Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Copyright (C) 2011 STRATO.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 18
 19#include <linux/sched.h>
 20#include <linux/pagemap.h>
 21#include <linux/writeback.h>
 22#include <linux/blkdev.h>
 23#include <linux/rbtree.h>
 24#include <linux/slab.h>
 25#include <linux/workqueue.h>
 26#include "ctree.h"
 27#include "volumes.h"
 28#include "disk-io.h"
 29#include "transaction.h"
 30
 31#undef DEBUG
 32
 33/*
 34 * This is the implementation for the generic read ahead framework.
 35 *
 36 * To trigger a readahead, btrfs_reada_add must be called. It will start
 37 * a read ahead for the given range [start, end) on tree root. The returned
 38 * handle can either be used to wait on the readahead to finish
 39 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
 40 *
 41 * The read ahead works as follows:
 42 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
 43 * reada_start_machine will then search for extents to prefetch and trigger
 44 * some reads. When a read finishes for a node, all contained node/leaf
 45 * pointers that lie in the given range will also be enqueued. The reads will
 46 * be triggered in sequential order, thus giving a big win over a naive
 47 * enumeration. It will also make use of multi-device layouts. Each disk
 48 * will have its on read pointer and all disks will by utilized in parallel.
 49 * Also will no two disks read both sides of a mirror simultaneously, as this
 50 * would waste seeking capacity. Instead both disks will read different parts
 51 * of the filesystem.
 52 * Any number of readaheads can be started in parallel. The read order will be
 53 * determined globally, i.e. 2 parallel readaheads will normally finish faster
 54 * than the 2 started one after another.
 55 */
 56
 57#define MAX_IN_FLIGHT 6
 58
 59struct reada_extctl {
 60	struct list_head	list;
 61	struct reada_control	*rc;
 62	u64			generation;
 63};
 64
 65struct reada_extent {
 66	u64			logical;
 67	struct btrfs_key	top;
 68	u32			blocksize;
 69	int			err;
 70	struct list_head	extctl;
 71	struct kref		refcnt;
 72	spinlock_t		lock;
 73	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
 74	int			nzones;
 75	struct btrfs_device	*scheduled_for;
 76};
 77
 78struct reada_zone {
 79	u64			start;
 80	u64			end;
 81	u64			elems;
 82	struct list_head	list;
 83	spinlock_t		lock;
 84	int			locked;
 85	struct btrfs_device	*device;
 86	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
 87							   * self */
 88	int			ndevs;
 89	struct kref		refcnt;
 90};
 91
 92struct reada_machine_work {
 93	struct btrfs_work	work;
 94	struct btrfs_fs_info	*fs_info;
 95};
 96
 97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
 98static void reada_control_release(struct kref *kref);
 99static void reada_zone_release(struct kref *kref);
100static void reada_start_machine(struct btrfs_fs_info *fs_info);
101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103static int reada_add_block(struct reada_control *rc, u64 logical,
104			   struct btrfs_key *top, int level, u64 generation);
105
106/* recurses */
107/* in case of err, eb might be NULL */
108static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109			    u64 start, int err)
110{
111	int level = 0;
112	int nritems;
113	int i;
114	u64 bytenr;
115	u64 generation;
116	struct reada_extent *re;
117	struct btrfs_fs_info *fs_info = root->fs_info;
118	struct list_head list;
119	unsigned long index = start >> PAGE_CACHE_SHIFT;
120	struct btrfs_device *for_dev;
121
122	if (eb)
123		level = btrfs_header_level(eb);
124
125	/* find extent */
126	spin_lock(&fs_info->reada_lock);
127	re = radix_tree_lookup(&fs_info->reada_tree, index);
128	if (re)
129		kref_get(&re->refcnt);
130	spin_unlock(&fs_info->reada_lock);
131
132	if (!re)
133		return -1;
134
135	spin_lock(&re->lock);
136	/*
137	 * just take the full list from the extent. afterwards we
138	 * don't need the lock anymore
139	 */
140	list_replace_init(&re->extctl, &list);
141	for_dev = re->scheduled_for;
142	re->scheduled_for = NULL;
143	spin_unlock(&re->lock);
144
145	if (err == 0) {
146		nritems = level ? btrfs_header_nritems(eb) : 0;
147		generation = btrfs_header_generation(eb);
148		/*
149		 * FIXME: currently we just set nritems to 0 if this is a leaf,
150		 * effectively ignoring the content. In a next step we could
151		 * trigger more readahead depending from the content, e.g.
