Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DB8500 PRCM Unit driver
4 *
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
7 *
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
12 * U8500 PRCM Unit interface driver
13 */
14#include <linux/init.h>
15#include <linux/export.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/err.h>
20#include <linux/spinlock.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/mutex.h>
24#include <linux/completion.h>
25#include <linux/irq.h>
26#include <linux/jiffies.h>
27#include <linux/bitops.h>
28#include <linux/fs.h>
29#include <linux/of.h>
30#include <linux/of_address.h>
31#include <linux/of_irq.h>
32#include <linux/platform_device.h>
33#include <linux/uaccess.h>
34#include <linux/mfd/core.h>
35#include <linux/mfd/dbx500-prcmu.h>
36#include <linux/mfd/abx500/ab8500.h>
37#include <linux/regulator/db8500-prcmu.h>
38#include <linux/regulator/machine.h>
39#include "db8500-prcmu-regs.h"
40
41/* Index of different voltages to be used when accessing AVSData */
42#define PRCM_AVS_BASE 0x2FC
43#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57#define PRCM_AVS_VOLTAGE 0
58#define PRCM_AVS_VOLTAGE_MASK 0x3f
59#define PRCM_AVS_ISSLOWSTARTUP 6
60#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61#define PRCM_AVS_ISMODEENABLE 7
62#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64#define PRCM_BOOT_STATUS 0xFFF
65#define PRCM_ROMCODE_A2P 0xFFE
66#define PRCM_ROMCODE_P2A 0xFFD
67#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80/* Req Mailboxes */
81#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88/* Ack Mailboxes */
89#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96/* Mailbox 0 headers */
97#define MB0H_POWER_STATE_TRANS 0
98#define MB0H_CONFIG_WAKEUPS_EXE 1
99#define MB0H_READ_WAKEUP_ACK 3
100#define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102#define MB0H_WAKEUP_EXE 2
103#define MB0H_WAKEUP_SLEEP 5
104
105/* Mailbox 0 REQs */
106#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113/* Mailbox 0 ACKs */
114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122/* Mailbox 1 headers */
123#define MB1H_ARM_APE_OPP 0x0
124#define MB1H_RESET_MODEM 0x2
125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127#define MB1H_RELEASE_USB_WAKEUP 0x5
128#define MB1H_PLL_ON_OFF 0x6
129
130/* Mailbox 1 Requests */
131#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134#define PLL_SOC0_OFF 0x1
135#define PLL_SOC0_ON 0x2
136#define PLL_SOC1_OFF 0x4
137#define PLL_SOC1_ON 0x8
138
139/* Mailbox 1 ACKs */
140#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145/* Mailbox 2 headers */
146#define MB2H_DPS 0x0
147#define MB2H_AUTO_PWR 0x1
148
149/* Mailbox 2 REQs */
150#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161/* Mailbox 2 ACKs */
162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163#define HWACC_PWR_ST_OK 0xFE
164
165/* Mailbox 3 headers */
166#define MB3H_ANC 0x0
167#define MB3H_SIDETONE 0x1
168#define MB3H_SYSCLK 0xE
169
170/* Mailbox 3 Requests */
171#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179/* Mailbox 4 headers */
180#define MB4H_DDR_INIT 0x0
181#define MB4H_MEM_ST 0x1
182#define MB4H_HOTDOG 0x12
183#define MB4H_HOTMON 0x13
184#define MB4H_HOT_PERIOD 0x14
185#define MB4H_A9WDOG_CONF 0x16
186#define MB4H_A9WDOG_EN 0x17
187#define MB4H_A9WDOG_DIS 0x18
188#define MB4H_A9WDOG_LOAD 0x19
189#define MB4H_A9WDOG_KICK 0x20
190
191/* Mailbox 4 Requests */
192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200#define HOTMON_CONFIG_LOW BIT(0)
201#define HOTMON_CONFIG_HIGH BIT(1)
202#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206#define A9WDOG_AUTO_OFF_EN BIT(7)
207#define A9WDOG_AUTO_OFF_DIS 0
208#define A9WDOG_ID_MASK 0xf
209
210/* Mailbox 5 Requests */
211#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217#define PRCMU_I2C_STOP_EN BIT(3)
218
219/* Mailbox 5 ACKs */
220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222#define I2C_WR_OK 0x1
223#define I2C_RD_OK 0x2
224
225#define NUM_MB 8
226#define MBOX_BIT BIT
227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229/*
230 * Wakeups/IRQs
231 */
232
233#define WAKEUP_BIT_RTC BIT(0)
234#define WAKEUP_BIT_RTT0 BIT(1)
235#define WAKEUP_BIT_RTT1 BIT(2)
236#define WAKEUP_BIT_HSI0 BIT(3)
237#define WAKEUP_BIT_HSI1 BIT(4)
238#define WAKEUP_BIT_CA_WAKE BIT(5)
239#define WAKEUP_BIT_USB BIT(6)
240#define WAKEUP_BIT_ABB BIT(7)
241#define WAKEUP_BIT_ABB_FIFO BIT(8)
242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
243#define WAKEUP_BIT_CA_SLEEP BIT(10)
244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246#define WAKEUP_BIT_ANC_OK BIT(13)
247#define WAKEUP_BIT_SW_ERROR BIT(14)
248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249#define WAKEUP_BIT_ARM BIT(17)
250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253#define WAKEUP_BIT_GPIO0 BIT(23)
254#define WAKEUP_BIT_GPIO1 BIT(24)
255#define WAKEUP_BIT_GPIO2 BIT(25)
256#define WAKEUP_BIT_GPIO3 BIT(26)
257#define WAKEUP_BIT_GPIO4 BIT(27)
258#define WAKEUP_BIT_GPIO5 BIT(28)
259#define WAKEUP_BIT_GPIO6 BIT(29)
260#define WAKEUP_BIT_GPIO7 BIT(30)
261#define WAKEUP_BIT_GPIO8 BIT(31)
262
263static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266} fw_info;
267
268static struct irq_domain *db8500_irq_domain;
269
270/*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281#define IRQ_PRCMU_RTC 0
282#define IRQ_PRCMU_RTT0 1
283#define IRQ_PRCMU_RTT1 2
284#define IRQ_PRCMU_HSI0 3
285#define IRQ_PRCMU_HSI1 4
286#define IRQ_PRCMU_CA_WAKE 5
287#define IRQ_PRCMU_USB 6
288#define IRQ_PRCMU_ABB 7
289#define IRQ_PRCMU_ABB_FIFO 8
290#define IRQ_PRCMU_ARM 9
291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292#define IRQ_PRCMU_GPIO0 11
293#define IRQ_PRCMU_GPIO1 12
294#define IRQ_PRCMU_GPIO2 13
295#define IRQ_PRCMU_GPIO3 14
296#define IRQ_PRCMU_GPIO4 15
297#define IRQ_PRCMU_GPIO5 16
298#define IRQ_PRCMU_GPIO6 17
299#define IRQ_PRCMU_GPIO7 18
300#define IRQ_PRCMU_GPIO8 19
301#define IRQ_PRCMU_CA_SLEEP 20
302#define IRQ_PRCMU_HOTMON_LOW 21
303#define IRQ_PRCMU_HOTMON_HIGH 22
304#define NUM_PRCMU_WAKEUPS 23
305
306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330};
331
332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344};
345
346/*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365} mb0_transfer;
366
367/*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
373 */
374static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384} mb1_transfer;
385
386/*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403} mb2_transfer;
404
405/*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415} mb3_transfer;
416
417/*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422static struct {
423 struct mutex lock;
424 struct completion work;
425} mb4_transfer;
426
427/*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440} mb5_transfer;
441
442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444/* Spinlocks */
445static DEFINE_SPINLOCK(prcmu_lock);
446static DEFINE_SPINLOCK(clkout_lock);
447
448/* Global var to runtime determine TCDM base for v2 or v1 */
449static __iomem void *tcdm_base;
450static __iomem void *prcmu_base;
451
452struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
457};
458
459enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
463};
464
465static DEFINE_SPINLOCK(clk_mgt_lock);
466
467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518};
519
520struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
542};
543
544u32 db8500_prcmu_read(unsigned int reg)
545{
546 return readl(prcmu_base + reg);
547}
548
549void db8500_prcmu_write(unsigned int reg, u32 value)
550{
551 unsigned long flags;
552
553 spin_lock_irqsave(&prcmu_lock, flags);
554 writel(value, (prcmu_base + reg));
555 spin_unlock_irqrestore(&prcmu_lock, flags);
556}
557
558void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
559{
560 u32 val;
561 unsigned long flags;
562
563 spin_lock_irqsave(&prcmu_lock, flags);
564 val = readl(prcmu_base + reg);
565 val = ((val & ~mask) | (value & mask));
566 writel(val, (prcmu_base + reg));
567 spin_unlock_irqrestore(&prcmu_lock, flags);
568}
569
570struct prcmu_fw_version *prcmu_get_fw_version(void)
571{
572 return fw_info.valid ? &fw_info.version : NULL;
573}
574
575static bool prcmu_is_ulppll_disabled(void)
576{
577 struct prcmu_fw_version *ver;
578
579 ver = prcmu_get_fw_version();
580 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
581}
582
583bool prcmu_has_arm_maxopp(void)
584{
585 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
586 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
587}
588
589/**
590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
591 * @val: Value to be set, i.e. transition requested
592 * Returns: 0 on success, -EINVAL on invalid argument
593 *
594 * This function is used to run the following power state sequences -
595 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
596 */
597int prcmu_set_rc_a2p(enum romcode_write val)
598{
599 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
600 return -EINVAL;
601 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
602 return 0;
603}
604
605/**
606 * prcmu_get_rc_p2a - This function is used to get power state sequences
607 * Returns: the power transition that has last happened
608 *
609 * This function can return the following transitions-
610 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
611 */
612enum romcode_read prcmu_get_rc_p2a(void)
613{
614 return readb(tcdm_base + PRCM_ROMCODE_P2A);
615}
616
617/**
618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
619 * Returns: Returns the current AP(ARM) power mode: init,
620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
621 */
622enum ap_pwrst prcmu_get_xp70_current_state(void)
623{
624 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
625}
626
627/**
628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
629 * @clkout: The CLKOUT number (0 or 1).
630 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
631 * @div: The divider to be applied.
632 *
633 * Configures one of the programmable clock outputs (CLKOUTs).
634 * @div should be in the range [1,63] to request a configuration, or 0 to
635 * inform that the configuration is no longer requested.
636 */
637int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
638{
639 static int requests[2];
640 int r = 0;
641 unsigned long flags;
642 u32 val;
643 u32 bits;
644 u32 mask;
645 u32 div_mask;
646
647 BUG_ON(clkout > 1);
648 BUG_ON(div > 63);
649 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
650
651 if (!div && !requests[clkout])
652 return -EINVAL;
653
654 if (clkout == 0) {
655 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
656 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
657 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
658 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
659 } else {
660 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
661 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
662 PRCM_CLKOCR_CLK1TYPE);
663 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
664 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
665 }
666 bits &= mask;
667
668 spin_lock_irqsave(&clkout_lock, flags);
669
670 val = readl(PRCM_CLKOCR);
671 if (val & div_mask) {
672 if (div) {
673 if ((val & mask) != bits) {
674 r = -EBUSY;
675 goto unlock_and_return;
676 }
677 } else {
678 if ((val & mask & ~div_mask) != bits) {
679 r = -EINVAL;
680 goto unlock_and_return;
681 }
682 }
683 }
684 writel((bits | (val & ~mask)), PRCM_CLKOCR);
685 requests[clkout] += (div ? 1 : -1);
686
687unlock_and_return:
688 spin_unlock_irqrestore(&clkout_lock, flags);
689
690 return r;
691}
692
693int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
694{
695 unsigned long flags;
696
697 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
698
699 spin_lock_irqsave(&mb0_transfer.lock, flags);
700
701 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
702 cpu_relax();
703
704 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
705 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
706 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
707 writeb((keep_ulp_clk ? 1 : 0),
708 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
709 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
710 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
711
712 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
713
714 return 0;
715}
716
717u8 db8500_prcmu_get_power_state_result(void)
718{
719 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
720}
721
722/* This function should only be called while mb0_transfer.lock is held. */
723static void config_wakeups(void)
724{
725 const u8 header[2] = {
726 MB0H_CONFIG_WAKEUPS_EXE,
727 MB0H_CONFIG_WAKEUPS_SLEEP
728 };
729 static u32 last_dbb_events;
730 static u32 last_abb_events;
731 u32 dbb_events;
732 u32 abb_events;
733 unsigned int i;
734
735 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
736 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
737
738 abb_events = mb0_transfer.req.abb_events;
739
740 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
741 return;
742
743 for (i = 0; i < 2; i++) {
744 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
745 cpu_relax();
746 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
747 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
748 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
750 }
751 last_dbb_events = dbb_events;
752 last_abb_events = abb_events;
753}
754
755void db8500_prcmu_enable_wakeups(u32 wakeups)
756{
757 unsigned long flags;
758 u32 bits;
759 int i;
760
761 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
762
763 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
764 if (wakeups & BIT(i))
765 bits |= prcmu_wakeup_bit[i];
766 }
767
768 spin_lock_irqsave(&mb0_transfer.lock, flags);
769
770 mb0_transfer.req.dbb_wakeups = bits;
771 config_wakeups();
772
773 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
774}
775
776void db8500_prcmu_config_abb_event_readout(u32 abb_events)
777{
778 unsigned long flags;
779
780 spin_lock_irqsave(&mb0_transfer.lock, flags);
781
782 mb0_transfer.req.abb_events = abb_events;
783 config_wakeups();
784
785 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
786}
787
788void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
789{
790 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
791 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
792 else
793 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
794}
795
796/**
797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
798 * @opp: The new ARM operating point to which transition is to be made
799 * Returns: 0 on success, non-zero on failure
800 *
801 * This function sets the operating point of the ARM.
802 */
803int db8500_prcmu_set_arm_opp(u8 opp)
804{
805 int r;
806
807 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
808 return -EINVAL;
809
810 r = 0;
811
812 mutex_lock(&mb1_transfer.lock);
813
814 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
815 cpu_relax();
816
817 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
818 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
819 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
820
821 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
822 wait_for_completion(&mb1_transfer.work);
823
824 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
825 (mb1_transfer.ack.arm_opp != opp))
826 r = -EIO;
827
828 mutex_unlock(&mb1_transfer.lock);
829
830 return r;
831}
832
833/**
834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
835 *
836 * Returns: the current ARM OPP
837 */
838int db8500_prcmu_get_arm_opp(void)
839{
840 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
841}
842
843/**
844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
845 *
846 * Returns: the current DDR OPP
847 */
848int db8500_prcmu_get_ddr_opp(void)
849{
850 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
851}
852
853/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
854static void request_even_slower_clocks(bool enable)
855{
856 u32 clock_reg[] = {
857 PRCM_ACLK_MGT,
858 PRCM_DMACLK_MGT
859 };
860 unsigned long flags;
861 unsigned int i;
862
863 spin_lock_irqsave(&clk_mgt_lock, flags);
864
865 /* Grab the HW semaphore. */
866 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
867 cpu_relax();
868
869 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
870 u32 val;
871 u32 div;
872
873 val = readl(prcmu_base + clock_reg[i]);
874 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
875 if (enable) {
876 if ((div <= 1) || (div > 15)) {
877 pr_err("prcmu: Bad clock divider %d in %s\n",
878 div, __func__);
879 goto unlock_and_return;
880 }
881 div <<= 1;
882 } else {
883 if (div <= 2)
884 goto unlock_and_return;
885 div >>= 1;
886 }
887 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
888 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
889 writel(val, prcmu_base + clock_reg[i]);
890 }
891
892unlock_and_return:
893 /* Release the HW semaphore. */
894 writel(0, PRCM_SEM);
895
896 spin_unlock_irqrestore(&clk_mgt_lock, flags);
897}
898
899/**
900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
901 * @opp: The new APE operating point to which transition is to be made
902 * Returns: 0 on success, non-zero on failure
903 *
904 * This function sets the operating point of the APE.
905 */
906int db8500_prcmu_set_ape_opp(u8 opp)
907{
908 int r = 0;
909
910 if (opp == mb1_transfer.ape_opp)
911 return 0;
912
913 mutex_lock(&mb1_transfer.lock);
914
915 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
916 request_even_slower_clocks(false);
917
918 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
919 goto skip_message;
920
921 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
922 cpu_relax();
923
924 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
925 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
926 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
927 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
928
929 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930 wait_for_completion(&mb1_transfer.work);
931
932 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933 (mb1_transfer.ack.ape_opp != opp))
934 r = -EIO;
935
936skip_message:
937 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
938 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
939 request_even_slower_clocks(true);
940 if (!r)
941 mb1_transfer.ape_opp = opp;
942
943 mutex_unlock(&mb1_transfer.lock);
944
945 return r;
946}
947
948/**
949 * db8500_prcmu_get_ape_opp - get the current APE OPP
950 *
951 * Returns: the current APE OPP
952 */
953int db8500_prcmu_get_ape_opp(void)
954{
955 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
956}
957
958/**
959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
960 * @enable: true to request the higher voltage, false to drop a request.
961 *
962 * Calls to this function to enable and disable requests must be balanced.
