Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * DB8500 PRCM Unit driver
   4 *
   5 * Copyright (C) STMicroelectronics 2009
   6 * Copyright (C) ST-Ericsson SA 2010
   7 *
 
   8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   9 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  11 *
  12 * U8500 PRCM Unit interface driver
 
  13 */
  14#include <linux/init.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/delay.h>
  18#include <linux/errno.h>
  19#include <linux/err.h>
  20#include <linux/spinlock.h>
  21#include <linux/io.h>
  22#include <linux/slab.h>
  23#include <linux/mutex.h>
  24#include <linux/completion.h>
  25#include <linux/irq.h>
  26#include <linux/jiffies.h>
  27#include <linux/bitops.h>
  28#include <linux/fs.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/platform_device.h>
  33#include <linux/uaccess.h>
  34#include <linux/mfd/core.h>
  35#include <linux/mfd/dbx500-prcmu.h>
  36#include <linux/mfd/abx500/ab8500.h>
  37#include <linux/regulator/db8500-prcmu.h>
  38#include <linux/regulator/machine.h>
  39#include "db8500-prcmu-regs.h"
 
 
  40
  41/* Index of different voltages to be used when accessing AVSData */
  42#define PRCM_AVS_BASE		0x2FC
  43#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  44#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  45#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  46#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  47#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  48#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  49#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  50#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  51#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  52#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  53#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  54#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  55#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  56
  57#define PRCM_AVS_VOLTAGE		0
  58#define PRCM_AVS_VOLTAGE_MASK		0x3f
  59#define PRCM_AVS_ISSLOWSTARTUP		6
  60#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  61#define PRCM_AVS_ISMODEENABLE		7
  62#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  63
  64#define PRCM_BOOT_STATUS	0xFFF
  65#define PRCM_ROMCODE_A2P	0xFFE
  66#define PRCM_ROMCODE_P2A	0xFFD
  67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  68
  69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70
  71#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  72#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  73#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  74#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  75#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  76#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  77#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  78#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  79
  80/* Req Mailboxes */
  81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  87
  88/* Ack Mailboxes */
  89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  95
  96/* Mailbox 0 headers */
  97#define MB0H_POWER_STATE_TRANS		0
  98#define MB0H_CONFIG_WAKEUPS_EXE		1
  99#define MB0H_READ_WAKEUP_ACK		3
 100#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 101
 102#define MB0H_WAKEUP_EXE 2
 103#define MB0H_WAKEUP_SLEEP 5
 104
 105/* Mailbox 0 REQs */
 106#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 107#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 108#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 109#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 110#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 111#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 112
 113/* Mailbox 0 ACKs */
 114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 115#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 116#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 117#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 118#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 119#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 121
 122/* Mailbox 1 headers */
 123#define MB1H_ARM_APE_OPP 0x0
 124#define MB1H_RESET_MODEM 0x2
 125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 127#define MB1H_RELEASE_USB_WAKEUP 0x5
 128#define MB1H_PLL_ON_OFF 0x6
 129
 130/* Mailbox 1 Requests */
 131#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 132#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 133#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 134#define PLL_SOC0_OFF	0x1
 135#define PLL_SOC0_ON	0x2
 136#define PLL_SOC1_OFF	0x4
 137#define PLL_SOC1_ON	0x8
 138
 139/* Mailbox 1 ACKs */
 140#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 141#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 143#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 144
 145/* Mailbox 2 headers */
 146#define MB2H_DPS	0x0
 147#define MB2H_AUTO_PWR	0x1
 148
 149/* Mailbox 2 REQs */
 150#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 151#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 152#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 153#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 154#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 155#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 156#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 157#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 158#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 159#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 160
 161/* Mailbox 2 ACKs */
 162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 163#define HWACC_PWR_ST_OK 0xFE
 164
 165/* Mailbox 3 headers */
 166#define MB3H_ANC	0x0
 167#define MB3H_SIDETONE	0x1
 168#define MB3H_SYSCLK	0xE
 169
 170/* Mailbox 3 Requests */
 171#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 172#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 173#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 174#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 177#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 178
 179/* Mailbox 4 headers */
 180#define MB4H_DDR_INIT	0x0
 181#define MB4H_MEM_ST	0x1
 182#define MB4H_HOTDOG	0x12
 183#define MB4H_HOTMON	0x13
 184#define MB4H_HOT_PERIOD	0x14
 185#define MB4H_A9WDOG_CONF 0x16
 186#define MB4H_A9WDOG_EN   0x17
 187#define MB4H_A9WDOG_DIS  0x18
 188#define MB4H_A9WDOG_LOAD 0x19
 189#define MB4H_A9WDOG_KICK 0x20
 190
 191/* Mailbox 4 Requests */
 192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 194#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 198#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 199#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 200#define HOTMON_CONFIG_LOW			BIT(0)
 201#define HOTMON_CONFIG_HIGH			BIT(1)
 202#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 203#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 204#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 205#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 206#define A9WDOG_AUTO_OFF_EN			BIT(7)
 207#define A9WDOG_AUTO_OFF_DIS			0
 208#define A9WDOG_ID_MASK				0xf
 209
 210/* Mailbox 5 Requests */
 211#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 212#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 213#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 214#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 217#define PRCMU_I2C_STOP_EN		BIT(3)
 218
 219/* Mailbox 5 ACKs */
 220#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 221#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 222#define I2C_WR_OK 0x1
 223#define I2C_RD_OK 0x2
 224
 225#define NUM_MB 8
 226#define MBOX_BIT BIT
 227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 228
 229/*
 230 * Wakeups/IRQs
 231 */
 232
 233#define WAKEUP_BIT_RTC BIT(0)
 234#define WAKEUP_BIT_RTT0 BIT(1)
 235#define WAKEUP_BIT_RTT1 BIT(2)
 236#define WAKEUP_BIT_HSI0 BIT(3)
 237#define WAKEUP_BIT_HSI1 BIT(4)
 238#define WAKEUP_BIT_CA_WAKE BIT(5)
 239#define WAKEUP_BIT_USB BIT(6)
 240#define WAKEUP_BIT_ABB BIT(7)
 241#define WAKEUP_BIT_ABB_FIFO BIT(8)
 242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 243#define WAKEUP_BIT_CA_SLEEP BIT(10)
 244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 246#define WAKEUP_BIT_ANC_OK BIT(13)
 247#define WAKEUP_BIT_SW_ERROR BIT(14)
 248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 249#define WAKEUP_BIT_ARM BIT(17)
 250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 253#define WAKEUP_BIT_GPIO0 BIT(23)
 254#define WAKEUP_BIT_GPIO1 BIT(24)
 255#define WAKEUP_BIT_GPIO2 BIT(25)
 256#define WAKEUP_BIT_GPIO3 BIT(26)
 257#define WAKEUP_BIT_GPIO4 BIT(27)
 258#define WAKEUP_BIT_GPIO5 BIT(28)
 259#define WAKEUP_BIT_GPIO6 BIT(29)
 260#define WAKEUP_BIT_GPIO7 BIT(30)
 261#define WAKEUP_BIT_GPIO8 BIT(31)
 262
 263static struct {
 264	bool valid;
 265	struct prcmu_fw_version version;
 266} fw_info;
 267
 268static struct irq_domain *db8500_irq_domain;
 269
 270/*
 271 * This vector maps irq numbers to the bits in the bit field used in
 272 * communication with the PRCMU firmware.
 273 *
 274 * The reason for having this is to keep the irq numbers contiguous even though
 275 * the bits in the bit field are not. (The bits also have a tendency to move
 276 * around, to further complicate matters.)
 277 */
 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 280
 281#define IRQ_PRCMU_RTC 0
 282#define IRQ_PRCMU_RTT0 1
 283#define IRQ_PRCMU_RTT1 2
 284#define IRQ_PRCMU_HSI0 3
 285#define IRQ_PRCMU_HSI1 4
 286#define IRQ_PRCMU_CA_WAKE 5
 287#define IRQ_PRCMU_USB 6
 288#define IRQ_PRCMU_ABB 7
 289#define IRQ_PRCMU_ABB_FIFO 8
 290#define IRQ_PRCMU_ARM 9
 291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 292#define IRQ_PRCMU_GPIO0 11
 293#define IRQ_PRCMU_GPIO1 12
 294#define IRQ_PRCMU_GPIO2 13
 295#define IRQ_PRCMU_GPIO3 14
 296#define IRQ_PRCMU_GPIO4 15
 297#define IRQ_PRCMU_GPIO5 16
 298#define IRQ_PRCMU_GPIO6 17
 299#define IRQ_PRCMU_GPIO7 18
 300#define IRQ_PRCMU_GPIO8 19
 301#define IRQ_PRCMU_CA_SLEEP 20
 302#define IRQ_PRCMU_HOTMON_LOW 21
 303#define IRQ_PRCMU_HOTMON_HIGH 22
 304#define NUM_PRCMU_WAKEUPS 23
 305
 306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 307	IRQ_ENTRY(RTC),
 308	IRQ_ENTRY(RTT0),
 309	IRQ_ENTRY(RTT1),
 310	IRQ_ENTRY(HSI0),
 311	IRQ_ENTRY(HSI1),
 312	IRQ_ENTRY(CA_WAKE),
 313	IRQ_ENTRY(USB),
 314	IRQ_ENTRY(ABB),
 315	IRQ_ENTRY(ABB_FIFO),
 316	IRQ_ENTRY(CA_SLEEP),
 317	IRQ_ENTRY(ARM),
 318	IRQ_ENTRY(HOTMON_LOW),
 319	IRQ_ENTRY(HOTMON_HIGH),
 320	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 321	IRQ_ENTRY(GPIO0),
 322	IRQ_ENTRY(GPIO1),
 323	IRQ_ENTRY(GPIO2),
 324	IRQ_ENTRY(GPIO3),
 325	IRQ_ENTRY(GPIO4),
 326	IRQ_ENTRY(GPIO5),
 327	IRQ_ENTRY(GPIO6),
 328	IRQ_ENTRY(GPIO7),
 329	IRQ_ENTRY(GPIO8)
 330};
 331
 332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 335	WAKEUP_ENTRY(RTC),
 336	WAKEUP_ENTRY(RTT0),
 337	WAKEUP_ENTRY(RTT1),
 338	WAKEUP_ENTRY(HSI0),
 339	WAKEUP_ENTRY(HSI1),
 340	WAKEUP_ENTRY(USB),
 341	WAKEUP_ENTRY(ABB),
 342	WAKEUP_ENTRY(ABB_FIFO),
 343	WAKEUP_ENTRY(ARM)
 344};
 345
 346/*
 347 * mb0_transfer - state needed for mailbox 0 communication.
 348 * @lock:		The transaction lock.
 349 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 350 *			the request data.
 351 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 352 * @req:		Request data that need to persist between requests.
 353 */
 354static struct {
 355	spinlock_t lock;
 356	spinlock_t dbb_irqs_lock;
 357	struct work_struct mask_work;
 358	struct mutex ac_wake_lock;
 359	struct completion ac_wake_work;
 360	struct {
 361		u32 dbb_irqs;
 362		u32 dbb_wakeups;
 363		u32 abb_events;
 364	} req;
 365} mb0_transfer;
 366
 367/*
 368 * mb1_transfer - state needed for mailbox 1 communication.
 369 * @lock:	The transaction lock.
 370 * @work:	The transaction completion structure.
 371 * @ape_opp:	The current APE OPP.
 372 * @ack:	Reply ("acknowledge") data.
 373 */
 374static struct {
 375	struct mutex lock;
 376	struct completion work;
 377	u8 ape_opp;
 378	struct {
 379		u8 header;
 380		u8 arm_opp;
 381		u8 ape_opp;
 382		u8 ape_voltage_status;
 383	} ack;
 384} mb1_transfer;
 385
 386/*
 387 * mb2_transfer - state needed for mailbox 2 communication.
 388 * @lock:            The transaction lock.
 389 * @work:            The transaction completion structure.
 390 * @auto_pm_lock:    The autonomous power management configuration lock.
 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 392 * @req:             Request data that need to persist between requests.
 393 * @ack:             Reply ("acknowledge") data.
 394 */
 395static struct {
 396	struct mutex lock;
 397	struct completion work;
 398	spinlock_t auto_pm_lock;
 399	bool auto_pm_enabled;
 400	struct {
 401		u8 status;
 402	} ack;
 403} mb2_transfer;
 404
 405/*
 406 * mb3_transfer - state needed for mailbox 3 communication.
 407 * @lock:		The request lock.
 408 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 409 * @sysclk_work:	Work structure used for sysclk requests.
 410 */
 411static struct {
 412	spinlock_t lock;
 413	struct mutex sysclk_lock;
 414	struct completion sysclk_work;
 415} mb3_transfer;
 416
 417/*
 418 * mb4_transfer - state needed for mailbox 4 communication.
 419 * @lock:	The transaction lock.
 420 * @work:	The transaction completion structure.
 421 */
 422static struct {
 423	struct mutex lock;
 424	struct completion work;
 425} mb4_transfer;
 426
 427/*
 428 * mb5_transfer - state needed for mailbox 5 communication.
 429 * @lock:	The transaction lock.
 430 * @work:	The transaction completion structure.
 431 * @ack:	Reply ("acknowledge") data.
 432 */
 433static struct {
 434	struct mutex lock;
 435	struct completion work;
 436	struct {
 437		u8 status;
 438		u8 value;
 439	} ack;
 440} mb5_transfer;
 441
 442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 443
 444/* Spinlocks */
 445static DEFINE_SPINLOCK(prcmu_lock);
 446static DEFINE_SPINLOCK(clkout_lock);
 447
 448/* Global var to runtime determine TCDM base for v2 or v1 */
 449static __iomem void *tcdm_base;
 450static __iomem void *prcmu_base;
 451
 452struct clk_mgt {
 453	u32 offset;
 454	u32 pllsw;
 455	int branch;
 456	bool clk38div;
 457};
 458
 459enum {
 460	PLL_RAW,
 461	PLL_FIX,
 462	PLL_DIV
 463};
 464
 465static DEFINE_SPINLOCK(clk_mgt_lock);
 466
 467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 468	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 470	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 471	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 472	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 475	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 476	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 477	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 478	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 483	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 484	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 485	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 487	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 488	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 489	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 491	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 492	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 493	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 494	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 495	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 496	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 498	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 499};
 500
 501struct dsiclk {
 502	u32 divsel_mask;
 503	u32 divsel_shift;
 504	u32 divsel;
 505};
 506
 507static struct dsiclk dsiclk[2] = {
 508	{
 509		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 510		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 511		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 512	},
 513	{
 514		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 515		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 516		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 517	}
 518};
 519
 520struct dsiescclk {
 521	u32 en;
 522	u32 div_mask;
 523	u32 div_shift;
 524};
 525
 526static struct dsiescclk dsiescclk[3] = {
 527	{
 528		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 529		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 530		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 531	},
 532	{
 533		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 534		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 535		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 536	},
 537	{
 538		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 539		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 540		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 541	}
 542};
 543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544u32 db8500_prcmu_read(unsigned int reg)
 545{
 546	return readl(prcmu_base + reg);
 547}
 548
 549void db8500_prcmu_write(unsigned int reg, u32 value)
 550{
 551	unsigned long flags;
 552
 553	spin_lock_irqsave(&prcmu_lock, flags);
 554	writel(value, (prcmu_base + reg));
 555	spin_unlock_irqrestore(&prcmu_lock, flags);
 556}
 557
 558void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 559{
 560	u32 val;
 561	unsigned long flags;
 562
 563	spin_lock_irqsave(&prcmu_lock, flags);
 564	val = readl(prcmu_base + reg);
 565	val = ((val & ~mask) | (value & mask));
 566	writel(val, (prcmu_base + reg));
 567	spin_unlock_irqrestore(&prcmu_lock, flags);
 568}
 569
 570struct prcmu_fw_version *prcmu_get_fw_version(void)
 571{
 572	return fw_info.valid ? &fw_info.version : NULL;
 573}
 574
 575static bool prcmu_is_ulppll_disabled(void)
 576{
 577	struct prcmu_fw_version *ver;
 578
 579	ver = prcmu_get_fw_version();
 580	return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK;
 581}
 582
 583bool prcmu_has_arm_maxopp(void)
 584{
 585	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 586		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 587}
 588
 589/**
 590 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 591 * @val: Value to be set, i.e. transition requested
 592 * Returns: 0 on success, -EINVAL on invalid argument
 593 *
 594 * This function is used to run the following power state sequences -
 595 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 596 */
 597int prcmu_set_rc_a2p(enum romcode_write val)
 598{
 599	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 600		return -EINVAL;
 601	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 602	return 0;
 603}
 604
 605/**
 606 * prcmu_get_rc_p2a - This function is used to get power state sequences
 607 * Returns: the power transition that has last happened
 608 *
 609 * This function can return the following transitions-
 610 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 611 */
 612enum romcode_read prcmu_get_rc_p2a(void)
 613{
 614	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 615}
 616
 617/**
 618 * prcmu_get_xp70_current_state - Return the current XP70 power mode
 619 * Returns: Returns the current AP(ARM) power mode: init,
 620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 621 */
 622enum ap_pwrst prcmu_get_xp70_current_state(void)
 623{
 624	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 625}
 626
 627/**
 628 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 629 * @clkout:	The CLKOUT number (0 or 1).
 630 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 631 * @div:	The divider to be applied.
 632 *
 633 * Configures one of the programmable clock outputs (CLKOUTs).
 634 * @div should be in the range [1,63] to request a configuration, or 0 to
 635 * inform that the configuration is no longer requested.
 636 */
 637int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 638{
 639	static int requests[2];
 640	int r = 0;
 641	unsigned long flags;
 642	u32 val;
 643	u32 bits;
 644	u32 mask;
 645	u32 div_mask;
 646
 647	BUG_ON(clkout > 1);
 648	BUG_ON(div > 63);
 649	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 650
 651	if (!div && !requests[clkout])
 652		return -EINVAL;
 653
 654	if (clkout == 0) {
 655		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 656		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 657		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 658			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 659	} else {
 660		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 661		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 662			PRCM_CLKOCR_CLK1TYPE);
 663		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 664			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 665	}
 666	bits &= mask;
 667
 668	spin_lock_irqsave(&clkout_lock, flags);
 669
 670	val = readl(PRCM_CLKOCR);
 671	if (val & div_mask) {
 672		if (div) {
 673			if ((val & mask) != bits) {
 674				r = -EBUSY;
 675				goto unlock_and_return;
 676			}
 677		} else {
 678			if ((val & mask & ~div_mask) != bits) {
 679				r = -EINVAL;
 680				goto unlock_and_return;
 681			}
 682		}
 683	}
 684	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 685	requests[clkout] += (div ? 1 : -1);
 686
 687unlock_and_return:
 688	spin_unlock_irqrestore(&clkout_lock, flags);
 689
 690	return r;
 691}
 692
 693int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 694{
 695	unsigned long flags;
 696
 697	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 698
 699	spin_lock_irqsave(&mb0_transfer.lock, flags);
 700
 701	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 702		cpu_relax();
 703
 704	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 705	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 706	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 707	writeb((keep_ulp_clk ? 1 : 0),
 708		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 709	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 710	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 711
 712	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 713
 714	return 0;
 715}
 716
 717u8 db8500_prcmu_get_power_state_result(void)
 718{
 719	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 720}
 721
 722/* This function should only be called while mb0_transfer.lock is held. */
 723static void config_wakeups(void)
 724{
 725	const u8 header[2] = {
 726		MB0H_CONFIG_WAKEUPS_EXE,
 727		MB0H_CONFIG_WAKEUPS_SLEEP
 728	};
 729	static u32 last_dbb_events;
 730	static u32 last_abb_events;
 731	u32 dbb_events;
 732	u32 abb_events;
 733	unsigned int i;
 734
 735	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 736	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 737
 738	abb_events = mb0_transfer.req.abb_events;
 739
 740	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 741		return;
 742
 743	for (i = 0; i < 2; i++) {
 744		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 745			cpu_relax();
 746		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 747		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 748		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 749		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 750	}
 751	last_dbb_events = dbb_events;
 752	last_abb_events = abb_events;
 753}
 754
 755void db8500_prcmu_enable_wakeups(u32 wakeups)
 756{
 757	unsigned long flags;
 758	u32 bits;
 759	int i;
 760
 761	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 762
 763	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 764		if (wakeups & BIT(i))
 765			bits |= prcmu_wakeup_bit[i];
 766	}
 767
 768	spin_lock_irqsave(&mb0_transfer.lock, flags);
 769
 770	mb0_transfer.req.dbb_wakeups = bits;
 771	config_wakeups();
 772
 773	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 774}
 775
 776void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 777{
 778	unsigned long flags;
 779
 780	spin_lock_irqsave(&mb0_transfer.lock, flags);
 781
 782	mb0_transfer.req.abb_events = abb_events;
 783	config_wakeups();
 784
 785	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 786}
 787
 788void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 789{
 790	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 791		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 792	else
 793		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 794}
 795
 796/**
 797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 798 * @opp: The new ARM operating point to which transition is to be made
 799 * Returns: 0 on success, non-zero on failure
 800 *
 801 * This function sets the operating point of the ARM.
 802 */
 803int db8500_prcmu_set_arm_opp(u8 opp)
 804{
 805	int r;
 806
 807	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 808		return -EINVAL;
 809
 810	r = 0;
 811
 812	mutex_lock(&mb1_transfer.lock);
 813
 814	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 815		cpu_relax();
 816
 817	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 818	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 819	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 820