152		 * fetch the checksums for the extents in the leaf.
153		 */
154	} else {
155		/*
156		 * this is the error case, the extent buffer has not been
157		 * read correctly. We won't access anything from it and
158		 * just cleanup our data structures. Effectively this will
159		 * cut the branch below this node from read ahead.
160		 */
161		nritems = 0;
162		generation = 0;
163	}
164
165	for (i = 0; i < nritems; i++) {
166		struct reada_extctl *rec;
167		u64 n_gen;
168		struct btrfs_key key;
169		struct btrfs_key next_key;
170
171		btrfs_node_key_to_cpu(eb, &key, i);
172		if (i + 1 < nritems)
173			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174		else
175			next_key = re->top;
176		bytenr = btrfs_node_blockptr(eb, i);
177		n_gen = btrfs_node_ptr_generation(eb, i);
178
179		list_for_each_entry(rec, &list, list) {
180			struct reada_control *rc = rec->rc;
181
182			/*
183			 * if the generation doesn't match, just ignore this
184			 * extctl. This will probably cut off a branch from
185			 * prefetch. Alternatively one could start a new (sub-)
186			 * prefetch for this branch, starting again from root.
187			 * FIXME: move the generation check out of this loop
188			 */
189#ifdef DEBUG
190			if (rec->generation != generation) {
191				printk(KERN_DEBUG "generation mismatch for "
192						"(%llu,%d,%llu) %llu != %llu\n",
193				       key.objectid, key.type, key.offset,
194				       rec->generation, generation);
195			}
196#endif
197			if (rec->generation == generation &&
198			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200				reada_add_block(rc, bytenr, &next_key,
201						level - 1, n_gen);
202		}
203	}
204	/*
205	 * free extctl records
206	 */
207	while (!list_empty(&list)) {
208		struct reada_control *rc;
209		struct reada_extctl *rec;
210
211		rec = list_first_entry(&list, struct reada_extctl, list);
212		list_del(&rec->list);
213		rc = rec->rc;
214		kfree(rec);
215
216		kref_get(&rc->refcnt);
217		if (atomic_dec_and_test(&rc->elems)) {
218			kref_put(&rc->refcnt, reada_control_release);
219			wake_up(&rc->wait);
220		}
221		kref_put(&rc->refcnt, reada_control_release);
222
223		reada_extent_put(fs_info, re);	/* one ref for each entry */
224	}
225	reada_extent_put(fs_info, re);	/* our ref */
226	if (for_dev)
227		atomic_dec(&for_dev->reada_in_flight);
228
229	return 0;
230}
231
232/*
233 * start is passed separately in case eb in NULL, which may be the case with
234 * failed I/O
235 */
236int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237			 u64 start, int err)
238{
239	int ret;
240
241	ret = __readahead_hook(root, eb, start, err);
242
243	reada_start_machine(root->fs_info);
244
245	return ret;
246}
247
248static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249					  struct btrfs_device *dev, u64 logical,
250					  struct btrfs_bio *bbio)
251{
252	int ret;
253	struct reada_zone *zone;
254	struct btrfs_block_group_cache *cache = NULL;
255	u64 start;
256	u64 end;
257	int i;
258
259	zone = NULL;
260	spin_lock(&fs_info->reada_lock);
261	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262				     logical >> PAGE_CACHE_SHIFT, 1);
263	if (ret == 1)
264		kref_get(&zone->refcnt);
265	spin_unlock(&fs_info->reada_lock);
266
267	if (ret == 1) {
268		if (logical >= zone->start && logical < zone->end)
269			return zone;
270		spin_lock(&fs_info->reada_lock);
271		kref_put(&zone->refcnt, reada_zone_release);
272		spin_unlock(&fs_info->reada_lock);
273	}
274
275	cache = btrfs_lookup_block_group(fs_info, logical);
276	if (!cache)
277		return NULL;
278
279	start = cache->key.objectid;
280	end = start + cache->key.offset - 1;
281	btrfs_put_block_group(cache);
282
283	zone = kzalloc(sizeof(*zone), GFP_NOFS);
