Linux Audio

Check our new training course

Loading...
v6.8
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
 
 
  74
  75config CRYPTO_SIG
  76	tristate
  77	select CRYPTO_SIG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_SIG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_SKCIPHER
  85	tristate
  86	select CRYPTO_SKCIPHER2
  87	select CRYPTO_ALGAPI
  88	select CRYPTO_ECB
  89
  90config CRYPTO_SKCIPHER2
  91	tristate
  92	select CRYPTO_ALGAPI2
 
 
  93
  94config CRYPTO_HASH
  95	tristate
  96	select CRYPTO_HASH2
  97	select CRYPTO_ALGAPI
  98
  99config CRYPTO_HASH2
 100	tristate
 101	select CRYPTO_ALGAPI2
 102
 103config CRYPTO_RNG
 104	tristate
 105	select CRYPTO_RNG2
 106	select CRYPTO_ALGAPI
 107
 108config CRYPTO_RNG2
 109	tristate
 110	select CRYPTO_ALGAPI2
 111
 112config CRYPTO_RNG_DEFAULT
 113	tristate
 114	select CRYPTO_DRBG_MENU
 115
 116config CRYPTO_AKCIPHER2
 117	tristate
 118	select CRYPTO_ALGAPI2
 119
 120config CRYPTO_AKCIPHER
 121	tristate
 122	select CRYPTO_AKCIPHER2
 123	select CRYPTO_ALGAPI
 124
 125config CRYPTO_KPP2
 126	tristate
 127	select CRYPTO_ALGAPI2
 128
 129config CRYPTO_KPP
 130	tristate
 131	select CRYPTO_ALGAPI
 132	select CRYPTO_KPP2
 133
 134config CRYPTO_ACOMP2
 135	tristate
 136	select CRYPTO_ALGAPI2
 137	select SGL_ALLOC
 138
 139config CRYPTO_ACOMP
 140	tristate
 141	select CRYPTO_ALGAPI
 142	select CRYPTO_ACOMP2
 143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144config CRYPTO_MANAGER
 145	tristate "Cryptographic algorithm manager"
 146	select CRYPTO_MANAGER2
 147	help
 148	  Create default cryptographic template instantiations such as
 149	  cbc(aes).
 150
 151config CRYPTO_MANAGER2
 152	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 153	select CRYPTO_ACOMP2
 154	select CRYPTO_AEAD2
 155	select CRYPTO_AKCIPHER2
 156	select CRYPTO_SIG2
 157	select CRYPTO_HASH2
 
 
 158	select CRYPTO_KPP2
 159	select CRYPTO_RNG2
 160	select CRYPTO_SKCIPHER2
 161
 162config CRYPTO_USER
 163	tristate "Userspace cryptographic algorithm configuration"
 164	depends on NET
 165	select CRYPTO_MANAGER
 166	help
 167	  Userspace configuration for cryptographic instantiations such as
 168	  cbc(aes).
 169
 170config CRYPTO_MANAGER_DISABLE_TESTS
 171	bool "Disable run-time self tests"
 172	default y
 
 173	help
 174	  Disable run-time self tests that normally take place at
 175	  algorithm registration.
 176
 177config CRYPTO_MANAGER_EXTRA_TESTS
 178	bool "Enable extra run-time crypto self tests"
 179	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 180	help
 181	  Enable extra run-time self tests of registered crypto algorithms,
 182	  including randomized fuzz tests.
 183
 184	  This is intended for developer use only, as these tests take much
 185	  longer to run than the normal self tests.
 186
 187config CRYPTO_NULL
 188	tristate "Null algorithms"
 189	select CRYPTO_NULL2
 190	help
 191	  These are 'Null' algorithms, used by IPsec, which do nothing.
 192
 193config CRYPTO_NULL2
 194	tristate
 195	select CRYPTO_ALGAPI2
 196	select CRYPTO_SKCIPHER2
 197	select CRYPTO_HASH2
 198
 199config CRYPTO_PCRYPT
 200	tristate "Parallel crypto engine"
 201	depends on SMP
 202	select PADATA
 203	select CRYPTO_MANAGER
 204	select CRYPTO_AEAD
 205	help
 206	  This converts an arbitrary crypto algorithm into a parallel
 207	  algorithm that executes in kernel threads.
 208
 
 
 
 209config CRYPTO_CRYPTD
 210	tristate "Software async crypto daemon"
 211	select CRYPTO_SKCIPHER
 212	select CRYPTO_HASH
 213	select CRYPTO_MANAGER
 
 214	help
 215	  This is a generic software asynchronous crypto daemon that
 216	  converts an arbitrary synchronous software crypto algorithm
 217	  into an asynchronous algorithm that executes in a kernel thread.
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219config CRYPTO_AUTHENC
 220	tristate "Authenc support"
 221	select CRYPTO_AEAD
 222	select CRYPTO_SKCIPHER
 223	select CRYPTO_MANAGER
 224	select CRYPTO_HASH
 225	select CRYPTO_NULL
 226	help
 227	  Authenc: Combined mode wrapper for IPsec.
 228
 229	  This is required for IPSec ESP (XFRM_ESP).
 230
 231config CRYPTO_TEST
 232	tristate "Testing module"
 233	depends on m || EXPERT
 234	select CRYPTO_MANAGER
 235	help
 236	  Quick & dirty crypto test module.
 237
 
 
 
 
 238config CRYPTO_SIMD
 239	tristate
 240	select CRYPTO_CRYPTD
 241
 
 
 
 
 
 242config CRYPTO_ENGINE
 243	tristate
 244
 245endmenu
 246
 247menu "Public-key cryptography"
 
 
 
 
 
 248
 249config CRYPTO_RSA
 250	tristate "RSA (Rivest-Shamir-Adleman)"
 251	select CRYPTO_AKCIPHER
 252	select CRYPTO_MANAGER
 253	select MPILIB
 254	select ASN1
 255	help
 256	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 
 257
 258config CRYPTO_DH
 259	tristate "DH (Diffie-Hellman)"
 260	select CRYPTO_KPP
 261	select MPILIB
 
 262	help
 263	  DH (Diffie-Hellman) key exchange algorithm
 
 
 
 
 264
 265config CRYPTO_DH_RFC7919_GROUPS
 266	bool "RFC 7919 FFDHE groups"
 267	depends on CRYPTO_DH
 
 
 268	select CRYPTO_RNG_DEFAULT
 269	help
 270	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 271	  defined in RFC7919.
 272
 273	  Support these finite-field groups in DH key exchanges:
 274	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 
 
 
 
 
 
 
 
 275
 276	  If unsure, say N.
 277
 278config CRYPTO_ECC
 279	tristate
 280	select CRYPTO_RNG_DEFAULT
 
 
 
 
 281
 282config CRYPTO_ECDH
 283	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 284	select CRYPTO_ECC
 285	select CRYPTO_KPP
 
 286	help
 287	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 288	  using curves P-192, P-256, and P-384 (FIPS 186)
 289
 290config CRYPTO_ECDSA
 291	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 292	select CRYPTO_ECC
 293	select CRYPTO_AKCIPHER
 294	select ASN1
 295	help
 296	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 297	  ISO/IEC 14888-3)
 298	  using curves P-192, P-256, and P-384
 299
 300	  Only signature verification is implemented.
 301
 302config CRYPTO_ECRDSA
 303	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 304	select CRYPTO_ECC
 305	select CRYPTO_AKCIPHER
 306	select CRYPTO_STREEBOG
 307	select OID_REGISTRY
 308	select ASN1
 309	help
 310	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 311	  RFC 7091, ISO/IEC 14888-3)
 
 312
 313	  One of the Russian cryptographic standard algorithms (called GOST
 314	  algorithms). Only signature verification is implemented.
 
 
 
 
 
 
 
 
 
 315
 316config CRYPTO_SM2
 317	tristate "SM2 (ShangMi 2)"
 318	select CRYPTO_SM3
 319	select CRYPTO_AKCIPHER
 320	select CRYPTO_MANAGER
 321	select MPILIB
 322	select ASN1
 323	help
 324	  SM2 (ShangMi 2) public key algorithm
 
 325
 326	  Published by State Encryption Management Bureau, China,
 327	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 
 
 
 
 
 
 
 
 328
 329	  References:
 330	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 331	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 332	  http://www.gmbz.org.cn/main/bzlb.html
 
 
 333
 334config CRYPTO_CURVE25519
 335	tristate "Curve25519"
 336	select CRYPTO_KPP
 337	select CRYPTO_LIB_CURVE25519_GENERIC
 
 
 338	help
 339	  Curve25519 elliptic curve (RFC7748)
 
 340
 341endmenu
 
 342
 343menu "Block ciphers"
 
 
 
 
 
 
 344
 345config CRYPTO_AES
 346	tristate "AES (Advanced Encryption Standard)"
 347	select CRYPTO_ALGAPI
 348	select CRYPTO_LIB_AES
 349	help
 350	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 
 
 351
 352	  Rijndael appears to be consistently a very good performer in
 353	  both hardware and software across a wide range of computing
 354	  environments regardless of its use in feedback or non-feedback
 355	  modes. Its key setup time is excellent, and its key agility is
 356	  good. Rijndael's very low memory requirements make it very well
 357	  suited for restricted-space environments, in which it also
 358	  demonstrates excellent performance. Rijndael's operations are
 359	  among the easiest to defend against power and timing attacks.
 360
 361	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 362
 363config CRYPTO_AES_TI
 364	tristate "AES (Advanced Encryption Standard) (fixed time)"
 365	select CRYPTO_ALGAPI
 366	select CRYPTO_LIB_AES
 
 
 367	help
 368	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 370	  This is a generic implementation of AES that attempts to eliminate
 371	  data dependent latencies as much as possible without affecting
 372	  performance too much. It is intended for use by the generic CCM
 373	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 374	  solely on encryption (although decryption is supported as well, but
 375	  with a more dramatic performance hit)
 376
 377	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 378	  8 for decryption), this implementation only uses just two S-boxes of
 379	  256 bytes each, and attempts to eliminate data dependent latencies by
 380	  prefetching the entire table into the cache at the start of each
 381	  block. Interrupts are also disabled to avoid races where cachelines
 382	  are evicted when the CPU is interrupted to do something else.
 383
 384config CRYPTO_ANUBIS
 385	tristate "Anubis"
 386	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 387	select CRYPTO_ALGAPI
 
 388	help
 389	  Anubis cipher algorithm
 
 390
 391	  Anubis is a variable key length cipher which can use keys from
 392	  128 bits to 320 bits in length.  It was evaluated as a entrant
 393	  in the NESSIE competition.
 
 
 
 
 394
 395	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 396	  for further information.
 
 
 
 
 
 
 
 
 
 
 397
 398config CRYPTO_ARIA
 399	tristate "ARIA"
 400	select CRYPTO_ALGAPI
 401	help
 402	  ARIA cipher algorithm (RFC5794)
 
 
 403
 404	  ARIA is a standard encryption algorithm of the Republic of Korea.
 405	  The ARIA specifies three key sizes and rounds.
 406	  128-bit: 12 rounds.
 407	  192-bit: 14 rounds.
 408	  256-bit: 16 rounds.
 
 
 
 
 
 409
 410	  See:
 411	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 
 
 
 
 412
 413config CRYPTO_BLOWFISH
 414	tristate "Blowfish"
 415	select CRYPTO_ALGAPI
 416	select CRYPTO_BLOWFISH_COMMON
 417	help
 418	  Blowfish cipher algorithm, by Bruce Schneier
 419
 420	  This is a variable key length cipher which can use keys from 32
 421	  bits to 448 bits in length.  It's fast, simple and specifically
 422	  designed for use on "large microprocessors".
 423
 424	  See https://www.schneier.com/blowfish.html for further information.
 
 
 
 
 
 425
 426config CRYPTO_BLOWFISH_COMMON
 427	tristate
 
 
 
 
 
 
 428	help
 429	  Common parts of the Blowfish cipher algorithm shared by the
 430	  generic c and the assembler implementations.
 431
 432config CRYPTO_CAMELLIA
 433	tristate "Camellia"
 434	select CRYPTO_ALGAPI
 435	help
 436	  Camellia cipher algorithms (ISO/IEC 18033-3)
 437
 438	  Camellia is a symmetric key block cipher developed jointly
 439	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
 440
 441	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
 
 
 442
 443	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 
 
 
 
 
 
 
 444
 445config CRYPTO_CAST_COMMON
 446	tristate
 
 447	help
 448	  Common parts of the CAST cipher algorithms shared by the
 449	  generic c and the assembler implementations.
 
