130	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3131	if (!res) {
3132		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3133		return -EINVAL;
3134	}
3135	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3136			resource_size(res));
3137	if (!tcdm_base) {
3138		dev_err(&pdev->dev,
3139			"failed to ioremap prcmu-tcdm register memory\n");
3140		return -ENOMEM;
3141	}
3142
3143	/* Clean up the mailbox interrupts after pre-kernel code. */
3144	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3145
3146	irq = platform_get_irq(pdev, 0);
3147	if (irq <= 0) {
3148		dev_err(&pdev->dev, "no prcmu irq provided\n");
3149		return irq;
3150	}
3151
3152	err = request_threaded_irq(irq, prcmu_irq_handler,
3153	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3154	if (err < 0) {
3155		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3156		return err;
3157	}
3158
3159	db8500_irq_init(np);
3160
3161	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3162
3163	db8500_prcmu_update_cpufreq();
3164
3165	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3166			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3167	if (err) {
3168		pr_err("prcmu: Failed to add subdevices\n");
3169		return err;
3170	}
3171
3172	/* TODO: Remove restriction when clk definitions are available. */
3173	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3174		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3175				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3176				      db8500_irq_domain);
3177		if (err) {
3178			mfd_remove_devices(&pdev->dev);
3179			pr_err("prcmu: Failed to add subdevices\n");
3180			return err;
3181		}
3182	}
3183
3184	err = db8500_prcmu_register_ab8500(&pdev->dev);
3185	if (err) {
3186		mfd_remove_devices(&pdev->dev);
3187		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3188		return err;
3189	}
3190
3191	pr_info("DB8500 PRCMU initialized\n");
3192	return err;
3193}
3194static const struct of_device_id db8500_prcmu_match[] = {
3195	{ .compatible = "stericsson,db8500-prcmu"},
3196	{ },
3197};
3198
3199static struct platform_driver db8500_prcmu_driver = {
3200	.driver = {
3201		.name = "db8500-prcmu",
3202		.of_match_table = db8500_prcmu_match,
3203	},
3204	.probe = db8500_prcmu_probe,
3205};
3206
3207static int __init db8500_prcmu_init(void)
3208{
3209	return platform_driver_register(&db8500_prcmu_driver);
3210}
3211
3212core_initcall(db8500_prcmu_init);
3213
3214MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3215MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3216MODULE_LICENSE("GPL v2");