284	if (!zone)
285		return NULL;
286
287	zone->start = start;
288	zone->end = end;
289	INIT_LIST_HEAD(&zone->list);
290	spin_lock_init(&zone->lock);
291	zone->locked = 0;
292	kref_init(&zone->refcnt);
293	zone->elems = 0;
294	zone->device = dev; /* our device always sits at index 0 */
295	for (i = 0; i < bbio->num_stripes; ++i) {
296		/* bounds have already been checked */
297		zone->devs[i] = bbio->stripes[i].dev;
298	}
299	zone->ndevs = bbio->num_stripes;
300
301	spin_lock(&fs_info->reada_lock);
302	ret = radix_tree_insert(&dev->reada_zones,
303				(unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304				zone);
305
306	if (ret == -EEXIST) {
307		kfree(zone);
308		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309					     logical >> PAGE_CACHE_SHIFT, 1);
310		if (ret == 1)
311			kref_get(&zone->refcnt);
312	}
313	spin_unlock(&fs_info->reada_lock);
314
315	return zone;
316}
317
318static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319					      u64 logical,
320					      struct btrfs_key *top, int level)
321{
322	int ret;
323	struct reada_extent *re = NULL;
324	struct reada_extent *re_exist = NULL;
325	struct btrfs_fs_info *fs_info = root->fs_info;
326	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
327	struct btrfs_bio *bbio = NULL;
328	struct btrfs_device *dev;
329	struct btrfs_device *prev_dev;
330	u32 blocksize;
331	u64 length;
332	int nzones = 0;
333	int i;
334	unsigned long index = logical >> PAGE_CACHE_SHIFT;
335
336	spin_lock(&fs_info->reada_lock);
337	re = radix_tree_lookup(&fs_info->reada_tree, index);
338	if (re)
339		kref_get(&re->refcnt);
340	spin_unlock(&fs_info->reada_lock);
341
342	if (re)
343		return re;
344
345	re = kzalloc(sizeof(*re), GFP_NOFS);
346	if (!re)
347		return NULL;
348
349	blocksize = btrfs_level_size(root, level);
350	re->logical = logical;
351	re->blocksize = blocksize;
352	re->top = *top;
353	INIT_LIST_HEAD(&re->extctl);
354	spin_lock_init(&re->lock);
355	kref_init(&re->refcnt);
356
357	/*
358	 * map block
359	 */
360	length = blocksize;
361	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
362	if (ret || !bbio || length < blocksize)
363		goto error;
364
365	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
366		printk(KERN_ERR "btrfs readahead: more than %d copies not "
367				"supported", BTRFS_MAX_MIRRORS);
368		goto error;
369	}
370
371	for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
372		struct reada_zone *zone;
373
374		dev = bbio->stripes[nzones].dev;
375		zone = reada_find_zone(fs_info, dev, logical, bbio);
376		if (!zone)
377			break;
378
379		re->zones[nzones] = zone;
380		spin_lock(&zone->lock);
381		if (!zone->elems)
382			kref_get(&zone->refcnt);
383		++zone->elems;
384		spin_unlock(&zone->lock);
385		spin_lock(&fs_info->reada_lock);
386		kref_put(&zone->refcnt, reada_zone_release);
387		spin_unlock(&fs_info->reada_lock);
388	}
389	re->nzones = nzones;
390	if (nzones == 0) {
391		/* not a single zone found, error and out */
392		goto error;
393	}
394
395	/* insert extent in reada_tree + all per-device trees, all or nothing */
396	spin_lock(&fs_info->reada_lock);
397	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398	if (ret == -EEXIST) {
399		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400		BUG_ON(!re_exist);
401		kref_get(&re_exist->refcnt);
402		spin_unlock(&fs_info->reada_lock);
403		goto error;
404	}
405	if (ret) {
406		spin_unlock(&fs_info->reada_lock);
407		goto error;
408	}
409	prev_dev = NULL;
410	for (i = 0; i < nzones; ++i) {
411		dev = bbio->stripes[i].dev;
412		if (dev == prev_dev) {
413			/*
414			 * in case of DUP, just add the first zone. As both
415			 * are on the same device, there's nothing to gain
416			 * from adding both.