 
 450
 451config CRYPTO_CAST5
 452	tristate "CAST5 (CAST-128)"
 453	select CRYPTO_ALGAPI
 454	select CRYPTO_CAST_COMMON
 455	help
 456	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 457
 458config CRYPTO_CAST6
 459	tristate "CAST6 (CAST-256)"
 460	select CRYPTO_ALGAPI
 461	select CRYPTO_CAST_COMMON
 
 
 
 
 
 
 462	help
 463	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 464
 465config CRYPTO_DES
 466	tristate "DES and Triple DES EDE"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_LIB_DES
 
 
 
 
 
 
 
 
 
 
 469	help
 470	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 471	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 472	  cipher algorithms
 
 473
 474config CRYPTO_FCRYPT
 475	tristate "FCrypt"
 476	select CRYPTO_ALGAPI
 477	select CRYPTO_SKCIPHER
 
 
 478	help
 479	  FCrypt algorithm used by RxRPC
 
 
 
 480
 481	  See https://ota.polyonymo.us/fcrypt-paper.txt
 
 482
 483config CRYPTO_KHAZAD
 484	tristate "Khazad"
 485	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 486	select CRYPTO_ALGAPI
 487	help
 488	  Khazad cipher algorithm
 489
 490	  Khazad was a finalist in the initial NESSIE competition.  It is
 491	  an algorithm optimized for 64-bit processors with good performance
 492	  on 32-bit processors.  Khazad uses an 128 bit key size.
 
 
 
 
 
 
 
 493
 494	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 495	  for further information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496
 497config CRYPTO_SEED
 498	tristate "SEED"
 499	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 500	select CRYPTO_ALGAPI
 501	help
 502	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 503
 504	  SEED is a 128-bit symmetric key block cipher that has been
 505	  developed by KISA (Korea Information Security Agency) as a
 506	  national standard encryption algorithm of the Republic of Korea.
 507	  It is a 16 round block cipher with the key size of 128 bit.
 508
 509	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 510	  for further information.
 511
 512config CRYPTO_SERPENT
 513	tristate "Serpent"
 514	select CRYPTO_ALGAPI
 
 
 515	help
 516	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 
 517
 518	  Keys are allowed to be from 0 to 256 bits in length, in steps
 519	  of 8 bits.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 
 522
 523config CRYPTO_SM4
 524	tristate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525
 526config CRYPTO_SM4_GENERIC
 527	tristate "SM4 (ShangMi 4)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	select CRYPTO_ALGAPI
 529	select CRYPTO_SM4
 530	help
 531	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 532	  ISO/IEC 18033-3:2010/Amd 1:2021)
 533
 534	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 535	  Organization of State Commercial Administration of China (OSCCA)
 536	  as an authorized cryptographic algorithms for the use within China.
 
 
 
 
 
 537
 538	  SMS4 was originally created for use in protecting wireless
 539	  networks, and is mandated in the Chinese National Standard for
 540	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 541	  (GB.15629.11-2003).
 542
 543	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 544	  standardized through TC 260 of the Standardization Administration
 545	  of the People's Republic of China (SAC).
 546
 547	  The input, output, and key of SMS4 are each 128 bits.
 
 
 
 
 
 
 
 548
 549	  See https://eprint.iacr.org/2008/329.pdf for further information.
 
 
 
 
 
 
 
 550
 551	  If unsure, say N.
 552
 553config CRYPTO_TEA
 554	tristate "TEA, XTEA and XETA"
 555	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 
 
 556	select CRYPTO_ALGAPI
 
 557	help
 558	  TEA (Tiny Encryption Algorithm) cipher algorithms
 
 559
 560	  Tiny Encryption Algorithm is a simple cipher that uses
 561	  many rounds for security.  It is very fast and uses
 562	  little memory.
 
 
 
 
 
 563
 564	  Xtendend Tiny Encryption Algorithm is a modification to
 565	  the TEA algorithm to address a potential key weakness
 566	  in the TEA algorithm.
 567
 568	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 569	  of the XTEA algorithm for compatibility purposes.
 570
 571config CRYPTO_TWOFISH
 572	tristate "Twofish"
 
 
 
 
 573	select CRYPTO_ALGAPI
 574	select CRYPTO_TWOFISH_COMMON
 
 
 575	help
 576	  Twofish cipher algorithm
 577
 578	  Twofish was submitted as an AES (Advanced Encryption Standard)
 579	  candidate cipher by researchers at CounterPane Systems.  It is a
 580	  16 round block cipher supporting key sizes of 128, 192, and 256
 581	  bits.
 582
 583	  See https://www.schneier.com/twofish.html for further information.
 
 
 
 
 
 
 
 584
 585config CRYPTO_TWOFISH_COMMON
 586	tristate
 
 
 
 
 
 
 
 
 
 
 
 
 587	help
 588	  Common parts of the Twofish cipher algorithm shared by the
 589	  generic c and the assembler implementations.
 590
 591endmenu
 
 592
 593menu "Length-preserving ciphers and modes"
 
 
 
 
 
 
 
 594
 595config CRYPTO_ADIANTUM
 596	tristate "Adiantum"
 597	select CRYPTO_CHACHA20
 598	select CRYPTO_LIB_POLY1305_GENERIC
 599	select CRYPTO_NHPOLY1305
 600	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	help
 602	  Adiantum tweakable, length-preserving encryption mode
 603
 604	  Designed for fast and secure disk encryption, especially on
 605	  CPUs without dedicated crypto instructions.  It encrypts
 606	  each sector using the XChaCha12 stream cipher, two passes of
 607	  an ε-almost-∆-universal hash function, and an invocation of
 608	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 609	  without AES instructions, Adiantum is much faster than
 610	  AES-XTS.
 611
 612	  Adiantum's security is provably reducible to that of its
 613	  underlying stream and block ciphers, subject to a security
 614	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 615	  mode, so it actually provides an even stronger notion of
 616	  security than XTS, subject to the security bound.
 617
 618	  If unsure, say N.
 
 
 619
 620config CRYPTO_ARC4
 621	tristate "ARC4 (Alleged Rivest Cipher 4)"
 622	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 623	select CRYPTO_SKCIPHER
 624	select CRYPTO_LIB_ARC4
 625	help
 626	  ARC4 cipher algorithm
 627
 628	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 629	  bits in length.  This algorithm is required for driver-based
 630	  WEP, but it should not be for other purposes because of the
 631	  weakness of the algorithm.
 632
 633config CRYPTO_CHACHA20
 634	tristate "ChaCha"
 635	select CRYPTO_LIB_CHACHA_GENERIC
 636	select CRYPTO_SKCIPHER
 637	help
 638	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 639
 640	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 641	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 642	  This is the portable C implementation of ChaCha20.  See
 643	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 644
 645	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 646	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 647	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 648	  while provably retaining ChaCha20's security.  See
 649	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 650
 651	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 652	  reduced security margin but increased performance.  It can be needed
 653	  in some performance-sensitive scenarios.
 654
 655config CRYPTO_CBC
 656	tristate "CBC (Cipher Block Chaining)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 659	help
 660	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 
 661
 662	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER2
 685	select CRYPTO_MANAGER
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 
 
 
 
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 
 728
 729config CRYPTO_PCBC
 730	tristate "PCBC (Propagating Cipher Block Chaining)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 733	help
 734	  PCBC (Propagating Cipher Block Chaining) mode
 735
 736	  This block cipher mode is required for RxRPC.
 
 737
 738config CRYPTO_XCTR
 739	tristate
 740	select CRYPTO_SKCIPHER
 741	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 
 742	help
 743	  XCTR (XOR Counter) mode for HCTR2
 
 
 
 744
 745	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 746	  addition rather than big-endian arithmetic.
 747
 748	  XCTR mode is used to implement HCTR2.
 
 749
 750config CRYPTO_XTS
 751	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 752	select CRYPTO_SKCIPHER
 753	select CRYPTO_MANAGER
 754	select CRYPTO_ECB
 755	help
 756	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 757	  and IEEE 1619)
 758
 759	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 760	  implementation currently can't handle a sectorsize which is not a
 761	  multiple of 16 bytes.
 762
 763config CRYPTO_NHPOLY1305
 764	tristate
 765	select CRYPTO_HASH
 766	select CRYPTO_LIB_POLY1305_GENERIC
 767
 768endmenu
 
 769
 770menu "AEAD (authenticated encryption with associated data) ciphers"
 
 
 
 
 771
 772config CRYPTO_AEGIS128
 773	tristate "AEGIS-128"
 774	select CRYPTO_AEAD
 775	select CRYPTO_AES  # for AES S-box tables
 776	help
 777	  AEGIS-128 AEAD algorithm
 
 778
 779config CRYPTO_AEGIS128_SIMD
 780	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 781	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 782	default y
 
 
 
 
 783	help
 784	  AEGIS-128 AEAD algorithm
 
 785
 786	  Architecture: arm or arm64 using:
 787	  - NEON (Advanced SIMD) extension
 788
 789config CRYPTO_CHACHA20POLY1305
 790	tristate "ChaCha20-Poly1305"
 791	select CRYPTO_CHACHA20
 792	select CRYPTO_POLY1305
 793	select CRYPTO_AEAD
 794	select CRYPTO_MANAGER
 795	help
 796	  ChaCha20 stream cipher and Poly1305 authenticator combined
 797	  mode (RFC8439)
 798
 799config CRYPTO_CCM
 800	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 801	select CRYPTO_CTR
 802	select CRYPTO_HASH
 803	select CRYPTO_AEAD
 804	select CRYPTO_MANAGER
 
 
 
 
 
 805	help
 806	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 807	  authenticated encryption mode (NIST SP800-38C)
 808
 809config CRYPTO_GCM
 810	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 811	select CRYPTO_CTR
 812	select CRYPTO_AEAD
 813	select CRYPTO_GHASH
 814	select CRYPTO_NULL
 815	select CRYPTO_MANAGER
 816	help
 817	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 818	  (GCM Message Authentication Code) (NIST SP800-38D)
 819
 820	  This is required for IPSec ESP (XFRM_ESP).
 
 
 
 
 821
 822config CRYPTO_GENIV
 823	tristate
 824	select CRYPTO_AEAD
 825	select CRYPTO_NULL
 826	select CRYPTO_MANAGER
 827	select CRYPTO_RNG_DEFAULT
 
 
 828
 829config CRYPTO_SEQIV
 830	tristate "Sequence Number IV Generator"
 831	select CRYPTO_GENIV
 
 
 832	help
 833	  Sequence Number IV generator
 834
 835	  This IV generator generates an IV based on a sequence number by
 836	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 
 
 837
 838	  This is required for IPsec ESP (XFRM_ESP).
 
 
 
 
 
 839
 840config CRYPTO_ECHAINIV
 841	tristate "Encrypted Chain IV Generator"
 842	select CRYPTO_GENIV
 843	help
 844	  Encrypted Chain IV generator
 845
 846	  This IV generator generates an IV based on the encryption of
 847	  a sequence number xored with a salt.  This is the default
 848	  algorithm for CBC.
 849
 850config CRYPTO_ESSIV
 851	tristate "Encrypted Salt-Sector IV Generator"
 852	select CRYPTO_AUTHENC
 
 
 
 853	help
 854	  Encrypted Salt-Sector IV generator
 855
 856	  This IV generator is used in some cases by fscrypt and/or
 857	  dm-crypt. It uses the hash of the block encryption key as the
 858	  symmetric key for a block encryption pass applied to the input
 859	  IV, making low entropy IV sources more suitable for block
 860	  encryption.
 861
 862	  This driver implements a crypto API template that can be
 863	  instantiated either as an skcipher or as an AEAD (depending on the
 864	  type of the first template argument), and which defers encryption
 865	  and decryption requests to the encapsulated cipher after applying
 866	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 867	  that the keys are presented in the same format used by the authenc
 868	  template, and that the IV appears at the end of the authenticated
 869	  associated data (AAD) region (which is how dm-crypt uses it.)
 870
 871	  Note that the use of ESSIV is not recommended for new deployments,
 872	  and so this only needs to be enabled when interoperability with
 873	  existing encrypted volumes of filesystems is required, or when
 874	  building for a particular system that requires it (e.g., when
 875	  the SoC in question has accelerated CBC but not XTS, making CBC
 876	  combined with ESSIV the only feasible mode for h/w accelerated
 877	  block encryption)
 878
 879endmenu
 
 880
 881menu "Hashes, digests, and MACs"
 
 882
 883config CRYPTO_BLAKE2B
 884	tristate "BLAKE2b"
 885	select CRYPTO_HASH
 
 886	help
 887	  BLAKE2b cryptographic hash function (RFC 7693)
 888
 889	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 890	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 891
 892	  This module provides the following algorithms:
 893	  - blake2b-160
 894	  - blake2b-256
 895	  - blake2b-384
 896	  - blake2b-512
 897
 898	  Used by the btrfs filesystem.
 