963 */
964int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
965{
966 int r = 0;
967 u8 header;
968 static unsigned int requests;
969
970 mutex_lock(&mb1_transfer.lock);
971
972 if (enable) {
973 if (0 != requests++)
974 goto unlock_and_return;
975 header = MB1H_REQUEST_APE_OPP_100_VOLT;
976 } else {
977 if (requests == 0) {
978 r = -EIO;
979 goto unlock_and_return;
980 } else if (1 != requests--) {
981 goto unlock_and_return;
982 }
983 header = MB1H_RELEASE_APE_OPP_100_VOLT;
984 }
985
986 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
987 cpu_relax();
988
989 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
990
991 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
992 wait_for_completion(&mb1_transfer.work);
993
994 if ((mb1_transfer.ack.header != header) ||
995 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
996 r = -EIO;
997
998unlock_and_return:
999 mutex_unlock(&mb1_transfer.lock);
1000
1001 return r;
1002}
1003
1004/**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
1009int prcmu_release_usb_wakeup_state(void)
1010{
1011 int r = 0;
1012
1013 mutex_lock(&mb1_transfer.lock);
1014
1015 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016 cpu_relax();
1017
1018 writeb(MB1H_RELEASE_USB_WAKEUP,
1019 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022 wait_for_completion(&mb1_transfer.work);
1023
1024 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026 r = -EIO;
1027
1028 mutex_unlock(&mb1_transfer.lock);
1029
1030 return r;
1031}
1032
1033static int request_pll(u8 clock, bool enable)
1034{
1035 int r = 0;
1036
1037 if (clock == PRCMU_PLLSOC0)
1038 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039 else if (clock == PRCMU_PLLSOC1)
1040 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041 else
1042 return -EINVAL;
1043
1044 mutex_lock(&mb1_transfer.lock);
1045
1046 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047 cpu_relax();
1048
1049 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053 wait_for_completion(&mb1_transfer.work);
1054
1055 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056 r = -EIO;
1057
1058 mutex_unlock(&mb1_transfer.lock);
1059
1060 return r;
1061}
1062
1063/**
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1067 *
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1070 */
1071int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072{
1073 int r = 0;
1074 bool ram_retention = false;
1075 int i;
1076
1077 /* check argument */
1078 BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080 /* set flag if retention is possible */
1081 switch (epod_id) {
1082 case EPOD_ID_SVAMMDSP:
1083 case EPOD_ID_SIAMMDSP:
1084 case EPOD_ID_ESRAM12:
1085 case EPOD_ID_ESRAM34:
1086 ram_retention = true;
1087 break;
1088 }
1089
1090 /* check argument */
1091 BUG_ON(epod_state > EPOD_STATE_ON);
1092 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094 /* get lock */
1095 mutex_lock(&mb2_transfer.lock);
1096
1097 /* wait for mailbox */
1098 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099 cpu_relax();
1100
1101 /* fill in mailbox */
1102 for (i = 0; i < NUM_EPOD_ID; i++)
1103 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110 /*
1111 * The current firmware version does not handle errors correctly,
1112 * and we cannot recover if there is an error.
1113 * This is expected to change when the firmware is updated.
1114 */
1115 if (!wait_for_completion_timeout(&mb2_transfer.work,
1116 msecs_to_jiffies(20000))) {
1117 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118 __func__);
1119 r = -EIO;
1120 goto unlock_and_return;
1121 }
1122
1123 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124 r = -EIO;
1125
1126unlock_and_return:
1127 mutex_unlock(&mb2_transfer.lock);
1128 return r;
1129}
1130
1131/**
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle: Configuration for ApIdle.
1135 */
1136void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137 struct prcmu_auto_pm_config *idle)
1138{
1139 u32 sleep_cfg;
1140 u32 idle_cfg;
1141 unsigned long flags;
1142
1143 BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161 /*
1162 * The autonomous power management configuration is done through
1163 * fields in mailbox 2, but these fields are only used as shared
1164 * variables - i.e. there is no need to send a message.
1165 */
1166 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169 mb2_transfer.auto_pm_enabled =
1170 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176}
1177EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179bool prcmu_is_auto_pm_enabled(void)
1180{
1181 return mb2_transfer.auto_pm_enabled;
1182}
1183
1184static int request_sysclk(bool enable)
1185{
1186 int r;
1187 unsigned long flags;
1188
1189 r = 0;
1190
1191 mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193 spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196 cpu_relax();
1197
1198 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205 /*
1206 * The firmware only sends an ACK if we want to enable the
1207 * SysClk, and it succeeds.
1208 */
1209 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210 msecs_to_jiffies(20000))) {
1211 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212 __func__);
1213 r = -EIO;
1214 }
1215
1216 mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218 return r;
1219}
1220
1221static int request_timclk(bool enable)
1222{
1223 u32 val;
1224
1225 /*
1226 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227 * PLL is disabled so we cannot use doze mode, this will
1228 * stop the clock on this firmware.
1229 */
1230 if (prcmu_is_ulppll_disabled())
1231 val = 0;
1232 else
1233 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235 if (!enable)
1236 val |= PRCM_TCR_STOP_TIMERS |
1237 PRCM_TCR_DOZE_MODE |
1238 PRCM_TCR_TENSEL_MASK;
1239
1240 writel(val, PRCM_TCR);
1241
1242 return 0;
1243}
1244
1245static int request_clock(u8 clock, bool enable)
1246{
1247 u32 val;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252 /* Grab the HW semaphore. */
1253 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254 cpu_relax();
1255
1256 val = readl(prcmu_base + clk_mgt[clock].offset);
1257 if (enable) {
1258 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259 } else {
1260 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262 }
1263 writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265 /* Release the HW semaphore. */
1266 writel(0, PRCM_SEM);
1267
1268 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270 return 0;
1271}
1272
1273static int request_sga_clock(u8 clock, bool enable)
1274{
1275 u32 val;
1276 int ret;
1277
1278 if (enable) {
1279 val = readl(PRCM_CGATING_BYPASS);
1280 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281 }
1282
1283 ret = request_clock(clock, enable);
1284
1285 if (!ret && !enable) {
1286 val = readl(PRCM_CGATING_BYPASS);
1287 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288 }
1289
1290 return ret;
1291}
1292
1293static inline bool plldsi_locked(void)
1294{
1295 return (readl(PRCM_PLLDSI_LOCKP) &
1296 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300}
1301
1302static int request_plldsi(bool enable)
1303{
1304 int r = 0;
1305 u32 val;
1306
1307 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311 val = readl(PRCM_PLLDSI_ENABLE);
1312 if (enable)
1313 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314 else
1315 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316 writel(val, PRCM_PLLDSI_ENABLE);
1317
1318 if (enable) {
1319 unsigned int i;
1320 bool locked = plldsi_locked();
1321
1322 for (i = 10; !locked && (i > 0); --i) {
1323 udelay(100);
1324 locked = plldsi_locked();
1325 }
1326 if (locked) {
1327 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328 PRCM_APE_RESETN_SET);
1329 } else {
1330 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332 PRCM_MMIP_LS_CLAMP_SET);
1333 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334 writel(val, PRCM_PLLDSI_ENABLE);
1335 r = -EAGAIN;
1336 }
1337 } else {
1338 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339 }
1340 return r;
1341}
1342
1343static int request_dsiclk(u8 n, bool enable)
1344{
1345 u32 val;
1346
1347 val = readl(PRCM_DSI_PLLOUT_SEL);
1348 val &= ~dsiclk[n].divsel_mask;
1349 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350 dsiclk[n].divsel_shift);
1351 writel(val, PRCM_DSI_PLLOUT_SEL);
1352 return 0;
1353}
1354
1355static int request_dsiescclk(u8 n, bool enable)
1356{
1357 u32 val;
1358
1359 val = readl(PRCM_DSITVCLK_DIV);
1360 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361 writel(val, PRCM_DSITVCLK_DIV);
1362 return 0;
1363}
1364
1365/**
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock: The clock for which the request is made.
1368 * @enable: Whether the clock should be enabled (true) or disabled (false).
1369 *
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1372 */
1373int db8500_prcmu_request_clock(u8 clock, bool enable)
1374{
1375 if (clock == PRCMU_SGACLK)
1376 return request_sga_clock(clock, enable);
1377 else if (clock < PRCMU_NUM_REG_CLOCKS)
1378 return request_clock(clock, enable);
1379 else if (clock == PRCMU_TIMCLK)
1380 return request_timclk(enable);
1381 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385 else if (clock == PRCMU_PLLDSI)
1386 return request_plldsi(enable);
1387 else if (clock == PRCMU_SYSCLK)
1388 return request_sysclk(enable);
1389 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390 return request_pll(clock, enable);
1391 else
1392 return -EINVAL;
1393}
1394
1395static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396 int branch)
1397{
1398 u64 rate;
1399 u32 val;
1400 u32 d;
1401 u32 div = 1;
1402
1403 val = readl(reg);
1404
1405 rate = src_rate;
1406 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409 if (d > 1)
1410 div *= d;
1411
1412 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413 if (d > 1)
1414 div *= d;
1415
1416 if (val & PRCM_PLL_FREQ_SELDIV2)
1417 div *= 2;
1418
1419 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420 (val & PRCM_PLL_FREQ_DIV2EN) &&
1421 ((reg == PRCM_PLLSOC0_FREQ) ||
1422 (reg == PRCM_PLLARM_FREQ) ||
1423 (reg == PRCM_PLLDDR_FREQ))))
1424 div *= 2;
1425
1426 (void)do_div(rate, div);
1427
1428 return (unsigned long)rate;
1429}
1430
1431#define ROOT_CLOCK_RATE 38400000
1432
1433static unsigned long clock_rate(u8 clock)
1434{
1435 u32 val;
1436 u32 pllsw;
1437 unsigned long rate = ROOT_CLOCK_RATE;
1438
1439 val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441 if (val & PRCM_CLK_MGT_CLK38) {
1442 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443 rate /= 2;
1444 return rate;
1445 }
1446
1447 val |= clk_mgt[clock].pllsw;
1448 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456 else
1457 return 0;
1458
1459 if ((clock == PRCMU_SGACLK) &&
1460 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461 u64 r = (rate * 10);
1462
1463 (void)do_div(r, 25);
1464 return (unsigned long)r;
1465 }
1466 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467 if (val)
1468 return rate / val;
1469 else
1470 return 0;
1471}
1472
1473static unsigned long armss_rate(void)
1474{
1475 u32 r;
1476 unsigned long rate;
1477
1478 r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481 /* External ARMCLKFIX clock */
1482
1483 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485 /* Check PRCM_ARM_CHGCLKREQ divider */
1486 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487 rate /= 2;
1488
1489 /* Check PRCM_ARMCLKFIX_MGT divider */
1490 r = readl(PRCM_ARMCLKFIX_MGT);
1491 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492 rate /= r;
1493
1494 } else {/* ARM PLL */
1495 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496 }
1497
1498 return rate;
1499}
1500
1501static unsigned long dsiclk_rate(u8 n)
1502{
1503 u32 divsel;
1504 u32 div = 1;
1505
1506 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510 divsel = dsiclk[n].divsel;
1511 else
1512 dsiclk[n].divsel = divsel;
1513
1514 switch (divsel) {
1515 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516 div *= 2;
1517 fallthrough;
1518 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519 div *= 2;
1520 fallthrough;
1521 case PRCM_DSI_PLLOUT_SEL_PHI:
1522 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523 PLL_RAW) / div;
1524 default:
1525 return 0;
1526 }
1527}
1528
1529static unsigned long dsiescclk_rate(u8 n)
1530{
1531 u32 div;
1532
1533 div = readl(PRCM_DSITVCLK_DIV);
1534 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536}
1537
1538unsigned long prcmu_clock_rate(u8 clock)
1539{
1540 if (clock < PRCMU_NUM_REG_CLOCKS)
1541 return clock_rate(clock);
1542 else if (clock == PRCMU_TIMCLK)
1543 return prcmu_is_ulppll_disabled() ?
1544 32768 : ROOT_CLOCK_RATE / 16;
1545 else if (clock == PRCMU_SYSCLK)
1546 return ROOT_CLOCK_RATE;
1547 else if (clock == PRCMU_PLLSOC0)
1548 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549 else if (clock == PRCMU_PLLSOC1)
1550 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551 else if (clock == PRCMU_ARMSS)
1552 return armss_rate();
1553 else if (clock == PRCMU_PLLDDR)
1554 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555 else if (clock == PRCMU_PLLDSI)
1556 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557 PLL_RAW);
1558 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562 else
1563 return 0;
1564}
1565
1566static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567{
1568 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569 return ROOT_CLOCK_RATE;
1570 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577 else
1578 return 0;
1579}
1580
1581static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582{
1583 u32 div;
1584
1585 div = (src_rate / rate);
1586 if (div == 0)
1587 return 1;
1588 if (rate < (src_rate / div))
1589 div++;
1590 return div;
1591}
1592
1593static long round_clock_rate(u8 clock, unsigned long rate)
1594{
1595 u32 val;
1596 u32 div;
1597 unsigned long src_rate;
1598 long rounded_rate;
1599
1600 val = readl(prcmu_base + clk_mgt[clock].offset);
1601 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602 clk_mgt[clock].branch);
1603 div = clock_divider(src_rate, rate);
1604 if (val & PRCM_CLK_MGT_CLK38) {
1605 if (clk_mgt[clock].clk38div) {
1606 if (div > 2)
1607 div = 2;
1608 } else {
1609 div = 1;
1610 }
1611 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612 u64 r = (src_rate * 10);
1613
1614 (void)do_div(r, 25);
1615 if (r <= rate)
1616 return (unsigned long)r;
1617 }
1618 rounded_rate = (src_rate / min(div, (u32)31));
1619
1620 return rounded_rate;
1621}
1622
1623static const unsigned long db8500_armss_freqs[] = {
1624 199680000,
1625 399360000,
1626 798720000,
1627 998400000
1628};
1629
1630/* The DB8520 has slightly higher ARMSS max frequency */
1631static const unsigned long db8520_armss_freqs[] = {
1632 199680000,
1633 399360000,
1634 798720000,
1635 1152000000
1636};
1637
1638static long round_armss_rate(unsigned long rate)
1639{
1640 unsigned long freq = 0;
1641 const unsigned long *freqs;
1642 int nfreqs;
1643 int i;
1644
1645 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646 freqs = db8520_armss_freqs;
1647 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648 } else {
1649 freqs = db8500_armss_freqs;
1650 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651 }
1652
1653 /* Find the corresponding arm opp from the cpufreq table. */
1654 for (i = 0; i < nfreqs; i++) {
1655 freq = freqs[i];
1656 if (rate <= freq)
1657 break;
1658 }
1659
1660 /* Return the last valid value, even if a match was not found. */
1661 return freq;
1662}
1663
1664#define MIN_PLL_VCO_RATE 600000000ULL
1665#define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667static long round_plldsi_rate(unsigned long rate)
1668{
1669 long rounded_rate = 0;
1670 unsigned long src_rate;
1671 unsigned long rem;
1672 u32 r;
1673
1674 src_rate = clock_rate(PRCMU_HDMICLK);
1675 rem = rate;
1676
1677 for (r = 7; (rem > 0) && (r > 0); r--) {
1678 u64 d;
1679
1680 d = (r * rate);
1681 (void)do_div(d, src_rate);
1682 if (d < 6)
1683 d = 6;
1684 else if (d > 255)
1685 d = 255;
1686 d *= src_rate;
1687 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689 continue;
1690 (void)do_div(d, r);
1691 if (rate < d) {
1692 if (rounded_rate == 0)
1693 rounded_rate = (long)d;
1694 break;
1695 }
1696 if ((rate - d) < rem) {
1697 rem = (rate - d);
1698 rounded_rate = (long)d;
1699 }
1700 }
1701 return rounded_rate;
1702}
1703
1704static long round_dsiclk_rate(unsigned long rate)
1705{
1706 u32 div;
1707 unsigned long src_rate;
1708 long rounded_rate;
1709
1710 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711 PLL_RAW);
1712 div = clock_divider(src_rate, rate);
1713 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715 return rounded_rate;
1716}
1717
1718static long round_dsiescclk_rate(unsigned long rate)
1719{
1720 u32 div;
1721 unsigned long src_rate;
1722 long rounded_rate;
1723
1724 src_rate = clock_rate(PRCMU_TVCLK);
1725 div = clock_divider(src_rate, rate);
1726 rounded_rate = (src_rate / min(div, (u32)255));
1727
1728 return rounded_rate;
1729}
1730
1731long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732{
1733 if (clock < PRCMU_NUM_REG_CLOCKS)
1734 return round_clock_rate(clock, rate);
1735 else if (clock == PRCMU_ARMSS)
1736 return round_armss_rate(rate);
1737 else if (clock == PRCMU_PLLDSI)
1738 return round_plldsi_rate(rate);
1739 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740 return round_dsiclk_rate(rate);
1741 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742 return round_dsiescclk_rate(rate);
1743 else
1744 return (long)prcmu_clock_rate(clock);
1745}
1746
1747static void set_clock_rate(u8 clock, unsigned long rate)
1748{
1749 u32 val;
1750 u32 div;
1751 unsigned long src_rate;
1752 unsigned long flags;
1753
1754 spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756 /* Grab the HW semaphore. */
1757 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758 cpu_relax();
1759
1760 val = readl(prcmu_base + clk_mgt[clock].offset);
1761 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762 clk_mgt[clock].branch);
1763 div = clock_divider(src_rate, rate);
1764 if (val & PRCM_CLK_MGT_CLK38) {
1765 if (clk_mgt[clock].clk38div) {
1766 if (div > 1)
1767 val |= PRCM_CLK_MGT_CLK38DIV;
1768 else
1769 val &= ~PRCM_CLK_MGT_CLK38DIV;
1770 }
1771 } else if (clock == PRCMU_SGACLK) {
1772 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774 if (div == 3) {
1775 u64 r = (src_rate * 10);
1776
1777 (void)do_div(r, 25);
1778 if (r <= rate) {
1779 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780 div = 0;
1781 }
1782 }
1783 val |= min(div, (u32)31);
1784 } else {
1785 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786 val |= min(div, (u32)31);
1787 }
1788 writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790 /* Release the HW semaphore. */
1791 writel(0, PRCM_SEM);
1792
1793 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794}
1795
1796static int set_armss_rate(unsigned long rate)
1797{
1798 unsigned long freq;
1799 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800 const unsigned long *freqs;
1801 int nfreqs;
1802 int i;
1803
1804 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805 freqs = db8520_armss_freqs;
1806 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807 } else {
1808 freqs = db8500_armss_freqs;
1809 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810 }
1811
1812 /* Find the corresponding arm opp from the cpufreq table. */
1813 for (i = 0; i < nfreqs; i++) {
1814 freq = freqs[i];
1815 if (rate == freq)
1816 break;
1817 }
1818
1819 if (rate != freq)
1820 return -EINVAL;
1821
1822 /* Set the new arm opp. */
1823 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824 return db8500_prcmu_set_arm_opp(opps[i]);
1825}
1826
1827static int set_plldsi_rate(unsigned long rate)
1828{
1829 unsigned long src_rate;
1830 unsigned long rem;
1831 u32 pll_freq = 0;
1832 u32 r;
1833
1834 src_rate = clock_rate(PRCMU_HDMICLK);
1835 rem = rate;
1836
1837 for (r = 7; (rem > 0) && (r > 0); r--) {
1838 u64 d;
1839 u64 hwrate;
1840
1841 d = (r * rate);
1842 (void)do_div(d, src_rate);
1843 if (d < 6)
1844 d = 6;
1845 else if (d > 255)
1846 d = 255;
1847 hwrate = (d * src_rate);
1848 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850 continue;
1851 (void)do_div(hwrate, r);
1852 if (rate < hwrate) {
1853 if (pll_freq == 0)
1854 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855 (r << PRCM_PLL_FREQ_R_SHIFT));
1856 break;
1857 }
1858 if ((rate - hwrate) < rem) {
1859 rem = (rate - hwrate);
1860 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861 (r << PRCM_PLL_FREQ_R_SHIFT));
1862 }
1863 }
1864 if (pll_freq == 0)
1865 return -EINVAL;
1866
1867 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868 writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870 return 0;
1871}
1872
1873static void set_dsiclk_rate(u8 n, unsigned long rate)
1874{
1875 u32 val;
1876 u32 div;
1877
1878 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885 val = readl(PRCM_DSI_PLLOUT_SEL);
1886 val &= ~dsiclk[n].divsel_mask;
1887 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888 writel(val, PRCM_DSI_PLLOUT_SEL);
1889}
1890
1891static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892{
1893 u32 val;
1894 u32 div;
1895
1896 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897 val = readl(PRCM_DSITVCLK_DIV);
1898 val &= ~dsiescclk[n].div_mask;
1899 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900 writel(val, PRCM_DSITVCLK_DIV);
1901}
1902
1903int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904{
1905 if (clock < PRCMU_NUM_REG_CLOCKS)
1906 set_clock_rate(clock, rate);
1907 else if (clock == PRCMU_ARMSS)
1908 return set_armss_rate(rate);
1909 else if (clock == PRCMU_PLLDSI)
1910 return set_plldsi_rate(rate);
1911 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915 return 0;
1916}
1917
1918int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919{
1920 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922 return -EINVAL;
1923
1924 mutex_lock(&mb4_transfer.lock);
1925
1926 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927 cpu_relax();
1928
1929 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932 writeb(DDR_PWR_STATE_ON,
1933 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937 wait_for_completion(&mb4_transfer.work);
1938
1939 mutex_unlock(&mb4_transfer.lock);
1940
1941 return 0;
1942}
1943
1944int db8500_prcmu_config_hotdog(u8 threshold)
1945{
1946 mutex_lock(&mb4_transfer.lock);
1947
1948 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949 cpu_relax();
1950
1951 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955 wait_for_completion(&mb4_transfer.work);
1956
1957 mutex_unlock(&mb4_transfer.lock);
1958
1959 return 0;
1960}
1961
1962int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963{
1964 mutex_lock(&mb4_transfer.lock);
1965
1966 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967 cpu_relax();
1968
1969 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976 wait_for_completion(&mb4_transfer.work);
1977
1978 mutex_unlock(&mb4_transfer.lock);
1979
1980 return 0;
1981}
1982EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984static int config_hot_period(u16 val)
1985{
1986 mutex_lock(&mb4_transfer.lock);
1987
1988 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989 cpu_relax();
1990
1991 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995 wait_for_completion(&mb4_transfer.work);
1996
1997 mutex_unlock(&mb4_transfer.lock);
1998
1999 return 0;
2000}
2001
2002int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003{
2004 if (cycles32k == 0xFFFF)
2005 return -EINVAL;
2006
2007 return config_hot_period(cycles32k);
2008}
2009EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011int db8500_prcmu_stop_temp_sense(void)
2012{
2013 return config_hot_period(0xFFFF);
2014}
2015EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018{
2019
2020 mutex_lock(&mb4_transfer.lock);
2021
2022 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023 cpu_relax();
2024
2025 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033 wait_for_completion(&mb4_transfer.work);
2034
2035 mutex_unlock(&mb4_transfer.lock);
2036
2037 return 0;
2038
2039}
2040
2041int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042{
2043 BUG_ON(num == 0 || num > 0xf);
2044 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046 A9WDOG_AUTO_OFF_DIS);
2047}
2048EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050int db8500_prcmu_enable_a9wdog(u8 id)
2051{
2052 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053}
2054EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056int db8500_prcmu_disable_a9wdog(u8 id)
2057{
2058 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059}
2060EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062int db8500_prcmu_kick_a9wdog(u8 id)
2063{
2064 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065}
2066EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068/*
2069 * timeout is 28 bit, in ms.