417			 * Also, it wouldn't work, as the tree is per device
418			 * and adding would fail with EEXIST
419			 */
420			continue;
421		}
422		prev_dev = dev;
423		ret = radix_tree_insert(&dev->reada_extents, index, re);
424		if (ret) {
425			while (--i >= 0) {
426				dev = bbio->stripes[i].dev;
427				BUG_ON(dev == NULL);
428				radix_tree_delete(&dev->reada_extents, index);
429			}
430			BUG_ON(fs_info == NULL);
431			radix_tree_delete(&fs_info->reada_tree, index);
432			spin_unlock(&fs_info->reada_lock);
433			goto error;
434		}
435	}
436	spin_unlock(&fs_info->reada_lock);
437
438	kfree(bbio);
439	return re;
440
441error:
442	while (nzones) {
443		struct reada_zone *zone;
444
445		--nzones;
446		zone = re->zones[nzones];
447		kref_get(&zone->refcnt);
448		spin_lock(&zone->lock);
449		--zone->elems;
450		if (zone->elems == 0) {
451			/*
452			 * no fs_info->reada_lock needed, as this can't be
453			 * the last ref
454			 */
455			kref_put(&zone->refcnt, reada_zone_release);
456		}
457		spin_unlock(&zone->lock);
458
459		spin_lock(&fs_info->reada_lock);
460		kref_put(&zone->refcnt, reada_zone_release);
461		spin_unlock(&fs_info->reada_lock);
462	}
463	kfree(bbio);
464	kfree(re);
465	return re_exist;
466}
467
468static void reada_kref_dummy(struct kref *kr)
469{
470}
471
472static void reada_extent_put(struct btrfs_fs_info *fs_info,
473			     struct reada_extent *re)
474{
475	int i;
476	unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
477
478	spin_lock(&fs_info->reada_lock);
479	if (!kref_put(&re->refcnt, reada_kref_dummy)) {
480		spin_unlock(&fs_info->reada_lock);
481		return;
482	}
483
484	radix_tree_delete(&fs_info->reada_tree, index);
485	for (i = 0; i < re->nzones; ++i) {
486		struct reada_zone *zone = re->zones[i];
487
488		radix_tree_delete(&zone->device->reada_extents, index);
489	}
490
491	spin_unlock(&fs_info->reada_lock);
492
493	for (i = 0; i < re->nzones; ++i) {
494		struct reada_zone *zone = re->zones[i];
495
496		kref_get(&zone->refcnt);
497		spin_lock(&zone->lock);
498		--zone->elems;
499		if (zone->elems == 0) {
500			/* no fs_info->reada_lock needed, as this can't be
501			 * the last ref */
502			kref_put(&zone->refcnt, reada_zone_release);
503		}
504		spin_unlock(&zone->lock);
505
506		spin_lock(&fs_info->reada_lock);
507		kref_put(&zone->refcnt, reada_zone_release);
508		spin_unlock(&fs_info->reada_lock);
509	}
510	if (re->scheduled_for)
511		atomic_dec(&re->scheduled_for->reada_in_flight);
512
513	kfree(re);
514}
515
516static void reada_zone_release(struct kref *kref)
517{
518	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
519
520	radix_tree_delete(&zone->device->reada_zones,
521			  zone->end >> PAGE_CACHE_SHIFT);
522
523	kfree(zone);
524}
525
526static void reada_control_release(struct kref *kref)
527{
528	struct reada_control *rc = container_of(kref, struct reada_control,
529						refcnt);
530
531	kfree(rc);
532}
533
534static int reada_add_block(struct reada_control *rc, u64 logical,
535			   struct btrfs_key *top, int level, u64 generation)
536{
537	struct btrfs_root *root = rc->root;
538	struct reada_extent *re;
539	struct reada_extctl *rec;
540
541	re = reada_find_extent(root, logical, top, level); /* takes one ref */
542	if (!re)
543		return -1;
544
545	rec = kzalloc(sizeof(*rec), GFP_NOFS);
546	if (!rec) {
547		reada_extent_put(root->fs_info, re);
548		return -1;
549	}
550
551	rec->rc = rc;
552	rec->generation = generation;
553	atomic_inc(&rc->elems);
554
555	spin_lock(&re->lock);
556	list_add_tail(&rec->list, &re->extctl);
557	spin_unlock(&re->lock);
558
559	/* leave the ref on the extent */
560
561	return 0;
562}
563
564/*
565 * called with fs_info->reada_lock held
