Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <linux/ethtool.h>
   6
 
 
 
   7static s32 e1000_wait_autoneg(struct e1000_hw *hw);
 
   8static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   9					  u16 *data, bool read, bool page_set);
  10static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  11static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  12					  u16 *data, bool read);
  13
  14/* Cable length tables */
  15static const u16 e1000_m88_cable_length_table[] = {
  16	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
  17};
  18
  19#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  20		ARRAY_SIZE(e1000_m88_cable_length_table)
  21
  22static const u16 e1000_igp_2_cable_length_table[] = {
  23	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  24	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  25	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  26	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  27	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  28	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  29	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  30	124
  31};
  32
  33#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  34		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36/**
  37 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
  38 *  @hw: pointer to the HW structure
  39 *
  40 *  Read the PHY management control register and check whether a PHY reset
  41 *  is blocked.  If a reset is not blocked return 0, otherwise
  42 *  return E1000_BLK_PHY_RESET (12).
  43 **/
  44s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
  45{
  46	u32 manc;
  47
  48	manc = er32(MANC);
  49
  50	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
 
  51}
  52
  53/**
  54 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
  55 *  @hw: pointer to the HW structure
  56 *
  57 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
  58 *  revision in the hardware structure.
  59 **/
  60s32 e1000e_get_phy_id(struct e1000_hw *hw)
  61{
  62	struct e1000_phy_info *phy = &hw->phy;
  63	s32 ret_val = 0;
  64	u16 phy_id;
  65	u16 retry_count = 0;
  66
  67	if (!phy->ops.read_reg)
  68		return 0;
  69
  70	while (retry_count < 2) {
  71		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
  72		if (ret_val)
  73			return ret_val;
  74
  75		phy->id = (u32)(phy_id << 16);
  76		usleep_range(20, 40);
  77		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
  78		if (ret_val)
  79			return ret_val;
  80
  81		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
  82		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
  83
  84		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
  85			return 0;
  86
  87		retry_count++;
  88	}
  89
  90	return 0;
  91}
  92
  93/**
  94 *  e1000e_phy_reset_dsp - Reset PHY DSP
  95 *  @hw: pointer to the HW structure
  96 *
  97 *  Reset the digital signal processor.
  98 **/
  99s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 100{
 101	s32 ret_val;
 102
 103	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 104	if (ret_val)
 105		return ret_val;
 106
 107	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 108}
 109
 110/**
 111 *  e1000e_read_phy_reg_mdic - Read MDI control register
 112 *  @hw: pointer to the HW structure
 113 *  @offset: register offset to be read
 114 *  @data: pointer to the read data
 115 *
 116 *  Reads the MDI control register in the PHY at offset and stores the
 117 *  information read to data.
 118 **/
 119s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	u32 i, mdic = 0;
 123
 124	if (offset > MAX_PHY_REG_ADDRESS) {
 125		e_dbg("PHY Address %d is out of range\n", offset);
 126		return -E1000_ERR_PARAM;
 127	}
 128
 129	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 130	 * Control register.  The MAC will take care of interfacing with the
 131	 * PHY to retrieve the desired data.
 132	 */
 133	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 134		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 135		(E1000_MDIC_OP_READ));
 136
 137	ew32(MDIC, mdic);
 138
 139	/* Poll the ready bit to see if the MDI read completed
 
 140	 * Increasing the time out as testing showed failures with
 141	 * the lower time out
 142	 */
 143	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 144		udelay(50);
 145		mdic = er32(MDIC);
 146		if (mdic & E1000_MDIC_READY)
 147			break;
 148	}
 149	if (!(mdic & E1000_MDIC_READY)) {
 150		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
 151		return -E1000_ERR_PHY;
 152	}
 153	if (mdic & E1000_MDIC_ERROR) {
 154		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
 155		return -E1000_ERR_PHY;
 156	}
 157	if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 158		e_dbg("MDI Read offset error - requested %d, returned %d\n",
 159		      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 160		return -E1000_ERR_PHY;
 161	}
 162	*data = (u16)mdic;
 163
 164	/* Allow some time after each MDIC transaction to avoid
 
 165	 * reading duplicate data in the next MDIC transaction.
 166	 */
 167	if (hw->mac.type == e1000_pch2lan)
 168		udelay(100);
 
 169	return 0;
 170}
 171
 172/**
 173 *  e1000e_write_phy_reg_mdic - Write MDI control register
 174 *  @hw: pointer to the HW structure
 175 *  @offset: register offset to write to
 176 *  @data: data to write to register at offset
 177 *
 178 *  Writes data to MDI control register in the PHY at offset.
 179 **/
 180s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 181{
 182	struct e1000_phy_info *phy = &hw->phy;
 183	u32 i, mdic = 0;
 184
 185	if (offset > MAX_PHY_REG_ADDRESS) {
 186		e_dbg("PHY Address %d is out of range\n", offset);
 187		return -E1000_ERR_PARAM;
 188	}
 189
 190	/* Set up Op-code, Phy Address, and register offset in the MDI
 
 191	 * Control register.  The MAC will take care of interfacing with the
 192	 * PHY to retrieve the desired data.
 193	 */
 194	mdic = (((u32)data) |
 195		(offset << E1000_MDIC_REG_SHIFT) |
 196		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 197		(E1000_MDIC_OP_WRITE));
 198
 199	ew32(MDIC, mdic);
 200
 201	/* Poll the ready bit to see if the MDI read completed
 
 202	 * Increasing the time out as testing showed failures with
 203	 * the lower time out
 204	 */
 205	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 206		udelay(50);
 207		mdic = er32(MDIC);
 208		if (mdic & E1000_MDIC_READY)
 209			break;
 210	}
 211	if (!(mdic & E1000_MDIC_READY)) {
 212		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
 213		return -E1000_ERR_PHY;
 214	}
 215	if (mdic & E1000_MDIC_ERROR) {
 216		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
 217		return -E1000_ERR_PHY;
 218	}
 219	if (FIELD_GET(E1000_MDIC_REG_MASK, mdic) != offset) {
 220		e_dbg("MDI Write offset error - requested %d, returned %d\n",
 221		      offset, FIELD_GET(E1000_MDIC_REG_MASK, mdic));
 222		return -E1000_ERR_PHY;
 223	}
 224
 225	/* Allow some time after each MDIC transaction to avoid
 