2070 */
2071int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072{
2073 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074 (id & A9WDOG_ID_MASK) |
2075 /*
2076 * Put the lowest 28 bits of timeout at
2077 * offset 4. Four first bits are used for id.
2078 */
2079 (u8)((timeout << 4) & 0xf0),
2080 (u8)((timeout >> 4) & 0xff),
2081 (u8)((timeout >> 12) & 0xff),
2082 (u8)((timeout >> 20) & 0xff));
2083}
2084EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086/**
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave: The I2C slave address.
2089 * @reg: The (start) register address.
2090 * @value: The read out value(s).
2091 * @size: The number of registers to read.
2092 *
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2095 */
2096int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097{
2098 int r;
2099
2100 if (size != 1)
2101 return -EINVAL;
2102
2103 mutex_lock(&mb5_transfer.lock);
2104
2105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106 cpu_relax();
2107
2108 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116 if (!wait_for_completion_timeout(&mb5_transfer.work,
2117 msecs_to_jiffies(20000))) {
2118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119 __func__);
2120 r = -EIO;
2121 } else {
2122 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123 }
2124
2125 if (!r)
2126 *value = mb5_transfer.ack.value;
2127
2128 mutex_unlock(&mb5_transfer.lock);
2129
2130 return r;
2131}
2132
2133/**
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave: The I2C slave address.
2136 * @reg: The (start) register address.
2137 * @value: The value(s) to write.
2138 * @mask: The mask(s) to use.
2139 * @size: The number of registers to write.
2140 *
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2145 */
2146int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147{
2148 int r;
2149
2150 if (size != 1)
2151 return -EINVAL;
2152
2153 mutex_lock(&mb5_transfer.lock);
2154
2155 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156 cpu_relax();
2157
2158 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166 if (!wait_for_completion_timeout(&mb5_transfer.work,
2167 msecs_to_jiffies(20000))) {
2168 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169 __func__);
2170 r = -EIO;
2171 } else {
2172 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173 }
2174
2175 mutex_unlock(&mb5_transfer.lock);
2176
2177 return r;
2178}
2179
2180/**
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave: The I2C slave address.
2183 * @reg: The (start) register address.
2184 * @value: The value(s) to write.
2185 * @size: The number of registers to write.
2186 *
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2189 */
2190int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191{
2192 u8 mask = ~0;
2193
2194 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195}
2196
2197/**
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199 */
2200int prcmu_ac_wake_req(void)
2201{
2202 u32 val;
2203 int ret = 0;
2204
2205 mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207 val = readl(PRCM_HOSTACCESS_REQ);
2208 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209 goto unlock_and_return;
2210
2211 atomic_set(&ac_wake_req_state, 1);
2212
2213 /*
2214 * Force Modem Wake-up before hostaccess_req ping-pong.
2215 * It prevents Modem to enter in Sleep while acking the hostaccess
2216 * request. The 31us delay has been calculated by HWI.
2217 */
2218 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219 writel(val, PRCM_HOSTACCESS_REQ);
2220
2221 udelay(31);
2222
2223 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224 writel(val, PRCM_HOSTACCESS_REQ);
2225
2226 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227 msecs_to_jiffies(5000))) {
2228 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229 __func__);
2230 ret = -EFAULT;
2231 }
2232
2233unlock_and_return:
2234 mutex_unlock(&mb0_transfer.ac_wake_lock);
2235 return ret;
2236}
2237
2238/**
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240 */
2241void prcmu_ac_sleep_req(void)
2242{
2243 u32 val;
2244
2245 mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247 val = readl(PRCM_HOSTACCESS_REQ);
2248 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249 goto unlock_and_return;
2250
2251 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252 PRCM_HOSTACCESS_REQ);
2253
2254 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255 msecs_to_jiffies(5000))) {
2256 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257 __func__);
2258 }
2259
2260 atomic_set(&ac_wake_req_state, 0);
2261
2262unlock_and_return:
2263 mutex_unlock(&mb0_transfer.ac_wake_lock);
2264}
2265
2266bool db8500_prcmu_is_ac_wake_requested(void)
2267{
2268 return (atomic_read(&ac_wake_req_state) != 0);
2269}
2270
2271/**
2272 * db8500_prcmu_system_reset - System reset
2273 *
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2276 *
2277 * @reset_code: The reason for system reset
2278 */
2279void db8500_prcmu_system_reset(u16 reset_code)
2280{
2281 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282 writel(1, PRCM_APE_SOFTRST);
2283}
2284
2285/**
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287 *
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2289 * last restart.
2290 */
2291u16 db8500_prcmu_get_reset_code(void)
2292{
2293 return readw(tcdm_base + PRCM_SW_RST_REASON);
2294}
2295
2296/**
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298 */
2299void db8500_prcmu_modem_reset(void)
2300{
2301 mutex_lock(&mb1_transfer.lock);
2302
2303 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304 cpu_relax();
2305
2306 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308 wait_for_completion(&mb1_transfer.work);
2309
2310 /*
2311 * No need to check return from PRCMU as modem should go in reset state
2312 * This state is already managed by upper layer
2313 */
2314
2315 mutex_unlock(&mb1_transfer.lock);
2316}
2317
2318static void ack_dbb_wakeup(void)
2319{
2320 unsigned long flags;
2321
2322 spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325 cpu_relax();
2326
2327 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331}
2332
2333static inline void print_unknown_header_warning(u8 n, u8 header)
2334{
2335 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336 header, n);
2337}
2338
2339static bool read_mailbox_0(void)
2340{
2341 bool r;
2342 u32 ev;
2343 unsigned int n;
2344 u8 header;
2345
2346 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347 switch (header) {
2348 case MB0H_WAKEUP_EXE:
2349 case MB0H_WAKEUP_SLEEP:
2350 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352 else
2353 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356 complete(&mb0_transfer.ac_wake_work);
2357 if (ev & WAKEUP_BIT_SYSCLK_OK)
2358 complete(&mb3_transfer.sysclk_work);
2359
2360 ev &= mb0_transfer.req.dbb_irqs;
2361
2362 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363 if (ev & prcmu_irq_bit[n])
2364 generic_handle_domain_irq(db8500_irq_domain, n);
2365 }
2366 r = true;
2367 break;
2368 default:
2369 print_unknown_header_warning(0, header);
2370 r = false;
2371 break;
2372 }
2373 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374 return r;
2375}
2376
2377static bool read_mailbox_1(void)
2378{
2379 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383 PRCM_ACK_MB1_CURRENT_APE_OPP);
2384 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387 complete(&mb1_transfer.work);
2388 return false;
2389}
2390
2391static bool read_mailbox_2(void)
2392{
2393 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395 complete(&mb2_transfer.work);
2396 return false;
2397}
2398
2399static bool read_mailbox_3(void)
2400{
2401 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402 return false;
2403}
2404
2405static bool read_mailbox_4(void)
2406{
2407 u8 header;
2408 bool do_complete = true;
2409
2410 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411 switch (header) {
2412 case MB4H_MEM_ST:
2413 case MB4H_HOTDOG:
2414 case MB4H_HOTMON:
2415 case MB4H_HOT_PERIOD:
2416 case MB4H_A9WDOG_CONF:
2417 case MB4H_A9WDOG_EN:
2418 case MB4H_A9WDOG_DIS:
2419 case MB4H_A9WDOG_LOAD:
2420 case MB4H_A9WDOG_KICK:
2421 break;
2422 default:
2423 print_unknown_header_warning(4, header);
2424 do_complete = false;
2425 break;
2426 }
2427
2428 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430 if (do_complete)
2431 complete(&mb4_transfer.work);
2432
2433 return false;
2434}
2435
2436static bool read_mailbox_5(void)
2437{
2438 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441 complete(&mb5_transfer.work);
2442 return false;
2443}
2444
2445static bool read_mailbox_6(void)
2446{
2447 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448 return false;
2449}
2450
2451static bool read_mailbox_7(void)
2452{
2453 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454 return false;
2455}
2456
2457static bool (* const read_mailbox[NUM_MB])(void) = {
2458 read_mailbox_0,
2459 read_mailbox_1,
2460 read_mailbox_2,
2461 read_mailbox_3,
2462 read_mailbox_4,
2463 read_mailbox_5,
2464 read_mailbox_6,
2465 read_mailbox_7
2466};
2467
2468static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469{
2470 u32 bits;
2471 u8 n;
2472 irqreturn_t r;
2473
2474 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475 if (unlikely(!bits))
2476 return IRQ_NONE;
2477
2478 r = IRQ_HANDLED;
2479 for (n = 0; bits; n++) {
2480 if (bits & MBOX_BIT(n)) {
2481 bits -= MBOX_BIT(n);
2482 if (read_mailbox[n]())
2483 r = IRQ_WAKE_THREAD;
2484 }
2485 }
2486 return r;
2487}
2488
2489static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490{
2491 ack_dbb_wakeup();
2492 return IRQ_HANDLED;
2493}
2494
2495static void prcmu_mask_work(struct work_struct *work)
2496{
2497 unsigned long flags;
2498
2499 spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501 config_wakeups();
2502
2503 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504}
2505
2506static void prcmu_irq_mask(struct irq_data *d)
2507{
2508 unsigned long flags;
2509
2510 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517 schedule_work(&mb0_transfer.mask_work);
2518}
2519
2520static void prcmu_irq_unmask(struct irq_data *d)
2521{
2522 unsigned long flags;
2523
2524 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531 schedule_work(&mb0_transfer.mask_work);
2532}
2533
2534static void noop(struct irq_data *d)
2535{
2536}
2537
2538static struct irq_chip prcmu_irq_chip = {
2539 .name = "prcmu",
2540 .irq_disable = prcmu_irq_mask,
2541 .irq_ack = noop,
2542 .irq_mask = prcmu_irq_mask,
2543 .irq_unmask = prcmu_irq_unmask,
2544};
2545
2546static char *fw_project_name(u32 project)
2547{
2548 switch (project) {
2549 case PRCMU_FW_PROJECT_U8500:
2550 return "U8500";
2551 case PRCMU_FW_PROJECT_U8400:
2552 return "U8400";
2553 case PRCMU_FW_PROJECT_U9500:
2554 return "U9500";
2555 case PRCMU_FW_PROJECT_U8500_MBB:
2556 return "U8500 MBB";
2557 case PRCMU_FW_PROJECT_U8500_C1:
2558 return "U8500 C1";
2559 case PRCMU_FW_PROJECT_U8500_C2:
2560 return "U8500 C2";
2561 case PRCMU_FW_PROJECT_U8500_C3:
2562 return "U8500 C3";
2563 case PRCMU_FW_PROJECT_U8500_C4:
2564 return "U8500 C4";
2565 case PRCMU_FW_PROJECT_U9500_MBL:
2566 return "U9500 MBL";
2567 case PRCMU_FW_PROJECT_U8500_SSG1:
2568 return "U8500 Samsung 1";
2569 case PRCMU_FW_PROJECT_U8500_MBL2:
2570 return "U8500 MBL2";
2571 case PRCMU_FW_PROJECT_U8520:
2572 return "U8520 MBL";
2573 case PRCMU_FW_PROJECT_U8420:
2574 return "U8420";
2575 case PRCMU_FW_PROJECT_U8500_SSG2:
2576 return "U8500 Samsung 2";
2577 case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578 return "U8420-sysclk";
2579 case PRCMU_FW_PROJECT_U9540:
2580 return "U9540";
2581 case PRCMU_FW_PROJECT_A9420:
2582 return "A9420";
2583 case PRCMU_FW_PROJECT_L8540:
2584 return "L8540";
2585 case PRCMU_FW_PROJECT_L8580:
2586 return "L8580";
2587 default:
2588 return "Unknown";
2589 }
2590}
2591
2592static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593 irq_hw_number_t hwirq)
2594{
2595 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596 handle_simple_irq);
2597
2598 return 0;
2599}
2600
2601static const struct irq_domain_ops db8500_irq_ops = {
2602 .map = db8500_irq_map,
2603 .xlate = irq_domain_xlate_twocell,
2604};
2605
2606static int db8500_irq_init(struct device_node *np)
2607{
2608 int i;
2609
2610 db8500_irq_domain = irq_domain_add_simple(
2611 np, NUM_PRCMU_WAKEUPS, 0,
2612 &db8500_irq_ops, NULL);
2613
2614 if (!db8500_irq_domain) {
2615 pr_err("Failed to create irqdomain\n");
2616 return -ENOSYS;
2617 }
2618
2619 /* All wakeups will be used, so create mappings for all */
2620 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621 irq_create_mapping(db8500_irq_domain, i);
2622
2623 return 0;
2624}
2625
2626static void dbx500_fw_version_init(struct device_node *np)
2627{
2628 void __iomem *tcpm_base;
2629 u32 version;
2630
2631 tcpm_base = of_iomap(np, 1);
2632 if (!tcpm_base) {
2633 pr_err("no prcmu tcpm mem region provided\n");
2634 return;
2635 }
2636
2637 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638 fw_info.version.project = (version & 0xFF);
2639 fw_info.version.api_version = (version >> 8) & 0xFF;
2640 fw_info.version.func_version = (version >> 16) & 0xFF;
2641 fw_info.version.errata = (version >> 24) & 0xFF;
2642 strscpy(fw_info.version.project_name,
2643 fw_project_name(fw_info.version.project),
2644 sizeof(fw_info.version.project_name));
2645 fw_info.valid = true;
2646 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647 fw_info.version.project_name,
2648 fw_info.version.project,
2649 fw_info.version.api_version,
2650 fw_info.version.func_version,
2651 fw_info.version.errata);
2652 iounmap(tcpm_base);
2653}
2654
2655void __init db8500_prcmu_early_init(void)
2656{
2657 /*
2658 * This is a temporary remap to bring up the clocks. It is
2659 * subsequently replaces with a real remap. After the merge of
2660 * the mailbox subsystem all of this early code goes away, and the
2661 * clock driver can probe independently. An early initcall will
2662 * still be needed, but it can be diverted into drivers/clk/ux500.