 
 
 
 899
 900	  See https://blake2.net for further information.
 
 
 901
 902config CRYPTO_CMAC
 903	tristate "CMAC (Cipher-based MAC)"
 904	select CRYPTO_HASH
 905	select CRYPTO_MANAGER
 906	help
 907	  CMAC (Cipher-based Message Authentication Code) authentication
 908	  mode (NIST SP800-38B and IETF RFC4493)
 909
 910config CRYPTO_GHASH
 911	tristate "GHASH"
 912	select CRYPTO_HASH
 913	select CRYPTO_LIB_GF128MUL
 
 914	help
 915	  GCM GHASH function (NIST SP800-38D)
 916
 917config CRYPTO_HMAC
 918	tristate "HMAC (Keyed-Hash MAC)"
 919	select CRYPTO_HASH
 920	select CRYPTO_MANAGER
 921	help
 922	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 923	  RFC2104)
 924
 925	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 926
 927config CRYPTO_MD4
 928	tristate "MD4"
 929	select CRYPTO_HASH
 930	help
 931	  MD4 message digest algorithm (RFC1320)
 932
 933config CRYPTO_MD5
 934	tristate "MD5"
 935	select CRYPTO_HASH
 936	help
 937	  MD5 message digest algorithm (RFC1321)
 938
 939config CRYPTO_MICHAEL_MIC
 940	tristate "Michael MIC"
 941	select CRYPTO_HASH
 
 
 
 942	help
 943	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 944
 945	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 946	  known as WPA (Wif-Fi Protected Access).
 
 947
 948	  This algorithm is required for TKIP, but it should not be used for
 949	  other purposes because of the weakness of the algorithm.
 950
 951config CRYPTO_POLYVAL
 952	tristate
 953	select CRYPTO_HASH
 954	select CRYPTO_LIB_GF128MUL
 
 
 
 
 
 
 955	help
 956	  POLYVAL hash function for HCTR2
 957
 958	  This is used in HCTR2.  It is not a general-purpose
 959	  cryptographic hash function.
 960
 961config CRYPTO_POLY1305
 962	tristate "Poly1305"
 963	select CRYPTO_HASH
 964	select CRYPTO_LIB_POLY1305_GENERIC
 965	help
 966	  Poly1305 authenticator algorithm (RFC7539)
 967
 968	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 969	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 970	  in IETF protocols. This is the portable C implementation of Poly1305.
 971
 972config CRYPTO_RMD160
 973	tristate "RIPEMD-160"
 974	select CRYPTO_HASH
 
 
 
 
 
 
 
 975	help
 976	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 977
 978	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 979	  to be used as a secure replacement for the 128-bit hash functions
 980	  MD4, MD5 and its predecessor RIPEMD
 981	  (not to be confused with RIPEMD-128).
 982
 983	  Its speed is comparable to SHA-1 and there are no known attacks
 984	  against RIPEMD-160.
 985
 986	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 987	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
 988	  for further information.
 989
 990config CRYPTO_SHA1
 991	tristate "SHA-1"
 992	select CRYPTO_HASH
 993	select CRYPTO_LIB_SHA1
 
 
 
 
 
 
 994	help
 995	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 996
 997config CRYPTO_SHA256
 998	tristate "SHA-224 and SHA-256"
 999	select CRYPTO_HASH
1000	select CRYPTO_LIB_SHA256
1001	help
1002	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1003
1004	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1005	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
1006
1007config CRYPTO_SHA512
1008	tristate "SHA-384 and SHA-512"
1009	select CRYPTO_HASH
1010	help
1011	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1012
1013config CRYPTO_SHA3
1014	tristate "SHA-3"
1015	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1016	help
1017	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1018
1019config CRYPTO_SM3
1020	tristate
1021
1022config CRYPTO_SM3_GENERIC
1023	tristate "SM3 (ShangMi 3)"
1024	select CRYPTO_HASH
1025	select CRYPTO_SM3
1026	help
1027	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1028
1029	  This is part of the Chinese Commercial Cryptography suite.
 
1030
1031	  References:
1032	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1033	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1034
1035config CRYPTO_STREEBOG
1036	tristate "Streebog"
1037	select CRYPTO_HASH
1038	help
1039	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1040
1041	  This is one of the Russian cryptographic standard algorithms (called
1042	  GOST algorithms). This setting enables two hash algorithms with
1043	  256 and 512 bits output.
1044
1045	  References:
1046	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1047	  https://tools.ietf.org/html/rfc6986
1048
1049config CRYPTO_VMAC
1050	tristate "VMAC"
1051	select CRYPTO_HASH
1052	select CRYPTO_MANAGER
1053	help
1054	  VMAC is a message authentication algorithm designed for
1055	  very high speed on 64-bit architectures.
1056
1057	  See https://fastcrypto.org/vmac for further information.
 
1058
1059config CRYPTO_WP512
1060	tristate "Whirlpool"
1061	select CRYPTO_HASH
 
1062	help
1063	  Whirlpool hash function (ISO/IEC 10118-3)
1064
1065	  512, 384 and 256-bit hashes.
1066
1067	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
1068
1069	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1070	  for further information.
1071
1072config CRYPTO_XCBC
1073	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1074	select CRYPTO_HASH
1075	select CRYPTO_MANAGER
1076	help
1077	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1078	  Code) (RFC3566)
1079
1080config CRYPTO_XXHASH
1081	tristate "xxHash"
1082	select CRYPTO_HASH
1083	select XXHASH
 
1084	help
1085	  xxHash non-cryptographic hash algorithm
1086
1087	  Extremely fast, working at speeds close to RAM limits.
1088
1089	  Used by the btrfs filesystem.
1090
1091endmenu
 
 
 
1092
1093menu "CRCs (cyclic redundancy checks)"
 
1094
1095config CRYPTO_CRC32C
1096	tristate "CRC32c"
1097	select CRYPTO_HASH
1098	select CRC32
 
1099	help
1100	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1101
1102	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1103	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1104	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1105	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1106	  iSCSI.
1107
1108	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1109
1110config CRYPTO_CRC32
1111	tristate "CRC32"
1112	select CRYPTO_HASH
1113	select CRC32
 
 
 
 
 
1114	help
1115	  CRC32 CRC algorithm (IEEE 802.3)
1116
1117	  Used by RoCEv2 and f2fs.
 
 
 
1118
1119config CRYPTO_CRCT10DIF
1120	tristate "CRCT10DIF"
1121	select CRYPTO_HASH
1122	help
1123	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1124
1125	  CRC algorithm used by the SCSI Block Commands standard.
 
1126
1127config CRYPTO_CRC64_ROCKSOFT
1128	tristate "CRC64 based on Rocksoft Model algorithm"
1129	depends on CRC64
1130	select CRYPTO_HASH
 
 
 
 
 
 
 
 
1131	help
1132	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1133
1134	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1135
1136	  See https://zlib.net/crc_v3.txt
 
1137
1138endmenu
 
1139
1140menu "Compression"
1141
1142config CRYPTO_DEFLATE
1143	tristate "Deflate"
1144	select CRYPTO_ALGAPI
1145	select CRYPTO_ACOMP2
1146	select ZLIB_INFLATE
1147	select ZLIB_DEFLATE
1148	help
1149	  Deflate compression algorithm (RFC1951)
 