 226	 * reading duplicate data in the next MDIC transaction.
 227	 */
 228	if (hw->mac.type == e1000_pch2lan)
 229		udelay(100);
 230
 231	return 0;
 232}
 233
 234/**
 235 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 236 *  @hw: pointer to the HW structure
 237 *  @offset: register offset to be read
 238 *  @data: pointer to the read data
 239 *
 240 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 241 *  and storing the retrieved information in data.  Release any acquired
 242 *  semaphores before exiting.
 243 **/
 244s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 245{
 246	s32 ret_val;
 247
 248	ret_val = hw->phy.ops.acquire(hw);
 249	if (ret_val)
 250		return ret_val;
 251
 252	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 253					   data);
 254
 255	hw->phy.ops.release(hw);
 256
 257	return ret_val;
 258}
 259
 260/**
 261 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 262 *  @hw: pointer to the HW structure
 263 *  @offset: register offset to write to
 264 *  @data: data to write at register offset
 265 *
 266 *  Acquires semaphore, if necessary, then writes the data to PHY register
 267 *  at the offset.  Release any acquired semaphores before exiting.
 268 **/
 269s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 270{
 271	s32 ret_val;
 272
 273	ret_val = hw->phy.ops.acquire(hw);
 274	if (ret_val)
 275		return ret_val;
 276
 277	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 278					    data);
 279
 280	hw->phy.ops.release(hw);
 281
 282	return ret_val;
 283}
 284
 285/**
 286 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 287 *  @hw: pointer to the HW structure
 288 *  @page: page to set (shifted left when necessary)
 289 *
 290 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 291 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 292 *  must set it appropriately (if necessary) after this function returns.
 293 **/
 294s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 295{
 296	e_dbg("Setting page 0x%x\n", page);
 297
 298	hw->phy.addr = 1;
 299
 300	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 301}
 302
 303/**
 304 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 305 *  @hw: pointer to the HW structure
 306 *  @offset: register offset to be read
 307 *  @data: pointer to the read data
 308 *  @locked: semaphore has already been acquired or not
 309 *
 310 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 311 *  and stores the retrieved information in data.  Release any acquired
 312 *  semaphores before exiting.
 313 **/
 314static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 315				     bool locked)
 316{
 317	s32 ret_val = 0;
 318
 319	if (!locked) {
 320		if (!hw->phy.ops.acquire)
 321			return 0;
 322
 323		ret_val = hw->phy.ops.acquire(hw);
 324		if (ret_val)
 325			return ret_val;
 326	}
 327
 328	if (offset > MAX_PHY_MULTI_PAGE_REG)
 329		ret_val = e1000e_write_phy_reg_mdic(hw,
 330						    IGP01E1000_PHY_PAGE_SELECT,
 331						    (u16)offset);
 332	if (!ret_val)
 333		ret_val = e1000e_read_phy_reg_mdic(hw,
 334						   MAX_PHY_REG_ADDRESS & offset,
 335						   data);
 336	if (!locked)
 337		hw->phy.ops.release(hw);
 338
 339	return ret_val;
 340}
 341
 342/**
 343 *  e1000e_read_phy_reg_igp - Read igp PHY register
 344 *  @hw: pointer to the HW structure
 345 *  @offset: register offset to be read
 346 *  @data: pointer to the read data
 347 *
 348 *  Acquires semaphore then reads the PHY register at offset and stores the
 349 *  retrieved information in data.
 350 *  Release the acquired semaphore before exiting.
 351 **/
 352s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 353{
 354	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 355}
 356
 357/**
 358 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 359 *  @hw: pointer to the HW structure
 360 *  @offset: register offset to be read
 361 *  @data: pointer to the read data
 362 *
 363 *  Reads the PHY register at offset and stores the retrieved information
 364 *  in data.  Assumes semaphore already acquired.
 365 **/
 366s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 367{
 368	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 369}
 370
 371/**
 372 *  __e1000e_write_phy_reg_igp - Write igp PHY register
 373 *  @hw: pointer to the HW structure
 374 *  @offset: register offset to write to
 375 *  @data: data to write at register offset
 376 *  @locked: semaphore has already been acquired or not
 377 *
 378 *  Acquires semaphore, if necessary, then writes the data to PHY register
 379 *  at the offset.  Release any acquired semaphores before exiting.
 380 **/
 381static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 382				      bool locked)
 383{
 384	s32 ret_val = 0;
 385
 386	if (!locked) {
 387		if (!hw->phy.ops.acquire)
 388			return 0;
 389
 390		ret_val = hw->phy.ops.acquire(hw);
 391		if (ret_val)
 392			return ret_val;
 393	}
 394
 395	if (offset > MAX_PHY_MULTI_PAGE_REG)
 396		ret_val = e1000e_write_phy_reg_mdic(hw,
 397						    IGP01E1000_PHY_PAGE_SELECT,
 398						    (u16)offset);
 399	if (!ret_val)
 400		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 401						    offset, data);
 