2663 */
2664 struct device_node *np;
2665
2666 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667 prcmu_base = of_iomap(np, 0);
2668 if (!prcmu_base) {
2669 of_node_put(np);
2670 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671 return;
2672 }
2673 dbx500_fw_version_init(np);
2674 of_node_put(np);
2675
2676 spin_lock_init(&mb0_transfer.lock);
2677 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678 mutex_init(&mb0_transfer.ac_wake_lock);
2679 init_completion(&mb0_transfer.ac_wake_work);
2680 mutex_init(&mb1_transfer.lock);
2681 init_completion(&mb1_transfer.work);
2682 mb1_transfer.ape_opp = APE_NO_CHANGE;
2683 mutex_init(&mb2_transfer.lock);
2684 init_completion(&mb2_transfer.work);
2685 spin_lock_init(&mb2_transfer.auto_pm_lock);
2686 spin_lock_init(&mb3_transfer.lock);
2687 mutex_init(&mb3_transfer.sysclk_lock);
2688 init_completion(&mb3_transfer.sysclk_work);
2689 mutex_init(&mb4_transfer.lock);
2690 init_completion(&mb4_transfer.work);
2691 mutex_init(&mb5_transfer.lock);
2692 init_completion(&mb5_transfer.work);
2693
2694 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695}
2696
2697static void init_prcm_registers(void)
2698{
2699 u32 val;
2700
2701 val = readl(PRCM_A9PL_FORCE_CLKEN);
2702 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705}
2706
2707/*
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 */
2710static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711 REGULATOR_SUPPLY("v-ape", NULL),
2712 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717 /* "v-mmc" changed to "vcore" in the mainline kernel */
2718 REGULATOR_SUPPLY("vcore", "sdi0"),
2719 REGULATOR_SUPPLY("vcore", "sdi1"),
2720 REGULATOR_SUPPLY("vcore", "sdi2"),
2721 REGULATOR_SUPPLY("vcore", "sdi3"),
2722 REGULATOR_SUPPLY("vcore", "sdi4"),
2723 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725 /* "v-uart" changed to "vcore" in the mainline kernel */
2726 REGULATOR_SUPPLY("vcore", "uart0"),
2727 REGULATOR_SUPPLY("vcore", "uart1"),
2728 REGULATOR_SUPPLY("vcore", "uart2"),
2729 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732};
2733
2734static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736 /* AV8100 regulator */
2737 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738};
2739
2740static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742 REGULATOR_SUPPLY("vsupply", "mcde"),
2743};
2744
2745/* SVA MMDSP regulator switch */
2746static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748};
2749
2750/* SVA pipe regulator switch */
2751static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753};
2754
2755/* SIA MMDSP regulator switch */
2756static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758};
2759
2760/* SIA pipe regulator switch */
2761static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763};
2764
2765static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766 REGULATOR_SUPPLY("v-mali", NULL),
2767};
2768
2769/* ESRAM1 and 2 regulator switch */
2770static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771 REGULATOR_SUPPLY("esram12", "cm_control"),
2772};
2773
2774/* ESRAM3 and 4 regulator switch */
2775static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776 REGULATOR_SUPPLY("v-esram34", "mcde"),
2777 REGULATOR_SUPPLY("esram34", "cm_control"),
2778 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779};
2780
2781static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782 [DB8500_REGULATOR_VAPE] = {
2783 .constraints = {
2784 .name = "db8500-vape",
2785 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786 .always_on = true,
2787 },
2788 .consumer_supplies = db8500_vape_consumers,
2789 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790 },
2791 [DB8500_REGULATOR_VARM] = {
2792 .constraints = {
2793 .name = "db8500-varm",
2794 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795 },
2796 },
2797 [DB8500_REGULATOR_VMODEM] = {
2798 .constraints = {
2799 .name = "db8500-vmodem",
2800 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801 },
2802 },
2803 [DB8500_REGULATOR_VPLL] = {
2804 .constraints = {
2805 .name = "db8500-vpll",
2806 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807 },
2808 },
2809 [DB8500_REGULATOR_VSMPS1] = {
2810 .constraints = {
2811 .name = "db8500-vsmps1",
2812 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813 },
2814 },
2815 [DB8500_REGULATOR_VSMPS2] = {
2816 .constraints = {
2817 .name = "db8500-vsmps2",
2818 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819 },
2820 .consumer_supplies = db8500_vsmps2_consumers,
2821 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822 },
2823 [DB8500_REGULATOR_VSMPS3] = {
2824 .constraints = {
2825 .name = "db8500-vsmps3",
2826 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827 },
2828 },
2829 [DB8500_REGULATOR_VRF1] = {
2830 .constraints = {
2831 .name = "db8500-vrf1",
2832 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833 },
2834 },
2835 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836 /* dependency to u8500-vape is handled outside regulator framework */
2837 .constraints = {
2838 .name = "db8500-sva-mmdsp",
2839 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840 },
2841 .consumer_supplies = db8500_svammdsp_consumers,
2842 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843 },
2844 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845 .constraints = {
2846 /* "ret" means "retention" */
2847 .name = "db8500-sva-mmdsp-ret",
2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849 },
2850 },
2851 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852 /* dependency to u8500-vape is handled outside regulator framework */
2853 .constraints = {
2854 .name = "db8500-sva-pipe",
2855 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 },
2857 .consumer_supplies = db8500_svapipe_consumers,
2858 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859 },
2860 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861 /* dependency to u8500-vape is handled outside regulator framework */
2862 .constraints = {
2863 .name = "db8500-sia-mmdsp",
2864 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 },
2866 .consumer_supplies = db8500_siammdsp_consumers,
2867 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868 },
2869 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870 .constraints = {
2871 .name = "db8500-sia-mmdsp-ret",
2872 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873 },
2874 },
2875 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876 /* dependency to u8500-vape is handled outside regulator framework */
2877 .constraints = {
2878 .name = "db8500-sia-pipe",
2879 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880 },
2881 .consumer_supplies = db8500_siapipe_consumers,
2882 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883 },
2884 [DB8500_REGULATOR_SWITCH_SGA] = {
2885 .supply_regulator = "db8500-vape",
2886 .constraints = {
2887 .name = "db8500-sga",
2888 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889 },
2890 .consumer_supplies = db8500_sga_consumers,
2891 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893 },
2894 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895 .supply_regulator = "db8500-vape",
2896 .constraints = {
2897 .name = "db8500-b2r2-mcde",
2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899 },
2900 .consumer_supplies = db8500_b2r2_mcde_consumers,
2901 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902 },
2903 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904 /*
2905 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906 * no need to hold Vape
2907 */
2908 .constraints = {
2909 .name = "db8500-esram12",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 },
2912 .consumer_supplies = db8500_esram12_consumers,
2913 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914 },
2915 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916 .constraints = {
2917 .name = "db8500-esram12-ret",
2918 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919 },
2920 },
2921 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922 /*
2923 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924 * no need to hold Vape
2925 */
2926 .constraints = {
2927 .name = "db8500-esram34",
2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 },
2930 .consumer_supplies = db8500_esram34_consumers,
2931 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932 },
2933 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934 .constraints = {
2935 .name = "db8500-esram34-ret",
2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 },
2938 },
2939};
2940
2941static const struct mfd_cell common_prcmu_devs[] = {
2942 MFD_CELL_NAME("db8500_wdt"),
2943 MFD_CELL_NAME("db8500-cpuidle"),
2944};
2945
2946static const struct mfd_cell db8500_prcmu_devs[] = {
2947 MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948 &db8500_regulators, sizeof(db8500_regulators), 0,
2949 "stericsson,db8500-prcmu-regulator"),
2950 MFD_CELL_OF("db8500-thermal",
2951 NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
2952};
2953
2954static int db8500_prcmu_register_ab8500(struct device *parent)
2955{
2956 struct device_node *np;
2957 struct resource ab850x_resource;
2958 const struct mfd_cell ab8500_cell = {
2959 .name = "ab8500-core",
2960 .of_compatible = "stericsson,ab8500",
2961 .id = AB8500_VERSION_AB8500,
2962 .resources = &ab850x_resource,
2963 .num_resources = 1,
2964 };
2965 const struct mfd_cell ab8505_cell = {
2966 .name = "ab8505-core",
2967 .of_compatible = "stericsson,ab8505",
2968 .id = AB8500_VERSION_AB8505,
2969 .resources = &ab850x_resource,
2970 .num_resources = 1,
2971 };
2972 const struct mfd_cell *ab850x_cell;
2973
2974 if (!parent->of_node)
2975 return -ENODEV;
2976
2977 /* Look up the device node, sneak the IRQ out of it */
2978 for_each_child_of_node(parent->of_node, np) {
2979 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980 ab850x_cell = &ab8500_cell;
2981 break;
2982 }
2983 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984 ab850x_cell = &ab8505_cell;
2985 break;
2986 }
2987 }
2988 if (!np) {
2989 dev_info(parent, "could not find AB850X node in the device tree\n");
2990 return -ENODEV;
2991 }
2992 of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994 return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995}
2996
2997static int db8500_prcmu_probe(struct platform_device *pdev)
2998{
2999 struct device_node *np = pdev->dev.of_node;
3000 int irq = 0, err = 0;
3001 struct resource *res;
3002
3003 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004 if (!res) {
3005 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006 return -EINVAL;
3007 }
3008 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009 if (!prcmu_base) {
3010 dev_err(&pdev->dev,
3011 "failed to ioremap prcmu register memory\n");
3012 return -ENOMEM;
3013 }
3014 init_prcm_registers();
3015 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016 if (!res) {
3017 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018 return -EINVAL;
3019 }
3020 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021 resource_size(res));
3022 if (!tcdm_base) {
3023 dev_err(&pdev->dev,
3024 "failed to ioremap prcmu-tcdm register memory\n");
3025 return -ENOMEM;
3026 }
3027
3028 /* Clean up the mailbox interrupts after pre-kernel code. */
3029 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031 irq = platform_get_irq(pdev, 0);
3032 if (irq <= 0)
3033 return irq;
3034
3035 err = request_threaded_irq(irq, prcmu_irq_handler,
3036 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037 if (err < 0) {
3038 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039 return err;
3040 }
3041
3042 db8500_irq_init(np);
3043
3044 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
3046 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048 if (err) {
3049 pr_err("prcmu: Failed to add subdevices\n");
3050 return err;
3051 }
3052
3053 /* TODO: Remove restriction when clk definitions are available. */
3054 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057 db8500_irq_domain);
3058 if (err) {
3059 mfd_remove_devices(&pdev->dev);
3060 pr_err("prcmu: Failed to add subdevices\n");
3061 return err;
3062 }
3063 }
3064
3065 err = db8500_prcmu_register_ab8500(&pdev->dev);
3066 if (err) {
3067 mfd_remove_devices(&pdev->dev);
3068 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069 return err;
3070 }
3071
3072 pr_info("DB8500 PRCMU initialized\n");
3073 return err;
3074}
3075static const struct of_device_id db8500_prcmu_match[] = {
3076 { .compatible = "stericsson,db8500-prcmu"},
3077 { },
3078};
3079
3080static struct platform_driver db8500_prcmu_driver = {
3081 .driver = {
3082 .name = "db8500-prcmu",
3083 .of_match_table = db8500_prcmu_match,
3084 },
3085 .probe = db8500_prcmu_probe,
3086};
3087
3088static int __init db8500_prcmu_init(void)
3089{
3090 return platform_driver_register(&db8500_prcmu_driver);
3091}
3092core_initcall(db8500_prcmu_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * DB8500 PRCM Unit driver
4 *
5 * Copyright (C) STMicroelectronics 2009
6 * Copyright (C) ST-Ericsson SA 2010
7 *
8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
11 *
12 * U8500 PRCM Unit interface driver
13 */
14#include <linux/init.h>
15#include <linux/export.h>
16#include <linux/kernel.h>
17#include <linux/delay.h>
18#include <linux/errno.h>
19#include <linux/err.h>
20#include <linux/spinlock.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/mutex.h>
24#include <linux/completion.h>
25#include <linux/irq.h>
26#include <linux/jiffies.h>
27#include <linux/bitops.h>
28#include <linux/fs.h>
29#include <linux/of.h>
30#include <linux/of_irq.h>
31#include <linux/platform_device.h>
32#include <linux/uaccess.h>
33#include <linux/mfd/core.h>
34#include <linux/mfd/dbx500-prcmu.h>
35#include <linux/mfd/abx500/ab8500.h>
36#include <linux/regulator/db8500-prcmu.h>
37#include <linux/regulator/machine.h>
38#include <linux/platform_data/ux500_wdt.h>
39#include "dbx500-prcmu-regs.h"
40
41/* Index of different voltages to be used when accessing AVSData */
42#define PRCM_AVS_BASE 0x2FC
43#define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
44#define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
45#define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
46#define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
47#define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
48#define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
49#define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
50#define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
51#define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
52#define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
53#define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
54#define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
55#define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56
57#define PRCM_AVS_VOLTAGE 0
58#define PRCM_AVS_VOLTAGE_MASK 0x3f
59#define PRCM_AVS_ISSLOWSTARTUP 6
60#define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
61#define PRCM_AVS_ISMODEENABLE 7
62#define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63
64#define PRCM_BOOT_STATUS 0xFFF
65#define PRCM_ROMCODE_A2P 0xFFE
66#define PRCM_ROMCODE_P2A 0xFFD
67#define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68
69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70
71#define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
72#define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
73#define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
74#define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
75#define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
76#define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
77#define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
78#define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
79
80/* Req Mailboxes */
81#define PRCM_REQ_MB0 0xFDC /* 12 bytes */
82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
84#define PRCM_REQ_MB3 0xE4C /* 372 bytes */
85#define PRCM_REQ_MB4 0xE48 /* 4 bytes */
86#define PRCM_REQ_MB5 0xE44 /* 4 bytes */
87
88/* Ack Mailboxes */
89#define PRCM_ACK_MB0 0xE08 /* 52 bytes */
90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95
96/* Mailbox 0 headers */
97#define MB0H_POWER_STATE_TRANS 0
98#define MB0H_CONFIG_WAKEUPS_EXE 1
99#define MB0H_READ_WAKEUP_ACK 3
100#define MB0H_CONFIG_WAKEUPS_SLEEP 4
101
102#define MB0H_WAKEUP_EXE 2
103#define MB0H_WAKEUP_SLEEP 5
104
105/* Mailbox 0 REQs */
106#define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
107#define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
108#define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
109#define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
110#define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
111#define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
112
113/* Mailbox 0 ACKs */
114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
115#define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
116#define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
117#define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
118#define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
119#define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121
122/* Mailbox 1 headers */
123#define MB1H_ARM_APE_OPP 0x0
124#define MB1H_RESET_MODEM 0x2
125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127#define MB1H_RELEASE_USB_WAKEUP 0x5
128#define MB1H_PLL_ON_OFF 0x6
129
130/* Mailbox 1 Requests */
131#define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
132#define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
133#define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
134#define PLL_SOC0_OFF 0x1
135#define PLL_SOC0_ON 0x2
136#define PLL_SOC1_OFF 0x4
137#define PLL_SOC1_ON 0x8
138
139/* Mailbox 1 ACKs */
140#define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
141#define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
143#define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144
145/* Mailbox 2 headers */
146#define MB2H_DPS 0x0
147#define MB2H_AUTO_PWR 0x1
148
149/* Mailbox 2 REQs */
150#define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
151#define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
152#define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
153#define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
154#define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
155#define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
156#define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
157#define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
158#define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
159#define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
160
161/* Mailbox 2 ACKs */
162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163#define HWACC_PWR_ST_OK 0xFE
164
165/* Mailbox 3 headers */
166#define MB3H_ANC 0x0
167#define MB3H_SIDETONE 0x1
168#define MB3H_SYSCLK 0xE
169
170/* Mailbox 3 Requests */
171#define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
172#define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
173#define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
174#define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
177#define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178
179/* Mailbox 4 headers */
180#define MB4H_DDR_INIT 0x0
181#define MB4H_MEM_ST 0x1
182#define MB4H_HOTDOG 0x12
183#define MB4H_HOTMON 0x13
184#define MB4H_HOT_PERIOD 0x14
185#define MB4H_A9WDOG_CONF 0x16
186#define MB4H_A9WDOG_EN 0x17
187#define MB4H_A9WDOG_DIS 0x18
188#define MB4H_A9WDOG_LOAD 0x19
189#define MB4H_A9WDOG_KICK 0x20
190
191/* Mailbox 4 Requests */
192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
194#define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
196#define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
197#define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
198#define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
199#define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
200#define HOTMON_CONFIG_LOW BIT(0)
201#define HOTMON_CONFIG_HIGH BIT(1)
202#define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
203#define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
204#define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
205#define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
206#define A9WDOG_AUTO_OFF_EN BIT(7)
207#define A9WDOG_AUTO_OFF_DIS 0
208#define A9WDOG_ID_MASK 0xf
209
210/* Mailbox 5 Requests */
211#define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
212#define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
213#define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
214#define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217#define PRCMU_I2C_STOP_EN BIT(3)
218
219/* Mailbox 5 ACKs */
220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
221#define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
222#define I2C_WR_OK 0x1
223#define I2C_RD_OK 0x2
224
225#define NUM_MB 8
226#define MBOX_BIT BIT
227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228
229/*
230 * Wakeups/IRQs
231 */
232
233#define WAKEUP_BIT_RTC BIT(0)
234#define WAKEUP_BIT_RTT0 BIT(1)
235#define WAKEUP_BIT_RTT1 BIT(2)
236#define WAKEUP_BIT_HSI0 BIT(3)
237#define WAKEUP_BIT_HSI1 BIT(4)
238#define WAKEUP_BIT_CA_WAKE BIT(5)
239#define WAKEUP_BIT_USB BIT(6)
240#define WAKEUP_BIT_ABB BIT(7)
241#define WAKEUP_BIT_ABB_FIFO BIT(8)
242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
243#define WAKEUP_BIT_CA_SLEEP BIT(10)
244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246#define WAKEUP_BIT_ANC_OK BIT(13)
247#define WAKEUP_BIT_SW_ERROR BIT(14)
248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249#define WAKEUP_BIT_ARM BIT(17)
250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253#define WAKEUP_BIT_GPIO0 BIT(23)
254#define WAKEUP_BIT_GPIO1 BIT(24)
255#define WAKEUP_BIT_GPIO2 BIT(25)
256#define WAKEUP_BIT_GPIO3 BIT(26)
257#define WAKEUP_BIT_GPIO4 BIT(27)
258#define WAKEUP_BIT_GPIO5 BIT(28)
259#define WAKEUP_BIT_GPIO6 BIT(29)
260#define WAKEUP_BIT_GPIO7 BIT(30)
261#define WAKEUP_BIT_GPIO8 BIT(31)
262
263static struct {
264 bool valid;
265 struct prcmu_fw_version version;
266} fw_info;
267
268static struct irq_domain *db8500_irq_domain;
269
270/*
271 * This vector maps irq numbers to the bits in the bit field used in
272 * communication with the PRCMU firmware.