1150
1151	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1152
1153config CRYPTO_LZO
1154	tristate "LZO"
1155	select CRYPTO_ALGAPI
1156	select CRYPTO_ACOMP2
1157	select LZO_COMPRESS
1158	select LZO_DECOMPRESS
1159	help
1160	  LZO compression algorithm
1161
1162	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1163
1164config CRYPTO_842
1165	tristate "842"
1166	select CRYPTO_ALGAPI
1167	select CRYPTO_ACOMP2
1168	select 842_COMPRESS
1169	select 842_DECOMPRESS
1170	help
1171	  842 compression algorithm by IBM
1172
1173	  See https://github.com/plauth/lib842 for further information.
1174
1175config CRYPTO_LZ4
1176	tristate "LZ4"
1177	select CRYPTO_ALGAPI
1178	select CRYPTO_ACOMP2
1179	select LZ4_COMPRESS
1180	select LZ4_DECOMPRESS
1181	help
1182	  LZ4 compression algorithm
1183
1184	  See https://github.com/lz4/lz4 for further information.
1185
1186config CRYPTO_LZ4HC
1187	tristate "LZ4HC"
1188	select CRYPTO_ALGAPI
1189	select CRYPTO_ACOMP2
1190	select LZ4HC_COMPRESS
1191	select LZ4_DECOMPRESS
1192	help
1193	  LZ4 high compression mode algorithm
1194
1195	  See https://github.com/lz4/lz4 for further information.
1196
1197config CRYPTO_ZSTD
1198	tristate "Zstd"
1199	select CRYPTO_ALGAPI
1200	select CRYPTO_ACOMP2
1201	select ZSTD_COMPRESS
1202	select ZSTD_DECOMPRESS
1203	help
1204	  zstd compression algorithm
1205
1206	  See https://github.com/facebook/zstd for further information.
1207
1208endmenu
1209
1210menu "Random number generation"
1211
1212config CRYPTO_ANSI_CPRNG
1213	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1214	select CRYPTO_AES
1215	select CRYPTO_RNG
1216	help
1217	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1218
1219	  This uses the AES cipher algorithm.
1220
1221	  Note that this option must be enabled if CRYPTO_FIPS is selected
1222
1223menuconfig CRYPTO_DRBG_MENU
1224	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1225	help
1226	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1227
1228	  In the following submenu, one or more of the DRBG types must be selected.
1229
1230if CRYPTO_DRBG_MENU
1231
1232config CRYPTO_DRBG_HMAC
1233	bool
1234	default y
1235	select CRYPTO_HMAC
1236	select CRYPTO_SHA512
1237
1238config CRYPTO_DRBG_HASH
1239	bool "Hash_DRBG"
1240	select CRYPTO_SHA256
1241	help
1242	  Hash_DRBG variant as defined in NIST SP800-90A.
1243
1244	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1245
1246config CRYPTO_DRBG_CTR
1247	bool "CTR_DRBG"
1248	select CRYPTO_AES
1249	select CRYPTO_CTR
1250	help
1251	  CTR_DRBG variant as defined in NIST SP800-90A.
1252
1253	  This uses the AES cipher algorithm with the counter block mode.
1254
1255config CRYPTO_DRBG
1256	tristate
1257	default CRYPTO_DRBG_MENU
1258	select CRYPTO_RNG
1259	select CRYPTO_JITTERENTROPY
1260
1261endif	# if CRYPTO_DRBG_MENU
1262
1263config CRYPTO_JITTERENTROPY
1264	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1265	select CRYPTO_RNG
1266	select CRYPTO_SHA3
1267	help
1268	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1269
1270	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1271	  compliant with NIST SP800-90B) intended to provide a seed to a
1272	  deterministic RNG (e.g.  per NIST SP800-90C).
1273	  This RNG does not perform any cryptographic whitening of the generated
1274
1275	  See https://www.chronox.de/jent.html
1276
1277if CRYPTO_JITTERENTROPY
1278if CRYPTO_FIPS && EXPERT
1279
1280choice
1281	prompt "CPU Jitter RNG Memory Size"
1282	default CRYPTO_JITTERENTROPY_MEMSIZE_2
1283	help
1284	  The Jitter RNG measures the execution time of memory accesses.
1285	  Multiple consecutive memory accesses are performed. If the memory
1286	  size fits into a cache (e.g. L1), only the memory access timing
1287	  to that cache is measured. The closer the cache is to the CPU
1288	  the less variations are measured and thus the less entropy is
1289	  obtained. Thus, if the memory size fits into the L1 cache, the
1290	  obtained entropy is less than if the memory size fits within
1291	  L1 + L2, which in turn is less if the memory fits into
1292	  L1 + L2 + L3. Thus, by selecting a different memory size,
1293	  the entropy rate produced by the Jitter RNG can be modified.
1294
1295	config CRYPTO_JITTERENTROPY_MEMSIZE_2
1296		bool "2048 Bytes (default)"
1297
1298	config CRYPTO_JITTERENTROPY_MEMSIZE_128
1299		bool "128 kBytes"
1300
1301	config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1302		bool "1024 kBytes"
1303
1304	config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305		bool "8192 kBytes"
1306endchoice
1307
1308config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1309	int
1310	default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1311	default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1312	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1313	default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1314
1315config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1316	int
1317	default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1318	default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1319	default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1320	default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1321
1322config CRYPTO_JITTERENTROPY_OSR
1323	int "CPU Jitter RNG Oversampling Rate"
1324	range 1 15
1325	default 1
1326	help
1327	  The Jitter RNG allows the specification of an oversampling rate (OSR).
1328	  The Jitter RNG operation requires a fixed amount of timing
1329	  measurements to produce one output block of random numbers. The
1330	  OSR value is multiplied with the amount of timing measurements to
1331	  generate one output block. Thus, the timing measurement is oversampled
1332	  by the OSR factor. The oversampling allows the Jitter RNG to operate
1333	  on hardware whose timers deliver limited amount of entropy (e.g.
1334	  the timer is coarse) by setting the OSR to a higher value. The
1335	  trade-off, however, is that the Jitter RNG now requires more time
1336	  to generate random numbers.
1337
1338config CRYPTO_JITTERENTROPY_TESTINTERFACE
1339	bool "CPU Jitter RNG Test Interface"
1340	help
1341	  The test interface allows a privileged process to capture
1342	  the raw unconditioned high resolution time stamp noise that
1343	  is collected by the Jitter RNG for statistical analysis. As
1344	  this data is used at the same time to generate random bits,
1345	  the Jitter RNG operates in an insecure mode as long as the
1346	  recording is enabled. This interface therefore is only
1347	  intended for testing purposes and is not suitable for
1348	  production systems.
1349
1350	  The raw noise data can be obtained using the jent_raw_hires
1351	  debugfs file. Using the option
1352	  jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1353	  the first 1000 entropy events since boot can be sampled.
1354
1355	  If unsure, select N.
1356
1357endif	# if CRYPTO_FIPS && EXPERT
1358
1359if !(CRYPTO_FIPS && EXPERT)
1360
1361config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1362	int
1363	default 64
1364
1365config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1366	int
1367	default 32
1368
1369config CRYPTO_JITTERENTROPY_OSR
1370	int
1371	default 1
1372
1373config CRYPTO_JITTERENTROPY_TESTINTERFACE
1374	bool
1375
1376endif	# if !(CRYPTO_FIPS && EXPERT)
1377endif	# if CRYPTO_JITTERENTROPY
1378
1379config CRYPTO_KDF800108_CTR
1380	tristate
1381	select CRYPTO_HMAC
1382	select CRYPTO_SHA256
1383
1384endmenu
1385menu "Userspace interface"
1386
1387config CRYPTO_USER_API
1388	tristate
1389
1390config CRYPTO_USER_API_HASH
1391	tristate "Hash algorithms"
1392	depends on NET
1393	select CRYPTO_HASH
1394	select CRYPTO_USER_API
1395	help
1396	  Enable the userspace interface for hash algorithms.
1397
1398	  See Documentation/crypto/userspace-if.rst and
1399	  https://www.chronox.de/libkcapi/html/index.html
1400
1401config CRYPTO_USER_API_SKCIPHER
1402	tristate "Symmetric key cipher algorithms"
1403	depends on NET
1404	select CRYPTO_SKCIPHER
1405	select CRYPTO_USER_API
1406	help
1407	  Enable the userspace interface for symmetric key cipher algorithms.
1408
1409	  See Documentation/crypto/userspace-if.rst and
1410	  https://www.chronox.de/libkcapi/html/index.html
1411
1412config CRYPTO_USER_API_RNG
1413	tristate "RNG (random number generator) algorithms"
1414	depends on NET
1415	select CRYPTO_RNG
1416	select CRYPTO_USER_API
1417	help
1418	  Enable the userspace interface for RNG (random number generator)
1419	  algorithms.
1420
1421	  See Documentation/crypto/userspace-if.rst and
1422	  https://www.chronox.de/libkcapi/html/index.html
1423
1424config CRYPTO_USER_API_RNG_CAVP
1425	bool "Enable CAVP testing of DRBG"
1426	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1427	help
1428	  Enable extra APIs in the userspace interface for NIST CAVP
1429	  (Cryptographic Algorithm Validation Program) testing:
1430	  - resetting DRBG entropy
1431	  - providing Additional Data
1432
1433	  This should only be enabled for CAVP testing. You should say
1434	  no unless you know what this is.
1435
1436config CRYPTO_USER_API_AEAD
1437	tristate "AEAD cipher algorithms"
1438	depends on NET
1439	select CRYPTO_AEAD
1440	select CRYPTO_SKCIPHER
1441	select CRYPTO_NULL
1442	select CRYPTO_USER_API
1443	help
1444	  Enable the userspace interface for AEAD cipher algorithms.
1445
1446	  See Documentation/crypto/userspace-if.rst and
1447	  https://www.chronox.de/libkcapi/html/index.html
1448
1449config CRYPTO_USER_API_ENABLE_OBSOLETE
1450	bool "Obsolete cryptographic algorithms"
1451	depends on CRYPTO_USER_API
1452	default y
1453	help
1454	  Allow obsolete cryptographic algorithms to be selected that have
1455	  already been phased out from internal use by the kernel, and are
1456	  only useful for userspace clients that still rely on them.
1457
1458config CRYPTO_STATS
1459	bool "Crypto usage statistics"
1460	depends on CRYPTO_USER
1461	help
1462	  Enable the gathering of crypto stats.
1463
1464	  Enabling this option reduces the performance of the crypto API.  It
1465	  should only be enabled when there is actually a use case for it.
1466
1467	  This collects data sizes, numbers of requests, and numbers
1468	  of errors processed by:
1469	  - AEAD ciphers (encrypt, decrypt)
1470	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1471	  - symmetric key ciphers (encrypt, decrypt)
1472	  - compression algorithms (compress, decompress)
1473	  - hash algorithms (hash)
1474	  - key-agreement protocol primitives (setsecret, generate
1475	    public key, compute shared secret)
1476	  - RNG (generate, seed)
1477
1478endmenu
1479
1480config CRYPTO_HASH_INFO
1481	bool
1482
1483if !KMSAN # avoid false positives from assembly
1484if ARM
1485source "arch/arm/crypto/Kconfig"
1486endif
1487if ARM64
1488source "arch/arm64/crypto/Kconfig"
1489endif
1490if LOONGARCH
1491source "arch/loongarch/crypto/Kconfig"
1492endif
1493if MIPS
1494source "arch/mips/crypto/Kconfig"
1495endif
1496if PPC
1497source "arch/powerpc/crypto/Kconfig"
1498endif
1499if S390
1500source "arch/s390/crypto/Kconfig"
1501endif
1502if SPARC
1503source "arch/sparc/crypto/Kconfig"
1504endif
1505if X86
1506source "arch/x86/crypto/Kconfig"
1507endif
1508endif
1509
1510source "drivers/crypto/Kconfig"
1511source "crypto/asymmetric_keys/Kconfig"
1512source "certs/Kconfig"
1513
1514endif	# if CRYPTO
v4.10.11
 
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
 
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on (MODULE_SIG || !MODULES)
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
 
 
 
 
 
 
 
 
 
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
 
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 
 108
 109config CRYPTO_ACOMP
 110	tristate
 111	select CRYPTO_ALGAPI
 112	select CRYPTO_ACOMP2
 113
 114config CRYPTO_RSA
 115	tristate "RSA algorithm"
 116	select CRYPTO_AKCIPHER
 117	select CRYPTO_MANAGER
 118	select MPILIB
 119	select ASN1
 120	help
 121	  Generic implementation of the RSA public key algorithm.
 122
 123config CRYPTO_DH
 124	tristate "Diffie-Hellman algorithm"
 125	select CRYPTO_KPP
 126	select MPILIB
 127	help
 128	  Generic implementation of the Diffie-Hellman algorithm.
 129
 130config CRYPTO_ECDH
 131	tristate "ECDH algorithm"
 132	select CRYTPO_KPP
 133	help
 134	  Generic implementation of the ECDH algorithm
 135
 136config CRYPTO_MANAGER
 137	tristate "Cryptographic algorithm manager"
 138	select CRYPTO_MANAGER2
 139	help
 140	  Create default cryptographic template instantiations such as
 141	  cbc(aes).
 142
 143config CRYPTO_MANAGER2
 144	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 
 145	select CRYPTO_AEAD2
 
 
 146	select CRYPTO_HASH2
 147	select CRYPTO_BLKCIPHER2
 148	select CRYPTO_AKCIPHER2
 149	select CRYPTO_KPP2
 150	select CRYPTO_ACOMP2
 
 151
 152config CRYPTO_USER
 153	tristate "Userspace cryptographic algorithm configuration"
 154	depends on NET
 155	select CRYPTO_MANAGER
 156	help
 157	  Userspace configuration for cryptographic instantiations such as
 158	  cbc(aes).
 159
 160config CRYPTO_MANAGER_DISABLE_TESTS
 161	bool "Disable run-time self tests"
 162	default y
 163	depends on CRYPTO_MANAGER2
 164	help
 165	  Disable run-time self tests that normally take place at
 166	  algorithm registration.
 167
 168config CRYPTO_GF128MUL
 169	tristate "GF(2^128) multiplication functions"
 
 170	help
 171	  Efficient table driven implementation of multiplications in the
 172	  field GF(2^128).  This is needed by some cypher modes. This
 173	  option will be selected automatically if you select such a
 174	  cipher mode.  Only select this option by hand if you expect to load
 175	  an external module that requires these functions.
 176
 177config CRYPTO_NULL
 178	tristate "Null algorithms"
 179	select CRYPTO_NULL2
 180	help
 181	  These are 'Null' algorithms, used by IPsec, which do nothing.
 182
 183config CRYPTO_NULL2
 184	tristate
 185	select CRYPTO_ALGAPI2
 186	select CRYPTO_BLKCIPHER2
 187	select CRYPTO_HASH2
 188
 189config CRYPTO_PCRYPT
 190	tristate "Parallel crypto engine"
 191	depends on SMP
 192	select PADATA
 193	select CRYPTO_MANAGER
 194	select CRYPTO_AEAD
 195	help
 196	  This converts an arbitrary crypto algorithm into a parallel
 197	  algorithm that executes in kernel threads.
 198
 199config CRYPTO_WORKQUEUE
 200       tristate
 201
 202config CRYPTO_CRYPTD
 203	tristate "Software async crypto daemon"
 204	select CRYPTO_BLKCIPHER
 205	select CRYPTO_HASH
 206	select CRYPTO_MANAGER
 207	select CRYPTO_WORKQUEUE
 208	help
 209	  This is a generic software asynchronous crypto daemon that
 210	  converts an arbitrary synchronous software crypto algorithm
 211	  into an asynchronous algorithm that executes in a kernel thread.
 212
 213config CRYPTO_MCRYPTD
 214	tristate "Software async multi-buffer crypto daemon"
 215	select CRYPTO_BLKCIPHER
 216	select CRYPTO_HASH
 217	select CRYPTO_MANAGER
 218	select CRYPTO_WORKQUEUE
 219	help
 220	  This is a generic software asynchronous crypto daemon that
 221	  provides the kernel thread to assist multi-buffer crypto
 222	  algorithms for submitting jobs and flushing jobs in multi-buffer
 223	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 224	  in the context of this kernel thread and drivers can post
 225	  their crypto request asynchronously to be processed by this daemon.
 226
 227config CRYPTO_AUTHENC
 228	tristate "Authenc support"
 229	select CRYPTO_AEAD
 230	select CRYPTO_BLKCIPHER
 231	select CRYPTO_MANAGER
 232	select CRYPTO_HASH
 233	select CRYPTO_NULL
 234	help
 235	  Authenc: Combined mode wrapper for IPsec.
 236	  This is required for IPSec.
 