 402	if (!locked)
 403		hw->phy.ops.release(hw);
 404
 405	return ret_val;
 406}
 407
 408/**
 409 *  e1000e_write_phy_reg_igp - Write igp PHY register
 410 *  @hw: pointer to the HW structure
 411 *  @offset: register offset to write to
 412 *  @data: data to write at register offset
 413 *
 414 *  Acquires semaphore then writes the data to PHY register
 415 *  at the offset.  Release any acquired semaphores before exiting.
 416 **/
 417s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 418{
 419	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 420}
 421
 422/**
 423 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 424 *  @hw: pointer to the HW structure
 425 *  @offset: register offset to write to
 426 *  @data: data to write at register offset
 427 *
 428 *  Writes the data to PHY register at the offset.
 429 *  Assumes semaphore already acquired.
 430 **/
 431s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 432{
 433	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 434}
 435
 436/**
 437 *  __e1000_read_kmrn_reg - Read kumeran register
 438 *  @hw: pointer to the HW structure
 439 *  @offset: register offset to be read
 440 *  @data: pointer to the read data
 441 *  @locked: semaphore has already been acquired or not
 442 *
 443 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 444 *  using the kumeran interface.  The information retrieved is stored in data.
 445 *  Release any acquired semaphores before exiting.
 446 **/
 447static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 448				 bool locked)
 449{
 450	u32 kmrnctrlsta;
 451
 452	if (!locked) {
 453		s32 ret_val = 0;
 454
 455		if (!hw->phy.ops.acquire)
 456			return 0;
 457
 458		ret_val = hw->phy.ops.acquire(hw);
 459		if (ret_val)
 460			return ret_val;
 461	}
 462
 463	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
 464		      E1000_KMRNCTRLSTA_REN;
 465	ew32(KMRNCTRLSTA, kmrnctrlsta);
 466	e1e_flush();
 467
 468	udelay(2);
 469
 470	kmrnctrlsta = er32(KMRNCTRLSTA);
 471	*data = (u16)kmrnctrlsta;
 472
 473	if (!locked)
 474		hw->phy.ops.release(hw);
 475
 476	return 0;
 477}
 478
 479/**
 480 *  e1000e_read_kmrn_reg -  Read kumeran register
 481 *  @hw: pointer to the HW structure
 482 *  @offset: register offset to be read
 483 *  @data: pointer to the read data
 484 *
 485 *  Acquires semaphore then reads the PHY register at offset using the
 486 *  kumeran interface.  The information retrieved is stored in data.
 487 *  Release the acquired semaphore before exiting.
 488 **/
 489s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 490{
 491	return __e1000_read_kmrn_reg(hw, offset, data, false);
 492}
 493
 494/**
 495 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 496 *  @hw: pointer to the HW structure
 497 *  @offset: register offset to be read
 498 *  @data: pointer to the read data
 499 *
 500 *  Reads the PHY register at offset using the kumeran interface.  The
 501 *  information retrieved is stored in data.
 502 *  Assumes semaphore already acquired.
 503 **/
 504s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 505{
 506	return __e1000_read_kmrn_reg(hw, offset, data, true);
 507}
 508
 509/**
 510 *  __e1000_write_kmrn_reg - Write kumeran register
 511 *  @hw: pointer to the HW structure
 512 *  @offset: register offset to write to
 513 *  @data: data to write at register offset
 514 *  @locked: semaphore has already been acquired or not
 515 *
 516 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 517 *  at the offset using the kumeran interface.  Release any acquired semaphores
 518 *  before exiting.
 519 **/
 520static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 521				  bool locked)
 522{
 523	u32 kmrnctrlsta;
 524
 525	if (!locked) {
 526		s32 ret_val = 0;
 527
 528		if (!hw->phy.ops.acquire)
 529			return 0;
 530
 531		ret_val = hw->phy.ops.acquire(hw);
 532		if (ret_val)
 533			return ret_val;
 534	}
 535
 536	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
 537	ew32(KMRNCTRLSTA, kmrnctrlsta);
 538	e1e_flush();
 539
 540	udelay(2);
 541
 542	if (!locked)
 543		hw->phy.ops.release(hw);
 544
 545	return 0;
 546}
 547
 548/**
 549 *  e1000e_write_kmrn_reg -  Write kumeran register
 550 *  @hw: pointer to the HW structure
 551 *  @offset: register offset to write to
 552 *  @data: data to write at register offset
 553 *
 554 *  Acquires semaphore then writes the data to the PHY register at the offset
 555 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 556 **/
 557s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 558{
 559	return __e1000_write_kmrn_reg(hw, offset, data, false);
 560}
 561
 562/**
 563 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 564 *  @hw: pointer to the HW structure
 565 *  @offset: register offset to write to
 566 *  @data: data to write at register offset
 567 *
 568 *  Write the data to PHY register at the offset using the kumeran interface.
 569 *  Assumes semaphore already acquired.
 570 **/
 571s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 572{
 573	return __e1000_write_kmrn_reg(hw, offset, data, true);
 574}
 575
 576/**
 577 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 578 *  @hw: pointer to the HW structure
 579 *
 580 *  Sets up Master/slave mode
 581 **/
 582static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 583{
 584	s32 ret_val;
 585	u16 phy_data;
 586
 587	/* Resolve Master/Slave mode */
 588	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
 589	if (ret_val)
 590		return ret_val;
 591
 592	/* load defaults for future use */
 593	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
 594	    ((phy_data & CTL1000_AS_MASTER) ?
 595	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 596
 597	switch (hw->phy.ms_type) {
 598	case e1000_ms_force_master:
 599		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
 600		break;
 601	case e1000_ms_force_slave:
 602		phy_data |= CTL1000_ENABLE_MASTER;
 603		phy_data &= ~(CTL1000_AS_MASTER);
 604		break;
 605	case e1000_ms_auto:
 606		phy_data &= ~CTL1000_ENABLE_MASTER;
 607		fallthrough;
 608	default:
 609		break;
 610	}
 611
 612	return e1e_wphy(hw, MII_CTRL1000, phy_data);
 613}
 614
 615/**
 616 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 617 *  @hw: pointer to the HW structure
 618 *
 619 *  Sets up Carrier-sense on Transmit and downshift values.
 620 **/
 621s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 622{
 623	s32 ret_val;
 624	u16 phy_data;
 625
 626	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 627	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 628	if (ret_val)
 629		return ret_val;
 630
 631	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 632
 633	/* Enable downshift */
 634	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 635
 636	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 637	if (ret_val)
 638		return ret_val;
 639
 640	/* Set MDI/MDIX mode */
 641	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
 642	if (ret_val)
 643		return ret_val;
 644	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
 645	/* Options:
 646	 *   0 - Auto (default)
 647	 *   1 - MDI mode
 648	 *   2 - MDI-X mode
 649	 */
 650	switch (hw->phy.mdix) {
 651	case 1:
 652		break;
 653	case 2:
 654		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
 655		break;
 656	case 0:
 657	default:
 658		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
 659		break;
 660	}
 661	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
 662	if (ret_val)
 663		return ret_val;
 664
 665	return e1000_set_master_slave_mode(hw);
 666}
 667
 668/**
 669 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 670 *  @hw: pointer to the HW structure
 671 *
 672 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 673 *  and downshift values are set also.
 674 **/
 675s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 676{
 677	struct e1000_phy_info *phy = &hw->phy;
 678	s32 ret_val;
 679	u16 phy_data;
 680
 681	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 682	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 683	if (ret_val)
 684		return ret_val;
 685
 686	/* For BM PHY this bit is downshift enable */
 687	if (phy->type != e1000_phy_bm)
 688		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 689
 690	/* Options:
 