273 *
274 * The reason for having this is to keep the irq numbers contiguous even though
275 * the bits in the bit field are not. (The bits also have a tendency to move
276 * around, to further complicate matters.)
277 */
278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280
281#define IRQ_PRCMU_RTC 0
282#define IRQ_PRCMU_RTT0 1
283#define IRQ_PRCMU_RTT1 2
284#define IRQ_PRCMU_HSI0 3
285#define IRQ_PRCMU_HSI1 4
286#define IRQ_PRCMU_CA_WAKE 5
287#define IRQ_PRCMU_USB 6
288#define IRQ_PRCMU_ABB 7
289#define IRQ_PRCMU_ABB_FIFO 8
290#define IRQ_PRCMU_ARM 9
291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292#define IRQ_PRCMU_GPIO0 11
293#define IRQ_PRCMU_GPIO1 12
294#define IRQ_PRCMU_GPIO2 13
295#define IRQ_PRCMU_GPIO3 14
296#define IRQ_PRCMU_GPIO4 15
297#define IRQ_PRCMU_GPIO5 16
298#define IRQ_PRCMU_GPIO6 17
299#define IRQ_PRCMU_GPIO7 18
300#define IRQ_PRCMU_GPIO8 19
301#define IRQ_PRCMU_CA_SLEEP 20
302#define IRQ_PRCMU_HOTMON_LOW 21
303#define IRQ_PRCMU_HOTMON_HIGH 22
304#define NUM_PRCMU_WAKEUPS 23
305
306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 IRQ_ENTRY(RTC),
308 IRQ_ENTRY(RTT0),
309 IRQ_ENTRY(RTT1),
310 IRQ_ENTRY(HSI0),
311 IRQ_ENTRY(HSI1),
312 IRQ_ENTRY(CA_WAKE),
313 IRQ_ENTRY(USB),
314 IRQ_ENTRY(ABB),
315 IRQ_ENTRY(ABB_FIFO),
316 IRQ_ENTRY(CA_SLEEP),
317 IRQ_ENTRY(ARM),
318 IRQ_ENTRY(HOTMON_LOW),
319 IRQ_ENTRY(HOTMON_HIGH),
320 IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 IRQ_ENTRY(GPIO0),
322 IRQ_ENTRY(GPIO1),
323 IRQ_ENTRY(GPIO2),
324 IRQ_ENTRY(GPIO3),
325 IRQ_ENTRY(GPIO4),
326 IRQ_ENTRY(GPIO5),
327 IRQ_ENTRY(GPIO6),
328 IRQ_ENTRY(GPIO7),
329 IRQ_ENTRY(GPIO8)
330};
331
332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 WAKEUP_ENTRY(RTC),
336 WAKEUP_ENTRY(RTT0),
337 WAKEUP_ENTRY(RTT1),
338 WAKEUP_ENTRY(HSI0),
339 WAKEUP_ENTRY(HSI1),
340 WAKEUP_ENTRY(USB),
341 WAKEUP_ENTRY(ABB),
342 WAKEUP_ENTRY(ABB_FIFO),
343 WAKEUP_ENTRY(ARM)
344};
345
346/*
347 * mb0_transfer - state needed for mailbox 0 communication.
348 * @lock: The transaction lock.
349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * the request data.
351 * @mask_work: Work structure used for (un)masking wakeup interrupts.
352 * @req: Request data that need to persist between requests.
353 */
354static struct {
355 spinlock_t lock;
356 spinlock_t dbb_irqs_lock;
357 struct work_struct mask_work;
358 struct mutex ac_wake_lock;
359 struct completion ac_wake_work;
360 struct {
361 u32 dbb_irqs;
362 u32 dbb_wakeups;
363 u32 abb_events;
364 } req;
365} mb0_transfer;
366
367/*
368 * mb1_transfer - state needed for mailbox 1 communication.
369 * @lock: The transaction lock.
370 * @work: The transaction completion structure.
371 * @ape_opp: The current APE OPP.
372 * @ack: Reply ("acknowledge") data.
373 */
374static struct {
375 struct mutex lock;
376 struct completion work;
377 u8 ape_opp;
378 struct {
379 u8 header;
380 u8 arm_opp;
381 u8 ape_opp;
382 u8 ape_voltage_status;
383 } ack;
384} mb1_transfer;
385
386/*
387 * mb2_transfer - state needed for mailbox 2 communication.
388 * @lock: The transaction lock.
389 * @work: The transaction completion structure.
390 * @auto_pm_lock: The autonomous power management configuration lock.
391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392 * @req: Request data that need to persist between requests.
393 * @ack: Reply ("acknowledge") data.
394 */
395static struct {
396 struct mutex lock;
397 struct completion work;
398 spinlock_t auto_pm_lock;
399 bool auto_pm_enabled;
400 struct {
401 u8 status;
402 } ack;
403} mb2_transfer;
404
405/*
406 * mb3_transfer - state needed for mailbox 3 communication.
407 * @lock: The request lock.
408 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
409 * @sysclk_work: Work structure used for sysclk requests.
410 */
411static struct {
412 spinlock_t lock;
413 struct mutex sysclk_lock;
414 struct completion sysclk_work;
415} mb3_transfer;
416
417/*
418 * mb4_transfer - state needed for mailbox 4 communication.
419 * @lock: The transaction lock.
420 * @work: The transaction completion structure.
421 */
422static struct {
423 struct mutex lock;
424 struct completion work;
425} mb4_transfer;
426
427/*
428 * mb5_transfer - state needed for mailbox 5 communication.
429 * @lock: The transaction lock.
430 * @work: The transaction completion structure.
431 * @ack: Reply ("acknowledge") data.
432 */
433static struct {
434 struct mutex lock;
435 struct completion work;
436 struct {
437 u8 status;
438 u8 value;
439 } ack;
440} mb5_transfer;
441
442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443
444/* Spinlocks */
445static DEFINE_SPINLOCK(prcmu_lock);
446static DEFINE_SPINLOCK(clkout_lock);
447
448/* Global var to runtime determine TCDM base for v2 or v1 */
449static __iomem void *tcdm_base;
450static __iomem void *prcmu_base;
451
452struct clk_mgt {
453 u32 offset;
454 u32 pllsw;
455 int branch;
456 bool clk38div;
457};
458
459enum {
460 PLL_RAW,
461 PLL_FIX,
462 PLL_DIV
463};
464
465static DEFINE_SPINLOCK(clk_mgt_lock);
466
467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499};
500
501struct dsiclk {
502 u32 divsel_mask;
503 u32 divsel_shift;
504 u32 divsel;
505};
506
507static struct dsiclk dsiclk[2] = {
508 {
509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 },
513 {
514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 }
518};
519
520struct dsiescclk {
521 u32 en;
522 u32 div_mask;
523 u32 div_shift;
524};
525
526static struct dsiescclk dsiescclk[3] = {
527 {
528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 },
532 {
533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 },
537 {
538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 }
542};
543
544
545/*
546* Used by MCDE to setup all necessary PRCMU registers
547*/
548#define PRCMU_RESET_DSIPLL 0x00004000
549#define PRCMU_UNCLAMP_DSIPLL 0x00400800
550
551#define PRCMU_CLK_PLL_DIV_SHIFT 0
552#define PRCMU_CLK_PLL_SW_SHIFT 5
553#define PRCMU_CLK_38 (1 << 9)
554#define PRCMU_CLK_38_SRC (1 << 10)
555#define PRCMU_CLK_38_DIV (1 << 11)
556
557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
558#define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559
560/* DPI 50000000 Hz */
561#define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563#define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564
565/* D=101, N=1, R=4, SELDIV2=0 */
566#define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567
568#define PRCMU_ENABLE_PLLDSI 0x00000001
569#define PRCMU_DISABLE_PLLDSI 0x00000000
570#define PRCMU_RELEASE_RESET_DSS 0x0000400C
571#define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
572/* ESC clk, div0=1, div1=1, div2=3 */
573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
575#define PRCMU_DSI_RESET_SW 0x00000007
576
577#define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578
579int db8500_prcmu_enable_dsipll(void)
580{
581 int i;
582
583 /* Clear DSIPLL_RESETN */
584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 /* Unclamp DSIPLL in/out */
586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587
588 /* Set DSI PLL FREQ */
589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 /* Enable Escape clocks */
592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593
594 /* Start DSI PLL */
595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 /* Reset DSI PLL */
597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 for (i = 0; i < 10; i++) {
599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 == PRCMU_PLLDSI_LOCKP_LOCKED)
601 break;
602 udelay(100);
603 }
604 /* Set DSIPLL_RESETN */
605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 return 0;
607}
608
609int db8500_prcmu_disable_dsipll(void)
610{
611 /* Disable dsi pll */
612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 /* Disable escapeclock */
614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 return 0;
616}
617
618int db8500_prcmu_set_display_clocks(void)
619{
620 unsigned long flags;
621
622 spin_lock_irqsave(&clk_mgt_lock, flags);
623
624 /* Grab the HW semaphore. */
625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 cpu_relax();
627
628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631
632 /* Release the HW semaphore. */
633 writel(0, PRCM_SEM);
634
635 spin_unlock_irqrestore(&clk_mgt_lock, flags);
636
637 return 0;
638}
639
640u32 db8500_prcmu_read(unsigned int reg)
641{
642 return readl(prcmu_base + reg);
643}
644
645void db8500_prcmu_write(unsigned int reg, u32 value)
646{
647 unsigned long flags;
648
649 spin_lock_irqsave(&prcmu_lock, flags);
650 writel(value, (prcmu_base + reg));
651 spin_unlock_irqrestore(&prcmu_lock, flags);
652}
653
654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655{
656 u32 val;
657 unsigned long flags;
658
659 spin_lock_irqsave(&prcmu_lock, flags);
660 val = readl(prcmu_base + reg);
661 val = ((val & ~mask) | (value & mask));
662 writel(val, (prcmu_base + reg));
663 spin_unlock_irqrestore(&prcmu_lock, flags);
664}
665
666struct prcmu_fw_version *prcmu_get_fw_version(void)
667{
668 return fw_info.valid ? &fw_info.version : NULL;
669}
670
671bool prcmu_has_arm_maxopp(void)
672{
673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675}
676
677/**
678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
679 * @val: Value to be set, i.e. transition requested
680 * Returns: 0 on success, -EINVAL on invalid argument
681 *
682 * This function is used to run the following power state sequences -
683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684 */
685int prcmu_set_rc_a2p(enum romcode_write val)
686{
687 if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 return -EINVAL;
689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 return 0;
691}
692
693/**
694 * prcmu_get_rc_p2a - This function is used to get power state sequences
695 * Returns: the power transition that has last happened
696 *
697 * This function can return the following transitions-
698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699 */
700enum romcode_read prcmu_get_rc_p2a(void)
701{
702 return readb(tcdm_base + PRCM_ROMCODE_P2A);
703}
704
705/**
706 * prcmu_get_current_mode - Return the current XP70 power mode
707 * Returns: Returns the current AP(ARM) power mode: init,
708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709 */
710enum ap_pwrst prcmu_get_xp70_current_state(void)
711{
712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713}
714
715/**
716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
717 * @clkout: The CLKOUT number (0 or 1).
718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
719 * @div: The divider to be applied.
720 *
721 * Configures one of the programmable clock outputs (CLKOUTs).
722 * @div should be in the range [1,63] to request a configuration, or 0 to
723 * inform that the configuration is no longer requested.
724 */
725int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726{
727 static int requests[2];
728 int r = 0;
729 unsigned long flags;
730 u32 val;
731 u32 bits;
732 u32 mask;
733 u32 div_mask;
734
735 BUG_ON(clkout > 1);
736 BUG_ON(div > 63);
737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738
739 if (!div && !requests[clkout])
740 return -EINVAL;
741
742 if (clkout == 0) {
743 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746 (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747 } else {
748 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750 PRCM_CLKOCR_CLK1TYPE);
751 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752 (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753 }
754 bits &= mask;
755
756 spin_lock_irqsave(&clkout_lock, flags);
757
758 val = readl(PRCM_CLKOCR);
759 if (val & div_mask) {
760 if (div) {
761 if ((val & mask) != bits) {
762 r = -EBUSY;
763 goto unlock_and_return;
764 }
765 } else {
766 if ((val & mask & ~div_mask) != bits) {
767 r = -EINVAL;
768 goto unlock_and_return;
769 }
770 }
771 }
772 writel((bits | (val & ~mask)), PRCM_CLKOCR);
773 requests[clkout] += (div ? 1 : -1);
774
775unlock_and_return:
776 spin_unlock_irqrestore(&clkout_lock, flags);
777
778 return r;
779}
780
781int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782{
783 unsigned long flags;
784
785 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786
787 spin_lock_irqsave(&mb0_transfer.lock, flags);
788
789 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790 cpu_relax();
791
792 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795 writeb((keep_ulp_clk ? 1 : 0),
796 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799
800 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801
802 return 0;
803}
804
805u8 db8500_prcmu_get_power_state_result(void)
806{
807 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808}
809
810/* This function should only be called while mb0_transfer.lock is held. */
811static void config_wakeups(void)
812{
813 const u8 header[2] = {
814 MB0H_CONFIG_WAKEUPS_EXE,
815 MB0H_CONFIG_WAKEUPS_SLEEP
816 };
817 static u32 last_dbb_events;
818 static u32 last_abb_events;
819 u32 dbb_events;
820 u32 abb_events;
821 unsigned int i;
822
823 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825
826 abb_events = mb0_transfer.req.abb_events;
827
828 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829 return;
830
831 for (i = 0; i < 2; i++) {
832 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833 cpu_relax();
834 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838 }
839 last_dbb_events = dbb_events;
840 last_abb_events = abb_events;
841}
842
843void db8500_prcmu_enable_wakeups(u32 wakeups)
844{
845 unsigned long flags;
846 u32 bits;
847 int i;
848
849 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850
851 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852 if (wakeups & BIT(i))
853 bits |= prcmu_wakeup_bit[i];
854 }
855
856 spin_lock_irqsave(&mb0_transfer.lock, flags);
857
858 mb0_transfer.req.dbb_wakeups = bits;
859 config_wakeups();
860
861 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862}
863
864void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865{
866 unsigned long flags;
867
868 spin_lock_irqsave(&mb0_transfer.lock, flags);
869
870 mb0_transfer.req.abb_events = abb_events;
871 config_wakeups();
872
873 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874}
875
876void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877{
878 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880 else
881 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882}
883
884/**
885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886 * @opp: The new ARM operating point to which transition is to be made
887 * Returns: 0 on success, non-zero on failure
888 *
889 * This function sets the the operating point of the ARM.
890 */
891int db8500_prcmu_set_arm_opp(u8 opp)
892{
893 int r;
894
895 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896 return -EINVAL;
897
898 r = 0;
899
900 mutex_lock(&mb1_transfer.lock);
901
902 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903 cpu_relax();
904
905 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908
909 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910 wait_for_completion(&mb1_transfer.work);
911
912 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913 (mb1_transfer.ack.arm_opp != opp))
914 r = -EIO;
915
916 mutex_unlock(&mb1_transfer.lock);
917
918 return r;
919}
920
921/**
922 * db8500_prcmu_get_arm_opp - get the current ARM OPP
923 *
924 * Returns: the current ARM OPP
925 */
926int db8500_prcmu_get_arm_opp(void)
927{
928 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929}
930
931/**
932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933 *
934 * Returns: the current DDR OPP
935 */
936int db8500_prcmu_get_ddr_opp(void)
937{
938 return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939}
940
941/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
942static void request_even_slower_clocks(bool enable)
943{
944 u32 clock_reg[] = {
945 PRCM_ACLK_MGT,
946 PRCM_DMACLK_MGT
947 };
948 unsigned long flags;
949 unsigned int i;
950
951 spin_lock_irqsave(&clk_mgt_lock, flags);
952
953 /* Grab the HW semaphore. */
954 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
955 cpu_relax();
956
957 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
958 u32 val;
959 u32 div;
960
961 val = readl(prcmu_base + clock_reg[i]);
962 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
963 if (enable) {
964 if ((div <= 1) || (div > 15)) {
965 pr_err("prcmu: Bad clock divider %d in %s\n",
966 div, __func__);
967 goto unlock_and_return;
968 }
969 div <<= 1;
970 } else {
971 if (div <= 2)
972 goto unlock_and_return;
973 div >>= 1;
974 }
975 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
976 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
977 writel(val, prcmu_base + clock_reg[i]);
978 }
979
980unlock_and_return:
981 /* Release the HW semaphore. */
982 writel(0, PRCM_SEM);
983
984 spin_unlock_irqrestore(&clk_mgt_lock, flags);
985}
986
987/**
988 * db8500_set_ape_opp - set the appropriate APE OPP
989 * @opp: The new APE operating point to which transition is to be made
990 * Returns: 0 on success, non-zero on failure
991 *
992 * This function sets the operating point of the APE.
993 */
994int db8500_prcmu_set_ape_opp(u8 opp)
995{
996 int r = 0;
997
998 if (opp == mb1_transfer.ape_opp)
999 return 0;
1000
1001 mutex_lock(&mb1_transfer.lock);
1002
1003 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1004 request_even_slower_clocks(false);
1005
1006 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1007 goto skip_message;
1008
1009 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1010 cpu_relax();
1011
1012 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1014 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1015 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1016
1017 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1018 wait_for_completion(&mb1_transfer.work);
1019
1020 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1021 (mb1_transfer.ack.ape_opp != opp))
1022 r = -EIO;
1023
1024skip_message:
1025 if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1026 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1027 request_even_slower_clocks(true);
1028 if (!r)
1029 mb1_transfer.ape_opp = opp;
1030
1031 mutex_unlock(&mb1_transfer.lock);
1032
1033 return r;
1034}
1035
1036/**
1037 * db8500_prcmu_get_ape_opp - get the current APE OPP
1038 *
1039 * Returns: the current APE OPP
1040 */
1041int db8500_prcmu_get_ape_opp(void)
1042{
1043 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1044}
1045
1046/**
1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1048 * @enable: true to request the higher voltage, false to drop a request.