566 */
567static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
568{
569	int i;
570	unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
571
572	for (i = 0; i < zone->ndevs; ++i) {
573		struct reada_zone *peer;
574		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
575		if (peer && peer->device != zone->device)
576			peer->locked = lock;
577	}
578}
579
580/*
581 * called with fs_info->reada_lock held
582 */
583static int reada_pick_zone(struct btrfs_device *dev)
584{
585	struct reada_zone *top_zone = NULL;
586	struct reada_zone *top_locked_zone = NULL;
587	u64 top_elems = 0;
588	u64 top_locked_elems = 0;
589	unsigned long index = 0;
590	int ret;
591
592	if (dev->reada_curr_zone) {
593		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
594		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
595		dev->reada_curr_zone = NULL;
596	}
597	/* pick the zone with the most elements */
598	while (1) {
599		struct reada_zone *zone;
600
601		ret = radix_tree_gang_lookup(&dev->reada_zones,
602					     (void **)&zone, index, 1);
603		if (ret == 0)
604			break;
605		index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
606		if (zone->locked) {
607			if (zone->elems > top_locked_elems) {
608				top_locked_elems = zone->elems;
609				top_locked_zone = zone;
610			}
611		} else {
612			if (zone->elems > top_elems) {
613				top_elems = zone->elems;
614				top_zone = zone;
615			}
616		}
617	}
618	if (top_zone)
619		dev->reada_curr_zone = top_zone;
620	else if (top_locked_zone)
621		dev->reada_curr_zone = top_locked_zone;
622	else
623		return 0;
624
625	dev->reada_next = dev->reada_curr_zone->start;
626	kref_get(&dev->reada_curr_zone->refcnt);
627	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
628
629	return 1;
630}
631
632static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
633				   struct btrfs_device *dev)
634{
635	struct reada_extent *re = NULL;
636	int mirror_num = 0;
637	struct extent_buffer *eb = NULL;
638	u64 logical;
639	u32 blocksize;
640	int ret;
641	int i;
642	int need_kick = 0;
643
644	spin_lock(&fs_info->reada_lock);
645	if (dev->reada_curr_zone == NULL) {
646		ret = reada_pick_zone(dev);
647		if (!ret) {
648			spin_unlock(&fs_info->reada_lock);
649			return 0;
650		}
651	}
652	/*
653	 * FIXME currently we issue the reads one extent at a time. If we have
654	 * a contiguous block of extents, we could also coagulate them or use
655	 * plugging to speed things up
656	 */
657	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
658				     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
659	if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
660		ret = reada_pick_zone(dev);
661		if (!ret) {
662			spin_unlock(&fs_info->reada_lock);
663			return 0;
664		}
665		re = NULL;
666		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
667					dev->reada_next >> PAGE_CACHE_SHIFT, 1);
668	}
669	if (ret == 0) {
670		spin_unlock(&fs_info->reada_lock);
671		return 0;
672	}
673	dev->reada_next = re->logical + re->blocksize;
674	kref_get(&re->refcnt);
675
676	spin_unlock(&fs_info->reada_lock);
677
678	/*
679	 * find mirror num
680	 */
681	for (i = 0; i < re->nzones; ++i) {
682		if (re->zones[i]->device == dev) {
683			mirror_num = i + 1;
684			break;
685		}
686	}
687	logical = re->logical;
688	blocksize = re->blocksize;
689
690	spin_lock(&re->lock);
691	if (re->scheduled_for == NULL) {
692		re->scheduled_for = dev;
693		need_kick = 1;
694	}
695	spin_unlock(&re->lock);
696
697	reada_extent_put(fs_info, re);
698
699	if (!need_kick)
700		return 0;
701
702	atomic_inc(&dev->reada_in_flight);
703	ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
704			 mirror_num, &eb);