 691	 *   MDI/MDI-X = 0 (default)
 692	 *   0 - Auto for all speeds
 693	 *   1 - MDI mode
 694	 *   2 - MDI-X mode
 695	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 696	 */
 697	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 698
 699	switch (phy->mdix) {
 700	case 1:
 701		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 702		break;
 703	case 2:
 704		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 705		break;
 706	case 3:
 707		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 708		break;
 709	case 0:
 710	default:
 711		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 712		break;
 713	}
 714
 715	/* Options:
 
 716	 *   disable_polarity_correction = 0 (default)
 717	 *       Automatic Correction for Reversed Cable Polarity
 718	 *   0 - Disabled
 719	 *   1 - Enabled
 720	 */
 721	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 722	if (phy->disable_polarity_correction)
 723		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 724
 725	/* Enable downshift on BM (disabled by default) */
 726	if (phy->type == e1000_phy_bm) {
 727		/* For 82574/82583, first disable then enable downshift */
 728		if (phy->id == BME1000_E_PHY_ID_R2) {
 729			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 730			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 731					   phy_data);
 732			if (ret_val)
 733				return ret_val;
 734			/* Commit the changes. */
 735			ret_val = phy->ops.commit(hw);
 736			if (ret_val) {
 737				e_dbg("Error committing the PHY changes\n");
 738				return ret_val;
 739			}
 740		}
 741
 742		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 743	}
 744
 745	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 746	if (ret_val)
 747		return ret_val;
 748
 749	if ((phy->type == e1000_phy_m88) &&
 750	    (phy->revision < E1000_REVISION_4) &&
 751	    (phy->id != BME1000_E_PHY_ID_R2)) {
 752		/* Force TX_CLK in the Extended PHY Specific Control Register
 
 753		 * to 25MHz clock.
 754		 */
 755		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 756		if (ret_val)
 757			return ret_val;
 758
 759		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 760
 761		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
 
 762			/* 82573L PHY - set the downshift counter to 5x. */
 763			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 764			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 765		} else {
 766			/* Configure Master and Slave downshift values */
 767			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 768				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 769			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 770				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 771		}
 772		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 773		if (ret_val)
 774			return ret_val;
 775	}
 776
 777	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 778		/* Set PHY page 0, register 29 to 0x0003 */
 779		ret_val = e1e_wphy(hw, 29, 0x0003);
 780		if (ret_val)
 781			return ret_val;
 782
 783		/* Set PHY page 0, register 30 to 0x0000 */
 784		ret_val = e1e_wphy(hw, 30, 0x0000);
 785		if (ret_val)
 786			return ret_val;
 787	}
 788
 789	/* Commit the changes. */
 790	if (phy->ops.commit) {
 791		ret_val = phy->ops.commit(hw);
 792		if (ret_val) {
 793			e_dbg("Error committing the PHY changes\n");
 794			return ret_val;
 795		}
 796	}
 797
 798	if (phy->type == e1000_phy_82578) {
 799		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 800		if (ret_val)
 801			return ret_val;
 802
 803		/* 82578 PHY - set the downshift count to 1x. */
 804		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 805		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 806		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 807		if (ret_val)
 808			return ret_val;
 809	}
 810
 811	return 0;
 812}
 813
 814/**
 815 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 816 *  @hw: pointer to the HW structure
 817 *
 818 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 819 *  igp PHY's.
 820 **/
 821s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 822{
 823	struct e1000_phy_info *phy = &hw->phy;
 824	s32 ret_val;
 825	u16 data;
 826
 827	ret_val = e1000_phy_hw_reset(hw);
 828	if (ret_val) {
 829		e_dbg("Error resetting the PHY.\n");
 830		return ret_val;
 831	}
 832
 833	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 
 834	 * timeout issues when LFS is enabled.
 835	 */
 836	msleep(100);
 837
 838	/* disable lplu d0 during driver init */
 839	if (hw->phy.ops.set_d0_lplu_state) {
 840		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
 841		if (ret_val) {
 842			e_dbg("Error Disabling LPLU D0\n");
 843			return ret_val;
 844		}
 845	}
 846	/* Configure mdi-mdix settings */
 847	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 848	if (ret_val)
 849		return ret_val;
 850
 851	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 852
 853	switch (phy->mdix) {
 854	case 1:
 855		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 856		break;
 857	case 2:
 858		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 859		break;
 860	case 0:
 861	default:
 862		data |= IGP01E1000_PSCR_AUTO_MDIX;
 863		break;
 864	}
 865	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 866	if (ret_val)
 867		return ret_val;
 868
 869	/* set auto-master slave resolution settings */
 870	if (hw->mac.autoneg) {
 871		/* when autonegotiation advertisement is only 1000Mbps then we
 
 872		 * should disable SmartSpeed and enable Auto MasterSlave
 873		 * resolution as hardware default.
 874		 */
 875		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 876			/* Disable SmartSpeed */
 877			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 878					   &data);
 879			if (ret_val)
 880				return ret_val;
 881
 882			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 883			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 884					   data);
 885			if (ret_val)
 886				return ret_val;
 887
 888			/* Set auto Master/Slave resolution process */
 889			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
 890			if (ret_val)
 891				return ret_val;
 892
 893			data &= ~CTL1000_ENABLE_MASTER;
 894			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
 895			if (ret_val)
 896				return ret_val;
 897		}
 898
 899		ret_val = e1000_set_master_slave_mode(hw);
 900	}
 901
 902	return ret_val;
 903}
 904
 905/**
 906 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 907 *  @hw: pointer to the HW structure
 908 *
 909 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 910 *  register and if the PHY is already setup for auto-negotiation, then
 911 *  return successful.  Otherwise, setup advertisement and flow control to
 912 *  the appropriate values for the wanted auto-negotiation.
 913 **/
 914static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 915{
 916	struct e1000_phy_info *phy = &hw->phy;
 917	s32 ret_val;
 918	u16 mii_autoneg_adv_reg;
 919	u16 mii_1000t_ctrl_reg = 0;
 920
 921	phy->autoneg_advertised &= phy->autoneg_mask;
 922
 923	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 924	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
 925	if (ret_val)
 926		return ret_val;
 927
 928	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 929		/* Read the MII 1000Base-T Control Register (Address 9). */
 930		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
 931		if (ret_val)
 932			return ret_val;
 933	}
 934
 935	/* Need to parse both autoneg_advertised and fc and set up
 