 821	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 822	wait_for_completion(&mb1_transfer.work);
 823
 824	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 825		(mb1_transfer.ack.arm_opp != opp))
 826		r = -EIO;
 827
 828	mutex_unlock(&mb1_transfer.lock);
 829
 830	return r;
 831}
 832
 833/**
 834 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 835 *
 836 * Returns: the current ARM OPP
 837 */
 838int db8500_prcmu_get_arm_opp(void)
 839{
 840	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 841}
 842
 843/**
 844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 845 *
 846 * Returns: the current DDR OPP
 847 */
 848int db8500_prcmu_get_ddr_opp(void)
 849{
 850	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 851}
 852
 853/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 854static void request_even_slower_clocks(bool enable)
 855{
 856	u32 clock_reg[] = {
 857		PRCM_ACLK_MGT,
 858		PRCM_DMACLK_MGT
 859	};
 860	unsigned long flags;
 861	unsigned int i;
 862
 863	spin_lock_irqsave(&clk_mgt_lock, flags);
 864
 865	/* Grab the HW semaphore. */
 866	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 867		cpu_relax();
 868
 869	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 870		u32 val;
 871		u32 div;
 872
 873		val = readl(prcmu_base + clock_reg[i]);
 874		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 875		if (enable) {
 876			if ((div <= 1) || (div > 15)) {
 877				pr_err("prcmu: Bad clock divider %d in %s\n",
 878					div, __func__);
 879				goto unlock_and_return;
 880			}
 881			div <<= 1;
 882		} else {
 883			if (div <= 2)
 884				goto unlock_and_return;
 885			div >>= 1;
 886		}
 887		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 888			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 889		writel(val, prcmu_base + clock_reg[i]);
 890	}
 891
 892unlock_and_return:
 893	/* Release the HW semaphore. */
 894	writel(0, PRCM_SEM);
 895
 896	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 897}
 898
 899/**
 900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP
 901 * @opp: The new APE operating point to which transition is to be made
 902 * Returns: 0 on success, non-zero on failure
 903 *
 904 * This function sets the operating point of the APE.
 905 */
 906int db8500_prcmu_set_ape_opp(u8 opp)
 907{
 908	int r = 0;
 909
 910	if (opp == mb1_transfer.ape_opp)
 911		return 0;
 912
 913	mutex_lock(&mb1_transfer.lock);
 914
 915	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
 916		request_even_slower_clocks(false);
 917
 918	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
 919		goto skip_message;
 920
 921	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 922		cpu_relax();
 923
 924	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 925	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 926	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
 927		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
 928
 929	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 930	wait_for_completion(&mb1_transfer.work);
 931
 932	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 933		(mb1_transfer.ack.ape_opp != opp))
 934		r = -EIO;
 935
 936skip_message:
 937	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
 938		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
 939		request_even_slower_clocks(true);
 940	if (!r)
 941		mb1_transfer.ape_opp = opp;
 942
 943	mutex_unlock(&mb1_transfer.lock);
 944
 945	return r;
 946}
 947
 948/**
 949 * db8500_prcmu_get_ape_opp - get the current APE OPP
 950 *
 951 * Returns: the current APE OPP
 952 */
 953int db8500_prcmu_get_ape_opp(void)
 954{
 955	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
 956}
 957
 958/**
 959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
 960 * @enable: true to request the higher voltage, false to drop a request.
 961 *
 962 * Calls to this function to enable and disable requests must be balanced.
 963 */
 964int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
 965{
 966	int r = 0;
 967	u8 header;
 968	static unsigned int requests;
 969
 970	mutex_lock(&mb1_transfer.lock);
 971
 972	if (enable) {
 973		if (0 != requests++)
 974			goto unlock_and_return;
 975		header = MB1H_REQUEST_APE_OPP_100_VOLT;
 976	} else {
 977		if (requests == 0) {
 978			r = -EIO;
 979			goto unlock_and_return;
 980		} else if (1 != requests--) {
 981			goto unlock_and_return;
 982		}
 983		header = MB1H_RELEASE_APE_OPP_100_VOLT;
 984	}
 985
 986	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 987		cpu_relax();
 988
 989	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 990
 991	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 992	wait_for_completion(&mb1_transfer.work);
 993
 994	if ((mb1_transfer.ack.header != header) ||
 995		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
 996		r = -EIO;
 997
 998unlock_and_return:
 999	mutex_unlock(&mb1_transfer.lock);
1000
1001	return r;
1002}
1003
1004/**
1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1006 *
1007 * This function releases the power state requirements of a USB wakeup.
1008 */
1009int prcmu_release_usb_wakeup_state(void)
1010{
1011	int r = 0;
1012
1013	mutex_lock(&mb1_transfer.lock);
1014
1015	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1016		cpu_relax();
1017
1018	writeb(MB1H_RELEASE_USB_WAKEUP,
1019		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1020
1021	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1022	wait_for_completion(&mb1_transfer.work);
1023
1024	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1025		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1026		r = -EIO;
1027
1028	mutex_unlock(&mb1_transfer.lock);
1029
1030	return r;
1031}
1032
1033static int request_pll(u8 clock, bool enable)
1034{
1035	int r = 0;
1036
1037	if (clock == PRCMU_PLLSOC0)
1038		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1039	else if (clock == PRCMU_PLLSOC1)
1040		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1041	else
1042		return -EINVAL;
1043
1044	mutex_lock(&mb1_transfer.lock);
1045
1046	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1047		cpu_relax();
1048
1049	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1050	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1051
1052	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1053	wait_for_completion(&mb1_transfer.work);
1054
1055	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1056		r = -EIO;
1057
1058	mutex_unlock(&mb1_transfer.lock);
1059
1060	return r;
1061}
1062
1063/**
1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1065 * @epod_id: The EPOD to set
1066 * @epod_state: The new EPOD state
1067 *
1068 * This function sets the state of a EPOD (power domain). It may not be called
1069 * from interrupt context.
1070 */
1071int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1072{
1073	int r = 0;
1074	bool ram_retention = false;
1075	int i;
1076
1077	/* check argument */
1078	BUG_ON(epod_id >= NUM_EPOD_ID);
1079
1080	/* set flag if retention is possible */
1081	switch (epod_id) {
1082	case EPOD_ID_SVAMMDSP:
1083	case EPOD_ID_SIAMMDSP:
1084	case EPOD_ID_ESRAM12:
1085	case EPOD_ID_ESRAM34:
1086		ram_retention = true;
1087		break;
1088	}
1089
1090	/* check argument */
1091	BUG_ON(epod_state > EPOD_STATE_ON);
1092	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1093
1094	/* get lock */
1095	mutex_lock(&mb2_transfer.lock);
1096
1097	/* wait for mailbox */
1098	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1099		cpu_relax();
1100
1101	/* fill in mailbox */
1102	for (i = 0; i < NUM_EPOD_ID; i++)
1103		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1104	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1105
1106	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1107
1108	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1109
1110	/*
1111	 * The current firmware version does not handle errors correctly,
1112	 * and we cannot recover if there is an error.
1113	 * This is expected to change when the firmware is updated.
1114	 */
1115	if (!wait_for_completion_timeout(&mb2_transfer.work,
1116			msecs_to_jiffies(20000))) {
1117		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1118			__func__);
1119		r = -EIO;
1120		goto unlock_and_return;
1121	}
1122
1123	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1124		r = -EIO;
1125
1126unlock_and_return:
1127	mutex_unlock(&mb2_transfer.lock);
1128	return r;
1129}
1130
1131/**
1132 * prcmu_configure_auto_pm - Configure autonomous power management.
1133 * @sleep: Configuration for ApSleep.
1134 * @idle:  Configuration for ApIdle.
1135 */
1136void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1137	struct prcmu_auto_pm_config *idle)
1138{
1139	u32 sleep_cfg;
1140	u32 idle_cfg;
1141	unsigned long flags;
1142
1143	BUG_ON((sleep == NULL) || (idle == NULL));
1144
1145	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1146	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1147	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1148	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1149	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1150	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1151
1152	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1153	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1154	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1155	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1156	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1157	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1158
1159	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1160
1161	/*
1162	 * The autonomous power management configuration is done through
1163	 * fields in mailbox 2, but these fields are only used as shared
1164	 * variables - i.e. there is no need to send a message.
1165	 */
1166	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1167	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1168
1169	mb2_transfer.auto_pm_enabled =
1170		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1171		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1172		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1173		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1174
1175	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1176}
1177EXPORT_SYMBOL(prcmu_configure_auto_pm);
1178
1179bool prcmu_is_auto_pm_enabled(void)
1180{
1181	return mb2_transfer.auto_pm_enabled;
1182}
1183
1184static int request_sysclk(bool enable)
1185{
1186	int r;
1187	unsigned long flags;
1188
1189	r = 0;
1190
1191	mutex_lock(&mb3_transfer.sysclk_lock);
1192
1193	spin_lock_irqsave(&mb3_transfer.lock, flags);
1194
1195	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1196		cpu_relax();
1197
1198	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1199
1200	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1201	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1202
1203	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1204
1205	/*
1206	 * The firmware only sends an ACK if we want to enable the
1207	 * SysClk, and it succeeds.
1208	 */
1209	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1210			msecs_to_jiffies(20000))) {
1211		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1212			__func__);
1213		r = -EIO;
1214	}
1215
1216	mutex_unlock(&mb3_transfer.sysclk_lock);
1217
1218	return r;
1219}
1220
1221static int request_timclk(bool enable)
1222{
1223	u32 val;
1224
1225	/*
1226	 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power)
1227	 * PLL is disabled so we cannot use doze mode, this will
1228	 * stop the clock on this firmware.
1229	 */
1230	if (prcmu_is_ulppll_disabled())
1231		val = 0;
1232	else
1233		val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1234
1235	if (!enable)
1236		val |= PRCM_TCR_STOP_TIMERS |
1237			PRCM_TCR_DOZE_MODE |
1238			PRCM_TCR_TENSEL_MASK;
1239
1240	writel(val, PRCM_TCR);
1241
1242	return 0;
1243}
1244
1245static int request_clock(u8 clock, bool enable)
1246{
1247	u32 val;
1248	unsigned long flags;
1249
1250	spin_lock_irqsave(&clk_mgt_lock, flags);
1251
1252	/* Grab the HW semaphore. */
1253	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1254		cpu_relax();
1255
1256	val = readl(prcmu_base + clk_mgt[clock].offset);
1257	if (enable) {
1258		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1259	} else {
1260		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1261		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1262	}
1263	writel(val, prcmu_base + clk_mgt[clock].offset);
1264
1265	/* Release the HW semaphore. */
1266	writel(0, PRCM_SEM);
1267
1268	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1269
1270	return 0;
1271}
1272
1273static int request_sga_clock(u8 clock, bool enable)
1274{
1275	u32 val;
1276	int ret;
1277
1278	if (enable) {
1279		val = readl(PRCM_CGATING_BYPASS);
1280		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1281	}
1282
1283	ret = request_clock(clock, enable);
1284
1285	if (!ret && !enable) {
1286		val = readl(PRCM_CGATING_BYPASS);
1287		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1288	}
1289
1290	return ret;
1291}
1292
1293static inline bool plldsi_locked(void)
1294{
1295	return (readl(PRCM_PLLDSI_LOCKP) &
1296		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1297		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1298		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1299		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1300}
1301
1302static int request_plldsi(bool enable)
1303{
1304	int r = 0;
1305	u32 val;
1306
1307	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1308		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1309		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1310
1311	val = readl(PRCM_PLLDSI_ENABLE);
1312	if (enable)
1313		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1314	else
1315		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1316	writel(val, PRCM_PLLDSI_ENABLE);
1317
1318	if (enable) {
1319		unsigned int i;
1320		bool locked = plldsi_locked();
1321
1322		for (i = 10; !locked && (i > 0); --i) {
1323			udelay(100);
1324			locked = plldsi_locked();
1325		}
1326		if (locked) {
1327			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1328				PRCM_APE_RESETN_SET);
1329		} else {
1330			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1331				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1332				PRCM_MMIP_LS_CLAMP_SET);
1333			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1334			writel(val, PRCM_PLLDSI_ENABLE);
1335			r = -EAGAIN;
1336		}
1337	} else {
1338		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1339	}
1340	return r;
1341}
1342
1343static int request_dsiclk(u8 n, bool enable)
1344{
1345	u32 val;
1346
1347	val = readl(PRCM_DSI_PLLOUT_SEL);
1348	val &= ~dsiclk[n].divsel_mask;
1349	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1350		dsiclk[n].divsel_shift);
1351	writel(val, PRCM_DSI_PLLOUT_SEL);
1352	return 0;
1353}
1354
1355static int request_dsiescclk(u8 n, bool enable)
1356{
1357	u32 val;
1358
1359	val = readl(PRCM_DSITVCLK_DIV);
1360	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1361	writel(val, PRCM_DSITVCLK_DIV);
1362	return 0;
1363}
1364
1365/**
1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1367 * @clock:      The clock for which the request is made.
1368 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1369 *
1370 * This function should only be used by the clock implementation.
1371 * Do not use it from any other place!
1372 */
1373int db8500_prcmu_request_clock(u8 clock, bool enable)
1374{
1375	if (clock == PRCMU_SGACLK)
1376		return request_sga_clock(clock, enable);
1377	else if (clock < PRCMU_NUM_REG_CLOCKS)
1378		return request_clock(clock, enable);
1379	else if (clock == PRCMU_TIMCLK)
1380		return request_timclk(enable);
1381	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1382		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1383	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1384		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1385	else if (clock == PRCMU_PLLDSI)
1386		return request_plldsi(enable);
1387	else if (clock == PRCMU_SYSCLK)
1388		return request_sysclk(enable);
1389	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1390		return request_pll(clock, enable);
1391	else
1392		return -EINVAL;
1393}
1394
1395static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1396	int branch)
1397{
1398	u64 rate;
1399	u32 val;
1400	u32 d;
1401	u32 div = 1;
1402
1403	val = readl(reg);
1404
1405	rate = src_rate;
1406	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1407
1408	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1409	if (d > 1)
1410		div *= d;
1411
1412	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1413	if (d > 1)
1414		div *= d;
1415
1416	if (val & PRCM_PLL_FREQ_SELDIV2)
1417		div *= 2;
1418
1419	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1420		(val & PRCM_PLL_FREQ_DIV2EN) &&
1421		((reg == PRCM_PLLSOC0_FREQ) ||
1422		 (reg == PRCM_PLLARM_FREQ) ||
1423		 (reg == PRCM_PLLDDR_FREQ))))
1424		div *= 2;
1425
1426	(void)do_div(rate, div);
1427
1428	return (unsigned long)rate;
1429}
1430
1431#define ROOT_CLOCK_RATE 38400000
1432
1433static unsigned long clock_rate(u8 clock)
1434{
1435	u32 val;
1436	u32 pllsw;
1437	unsigned long rate = ROOT_CLOCK_RATE;
1438
1439	val = readl(prcmu_base + clk_mgt[clock].offset);
1440
1441	if (val & PRCM_CLK_MGT_CLK38) {
1442		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1443			rate /= 2;
1444		return rate;
1445	}
1446
1447	val |= clk_mgt[clock].pllsw;
1448	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1449
1450	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1451		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1452	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1453		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1454	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1455		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1456	else
1457		return 0;
1458
1459	if ((clock == PRCMU_SGACLK) &&
1460		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1461		u64 r = (rate * 10);
1462
1463		(void)do_div(r, 25);
1464		return (unsigned long)r;
1465	}
1466	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1467	if (val)
1468		return rate / val;
1469	else
1470		return 0;
1471}
1472
1473static unsigned long armss_rate(void)
1474{
1475	u32 r;
1476	unsigned long rate;
1477
1478	r = readl(PRCM_ARM_CHGCLKREQ);
1479
1480	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1481		/* External ARMCLKFIX clock */
1482
1483		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1484
1485		/* Check PRCM_ARM_CHGCLKREQ divider */
1486		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1487			rate /= 2;
1488
1489		/* Check PRCM_ARMCLKFIX_MGT divider */
1490		r = readl(PRCM_ARMCLKFIX_MGT);
1491		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1492		rate /= r;
1493
1494	} else {/* ARM PLL */
1495		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1496	}
1497
1498	return rate;
1499}
1500
1501static unsigned long dsiclk_rate(u8 n)
1502{
1503	u32 divsel;
1504	u32 div = 1;
1505
1506	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1507	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1508
1509	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1510		divsel = dsiclk[n].divsel;
1511	else
1512		dsiclk[n].divsel = divsel;
1513
1514	switch (divsel) {
1515	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1516		div *= 2;
1517		fallthrough;
1518	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1519		div *= 2;
1520		fallthrough;
1521	case PRCM_DSI_PLLOUT_SEL_PHI:
1522		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1523			PLL_RAW) / div;
1524	default:
1525		return 0;
1526	}
1527}
1528
1529static unsigned long dsiescclk_rate(u8 n)
1530{
1531	u32 div;
1532
1533	div = readl(PRCM_DSITVCLK_DIV);
1534	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1535	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1536}
1537
1538unsigned long prcmu_clock_rate(u8 clock)
1539{
1540	if (clock < PRCMU_NUM_REG_CLOCKS)
1541		return clock_rate(clock);
1542	else if (clock == PRCMU_TIMCLK)
1543		return prcmu_is_ulppll_disabled() ?
1544			32768 : ROOT_CLOCK_RATE / 16;
1545	else if (clock == PRCMU_SYSCLK)
1546		return ROOT_CLOCK_RATE;
1547	else if (clock == PRCMU_PLLSOC0)
1548		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1549	else if (clock == PRCMU_PLLSOC1)
1550		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1551	else if (clock == PRCMU_ARMSS)
1552		return armss_rate();
1553	else if (clock == PRCMU_PLLDDR)
1554		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1555	else if (clock == PRCMU_PLLDSI)
1556		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1557			PLL_RAW);
1558	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1559		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1560	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1561		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1562	else
1563		return 0;
1564}
1565
1566static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1567{
1568	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1569		return ROOT_CLOCK_RATE;
1570	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1571	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1572		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1573	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1574		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1575	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1576		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1577	else
1578		return 0;
1579}
1580
1581static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1582{
1583	u32 div;
1584
1585	div = (src_rate / rate);
1586	if (div == 0)
1587		return 1;
1588	if (rate < (src_rate / div))
1589		div++;
1590	return div;
1591}
1592
1593static long round_clock_rate(u8 clock, unsigned long rate)
1594{
1595	u32 val;
1596	u32 div;
1597	unsigned long src_rate;
1598	long rounded_rate;
1599
1600	val = readl(prcmu_base + clk_mgt[clock].offset);
1601	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1602		clk_mgt[clock].branch);
1603	div = clock_divider(src_rate, rate);
1604	if (val & PRCM_CLK_MGT_CLK38) {
1605		if (clk_mgt[clock].clk38div) {
1606			if (div > 2)
1607				div = 2;
1608		} else {
1609			div = 1;
1610		}
1611	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1612		u64 r = (src_rate * 10);
1613
1614		(void)do_div(r, 25);
1615		if (r <= rate)
1616			return (unsigned long)r;
1617	}
1618	rounded_rate = (src_rate / min(div, (u32)31));
1619
1620	return rounded_rate;
1621}
1622
1623static const unsigned long db8500_armss_freqs[] = {
1624	199680000,
1625	399360000,
1626	798720000,
1627	998400000
1628};
1629
1630/* The DB8520 has slightly higher ARMSS max frequency */
1631static const unsigned long db8520_armss_freqs[] = {
1632	199680000,
1633	399360000,
1634	798720000,
1635	1152000000
1636};
1637
1638static long round_armss_rate(unsigned long rate)
1639{
1640	unsigned long freq = 0;
1641	const unsigned long *freqs;
1642	int nfreqs;
1643	int i;
1644
1645	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1646		freqs = db8520_armss_freqs;
1647		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1648	} else {
1649		freqs = db8500_armss_freqs;
1650		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1651	}
1652
1653	/* Find the corresponding arm opp from the cpufreq table. */
1654	for (i = 0; i < nfreqs; i++) {
1655		freq = freqs[i];
1656		if (rate <= freq)
1657			break;
1658	}
1659
1660	/* Return the last valid value, even if a match was not found. */
1661	return freq;
1662}
1663
1664#define MIN_PLL_VCO_RATE 600000000ULL
1665#define MAX_PLL_VCO_RATE 1680640000ULL
1666
1667static long round_plldsi_rate(unsigned long rate)
1668{
1669	long rounded_rate = 0;
1670	unsigned long src_rate;
1671	unsigned long rem;
1672	u32 r;
1673
1674	src_rate = clock_rate(PRCMU_HDMICLK);
1675	rem = rate;
1676
1677	for (r = 7; (rem > 0) && (r > 0); r--) {
1678		u64 d;
1679
1680		d = (r * rate);
1681		(void)do_div(d, src_rate);
1682		if (d < 6)
1683			d = 6;
1684		else if (d > 255)
1685			d = 255;
1686		d *= src_rate;
1687		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1688			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1689			continue;
1690		(void)do_div(d, r);
1691		if (rate < d) {
1692			if (rounded_rate == 0)
1693				rounded_rate = (long)d;
1694			break;
1695		}
1696		if ((rate - d) < rem) {
1697			rem = (rate - d);
1698			rounded_rate = (long)d;
1699		}
1700	}
1701	return rounded_rate;
1702}
1703
1704static long round_dsiclk_rate(unsigned long rate)
1705{
1706	u32 div;
1707	unsigned long src_rate;
1708	long rounded_rate;
1709
1710	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1711		PLL_RAW);
1712	div = clock_divider(src_rate, rate);
1713	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1714
1715	return rounded_rate;
1716}
1717
1718static long round_dsiescclk_rate(unsigned long rate)
1719{
1720	u32 div;
1721	unsigned long src_rate;
1722	long rounded_rate;
1723
1724	src_rate = clock_rate(PRCMU_TVCLK);
1725	div = clock_divider(src_rate, rate);