1049 *
1050 * Calls to this function to enable and disable requests must be balanced.
1051 */
1052int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1053{
1054 int r = 0;
1055 u8 header;
1056 static unsigned int requests;
1057
1058 mutex_lock(&mb1_transfer.lock);
1059
1060 if (enable) {
1061 if (0 != requests++)
1062 goto unlock_and_return;
1063 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1064 } else {
1065 if (requests == 0) {
1066 r = -EIO;
1067 goto unlock_and_return;
1068 } else if (1 != requests--) {
1069 goto unlock_and_return;
1070 }
1071 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1072 }
1073
1074 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1075 cpu_relax();
1076
1077 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1078
1079 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1080 wait_for_completion(&mb1_transfer.work);
1081
1082 if ((mb1_transfer.ack.header != header) ||
1083 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1084 r = -EIO;
1085
1086unlock_and_return:
1087 mutex_unlock(&mb1_transfer.lock);
1088
1089 return r;
1090}
1091
1092/**
1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094 *
1095 * This function releases the power state requirements of a USB wakeup.
1096 */
1097int prcmu_release_usb_wakeup_state(void)
1098{
1099 int r = 0;
1100
1101 mutex_lock(&mb1_transfer.lock);
1102
1103 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1104 cpu_relax();
1105
1106 writeb(MB1H_RELEASE_USB_WAKEUP,
1107 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1108
1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1110 wait_for_completion(&mb1_transfer.work);
1111
1112 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1113 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1114 r = -EIO;
1115
1116 mutex_unlock(&mb1_transfer.lock);
1117
1118 return r;
1119}
1120
1121static int request_pll(u8 clock, bool enable)
1122{
1123 int r = 0;
1124
1125 if (clock == PRCMU_PLLSOC0)
1126 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1127 else if (clock == PRCMU_PLLSOC1)
1128 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1129 else
1130 return -EINVAL;
1131
1132 mutex_lock(&mb1_transfer.lock);
1133
1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 cpu_relax();
1136
1137 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1139
1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1141 wait_for_completion(&mb1_transfer.work);
1142
1143 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1144 r = -EIO;
1145
1146 mutex_unlock(&mb1_transfer.lock);
1147
1148 return r;
1149}
1150
1151/**
1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1153 * @epod_id: The EPOD to set
1154 * @epod_state: The new EPOD state
1155 *
1156 * This function sets the state of a EPOD (power domain). It may not be called
1157 * from interrupt context.
1158 */
1159int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1160{
1161 int r = 0;
1162 bool ram_retention = false;
1163 int i;
1164
1165 /* check argument */
1166 BUG_ON(epod_id >= NUM_EPOD_ID);
1167
1168 /* set flag if retention is possible */
1169 switch (epod_id) {
1170 case EPOD_ID_SVAMMDSP:
1171 case EPOD_ID_SIAMMDSP:
1172 case EPOD_ID_ESRAM12:
1173 case EPOD_ID_ESRAM34:
1174 ram_retention = true;
1175 break;
1176 }
1177
1178 /* check argument */
1179 BUG_ON(epod_state > EPOD_STATE_ON);
1180 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1181
1182 /* get lock */
1183 mutex_lock(&mb2_transfer.lock);
1184
1185 /* wait for mailbox */
1186 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1187 cpu_relax();
1188
1189 /* fill in mailbox */
1190 for (i = 0; i < NUM_EPOD_ID; i++)
1191 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1192 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1193
1194 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1195
1196 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1197
1198 /*
1199 * The current firmware version does not handle errors correctly,
1200 * and we cannot recover if there is an error.
1201 * This is expected to change when the firmware is updated.
1202 */
1203 if (!wait_for_completion_timeout(&mb2_transfer.work,
1204 msecs_to_jiffies(20000))) {
1205 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1206 __func__);
1207 r = -EIO;
1208 goto unlock_and_return;
1209 }
1210
1211 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1212 r = -EIO;
1213
1214unlock_and_return:
1215 mutex_unlock(&mb2_transfer.lock);
1216 return r;
1217}
1218
1219/**
1220 * prcmu_configure_auto_pm - Configure autonomous power management.
1221 * @sleep: Configuration for ApSleep.
1222 * @idle: Configuration for ApIdle.
1223 */
1224void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1225 struct prcmu_auto_pm_config *idle)
1226{
1227 u32 sleep_cfg;
1228 u32 idle_cfg;
1229 unsigned long flags;
1230
1231 BUG_ON((sleep == NULL) || (idle == NULL));
1232
1233 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1234 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1235 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1236 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1237 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1238 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1239
1240 idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1241 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1242 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1243 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1244 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1245 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1246
1247 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1248
1249 /*
1250 * The autonomous power management configuration is done through
1251 * fields in mailbox 2, but these fields are only used as shared
1252 * variables - i.e. there is no need to send a message.
1253 */
1254 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1255 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1256
1257 mb2_transfer.auto_pm_enabled =
1258 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1261 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1262
1263 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1264}
1265EXPORT_SYMBOL(prcmu_configure_auto_pm);
1266
1267bool prcmu_is_auto_pm_enabled(void)
1268{
1269 return mb2_transfer.auto_pm_enabled;
1270}
1271
1272static int request_sysclk(bool enable)
1273{
1274 int r;
1275 unsigned long flags;
1276
1277 r = 0;
1278
1279 mutex_lock(&mb3_transfer.sysclk_lock);
1280
1281 spin_lock_irqsave(&mb3_transfer.lock, flags);
1282
1283 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1284 cpu_relax();
1285
1286 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1287
1288 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1289 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1290
1291 spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1292
1293 /*
1294 * The firmware only sends an ACK if we want to enable the
1295 * SysClk, and it succeeds.
1296 */
1297 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1298 msecs_to_jiffies(20000))) {
1299 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1300 __func__);
1301 r = -EIO;
1302 }
1303
1304 mutex_unlock(&mb3_transfer.sysclk_lock);
1305
1306 return r;
1307}
1308
1309static int request_timclk(bool enable)
1310{
1311 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1312
1313 if (!enable)
1314 val |= PRCM_TCR_STOP_TIMERS;
1315 writel(val, PRCM_TCR);
1316
1317 return 0;
1318}
1319
1320static int request_clock(u8 clock, bool enable)
1321{
1322 u32 val;
1323 unsigned long flags;
1324
1325 spin_lock_irqsave(&clk_mgt_lock, flags);
1326
1327 /* Grab the HW semaphore. */
1328 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1329 cpu_relax();
1330
1331 val = readl(prcmu_base + clk_mgt[clock].offset);
1332 if (enable) {
1333 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1334 } else {
1335 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1336 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1337 }
1338 writel(val, prcmu_base + clk_mgt[clock].offset);
1339
1340 /* Release the HW semaphore. */
1341 writel(0, PRCM_SEM);
1342
1343 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1344
1345 return 0;
1346}
1347
1348static int request_sga_clock(u8 clock, bool enable)
1349{
1350 u32 val;
1351 int ret;
1352
1353 if (enable) {
1354 val = readl(PRCM_CGATING_BYPASS);
1355 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1356 }
1357
1358 ret = request_clock(clock, enable);
1359
1360 if (!ret && !enable) {
1361 val = readl(PRCM_CGATING_BYPASS);
1362 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1363 }
1364
1365 return ret;
1366}
1367
1368static inline bool plldsi_locked(void)
1369{
1370 return (readl(PRCM_PLLDSI_LOCKP) &
1371 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1372 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1373 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1374 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1375}
1376
1377static int request_plldsi(bool enable)
1378{
1379 int r = 0;
1380 u32 val;
1381
1382 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1383 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1384 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1385
1386 val = readl(PRCM_PLLDSI_ENABLE);
1387 if (enable)
1388 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1389 else
1390 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1391 writel(val, PRCM_PLLDSI_ENABLE);
1392
1393 if (enable) {
1394 unsigned int i;
1395 bool locked = plldsi_locked();
1396
1397 for (i = 10; !locked && (i > 0); --i) {
1398 udelay(100);
1399 locked = plldsi_locked();
1400 }
1401 if (locked) {
1402 writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1403 PRCM_APE_RESETN_SET);
1404 } else {
1405 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1406 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1407 PRCM_MMIP_LS_CLAMP_SET);
1408 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1409 writel(val, PRCM_PLLDSI_ENABLE);
1410 r = -EAGAIN;
1411 }
1412 } else {
1413 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1414 }
1415 return r;
1416}
1417
1418static int request_dsiclk(u8 n, bool enable)
1419{
1420 u32 val;
1421
1422 val = readl(PRCM_DSI_PLLOUT_SEL);
1423 val &= ~dsiclk[n].divsel_mask;
1424 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1425 dsiclk[n].divsel_shift);
1426 writel(val, PRCM_DSI_PLLOUT_SEL);
1427 return 0;
1428}
1429
1430static int request_dsiescclk(u8 n, bool enable)
1431{
1432 u32 val;
1433
1434 val = readl(PRCM_DSITVCLK_DIV);
1435 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1436 writel(val, PRCM_DSITVCLK_DIV);
1437 return 0;
1438}
1439
1440/**
1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1442 * @clock: The clock for which the request is made.
1443 * @enable: Whether the clock should be enabled (true) or disabled (false).
1444 *
1445 * This function should only be used by the clock implementation.
1446 * Do not use it from any other place!
1447 */
1448int db8500_prcmu_request_clock(u8 clock, bool enable)
1449{
1450 if (clock == PRCMU_SGACLK)
1451 return request_sga_clock(clock, enable);
1452 else if (clock < PRCMU_NUM_REG_CLOCKS)
1453 return request_clock(clock, enable);
1454 else if (clock == PRCMU_TIMCLK)
1455 return request_timclk(enable);
1456 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1457 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1458 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1459 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1460 else if (clock == PRCMU_PLLDSI)
1461 return request_plldsi(enable);
1462 else if (clock == PRCMU_SYSCLK)
1463 return request_sysclk(enable);
1464 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1465 return request_pll(clock, enable);
1466 else
1467 return -EINVAL;
1468}
1469
1470static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1471 int branch)
1472{
1473 u64 rate;
1474 u32 val;
1475 u32 d;
1476 u32 div = 1;
1477
1478 val = readl(reg);
1479
1480 rate = src_rate;
1481 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1482
1483 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1484 if (d > 1)
1485 div *= d;
1486
1487 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1488 if (d > 1)
1489 div *= d;
1490
1491 if (val & PRCM_PLL_FREQ_SELDIV2)
1492 div *= 2;
1493
1494 if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1495 (val & PRCM_PLL_FREQ_DIV2EN) &&
1496 ((reg == PRCM_PLLSOC0_FREQ) ||
1497 (reg == PRCM_PLLARM_FREQ) ||
1498 (reg == PRCM_PLLDDR_FREQ))))
1499 div *= 2;
1500
1501 (void)do_div(rate, div);
1502
1503 return (unsigned long)rate;
1504}
1505
1506#define ROOT_CLOCK_RATE 38400000
1507
1508static unsigned long clock_rate(u8 clock)
1509{
1510 u32 val;
1511 u32 pllsw;
1512 unsigned long rate = ROOT_CLOCK_RATE;
1513
1514 val = readl(prcmu_base + clk_mgt[clock].offset);
1515
1516 if (val & PRCM_CLK_MGT_CLK38) {
1517 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1518 rate /= 2;
1519 return rate;
1520 }
1521
1522 val |= clk_mgt[clock].pllsw;
1523 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1524
1525 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1526 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1527 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1528 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1529 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1530 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1531 else
1532 return 0;
1533
1534 if ((clock == PRCMU_SGACLK) &&
1535 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1536 u64 r = (rate * 10);
1537
1538 (void)do_div(r, 25);
1539 return (unsigned long)r;
1540 }
1541 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1542 if (val)
1543 return rate / val;
1544 else
1545 return 0;
1546}
1547
1548static unsigned long armss_rate(void)
1549{
1550 u32 r;
1551 unsigned long rate;
1552
1553 r = readl(PRCM_ARM_CHGCLKREQ);
1554
1555 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1556 /* External ARMCLKFIX clock */
1557
1558 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1559
1560 /* Check PRCM_ARM_CHGCLKREQ divider */
1561 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1562 rate /= 2;
1563
1564 /* Check PRCM_ARMCLKFIX_MGT divider */
1565 r = readl(PRCM_ARMCLKFIX_MGT);
1566 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1567 rate /= r;
1568
1569 } else {/* ARM PLL */
1570 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1571 }
1572
1573 return rate;
1574}
1575
1576static unsigned long dsiclk_rate(u8 n)
1577{
1578 u32 divsel;
1579 u32 div = 1;
1580
1581 divsel = readl(PRCM_DSI_PLLOUT_SEL);
1582 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1583
1584 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1585 divsel = dsiclk[n].divsel;
1586 else
1587 dsiclk[n].divsel = divsel;
1588
1589 switch (divsel) {
1590 case PRCM_DSI_PLLOUT_SEL_PHI_4:
1591 div *= 2;
1592 /* Fall through */
1593 case PRCM_DSI_PLLOUT_SEL_PHI_2:
1594 div *= 2;
1595 /* Fall through */
1596 case PRCM_DSI_PLLOUT_SEL_PHI:
1597 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1598 PLL_RAW) / div;
1599 default:
1600 return 0;
1601 }
1602}
1603
1604static unsigned long dsiescclk_rate(u8 n)
1605{
1606 u32 div;
1607
1608 div = readl(PRCM_DSITVCLK_DIV);
1609 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1610 return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1611}
1612
1613unsigned long prcmu_clock_rate(u8 clock)
1614{
1615 if (clock < PRCMU_NUM_REG_CLOCKS)
1616 return clock_rate(clock);
1617 else if (clock == PRCMU_TIMCLK)
1618 return ROOT_CLOCK_RATE / 16;
1619 else if (clock == PRCMU_SYSCLK)
1620 return ROOT_CLOCK_RATE;
1621 else if (clock == PRCMU_PLLSOC0)
1622 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1623 else if (clock == PRCMU_PLLSOC1)
1624 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1625 else if (clock == PRCMU_ARMSS)
1626 return armss_rate();
1627 else if (clock == PRCMU_PLLDDR)
1628 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1629 else if (clock == PRCMU_PLLDSI)
1630 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1631 PLL_RAW);
1632 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1633 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1634 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1635 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1636 else
1637 return 0;
1638}
1639
1640static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1641{
1642 if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1643 return ROOT_CLOCK_RATE;
1644 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1645 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1646 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1647 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1648 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1649 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1650 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1651 else
1652 return 0;
1653}
1654
1655static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1656{
1657 u32 div;
1658
1659 div = (src_rate / rate);
1660 if (div == 0)
1661 return 1;
1662 if (rate < (src_rate / div))
1663 div++;
1664 return div;
1665}
1666
1667static long round_clock_rate(u8 clock, unsigned long rate)
1668{
1669 u32 val;
1670 u32 div;
1671 unsigned long src_rate;
1672 long rounded_rate;
1673
1674 val = readl(prcmu_base + clk_mgt[clock].offset);
1675 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1676 clk_mgt[clock].branch);
1677 div = clock_divider(src_rate, rate);
1678 if (val & PRCM_CLK_MGT_CLK38) {
1679 if (clk_mgt[clock].clk38div) {
1680 if (div > 2)
1681 div = 2;
1682 } else {
1683 div = 1;
1684 }
1685 } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1686 u64 r = (src_rate * 10);
1687
1688 (void)do_div(r, 25);
1689 if (r <= rate)
1690 return (unsigned long)r;
1691 }
1692 rounded_rate = (src_rate / min(div, (u32)31));
1693
1694 return rounded_rate;
1695}
1696
1697static const unsigned long db8500_armss_freqs[] = {
1698 200000000,
1699 400000000,
1700 800000000,
1701 998400000
1702};
1703
1704/* The DB8520 has slightly higher ARMSS max frequency */
1705static const unsigned long db8520_armss_freqs[] = {
1706 200000000,
1707 400000000,
1708 800000000,
1709 1152000000