705	if (ret)
706		__readahead_hook(fs_info->extent_root, NULL, logical, ret);
707	else if (eb)
708		__readahead_hook(fs_info->extent_root, eb, eb->start, ret);
709
710	if (eb)
711		free_extent_buffer(eb);
712
713	return 1;
714
715}
716
717static void reada_start_machine_worker(struct btrfs_work *work)
718{
719	struct reada_machine_work *rmw;
720	struct btrfs_fs_info *fs_info;
721	int old_ioprio;
722
723	rmw = container_of(work, struct reada_machine_work, work);
724	fs_info = rmw->fs_info;
725
726	kfree(rmw);
727
728	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
729				       task_nice_ioprio(current));
730	set_task_ioprio(current, BTRFS_IOPRIO_READA);
731	__reada_start_machine(fs_info);
732	set_task_ioprio(current, old_ioprio);
733}
734
735static void __reada_start_machine(struct btrfs_fs_info *fs_info)
736{
737	struct btrfs_device *device;
738	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
739	u64 enqueued;
740	u64 total = 0;
741	int i;
742
743	do {
744		enqueued = 0;
745		list_for_each_entry(device, &fs_devices->devices, dev_list) {
746			if (atomic_read(&device->reada_in_flight) <
747			    MAX_IN_FLIGHT)
748				enqueued += reada_start_machine_dev(fs_info,
749								    device);
750		}
751		total += enqueued;
752	} while (enqueued && total < 10000);
753
754	if (enqueued == 0)
755		return;
756
757	/*
758	 * If everything is already in the cache, this is effectively single
759	 * threaded. To a) not hold the caller for too long and b) to utilize
760	 * more cores, we broke the loop above after 10000 iterations and now
761	 * enqueue to workers to finish it. This will distribute the load to
762	 * the cores.
763	 */
764	for (i = 0; i < 2; ++i)
765		reada_start_machine(fs_info);
766}
767
768static void reada_start_machine(struct btrfs_fs_info *fs_info)
769{
770	struct reada_machine_work *rmw;
771
772	rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
773	if (!rmw) {
774		/* FIXME we cannot handle this properly right now */
775		BUG();
776	}
777	rmw->work.func = reada_start_machine_worker;
778	rmw->fs_info = fs_info;
779
780	btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
781}
782
783#ifdef DEBUG
784static void dump_devs(struct btrfs_fs_info *fs_info, int all)
785{
786	struct btrfs_device *device;
787	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
788	unsigned long index;
789	int ret;
790	int i;
791	int j;
792	int cnt;
793
794	spin_lock(&fs_info->reada_lock);
795	list_for_each_entry(device, &fs_devices->devices, dev_list) {
796		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
797			atomic_read(&device->reada_in_flight));
798		index = 0;
799		while (1) {
800			struct reada_zone *zone;
801			ret = radix_tree_gang_lookup(&device->reada_zones,
802						     (void **)&zone, index, 1);
803			if (ret == 0)
804				break;
805			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
806				"%d devs", zone->start, zone->end, zone->elems,
807				zone->locked);
808			for (j = 0; j < zone->ndevs; ++j) {
809				printk(KERN_CONT " %lld",
810					zone->devs[j]->devid);
811			}
812			if (device->reada_curr_zone == zone)
813				printk(KERN_CONT " curr off %llu",
814					device->reada_next - zone->start);
815			printk(KERN_CONT "\n");
816			index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
817		}
818		cnt = 0;
819		index = 0;
820		while (all) {
821			struct reada_extent *re = NULL;
822
823			ret = radix_tree_gang_lookup(&device->reada_extents,
824						     (void **)&re, index, 1);
825			if (ret == 0)
826				break;
827			printk(KERN_DEBUG
828				"  re: logical %llu size %u empty %d for %lld",
829				re->logical, re->blocksize,
830				list_empty(&re->extctl), re->scheduled_for ?