1726	rounded_rate = (src_rate / min(div, (u32)255));
1727
1728	return rounded_rate;
1729}
1730
1731long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1732{
1733	if (clock < PRCMU_NUM_REG_CLOCKS)
1734		return round_clock_rate(clock, rate);
1735	else if (clock == PRCMU_ARMSS)
1736		return round_armss_rate(rate);
1737	else if (clock == PRCMU_PLLDSI)
1738		return round_plldsi_rate(rate);
1739	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1740		return round_dsiclk_rate(rate);
1741	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1742		return round_dsiescclk_rate(rate);
1743	else
1744		return (long)prcmu_clock_rate(clock);
1745}
1746
1747static void set_clock_rate(u8 clock, unsigned long rate)
1748{
1749	u32 val;
1750	u32 div;
1751	unsigned long src_rate;
1752	unsigned long flags;
1753
1754	spin_lock_irqsave(&clk_mgt_lock, flags);
1755
1756	/* Grab the HW semaphore. */
1757	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1758		cpu_relax();
1759
1760	val = readl(prcmu_base + clk_mgt[clock].offset);
1761	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1762		clk_mgt[clock].branch);
1763	div = clock_divider(src_rate, rate);
1764	if (val & PRCM_CLK_MGT_CLK38) {
1765		if (clk_mgt[clock].clk38div) {
1766			if (div > 1)
1767				val |= PRCM_CLK_MGT_CLK38DIV;
1768			else
1769				val &= ~PRCM_CLK_MGT_CLK38DIV;
1770		}
1771	} else if (clock == PRCMU_SGACLK) {
1772		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1773			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1774		if (div == 3) {
1775			u64 r = (src_rate * 10);
1776
1777			(void)do_div(r, 25);
1778			if (r <= rate) {
1779				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1780				div = 0;
1781			}
1782		}
1783		val |= min(div, (u32)31);
1784	} else {
1785		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1786		val |= min(div, (u32)31);
1787	}
1788	writel(val, prcmu_base + clk_mgt[clock].offset);
1789
1790	/* Release the HW semaphore. */
1791	writel(0, PRCM_SEM);
1792
1793	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1794}
1795
1796static int set_armss_rate(unsigned long rate)
1797{
1798	unsigned long freq;
1799	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1800	const unsigned long *freqs;
1801	int nfreqs;
1802	int i;
1803
1804	if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) {
1805		freqs = db8520_armss_freqs;
1806		nfreqs = ARRAY_SIZE(db8520_armss_freqs);
1807	} else {
1808		freqs = db8500_armss_freqs;
1809		nfreqs = ARRAY_SIZE(db8500_armss_freqs);
1810	}
1811
1812	/* Find the corresponding arm opp from the cpufreq table. */
1813	for (i = 0; i < nfreqs; i++) {
1814		freq = freqs[i];
1815		if (rate == freq)
1816			break;
1817	}
1818
1819	if (rate != freq)
1820		return -EINVAL;
1821
1822	/* Set the new arm opp. */
1823	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1824	return db8500_prcmu_set_arm_opp(opps[i]);
1825}
1826
1827static int set_plldsi_rate(unsigned long rate)
1828{
1829	unsigned long src_rate;
1830	unsigned long rem;
1831	u32 pll_freq = 0;
1832	u32 r;
1833
1834	src_rate = clock_rate(PRCMU_HDMICLK);
1835	rem = rate;
1836
1837	for (r = 7; (rem > 0) && (r > 0); r--) {
1838		u64 d;
1839		u64 hwrate;
1840
1841		d = (r * rate);
1842		(void)do_div(d, src_rate);
1843		if (d < 6)
1844			d = 6;
1845		else if (d > 255)
1846			d = 255;
1847		hwrate = (d * src_rate);
1848		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1849			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1850			continue;
1851		(void)do_div(hwrate, r);
1852		if (rate < hwrate) {
1853			if (pll_freq == 0)
1854				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1855					(r << PRCM_PLL_FREQ_R_SHIFT));
1856			break;
1857		}
1858		if ((rate - hwrate) < rem) {
1859			rem = (rate - hwrate);
1860			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1861				(r << PRCM_PLL_FREQ_R_SHIFT));
1862		}
1863	}
1864	if (pll_freq == 0)
1865		return -EINVAL;
1866
1867	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1868	writel(pll_freq, PRCM_PLLDSI_FREQ);
1869
1870	return 0;
1871}
1872
1873static void set_dsiclk_rate(u8 n, unsigned long rate)
1874{
1875	u32 val;
1876	u32 div;
1877
1878	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1879			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1880
1881	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1882			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1883			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1884
1885	val = readl(PRCM_DSI_PLLOUT_SEL);
1886	val &= ~dsiclk[n].divsel_mask;
1887	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1888	writel(val, PRCM_DSI_PLLOUT_SEL);
1889}
1890
1891static void set_dsiescclk_rate(u8 n, unsigned long rate)
1892{
1893	u32 val;
1894	u32 div;
1895
1896	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1897	val = readl(PRCM_DSITVCLK_DIV);
1898	val &= ~dsiescclk[n].div_mask;
1899	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1900	writel(val, PRCM_DSITVCLK_DIV);
1901}
1902
1903int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1904{
1905	if (clock < PRCMU_NUM_REG_CLOCKS)
1906		set_clock_rate(clock, rate);
1907	else if (clock == PRCMU_ARMSS)
1908		return set_armss_rate(rate);
1909	else if (clock == PRCMU_PLLDSI)
1910		return set_plldsi_rate(rate);
1911	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1912		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1913	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1914		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1915	return 0;
1916}
1917
1918int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1919{
1920	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1921	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1922		return -EINVAL;
1923
1924	mutex_lock(&mb4_transfer.lock);
1925
1926	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1927		cpu_relax();
1928
1929	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1930	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1931	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1932	writeb(DDR_PWR_STATE_ON,
1933	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1934	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1935
1936	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1937	wait_for_completion(&mb4_transfer.work);
1938
1939	mutex_unlock(&mb4_transfer.lock);
1940
1941	return 0;
1942}
1943
1944int db8500_prcmu_config_hotdog(u8 threshold)
1945{
1946	mutex_lock(&mb4_transfer.lock);
1947
1948	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1949		cpu_relax();
1950
1951	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1952	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1953
1954	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1955	wait_for_completion(&mb4_transfer.work);
1956
1957	mutex_unlock(&mb4_transfer.lock);
1958
1959	return 0;
1960}
1961
1962int db8500_prcmu_config_hotmon(u8 low, u8 high)
1963{
1964	mutex_lock(&mb4_transfer.lock);
1965
1966	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1967		cpu_relax();
1968
1969	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1970	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1971	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1972		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1973	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1974
1975	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1976	wait_for_completion(&mb4_transfer.work);
1977
1978	mutex_unlock(&mb4_transfer.lock);
1979
1980	return 0;
1981}
1982EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
1983
1984static int config_hot_period(u16 val)
1985{
1986	mutex_lock(&mb4_transfer.lock);
1987
1988	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1989		cpu_relax();
1990
1991	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1992	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1993
1994	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1995	wait_for_completion(&mb4_transfer.work);
1996
1997	mutex_unlock(&mb4_transfer.lock);
1998
1999	return 0;
2000}
2001
2002int db8500_prcmu_start_temp_sense(u16 cycles32k)
2003{
2004	if (cycles32k == 0xFFFF)
2005		return -EINVAL;
2006
2007	return config_hot_period(cycles32k);
2008}
2009EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2010
2011int db8500_prcmu_stop_temp_sense(void)
2012{
2013	return config_hot_period(0xFFFF);
2014}
2015EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2016
2017static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2018{
2019
2020	mutex_lock(&mb4_transfer.lock);
2021
2022	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2023		cpu_relax();
2024
2025	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2026	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2027	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2028	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2029
2030	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2031
2032	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2033	wait_for_completion(&mb4_transfer.work);
2034
2035	mutex_unlock(&mb4_transfer.lock);
2036
2037	return 0;
2038
2039}
2040
2041int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2042{
2043	BUG_ON(num == 0 || num > 0xf);
2044	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2045			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2046			    A9WDOG_AUTO_OFF_DIS);
2047}
2048EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2049
2050int db8500_prcmu_enable_a9wdog(u8 id)
2051{
2052	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2053}
2054EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2055
2056int db8500_prcmu_disable_a9wdog(u8 id)
2057{
2058	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2059}
2060EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2061
2062int db8500_prcmu_kick_a9wdog(u8 id)
2063{
2064	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2065}
2066EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2067
2068/*
2069 * timeout is 28 bit, in ms.
2070 */
2071int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2072{
2073	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2074			    (id & A9WDOG_ID_MASK) |
2075			    /*
2076			     * Put the lowest 28 bits of timeout at
2077			     * offset 4. Four first bits are used for id.
2078			     */
2079			    (u8)((timeout << 4) & 0xf0),
2080			    (u8)((timeout >> 4) & 0xff),
2081			    (u8)((timeout >> 12) & 0xff),
2082			    (u8)((timeout >> 20) & 0xff));
2083}
2084EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2085
2086/**
2087 * prcmu_abb_read() - Read register value(s) from the ABB.
2088 * @slave:	The I2C slave address.
2089 * @reg:	The (start) register address.
2090 * @value:	The read out value(s).
2091 * @size:	The number of registers to read.
2092 *
2093 * Reads register value(s) from the ABB.
2094 * @size has to be 1 for the current firmware version.
2095 */
2096int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2097{
2098	int r;
2099
2100	if (size != 1)
2101		return -EINVAL;
2102
2103	mutex_lock(&mb5_transfer.lock);
2104
2105	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2106		cpu_relax();
2107
2108	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2109	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2110	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2111	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2112	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2113
2114	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2115
2116	if (!wait_for_completion_timeout(&mb5_transfer.work,
2117				msecs_to_jiffies(20000))) {
2118		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2119			__func__);
2120		r = -EIO;
2121	} else {
2122		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2123	}
2124
2125	if (!r)
2126		*value = mb5_transfer.ack.value;
2127
2128	mutex_unlock(&mb5_transfer.lock);
2129
2130	return r;
2131}
2132
2133/**
2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2135 * @slave:	The I2C slave address.
2136 * @reg:	The (start) register address.
2137 * @value:	The value(s) to write.
2138 * @mask:	The mask(s) to use.
2139 * @size:	The number of registers to write.
2140 *
2141 * Writes masked register value(s) to the ABB.
2142 * For each @value, only the bits set to 1 in the corresponding @mask
2143 * will be written. The other bits are not changed.
2144 * @size has to be 1 for the current firmware version.
2145 */
2146int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2147{
2148	int r;
2149
2150	if (size != 1)
2151		return -EINVAL;
2152
2153	mutex_lock(&mb5_transfer.lock);
2154
2155	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2156		cpu_relax();
2157
2158	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2159	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2160	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2161	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2162	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2163
2164	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2165
2166	if (!wait_for_completion_timeout(&mb5_transfer.work,
2167				msecs_to_jiffies(20000))) {
2168		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2169			__func__);
2170		r = -EIO;
2171	} else {
2172		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2173	}
2174
2175	mutex_unlock(&mb5_transfer.lock);
2176
2177	return r;
2178}
2179
2180/**
2181 * prcmu_abb_write() - Write register value(s) to the ABB.
2182 * @slave:	The I2C slave address.
2183 * @reg:	The (start) register address.
2184 * @value:	The value(s) to write.
2185 * @size:	The number of registers to write.
2186 *
2187 * Writes register value(s) to the ABB.
2188 * @size has to be 1 for the current firmware version.
2189 */
2190int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2191{
2192	u8 mask = ~0;
2193
2194	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2195}
2196
2197/**
2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2199 */
2200int prcmu_ac_wake_req(void)
2201{
2202	u32 val;
2203	int ret = 0;
2204
2205	mutex_lock(&mb0_transfer.ac_wake_lock);
2206
2207	val = readl(PRCM_HOSTACCESS_REQ);
2208	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2209		goto unlock_and_return;
2210
2211	atomic_set(&ac_wake_req_state, 1);
2212
2213	/*
2214	 * Force Modem Wake-up before hostaccess_req ping-pong.
2215	 * It prevents Modem to enter in Sleep while acking the hostaccess
2216	 * request. The 31us delay has been calculated by HWI.
2217	 */
2218	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2219	writel(val, PRCM_HOSTACCESS_REQ);
2220
2221	udelay(31);
2222
2223	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2224	writel(val, PRCM_HOSTACCESS_REQ);
2225
2226	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2227			msecs_to_jiffies(5000))) {
2228		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2229			__func__);
2230		ret = -EFAULT;
2231	}
2232
2233unlock_and_return:
2234	mutex_unlock(&mb0_transfer.ac_wake_lock);
2235	return ret;
2236}
2237
2238/**
2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2240 */
2241void prcmu_ac_sleep_req(void)
2242{
2243	u32 val;
2244
2245	mutex_lock(&mb0_transfer.ac_wake_lock);
2246
2247	val = readl(PRCM_HOSTACCESS_REQ);
2248	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2249		goto unlock_and_return;
2250
2251	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2252		PRCM_HOSTACCESS_REQ);
2253
2254	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2255			msecs_to_jiffies(5000))) {
2256		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2257			__func__);
2258	}
2259
2260	atomic_set(&ac_wake_req_state, 0);
2261
2262unlock_and_return:
2263	mutex_unlock(&mb0_transfer.ac_wake_lock);
2264}
2265
2266bool db8500_prcmu_is_ac_wake_requested(void)
2267{
2268	return (atomic_read(&ac_wake_req_state) != 0);
2269}
2270
2271/**
2272 * db8500_prcmu_system_reset - System reset
2273 *
2274 * Saves the reset reason code and then sets the APE_SOFTRST register which
2275 * fires interrupt to fw
2276 *
2277 * @reset_code: The reason for system reset
2278 */
2279void db8500_prcmu_system_reset(u16 reset_code)
2280{
2281	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2282	writel(1, PRCM_APE_SOFTRST);
2283}
2284
2285/**
2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2287 *
2288 * Retrieves the reset reason code stored by prcmu_system_reset() before
2289 * last restart.
2290 */
2291u16 db8500_prcmu_get_reset_code(void)
2292{
2293	return readw(tcdm_base + PRCM_SW_RST_REASON);
2294}
2295
2296/**
2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem
2298 */
2299void db8500_prcmu_modem_reset(void)
2300{
2301	mutex_lock(&mb1_transfer.lock);
2302
2303	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2304		cpu_relax();
2305
2306	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2307	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2308	wait_for_completion(&mb1_transfer.work);
2309
2310	/*
2311	 * No need to check return from PRCMU as modem should go in reset state
2312	 * This state is already managed by upper layer
2313	 */
2314
2315	mutex_unlock(&mb1_transfer.lock);
2316}
2317
2318static void ack_dbb_wakeup(void)
2319{
2320	unsigned long flags;
2321
2322	spin_lock_irqsave(&mb0_transfer.lock, flags);
2323
2324	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2325		cpu_relax();
2326
2327	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2328	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2329
2330	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2331}
2332
2333static inline void print_unknown_header_warning(u8 n, u8 header)
2334{
2335	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2336		header, n);
2337}
2338
2339static bool read_mailbox_0(void)
2340{
2341	bool r;
2342	u32 ev;
2343	unsigned int n;
2344	u8 header;
2345
2346	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2347	switch (header) {
2348	case MB0H_WAKEUP_EXE:
2349	case MB0H_WAKEUP_SLEEP:
2350		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2351			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2352		else
2353			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2354
2355		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2356			complete(&mb0_transfer.ac_wake_work);
2357		if (ev & WAKEUP_BIT_SYSCLK_OK)
2358			complete(&mb3_transfer.sysclk_work);
2359
2360		ev &= mb0_transfer.req.dbb_irqs;
2361
2362		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2363			if (ev & prcmu_irq_bit[n])
2364				generic_handle_domain_irq(db8500_irq_domain, n);
2365		}
2366		r = true;
2367		break;
2368	default:
2369		print_unknown_header_warning(0, header);
2370		r = false;
2371		break;
2372	}
2373	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2374	return r;
2375}
2376
2377static bool read_mailbox_1(void)
2378{
2379	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2380	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2381		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2382	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2383		PRCM_ACK_MB1_CURRENT_APE_OPP);
2384	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2385		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2386	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2387	complete(&mb1_transfer.work);
2388	return false;
2389}
2390
2391static bool read_mailbox_2(void)
2392{
2393	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2394	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2395	complete(&mb2_transfer.work);
2396	return false;
2397}
2398
2399static bool read_mailbox_3(void)
2400{
2401	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2402	return false;
2403}
2404
2405static bool read_mailbox_4(void)
2406{
2407	u8 header;
2408	bool do_complete = true;
2409
2410	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2411	switch (header) {
2412	case MB4H_MEM_ST:
2413	case MB4H_HOTDOG:
2414	case MB4H_HOTMON:
2415	case MB4H_HOT_PERIOD:
2416	case MB4H_A9WDOG_CONF:
2417	case MB4H_A9WDOG_EN:
2418	case MB4H_A9WDOG_DIS:
2419	case MB4H_A9WDOG_LOAD:
2420	case MB4H_A9WDOG_KICK:
2421		break;
2422	default:
2423		print_unknown_header_warning(4, header);
2424		do_complete = false;
2425		break;
2426	}
2427
2428	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2429
2430	if (do_complete)
2431		complete(&mb4_transfer.work);
2432
2433	return false;
2434}
2435
2436static bool read_mailbox_5(void)
2437{
2438	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2439	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2440	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2441	complete(&mb5_transfer.work);
2442	return false;
2443}
2444
2445static bool read_mailbox_6(void)
2446{
2447	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2448	return false;
2449}
2450
2451static bool read_mailbox_7(void)
2452{
2453	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2454	return false;
2455}
2456
2457static bool (* const read_mailbox[NUM_MB])(void) = {
2458	read_mailbox_0,
2459	read_mailbox_1,
2460	read_mailbox_2,
2461	read_mailbox_3,
2462	read_mailbox_4,
2463	read_mailbox_5,
2464	read_mailbox_6,
2465	read_mailbox_7
2466};
2467
2468static irqreturn_t prcmu_irq_handler(int irq, void *data)
2469{
2470	u32 bits;
2471	u8 n;
2472	irqreturn_t r;
2473
2474	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2475	if (unlikely(!bits))
2476		return IRQ_NONE;
2477
2478	r = IRQ_HANDLED;
2479	for (n = 0; bits; n++) {
2480		if (bits & MBOX_BIT(n)) {
2481			bits -= MBOX_BIT(n);
2482			if (read_mailbox[n]())
2483				r = IRQ_WAKE_THREAD;
2484		}
2485	}
2486	return r;
2487}
2488
2489static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2490{
2491	ack_dbb_wakeup();
2492	return IRQ_HANDLED;
2493}
2494
2495static void prcmu_mask_work(struct work_struct *work)
2496{
2497	unsigned long flags;
2498
2499	spin_lock_irqsave(&mb0_transfer.lock, flags);
2500
2501	config_wakeups();
2502
2503	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2504}
2505
2506static void prcmu_irq_mask(struct irq_data *d)
2507{
2508	unsigned long flags;
2509
2510	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2511
2512	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2513
2514	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2515
2516	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2517		schedule_work(&mb0_transfer.mask_work);
2518}
2519
2520static void prcmu_irq_unmask(struct irq_data *d)
2521{
2522	unsigned long flags;
2523
2524	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2525
2526	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2527
2528	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2529
2530	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2531		schedule_work(&mb0_transfer.mask_work);
2532}
2533
2534static void noop(struct irq_data *d)
2535{
2536}
2537
2538static struct irq_chip prcmu_irq_chip = {
2539	.name		= "prcmu",
2540	.irq_disable	= prcmu_irq_mask,
2541	.irq_ack	= noop,
2542	.irq_mask	= prcmu_irq_mask,
2543	.irq_unmask	= prcmu_irq_unmask,
2544};
2545
2546static char *fw_project_name(u32 project)
2547{
2548	switch (project) {
2549	case PRCMU_FW_PROJECT_U8500:
2550		return "U8500";
2551	case PRCMU_FW_PROJECT_U8400:
2552		return "U8400";
2553	case PRCMU_FW_PROJECT_U9500:
2554		return "U9500";
2555	case PRCMU_FW_PROJECT_U8500_MBB:
2556		return "U8500 MBB";
2557	case PRCMU_FW_PROJECT_U8500_C1:
2558		return "U8500 C1";
2559	case PRCMU_FW_PROJECT_U8500_C2:
2560		return "U8500 C2";
2561	case PRCMU_FW_PROJECT_U8500_C3:
2562		return "U8500 C3";
2563	case PRCMU_FW_PROJECT_U8500_C4:
2564		return "U8500 C4";
2565	case PRCMU_FW_PROJECT_U9500_MBL:
2566		return "U9500 MBL";
2567	case PRCMU_FW_PROJECT_U8500_SSG1:
2568		return "U8500 Samsung 1";
2569	case PRCMU_FW_PROJECT_U8500_MBL2:
2570		return "U8500 MBL2";
2571	case PRCMU_FW_PROJECT_U8520:
2572		return "U8520 MBL";
2573	case PRCMU_FW_PROJECT_U8420:
2574		return "U8420";
2575	case PRCMU_FW_PROJECT_U8500_SSG2:
2576		return "U8500 Samsung 2";
2577	case PRCMU_FW_PROJECT_U8420_SYSCLK:
2578		return "U8420-sysclk";
2579	case PRCMU_FW_PROJECT_U9540:
2580		return "U9540";
2581	case PRCMU_FW_PROJECT_A9420:
2582		return "A9420";
2583	case PRCMU_FW_PROJECT_L8540:
2584		return "L8540";
2585	case PRCMU_FW_PROJECT_L8580:
2586		return "L8580";
2587	default:
2588		return "Unknown";
2589	}
2590}
2591
2592static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2593				irq_hw_number_t hwirq)
2594{
2595	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2596				handle_simple_irq);
2597
2598	return 0;
2599}
2600
2601static const struct irq_domain_ops db8500_irq_ops = {
2602	.map    = db8500_irq_map,
2603	.xlate  = irq_domain_xlate_twocell,
2604};
2605
2606static int db8500_irq_init(struct device_node *np)
2607{
2608	int i;
2609
2610	db8500_irq_domain = irq_domain_add_simple(
2611		np, NUM_PRCMU_WAKEUPS, 0,
2612		&db8500_irq_ops, NULL);
2613
2614	if (!db8500_irq_domain) {
2615		pr_err("Failed to create irqdomain\n");
2616		return -ENOSYS;
2617	}
2618
2619	/* All wakeups will be used, so create mappings for all */
2620	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2621		irq_create_mapping(db8500_irq_domain, i);
2622
2623	return 0;
2624}
2625
2626static void dbx500_fw_version_init(struct device_node *np)
 