 936	 * the appropriate PHY registers.  First we will parse for
 937	 * autoneg_advertised software override.  Since we can advertise
 938	 * a plethora of combinations, we need to check each bit
 939	 * individually.
 940	 */
 941
 942	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
 
 943	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 944	 * the  1000Base-T Control Register (Address 9).
 945	 */
 946	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
 947				 ADVERTISE_100HALF |
 948				 ADVERTISE_10FULL | ADVERTISE_10HALF);
 949	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
 
 950
 951	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 952
 953	/* Do we want to advertise 10 Mb Half Duplex? */
 954	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
 955		e_dbg("Advertise 10mb Half duplex\n");
 956		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
 957	}
 958
 959	/* Do we want to advertise 10 Mb Full Duplex? */
 960	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
 961		e_dbg("Advertise 10mb Full duplex\n");
 962		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
 963	}
 964
 965	/* Do we want to advertise 100 Mb Half Duplex? */
 966	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
 967		e_dbg("Advertise 100mb Half duplex\n");
 968		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
 969	}
 970
 971	/* Do we want to advertise 100 Mb Full Duplex? */
 972	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
 973		e_dbg("Advertise 100mb Full duplex\n");
 974		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
 975	}
 976
 977	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
 978	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
 979		e_dbg("Advertise 1000mb Half duplex request denied!\n");
 980
 981	/* Do we want to advertise 1000 Mb Full Duplex? */
 982	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
 983		e_dbg("Advertise 1000mb Full duplex\n");
 984		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
 985	}
 986
 987	/* Check for a software override of the flow control settings, and
 
 988	 * setup the PHY advertisement registers accordingly.  If
 989	 * auto-negotiation is enabled, then software will have to set the
 990	 * "PAUSE" bits to the correct value in the Auto-Negotiation
 991	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
 992	 * negotiation.
 993	 *
 994	 * The possible values of the "fc" parameter are:
 995	 *      0:  Flow control is completely disabled
 996	 *      1:  Rx flow control is enabled (we can receive pause frames
 997	 *          but not send pause frames).
 998	 *      2:  Tx flow control is enabled (we can send pause frames
 999	 *          but we do not support receiving pause frames).
1000	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1001	 *  other:  No software override.  The flow control configuration
1002	 *          in the EEPROM is used.
1003	 */
1004	switch (hw->fc.current_mode) {
1005	case e1000_fc_none:
1006		/* Flow control (Rx & Tx) is completely disabled by a
 
1007		 * software over-ride.
1008		 */
1009		mii_autoneg_adv_reg &=
1010		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1011		phy->autoneg_advertised &=
1012		    ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1013		break;
1014	case e1000_fc_rx_pause:
1015		/* Rx Flow control is enabled, and Tx Flow control is
 
1016		 * disabled, by a software over-ride.
1017		 *
1018		 * Since there really isn't a way to advertise that we are
1019		 * capable of Rx Pause ONLY, we will advertise that we
1020		 * support both symmetric and asymmetric Rx PAUSE.  Later
1021		 * (in e1000e_config_fc_after_link_up) we will disable the
1022		 * hw's ability to send PAUSE frames.
1023		 */
1024		mii_autoneg_adv_reg |=
1025		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1026		phy->autoneg_advertised |=
1027		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1028		break;
1029	case e1000_fc_tx_pause:
1030		/* Tx Flow control is enabled, and Rx Flow control is
 
1031		 * disabled, by a software over-ride.
1032		 */
1033		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1034		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1035		phy->autoneg_advertised |= ADVERTISED_Asym_Pause;
1036		phy->autoneg_advertised &= ~ADVERTISED_Pause;
1037		break;
1038	case e1000_fc_full:
1039		/* Flow control (both Rx and Tx) is enabled by a software
 
1040		 * over-ride.
1041		 */
1042		mii_autoneg_adv_reg |=
1043		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1044		phy->autoneg_advertised |=
1045		    (ADVERTISED_Pause | ADVERTISED_Asym_Pause);
1046		break;
1047	default:
1048		e_dbg("Flow control param set incorrectly\n");
1049		return -E1000_ERR_CONFIG;
1050	}
1051
1052	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1053	if (ret_val)
1054		return ret_val;
1055
1056	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1057
1058	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1059		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1060
1061	return ret_val;
1062}
1063
1064/**
1065 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1066 *  @hw: pointer to the HW structure
1067 *
1068 *  Performs initial bounds checking on autoneg advertisement parameter, then
1069 *  configure to advertise the full capability.  Setup the PHY to autoneg
1070 *  and restart the negotiation process between the link partner.  If
1071 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1072 **/
1073static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1074{
1075	struct e1000_phy_info *phy = &hw->phy;
1076	s32 ret_val;
1077	u16 phy_ctrl;
1078
1079	/* Perform some bounds checking on the autoneg advertisement
 
1080	 * parameter.
1081	 */
1082	phy->autoneg_advertised &= phy->autoneg_mask;
1083
1084	/* If autoneg_advertised is zero, we assume it was not defaulted
 
1085	 * by the calling code so we set to advertise full capability.
1086	 */
1087	if (!phy->autoneg_advertised)
1088		phy->autoneg_advertised = phy->autoneg_mask;
1089
1090	e_dbg("Reconfiguring auto-neg advertisement params\n");
1091	ret_val = e1000_phy_setup_autoneg(hw);
1092	if (ret_val) {
1093		e_dbg("Error Setting up Auto-Negotiation\n");
1094		return ret_val;
1095	}
1096	e_dbg("Restarting Auto-Neg\n");
1097
1098	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
 
1099	 * the Auto Neg Restart bit in the PHY control register.
1100	 */
1101	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1102	if (ret_val)
1103		return ret_val;
1104
1105	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1106	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1107	if (ret_val)
1108		return ret_val;
1109
1110	/* Does the user want to wait for Auto-Neg to complete here, or
 