 237
 238config CRYPTO_TEST
 239	tristate "Testing module"
 240	depends on m
 241	select CRYPTO_MANAGER
 242	help
 243	  Quick & dirty crypto test module.
 244
 245config CRYPTO_ABLK_HELPER
 246	tristate
 247	select CRYPTO_CRYPTD
 248
 249config CRYPTO_SIMD
 250	tristate
 251	select CRYPTO_CRYPTD
 252
 253config CRYPTO_GLUE_HELPER_X86
 254	tristate
 255	depends on X86
 256	select CRYPTO_BLKCIPHER
 257
 258config CRYPTO_ENGINE
 259	tristate
 260
 261comment "Authenticated Encryption with Associated Data"
 262
 263config CRYPTO_CCM
 264	tristate "CCM support"
 265	select CRYPTO_CTR
 266	select CRYPTO_AEAD
 267	help
 268	  Support for Counter with CBC MAC. Required for IPsec.
 269
 270config CRYPTO_GCM
 271	tristate "GCM/GMAC support"
 272	select CRYPTO_CTR
 273	select CRYPTO_AEAD
 274	select CRYPTO_GHASH
 275	select CRYPTO_NULL
 276	help
 277	  Support for Galois/Counter Mode (GCM) and Galois Message
 278	  Authentication Code (GMAC). Required for IPSec.
 279
 280config CRYPTO_CHACHA20POLY1305
 281	tristate "ChaCha20-Poly1305 AEAD support"
 282	select CRYPTO_CHACHA20
 283	select CRYPTO_POLY1305
 284	select CRYPTO_AEAD
 285	help
 286	  ChaCha20-Poly1305 AEAD support, RFC7539.
 287
 288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 290	  IETF protocols.
 291
 292config CRYPTO_SEQIV
 293	tristate "Sequence Number IV Generator"
 294	select CRYPTO_AEAD
 295	select CRYPTO_BLKCIPHER
 296	select CRYPTO_NULL
 297	select CRYPTO_RNG_DEFAULT
 298	help
 299	  This IV generator generates an IV based on a sequence number by
 300	  xoring it with a salt.  This algorithm is mainly useful for CTR
 301
 302config CRYPTO_ECHAINIV
 303	tristate "Encrypted Chain IV Generator"
 304	select CRYPTO_AEAD
 305	select CRYPTO_NULL
 306	select CRYPTO_RNG_DEFAULT
 307	default m
 308	help
 309	  This IV generator generates an IV based on the encryption of
 310	  a sequence number xored with a salt.  This is the default
 311	  algorithm for CBC.
 312
 313comment "Block modes"
 314
 315config CRYPTO_CBC
 316	tristate "CBC support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	help
 320	  CBC: Cipher Block Chaining mode
 321	  This block cipher algorithm is required for IPSec.
 322
 323config CRYPTO_CTR
 324	tristate "CTR support"
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_SEQIV
 327	select CRYPTO_MANAGER
 328	help
 329	  CTR: Counter mode
 330	  This block cipher algorithm is required for IPSec.
 331
 332config CRYPTO_CTS
 333	tristate "CTS support"
 334	select CRYPTO_BLKCIPHER
 
 
 335	help
 336	  CTS: Cipher Text Stealing
 337	  This is the Cipher Text Stealing mode as described by
 338	  Section 8 of rfc2040 and referenced by rfc3962.
 339	  (rfc3962 includes errata information in its Appendix A)
 340	  This mode is required for Kerberos gss mechanism support
 341	  for AES encryption.
 342
 343config CRYPTO_ECB
 344	tristate "ECB support"
 345	select CRYPTO_BLKCIPHER
 346	select CRYPTO_MANAGER
 
 
 347	help
 348	  ECB: Electronic CodeBook mode
 349	  This is the simplest block cipher algorithm.  It simply encrypts
 350	  the input block by block.
 351
 352config CRYPTO_LRW
 353	tristate "LRW support"
 354	select CRYPTO_BLKCIPHER
 355	select CRYPTO_MANAGER
 356	select CRYPTO_GF128MUL
 357	help
 358	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 359	  narrow block cipher mode for dm-crypt.  Use it with cipher
 360	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 361	  The first 128, 192 or 256 bits in the key are used for AES and the
 362	  rest is used to tie each cipher block to its logical position.
 363
 364config CRYPTO_PCBC
 365	tristate "PCBC support"
 366	select CRYPTO_BLKCIPHER
 
 367	select CRYPTO_MANAGER
 
 
 368	help
 369	  PCBC: Propagating Cipher Block Chaining mode
 370	  This block cipher algorithm is required for RxRPC.
 371
 372config CRYPTO_XTS
 373	tristate "XTS support"
 374	select CRYPTO_BLKCIPHER
 375	select CRYPTO_MANAGER
 376	select CRYPTO_GF128MUL
 377	select CRYPTO_ECB
 378	help
 379	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 380	  key size 256, 384 or 512 bits. This implementation currently
 381	  can't handle a sectorsize which is not a multiple of 16 bytes.
 382
 383config CRYPTO_KEYWRAP
 384	tristate "Key wrapping support"
 385	select CRYPTO_BLKCIPHER
 386	help
 387	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 388	  padding.
 389
 390comment "Hash modes"
 391
 392config CRYPTO_CMAC
 393	tristate "CMAC support"
 394	select CRYPTO_HASH
 395	select CRYPTO_MANAGER
 396	help
 397	  Cipher-based Message Authentication Code (CMAC) specified by
 398	  The National Institute of Standards and Technology (NIST).
 399
 400	  https://tools.ietf.org/html/rfc4493
 401	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 402
 403config CRYPTO_HMAC
 404	tristate "HMAC support"
 405	select CRYPTO_HASH
 406	select CRYPTO_MANAGER
 407	help
 408	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 409	  This is required for IPSec.
 410
 411config CRYPTO_XCBC
 412	tristate "XCBC support"
 413	select CRYPTO_HASH
 414	select CRYPTO_MANAGER
 415	help
 416	  XCBC: Keyed-Hashing with encryption algorithm
 417		http://www.ietf.org/rfc/rfc3566.txt
 418		http://csrc.nist.gov/encryption/modes/proposedmodes/
 419		 xcbc-mac/xcbc-mac-spec.pdf
 420
 421config CRYPTO_VMAC
 422	tristate "VMAC support"
 423	select CRYPTO_HASH
 424	select CRYPTO_MANAGER
 425	help
 426	  VMAC is a message authentication algorithm designed for
 427	  very high speed on 64-bit architectures.
 
 428
 429	  See also:
 430	  <http://fastcrypto.org/vmac>
 431
 432comment "Digest"
 433
 434config CRYPTO_CRC32C
 435	tristate "CRC32c CRC algorithm"
 436	select CRYPTO_HASH
 437	select CRC32
 438	help
 439	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 440	  by iSCSI for header and data digests and by others.
 441	  See Castagnoli93.  Module will be crc32c.
 442
 443config CRYPTO_CRC32C_INTEL
 444	tristate "CRC32c INTEL hardware acceleration"
 445	depends on X86
 446	select CRYPTO_HASH
 447	help
 448	  In Intel processor with SSE4.2 supported, the processor will
 449	  support CRC32C implementation using hardware accelerated CRC32
 450	  instruction. This option will create 'crc32c-intel' module,
 451	  which will enable any routine to use the CRC32 instruction to
 452	  gain performance compared with software implementation.
 453	  Module will be crc32c-intel.
 454
 455config CRYPTO_CRC32C_VPMSUM
 456	tristate "CRC32c CRC algorithm (powerpc64)"
 457	depends on PPC64 && ALTIVEC
 458	select CRYPTO_HASH
 459	select CRC32
 460	help
 461	  CRC32c algorithm implemented using vector polynomial multiply-sum
 462	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 463	  and newer processors for improved performance.
 464
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466config CRYPTO_CRC32C_SPARC64
 467	tristate "CRC32c CRC algorithm (SPARC64)"
 468	depends on SPARC64
 469	select CRYPTO_HASH
 470	select CRC32
 471	help
 472	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 473	  when available.
 474
 475config CRYPTO_CRC32
 476	tristate "CRC32 CRC algorithm"
 477	select CRYPTO_HASH
 478	select CRC32
 479	help
 480	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 481	  Shash crypto api wrappers to crc32_le function.
 482
 483config CRYPTO_CRC32_PCLMUL
 484	tristate "CRC32 PCLMULQDQ hardware acceleration"
 485	depends on X86
 486	select CRYPTO_HASH
 487	select CRC32
 488	help
 489	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 490	  and PCLMULQDQ supported, the processor will support
 491	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 492	  instruction. This option will create 'crc32-plcmul' module,
 493	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 494	  and gain better performance as compared with the table implementation.
 495
 496config CRYPTO_CRCT10DIF
 497	tristate "CRCT10DIF algorithm"
 498	select CRYPTO_HASH
 499	help
 500	  CRC T10 Data Integrity Field computation is being cast as
 501	  a crypto transform.  This allows for faster crc t10 diff
 502	  transforms to be used if they are available.
 503
 504config CRYPTO_CRCT10DIF_PCLMUL
 505	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 506	depends on X86 && 64BIT && CRC_T10DIF
 507	select CRYPTO_HASH
 508	help
 509	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 510	  CRC T10 DIF PCLMULQDQ computation can be hardware
 511	  accelerated PCLMULQDQ instruction. This option will create
 512	  'crct10dif-plcmul' module, which is faster when computing the
 513	  crct10dif checksum as compared with the generic table implementation.
 514
 515config CRYPTO_GHASH
 516	tristate "GHASH digest algorithm"
 517	select CRYPTO_GF128MUL
 518	select CRYPTO_HASH
 519	help
 520	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 521
 522config CRYPTO_POLY1305
 523	tristate "Poly1305 authenticator algorithm"
 524	select CRYPTO_HASH
 
 525	help
 526	  Poly1305 authenticator algorithm, RFC7539.
 527
 528	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 529	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 530	  in IETF protocols. This is the portable C implementation of Poly1305.
 531
 532config CRYPTO_POLY1305_X86_64
 533	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 534	depends on X86 && 64BIT
 535	select CRYPTO_POLY1305
 536	help
 537	  Poly1305 authenticator algorithm, RFC7539.
 538
 539	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 540	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 541	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 542	  instructions.
 543
 544config CRYPTO_MD4
 545	tristate "MD4 digest algorithm"
 546	select CRYPTO_HASH
 547	help
 548	  MD4 message digest algorithm (RFC1320).
 
 549
 550config CRYPTO_MD5
 551	tristate "MD5 digest algorithm"
 552	select CRYPTO_HASH
 553	help
 554	  MD5 message digest algorithm (RFC1321).
 555
 556config CRYPTO_MD5_OCTEON
 557	tristate "MD5 digest algorithm (OCTEON)"
 558	depends on CPU_CAVIUM_OCTEON
 559	select CRYPTO_MD5
 560	select CRYPTO_HASH
 561	help
 562	  MD5 message digest algorithm (RFC1321) implemented
 563	  using OCTEON crypto instructions, when available.
 564
 565config CRYPTO_MD5_PPC
 566	tristate "MD5 digest algorithm (PPC)"
 567	depends on PPC
 568	select CRYPTO_HASH
 569	help
 570	  MD5 message digest algorithm (RFC1321) implemented
 571	  in PPC assembler.
 572
 573config CRYPTO_MD5_SPARC64
 574	tristate "MD5 digest algorithm (SPARC64)"
 575	depends on SPARC64
 576	select CRYPTO_MD5
 577	select CRYPTO_HASH
 578	help
 579	  MD5 message digest algorithm (RFC1321) implemented
 580	  using sparc64 crypto instructions, when available.
 581
 582config CRYPTO_MICHAEL_MIC
 583	tristate "Michael MIC keyed digest algorithm"
 584	select CRYPTO_HASH
 585	help
 586	  Michael MIC is used for message integrity protection in TKIP
 587	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 588	  should not be used for other purposes because of the weakness
 589	  of the algorithm.
 590
 591config CRYPTO_RMD128
 592	tristate "RIPEMD-128 digest algorithm"
 593	select CRYPTO_HASH
 
 594	help
 595	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 596
 597	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 598	  be used as a secure replacement for RIPEMD. For other use cases,
 599	  RIPEMD-160 should be used.
 600
 601	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 602	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 603
 604config CRYPTO_RMD160
 605	tristate "RIPEMD-160 digest algorithm"
 606	select CRYPTO_HASH
 607	help
 608	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 609
 610	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 611	  to be used as a secure replacement for the 128-bit hash functions
 612	  MD4, MD5 and it's predecessor RIPEMD
 613	  (not to be confused with RIPEMD-128).
 614
 615	  It's speed is comparable to SHA1 and there are no known attacks
 616	  against RIPEMD-160.
 617
 618	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 619	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 620
 621config CRYPTO_RMD256
 622	tristate "RIPEMD-256 digest algorithm"
 623	select CRYPTO_HASH
 624	help
 625	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 626	  256 bit hash. It is intended for applications that require
 627	  longer hash-results, without needing a larger security level
 628	  (than RIPEMD-128).
 629
 630	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 631	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 632
 633config CRYPTO_RMD320
 634	tristate "RIPEMD-320 digest algorithm"
 635	select CRYPTO_HASH
 636	help
 637	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 638	  320 bit hash. It is intended for applications that require
 639	  longer hash-results, without needing a larger security level
 640	  (than RIPEMD-160).
 641
 642	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 643	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 644
 645config CRYPTO_SHA1
 646	tristate "SHA1 digest algorithm"
 647	select CRYPTO_HASH
 