2627{
 
2628	void __iomem *tcpm_base;
2629	u32 version;
2630
2631	tcpm_base = of_iomap(np, 1);
 
 
 
 
 
 
 
2632	if (!tcpm_base) {
2633		pr_err("no prcmu tcpm mem region provided\n");
2634		return;
2635	}
2636
2637	version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET);
2638	fw_info.version.project = (version & 0xFF);
2639	fw_info.version.api_version = (version >> 8) & 0xFF;
2640	fw_info.version.func_version = (version >> 16) & 0xFF;
2641	fw_info.version.errata = (version >> 24) & 0xFF;
2642	strscpy(fw_info.version.project_name,
2643		fw_project_name(fw_info.version.project),
2644		sizeof(fw_info.version.project_name));
2645	fw_info.valid = true;
2646	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2647		fw_info.version.project_name,
2648		fw_info.version.project,
2649		fw_info.version.api_version,
2650		fw_info.version.func_version,
2651		fw_info.version.errata);
2652	iounmap(tcpm_base);
2653}
2654
2655void __init db8500_prcmu_early_init(void)
2656{
2657	/*
2658	 * This is a temporary remap to bring up the clocks. It is
2659	 * subsequently replaces with a real remap. After the merge of
2660	 * the mailbox subsystem all of this early code goes away, and the
2661	 * clock driver can probe independently. An early initcall will
2662	 * still be needed, but it can be diverted into drivers/clk/ux500.
2663	 */
2664	struct device_node *np;
2665
2666	np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu");
2667	prcmu_base = of_iomap(np, 0);
2668	if (!prcmu_base) {
2669		of_node_put(np);
2670		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2671		return;
2672	}
2673	dbx500_fw_version_init(np);
2674	of_node_put(np);
2675
2676	spin_lock_init(&mb0_transfer.lock);
2677	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2678	mutex_init(&mb0_transfer.ac_wake_lock);
2679	init_completion(&mb0_transfer.ac_wake_work);
2680	mutex_init(&mb1_transfer.lock);
2681	init_completion(&mb1_transfer.work);
2682	mb1_transfer.ape_opp = APE_NO_CHANGE;
2683	mutex_init(&mb2_transfer.lock);
2684	init_completion(&mb2_transfer.work);
2685	spin_lock_init(&mb2_transfer.auto_pm_lock);
2686	spin_lock_init(&mb3_transfer.lock);
2687	mutex_init(&mb3_transfer.sysclk_lock);
2688	init_completion(&mb3_transfer.sysclk_work);
2689	mutex_init(&mb4_transfer.lock);
2690	init_completion(&mb4_transfer.work);
2691	mutex_init(&mb5_transfer.lock);
2692	init_completion(&mb5_transfer.work);
2693
2694	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2695}
2696
2697static void init_prcm_registers(void)
2698{
2699	u32 val;
2700
2701	val = readl(PRCM_A9PL_FORCE_CLKEN);
2702	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2703		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2704	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2705}
2706
2707/*
2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2709 */
2710static struct regulator_consumer_supply db8500_vape_consumers[] = {
2711	REGULATOR_SUPPLY("v-ape", NULL),
2712	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2713	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2714	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2715	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2716	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2717	/* "v-mmc" changed to "vcore" in the mainline kernel */
2718	REGULATOR_SUPPLY("vcore", "sdi0"),
2719	REGULATOR_SUPPLY("vcore", "sdi1"),
2720	REGULATOR_SUPPLY("vcore", "sdi2"),
2721	REGULATOR_SUPPLY("vcore", "sdi3"),
2722	REGULATOR_SUPPLY("vcore", "sdi4"),
2723	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2724	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2725	/* "v-uart" changed to "vcore" in the mainline kernel */
2726	REGULATOR_SUPPLY("vcore", "uart0"),
2727	REGULATOR_SUPPLY("vcore", "uart1"),
2728	REGULATOR_SUPPLY("vcore", "uart2"),
2729	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2730	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2731	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2732};
2733
2734static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2735	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2736	/* AV8100 regulator */
2737	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2738};
2739
2740static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2741	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2742	REGULATOR_SUPPLY("vsupply", "mcde"),
2743};
2744
2745/* SVA MMDSP regulator switch */
2746static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2747	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2748};
2749
2750/* SVA pipe regulator switch */
2751static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2752	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2753};
2754
2755/* SIA MMDSP regulator switch */
2756static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2757	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2758};
2759
2760/* SIA pipe regulator switch */
2761static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2762	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2763};
2764
2765static struct regulator_consumer_supply db8500_sga_consumers[] = {
2766	REGULATOR_SUPPLY("v-mali", NULL),
2767};
2768
2769/* ESRAM1 and 2 regulator switch */
2770static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2771	REGULATOR_SUPPLY("esram12", "cm_control"),
2772};
2773
2774/* ESRAM3 and 4 regulator switch */
2775static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2776	REGULATOR_SUPPLY("v-esram34", "mcde"),
2777	REGULATOR_SUPPLY("esram34", "cm_control"),
2778	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2779};
2780
2781static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2782	[DB8500_REGULATOR_VAPE] = {
2783		.constraints = {
2784			.name = "db8500-vape",
2785			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2786			.always_on = true,
2787		},
2788		.consumer_supplies = db8500_vape_consumers,
2789		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2790	},
2791	[DB8500_REGULATOR_VARM] = {
2792		.constraints = {
2793			.name = "db8500-varm",
2794			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2795		},
2796	},
2797	[DB8500_REGULATOR_VMODEM] = {
2798		.constraints = {
2799			.name = "db8500-vmodem",
2800			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2801		},
2802	},
2803	[DB8500_REGULATOR_VPLL] = {
2804		.constraints = {
2805			.name = "db8500-vpll",
2806			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2807		},
2808	},
2809	[DB8500_REGULATOR_VSMPS1] = {
2810		.constraints = {
2811			.name = "db8500-vsmps1",
2812			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2813		},
2814	},
2815	[DB8500_REGULATOR_VSMPS2] = {
2816		.constraints = {
2817			.name = "db8500-vsmps2",
2818			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2819		},
2820		.consumer_supplies = db8500_vsmps2_consumers,
2821		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2822	},
2823	[DB8500_REGULATOR_VSMPS3] = {
2824		.constraints = {
2825			.name = "db8500-vsmps3",
2826			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2827		},
2828	},
2829	[DB8500_REGULATOR_VRF1] = {
2830		.constraints = {
2831			.name = "db8500-vrf1",
2832			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833		},
2834	},
2835	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2836		/* dependency to u8500-vape is handled outside regulator framework */
2837		.constraints = {
2838			.name = "db8500-sva-mmdsp",
2839			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2840		},
2841		.consumer_supplies = db8500_svammdsp_consumers,
2842		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2843	},
2844	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2845		.constraints = {
2846			/* "ret" means "retention" */
2847			.name = "db8500-sva-mmdsp-ret",
2848			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2849		},
2850	},
2851	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2852		/* dependency to u8500-vape is handled outside regulator framework */
2853		.constraints = {
2854			.name = "db8500-sva-pipe",
2855			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856		},
2857		.consumer_supplies = db8500_svapipe_consumers,
2858		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2859	},
2860	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2861		/* dependency to u8500-vape is handled outside regulator framework */
2862		.constraints = {
2863			.name = "db8500-sia-mmdsp",
2864			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865		},
2866		.consumer_supplies = db8500_siammdsp_consumers,
2867		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2868	},
2869	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2870		.constraints = {
2871			.name = "db8500-sia-mmdsp-ret",
2872			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2873		},
2874	},
2875	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2876		/* dependency to u8500-vape is handled outside regulator framework */
2877		.constraints = {
2878			.name = "db8500-sia-pipe",
2879			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880		},
2881		.consumer_supplies = db8500_siapipe_consumers,
2882		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2883	},
2884	[DB8500_REGULATOR_SWITCH_SGA] = {
2885		.supply_regulator = "db8500-vape",
2886		.constraints = {
2887			.name = "db8500-sga",
2888			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889		},
2890		.consumer_supplies = db8500_sga_consumers,
2891		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2892
2893	},
2894	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2895		.supply_regulator = "db8500-vape",
2896		.constraints = {
2897			.name = "db8500-b2r2-mcde",
2898			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2899		},
2900		.consumer_supplies = db8500_b2r2_mcde_consumers,
2901		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2902	},
2903	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2904		/*
2905		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2906		 * no need to hold Vape
2907		 */
2908		.constraints = {
2909			.name = "db8500-esram12",
2910			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911		},
2912		.consumer_supplies = db8500_esram12_consumers,
2913		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2914	},
2915	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2916		.constraints = {
2917			.name = "db8500-esram12-ret",
2918			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2919		},
2920	},
2921	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2922		/*
2923		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2924		 * no need to hold Vape
2925		 */
2926		.constraints = {
2927			.name = "db8500-esram34",
2928			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929		},
2930		.consumer_supplies = db8500_esram34_consumers,
2931		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2932	},
2933	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2934		.constraints = {
2935			.name = "db8500-esram34-ret",
2936			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937		},
2938	},
2939};
2940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2941static const struct mfd_cell common_prcmu_devs[] = {
2942	MFD_CELL_NAME("db8500_wdt"),
2943	MFD_CELL_NAME("db8500-cpuidle"),
 
 
 
 
2944};
2945
2946static const struct mfd_cell db8500_prcmu_devs[] = {
2947	MFD_CELL_OF("db8500-prcmu-regulators", NULL,
2948		    &db8500_regulators, sizeof(db8500_regulators), 0,
2949		    "stericsson,db8500-prcmu-regulator"),
2950	MFD_CELL_OF("db8500-thermal",
2951		    NULL, NULL, 0, 0, "stericsson,db8500-thermal"),
 
 
 
 
 
 
 
 
 
 
 
 
2952};
2953
2954static int db8500_prcmu_register_ab8500(struct device *parent)
2955{
2956	struct device_node *np;
2957	struct resource ab850x_resource;
2958	const struct mfd_cell ab8500_cell = {
2959		.name = "ab8500-core",
2960		.of_compatible = "stericsson,ab8500",
2961		.id = AB8500_VERSION_AB8500,
2962		.resources = &ab850x_resource,
2963		.num_resources = 1,
2964	};
2965	const struct mfd_cell ab8505_cell = {
2966		.name = "ab8505-core",
2967		.of_compatible = "stericsson,ab8505",
2968		.id = AB8500_VERSION_AB8505,
2969		.resources = &ab850x_resource,
2970		.num_resources = 1,
2971	};
2972	const struct mfd_cell *ab850x_cell;
2973
2974	if (!parent->of_node)
2975		return -ENODEV;
2976
2977	/* Look up the device node, sneak the IRQ out of it */
2978	for_each_child_of_node(parent->of_node, np) {
2979		if (of_device_is_compatible(np, ab8500_cell.of_compatible)) {
2980			ab850x_cell = &ab8500_cell;
2981			break;
2982		}
2983		if (of_device_is_compatible(np, ab8505_cell.of_compatible)) {
2984			ab850x_cell = &ab8505_cell;
2985			break;
2986		}
2987	}
2988	if (!np) {
2989		dev_info(parent, "could not find AB850X node in the device tree\n");
2990		return -ENODEV;
2991	}
2992	of_irq_to_resource_table(np, &ab850x_resource, 1);
2993
2994	return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL);
2995}
2996
 
 
 
 
2997static int db8500_prcmu_probe(struct platform_device *pdev)
2998{
2999	struct device_node *np = pdev->dev.of_node;
3000	int irq = 0, err = 0;
3001	struct resource *res;
3002
3003	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3004	if (!res) {
3005		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3006		return -EINVAL;
3007	}
3008	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3009	if (!prcmu_base) {
3010		dev_err(&pdev->dev,
3011			"failed to ioremap prcmu register memory\n");
3012		return -ENOMEM;
3013	}
3014	init_prcm_registers();
 
3015	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3016	if (!res) {
3017		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3018		return -EINVAL;
3019	}
3020	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3021			resource_size(res));
3022	if (!tcdm_base) {
3023		dev_err(&pdev->dev,
3024			"failed to ioremap prcmu-tcdm register memory\n");
3025		return -ENOMEM;
3026	}
3027
3028	/* Clean up the mailbox interrupts after pre-kernel code. */
3029	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3030
3031	irq = platform_get_irq(pdev, 0);
3032	if (irq <= 0)
 
3033		return irq;
 
3034
3035	err = request_threaded_irq(irq, prcmu_irq_handler,
3036	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3037	if (err < 0) {
3038		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3039		return err;
3040	}
3041
3042	db8500_irq_init(np);
3043
3044	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3045
3046	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3047			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3048	if (err) {
3049		pr_err("prcmu: Failed to add subdevices\n");
3050		return err;
3051	}
3052
3053	/* TODO: Remove restriction when clk definitions are available. */
3054	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3055		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3056				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3057				      db8500_irq_domain);
3058		if (err) {
3059			mfd_remove_devices(&pdev->dev);
3060			pr_err("prcmu: Failed to add subdevices\n");
3061			return err;
3062		}
3063	}
3064
3065	err = db8500_prcmu_register_ab8500(&pdev->dev);
3066	if (err) {
3067		mfd_remove_devices(&pdev->dev);
3068		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3069		return err;
3070	}
3071
3072	pr_info("DB8500 PRCMU initialized\n");
3073	return err;
3074}
3075static const struct of_device_id db8500_prcmu_match[] = {
3076	{ .compatible = "stericsson,db8500-prcmu"},
3077	{ },
3078};
3079
3080static struct platform_driver db8500_prcmu_driver = {
3081	.driver = {
3082		.name = "db8500-prcmu",
3083		.of_match_table = db8500_prcmu_match,
3084	},
3085	.probe = db8500_prcmu_probe,
3086};
3087
3088static int __init db8500_prcmu_init(void)
3089{
3090	return platform_driver_register(&db8500_prcmu_driver);
3091}
 