1710};
1711
1712
1713
1714static long round_armss_rate(unsigned long rate)
1715{
1716 unsigned long freq = 0;
1717 const unsigned long *freqs;
1718 int nfreqs;
1719 int i;
1720
1721 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1722 freqs = db8520_armss_freqs;
1723 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1724 } else {
1725 freqs = db8500_armss_freqs;
1726 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1727 }
1728
1729 /* Find the corresponding arm opp from the cpufreq table. */
1730 for (i = 0; i < nfreqs; i++) {
1731 freq = freqs[i];
1732 if (rate <= freq)
1733 break;
1734 }
1735
1736 /* Return the last valid value, even if a match was not found. */
1737 return freq;
1738}
1739
1740#define MIN_PLL_VCO_RATE 600000000ULL
1741#define MAX_PLL_VCO_RATE 1680640000ULL
1742
1743static long round_plldsi_rate(unsigned long rate)
1744{
1745 long rounded_rate = 0;
1746 unsigned long src_rate;
1747 unsigned long rem;
1748 u32 r;
1749
1750 src_rate = clock_rate(PRCMU_HDMICLK);
1751 rem = rate;
1752
1753 for (r = 7; (rem > 0) && (r > 0); r--) {
1754 u64 d;
1755
1756 d = (r * rate);
1757 (void)do_div(d, src_rate);
1758 if (d < 6)
1759 d = 6;
1760 else if (d > 255)
1761 d = 255;
1762 d *= src_rate;
1763 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1764 ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1765 continue;
1766 (void)do_div(d, r);
1767 if (rate < d) {
1768 if (rounded_rate == 0)
1769 rounded_rate = (long)d;
1770 break;
1771 }
1772 if ((rate - d) < rem) {
1773 rem = (rate - d);
1774 rounded_rate = (long)d;
1775 }
1776 }
1777 return rounded_rate;
1778}
1779
1780static long round_dsiclk_rate(unsigned long rate)
1781{
1782 u32 div;
1783 unsigned long src_rate;
1784 long rounded_rate;
1785
1786 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1787 PLL_RAW);
1788 div = clock_divider(src_rate, rate);
1789 rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1790
1791 return rounded_rate;
1792}
1793
1794static long round_dsiescclk_rate(unsigned long rate)
1795{
1796 u32 div;
1797 unsigned long src_rate;
1798 long rounded_rate;
1799
1800 src_rate = clock_rate(PRCMU_TVCLK);
1801 div = clock_divider(src_rate, rate);
1802 rounded_rate = (src_rate / min(div, (u32)255));
1803
1804 return rounded_rate;
1805}
1806
1807long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1808{
1809 if (clock < PRCMU_NUM_REG_CLOCKS)
1810 return round_clock_rate(clock, rate);
1811 else if (clock == PRCMU_ARMSS)
1812 return round_armss_rate(rate);
1813 else if (clock == PRCMU_PLLDSI)
1814 return round_plldsi_rate(rate);
1815 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1816 return round_dsiclk_rate(rate);
1817 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1818 return round_dsiescclk_rate(rate);
1819 else
1820 return (long)prcmu_clock_rate(clock);
1821}
1822
1823static void set_clock_rate(u8 clock, unsigned long rate)
1824{
1825 u32 val;
1826 u32 div;
1827 unsigned long src_rate;
1828 unsigned long flags;
1829
1830 spin_lock_irqsave(&clk_mgt_lock, flags);
1831
1832 /* Grab the HW semaphore. */
1833 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1834 cpu_relax();
1835
1836 val = readl(prcmu_base + clk_mgt[clock].offset);
1837 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1838 clk_mgt[clock].branch);
1839 div = clock_divider(src_rate, rate);
1840 if (val & PRCM_CLK_MGT_CLK38) {
1841 if (clk_mgt[clock].clk38div) {
1842 if (div > 1)
1843 val |= PRCM_CLK_MGT_CLK38DIV;
1844 else
1845 val &= ~PRCM_CLK_MGT_CLK38DIV;
1846 }
1847 } else if (clock == PRCMU_SGACLK) {
1848 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1849 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1850 if (div == 3) {
1851 u64 r = (src_rate * 10);
1852
1853 (void)do_div(r, 25);
1854 if (r <= rate) {
1855 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1856 div = 0;
1857 }
1858 }
1859 val |= min(div, (u32)31);
1860 } else {
1861 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1862 val |= min(div, (u32)31);
1863 }
1864 writel(val, prcmu_base + clk_mgt[clock].offset);
1865
1866 /* Release the HW semaphore. */
1867 writel(0, PRCM_SEM);
1868
1869 spin_unlock_irqrestore(&clk_mgt_lock, flags);
1870}
1871
1872static int set_armss_rate(unsigned long rate)
1873{
1874 unsigned long freq;
1875 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1876 const unsigned long *freqs;
1877 int nfreqs;
1878 int i;
1879
1880 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1881 freqs = db8520_armss_freqs;
1882 nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1883 } else {
1884 freqs = db8500_armss_freqs;
1885 nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1886 }
1887
1888 /* Find the corresponding arm opp from the cpufreq table. */
1889 for (i = 0; i < nfreqs; i++) {
1890 freq = freqs[i];
1891 if (rate == freq)
1892 break;
1893 }
1894
1895 if (rate != freq)
1896 return -EINVAL;
1897
1898 /* Set the new arm opp. */
1899 pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1900 return db8500_prcmu_set_arm_opp(opps[i]);
1901}
1902
1903static int set_plldsi_rate(unsigned long rate)
1904{
1905 unsigned long src_rate;
1906 unsigned long rem;
1907 u32 pll_freq = 0;
1908 u32 r;
1909
1910 src_rate = clock_rate(PRCMU_HDMICLK);
1911 rem = rate;
1912
1913 for (r = 7; (rem > 0) && (r > 0); r--) {
1914 u64 d;
1915 u64 hwrate;
1916
1917 d = (r * rate);
1918 (void)do_div(d, src_rate);
1919 if (d < 6)
1920 d = 6;
1921 else if (d > 255)
1922 d = 255;
1923 hwrate = (d * src_rate);
1924 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1925 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1926 continue;
1927 (void)do_div(hwrate, r);
1928 if (rate < hwrate) {
1929 if (pll_freq == 0)
1930 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1931 (r << PRCM_PLL_FREQ_R_SHIFT));
1932 break;
1933 }
1934 if ((rate - hwrate) < rem) {
1935 rem = (rate - hwrate);
1936 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1937 (r << PRCM_PLL_FREQ_R_SHIFT));
1938 }
1939 }
1940 if (pll_freq == 0)
1941 return -EINVAL;
1942
1943 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1944 writel(pll_freq, PRCM_PLLDSI_FREQ);
1945
1946 return 0;
1947}
1948
1949static void set_dsiclk_rate(u8 n, unsigned long rate)
1950{
1951 u32 val;
1952 u32 div;
1953
1954 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1955 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1956
1957 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1958 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1959 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
1960
1961 val = readl(PRCM_DSI_PLLOUT_SEL);
1962 val &= ~dsiclk[n].divsel_mask;
1963 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1964 writel(val, PRCM_DSI_PLLOUT_SEL);
1965}
1966
1967static void set_dsiescclk_rate(u8 n, unsigned long rate)
1968{
1969 u32 val;
1970 u32 div;
1971
1972 div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1973 val = readl(PRCM_DSITVCLK_DIV);
1974 val &= ~dsiescclk[n].div_mask;
1975 val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1976 writel(val, PRCM_DSITVCLK_DIV);
1977}
1978
1979int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1980{
1981 if (clock < PRCMU_NUM_REG_CLOCKS)
1982 set_clock_rate(clock, rate);
1983 else if (clock == PRCMU_ARMSS)
1984 return set_armss_rate(rate);
1985 else if (clock == PRCMU_PLLDSI)
1986 return set_plldsi_rate(rate);
1987 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1988 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1989 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1990 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1991 return 0;
1992}
1993
1994int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1995{
1996 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1997 (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1998 return -EINVAL;
1999
2000 mutex_lock(&mb4_transfer.lock);
2001
2002 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2003 cpu_relax();
2004
2005 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2006 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2007 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2008 writeb(DDR_PWR_STATE_ON,
2009 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2010 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2011
2012 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2013 wait_for_completion(&mb4_transfer.work);
2014
2015 mutex_unlock(&mb4_transfer.lock);
2016
2017 return 0;
2018}
2019
2020int db8500_prcmu_config_hotdog(u8 threshold)
2021{
2022 mutex_lock(&mb4_transfer.lock);
2023
2024 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2025 cpu_relax();
2026
2027 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2028 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2029
2030 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2031 wait_for_completion(&mb4_transfer.work);
2032
2033 mutex_unlock(&mb4_transfer.lock);
2034
2035 return 0;
2036}
2037
2038int db8500_prcmu_config_hotmon(u8 low, u8 high)
2039{
2040 mutex_lock(&mb4_transfer.lock);
2041
2042 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2043 cpu_relax();
2044
2045 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2046 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2047 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2048 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2049 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2050
2051 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2052 wait_for_completion(&mb4_transfer.work);
2053
2054 mutex_unlock(&mb4_transfer.lock);
2055
2056 return 0;
2057}
2058EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2059
2060static int config_hot_period(u16 val)
2061{
2062 mutex_lock(&mb4_transfer.lock);
2063
2064 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2065 cpu_relax();
2066
2067 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2068 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2069
2070 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2071 wait_for_completion(&mb4_transfer.work);
2072
2073 mutex_unlock(&mb4_transfer.lock);
2074
2075 return 0;
2076}
2077
2078int db8500_prcmu_start_temp_sense(u16 cycles32k)
2079{
2080 if (cycles32k == 0xFFFF)
2081 return -EINVAL;
2082
2083 return config_hot_period(cycles32k);
2084}
2085EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2086
2087int db8500_prcmu_stop_temp_sense(void)
2088{
2089 return config_hot_period(0xFFFF);
2090}
2091EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2092
2093static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2094{
2095
2096 mutex_lock(&mb4_transfer.lock);
2097
2098 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2099 cpu_relax();
2100
2101 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2102 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2103 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2104 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2105
2106 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2107
2108 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2109 wait_for_completion(&mb4_transfer.work);
2110
2111 mutex_unlock(&mb4_transfer.lock);
2112
2113 return 0;
2114
2115}
2116
2117int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2118{
2119 BUG_ON(num == 0 || num > 0xf);
2120 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2121 sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2122 A9WDOG_AUTO_OFF_DIS);
2123}
2124EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2125
2126int db8500_prcmu_enable_a9wdog(u8 id)
2127{
2128 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2129}
2130EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2131
2132int db8500_prcmu_disable_a9wdog(u8 id)
2133{
2134 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2135}
2136EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2137
2138int db8500_prcmu_kick_a9wdog(u8 id)
2139{
2140 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2141}
2142EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2143
2144/*
2145 * timeout is 28 bit, in ms.
2146 */
2147int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2148{
2149 return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2150 (id & A9WDOG_ID_MASK) |
2151 /*
2152 * Put the lowest 28 bits of timeout at
2153 * offset 4. Four first bits are used for id.
2154 */
2155 (u8)((timeout << 4) & 0xf0),
2156 (u8)((timeout >> 4) & 0xff),
2157 (u8)((timeout >> 12) & 0xff),
2158 (u8)((timeout >> 20) & 0xff));
2159}
2160EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2161
2162/**
2163 * prcmu_abb_read() - Read register value(s) from the ABB.
2164 * @slave: The I2C slave address.
2165 * @reg: The (start) register address.
2166 * @value: The read out value(s).
2167 * @size: The number of registers to read.
2168 *
2169 * Reads register value(s) from the ABB.
2170 * @size has to be 1 for the current firmware version.
2171 */
2172int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2173{
2174 int r;
2175
2176 if (size != 1)
2177 return -EINVAL;
2178
2179 mutex_lock(&mb5_transfer.lock);
2180
2181 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2182 cpu_relax();
2183
2184 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2185 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2186 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2187 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2188 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2189
2190 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2191
2192 if (!wait_for_completion_timeout(&mb5_transfer.work,
2193 msecs_to_jiffies(20000))) {
2194 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2195 __func__);
2196 r = -EIO;
2197 } else {
2198 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2199 }
2200
2201 if (!r)
2202 *value = mb5_transfer.ack.value;
2203
2204 mutex_unlock(&mb5_transfer.lock);
2205
2206 return r;
2207}
2208
2209/**
2210 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2211 * @slave: The I2C slave address.
2212 * @reg: The (start) register address.
2213 * @value: The value(s) to write.
2214 * @mask: The mask(s) to use.
2215 * @size: The number of registers to write.
2216 *
2217 * Writes masked register value(s) to the ABB.
2218 * For each @value, only the bits set to 1 in the corresponding @mask
2219 * will be written. The other bits are not changed.
2220 * @size has to be 1 for the current firmware version.
2221 */
2222int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2223{
2224 int r;
2225
2226 if (size != 1)
2227 return -EINVAL;
2228
2229 mutex_lock(&mb5_transfer.lock);
2230
2231 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2232 cpu_relax();
2233
2234 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2235 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2236 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2237 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2238 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2239
2240 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2241
2242 if (!wait_for_completion_timeout(&mb5_transfer.work,
2243 msecs_to_jiffies(20000))) {
2244 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2245 __func__);
2246 r = -EIO;
2247 } else {
2248 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2249 }
2250
2251 mutex_unlock(&mb5_transfer.lock);
2252
2253 return r;
2254}
2255
2256/**
2257 * prcmu_abb_write() - Write register value(s) to the ABB.
2258 * @slave: The I2C slave address.
2259 * @reg: The (start) register address.
2260 * @value: The value(s) to write.
2261 * @size: The number of registers to write.
2262 *
2263 * Writes register value(s) to the ABB.
2264 * @size has to be 1 for the current firmware version.
2265 */
2266int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2267{
2268 u8 mask = ~0;
2269
2270 return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2271}
2272
2273/**
2274 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2275 */
2276int prcmu_ac_wake_req(void)
2277{
2278 u32 val;
2279 int ret = 0;
2280
2281 mutex_lock(&mb0_transfer.ac_wake_lock);
2282
2283 val = readl(PRCM_HOSTACCESS_REQ);
2284 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2285 goto unlock_and_return;
2286
2287 atomic_set(&ac_wake_req_state, 1);
2288
2289 /*
2290 * Force Modem Wake-up before hostaccess_req ping-pong.
2291 * It prevents Modem to enter in Sleep while acking the hostaccess
2292 * request. The 31us delay has been calculated by HWI.
2293 */
2294 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2295 writel(val, PRCM_HOSTACCESS_REQ);
2296
2297 udelay(31);
2298
2299 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2300 writel(val, PRCM_HOSTACCESS_REQ);
2301
2302 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2303 msecs_to_jiffies(5000))) {
2304 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2305 __func__);
2306 ret = -EFAULT;
2307 }
2308
2309unlock_and_return:
2310 mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 return ret;
2312}
2313
2314/**
2315 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2316 */
2317void prcmu_ac_sleep_req(void)
2318{
2319 u32 val;
2320
2321 mutex_lock(&mb0_transfer.ac_wake_lock);
2322
2323 val = readl(PRCM_HOSTACCESS_REQ);
2324 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2325 goto unlock_and_return;
2326
2327 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2328 PRCM_HOSTACCESS_REQ);
2329
2330 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2331 msecs_to_jiffies(5000))) {
2332 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2333 __func__);
2334 }
2335
2336 atomic_set(&ac_wake_req_state, 0);
2337
2338unlock_and_return:
2339 mutex_unlock(&mb0_transfer.ac_wake_lock);
2340}
2341
2342bool db8500_prcmu_is_ac_wake_requested(void)
2343{
2344 return (atomic_read(&ac_wake_req_state) != 0);
2345}
2346
2347/**
2348 * db8500_prcmu_system_reset - System reset
2349 *
2350 * Saves the reset reason code and then sets the APE_SOFTRST register which
2351 * fires interrupt to fw
2352 */
2353void db8500_prcmu_system_reset(u16 reset_code)
2354{
2355 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2356 writel(1, PRCM_APE_SOFTRST);
2357}
2358
2359/**
2360 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2361 *
2362 * Retrieves the reset reason code stored by prcmu_system_reset() before
2363 * last restart.