831				re->scheduled_for->devid : -1);
832
833			for (i = 0; i < re->nzones; ++i) {
834				printk(KERN_CONT " zone %llu-%llu devs",
835					re->zones[i]->start,
836					re->zones[i]->end);
837				for (j = 0; j < re->zones[i]->ndevs; ++j) {
838					printk(KERN_CONT " %lld",
839						re->zones[i]->devs[j]->devid);
840				}
841			}
842			printk(KERN_CONT "\n");
843			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
844			if (++cnt > 15)
845				break;
846		}
847	}
848
849	index = 0;
850	cnt = 0;
851	while (all) {
852		struct reada_extent *re = NULL;
853
854		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
855					     index, 1);
856		if (ret == 0)
857			break;
858		if (!re->scheduled_for) {
859			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
860			continue;
861		}
862		printk(KERN_DEBUG
863			"re: logical %llu size %u list empty %d for %lld",
864			re->logical, re->blocksize, list_empty(&re->extctl),
865			re->scheduled_for ? re->scheduled_for->devid : -1);
866		for (i = 0; i < re->nzones; ++i) {
867			printk(KERN_CONT " zone %llu-%llu devs",
868				re->zones[i]->start,
869				re->zones[i]->end);
870			for (i = 0; i < re->nzones; ++i) {
871				printk(KERN_CONT " zone %llu-%llu devs",
872					re->zones[i]->start,
873					re->zones[i]->end);
874				for (j = 0; j < re->zones[i]->ndevs; ++j) {
875					printk(KERN_CONT " %lld",
876						re->zones[i]->devs[j]->devid);
877				}
878			}
879		}
880		printk(KERN_CONT "\n");
881		index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
882	}
883	spin_unlock(&fs_info->reada_lock);
884}
885#endif
886
887/*
888 * interface
889 */
890struct reada_control *btrfs_reada_add(struct btrfs_root *root,
891			struct btrfs_key *key_start, struct btrfs_key *key_end)
892{
893	struct reada_control *rc;
894	u64 start;
895	u64 generation;
896	int level;
897	struct extent_buffer *node;
898	static struct btrfs_key max_key = {
899		.objectid = (u64)-1,
900		.type = (u8)-1,
901		.offset = (u64)-1
902	};
903
904	rc = kzalloc(sizeof(*rc), GFP_NOFS);
905	if (!rc)
906		return ERR_PTR(-ENOMEM);
907
908	rc->root = root;
909	rc->key_start = *key_start;
910	rc->key_end = *key_end;
911	atomic_set(&rc->elems, 0);
912	init_waitqueue_head(&rc->wait);
913	kref_init(&rc->refcnt);
914	kref_get(&rc->refcnt); /* one ref for having elements */
915
916	node = btrfs_root_node(root);
917	start = node->start;
918	level = btrfs_header_level(node);
919	generation = btrfs_header_generation(node);
920	free_extent_buffer(node);
921
922	reada_add_block(rc, start, &max_key, level, generation);
923
924	reada_start_machine(root->fs_info);
925
926	return rc;
927}
928
929#ifdef DEBUG
930int btrfs_reada_wait(void *handle)
931{
932	struct reada_control *rc = handle;
933
934	while (atomic_read(&rc->elems)) {
935		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
936				   5 * HZ);
937		dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
938	}
939
940	dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
941
942	kref_put(&rc->refcnt, reada_control_release);
943
944	return 0;
945}
946#else
947int btrfs_reada_wait(void *handle)
948{
949	struct reada_control *rc = handle;
950
951	while (atomic_read(&rc->elems)) {
952		wait_event(rc->wait, atomic_read(&rc->elems) == 0);
953	}
954
955	kref_put(&rc->refcnt, reada_control_release);
956
957	return 0;
958}
959#endif
960
961void btrfs_reada_detach(void *handle)
962{
963	struct reada_control *rc = handle;
964
965	kref_put(&rc->refcnt, reada_control_release);
966}