3092core_initcall(db8500_prcmu_init);
v4.17
 
   1/*
 
 
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
 
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
  27#include <linux/of.h>
 
  28#include <linux/of_irq.h>
  29#include <linux/platform_device.h>
  30#include <linux/uaccess.h>
  31#include <linux/mfd/core.h>
  32#include <linux/mfd/dbx500-prcmu.h>
  33#include <linux/mfd/abx500/ab8500.h>
  34#include <linux/regulator/db8500-prcmu.h>
  35#include <linux/regulator/machine.h>
  36#include <linux/platform_data/ux500_wdt.h>
  37#include <linux/platform_data/db8500_thermal.h>
  38#include "dbx500-prcmu-regs.h"
  39
  40/* Index of different voltages to be used when accessing AVSData */
  41#define PRCM_AVS_BASE		0x2FC
  42#define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
  43#define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
  44#define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
  45#define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
  46#define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
  47#define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
  48#define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
  49#define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
  50#define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
  51#define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
  52#define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
  53#define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
  54#define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
  55
  56#define PRCM_AVS_VOLTAGE		0
  57#define PRCM_AVS_VOLTAGE_MASK		0x3f
  58#define PRCM_AVS_ISSLOWSTARTUP		6
  59#define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
  60#define PRCM_AVS_ISMODEENABLE		7
  61#define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
  62
  63#define PRCM_BOOT_STATUS	0xFFF
  64#define PRCM_ROMCODE_A2P	0xFFE
  65#define PRCM_ROMCODE_P2A	0xFFD
  66#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  67
  68#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  69
  70#define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
  71#define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
  72#define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
  73#define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
  74#define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
  75#define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
  76#define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
  77#define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
  78
  79/* Req Mailboxes */
  80#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  81#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  82#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  83#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  84#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  85#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  86
  87/* Ack Mailboxes */
  88#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  89#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  90#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  91#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  92#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  93#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  94
  95/* Mailbox 0 headers */
  96#define MB0H_POWER_STATE_TRANS		0
  97#define MB0H_CONFIG_WAKEUPS_EXE		1
  98#define MB0H_READ_WAKEUP_ACK		3
  99#define MB0H_CONFIG_WAKEUPS_SLEEP	4
 100
 101#define MB0H_WAKEUP_EXE 2
 102#define MB0H_WAKEUP_SLEEP 5
 103
 104/* Mailbox 0 REQs */
 105#define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
 106#define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
 107#define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
 108#define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
 109#define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
 110#define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
 111
 112/* Mailbox 0 ACKs */
 113#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
 114#define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
 115#define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
 116#define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
 117#define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
 118#define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
 119#define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
 120
 121/* Mailbox 1 headers */
 122#define MB1H_ARM_APE_OPP 0x0
 123#define MB1H_RESET_MODEM 0x2
 124#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 125#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 126#define MB1H_RELEASE_USB_WAKEUP 0x5
 127#define MB1H_PLL_ON_OFF 0x6
 128
 129/* Mailbox 1 Requests */
 130#define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
 131#define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
 132#define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
 133#define PLL_SOC0_OFF	0x1
 134#define PLL_SOC0_ON	0x2
 135#define PLL_SOC1_OFF	0x4
 136#define PLL_SOC1_ON	0x8
 137
 138/* Mailbox 1 ACKs */
 139#define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
 140#define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
 141#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
 142#define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
 143
 144/* Mailbox 2 headers */
 145#define MB2H_DPS	0x0
 146#define MB2H_AUTO_PWR	0x1
 147
 148/* Mailbox 2 REQs */
 149#define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
 150#define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
 151#define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
 152#define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
 153#define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
 154#define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
 155#define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
 156#define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
 157#define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
 158#define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
 159
 160/* Mailbox 2 ACKs */
 161#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 162#define HWACC_PWR_ST_OK 0xFE
 163
 164/* Mailbox 3 headers */
 165#define MB3H_ANC	0x0
 166#define MB3H_SIDETONE	0x1
 167#define MB3H_SYSCLK	0xE
 168
 169/* Mailbox 3 Requests */
 170#define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
 171#define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
 172#define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
 173#define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
 174#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
 176#define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
 177
 178/* Mailbox 4 headers */
 179#define MB4H_DDR_INIT	0x0
 180#define MB4H_MEM_ST	0x1
 181#define MB4H_HOTDOG	0x12
 182#define MB4H_HOTMON	0x13
 183#define MB4H_HOT_PERIOD	0x14
 184#define MB4H_A9WDOG_CONF 0x16
 185#define MB4H_A9WDOG_EN   0x17
 186#define MB4H_A9WDOG_DIS  0x18
 187#define MB4H_A9WDOG_LOAD 0x19
 188#define MB4H_A9WDOG_KICK 0x20
 189
 190/* Mailbox 4 Requests */
 191#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
 192#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
 193#define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
 194#define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
 195#define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
 197#define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
 198#define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
 199#define HOTMON_CONFIG_LOW			BIT(0)
 200#define HOTMON_CONFIG_HIGH			BIT(1)
 201#define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
 202#define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
 203#define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
 204#define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
 205#define A9WDOG_AUTO_OFF_EN			BIT(7)
 206#define A9WDOG_AUTO_OFF_DIS			0
 207#define A9WDOG_ID_MASK				0xf
 208
 209/* Mailbox 5 Requests */
 210#define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
 211#define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
 212#define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
 213#define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
 214#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 215#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 216#define PRCMU_I2C_STOP_EN		BIT(3)
 217
 218/* Mailbox 5 ACKs */
 219#define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
 220#define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
 221#define I2C_WR_OK 0x1
 222#define I2C_RD_OK 0x2
 223
 224#define NUM_MB 8
 225#define MBOX_BIT BIT
 226#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 227
 228/*
 229 * Wakeups/IRQs
 230 */
 231
 232#define WAKEUP_BIT_RTC BIT(0)
 233#define WAKEUP_BIT_RTT0 BIT(1)
 234#define WAKEUP_BIT_RTT1 BIT(2)
 235#define WAKEUP_BIT_HSI0 BIT(3)
 236#define WAKEUP_BIT_HSI1 BIT(4)
 237#define WAKEUP_BIT_CA_WAKE BIT(5)
 238#define WAKEUP_BIT_USB BIT(6)
 239#define WAKEUP_BIT_ABB BIT(7)
 240#define WAKEUP_BIT_ABB_FIFO BIT(8)
 241#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 242#define WAKEUP_BIT_CA_SLEEP BIT(10)
 243#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 244#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 245#define WAKEUP_BIT_ANC_OK BIT(13)
 246#define WAKEUP_BIT_SW_ERROR BIT(14)
 247#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 248#define WAKEUP_BIT_ARM BIT(17)
 249#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 250#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 251#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 252#define WAKEUP_BIT_GPIO0 BIT(23)
 253#define WAKEUP_BIT_GPIO1 BIT(24)
 254#define WAKEUP_BIT_GPIO2 BIT(25)
 255#define WAKEUP_BIT_GPIO3 BIT(26)
 256#define WAKEUP_BIT_GPIO4 BIT(27)
 257#define WAKEUP_BIT_GPIO5 BIT(28)
 258#define WAKEUP_BIT_GPIO6 BIT(29)
 259#define WAKEUP_BIT_GPIO7 BIT(30)
 260#define WAKEUP_BIT_GPIO8 BIT(31)
 261
 262static struct {
 263	bool valid;
 264	struct prcmu_fw_version version;
 265} fw_info;
 266
 267static struct irq_domain *db8500_irq_domain;
 268
 269/*
 270 * This vector maps irq numbers to the bits in the bit field used in
 271 * communication with the PRCMU firmware.
 272 *
 273 * The reason for having this is to keep the irq numbers contiguous even though
 274 * the bits in the bit field are not. (The bits also have a tendency to move
 275 * around, to further complicate matters.)
 276 */
 277#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 278#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 279
 280#define IRQ_PRCMU_RTC 0
 281#define IRQ_PRCMU_RTT0 1
 282#define IRQ_PRCMU_RTT1 2
 283#define IRQ_PRCMU_HSI0 3
 284#define IRQ_PRCMU_HSI1 4
 285#define IRQ_PRCMU_CA_WAKE 5
 286#define IRQ_PRCMU_USB 6
 287#define IRQ_PRCMU_ABB 7
 288#define IRQ_PRCMU_ABB_FIFO 8
 289#define IRQ_PRCMU_ARM 9
 290#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 291#define IRQ_PRCMU_GPIO0 11
 292#define IRQ_PRCMU_GPIO1 12
 293#define IRQ_PRCMU_GPIO2 13
 294#define IRQ_PRCMU_GPIO3 14
 295#define IRQ_PRCMU_GPIO4 15
 296#define IRQ_PRCMU_GPIO5 16
 297#define IRQ_PRCMU_GPIO6 17
 298#define IRQ_PRCMU_GPIO7 18
 299#define IRQ_PRCMU_GPIO8 19
 300#define IRQ_PRCMU_CA_SLEEP 20
 301#define IRQ_PRCMU_HOTMON_LOW 21
 302#define IRQ_PRCMU_HOTMON_HIGH 22
 303#define NUM_PRCMU_WAKEUPS 23
 304
 305static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 306	IRQ_ENTRY(RTC),
 307	IRQ_ENTRY(RTT0),
 308	IRQ_ENTRY(RTT1),
 309	IRQ_ENTRY(HSI0),
 310	IRQ_ENTRY(HSI1),
 311	IRQ_ENTRY(CA_WAKE),
 312	IRQ_ENTRY(USB),
 313	IRQ_ENTRY(ABB),
 314	IRQ_ENTRY(ABB_FIFO),
 315	IRQ_ENTRY(CA_SLEEP),
 316	IRQ_ENTRY(ARM),
 317	IRQ_ENTRY(HOTMON_LOW),
 318	IRQ_ENTRY(HOTMON_HIGH),
 319	IRQ_ENTRY(MODEM_SW_RESET_REQ),
 320	IRQ_ENTRY(GPIO0),
 321	IRQ_ENTRY(GPIO1),
 322	IRQ_ENTRY(GPIO2),
 323	IRQ_ENTRY(GPIO3),
 324	IRQ_ENTRY(GPIO4),
 325	IRQ_ENTRY(GPIO5),
 326	IRQ_ENTRY(GPIO6),
 327	IRQ_ENTRY(GPIO7),
 328	IRQ_ENTRY(GPIO8)
 329};
 330
 331#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 332#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 333static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 334	WAKEUP_ENTRY(RTC),
 335	WAKEUP_ENTRY(RTT0),
 336	WAKEUP_ENTRY(RTT1),
 337	WAKEUP_ENTRY(HSI0),
 338	WAKEUP_ENTRY(HSI1),
 339	WAKEUP_ENTRY(USB),
 340	WAKEUP_ENTRY(ABB),
 341	WAKEUP_ENTRY(ABB_FIFO),
 342	WAKEUP_ENTRY(ARM)
 343};
 344
 345/*
 346 * mb0_transfer - state needed for mailbox 0 communication.
 347 * @lock:		The transaction lock.
 348 * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
 349 *			the request data.
 350 * @mask_work:		Work structure used for (un)masking wakeup interrupts.
 351 * @req:		Request data that need to persist between requests.
 352 */
 353static struct {
 354	spinlock_t lock;
 355	spinlock_t dbb_irqs_lock;
 356	struct work_struct mask_work;
 357	struct mutex ac_wake_lock;
 358	struct completion ac_wake_work;
 359	struct {
 360		u32 dbb_irqs;
 361		u32 dbb_wakeups;
 362		u32 abb_events;
 363	} req;
 364} mb0_transfer;
 365
 366/*
 367 * mb1_transfer - state needed for mailbox 1 communication.
 368 * @lock:	The transaction lock.
 369 * @work:	The transaction completion structure.
 370 * @ape_opp:	The current APE OPP.
 371 * @ack:	Reply ("acknowledge") data.
 372 */
 373static struct {
 374	struct mutex lock;
 375	struct completion work;
 376	u8 ape_opp;
 377	struct {
 378		u8 header;
 379		u8 arm_opp;
 380		u8 ape_opp;
 381		u8 ape_voltage_status;
 382	} ack;
 383} mb1_transfer;
 384
 385/*
 386 * mb2_transfer - state needed for mailbox 2 communication.
 387 * @lock:            The transaction lock.
 388 * @work:            The transaction completion structure.
 389 * @auto_pm_lock:    The autonomous power management configuration lock.
 390 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 391 * @req:             Request data that need to persist between requests.
 392 * @ack:             Reply ("acknowledge") data.
 393 */
 394static struct {
 395	struct mutex lock;
 396	struct completion work;
 397	spinlock_t auto_pm_lock;
 398	bool auto_pm_enabled;
 399	struct {
 400		u8 status;
 401	} ack;
 402} mb2_transfer;
 403
 404/*
 405 * mb3_transfer - state needed for mailbox 3 communication.
 406 * @lock:		The request lock.
 407 * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
 408 * @sysclk_work:	Work structure used for sysclk requests.
 409 */
 410static struct {
 411	spinlock_t lock;
 412	struct mutex sysclk_lock;
 413	struct completion sysclk_work;
 414} mb3_transfer;
 415
 416/*
 417 * mb4_transfer - state needed for mailbox 4 communication.
 418 * @lock:	The transaction lock.
 419 * @work:	The transaction completion structure.
 420 */
 421static struct {
 422	struct mutex lock;
 423	struct completion work;
 424} mb4_transfer;
 425
 426/*
 427 * mb5_transfer - state needed for mailbox 5 communication.
 428 * @lock:	The transaction lock.
 429 * @work:	The transaction completion structure.
 430 * @ack:	Reply ("acknowledge") data.
 431 */
 432static struct {
 433	struct mutex lock;
 434	struct completion work;
 435	struct {
 436		u8 status;
 437		u8 value;
 438	} ack;
 439} mb5_transfer;
 440
 441static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 442
 443/* Spinlocks */
 444static DEFINE_SPINLOCK(prcmu_lock);
 445static DEFINE_SPINLOCK(clkout_lock);
 446
 447/* Global var to runtime determine TCDM base for v2 or v1 */
 448static __iomem void *tcdm_base;
 449static __iomem void *prcmu_base;
 450
 451struct clk_mgt {
 452	u32 offset;
 453	u32 pllsw;
 454	int branch;
 455	bool clk38div;
 456};
 457
 458enum {
 459	PLL_RAW,
 460	PLL_FIX,
 461	PLL_DIV
 462};
 463
 464static DEFINE_SPINLOCK(clk_mgt_lock);
 465
 466#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 467	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 468static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 469	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 470	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 471	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 472	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 473	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 474	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 475	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 476	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 477	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 478	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 479	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 480	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 481	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 482	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 483	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 484	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 485	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 486	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 487	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 488	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 489	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 490	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 491	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 492	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 493	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 494	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 495	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 496	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 497	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 498};
 499
 500struct dsiclk {
 501	u32 divsel_mask;
 502	u32 divsel_shift;
 503	u32 divsel;
 504};
 505
 506static struct dsiclk dsiclk[2] = {
 507	{
 508		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 509		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 510		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 511	},
 512	{
 513		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 514		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 515		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 516	}
 517};
 518
 519struct dsiescclk {
 520	u32 en;
 521	u32 div_mask;
 522	u32 div_shift;
 523};
 524
 525static struct dsiescclk dsiescclk[3] = {
 526	{
 527		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 528		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 529		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 530	},
 531	{
 532		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 533		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 534		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 535	},
 536	{
 537		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 538		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 539		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 540	}
 541};
 542
 543
 544/*
 545* Used by MCDE to setup all necessary PRCMU registers
 546*/
 547#define PRCMU_RESET_DSIPLL		0x00004000
 548#define PRCMU_UNCLAMP_DSIPLL		0x00400800
 549
 550#define PRCMU_CLK_PLL_DIV_SHIFT		0
 551#define PRCMU_CLK_PLL_SW_SHIFT		5
 552#define PRCMU_CLK_38			(1 << 9)
 553#define PRCMU_CLK_38_SRC		(1 << 10)
 554#define PRCMU_CLK_38_DIV		(1 << 11)
 555
 556/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 557#define PRCMU_DSI_CLOCK_SETTING		0x0000008C
 558
 559/* DPI 50000000 Hz */
 560#define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 561					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 562#define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
 563
 564/* D=101, N=1, R=4, SELDIV2=0 */
 565#define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
 566
 567#define PRCMU_ENABLE_PLLDSI		0x00000001
 568#define PRCMU_DISABLE_PLLDSI		0x00000000
 569#define PRCMU_RELEASE_RESET_DSS		0x0000400C
 570#define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
 571/* ESC clk, div0=1, div1=1, div2=3 */
 572#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
 573#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
 574#define PRCMU_DSI_RESET_SW		0x00000007
 575
 576#define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
 577
 578int db8500_prcmu_enable_dsipll(void)
 579{
 580	int i;
 581
 582	/* Clear DSIPLL_RESETN */
 583	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
 584	/* Unclamp DSIPLL in/out */
 585	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
 586
 587	/* Set DSI PLL FREQ */
 588	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
 589	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
 590	/* Enable Escape clocks */
 591	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 592
 593	/* Start DSI PLL */
 594	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 595	/* Reset DSI PLL */
 596	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
 597	for (i = 0; i < 10; i++) {
 598		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
 599					== PRCMU_PLLDSI_LOCKP_LOCKED)
 600			break;
 601		udelay(100);
 602	}
 603	/* Set DSIPLL_RESETN */
 604	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
 605	return 0;
 606}
 607
 608int db8500_prcmu_disable_dsipll(void)
 609{
 610	/* Disable dsi pll */
 611	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 612	/* Disable  escapeclock */
 613	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 614	return 0;
 615}
 616
 617int db8500_prcmu_set_display_clocks(void)
 618{
 619	unsigned long flags;
 620
 621	spin_lock_irqsave(&clk_mgt_lock, flags);
 622
 623	/* Grab the HW semaphore. */
 624	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 625		cpu_relax();
 626
 627	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
 628	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
 629	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
 630
 631	/* Release the HW semaphore. */
 632	writel(0, PRCM_SEM);
 633
 634	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 635
 636	return 0;
 637}
 638
 639u32 db8500_prcmu_read(unsigned int reg)
 640{
 641	return readl(prcmu_base + reg);
 642}
 643
 644void db8500_prcmu_write(unsigned int reg, u32 value)
 645{
 646	unsigned long flags;
 647
 648	spin_lock_irqsave(&prcmu_lock, flags);
 649	writel(value, (prcmu_base + reg));
 650	spin_unlock_irqrestore(&prcmu_lock, flags);
 651}
 652
 653void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 654{
 655	u32 val;
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&prcmu_lock, flags);
 659	val = readl(prcmu_base + reg);
 660	val = ((val & ~mask) | (value & mask));
 661	writel(val, (prcmu_base + reg));
 662	spin_unlock_irqrestore(&prcmu_lock, flags);
 663}
 664
 665struct prcmu_fw_version *prcmu_get_fw_version(void)
 666{
 667	return fw_info.valid ? &fw_info.version : NULL;
 668}
 669
 
 
 
 
 
 
 