 648	help
 649	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 650
 651config CRYPTO_SHA1_SSSE3
 652	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 653	depends on X86 && 64BIT
 654	select CRYPTO_SHA1
 655	select CRYPTO_HASH
 656	help
 657	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 658	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 659	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 660	  when available.
 661
 662config CRYPTO_SHA256_SSSE3
 663	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 664	depends on X86 && 64BIT
 665	select CRYPTO_SHA256
 666	select CRYPTO_HASH
 667	help
 668	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 669	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 670	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 671	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 672	  Instructions) when available.
 673
 674config CRYPTO_SHA512_SSSE3
 675	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 676	depends on X86 && 64BIT
 677	select CRYPTO_SHA512
 678	select CRYPTO_HASH
 679	help
 680	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 681	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 682	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 683	  version 2 (AVX2) instructions, when available.
 684
 685config CRYPTO_SHA1_OCTEON
 686	tristate "SHA1 digest algorithm (OCTEON)"
 687	depends on CPU_CAVIUM_OCTEON
 688	select CRYPTO_SHA1
 689	select CRYPTO_HASH
 690	help
 691	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 692	  using OCTEON crypto instructions, when available.
 693
 694config CRYPTO_SHA1_SPARC64
 695	tristate "SHA1 digest algorithm (SPARC64)"
 696	depends on SPARC64
 697	select CRYPTO_SHA1
 698	select CRYPTO_HASH
 699	help
 700	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 701	  using sparc64 crypto instructions, when available.
 702
 703config CRYPTO_SHA1_PPC
 704	tristate "SHA1 digest algorithm (powerpc)"
 705	depends on PPC
 706	help
 707	  This is the powerpc hardware accelerated implementation of the
 708	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 709
 710config CRYPTO_SHA1_PPC_SPE
 711	tristate "SHA1 digest algorithm (PPC SPE)"
 712	depends on PPC && SPE
 713	help
 714	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 715	  using powerpc SPE SIMD instruction set.
 716
 717config CRYPTO_SHA1_MB
 718	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 719	depends on X86 && 64BIT
 720	select CRYPTO_SHA1
 721	select CRYPTO_HASH
 722	select CRYPTO_MCRYPTD
 723	help
 724	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 725	  using multi-buffer technique.  This algorithm computes on
 726	  multiple data lanes concurrently with SIMD instructions for
 727	  better throughput.  It should not be enabled by default but
 728	  used when there is significant amount of work to keep the keep
 729	  the data lanes filled to get performance benefit.  If the data
 730	  lanes remain unfilled, a flush operation will be initiated to
 731	  process the crypto jobs, adding a slight latency.
 732
 733config CRYPTO_SHA256_MB
 734	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 735	depends on X86 && 64BIT
 736	select CRYPTO_SHA256
 737	select CRYPTO_HASH
 738	select CRYPTO_MCRYPTD
 739	help
 740	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 741	  using multi-buffer technique.  This algorithm computes on
 742	  multiple data lanes concurrently with SIMD instructions for
 743	  better throughput.  It should not be enabled by default but
 744	  used when there is significant amount of work to keep the keep
 745	  the data lanes filled to get performance benefit.  If the data
 746	  lanes remain unfilled, a flush operation will be initiated to
 747	  process the crypto jobs, adding a slight latency.
 748
 749config CRYPTO_SHA512_MB
 750        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 751        depends on X86 && 64BIT
 752        select CRYPTO_SHA512
 753        select CRYPTO_HASH
 754        select CRYPTO_MCRYPTD
 755        help
 756          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 757          using multi-buffer technique.  This algorithm computes on
 758          multiple data lanes concurrently with SIMD instructions for
 759          better throughput.  It should not be enabled by default but
 760          used when there is significant amount of work to keep the keep
 761          the data lanes filled to get performance benefit.  If the data
 762          lanes remain unfilled, a flush operation will be initiated to
 763          process the crypto jobs, adding a slight latency.
 764
 765config CRYPTO_SHA256
 766	tristate "SHA224 and SHA256 digest algorithm"
 767	select CRYPTO_HASH
 
 768	help
 769	  SHA256 secure hash standard (DFIPS 180-2).
 770
 771	  This version of SHA implements a 256 bit hash with 128 bits of
 772	  security against collision attacks.
 
 
 773
 774	  This code also includes SHA-224, a 224 bit hash with 112 bits
 775	  of security against collision attacks.
 776
 777config CRYPTO_SHA256_PPC_SPE
 778	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 779	depends on PPC && SPE
 780	select CRYPTO_SHA256
 781	select CRYPTO_HASH
 782	help
 783	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 784	  implemented using powerpc SPE SIMD instruction set.
 785
 786config CRYPTO_SHA256_OCTEON
 787	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 788	depends on CPU_CAVIUM_OCTEON
 789	select CRYPTO_SHA256
 790	select CRYPTO_HASH
 791	help
 792	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 793	  using OCTEON crypto instructions, when available.
 794
 795config CRYPTO_SHA256_SPARC64
 796	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 797	depends on SPARC64
 798	select CRYPTO_SHA256
 799	select CRYPTO_HASH
 800	help
 801	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 802	  using sparc64 crypto instructions, when available.
 803
 804config CRYPTO_SHA512
 805	tristate "SHA384 and SHA512 digest algorithms"
 806	select CRYPTO_HASH
 807	help
 808	  SHA512 secure hash standard (DFIPS 180-2).
 809
 810	  This version of SHA implements a 512 bit hash with 256 bits of
 811	  security against collision attacks.
 812
 813	  This code also includes SHA-384, a 384 bit hash with 192 bits
 814	  of security against collision attacks.
 815
 816config CRYPTO_SHA512_OCTEON
 817	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 818	depends on CPU_CAVIUM_OCTEON
 819	select CRYPTO_SHA512
 820	select CRYPTO_HASH
 821	help
 822	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 823	  using OCTEON crypto instructions, when available.
 824
 825config CRYPTO_SHA512_SPARC64
 826	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 827	depends on SPARC64
 828	select CRYPTO_SHA512
 829	select CRYPTO_HASH
 830	help
 831	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 832	  using sparc64 crypto instructions, when available.
 833
 834config CRYPTO_SHA3
 835	tristate "SHA3 digest algorithm"
 836	select CRYPTO_HASH
 837	help
 838	  SHA-3 secure hash standard (DFIPS 202). It's based on
 839	  cryptographic sponge function family called Keccak.
 840
 841	  References:
 842	  http://keccak.noekeon.org/
 843
 844config CRYPTO_TGR192
 845	tristate "Tiger digest algorithms"
 846	select CRYPTO_HASH
 847	help
 848	  Tiger hash algorithm 192, 160 and 128-bit hashes
 849
 850	  Tiger is a hash function optimized for 64-bit processors while
 851	  still having decent performance on 32-bit processors.
 852	  Tiger was developed by Ross Anderson and Eli Biham.
 853
 854	  See also:
 855	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 856
 857config CRYPTO_WP512
 858	tristate "Whirlpool digest algorithms"
 859	select CRYPTO_HASH
 860	help
 861	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 862
 863	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 864	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 865
 866	  See also:
 867	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 868
 869config CRYPTO_GHASH_CLMUL_NI_INTEL
 870	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 871	depends on X86 && 64BIT
 872	select CRYPTO_CRYPTD
 873	help
 874	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 875	  The implementation is accelerated by CLMUL-NI of Intel.
 876
 877comment "Ciphers"
 878
 879config CRYPTO_AES
 880	tristate "AES cipher algorithms"
 881	select CRYPTO_ALGAPI
 
 882	help
 883	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 884	  algorithm.
 885
 886	  Rijndael appears to be consistently a very good performer in
 887	  both hardware and software across a wide range of computing
 888	  environments regardless of its use in feedback or non-feedback
 889	  modes. Its key setup time is excellent, and its key agility is
 890	  good. Rijndael's very low memory requirements make it very well
 891	  suited for restricted-space environments, in which it also
 892	  demonstrates excellent performance. Rijndael's operations are
 893	  among the easiest to defend against power and timing attacks.
 894
 895	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 
 896
 897	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 
 
 898
 899config CRYPTO_AES_586
 900	tristate "AES cipher algorithms (i586)"
 901	depends on (X86 || UML_X86) && !64BIT
 902	select CRYPTO_ALGAPI
 903	select CRYPTO_AES
 904	help
 905	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 906	  algorithm.
 907
 908	  Rijndael appears to be consistently a very good performer in
 909	  both hardware and software across a wide range of computing
 910	  environments regardless of its use in feedback or non-feedback
 911	  modes. Its key setup time is excellent, and its key agility is
 912	  good. Rijndael's very low memory requirements make it very well
 913	  suited for restricted-space environments, in which it also
 914	  demonstrates excellent performance. Rijndael's operations are
 915	  among the easiest to defend against power and timing attacks.
 916
 917	  The AES specifies three key sizes: 128, 192 and 256 bits
 918
 919	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 920
 921config CRYPTO_AES_X86_64
 922	tristate "AES cipher algorithms (x86_64)"
 923	depends on (X86 || UML_X86) && 64BIT
 924	select CRYPTO_ALGAPI
 925	select CRYPTO_AES
 926	help
 927	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 928	  algorithm.
 929
 930	  Rijndael appears to be consistently a very good performer in
 931	  both hardware and software across a wide range of computing
 932	  environments regardless of its use in feedback or non-feedback
 933	  modes. Its key setup time is excellent, and its key agility is
 934	  good. Rijndael's very low memory requirements make it very well
 935	  suited for restricted-space environments, in which it also
 936	  demonstrates excellent performance. Rijndael's operations are
 937	  among the easiest to defend against power and timing attacks.
 938
 939	  The AES specifies three key sizes: 128, 192 and 256 bits
 
 
 940
 941	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 
 942
 943config CRYPTO_AES_NI_INTEL
 944	tristate "AES cipher algorithms (AES-NI)"
 945	depends on X86
 946	select CRYPTO_AEAD
 947	select CRYPTO_AES_X86_64 if 64BIT
 948	select CRYPTO_AES_586 if !64BIT
 949	select CRYPTO_ALGAPI
 950	select CRYPTO_BLKCIPHER
 951	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 952	select CRYPTO_SIMD
 953	help
 954	  Use Intel AES-NI instructions for AES algorithm.
 955
 956	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 957	  algorithm.
 
 
 958
 959	  Rijndael appears to be consistently a very good performer in
 960	  both hardware and software across a wide range of computing
 961	  environments regardless of its use in feedback or non-feedback
 962	  modes. Its key setup time is excellent, and its key agility is
 963	  good. Rijndael's very low memory requirements make it very well
 964	  suited for restricted-space environments, in which it also
 965	  demonstrates excellent performance. Rijndael's operations are
 966	  among the easiest to defend against power and timing attacks.
 967
 968	  The AES specifies three key sizes: 128, 192 and 256 bits
 969
 970	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 971
 972	  In addition to AES cipher algorithm support, the acceleration
 973	  for some popular block cipher mode is supported too, including
 974	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 975	  acceleration for CTR.
 976
 977config CRYPTO_AES_SPARC64
 978	tristate "AES cipher algorithms (SPARC64)"
 979	depends on SPARC64
 980	select CRYPTO_CRYPTD
 981	select CRYPTO_ALGAPI
 982	help
 983	  Use SPARC64 crypto opcodes for AES algorithm.
 