2364 */
2365u16 db8500_prcmu_get_reset_code(void)
2366{
2367 return readw(tcdm_base + PRCM_SW_RST_REASON);
2368}
2369
2370/**
2371 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2372 */
2373void db8500_prcmu_modem_reset(void)
2374{
2375 mutex_lock(&mb1_transfer.lock);
2376
2377 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2378 cpu_relax();
2379
2380 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2381 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2382 wait_for_completion(&mb1_transfer.work);
2383
2384 /*
2385 * No need to check return from PRCMU as modem should go in reset state
2386 * This state is already managed by upper layer
2387 */
2388
2389 mutex_unlock(&mb1_transfer.lock);
2390}
2391
2392static void ack_dbb_wakeup(void)
2393{
2394 unsigned long flags;
2395
2396 spin_lock_irqsave(&mb0_transfer.lock, flags);
2397
2398 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2399 cpu_relax();
2400
2401 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2402 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2403
2404 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2405}
2406
2407static inline void print_unknown_header_warning(u8 n, u8 header)
2408{
2409 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2410 header, n);
2411}
2412
2413static bool read_mailbox_0(void)
2414{
2415 bool r;
2416 u32 ev;
2417 unsigned int n;
2418 u8 header;
2419
2420 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2421 switch (header) {
2422 case MB0H_WAKEUP_EXE:
2423 case MB0H_WAKEUP_SLEEP:
2424 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2425 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2426 else
2427 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2428
2429 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2430 complete(&mb0_transfer.ac_wake_work);
2431 if (ev & WAKEUP_BIT_SYSCLK_OK)
2432 complete(&mb3_transfer.sysclk_work);
2433
2434 ev &= mb0_transfer.req.dbb_irqs;
2435
2436 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2437 if (ev & prcmu_irq_bit[n])
2438 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2439 }
2440 r = true;
2441 break;
2442 default:
2443 print_unknown_header_warning(0, header);
2444 r = false;
2445 break;
2446 }
2447 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2448 return r;
2449}
2450
2451static bool read_mailbox_1(void)
2452{
2453 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2454 mb1_transfer.ack.arm_opp = readb(tcdm_base +
2455 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2456 mb1_transfer.ack.ape_opp = readb(tcdm_base +
2457 PRCM_ACK_MB1_CURRENT_APE_OPP);
2458 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2459 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2460 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2461 complete(&mb1_transfer.work);
2462 return false;
2463}
2464
2465static bool read_mailbox_2(void)
2466{
2467 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2468 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2469 complete(&mb2_transfer.work);
2470 return false;
2471}
2472
2473static bool read_mailbox_3(void)
2474{
2475 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2476 return false;
2477}
2478
2479static bool read_mailbox_4(void)
2480{
2481 u8 header;
2482 bool do_complete = true;
2483
2484 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2485 switch (header) {
2486 case MB4H_MEM_ST:
2487 case MB4H_HOTDOG:
2488 case MB4H_HOTMON:
2489 case MB4H_HOT_PERIOD:
2490 case MB4H_A9WDOG_CONF:
2491 case MB4H_A9WDOG_EN:
2492 case MB4H_A9WDOG_DIS:
2493 case MB4H_A9WDOG_LOAD:
2494 case MB4H_A9WDOG_KICK:
2495 break;
2496 default:
2497 print_unknown_header_warning(4, header);
2498 do_complete = false;
2499 break;
2500 }
2501
2502 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2503
2504 if (do_complete)
2505 complete(&mb4_transfer.work);
2506
2507 return false;
2508}
2509
2510static bool read_mailbox_5(void)
2511{
2512 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2513 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2514 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2515 complete(&mb5_transfer.work);
2516 return false;
2517}
2518
2519static bool read_mailbox_6(void)
2520{
2521 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2522 return false;
2523}
2524
2525static bool read_mailbox_7(void)
2526{
2527 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2528 return false;
2529}
2530
2531static bool (* const read_mailbox[NUM_MB])(void) = {
2532 read_mailbox_0,
2533 read_mailbox_1,
2534 read_mailbox_2,
2535 read_mailbox_3,
2536 read_mailbox_4,
2537 read_mailbox_5,
2538 read_mailbox_6,
2539 read_mailbox_7
2540};
2541
2542static irqreturn_t prcmu_irq_handler(int irq, void *data)
2543{
2544 u32 bits;
2545 u8 n;
2546 irqreturn_t r;
2547
2548 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2549 if (unlikely(!bits))
2550 return IRQ_NONE;
2551
2552 r = IRQ_HANDLED;
2553 for (n = 0; bits; n++) {
2554 if (bits & MBOX_BIT(n)) {
2555 bits -= MBOX_BIT(n);
2556 if (read_mailbox[n]())
2557 r = IRQ_WAKE_THREAD;
2558 }
2559 }
2560 return r;
2561}
2562
2563static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2564{
2565 ack_dbb_wakeup();
2566 return IRQ_HANDLED;
2567}
2568
2569static void prcmu_mask_work(struct work_struct *work)
2570{
2571 unsigned long flags;
2572
2573 spin_lock_irqsave(&mb0_transfer.lock, flags);
2574
2575 config_wakeups();
2576
2577 spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2578}
2579
2580static void prcmu_irq_mask(struct irq_data *d)
2581{
2582 unsigned long flags;
2583
2584 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2585
2586 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2587
2588 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2589
2590 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2591 schedule_work(&mb0_transfer.mask_work);
2592}
2593
2594static void prcmu_irq_unmask(struct irq_data *d)
2595{
2596 unsigned long flags;
2597
2598 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2599
2600 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2601
2602 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2603
2604 if (d->irq != IRQ_PRCMU_CA_SLEEP)
2605 schedule_work(&mb0_transfer.mask_work);
2606}
2607
2608static void noop(struct irq_data *d)
2609{
2610}
2611
2612static struct irq_chip prcmu_irq_chip = {
2613 .name = "prcmu",
2614 .irq_disable = prcmu_irq_mask,
2615 .irq_ack = noop,
2616 .irq_mask = prcmu_irq_mask,
2617 .irq_unmask = prcmu_irq_unmask,
2618};
2619
2620static char *fw_project_name(u32 project)
2621{
2622 switch (project) {
2623 case PRCMU_FW_PROJECT_U8500:
2624 return "U8500";
2625 case PRCMU_FW_PROJECT_U8400:
2626 return "U8400";
2627 case PRCMU_FW_PROJECT_U9500:
2628 return "U9500";
2629 case PRCMU_FW_PROJECT_U8500_MBB:
2630 return "U8500 MBB";
2631 case PRCMU_FW_PROJECT_U8500_C1:
2632 return "U8500 C1";
2633 case PRCMU_FW_PROJECT_U8500_C2:
2634 return "U8500 C2";
2635 case PRCMU_FW_PROJECT_U8500_C3:
2636 return "U8500 C3";
2637 case PRCMU_FW_PROJECT_U8500_C4:
2638 return "U8500 C4";
2639 case PRCMU_FW_PROJECT_U9500_MBL:
2640 return "U9500 MBL";
2641 case PRCMU_FW_PROJECT_U8500_MBL:
2642 return "U8500 MBL";
2643 case PRCMU_FW_PROJECT_U8500_MBL2:
2644 return "U8500 MBL2";
2645 case PRCMU_FW_PROJECT_U8520:
2646 return "U8520 MBL";
2647 case PRCMU_FW_PROJECT_U8420:
2648 return "U8420";
2649 case PRCMU_FW_PROJECT_U9540:
2650 return "U9540";
2651 case PRCMU_FW_PROJECT_A9420:
2652 return "A9420";
2653 case PRCMU_FW_PROJECT_L8540:
2654 return "L8540";
2655 case PRCMU_FW_PROJECT_L8580:
2656 return "L8580";
2657 default:
2658 return "Unknown";
2659 }
2660}
2661
2662static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2663 irq_hw_number_t hwirq)
2664{
2665 irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2666 handle_simple_irq);
2667
2668 return 0;
2669}
2670
2671static const struct irq_domain_ops db8500_irq_ops = {
2672 .map = db8500_irq_map,
2673 .xlate = irq_domain_xlate_twocell,
2674};
2675
2676static int db8500_irq_init(struct device_node *np)
2677{
2678 int i;
2679
2680 db8500_irq_domain = irq_domain_add_simple(
2681 np, NUM_PRCMU_WAKEUPS, 0,
2682 &db8500_irq_ops, NULL);
2683
2684 if (!db8500_irq_domain) {
2685 pr_err("Failed to create irqdomain\n");
2686 return -ENOSYS;
2687 }
2688
2689 /* All wakeups will be used, so create mappings for all */
2690 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2691 irq_create_mapping(db8500_irq_domain, i);
2692
2693 return 0;
2694}
2695
2696static void dbx500_fw_version_init(struct platform_device *pdev,
2697 u32 version_offset)
2698{
2699 struct resource *res;
2700 void __iomem *tcpm_base;
2701 u32 version;
2702
2703 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2704 "prcmu-tcpm");
2705 if (!res) {
2706 dev_err(&pdev->dev,
2707 "Error: no prcmu tcpm memory region provided\n");
2708 return;
2709 }
2710 tcpm_base = ioremap(res->start, resource_size(res));
2711 if (!tcpm_base) {
2712 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2713 return;
2714 }
2715
2716 version = readl(tcpm_base + version_offset);
2717 fw_info.version.project = (version & 0xFF);
2718 fw_info.version.api_version = (version >> 8) & 0xFF;
2719 fw_info.version.func_version = (version >> 16) & 0xFF;
2720 fw_info.version.errata = (version >> 24) & 0xFF;
2721 strncpy(fw_info.version.project_name,
2722 fw_project_name(fw_info.version.project),
2723 PRCMU_FW_PROJECT_NAME_LEN);
2724 fw_info.valid = true;
2725 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2726 fw_info.version.project_name,
2727 fw_info.version.project,
2728 fw_info.version.api_version,
2729 fw_info.version.func_version,
2730 fw_info.version.errata);
2731 iounmap(tcpm_base);
2732}
2733
2734void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2735{
2736 /*
2737 * This is a temporary remap to bring up the clocks. It is
2738 * subsequently replaces with a real remap. After the merge of
2739 * the mailbox subsystem all of this early code goes away, and the
2740 * clock driver can probe independently. An early initcall will
2741 * still be needed, but it can be diverted into drivers/clk/ux500.
2742 */
2743 prcmu_base = ioremap(phy_base, size);
2744 if (!prcmu_base)
2745 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2746
2747 spin_lock_init(&mb0_transfer.lock);
2748 spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2749 mutex_init(&mb0_transfer.ac_wake_lock);
2750 init_completion(&mb0_transfer.ac_wake_work);
2751 mutex_init(&mb1_transfer.lock);
2752 init_completion(&mb1_transfer.work);
2753 mb1_transfer.ape_opp = APE_NO_CHANGE;
2754 mutex_init(&mb2_transfer.lock);
2755 init_completion(&mb2_transfer.work);
2756 spin_lock_init(&mb2_transfer.auto_pm_lock);
2757 spin_lock_init(&mb3_transfer.lock);
2758 mutex_init(&mb3_transfer.sysclk_lock);
2759 init_completion(&mb3_transfer.sysclk_work);
2760 mutex_init(&mb4_transfer.lock);
2761 init_completion(&mb4_transfer.work);
2762 mutex_init(&mb5_transfer.lock);
2763 init_completion(&mb5_transfer.work);
2764
2765 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2766}
2767
2768static void init_prcm_registers(void)
2769{
2770 u32 val;
2771
2772 val = readl(PRCM_A9PL_FORCE_CLKEN);
2773 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2774 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2775 writel(val, (PRCM_A9PL_FORCE_CLKEN));
2776}
2777
2778/*
2779 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2780 */
2781static struct regulator_consumer_supply db8500_vape_consumers[] = {
2782 REGULATOR_SUPPLY("v-ape", NULL),
2783 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2784 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2785 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2786 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2787 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2788 /* "v-mmc" changed to "vcore" in the mainline kernel */
2789 REGULATOR_SUPPLY("vcore", "sdi0"),
2790 REGULATOR_SUPPLY("vcore", "sdi1"),
2791 REGULATOR_SUPPLY("vcore", "sdi2"),
2792 REGULATOR_SUPPLY("vcore", "sdi3"),
2793 REGULATOR_SUPPLY("vcore", "sdi4"),
2794 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2795 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2796 /* "v-uart" changed to "vcore" in the mainline kernel */
2797 REGULATOR_SUPPLY("vcore", "uart0"),
2798 REGULATOR_SUPPLY("vcore", "uart1"),
2799 REGULATOR_SUPPLY("vcore", "uart2"),
2800 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2801 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2802 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2803};
2804
2805static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2806 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2807 /* AV8100 regulator */
2808 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2809};
2810
2811static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2812 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2813 REGULATOR_SUPPLY("vsupply", "mcde"),
2814};
2815
2816/* SVA MMDSP regulator switch */
2817static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2818 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2819};
2820
2821/* SVA pipe regulator switch */
2822static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2823 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2824};
2825
2826/* SIA MMDSP regulator switch */
2827static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2828 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2829};
2830
2831/* SIA pipe regulator switch */
2832static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2833 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2834};
2835
2836static struct regulator_consumer_supply db8500_sga_consumers[] = {
2837 REGULATOR_SUPPLY("v-mali", NULL),
2838};
2839
2840/* ESRAM1 and 2 regulator switch */
2841static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2842 REGULATOR_SUPPLY("esram12", "cm_control"),
2843};
2844
2845/* ESRAM3 and 4 regulator switch */
2846static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2847 REGULATOR_SUPPLY("v-esram34", "mcde"),
2848 REGULATOR_SUPPLY("esram34", "cm_control"),
2849 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2850};
2851
2852static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2853 [DB8500_REGULATOR_VAPE] = {
2854 .constraints = {
2855 .name = "db8500-vape",
2856 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 .always_on = true,
2858 },
2859 .consumer_supplies = db8500_vape_consumers,
2860 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2861 },
2862 [DB8500_REGULATOR_VARM] = {
2863 .constraints = {
2864 .name = "db8500-varm",
2865 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 },
2867 },
2868 [DB8500_REGULATOR_VMODEM] = {
2869 .constraints = {
2870 .name = "db8500-vmodem",
2871 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2872 },
2873 },
2874 [DB8500_REGULATOR_VPLL] = {
2875 .constraints = {
2876 .name = "db8500-vpll",
2877 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878 },
2879 },
2880 [DB8500_REGULATOR_VSMPS1] = {
2881 .constraints = {
2882 .name = "db8500-vsmps1",
2883 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2884 },
2885 },
2886 [DB8500_REGULATOR_VSMPS2] = {
2887 .constraints = {
2888 .name = "db8500-vsmps2",
2889 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 },
2891 .consumer_supplies = db8500_vsmps2_consumers,
2892 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2893 },
2894 [DB8500_REGULATOR_VSMPS3] = {
2895 .constraints = {
2896 .name = "db8500-vsmps3",
2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2898 },
2899 },
2900 [DB8500_REGULATOR_VRF1] = {
2901 .constraints = {
2902 .name = "db8500-vrf1",
2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 },
2905 },
2906 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2907 /* dependency to u8500-vape is handled outside regulator framework */
2908 .constraints = {
2909 .name = "db8500-sva-mmdsp",
2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911 },
2912 .consumer_supplies = db8500_svammdsp_consumers,
2913 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2914 },
2915 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2916 .constraints = {
2917 /* "ret" means "retention" */
2918 .name = "db8500-sva-mmdsp-ret",
2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 },
2921 },
2922 [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2923 /* dependency to u8500-vape is handled outside regulator framework */
2924 .constraints = {
2925 .name = "db8500-sva-pipe",
2926 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927 },
2928 .consumer_supplies = db8500_svapipe_consumers,
2929 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2930 },
2931 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2932 /* dependency to u8500-vape is handled outside regulator framework */
2933 .constraints = {
2934 .name = "db8500-sia-mmdsp",
2935 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2936 },
2937 .consumer_supplies = db8500_siammdsp_consumers,
2938 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2939 },
2940 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2941 .constraints = {
2942 .name = "db8500-sia-mmdsp-ret",
2943 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 },
2945 },
2946 [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2947 /* dependency to u8500-vape is handled outside regulator framework */
2948 .constraints = {
2949 .name = "db8500-sia-pipe",
2950 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951 },
2952 .consumer_supplies = db8500_siapipe_consumers,
2953 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2954 },
2955 [DB8500_REGULATOR_SWITCH_SGA] = {
2956 .supply_regulator = "db8500-vape",
2957 .constraints = {
2958 .name = "db8500-sga",
2959 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 },
2961 .consumer_supplies = db8500_sga_consumers,
2962 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2963
2964 },
2965 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2966 .supply_regulator = "db8500-vape",
2967 .constraints = {
2968 .name = "db8500-b2r2-mcde",
2969 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2970 },
2971 .consumer_supplies = db8500_b2r2_mcde_consumers,
2972 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2973 },
2974 [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2975 /*
2976 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2977 * no need to hold Vape
2978 */
2979 .constraints = {
2980 .name = "db8500-esram12",
2981 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2982 },
2983 .consumer_supplies = db8500_esram12_consumers,
2984 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2985 },
2986 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2987 .constraints = {
2988 .name = "db8500-esram12-ret",
2989 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2990 },
2991 },
2992 [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2993 /*
2994 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2995 * no need to hold Vape
2996 */
2997 .constraints = {
2998 .name = "db8500-esram34",
2999 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3000 },
3001 .consumer_supplies = db8500_esram34_consumers,
3002 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
3003 },
3004 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
3005 .constraints = {
3006 .name = "db8500-esram34-ret",
3007 .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3008 },
3009 },
3010};
3011
3012static struct ux500_wdt_data db8500_wdt_pdata = {
3013 .timeout = 600, /* 10 minutes */
3014 .has_28_bits_resolution = true,
3015};
3016
3017static const struct mfd_cell common_prcmu_devs[] = {
3018 {
3019 .name = "ux500_wdt",
3020 .platform_data = &db8500_wdt_pdata,
3021 .pdata_size = sizeof(db8500_wdt_pdata),
3022 .id = -1,
3023 },
3024};
3025
3026static const struct mfd_cell db8500_prcmu_devs[] = {
3027 {
3028 .name = "db8500-prcmu-regulators",
3029 .of_compatible = "stericsson,db8500-prcmu-regulator",
3030 .platform_data = &db8500_regulators,
3031 .pdata_size = sizeof(db8500_regulators),
3032 },
3033 {
3034 .name = "cpuidle-dbx500",
3035 .of_compatible = "stericsson,cpuidle-dbx500",
3036 },
3037 {
3038 .name = "db8500-thermal",
3039 .of_compatible = "stericsson,db8500-thermal",
3040 },
3041};
3042
3043static int db8500_prcmu_register_ab8500(struct device *parent)
3044{
3045 struct device_node *np;
3046 struct resource ab8500_resource;
3047 const struct mfd_cell ab8500_cell = {
3048 .name = "ab8500-core",
3049 .of_compatible = "stericsson,ab8500",
3050 .id = AB8500_VERSION_AB8500,
3051 .resources = &ab8500_resource,
3052 .num_resources = 1,
3053 };
3054
3055 if (!parent->of_node)
3056 return -ENODEV;
3057
3058 /* Look up the device node, sneak the IRQ out of it */
3059 for_each_child_of_node(parent->of_node, np) {
3060 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3061 break;
3062 }
3063 if (!np) {
3064 dev_info(parent, "could not find AB8500 node in the device tree\n");
3065 return -ENODEV;
3066 }
3067 of_irq_to_resource_table(np, &ab8500_resource, 1);
3068
3069 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3070}
3071
3072/**
3073 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3074 *
3075 */
3076static int db8500_prcmu_probe(struct platform_device *pdev)
3077{
3078 struct device_node *np = pdev->dev.of_node;
3079 int irq = 0, err = 0;
3080 struct resource *res;
3081
3082 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3083 if (!res) {
3084 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3085 return -EINVAL;
3086 }
3087 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3088 if (!prcmu_base) {
3089 dev_err(&pdev->dev,
3090 "failed to ioremap prcmu register memory\n");
3091 return -ENOMEM;
3092 }
3093 init_prcm_registers();
3094 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3095 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3096 if (!res) {
3097 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3098 return -EINVAL;
3099 }
3100 tcdm_base = devm_ioremap(&pdev->dev, res->start,
3101 resource_size(res));
3102 if (!tcdm_base) {
3103 dev_err(&pdev->dev,
3104 "failed to ioremap prcmu-tcdm register memory\n");
3105 return -ENOMEM;
3106 }
3107
3108 /* Clean up the mailbox interrupts after pre-kernel code. */
3109 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3110
3111 irq = platform_get_irq(pdev, 0);
3112 if (irq <= 0)
3113 return irq;
3114
3115 err = request_threaded_irq(irq, prcmu_irq_handler,
3116 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3117 if (err < 0) {
3118 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3119 return err;
3120 }
3121
3122 db8500_irq_init(np);
3123
3124 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3125
3126 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3127 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3128 if (err) {
3129 pr_err("prcmu: Failed to add subdevices\n");
3130 return err;
3131 }
3132
3133 /* TODO: Remove restriction when clk definitions are available. */
3134 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3135 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3136 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3137 db8500_irq_domain);
3138 if (err) {
3139 mfd_remove_devices(&pdev->dev);
3140 pr_err("prcmu: Failed to add subdevices\n");
3141 return err;
3142 }
3143 }
3144
3145 err = db8500_prcmu_register_ab8500(&pdev->dev);
3146 if (err) {
3147 mfd_remove_devices(&pdev->dev);
3148 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3149 return err;
3150 }
3151
3152 pr_info("DB8500 PRCMU initialized\n");
3153 return err;
3154}
3155static const struct of_device_id db8500_prcmu_match[] = {
3156 { .compatible = "stericsson,db8500-prcmu"},
3157 { },
3158};
3159
3160static struct platform_driver db8500_prcmu_driver = {
3161 .driver = {
3162 .name = "db8500-prcmu",
3163 .of_match_table = db8500_prcmu_match,
3164 },
3165 .probe = db8500_prcmu_probe,
3166};
3167
3168static int __init db8500_prcmu_init(void)
3169{
3170 return platform_driver_register(&db8500_prcmu_driver);
3171}
3172core_initcall(db8500_prcmu_init);