 
 670bool prcmu_has_arm_maxopp(void)
 671{
 672	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 673		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 674}
 675
 676/**
 677 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 678 * @val: Value to be set, i.e. transition requested
 679 * Returns: 0 on success, -EINVAL on invalid argument
 680 *
 681 * This function is used to run the following power state sequences -
 682 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 683 */
 684int prcmu_set_rc_a2p(enum romcode_write val)
 685{
 686	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 687		return -EINVAL;
 688	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 689	return 0;
 690}
 691
 692/**
 693 * prcmu_get_rc_p2a - This function is used to get power state sequences
 694 * Returns: the power transition that has last happened
 695 *
 696 * This function can return the following transitions-
 697 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 698 */
 699enum romcode_read prcmu_get_rc_p2a(void)
 700{
 701	return readb(tcdm_base + PRCM_ROMCODE_P2A);
 702}
 703
 704/**
 705 * prcmu_get_current_mode - Return the current XP70 power mode
 706 * Returns: Returns the current AP(ARM) power mode: init,
 707 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 708 */
 709enum ap_pwrst prcmu_get_xp70_current_state(void)
 710{
 711	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 712}
 713
 714/**
 715 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 716 * @clkout:	The CLKOUT number (0 or 1).
 717 * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
 718 * @div:	The divider to be applied.
 719 *
 720 * Configures one of the programmable clock outputs (CLKOUTs).
 721 * @div should be in the range [1,63] to request a configuration, or 0 to
 722 * inform that the configuration is no longer requested.
 723 */
 724int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 725{
 726	static int requests[2];
 727	int r = 0;
 728	unsigned long flags;
 729	u32 val;
 730	u32 bits;
 731	u32 mask;
 732	u32 div_mask;
 733
 734	BUG_ON(clkout > 1);
 735	BUG_ON(div > 63);
 736	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 737
 738	if (!div && !requests[clkout])
 739		return -EINVAL;
 740
 741	if (clkout == 0) {
 742		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 743		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 744		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 745			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 746	} else {
 747		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 748		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 749			PRCM_CLKOCR_CLK1TYPE);
 750		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 751			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 752	}
 753	bits &= mask;
 754
 755	spin_lock_irqsave(&clkout_lock, flags);
 756
 757	val = readl(PRCM_CLKOCR);
 758	if (val & div_mask) {
 759		if (div) {
 760			if ((val & mask) != bits) {
 761				r = -EBUSY;
 762				goto unlock_and_return;
 763			}
 764		} else {
 765			if ((val & mask & ~div_mask) != bits) {
 766				r = -EINVAL;
 767				goto unlock_and_return;
 768			}
 769		}
 770	}
 771	writel((bits | (val & ~mask)), PRCM_CLKOCR);
 772	requests[clkout] += (div ? 1 : -1);
 773
 774unlock_and_return:
 775	spin_unlock_irqrestore(&clkout_lock, flags);
 776
 777	return r;
 778}
 779
 780int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 781{
 782	unsigned long flags;
 783
 784	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 785
 786	spin_lock_irqsave(&mb0_transfer.lock, flags);
 787
 788	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 789		cpu_relax();
 790
 791	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 792	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 793	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 794	writeb((keep_ulp_clk ? 1 : 0),
 795		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 796	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 797	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 798
 799	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 800
 801	return 0;
 802}
 803
 804u8 db8500_prcmu_get_power_state_result(void)
 805{
 806	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 807}
 808
 809/* This function should only be called while mb0_transfer.lock is held. */
 810static void config_wakeups(void)
 811{
 812	const u8 header[2] = {
 813		MB0H_CONFIG_WAKEUPS_EXE,
 814		MB0H_CONFIG_WAKEUPS_SLEEP
 815	};
 816	static u32 last_dbb_events;
 817	static u32 last_abb_events;
 818	u32 dbb_events;
 819	u32 abb_events;
 820	unsigned int i;
 821
 822	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 823	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 824
 825	abb_events = mb0_transfer.req.abb_events;
 826
 827	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 828		return;
 829
 830	for (i = 0; i < 2; i++) {
 831		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 832			cpu_relax();
 833		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 834		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 835		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 836		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 837	}
 838	last_dbb_events = dbb_events;
 839	last_abb_events = abb_events;
 840}
 841
 842void db8500_prcmu_enable_wakeups(u32 wakeups)
 843{
 844	unsigned long flags;
 845	u32 bits;
 846	int i;
 847
 848	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 849
 850	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 851		if (wakeups & BIT(i))
 852			bits |= prcmu_wakeup_bit[i];
 853	}
 854
 855	spin_lock_irqsave(&mb0_transfer.lock, flags);
 856
 857	mb0_transfer.req.dbb_wakeups = bits;
 858	config_wakeups();
 859
 860	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 861}
 862
 863void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 864{
 865	unsigned long flags;
 866
 867	spin_lock_irqsave(&mb0_transfer.lock, flags);
 868
 869	mb0_transfer.req.abb_events = abb_events;
 870	config_wakeups();
 871
 872	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 873}
 874
 875void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 876{
 877	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 878		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 879	else
 880		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 881}
 882
 883/**
 884 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 885 * @opp: The new ARM operating point to which transition is to be made
 886 * Returns: 0 on success, non-zero on failure
 887 *
 888 * This function sets the the operating point of the ARM.
 889 */
 890int db8500_prcmu_set_arm_opp(u8 opp)
 891{
 892	int r;
 893
 894	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 895		return -EINVAL;
 896
 897	r = 0;
 898
 899	mutex_lock(&mb1_transfer.lock);
 900
 901	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 902		cpu_relax();
 903
 904	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 905	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 906	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 907
 908	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 909	wait_for_completion(&mb1_transfer.work);
 910
 911	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 912		(mb1_transfer.ack.arm_opp != opp))
 913		r = -EIO;
 914
 915	mutex_unlock(&mb1_transfer.lock);
 916
 917	return r;
 918}
 919
 920/**
 921 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 922 *
 923 * Returns: the current ARM OPP
 924 */
 925int db8500_prcmu_get_arm_opp(void)
 926{
 927	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 928}
 929
 930/**
 931 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 932 *
 933 * Returns: the current DDR OPP
 934 */
 935int db8500_prcmu_get_ddr_opp(void)
 936{
 937	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 938}
 939
 940/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 941static void request_even_slower_clocks(bool enable)
 942{
 943	u32 clock_reg[] = {
 944		PRCM_ACLK_MGT,
 945		PRCM_DMACLK_MGT
 946	};
 947	unsigned long flags;
 948	unsigned int i;
 949
 950	spin_lock_irqsave(&clk_mgt_lock, flags);
 951
 952	/* Grab the HW semaphore. */
 953	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 954		cpu_relax();
 955
 956	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 957		u32 val;
 958		u32 div;
 959
 960		val = readl(prcmu_base + clock_reg[i]);
 961		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 962		if (enable) {
 963			if ((div <= 1) || (div > 15)) {
 964				pr_err("prcmu: Bad clock divider %d in %s\n",
 965					div, __func__);
 966				goto unlock_and_return;
 967			}
 968			div <<= 1;
 969		} else {
 970			if (div <= 2)
 971				goto unlock_and_return;
 972			div >>= 1;
 973		}
 974		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 975			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 976		writel(val, prcmu_base + clock_reg[i]);
 977	}
 978
 979unlock_and_return:
 980	/* Release the HW semaphore. */
 981	writel(0, PRCM_SEM);
 982
 983	spin_unlock_irqrestore(&clk_mgt_lock, flags);
 984}
 985
 986/**
 987 * db8500_set_ape_opp - set the appropriate APE OPP
 988 * @opp: The new APE operating point to which transition is to be made
 989 * Returns: 0 on success, non-zero on failure
 990 *
 991 * This function sets the operating point of the APE.
 992 */
 993int db8500_prcmu_set_ape_opp(u8 opp)
 994{
 995	int r = 0;
 996
 997	if (opp == mb1_transfer.ape_opp)
 998		return 0;
 999
1000	mutex_lock(&mb1_transfer.lock);
1001
1002	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1003		request_even_slower_clocks(false);
1004
1005	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1006		goto skip_message;
1007
1008	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009		cpu_relax();
1010
1011	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1013	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1014		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1015
1016	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1017	wait_for_completion(&mb1_transfer.work);
1018
1019	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1020		(mb1_transfer.ack.ape_opp != opp))
1021		r = -EIO;
1022
1023skip_message:
1024	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1025		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1026		request_even_slower_clocks(true);
1027	if (!r)
1028		mb1_transfer.ape_opp = opp;
1029
1030	mutex_unlock(&mb1_transfer.lock);
1031
1032	return r;
1033}
1034
1035/**
1036 * db8500_prcmu_get_ape_opp - get the current APE OPP
1037 *
1038 * Returns: the current APE OPP
1039 */
1040int db8500_prcmu_get_ape_opp(void)
1041{
1042	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1043}
1044
1045/**
1046 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1047 * @enable: true to request the higher voltage, false to drop a request.
1048 *
1049 * Calls to this function to enable and disable requests must be balanced.
1050 */
1051int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1052{
1053	int r = 0;
1054	u8 header;
1055	static unsigned int requests;
1056
1057	mutex_lock(&mb1_transfer.lock);
1058
1059	if (enable) {
1060		if (0 != requests++)
1061			goto unlock_and_return;
1062		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1063	} else {
1064		if (requests == 0) {
1065			r = -EIO;
1066			goto unlock_and_return;
1067		} else if (1 != requests--) {
1068			goto unlock_and_return;
1069		}
1070		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1071	}
1072
1073	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1074		cpu_relax();
1075
1076	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1077
1078	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1079	wait_for_completion(&mb1_transfer.work);
1080
1081	if ((mb1_transfer.ack.header != header) ||
1082		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1083		r = -EIO;
1084
1085unlock_and_return:
1086	mutex_unlock(&mb1_transfer.lock);
1087
1088	return r;
1089}
1090
1091/**
1092 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1093 *
1094 * This function releases the power state requirements of a USB wakeup.
1095 */
1096int prcmu_release_usb_wakeup_state(void)
1097{
1098	int r = 0;
1099
1100	mutex_lock(&mb1_transfer.lock);
1101
1102	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1103		cpu_relax();
1104
1105	writeb(MB1H_RELEASE_USB_WAKEUP,
1106		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1107
1108	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1109	wait_for_completion(&mb1_transfer.work);
1110
1111	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1112		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1113		r = -EIO;
1114
1115	mutex_unlock(&mb1_transfer.lock);
1116
1117	return r;
1118}
1119
1120static int request_pll(u8 clock, bool enable)
1121{
1122	int r = 0;
1123
1124	if (clock == PRCMU_PLLSOC0)
1125		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1126	else if (clock == PRCMU_PLLSOC1)
1127		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1128	else
1129		return -EINVAL;
1130
1131	mutex_lock(&mb1_transfer.lock);
1132
1133	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134		cpu_relax();
1135
1136	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1137	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1138
1139	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140	wait_for_completion(&mb1_transfer.work);
1141
1142	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1143		r = -EIO;
1144
1145	mutex_unlock(&mb1_transfer.lock);
1146
1147	return r;
1148}
1149
1150/**
1151 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1152 * @epod_id: The EPOD to set
1153 * @epod_state: The new EPOD state
1154 *
1155 * This function sets the state of a EPOD (power domain). It may not be called
1156 * from interrupt context.
1157 */
1158int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1159{
1160	int r = 0;
1161	bool ram_retention = false;
1162	int i;
1163
1164	/* check argument */
1165	BUG_ON(epod_id >= NUM_EPOD_ID);
1166
1167	/* set flag if retention is possible */
1168	switch (epod_id) {
1169	case EPOD_ID_SVAMMDSP:
1170	case EPOD_ID_SIAMMDSP:
1171	case EPOD_ID_ESRAM12:
1172	case EPOD_ID_ESRAM34:
1173		ram_retention = true;
1174		break;
1175	}
1176
1177	/* check argument */
1178	BUG_ON(epod_state > EPOD_STATE_ON);
1179	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1180
1181	/* get lock */
1182	mutex_lock(&mb2_transfer.lock);
1183
1184	/* wait for mailbox */
1185	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1186		cpu_relax();
1187
1188	/* fill in mailbox */
1189	for (i = 0; i < NUM_EPOD_ID; i++)
1190		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1191	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1192
1193	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1194
1195	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1196
1197	/*
1198	 * The current firmware version does not handle errors correctly,
1199	 * and we cannot recover if there is an error.
1200	 * This is expected to change when the firmware is updated.
1201	 */
1202	if (!wait_for_completion_timeout(&mb2_transfer.work,
1203			msecs_to_jiffies(20000))) {
1204		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1205			__func__);
1206		r = -EIO;
1207		goto unlock_and_return;
1208	}
1209
1210	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1211		r = -EIO;
1212
1213unlock_and_return:
1214	mutex_unlock(&mb2_transfer.lock);
1215	return r;
1216}
1217
1218/**
1219 * prcmu_configure_auto_pm - Configure autonomous power management.
1220 * @sleep: Configuration for ApSleep.
1221 * @idle:  Configuration for ApIdle.
1222 */
1223void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1224	struct prcmu_auto_pm_config *idle)
1225{
1226	u32 sleep_cfg;
1227	u32 idle_cfg;
1228	unsigned long flags;
1229
1230	BUG_ON((sleep == NULL) || (idle == NULL));
1231
1232	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1233	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1234	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1235	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1236	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1237	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1238
1239	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1240	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1241	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1242	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1243	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1244	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1245
1246	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1247
1248	/*
1249	 * The autonomous power management configuration is done through
1250	 * fields in mailbox 2, but these fields are only used as shared
1251	 * variables - i.e. there is no need to send a message.
1252	 */
1253	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1254	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1255
1256	mb2_transfer.auto_pm_enabled =
1257		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1258		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1261
1262	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1263}
1264EXPORT_SYMBOL(prcmu_configure_auto_pm);
1265
1266bool prcmu_is_auto_pm_enabled(void)
1267{
1268	return mb2_transfer.auto_pm_enabled;
1269}
1270
1271static int request_sysclk(bool enable)
1272{
1273	int r;
1274	unsigned long flags;
1275
1276	r = 0;
1277
1278	mutex_lock(&mb3_transfer.sysclk_lock);
1279
1280	spin_lock_irqsave(&mb3_transfer.lock, flags);
1281
1282	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1283		cpu_relax();
1284
1285	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1286
1287	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1288	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1289
1290	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1291
1292	/*
1293	 * The firmware only sends an ACK if we want to enable the
1294	 * SysClk, and it succeeds.
1295	 */
1296	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1297			msecs_to_jiffies(20000))) {
1298		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1299			__func__);
1300		r = -EIO;
1301	}
1302
1303	mutex_unlock(&mb3_transfer.sysclk_lock);
1304
1305	return r;
1306}
1307
1308static int request_timclk(bool enable)
1309{
1310	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
 
 
 
 
 
 
 
 
 
 
1311
1312	if (!enable)
1313		val |= PRCM_TCR_STOP_TIMERS;
 
 
 
1314	writel(val, PRCM_TCR);
1315
1316	return 0;
1317}
1318
1319static int request_clock(u8 clock, bool enable)
1320{
1321	u32 val;
1322	unsigned long flags;
1323
1324	spin_lock_irqsave(&clk_mgt_lock, flags);
1325
1326	/* Grab the HW semaphore. */
1327	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1328		cpu_relax();
1329
1330	val = readl(prcmu_base + clk_mgt[clock].offset);
1331	if (enable) {
1332		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1333	} else {
1334		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1335		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1336	}
1337	writel(val, prcmu_base + clk_mgt[clock].offset);
1338
1339	/* Release the HW semaphore. */
1340	writel(0, PRCM_SEM);
1341
1342	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1343
1344	return 0;
1345}
1346
1347static int request_sga_clock(u8 clock, bool enable)
1348{
1349	u32 val;
1350	int ret;
1351
1352	if (enable) {
1353		val = readl(PRCM_CGATING_BYPASS);
1354		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1355	}
1356
1357	ret = request_clock(clock, enable);
1358
1359	if (!ret && !enable) {
1360		val = readl(PRCM_CGATING_BYPASS);
1361		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1362	}
1363
1364	return ret;
1365}
1366
1367static inline bool plldsi_locked(void)
1368{
1369	return (readl(PRCM_PLLDSI_LOCKP) &
1370		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1371		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1372		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1373		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1374}
1375
1376static int request_plldsi(bool enable)
1377{
1378	int r = 0;
1379	u32 val;
1380
1381	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1382		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1383		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1384
1385	val = readl(PRCM_PLLDSI_ENABLE);
1386	if (enable)
1387		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1388	else
1389		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1390	writel(val, PRCM_PLLDSI_ENABLE);
1391
1392	if (enable) {
1393		unsigned int i;
1394		bool locked = plldsi_locked();
1395
1396		for (i = 10; !locked && (i > 0); --i) {
1397			udelay(100);
1398			locked = plldsi_locked();
1399		}
1400		if (locked) {
1401			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1402				PRCM_APE_RESETN_SET);
1403		} else {
1404			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1406				PRCM_MMIP_LS_CLAMP_SET);
1407			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1408			writel(val, PRCM_PLLDSI_ENABLE);
1409			r = -EAGAIN;
1410		}
1411	} else {
1412		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1413	}
1414	return r;
1415}
1416
1417static int request_dsiclk(u8 n, bool enable)
1418{
1419	u32 val;
1420
1421	val = readl(PRCM_DSI_PLLOUT_SEL);
1422	val &= ~dsiclk[n].divsel_mask;
1423	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1424		dsiclk[n].divsel_shift);
1425	writel(val, PRCM_DSI_PLLOUT_SEL);
1426	return 0;
1427}
1428
1429static int request_dsiescclk(u8 n, bool enable)
1430{
1431	u32 val;
1432
1433	val = readl(PRCM_DSITVCLK_DIV);
1434	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1435	writel(val, PRCM_DSITVCLK_DIV);
1436	return 0;
1437}
1438
1439/**
1440 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1441 * @clock:      The clock for which the request is made.
1442 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1443 *
1444 * This function should only be used by the clock implementation.
1445 * Do not use it from any other place!
1446 */
1447int db8500_prcmu_request_clock(u8 clock, bool enable)
1448{
1449	if (clock == PRCMU_SGACLK)
1450		return request_sga_clock(clock, enable);
1451	else if (clock < PRCMU_NUM_REG_CLOCKS)
1452		return request_clock(clock, enable);
1453	else if (clock == PRCMU_TIMCLK)
1454		return request_timclk(enable);
1455	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1456		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1457	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1458		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1459	else if (clock == PRCMU_PLLDSI)
1460		return request_plldsi(enable);
1461	else if (clock == PRCMU_SYSCLK)
1462		return request_sysclk(enable);
1463	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1464		return request_pll(clock, enable);
1465	else
1466		return -EINVAL;
1467}
1468
1469static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1470	int branch)
1471{
1472	u64 rate;
1473	u32 val;
1474	u32 d;
1475	u32 div = 1;
1476
1477	val = readl(reg);
1478
1479	rate = src_rate;
1480	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1481
1482	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1483	if (d > 1)
1484		div *= d;
1485
1486	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1487	if (d > 1)
1488		div *= d;
1489
1490	if (val & PRCM_PLL_FREQ_SELDIV2)
1491		div *= 2;
1492
1493	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1494		(val & PRCM_PLL_FREQ_DIV2EN) &&
1495		((reg == PRCM_PLLSOC0_FREQ) ||
1496		 (reg == PRCM_PLLARM_FREQ) ||
1497		 (reg == PRCM_PLLDDR_FREQ))))
1498		div *= 2;
1499
1500	(void)do_div(rate, div);
1501
1502	return (unsigned long)rate;
1503}
1504
1505#define ROOT_CLOCK_RATE 38400000
1506
1507static unsigned long clock_rate(u8 clock)
1508{
1509	u32 val;
1510	u32 pllsw;
1511	unsigned long rate = ROOT_CLOCK_RATE;
1512
1513	val = readl(prcmu_base + clk_mgt[clock].offset);
1514
1515	if (val & PRCM_CLK_MGT_CLK38) {
1516		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1517			rate /= 2;
1518		return rate;
1519	}
1520
1521	val |= clk_mgt[clock].pllsw;
1522	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1523
1524	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1525		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1526	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1527		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1528	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1529		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1530	else
1531		return 0;
1532
1533	if ((clock == PRCMU_SGACLK) &&
1534		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1535		u64 r = (rate * 10);
1536
1537		(void)do_div(r, 25);
1538		return (unsigned long)r;
1539	}
1540	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1541	if (val)
1542		return rate / val;
1543	else
1544		return 0;
1545}
1546
1547static unsigned long armss_rate(void)
1548{
1549	u32 r;
1550	unsigned long rate;
1551
1552	r = readl(PRCM_ARM_CHGCLKREQ);
1553
1554	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1555		/* External ARMCLKFIX clock */
1556
1557		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1558
1559		/* Check PRCM_ARM_CHGCLKREQ divider */
1560		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1561			rate /= 2;
1562
1563		/* Check PRCM_ARMCLKFIX_MGT divider */
1564		r = readl(PRCM_ARMCLKFIX_MGT);
1565		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1566		rate /= r;
1567
1568	} else {/* ARM PLL */
1569		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1570	}
1571
1572	return rate;
1573}
1574
1575static unsigned long dsiclk_rate(u8 n)
1576{
1577	u32 divsel;
1578	u32 div = 1;
1579
1580	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1581	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1582
1583	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1584		divsel = dsiclk[n].divsel;
1585	else
1586		dsiclk[n].divsel = divsel;
1587
1588	switch (divsel) {
1589	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1590		div *= 2;
 
1591	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1592		div *= 2;
 
1593	case PRCM_DSI_PLLOUT_SEL_PHI:
1594		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1595			PLL_RAW) / div;
1596	default:
1597		return 0;
1598	}
1599}
1600
1601static unsigned long dsiescclk_rate(u8 n)
1602{
1603	u32 div;
1604
1605	div = readl(PRCM_DSITVCLK_DIV);
1606	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1607	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1608}
1609
1610unsigned long prcmu_clock_rate(u8 clock)
1611{
1612	if (clock < PRCMU_NUM_REG_CLOCKS)
1613		return clock_rate(clock);
1614	else if (clock == PRCMU_TIMCLK)
1615		return ROOT_CLOCK_RATE / 16;
 
1616	else if (clock == PRCMU_SYSCLK)
1617		return ROOT_CLOCK_RATE;
1618	else if (clock == PRCMU_PLLSOC0)
1619		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1620	else if (clock == PRCMU_PLLSOC1)
1621		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1622	else if (clock == PRCMU_ARMSS)
1623		return armss_rate();
1624	else if (clock == PRCMU_PLLDDR)
1625		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1626	else if (clock == PRCMU_PLLDSI)
1627		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1628			PLL_RAW);
1629	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1630		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1631	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1632		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1633	else
1634		return 0;
1635}
1636
1637static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1638{
1639	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1640		return ROOT_CLOCK_RATE;
1641	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1642	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1643		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1644	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1645		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1646	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1647		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1648	else
1649		return 0;
1650}
1651
1652static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1653{
1654	u32 div;
1655
1656	div = (src_rate / rate);
1657	if (div == 0)
1658		return 1;
1659	if (rate < (src_rate / div))
1660		div++;
1661	return div;
1662}
1663
1664static long round_clock_rate(u8 clock, unsigned long rate)
1665{
1666	u32 val;
1667	u32 div;
1668	unsigned long src_rate;
1669	long rounded_rate;
1670
1671	val = readl(prcmu_base + clk_mgt[clock].offset);
1672	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1673		clk_mgt[clock].branch);
1674	div = clock_divider(src_rate, rate);
1675	if (val & PRCM_CLK_MGT_CLK38) {
1676		if (clk_mgt[clock].clk38div) {
1677			if (div > 2)
1678				div = 2;
1679		} else {
1680			div = 1;
1681		}
1682	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1683		u64 r = (src_rate * 10);
1684
1685		(void)do_div(r, 25);
1686		if (r <= rate)
1687			return (unsigned long)r;
1688	}
1689	rounded_rate = (src_rate / min(div, (u32)31));
1690
1691	return rounded_rate;
1692}
1693
1694static const unsigned long armss_freqs[] = {
1695	200000000,
1696	400000000,
1697	800000000,
1698	998400000
1699};
1700
 