1111	 * check at a later time (for example, callback routine).
1112	 */
1113	if (phy->autoneg_wait_to_complete) {
1114		ret_val = e1000_wait_autoneg(hw);
1115		if (ret_val) {
1116			e_dbg("Error while waiting for autoneg to complete\n");
1117			return ret_val;
1118		}
1119	}
1120
1121	hw->mac.get_link_status = true;
1122
1123	return ret_val;
1124}
1125
1126/**
1127 *  e1000e_setup_copper_link - Configure copper link settings
1128 *  @hw: pointer to the HW structure
1129 *
1130 *  Calls the appropriate function to configure the link for auto-neg or forced
1131 *  speed and duplex.  Then we check for link, once link is established calls
1132 *  to configure collision distance and flow control are called.  If link is
1133 *  not established, we return -E1000_ERR_PHY (-2).
1134 **/
1135s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1136{
1137	s32 ret_val;
1138	bool link;
1139
1140	if (hw->mac.autoneg) {
1141		/* Setup autoneg and flow control advertisement and perform
 
1142		 * autonegotiation.
1143		 */
1144		ret_val = e1000_copper_link_autoneg(hw);
1145		if (ret_val)
1146			return ret_val;
1147	} else {
1148		/* PHY will be set to 10H, 10F, 100H or 100F
 
1149		 * depending on user settings.
1150		 */
1151		e_dbg("Forcing Speed and Duplex\n");
1152		ret_val = hw->phy.ops.force_speed_duplex(hw);
1153		if (ret_val) {
1154			e_dbg("Error Forcing Speed and Duplex\n");
1155			return ret_val;
1156		}
1157	}
1158
1159	/* Check link status. Wait up to 100 microseconds for link to become
 
1160	 * valid.
1161	 */
1162	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1163					      &link);
1164	if (ret_val)
1165		return ret_val;
1166
1167	if (link) {
1168		e_dbg("Valid link established!!!\n");
1169		hw->mac.ops.config_collision_dist(hw);
1170		ret_val = e1000e_config_fc_after_link_up(hw);
1171	} else {
1172		e_dbg("Unable to establish link!!!\n");
1173	}
1174
1175	return ret_val;
1176}
1177
1178/**
1179 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1180 *  @hw: pointer to the HW structure
1181 *
1182 *  Calls the PHY setup function to force speed and duplex.  Clears the
1183 *  auto-crossover to force MDI manually.  Waits for link and returns
1184 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1185 **/
1186s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1187{
1188	struct e1000_phy_info *phy = &hw->phy;
1189	s32 ret_val;
1190	u16 phy_data;
1191	bool link;
1192
1193	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1194	if (ret_val)
1195		return ret_val;
1196
1197	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1198
1199	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1200	if (ret_val)
1201		return ret_val;
1202
1203	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
 
1204	 * forced whenever speed and duplex are forced.
1205	 */
1206	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1207	if (ret_val)
1208		return ret_val;
1209
1210	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1212
1213	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1214	if (ret_val)
1215		return ret_val;
1216
1217	e_dbg("IGP PSCR: %X\n", phy_data);
1218
1219	udelay(1);
1220
1221	if (phy->autoneg_wait_to_complete) {
1222		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1223
1224		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1225						      100000, &link);
1226		if (ret_val)
1227			return ret_val;
1228
1229		if (!link)
1230			e_dbg("Link taking longer than expected.\n");
1231
1232		/* Try once more */
1233		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1234						      100000, &link);
1235	}
1236
1237	return ret_val;
1238}
1239
1240/**
1241 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1242 *  @hw: pointer to the HW structure
1243 *
1244 *  Calls the PHY setup function to force speed and duplex.  Clears the
1245 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1246 *  changes.  If time expires while waiting for link up, we reset the DSP.
1247 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1248 *  successful completion, else return corresponding error code.
1249 **/
1250s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1251{
1252	struct e1000_phy_info *phy = &hw->phy;
1253	s32 ret_val;
1254	u16 phy_data;
1255	bool link;
1256
1257	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 
1258	 * forced whenever speed and duplex are forced.
1259	 */
1260	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1265	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1266	if (ret_val)
1267		return ret_val;
1268
1269	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1270
1271	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1272	if (ret_val)
1273		return ret_val;
1274
1275	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1276
1277	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1278	if (ret_val)
1279		return ret_val;
1280
1281	/* Reset the phy to commit changes. */
1282	if (hw->phy.ops.commit) {
1283		ret_val = hw->phy.ops.commit(hw);
1284		if (ret_val)
1285			return ret_val;
1286	}
1287
1288	if (phy->autoneg_wait_to_complete) {
1289		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1290
1291		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1292						      100000, &link);
1293		if (ret_val)
1294			return ret_val;
1295
1296		if (!link) {
1297			if (hw->phy.type != e1000_phy_m88) {
1298				e_dbg("Link taking longer than expected.\n");
1299			} else {
1300				/* We didn't get link.
 
1301				 * Reset the DSP and cross our fingers.
1302				 */
1303				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1304						   0x001d);
1305				if (ret_val)
1306					return ret_val;
1307				ret_val = e1000e_phy_reset_dsp(hw);
1308				if (ret_val)
1309					return ret_val;
1310			}
1311		}
1312
1313		/* Try once more */
1314		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1315						      100000, &link);
1316		if (ret_val)
1317			return ret_val;
1318	}
1319
1320	if (hw->phy.type != e1000_phy_m88)
1321		return 0;
1322
1323	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1324	if (ret_val)
1325		return ret_val;
1326
1327	/* Resetting the phy means we need to re-force TX_CLK in the
 
1328	 * Extended PHY Specific Control Register to 25MHz clock from
1329	 * the reset value of 2.5MHz.
1330	 */
1331	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1332	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1333	if (ret_val)
1334		return ret_val;
1335
1336	/* In addition, we must re-enable CRS on Tx for both half and full
 