 984
 985	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 986	  algorithm.
 987
 988	  Rijndael appears to be consistently a very good performer in
 989	  both hardware and software across a wide range of computing
 990	  environments regardless of its use in feedback or non-feedback
 991	  modes. Its key setup time is excellent, and its key agility is
 992	  good. Rijndael's very low memory requirements make it very well
 993	  suited for restricted-space environments, in which it also
 994	  demonstrates excellent performance. Rijndael's operations are
 995	  among the easiest to defend against power and timing attacks.
 996
 997	  The AES specifies three key sizes: 128, 192 and 256 bits
 998
 999	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1000
1001	  In addition to AES cipher algorithm support, the acceleration
1002	  for some popular block cipher mode is supported too, including
1003	  ECB and CBC.
1004
1005config CRYPTO_AES_PPC_SPE
1006	tristate "AES cipher algorithms (PPC SPE)"
1007	depends on PPC && SPE
1008	help
1009	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1010	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1011	  This module should only be used for low power (router) devices
1012	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1013	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1014	  timining attacks. Nevertheless it might be not as secure as other
1015	  architecture specific assembler implementations that work on 1KB
1016	  tables or 256 bytes S-boxes.
1017
1018config CRYPTO_ANUBIS
1019	tristate "Anubis cipher algorithm"
1020	select CRYPTO_ALGAPI
1021	help
1022	  Anubis cipher algorithm.
1023
1024	  Anubis is a variable key length cipher which can use keys from
1025	  128 bits to 320 bits in length.  It was evaluated as a entrant
1026	  in the NESSIE competition.
 
 
 
 
 
 
 
 
 
 
1027
1028	  See also:
1029	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1030	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1031
1032config CRYPTO_ARC4
1033	tristate "ARC4 cipher algorithm"
1034	select CRYPTO_BLKCIPHER
 
 
1035	help
1036	  ARC4 cipher algorithm.
1037
1038	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1039	  bits in length.  This algorithm is required for driver-based
1040	  WEP, but it should not be for other purposes because of the
1041	  weakness of the algorithm.
1042
1043config CRYPTO_BLOWFISH
1044	tristate "Blowfish cipher algorithm"
1045	select CRYPTO_ALGAPI
1046	select CRYPTO_BLOWFISH_COMMON
1047	help
1048	  Blowfish cipher algorithm, by Bruce Schneier.
1049
1050	  This is a variable key length cipher which can use keys from 32
1051	  bits to 448 bits in length.  It's fast, simple and specifically
1052	  designed for use on "large microprocessors".
 
1053
1054	  See also:
1055	  <http://www.schneier.com/blowfish.html>
 
 
 
 
 
 
 
1056
1057config CRYPTO_BLOWFISH_COMMON
1058	tristate
 
 
1059	help
1060	  Common parts of the Blowfish cipher algorithm shared by the
1061	  generic c and the assembler implementations.
1062
1063	  See also:
1064	  <http://www.schneier.com/blowfish.html>
1065
1066config CRYPTO_BLOWFISH_X86_64
1067	tristate "Blowfish cipher algorithm (x86_64)"
1068	depends on X86 && 64BIT
1069	select CRYPTO_ALGAPI
1070	select CRYPTO_BLOWFISH_COMMON
1071	help
1072	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1073
1074	  This is a variable key length cipher which can use keys from 32
1075	  bits to 448 bits in length.  It's fast, simple and specifically
1076	  designed for use on "large microprocessors".
 
 
 
 
1077
1078	  See also:
1079	  <http://www.schneier.com/blowfish.html>
1080
1081config CRYPTO_CAMELLIA
1082	tristate "Camellia cipher algorithms"
1083	depends on CRYPTO
1084	select CRYPTO_ALGAPI
1085	help
1086	  Camellia cipher algorithms module.
1087
1088	  Camellia is a symmetric key block cipher developed jointly
1089	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
1090
1091	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
1092
1093	  See also:
1094	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1095
1096config CRYPTO_CAMELLIA_X86_64
1097	tristate "Camellia cipher algorithm (x86_64)"
1098	depends on X86 && 64BIT
1099	depends on CRYPTO
1100	select CRYPTO_ALGAPI
1101	select CRYPTO_GLUE_HELPER_X86
1102	select CRYPTO_LRW
1103	select CRYPTO_XTS
1104	help
1105	  Camellia cipher algorithm module (x86_64).
 
1106
1107	  Camellia is a symmetric key block cipher developed jointly
1108	  at NTT and Mitsubishi Electric Corporation.
 
 
 
 
 
 
1109
1110	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
 
1111
1112	  See also:
1113	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1114
1115config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1116	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1117	depends on X86 && 64BIT
1118	depends on CRYPTO
1119	select CRYPTO_ALGAPI
1120	select CRYPTO_CRYPTD
1121	select CRYPTO_ABLK_HELPER
1122	select CRYPTO_GLUE_HELPER_X86
1123	select CRYPTO_CAMELLIA_X86_64
1124	select CRYPTO_LRW
1125	select CRYPTO_XTS
1126	help
1127	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1128
1129	  Camellia is a symmetric key block cipher developed jointly
1130	  at NTT and Mitsubishi Electric Corporation.
1131
1132	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1133
1134	  See also:
1135	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1136
1137config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1138	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1139	depends on X86 && 64BIT
1140	depends on CRYPTO
1141	select CRYPTO_ALGAPI
1142	select CRYPTO_CRYPTD
1143	select CRYPTO_ABLK_HELPER
1144	select CRYPTO_GLUE_HELPER_X86
1145	select CRYPTO_CAMELLIA_X86_64
1146	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1147	select CRYPTO_LRW
1148	select CRYPTO_XTS
1149	help
1150	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1151
1152	  Camellia is a symmetric key block cipher developed jointly
1153	  at NTT and Mitsubishi Electric Corporation.
1154
1155	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
1156
1157	  See also:
1158	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1159
1160config CRYPTO_CAMELLIA_SPARC64
1161	tristate "Camellia cipher algorithm (SPARC64)"
1162	depends on SPARC64
1163	depends on CRYPTO
1164	select CRYPTO_ALGAPI
1165	help
1166	  Camellia cipher algorithm module (SPARC64).
 
1167
1168	  Camellia is a symmetric key block cipher developed jointly
1169	  at NTT and Mitsubishi Electric Corporation.
 
1170
1171	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 
 
 
1172
1173	  See also:
1174	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1175
1176config CRYPTO_CAST_COMMON
1177	tristate
1178	help
1179	  Common parts of the CAST cipher algorithms shared by the
1180	  generic c and the assembler implementations.
1181
1182config CRYPTO_CAST5
1183	tristate "CAST5 (CAST-128) cipher algorithm"
1184	select CRYPTO_ALGAPI
1185	select CRYPTO_CAST_COMMON
1186	help
1187	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1188	  described in RFC2144.
1189
1190config CRYPTO_CAST5_AVX_X86_64
1191	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1192	depends on X86 && 64BIT
1193	select CRYPTO_ALGAPI
1194	select CRYPTO_CRYPTD
1195	select CRYPTO_ABLK_HELPER
1196	select CRYPTO_CAST_COMMON
1197	select CRYPTO_CAST5
1198	help
1199	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1200	  described in RFC2144.
1201
1202	  This module provides the Cast5 cipher algorithm that processes
1203	  sixteen blocks parallel using the AVX instruction set.
1204
1205config CRYPTO_CAST6
1206	tristate "CAST6 (CAST-256) cipher algorithm"
1207	select CRYPTO_ALGAPI
1208	select CRYPTO_CAST_COMMON
 
 
1209	help
1210	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1211	  described in RFC2612.
1212
1213config CRYPTO_CAST6_AVX_X86_64
1214	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1215	depends on X86 && 64BIT
1216	select CRYPTO_ALGAPI
1217	select CRYPTO_CRYPTD
1218	select CRYPTO_ABLK_HELPER
1219	select CRYPTO_GLUE_HELPER_X86
1220	select CRYPTO_CAST_COMMON
1221	select CRYPTO_CAST6
1222	select CRYPTO_LRW
1223	select CRYPTO_XTS
1224	help
1225	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1226	  described in RFC2612.
1227
1228	  This module provides the Cast6 cipher algorithm that processes
1229	  eight blocks parallel using the AVX instruction set.
 
 
 
 
 
 
 
 
1230
1231config CRYPTO_DES
1232	tristate "DES and Triple DES EDE cipher algorithms"
1233	select CRYPTO_ALGAPI
1234	help
1235	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1236
1237config CRYPTO_DES_SPARC64
1238	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1239	depends on SPARC64
1240	select CRYPTO_ALGAPI
1241	select CRYPTO_DES
1242	help
1243	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1244	  optimized using SPARC64 crypto opcodes.
1245
1246config CRYPTO_DES3_EDE_X86_64
1247	tristate "Triple DES EDE cipher algorithm (x86-64)"
1248	depends on X86 && 64BIT
1249	select CRYPTO_ALGAPI
1250	select CRYPTO_DES
1251	help
1252	  Triple DES EDE (FIPS 46-3) algorithm.
1253
1254	  This module provides implementation of the Triple DES EDE cipher
1255	  algorithm that is optimized for x86-64 processors. Two versions of
1256	  algorithm are provided; regular processing one input block and
1257	  one that processes three blocks parallel.
1258
1259config CRYPTO_FCRYPT
1260	tristate "FCrypt cipher algorithm"
1261	select CRYPTO_ALGAPI
1262	select CRYPTO_BLKCIPHER
1263	help
1264	  FCrypt algorithm used by RxRPC.
1265
1266config CRYPTO_KHAZAD
1267	tristate "Khazad cipher algorithm"
1268	select CRYPTO_ALGAPI
1269	help
1270	  Khazad cipher algorithm.
1271
1272	  Khazad was a finalist in the initial NESSIE competition.  It is
1273	  an algorithm optimized for 64-bit processors with good performance
1274	  on 32-bit processors.  Khazad uses an 128 bit key size.
1275
1276	  See also:
1277	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1278
1279config CRYPTO_SALSA20
1280	tristate "Salsa20 stream cipher algorithm"
1281	select CRYPTO_BLKCIPHER
1282	help
1283	  Salsa20 stream cipher algorithm.
1284
1285	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1286	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
 
 
 
1287
1288	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1289	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
 
 
 
1290
1291config CRYPTO_SALSA20_586
1292	tristate "Salsa20 stream cipher algorithm (i586)"
1293	depends on (X86 || UML_X86) && !64BIT
1294	select CRYPTO_BLKCIPHER
1295	help
1296	  Salsa20 stream cipher algorithm.
 
1297
1298	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1299	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1300
1301	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1302	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1303
1304config CRYPTO_SALSA20_X86_64
1305	tristate "Salsa20 stream cipher algorithm (x86_64)"
1306	depends on (X86 || UML_X86) && 64BIT
1307	select CRYPTO_BLKCIPHER
1308	help
1309	  Salsa20 stream cipher algorithm.
1310
1311	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1312	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1313
1314	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1315	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
 
 
 
1316
1317config CRYPTO_CHACHA20
1318	tristate "ChaCha20 cipher algorithm"
1319	select CRYPTO_BLKCIPHER
1320	help
1321	  ChaCha20 cipher algorithm, RFC7539.
1322
1323	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1324	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1325	  This is the portable C implementation of ChaCha20.
1326
1327	  See also:
1328	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
 
 
 
 
 
1329
1330config CRYPTO_CHACHA20_X86_64
1331	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1332	depends on X86 && 64BIT
1333	select CRYPTO_BLKCIPHER
1334	select CRYPTO_CHACHA20
1335	help
1336	  ChaCha20 cipher algorithm, RFC7539.
1337
1338	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1339	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1340	  This is the x86_64 assembler implementation using SIMD instructions.
 
 
 
 
1341
1342	  See also:
1343	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1344
1345config CRYPTO_SEED
1346	tristate "SEED cipher algorithm"
1347	select CRYPTO_ALGAPI
1348	help
1349	  SEED cipher algorithm (RFC4269).
1350
1351	  SEED is a 128-bit symmetric key block cipher that has been
1352	  developed by KISA (Korea Information Security Agency) as a
1353	  national standard encryption algorithm of the Republic of Korea.
1354	  It is a 16 round block cipher with the key size of 128 bit.
 
1355
1356	  See also:
1357	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1358
1359config CRYPTO_SERPENT
1360	tristate "Serpent cipher algorithm"
1361	select CRYPTO_ALGAPI
1362	help
1363	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1364
1365	  Keys are allowed to be from 0 to 256 bits in length, in steps
1366	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1367	  variant of Serpent for compatibility with old kerneli.org code.
1368
1369	  See also:
1370	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1371
1372config CRYPTO_SERPENT_SSE2_X86_64
1373	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1374	depends on X86 && 64BIT
1375	select CRYPTO_ALGAPI
1376	select CRYPTO_CRYPTD
1377	select CRYPTO_ABLK_HELPER
1378	select CRYPTO_GLUE_HELPER_X86
1379	select CRYPTO_SERPENT
1380	select CRYPTO_LRW
1381	select CRYPTO_XTS
1382	help
1383	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1384
1385	  Keys are allowed to be from 0 to 256 bits in length, in steps
1386	  of 8 bits.
1387
1388	  This module provides Serpent cipher algorithm that processes eight
1389	  blocks parallel using SSE2 instruction set.
 