 
 
 
 
 
 
 
1701static long round_armss_rate(unsigned long rate)
1702{
1703	unsigned long freq = 0;
 
 
1704	int i;
1705
 
 
 
 
 
 
 
 
1706	/* Find the corresponding arm opp from the cpufreq table. */
1707	for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1708		freq = armss_freqs[i];
1709		if (rate <= freq)
1710			break;
1711	}
1712
1713	/* Return the last valid value, even if a match was not found. */
1714	return freq;
1715}
1716
1717#define MIN_PLL_VCO_RATE 600000000ULL
1718#define MAX_PLL_VCO_RATE 1680640000ULL
1719
1720static long round_plldsi_rate(unsigned long rate)
1721{
1722	long rounded_rate = 0;
1723	unsigned long src_rate;
1724	unsigned long rem;
1725	u32 r;
1726
1727	src_rate = clock_rate(PRCMU_HDMICLK);
1728	rem = rate;
1729
1730	for (r = 7; (rem > 0) && (r > 0); r--) {
1731		u64 d;
1732
1733		d = (r * rate);
1734		(void)do_div(d, src_rate);
1735		if (d < 6)
1736			d = 6;
1737		else if (d > 255)
1738			d = 255;
1739		d *= src_rate;
1740		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1741			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1742			continue;
1743		(void)do_div(d, r);
1744		if (rate < d) {
1745			if (rounded_rate == 0)
1746				rounded_rate = (long)d;
1747			break;
1748		}
1749		if ((rate - d) < rem) {
1750			rem = (rate - d);
1751			rounded_rate = (long)d;
1752		}
1753	}
1754	return rounded_rate;
1755}
1756
1757static long round_dsiclk_rate(unsigned long rate)
1758{
1759	u32 div;
1760	unsigned long src_rate;
1761	long rounded_rate;
1762
1763	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1764		PLL_RAW);
1765	div = clock_divider(src_rate, rate);
1766	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1767
1768	return rounded_rate;
1769}
1770
1771static long round_dsiescclk_rate(unsigned long rate)
1772{
1773	u32 div;
1774	unsigned long src_rate;
1775	long rounded_rate;
1776
1777	src_rate = clock_rate(PRCMU_TVCLK);
1778	div = clock_divider(src_rate, rate);
1779	rounded_rate = (src_rate / min(div, (u32)255));
1780
1781	return rounded_rate;
1782}
1783
1784long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1785{
1786	if (clock < PRCMU_NUM_REG_CLOCKS)
1787		return round_clock_rate(clock, rate);
1788	else if (clock == PRCMU_ARMSS)
1789		return round_armss_rate(rate);
1790	else if (clock == PRCMU_PLLDSI)
1791		return round_plldsi_rate(rate);
1792	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1793		return round_dsiclk_rate(rate);
1794	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1795		return round_dsiescclk_rate(rate);
1796	else
1797		return (long)prcmu_clock_rate(clock);
1798}
1799
1800static void set_clock_rate(u8 clock, unsigned long rate)
1801{
1802	u32 val;
1803	u32 div;
1804	unsigned long src_rate;
1805	unsigned long flags;
1806
1807	spin_lock_irqsave(&clk_mgt_lock, flags);
1808
1809	/* Grab the HW semaphore. */
1810	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1811		cpu_relax();
1812
1813	val = readl(prcmu_base + clk_mgt[clock].offset);
1814	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1815		clk_mgt[clock].branch);
1816	div = clock_divider(src_rate, rate);
1817	if (val & PRCM_CLK_MGT_CLK38) {
1818		if (clk_mgt[clock].clk38div) {
1819			if (div > 1)
1820				val |= PRCM_CLK_MGT_CLK38DIV;
1821			else
1822				val &= ~PRCM_CLK_MGT_CLK38DIV;
1823		}
1824	} else if (clock == PRCMU_SGACLK) {
1825		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1826			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1827		if (div == 3) {
1828			u64 r = (src_rate * 10);
1829
1830			(void)do_div(r, 25);
1831			if (r <= rate) {
1832				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1833				div = 0;
1834			}
1835		}
1836		val |= min(div, (u32)31);
1837	} else {
1838		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1839		val |= min(div, (u32)31);
1840	}
1841	writel(val, prcmu_base + clk_mgt[clock].offset);
1842
1843	/* Release the HW semaphore. */
1844	writel(0, PRCM_SEM);
1845
1846	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1847}
1848
1849static int set_armss_rate(unsigned long rate)
1850{
1851	unsigned long freq;
1852	u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
 
 
1853	int i;
1854
 
 
 
 
 
 
 
 
1855	/* Find the corresponding arm opp from the cpufreq table. */
1856	for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1857		freq = armss_freqs[i];
1858		if (rate == freq)
1859			break;
1860	}
1861
1862	if (rate != freq)
1863		return -EINVAL;
1864
1865	/* Set the new arm opp. */
1866	pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1867	return db8500_prcmu_set_arm_opp(opps[i]);
1868}
1869
1870static int set_plldsi_rate(unsigned long rate)
1871{
1872	unsigned long src_rate;
1873	unsigned long rem;
1874	u32 pll_freq = 0;
1875	u32 r;
1876
1877	src_rate = clock_rate(PRCMU_HDMICLK);
1878	rem = rate;
1879
1880	for (r = 7; (rem > 0) && (r > 0); r--) {
1881		u64 d;
1882		u64 hwrate;
1883
1884		d = (r * rate);
1885		(void)do_div(d, src_rate);
1886		if (d < 6)
1887			d = 6;
1888		else if (d > 255)
1889			d = 255;
1890		hwrate = (d * src_rate);
1891		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1892			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1893			continue;
1894		(void)do_div(hwrate, r);
1895		if (rate < hwrate) {
1896			if (pll_freq == 0)
1897				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1898					(r << PRCM_PLL_FREQ_R_SHIFT));
1899			break;
1900		}
1901		if ((rate - hwrate) < rem) {
1902			rem = (rate - hwrate);
1903			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1904				(r << PRCM_PLL_FREQ_R_SHIFT));
1905		}
1906	}
1907	if (pll_freq == 0)
1908		return -EINVAL;
1909
1910	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1911	writel(pll_freq, PRCM_PLLDSI_FREQ);
1912
1913	return 0;
1914}
1915
1916static void set_dsiclk_rate(u8 n, unsigned long rate)
1917{
1918	u32 val;
1919	u32 div;
1920
1921	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1922			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1923
1924	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1925			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1926			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1927
1928	val = readl(PRCM_DSI_PLLOUT_SEL);
1929	val &= ~dsiclk[n].divsel_mask;
1930	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1931	writel(val, PRCM_DSI_PLLOUT_SEL);
1932}
1933
1934static void set_dsiescclk_rate(u8 n, unsigned long rate)
1935{
1936	u32 val;
1937	u32 div;
1938
1939	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1940	val = readl(PRCM_DSITVCLK_DIV);
1941	val &= ~dsiescclk[n].div_mask;
1942	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1943	writel(val, PRCM_DSITVCLK_DIV);
1944}
1945
1946int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1947{
1948	if (clock < PRCMU_NUM_REG_CLOCKS)
1949		set_clock_rate(clock, rate);
1950	else if (clock == PRCMU_ARMSS)
1951		return set_armss_rate(rate);
1952	else if (clock == PRCMU_PLLDSI)
1953		return set_plldsi_rate(rate);
1954	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1955		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1956	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1957		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1958	return 0;
1959}
1960
1961int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1962{
1963	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1964	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1965		return -EINVAL;
1966
1967	mutex_lock(&mb4_transfer.lock);
1968
1969	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1970		cpu_relax();
1971
1972	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1973	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1974	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1975	writeb(DDR_PWR_STATE_ON,
1976	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1977	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1978
1979	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1980	wait_for_completion(&mb4_transfer.work);
1981
1982	mutex_unlock(&mb4_transfer.lock);
1983
1984	return 0;
1985}
1986
1987int db8500_prcmu_config_hotdog(u8 threshold)
1988{
1989	mutex_lock(&mb4_transfer.lock);
1990
1991	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1992		cpu_relax();
1993
1994	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1995	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996
1997	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1998	wait_for_completion(&mb4_transfer.work);
1999
2000	mutex_unlock(&mb4_transfer.lock);
2001
2002	return 0;
2003}
2004
2005int db8500_prcmu_config_hotmon(u8 low, u8 high)
2006{
2007	mutex_lock(&mb4_transfer.lock);
2008
2009	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2010		cpu_relax();
2011
2012	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2013	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2014	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2015		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2016	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2017
2018	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2019	wait_for_completion(&mb4_transfer.work);
2020
2021	mutex_unlock(&mb4_transfer.lock);
2022
2023	return 0;
2024}
2025EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2026
2027static int config_hot_period(u16 val)
2028{
2029	mutex_lock(&mb4_transfer.lock);
2030
2031	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2032		cpu_relax();
2033
2034	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2035	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2036
2037	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2038	wait_for_completion(&mb4_transfer.work);
2039
2040	mutex_unlock(&mb4_transfer.lock);
2041
2042	return 0;
2043}
2044
2045int db8500_prcmu_start_temp_sense(u16 cycles32k)
2046{
2047	if (cycles32k == 0xFFFF)
2048		return -EINVAL;
2049
2050	return config_hot_period(cycles32k);
2051}
2052EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2053
2054int db8500_prcmu_stop_temp_sense(void)
2055{
2056	return config_hot_period(0xFFFF);
2057}
2058EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2059
2060static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2061{
2062
2063	mutex_lock(&mb4_transfer.lock);
2064
2065	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2066		cpu_relax();
2067
2068	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2069	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2070	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2071	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2072
2073	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2074
2075	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2076	wait_for_completion(&mb4_transfer.work);
2077
2078	mutex_unlock(&mb4_transfer.lock);
2079
2080	return 0;
2081
2082}
2083
2084int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2085{
2086	BUG_ON(num == 0 || num > 0xf);
2087	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2088			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2089			    A9WDOG_AUTO_OFF_DIS);
2090}
2091EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2092
2093int db8500_prcmu_enable_a9wdog(u8 id)
2094{
2095	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2096}
2097EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2098
2099int db8500_prcmu_disable_a9wdog(u8 id)
2100{
2101	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2102}
2103EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2104
2105int db8500_prcmu_kick_a9wdog(u8 id)
2106{
2107	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2108}
2109EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2110
2111/*
2112 * timeout is 28 bit, in ms.
2113 */
2114int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2115{
2116	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2117			    (id & A9WDOG_ID_MASK) |
2118			    /*
2119			     * Put the lowest 28 bits of timeout at
2120			     * offset 4. Four first bits are used for id.
2121			     */
2122			    (u8)((timeout << 4) & 0xf0),
2123			    (u8)((timeout >> 4) & 0xff),
2124			    (u8)((timeout >> 12) & 0xff),
2125			    (u8)((timeout >> 20) & 0xff));
2126}
2127EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2128
2129/**
2130 * prcmu_abb_read() - Read register value(s) from the ABB.
2131 * @slave:	The I2C slave address.
2132 * @reg:	The (start) register address.
2133 * @value:	The read out value(s).
2134 * @size:	The number of registers to read.
2135 *
2136 * Reads register value(s) from the ABB.
2137 * @size has to be 1 for the current firmware version.
2138 */
2139int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2140{
2141	int r;
2142
2143	if (size != 1)
2144		return -EINVAL;
2145
2146	mutex_lock(&mb5_transfer.lock);
2147
2148	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2149		cpu_relax();
2150
2151	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2152	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2153	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2154	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2155	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2156
2157	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2158
2159	if (!wait_for_completion_timeout(&mb5_transfer.work,
2160				msecs_to_jiffies(20000))) {
2161		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2162			__func__);
2163		r = -EIO;
2164	} else {
2165		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2166	}
2167
2168	if (!r)
2169		*value = mb5_transfer.ack.value;
2170
2171	mutex_unlock(&mb5_transfer.lock);
2172
2173	return r;
2174}
2175
2176/**
2177 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2178 * @slave:	The I2C slave address.
2179 * @reg:	The (start) register address.
2180 * @value:	The value(s) to write.
2181 * @mask:	The mask(s) to use.
2182 * @size:	The number of registers to write.
2183 *
2184 * Writes masked register value(s) to the ABB.
2185 * For each @value, only the bits set to 1 in the corresponding @mask
2186 * will be written. The other bits are not changed.
2187 * @size has to be 1 for the current firmware version.
2188 */
2189int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2190{
2191	int r;
2192
2193	if (size != 1)
2194		return -EINVAL;
2195
2196	mutex_lock(&mb5_transfer.lock);
2197
2198	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2199		cpu_relax();
2200
2201	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2202	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2203	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2204	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2205	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2206
2207	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2208
2209	if (!wait_for_completion_timeout(&mb5_transfer.work,
2210				msecs_to_jiffies(20000))) {
2211		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2212			__func__);
2213		r = -EIO;
2214	} else {
2215		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2216	}
2217
2218	mutex_unlock(&mb5_transfer.lock);
2219
2220	return r;
2221}
2222
2223/**
2224 * prcmu_abb_write() - Write register value(s) to the ABB.
2225 * @slave:	The I2C slave address.
2226 * @reg:	The (start) register address.
2227 * @value:	The value(s) to write.
2228 * @size:	The number of registers to write.
2229 *
2230 * Writes register value(s) to the ABB.
2231 * @size has to be 1 for the current firmware version.
2232 */
2233int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2234{
2235	u8 mask = ~0;
2236
2237	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2238}
2239
2240/**
2241 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2242 */
2243int prcmu_ac_wake_req(void)
2244{
2245	u32 val;
2246	int ret = 0;
2247
2248	mutex_lock(&mb0_transfer.ac_wake_lock);
2249
2250	val = readl(PRCM_HOSTACCESS_REQ);
2251	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2252		goto unlock_and_return;
2253
2254	atomic_set(&ac_wake_req_state, 1);
2255
2256	/*
2257	 * Force Modem Wake-up before hostaccess_req ping-pong.
2258	 * It prevents Modem to enter in Sleep while acking the hostaccess
2259	 * request. The 31us delay has been calculated by HWI.
2260	 */
2261	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2262	writel(val, PRCM_HOSTACCESS_REQ);
2263
2264	udelay(31);
2265
2266	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2267	writel(val, PRCM_HOSTACCESS_REQ);
2268
2269	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2270			msecs_to_jiffies(5000))) {
2271		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2272			__func__);
2273		ret = -EFAULT;
2274	}
2275
2276unlock_and_return:
2277	mutex_unlock(&mb0_transfer.ac_wake_lock);
2278	return ret;
2279}
2280
2281/**
2282 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2283 */
2284void prcmu_ac_sleep_req(void)
2285{
2286	u32 val;
2287
2288	mutex_lock(&mb0_transfer.ac_wake_lock);
2289
2290	val = readl(PRCM_HOSTACCESS_REQ);
2291	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2292		goto unlock_and_return;
2293
2294	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2295		PRCM_HOSTACCESS_REQ);
2296
2297	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2298			msecs_to_jiffies(5000))) {
2299		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2300			__func__);
2301	}
2302
2303	atomic_set(&ac_wake_req_state, 0);
2304
2305unlock_and_return:
2306	mutex_unlock(&mb0_transfer.ac_wake_lock);
2307}
2308
2309bool db8500_prcmu_is_ac_wake_requested(void)
2310{
2311	return (atomic_read(&ac_wake_req_state) != 0);
2312}
2313
2314/**
2315 * db8500_prcmu_system_reset - System reset
2316 *
2317 * Saves the reset reason code and then sets the APE_SOFTRST register which
2318 * fires interrupt to fw
 
 
2319 */
2320void db8500_prcmu_system_reset(u16 reset_code)
2321{
2322	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2323	writel(1, PRCM_APE_SOFTRST);
2324}
2325
2326/**
2327 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2328 *
2329 * Retrieves the reset reason code stored by prcmu_system_reset() before
2330 * last restart.
2331 */
2332u16 db8500_prcmu_get_reset_code(void)
2333{
2334	return readw(tcdm_base + PRCM_SW_RST_REASON);
2335}
2336
2337/**
2338 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2339 */
2340void db8500_prcmu_modem_reset(void)
2341{
2342	mutex_lock(&mb1_transfer.lock);
2343
2344	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2345		cpu_relax();
2346
2347	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2348	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2349	wait_for_completion(&mb1_transfer.work);
2350
2351	/*
2352	 * No need to check return from PRCMU as modem should go in reset state
2353	 * This state is already managed by upper layer
2354	 */
2355
2356	mutex_unlock(&mb1_transfer.lock);
2357}
2358
2359static void ack_dbb_wakeup(void)
2360{
2361	unsigned long flags;
2362
2363	spin_lock_irqsave(&mb0_transfer.lock, flags);
2364
2365	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2366		cpu_relax();
2367
2368	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2369	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2370
2371	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2372}
2373
2374static inline void print_unknown_header_warning(u8 n, u8 header)
2375{
2376	pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2377		header, n);
2378}
2379
2380static bool read_mailbox_0(void)
2381{
2382	bool r;
2383	u32 ev;
2384	unsigned int n;
2385	u8 header;
2386
2387	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2388	switch (header) {
2389	case MB0H_WAKEUP_EXE:
2390	case MB0H_WAKEUP_SLEEP:
2391		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2392			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2393		else
2394			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2395
2396		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2397			complete(&mb0_transfer.ac_wake_work);
2398		if (ev & WAKEUP_BIT_SYSCLK_OK)
2399			complete(&mb3_transfer.sysclk_work);
2400
2401		ev &= mb0_transfer.req.dbb_irqs;
2402
2403		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2404			if (ev & prcmu_irq_bit[n])
2405				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2406		}
2407		r = true;
2408		break;
2409	default:
2410		print_unknown_header_warning(0, header);
2411		r = false;
2412		break;
2413	}
2414	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2415	return r;
2416}
2417
2418static bool read_mailbox_1(void)
2419{
2420	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2421	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2422		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2423	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2424		PRCM_ACK_MB1_CURRENT_APE_OPP);
2425	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2426		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2427	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2428	complete(&mb1_transfer.work);
2429	return false;
2430}
2431
2432static bool read_mailbox_2(void)
2433{
2434	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2435	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2436	complete(&mb2_transfer.work);
2437	return false;
2438}
2439
2440static bool read_mailbox_3(void)
2441{
2442	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2443	return false;
2444}
2445
2446static bool read_mailbox_4(void)
2447{
2448	u8 header;
2449	bool do_complete = true;
2450
2451	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2452	switch (header) {
2453	case MB4H_MEM_ST:
2454	case MB4H_HOTDOG:
2455	case MB4H_HOTMON:
2456	case MB4H_HOT_PERIOD:
2457	case MB4H_A9WDOG_CONF:
2458	case MB4H_A9WDOG_EN:
2459	case MB4H_A9WDOG_DIS:
2460	case MB4H_A9WDOG_LOAD:
2461	case MB4H_A9WDOG_KICK:
2462		break;
2463	default:
2464		print_unknown_header_warning(4, header);
2465		do_complete = false;
2466		break;
2467	}
2468
2469	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2470
2471	if (do_complete)
2472		complete(&mb4_transfer.work);
2473
2474	return false;
2475}
2476
2477static bool read_mailbox_5(void)
2478{
2479	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2480	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2481	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2482	complete(&mb5_transfer.work);
2483	return false;
2484}
2485
2486static bool read_mailbox_6(void)
2487{
2488	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2489	return false;
2490}
2491
2492static bool read_mailbox_7(void)
2493{
2494	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2495	return false;
2496}
2497
2498static bool (* const read_mailbox[NUM_MB])(void) = {
2499	read_mailbox_0,
2500	read_mailbox_1,
2501	read_mailbox_2,
2502	read_mailbox_3,
2503	read_mailbox_4,
2504	read_mailbox_5,
2505	read_mailbox_6,
2506	read_mailbox_7
2507};
2508
2509static irqreturn_t prcmu_irq_handler(int irq, void *data)
2510{
2511	u32 bits;
2512	u8 n;
2513	irqreturn_t r;
2514
2515	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2516	if (unlikely(!bits))
2517		return IRQ_NONE;
2518
2519	r = IRQ_HANDLED;
2520	for (n = 0; bits; n++) {
2521		if (bits & MBOX_BIT(n)) {
2522			bits -= MBOX_BIT(n);
2523			if (read_mailbox[n]())
2524				r = IRQ_WAKE_THREAD;
2525		}
2526	}
2527	return r;
2528}
2529
2530static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2531{
2532	ack_dbb_wakeup();
2533	return IRQ_HANDLED;
2534}
2535
2536static void prcmu_mask_work(struct work_struct *work)
2537{
2538	unsigned long flags;
2539
2540	spin_lock_irqsave(&mb0_transfer.lock, flags);
2541
2542	config_wakeups();
2543
2544	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2545}
2546
2547static void prcmu_irq_mask(struct irq_data *d)
2548{
2549	unsigned long flags;
2550
2551	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2552
2553	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2554
2555	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2556
2557	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2558		schedule_work(&mb0_transfer.mask_work);
2559}
2560
2561static void prcmu_irq_unmask(struct irq_data *d)
2562{
2563	unsigned long flags;
2564
2565	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2566
2567	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2568
2569	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2570
2571	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2572		schedule_work(&mb0_transfer.mask_work);
2573}
2574
2575static void noop(struct irq_data *d)
2576{
2577}
2578
2579static struct irq_chip prcmu_irq_chip = {
2580	.name		= "prcmu",
2581	.irq_disable	= prcmu_irq_mask,
2582	.irq_ack	= noop,
2583	.irq_mask	= prcmu_irq_mask,
2584	.irq_unmask	= prcmu_irq_unmask,
2585};
2586
2587static __init char *fw_project_name(u32 project)
2588{
2589	switch (project) {
2590	case PRCMU_FW_PROJECT_U8500:
2591		return "U8500";
2592	case PRCMU_FW_PROJECT_U8400:
2593		return "U8400";
2594	case PRCMU_FW_PROJECT_U9500:
2595		return "U9500";
2596	case PRCMU_FW_PROJECT_U8500_MBB:
2597		return "U8500 MBB";
2598	case PRCMU_FW_PROJECT_U8500_C1:
2599		return "U8500 C1";
2600	case PRCMU_FW_PROJECT_U8500_C2:
2601		return "U8500 C2";
2602	case PRCMU_FW_PROJECT_U8500_C3:
2603		return "U8500 C3";
2604	case PRCMU_FW_PROJECT_U8500_C4:
2605		return "U8500 C4";
2606	case PRCMU_FW_PROJECT_U9500_MBL:
2607		return "U9500 MBL";
2608	case PRCMU_FW_PROJECT_U8500_MBL:
2609		return "U8500 MBL";
2610	case PRCMU_FW_PROJECT_U8500_MBL2:
2611		return "U8500 MBL2";
2612	case PRCMU_FW_PROJECT_U8520:
2613		return "U8520 MBL";
2614	case PRCMU_FW_PROJECT_U8420:
2615		return "U8420";
 