1337	 * duplex.
1338	 */
1339	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1340	if (ret_val)
1341		return ret_val;
1342
1343	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1344	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1345
1346	return ret_val;
1347}
1348
1349/**
1350 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1351 *  @hw: pointer to the HW structure
1352 *
1353 *  Forces the speed and duplex settings of the PHY.
1354 *  This is a function pointer entry point only called by
1355 *  PHY setup routines.
1356 **/
1357s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1358{
1359	struct e1000_phy_info *phy = &hw->phy;
1360	s32 ret_val;
1361	u16 data;
1362	bool link;
1363
1364	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1365	if (ret_val)
1366		return ret_val;
1367
1368	e1000e_phy_force_speed_duplex_setup(hw, &data);
1369
1370	ret_val = e1e_wphy(hw, MII_BMCR, data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/* Disable MDI-X support for 10/100 */
1375	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1376	if (ret_val)
1377		return ret_val;
1378
1379	data &= ~IFE_PMC_AUTO_MDIX;
1380	data &= ~IFE_PMC_FORCE_MDIX;
1381
1382	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1383	if (ret_val)
1384		return ret_val;
1385
1386	e_dbg("IFE PMC: %X\n", data);
1387
1388	udelay(1);
1389
1390	if (phy->autoneg_wait_to_complete) {
1391		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1392
1393		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1394						      100000, &link);
1395		if (ret_val)
1396			return ret_val;
1397
1398		if (!link)
1399			e_dbg("Link taking longer than expected.\n");
1400
1401		/* Try once more */
1402		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1403						      100000, &link);
1404		if (ret_val)
1405			return ret_val;
1406	}
1407
1408	return 0;
1409}
1410
1411/**
1412 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1413 *  @hw: pointer to the HW structure
1414 *  @phy_ctrl: pointer to current value of MII_BMCR
1415 *
1416 *  Forces speed and duplex on the PHY by doing the following: disable flow
1417 *  control, force speed/duplex on the MAC, disable auto speed detection,
1418 *  disable auto-negotiation, configure duplex, configure speed, configure
1419 *  the collision distance, write configuration to CTRL register.  The
1420 *  caller must write to the MII_BMCR register for these settings to
1421 *  take affect.
1422 **/
1423void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1424{
1425	struct e1000_mac_info *mac = &hw->mac;
1426	u32 ctrl;
1427
1428	/* Turn off flow control when forcing speed/duplex */
1429	hw->fc.current_mode = e1000_fc_none;
1430
1431	/* Force speed/duplex on the mac */
1432	ctrl = er32(CTRL);
1433	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1434	ctrl &= ~E1000_CTRL_SPD_SEL;
1435
1436	/* Disable Auto Speed Detection */
1437	ctrl &= ~E1000_CTRL_ASDE;
1438
1439	/* Disable autoneg on the phy */
1440	*phy_ctrl &= ~BMCR_ANENABLE;
1441
1442	/* Forcing Full or Half Duplex? */
1443	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1444		ctrl &= ~E1000_CTRL_FD;
1445		*phy_ctrl &= ~BMCR_FULLDPLX;
1446		e_dbg("Half Duplex\n");
1447	} else {
1448		ctrl |= E1000_CTRL_FD;
1449		*phy_ctrl |= BMCR_FULLDPLX;
1450		e_dbg("Full Duplex\n");
1451	}
1452
1453	/* Forcing 10mb or 100mb? */
1454	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1455		ctrl |= E1000_CTRL_SPD_100;
1456		*phy_ctrl |= BMCR_SPEED100;
1457		*phy_ctrl &= ~BMCR_SPEED1000;
1458		e_dbg("Forcing 100mb\n");
1459	} else {
1460		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1461		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
 
1462		e_dbg("Forcing 10mb\n");
1463	}
1464
1465	hw->mac.ops.config_collision_dist(hw);
1466
1467	ew32(CTRL, ctrl);
1468}
1469
1470/**
1471 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1472 *  @hw: pointer to the HW structure
1473 *  @active: boolean used to enable/disable lplu
1474 *
1475 *  Success returns 0, Failure returns 1
1476 *
1477 *  The low power link up (lplu) state is set to the power management level D3
1478 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1479 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1480 *  is used during Dx states where the power conservation is most important.
1481 *  During driver activity, SmartSpeed should be enabled so performance is
1482 *  maintained.
1483 **/
1484s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1485{
1486	struct e1000_phy_info *phy = &hw->phy;
1487	s32 ret_val;
1488	u16 data;
1489
1490	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1491	if (ret_val)
1492		return ret_val;
1493
1494	if (!active) {
1495		data &= ~IGP02E1000_PM_D3_LPLU;
1496		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1497		if (ret_val)
1498			return ret_val;
1499		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
1500		 * during Dx states where the power conservation is most
1501		 * important.  During driver activity we should enable
1502		 * SmartSpeed, so performance is maintained.
1503		 */
1504		if (phy->smart_speed == e1000_smart_speed_on) {
1505			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1506					   &data);
1507			if (ret_val)
1508				return ret_val;
1509
1510			data |= IGP01E1000_PSCFR_SMART_SPEED;
1511			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1512					   data);
1513			if (ret_val)
1514				return ret_val;
1515		} else if (phy->smart_speed == e1000_smart_speed_off) {
1516			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1517					   &data);
1518			if (ret_val)
1519				return ret_val;
1520
1521			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1522			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1523					   data);
1524			if (ret_val)
1525				return ret_val;
1526		}
1527	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1528		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1529		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1530		data |= IGP02E1000_PM_D3_LPLU;
1531		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1532		if (ret_val)
1533			return ret_val;
1534
1535		/* When LPLU is enabled, we should disable SmartSpeed */
1536		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1537		if (ret_val)
1538			return ret_val;
1539
1540		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1541		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1542	}
1543
1544	return ret_val;
1545}
1546
1547/**
1548 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1549 *  @hw: pointer to the HW structure
1550 *
1551 *  Success returns 0, Failure returns 1
1552 *
1553 *  A downshift is detected by querying the PHY link health.
1554 **/
1555s32 e1000e_check_downshift(struct e1000_hw *hw)
1556{
1557	struct e1000_phy_info *phy = &hw->phy;
1558	s32 ret_val;
1559	u16 phy_data, offset, mask;
1560
1561	switch (phy->type) {
1562	case e1000_phy_m88:
1563	case e1000_phy_gg82563:
1564	case e1000_phy_bm:
1565	case e1000_phy_82578:
1566		offset = M88E1000_PHY_SPEC_STATUS;
1567		mask = M88E1000_PSSR_DOWNSHIFT;
1568		break;
1569	case e1000_phy_igp_2:
1570	case e1000_phy_igp_3:
1571		offset = IGP01E1000_PHY_LINK_HEALTH;
1572		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1573		break;
1574	default:
1575		/* speed downshift not supported */
1576		phy->speed_downgraded = false;
1577		return 0;
1578	}
1579
1580	ret_val = e1e_rphy(hw, offset, &phy_data);
1581
1582	if (!ret_val)
1583		phy->speed_downgraded = !!(phy_data & mask);
1584
1585	return ret_val;
1586}
1587
1588/**
1589 *  e1000_check_polarity_m88 - Checks the polarity.
1590 *  @hw: pointer to the HW structure
1591 *
1592 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1593 *
1594 *  Polarity is determined based on the PHY specific status register.
1595 **/
1596s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1597{
1598	struct e1000_phy_info *phy = &hw->phy;
1599	s32 ret_val;
1600	u16 data;
1601
1602	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1603
1604	if (!ret_val)
1605		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1606				       ? e1000_rev_polarity_reversed
1607				       : e1000_rev_polarity_normal);
1608
1609	return ret_val;
1610}
1611
1612/**
1613 *  e1000_check_polarity_igp - Checks the polarity.
1614 *  @hw: pointer to the HW structure
1615 *
1616 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1617 *
1618 *  Polarity is determined based on the PHY port status register, and the
1619 *  current speed (since there is no polarity at 100Mbps).
1620 **/
1621s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1622{
1623	struct e1000_phy_info *phy = &hw->phy;
1624	s32 ret_val;
1625	u16 data, offset, mask;
1626
1627	/* Polarity is determined based on the speed of
 