 
 
 
1390
1391	  See also:
1392	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1393
1394config CRYPTO_SERPENT_SSE2_586
1395	tristate "Serpent cipher algorithm (i586/SSE2)"
1396	depends on X86 && !64BIT
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_CRYPTD
1399	select CRYPTO_ABLK_HELPER
1400	select CRYPTO_GLUE_HELPER_X86
1401	select CRYPTO_SERPENT
1402	select CRYPTO_LRW
1403	select CRYPTO_XTS
1404	help
1405	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1406
1407	  Keys are allowed to be from 0 to 256 bits in length, in steps
1408	  of 8 bits.
 
 
1409
1410	  This module provides Serpent cipher algorithm that processes four
1411	  blocks parallel using SSE2 instruction set.
1412
1413	  See also:
1414	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1415
1416config CRYPTO_SERPENT_AVX_X86_64
1417	tristate "Serpent cipher algorithm (x86_64/AVX)"
1418	depends on X86 && 64BIT
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_CRYPTD
1421	select CRYPTO_ABLK_HELPER
1422	select CRYPTO_GLUE_HELPER_X86
1423	select CRYPTO_SERPENT
1424	select CRYPTO_LRW
1425	select CRYPTO_XTS
1426	help
1427	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1428
1429	  Keys are allowed to be from 0 to 256 bits in length, in steps
1430	  of 8 bits.
 
 
 
 
1431
1432	  This module provides the Serpent cipher algorithm that processes
1433	  eight blocks parallel using the AVX instruction set.
1434
1435	  See also:
1436	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
 
 
1437
1438config CRYPTO_SERPENT_AVX2_X86_64
1439	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1440	depends on X86 && 64BIT
1441	select CRYPTO_ALGAPI
1442	select CRYPTO_CRYPTD
1443	select CRYPTO_ABLK_HELPER
1444	select CRYPTO_GLUE_HELPER_X86
1445	select CRYPTO_SERPENT
1446	select CRYPTO_SERPENT_AVX_X86_64
1447	select CRYPTO_LRW
1448	select CRYPTO_XTS
1449	help
1450	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1451
1452	  Keys are allowed to be from 0 to 256 bits in length, in steps
1453	  of 8 bits.
 
 
 
 
 
 
 
1454
1455	  This module provides Serpent cipher algorithm that processes 16
1456	  blocks parallel using AVX2 instruction set.
1457
1458	  See also:
1459	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
 
1460
1461config CRYPTO_TEA
1462	tristate "TEA, XTEA and XETA cipher algorithms"
1463	select CRYPTO_ALGAPI
1464	help
1465	  TEA cipher algorithm.
 
 
 
 
1466
1467	  Tiny Encryption Algorithm is a simple cipher that uses
1468	  many rounds for security.  It is very fast and uses
1469	  little memory.
1470
1471	  Xtendend Tiny Encryption Algorithm is a modification to
1472	  the TEA algorithm to address a potential key weakness
1473	  in the TEA algorithm.
 
 
 
 
1474
1475	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1476	  of the XTEA algorithm for compatibility purposes.
1477
1478config CRYPTO_TWOFISH
1479	tristate "Twofish cipher algorithm"
1480	select CRYPTO_ALGAPI
1481	select CRYPTO_TWOFISH_COMMON
1482	help
1483	  Twofish cipher algorithm.
1484
1485	  Twofish was submitted as an AES (Advanced Encryption Standard)
1486	  candidate cipher by researchers at CounterPane Systems.  It is a
1487	  16 round block cipher supporting key sizes of 128, 192, and 256
1488	  bits.
1489
1490	  See also:
1491	  <http://www.schneier.com/twofish.html>
1492
1493config CRYPTO_TWOFISH_COMMON
1494	tristate
 
 
1495	help
1496	  Common parts of the Twofish cipher algorithm shared by the
1497	  generic c and the assembler implementations.
1498
1499config CRYPTO_TWOFISH_586
1500	tristate "Twofish cipher algorithms (i586)"
1501	depends on (X86 || UML_X86) && !64BIT
1502	select CRYPTO_ALGAPI
1503	select CRYPTO_TWOFISH_COMMON
1504	help
1505	  Twofish cipher algorithm.
 
 
 
 
1506
1507	  Twofish was submitted as an AES (Advanced Encryption Standard)
1508	  candidate cipher by researchers at CounterPane Systems.  It is a
1509	  16 round block cipher supporting key sizes of 128, 192, and 256
1510	  bits.
1511
1512	  See also:
1513	  <http://www.schneier.com/twofish.html>
1514
1515config CRYPTO_TWOFISH_X86_64
1516	tristate "Twofish cipher algorithm (x86_64)"
1517	depends on (X86 || UML_X86) && 64BIT
1518	select CRYPTO_ALGAPI
1519	select CRYPTO_TWOFISH_COMMON
1520	help
1521	  Twofish cipher algorithm (x86_64).
1522
1523	  Twofish was submitted as an AES (Advanced Encryption Standard)
1524	  candidate cipher by researchers at CounterPane Systems.  It is a
1525	  16 round block cipher supporting key sizes of 128, 192, and 256
1526	  bits.
 
1527
1528	  See also:
1529	  <http://www.schneier.com/twofish.html>
1530
1531config CRYPTO_TWOFISH_X86_64_3WAY
1532	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1533	depends on X86 && 64BIT
1534	select CRYPTO_ALGAPI
1535	select CRYPTO_TWOFISH_COMMON
1536	select CRYPTO_TWOFISH_X86_64
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_LRW
1539	select CRYPTO_XTS
1540	help
1541	  Twofish cipher algorithm (x86_64, 3-way parallel).
1542
1543	  Twofish was submitted as an AES (Advanced Encryption Standard)
1544	  candidate cipher by researchers at CounterPane Systems.  It is a
1545	  16 round block cipher supporting key sizes of 128, 192, and 256
1546	  bits.
1547
1548	  This module provides Twofish cipher algorithm that processes three
1549	  blocks parallel, utilizing resources of out-of-order CPUs better.
 
 
 
1550
1551	  See also:
1552	  <http://www.schneier.com/twofish.html>
1553
1554config CRYPTO_TWOFISH_AVX_X86_64
1555	tristate "Twofish cipher algorithm (x86_64/AVX)"
1556	depends on X86 && 64BIT
1557	select CRYPTO_ALGAPI
1558	select CRYPTO_CRYPTD
1559	select CRYPTO_ABLK_HELPER
1560	select CRYPTO_GLUE_HELPER_X86
1561	select CRYPTO_TWOFISH_COMMON
1562	select CRYPTO_TWOFISH_X86_64
1563	select CRYPTO_TWOFISH_X86_64_3WAY
1564	select CRYPTO_LRW
1565	select CRYPTO_XTS
1566	help
1567	  Twofish cipher algorithm (x86_64/AVX).
1568
1569	  Twofish was submitted as an AES (Advanced Encryption Standard)
1570	  candidate cipher by researchers at CounterPane Systems.  It is a
1571	  16 round block cipher supporting key sizes of 128, 192, and 256
1572	  bits.
1573
1574	  This module provides the Twofish cipher algorithm that processes
1575	  eight blocks parallel using the AVX Instruction Set.
1576
1577	  See also:
1578	  <http://www.schneier.com/twofish.html>
1579
1580comment "Compression"
1581
1582config CRYPTO_DEFLATE
1583	tristate "Deflate compression algorithm"
1584	select CRYPTO_ALGAPI
1585	select CRYPTO_ACOMP2
1586	select ZLIB_INFLATE
1587	select ZLIB_DEFLATE
1588	help
1589	  This is the Deflate algorithm (RFC1951), specified for use in
1590	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1591
1592	  You will most probably want this if using IPSec.
1593
1594config CRYPTO_LZO
1595	tristate "LZO compression algorithm"
1596	select CRYPTO_ALGAPI
1597	select CRYPTO_ACOMP2
1598	select LZO_COMPRESS
1599	select LZO_DECOMPRESS
1600	help
1601	  This is the LZO algorithm.
 
 
1602
1603config CRYPTO_842
1604	tristate "842 compression algorithm"
1605	select CRYPTO_ALGAPI
1606	select CRYPTO_ACOMP2
1607	select 842_COMPRESS
1608	select 842_DECOMPRESS
1609	help
1610	  This is the 842 algorithm.
 
 
1611
1612config CRYPTO_LZ4
1613	tristate "LZ4 compression algorithm"
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_ACOMP2
1616	select LZ4_COMPRESS
1617	select LZ4_DECOMPRESS
1618	help
1619	  This is the LZ4 algorithm.
 
 
1620
1621config CRYPTO_LZ4HC
1622	tristate "LZ4HC compression algorithm"
1623	select CRYPTO_ALGAPI
1624	select CRYPTO_ACOMP2
1625	select LZ4HC_COMPRESS
1626	select LZ4_DECOMPRESS
1627	help
1628	  This is the LZ4 high compression mode algorithm.
 
 
1629
1630comment "Random Number Generation"
 
 
 
 
 
 
 
 
 
 
 
 
 
1631
1632config CRYPTO_ANSI_CPRNG
1633	tristate "Pseudo Random Number Generation for Cryptographic modules"
1634	select CRYPTO_AES
1635	select CRYPTO_RNG
1636	help
1637	  This option enables the generic pseudo random number generator
1638	  for cryptographic modules.  Uses the Algorithm specified in
1639	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1640	  CRYPTO_FIPS is selected
 
1641
1642menuconfig CRYPTO_DRBG_MENU
1643	tristate "NIST SP800-90A DRBG"
1644	help
1645	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1646	  more of the DRBG types must be selected.
 
1647
1648if CRYPTO_DRBG_MENU
1649
1650config CRYPTO_DRBG_HMAC
1651	bool
1652	default y
1653	select CRYPTO_HMAC
1654	select CRYPTO_SHA256
1655
1656config CRYPTO_DRBG_HASH
1657	bool "Enable Hash DRBG"
1658	select CRYPTO_SHA256
1659	help
1660	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1661
1662config CRYPTO_DRBG_CTR
1663	bool "Enable CTR DRBG"
1664	select CRYPTO_AES
1665	depends on CRYPTO_CTR
1666	help
1667	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1668
1669config CRYPTO_DRBG
1670	tristate
1671	default CRYPTO_DRBG_MENU
1672	select CRYPTO_RNG
1673	select CRYPTO_JITTERENTROPY
1674
1675endif	# if CRYPTO_DRBG_MENU
1676
1677config CRYPTO_JITTERENTROPY
1678	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1679	select CRYPTO_RNG
 
1680	help
1681	  The Jitterentropy RNG is a noise that is intended
1682	  to provide seed to another RNG. The RNG does not
1683	  perform any cryptographic whitening of the generated
1684	  random numbers. This Jitterentropy RNG registers with
1685	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686
1687config CRYPTO_USER_API
1688	tristate
1689
1690config CRYPTO_USER_API_HASH
1691	tristate "User-space interface for hash algorithms"
1692	depends on NET
1693	select CRYPTO_HASH
1694	select CRYPTO_USER_API
1695	help
1696	  This option enables the user-spaces interface for hash
1697	  algorithms.
 
 
1698
1699config CRYPTO_USER_API_SKCIPHER
1700	tristate "User-space interface for symmetric key cipher algorithms"
1701	depends on NET
1702	select CRYPTO_BLKCIPHER
1703	select CRYPTO_USER_API
1704	help
1705	  This option enables the user-spaces interface for symmetric
1706	  key cipher algorithms.
 
 
1707
1708config CRYPTO_USER_API_RNG
1709	tristate "User-space interface for random number generator algorithms"
1710	depends on NET
1711	select CRYPTO_RNG
1712	select CRYPTO_USER_API
1713	help
1714	  This option enables the user-spaces interface for random
1715	  number generator algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717config CRYPTO_USER_API_AEAD
1718	tristate "User-space interface for AEAD cipher algorithms"
1719	depends on NET
1720	select CRYPTO_AEAD
 
 
1721	select CRYPTO_USER_API
1722	help
1723	  This option enables the user-spaces interface for AEAD
1724	  cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725
1726config CRYPTO_HASH_INFO
1727	bool
1728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729source "drivers/crypto/Kconfig"
1730source crypto/asymmetric_keys/Kconfig
1731source certs/Kconfig
1732
1733endif	# if CRYPTO