 
 
 
2616	case PRCMU_FW_PROJECT_U9540:
2617		return "U9540";
2618	case PRCMU_FW_PROJECT_A9420:
2619		return "A9420";
2620	case PRCMU_FW_PROJECT_L8540:
2621		return "L8540";
2622	case PRCMU_FW_PROJECT_L8580:
2623		return "L8580";
2624	default:
2625		return "Unknown";
2626	}
2627}
2628
2629static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2630				irq_hw_number_t hwirq)
2631{
2632	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2633				handle_simple_irq);
2634
2635	return 0;
2636}
2637
2638static const struct irq_domain_ops db8500_irq_ops = {
2639	.map    = db8500_irq_map,
2640	.xlate  = irq_domain_xlate_twocell,
2641};
2642
2643static int db8500_irq_init(struct device_node *np)
2644{
2645	int i;
2646
2647	db8500_irq_domain = irq_domain_add_simple(
2648		np, NUM_PRCMU_WAKEUPS, 0,
2649		&db8500_irq_ops, NULL);
2650
2651	if (!db8500_irq_domain) {
2652		pr_err("Failed to create irqdomain\n");
2653		return -ENOSYS;
2654	}
2655
2656	/* All wakeups will be used, so create mappings for all */
2657	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2658		irq_create_mapping(db8500_irq_domain, i);
2659
2660	return 0;
2661}
2662
2663static void dbx500_fw_version_init(struct platform_device *pdev,
2664			    u32 version_offset)
2665{
2666	struct resource *res;
2667	void __iomem *tcpm_base;
2668	u32 version;
2669
2670	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2671					   "prcmu-tcpm");
2672	if (!res) {
2673		dev_err(&pdev->dev,
2674			"Error: no prcmu tcpm memory region provided\n");
2675		return;
2676	}
2677	tcpm_base = ioremap(res->start, resource_size(res));
2678	if (!tcpm_base) {
2679		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2680		return;
2681	}
2682
2683	version = readl(tcpm_base + version_offset);
2684	fw_info.version.project = (version & 0xFF);
2685	fw_info.version.api_version = (version >> 8) & 0xFF;
2686	fw_info.version.func_version = (version >> 16) & 0xFF;
2687	fw_info.version.errata = (version >> 24) & 0xFF;
2688	strncpy(fw_info.version.project_name,
2689		fw_project_name(fw_info.version.project),
2690		PRCMU_FW_PROJECT_NAME_LEN);
2691	fw_info.valid = true;
2692	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2693		fw_info.version.project_name,
2694		fw_info.version.project,
2695		fw_info.version.api_version,
2696		fw_info.version.func_version,
2697		fw_info.version.errata);
2698	iounmap(tcpm_base);
2699}
2700
2701void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2702{
2703	/*
2704	 * This is a temporary remap to bring up the clocks. It is
2705	 * subsequently replaces with a real remap. After the merge of
2706	 * the mailbox subsystem all of this early code goes away, and the
2707	 * clock driver can probe independently. An early initcall will
2708	 * still be needed, but it can be diverted into drivers/clk/ux500.
2709	 */
2710	prcmu_base = ioremap(phy_base, size);
2711	if (!prcmu_base)
 
 
 
 
2712		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
 
 
 
 
2713
2714	spin_lock_init(&mb0_transfer.lock);
2715	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2716	mutex_init(&mb0_transfer.ac_wake_lock);
2717	init_completion(&mb0_transfer.ac_wake_work);
2718	mutex_init(&mb1_transfer.lock);
2719	init_completion(&mb1_transfer.work);
2720	mb1_transfer.ape_opp = APE_NO_CHANGE;
2721	mutex_init(&mb2_transfer.lock);
2722	init_completion(&mb2_transfer.work);
2723	spin_lock_init(&mb2_transfer.auto_pm_lock);
2724	spin_lock_init(&mb3_transfer.lock);
2725	mutex_init(&mb3_transfer.sysclk_lock);
2726	init_completion(&mb3_transfer.sysclk_work);
2727	mutex_init(&mb4_transfer.lock);
2728	init_completion(&mb4_transfer.work);
2729	mutex_init(&mb5_transfer.lock);
2730	init_completion(&mb5_transfer.work);
2731
2732	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2733}
2734
2735static void __init init_prcm_registers(void)
2736{
2737	u32 val;
2738
2739	val = readl(PRCM_A9PL_FORCE_CLKEN);
2740	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2741		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2742	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2743}
2744
2745/*
2746 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2747 */
2748static struct regulator_consumer_supply db8500_vape_consumers[] = {
2749	REGULATOR_SUPPLY("v-ape", NULL),
2750	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2751	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2752	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2753	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2754	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2755	/* "v-mmc" changed to "vcore" in the mainline kernel */
2756	REGULATOR_SUPPLY("vcore", "sdi0"),
2757	REGULATOR_SUPPLY("vcore", "sdi1"),
2758	REGULATOR_SUPPLY("vcore", "sdi2"),
2759	REGULATOR_SUPPLY("vcore", "sdi3"),
2760	REGULATOR_SUPPLY("vcore", "sdi4"),
2761	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2762	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2763	/* "v-uart" changed to "vcore" in the mainline kernel */
2764	REGULATOR_SUPPLY("vcore", "uart0"),
2765	REGULATOR_SUPPLY("vcore", "uart1"),
2766	REGULATOR_SUPPLY("vcore", "uart2"),
2767	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2768	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2769	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2770};
2771
2772static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2773	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2774	/* AV8100 regulator */
2775	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2776};
2777
2778static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2779	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2780	REGULATOR_SUPPLY("vsupply", "mcde"),
2781};
2782
2783/* SVA MMDSP regulator switch */
2784static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2785	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2786};
2787
2788/* SVA pipe regulator switch */
2789static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2790	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2791};
2792
2793/* SIA MMDSP regulator switch */
2794static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2795	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2796};
2797
2798/* SIA pipe regulator switch */
2799static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2800	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2801};
2802
2803static struct regulator_consumer_supply db8500_sga_consumers[] = {
2804	REGULATOR_SUPPLY("v-mali", NULL),
2805};
2806
2807/* ESRAM1 and 2 regulator switch */
2808static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2809	REGULATOR_SUPPLY("esram12", "cm_control"),
2810};
2811
2812/* ESRAM3 and 4 regulator switch */
2813static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2814	REGULATOR_SUPPLY("v-esram34", "mcde"),
2815	REGULATOR_SUPPLY("esram34", "cm_control"),
2816	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2817};
2818
2819static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2820	[DB8500_REGULATOR_VAPE] = {
2821		.constraints = {
2822			.name = "db8500-vape",
2823			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2824			.always_on = true,
2825		},
2826		.consumer_supplies = db8500_vape_consumers,
2827		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2828	},
2829	[DB8500_REGULATOR_VARM] = {
2830		.constraints = {
2831			.name = "db8500-varm",
2832			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833		},
2834	},
2835	[DB8500_REGULATOR_VMODEM] = {
2836		.constraints = {
2837			.name = "db8500-vmodem",
2838			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2839		},
2840	},
2841	[DB8500_REGULATOR_VPLL] = {
2842		.constraints = {
2843			.name = "db8500-vpll",
2844			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2845		},
2846	},
2847	[DB8500_REGULATOR_VSMPS1] = {
2848		.constraints = {
2849			.name = "db8500-vsmps1",
2850			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2851		},
2852	},
2853	[DB8500_REGULATOR_VSMPS2] = {
2854		.constraints = {
2855			.name = "db8500-vsmps2",
2856			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857		},
2858		.consumer_supplies = db8500_vsmps2_consumers,
2859		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2860	},
2861	[DB8500_REGULATOR_VSMPS3] = {
2862		.constraints = {
2863			.name = "db8500-vsmps3",
2864			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865		},
2866	},
2867	[DB8500_REGULATOR_VRF1] = {
2868		.constraints = {
2869			.name = "db8500-vrf1",
2870			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871		},
2872	},
2873	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2874		/* dependency to u8500-vape is handled outside regulator framework */
2875		.constraints = {
2876			.name = "db8500-sva-mmdsp",
2877			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878		},
2879		.consumer_supplies = db8500_svammdsp_consumers,
2880		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2881	},
2882	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2883		.constraints = {
2884			/* "ret" means "retention" */
2885			.name = "db8500-sva-mmdsp-ret",
2886			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887		},
2888	},
2889	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2890		/* dependency to u8500-vape is handled outside regulator framework */
2891		.constraints = {
2892			.name = "db8500-sva-pipe",
2893			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894		},
2895		.consumer_supplies = db8500_svapipe_consumers,
2896		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2897	},
2898	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2899		/* dependency to u8500-vape is handled outside regulator framework */
2900		.constraints = {
2901			.name = "db8500-sia-mmdsp",
2902			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2903		},
2904		.consumer_supplies = db8500_siammdsp_consumers,
2905		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2906	},
2907	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2908		.constraints = {
2909			.name = "db8500-sia-mmdsp-ret",
2910			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911		},
2912	},
2913	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2914		/* dependency to u8500-vape is handled outside regulator framework */
2915		.constraints = {
2916			.name = "db8500-sia-pipe",
2917			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918		},
2919		.consumer_supplies = db8500_siapipe_consumers,
2920		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2921	},
2922	[DB8500_REGULATOR_SWITCH_SGA] = {
2923		.supply_regulator = "db8500-vape",
2924		.constraints = {
2925			.name = "db8500-sga",
2926			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927		},
2928		.consumer_supplies = db8500_sga_consumers,
2929		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2930
2931	},
2932	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2933		.supply_regulator = "db8500-vape",
2934		.constraints = {
2935			.name = "db8500-b2r2-mcde",
2936			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937		},
2938		.consumer_supplies = db8500_b2r2_mcde_consumers,
2939		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2940	},
2941	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2942		/*
2943		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2944		 * no need to hold Vape
2945		 */
2946		.constraints = {
2947			.name = "db8500-esram12",
2948			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949		},
2950		.consumer_supplies = db8500_esram12_consumers,
2951		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2952	},
2953	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2954		.constraints = {
2955			.name = "db8500-esram12-ret",
2956			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2957		},
2958	},
2959	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2960		/*
2961		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2962		 * no need to hold Vape
2963		 */
2964		.constraints = {
2965			.name = "db8500-esram34",
2966			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967		},
2968		.consumer_supplies = db8500_esram34_consumers,
2969		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2970	},
2971	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2972		.constraints = {
2973			.name = "db8500-esram34-ret",
2974			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975		},
2976	},
2977};
2978
2979static struct ux500_wdt_data db8500_wdt_pdata = {
2980	.timeout = 600, /* 10 minutes */
2981	.has_28_bits_resolution = true,
2982};
2983/*
2984 * Thermal Sensor
2985 */
2986
2987static struct resource db8500_thsens_resources[] = {
2988	{
2989		.name = "IRQ_HOTMON_LOW",
2990		.start  = IRQ_PRCMU_HOTMON_LOW,
2991		.end    = IRQ_PRCMU_HOTMON_LOW,
2992		.flags  = IORESOURCE_IRQ,
2993	},
2994	{
2995		.name = "IRQ_HOTMON_HIGH",
2996		.start  = IRQ_PRCMU_HOTMON_HIGH,
2997		.end    = IRQ_PRCMU_HOTMON_HIGH,
2998		.flags  = IORESOURCE_IRQ,
2999	},
3000};
3001
3002static struct db8500_thsens_platform_data db8500_thsens_data = {
3003	.trip_points[0] = {
3004		.temp = 70000,
3005		.type = THERMAL_TRIP_ACTIVE,
3006		.cdev_name = {
3007			[0] = "thermal-cpufreq-0",
3008		},
3009	},
3010	.trip_points[1] = {
3011		.temp = 75000,
3012		.type = THERMAL_TRIP_ACTIVE,
3013		.cdev_name = {
3014			[0] = "thermal-cpufreq-0",
3015		},
3016	},
3017	.trip_points[2] = {
3018		.temp = 80000,
3019		.type = THERMAL_TRIP_ACTIVE,
3020		.cdev_name = {
3021			[0] = "thermal-cpufreq-0",
3022		},
3023	},
3024	.trip_points[3] = {
3025		.temp = 85000,
3026		.type = THERMAL_TRIP_CRITICAL,
3027	},
3028	.num_trips = 4,
3029};
3030
3031static const struct mfd_cell common_prcmu_devs[] = {
3032	{
3033		.name = "ux500_wdt",
3034		.platform_data = &db8500_wdt_pdata,
3035		.pdata_size = sizeof(db8500_wdt_pdata),
3036		.id = -1,
3037	},
3038};
3039
3040static const struct mfd_cell db8500_prcmu_devs[] = {
3041	{
3042		.name = "db8500-prcmu-regulators",
3043		.of_compatible = "stericsson,db8500-prcmu-regulator",
3044		.platform_data = &db8500_regulators,
3045		.pdata_size = sizeof(db8500_regulators),
3046	},
3047	{
3048		.name = "cpuidle-dbx500",
3049		.of_compatible = "stericsson,cpuidle-dbx500",
3050	},
3051	{
3052		.name = "db8500-thermal",
3053		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3054		.resources = db8500_thsens_resources,
3055		.platform_data = &db8500_thsens_data,
3056		.pdata_size = sizeof(db8500_thsens_data),
3057	},
3058};
3059
3060static int db8500_prcmu_register_ab8500(struct device *parent)
3061{
3062	struct device_node *np;
3063	struct resource ab8500_resource;
3064	const struct mfd_cell ab8500_cell = {
3065		.name = "ab8500-core",
3066		.of_compatible = "stericsson,ab8500",
3067		.id = AB8500_VERSION_AB8500,
3068		.resources = &ab8500_resource,
 
 
 
 
 
 
 
3069		.num_resources = 1,
3070	};
 
3071
3072	if (!parent->of_node)
3073		return -ENODEV;
3074
3075	/* Look up the device node, sneak the IRQ out of it */
3076	for_each_child_of_node(parent->of_node, np) {
3077		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
 
3078			break;
 
 
 
 
 
3079	}
3080	if (!np) {
3081		dev_info(parent, "could not find AB8500 node in the device tree\n");
3082		return -ENODEV;
3083	}
3084	of_irq_to_resource_table(np, &ab8500_resource, 1);
3085
3086	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3087}
3088
3089/**
3090 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3091 *
3092 */
3093static int db8500_prcmu_probe(struct platform_device *pdev)
3094{
3095	struct device_node *np = pdev->dev.of_node;
3096	int irq = 0, err = 0;
3097	struct resource *res;
3098
3099	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3100	if (!res) {
3101		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3102		return -EINVAL;
3103	}
3104	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3105	if (!prcmu_base) {
3106		dev_err(&pdev->dev,
3107			"failed to ioremap prcmu register memory\n");
3108		return -ENOMEM;
3109	}
3110	init_prcm_registers();
3111	dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3112	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3113	if (!res) {
3114		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3115		return -EINVAL;
3116	}
3117	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3118			resource_size(res));
3119	if (!tcdm_base) {
3120		dev_err(&pdev->dev,
3121			"failed to ioremap prcmu-tcdm register memory\n");
3122		return -ENOMEM;
3123	}
3124
3125	/* Clean up the mailbox interrupts after pre-kernel code. */
3126	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3127
3128	irq = platform_get_irq(pdev, 0);
3129	if (irq <= 0) {
3130		dev_err(&pdev->dev, "no prcmu irq provided\n");
3131		return irq;
3132	}
3133
3134	err = request_threaded_irq(irq, prcmu_irq_handler,
3135	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3136	if (err < 0) {
3137		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3138		return err;
3139	}
3140
3141	db8500_irq_init(np);
3142
3143	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3144
3145	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3146			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3147	if (err) {
3148		pr_err("prcmu: Failed to add subdevices\n");
3149		return err;
3150	}
3151
3152	/* TODO: Remove restriction when clk definitions are available. */
3153	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3154		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3155				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3156				      db8500_irq_domain);
3157		if (err) {
3158			mfd_remove_devices(&pdev->dev);
3159			pr_err("prcmu: Failed to add subdevices\n");
3160			return err;
3161		}
3162	}
3163
3164	err = db8500_prcmu_register_ab8500(&pdev->dev);
3165	if (err) {
3166		mfd_remove_devices(&pdev->dev);
3167		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3168		return err;
3169	}
3170
3171	pr_info("DB8500 PRCMU initialized\n");
3172	return err;
3173}
3174static const struct of_device_id db8500_prcmu_match[] = {
3175	{ .compatible = "stericsson,db8500-prcmu"},
3176	{ },
3177};
3178
3179static struct platform_driver db8500_prcmu_driver = {
3180	.driver = {
3181		.name = "db8500-prcmu",
3182		.of_match_table = db8500_prcmu_match,
3183	},
3184	.probe = db8500_prcmu_probe,
3185};
3186
3187static int __init db8500_prcmu_init(void)
3188{
3189	return platform_driver_register(&db8500_prcmu_driver);
3190}
3191
3192core_initcall(db8500_prcmu_init);
3193
3194MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3195MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3196MODULE_LICENSE("GPL v2");