1628	 * our connection.
1629	 */
1630	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1631	if (ret_val)
1632		return ret_val;
1633
1634	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1635	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1636		offset = IGP01E1000_PHY_PCS_INIT_REG;
1637		mask = IGP01E1000_PHY_POLARITY_MASK;
1638	} else {
1639		/* This really only applies to 10Mbps since
 
1640		 * there is no polarity for 100Mbps (always 0).
1641		 */
1642		offset = IGP01E1000_PHY_PORT_STATUS;
1643		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1644	}
1645
1646	ret_val = e1e_rphy(hw, offset, &data);
1647
1648	if (!ret_val)
1649		phy->cable_polarity = ((data & mask)
1650				       ? e1000_rev_polarity_reversed
1651				       : e1000_rev_polarity_normal);
1652
1653	return ret_val;
1654}
1655
1656/**
1657 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1658 *  @hw: pointer to the HW structure
1659 *
1660 *  Polarity is determined on the polarity reversal feature being enabled.
1661 **/
1662s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1663{
1664	struct e1000_phy_info *phy = &hw->phy;
1665	s32 ret_val;
1666	u16 phy_data, offset, mask;
1667
1668	/* Polarity is determined based on the reversal feature being enabled.
 
1669	 */
1670	if (phy->polarity_correction) {
1671		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1672		mask = IFE_PESC_POLARITY_REVERSED;
1673	} else {
1674		offset = IFE_PHY_SPECIAL_CONTROL;
1675		mask = IFE_PSC_FORCE_POLARITY;
1676	}
1677
1678	ret_val = e1e_rphy(hw, offset, &phy_data);
1679
1680	if (!ret_val)
1681		phy->cable_polarity = ((phy_data & mask)
1682				       ? e1000_rev_polarity_reversed
1683				       : e1000_rev_polarity_normal);
1684
1685	return ret_val;
1686}
1687
1688/**
1689 *  e1000_wait_autoneg - Wait for auto-neg completion
1690 *  @hw: pointer to the HW structure
1691 *
1692 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1693 *  limit to expire, which ever happens first.
1694 **/
1695static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1696{
1697	s32 ret_val = 0;
1698	u16 i, phy_status;
1699
1700	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1701	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1702		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1703		if (ret_val)
1704			break;
1705		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1706		if (ret_val)
1707			break;
1708		if (phy_status & BMSR_ANEGCOMPLETE)
1709			break;
1710		msleep(100);
1711	}
1712
1713	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
 
1714	 * has completed.
1715	 */
1716	return ret_val;
1717}
1718
1719/**
1720 *  e1000e_phy_has_link_generic - Polls PHY for link
1721 *  @hw: pointer to the HW structure
1722 *  @iterations: number of times to poll for link
1723 *  @usec_interval: delay between polling attempts
1724 *  @success: pointer to whether polling was successful or not
1725 *
1726 *  Polls the PHY status register for link, 'iterations' number of times.
1727 **/
1728s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1729				u32 usec_interval, bool *success)
1730{
1731	s32 ret_val = 0;
1732	u16 i, phy_status;
1733
1734	*success = false;
1735	for (i = 0; i < iterations; i++) {
1736		/* Some PHYs require the MII_BMSR register to be read
 
1737		 * twice due to the link bit being sticky.  No harm doing
1738		 * it across the board.
1739		 */
1740		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1741		if (ret_val) {
1742			/* If the first read fails, another entity may have
 
1743			 * ownership of the resources, wait and try again to
1744			 * see if they have relinquished the resources yet.
1745			 */
1746			if (usec_interval >= 1000)
1747				msleep(usec_interval / 1000);
1748			else
1749				udelay(usec_interval);
1750		}
1751		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1752		if (ret_val)
1753			break;
1754		if (phy_status & BMSR_LSTATUS) {
1755			*success = true;
1756			break;
1757		}
1758		if (usec_interval >= 1000)
1759			msleep(usec_interval / 1000);
1760		else
1761			udelay(usec_interval);
1762	}
1763
 
 
1764	return ret_val;
1765}
1766
1767/**
1768 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1769 *  @hw: pointer to the HW structure
1770 *
1771 *  Reads the PHY specific status register to retrieve the cable length
1772 *  information.  The cable length is determined by averaging the minimum and
1773 *  maximum values to get the "average" cable length.  The m88 PHY has four
1774 *  possible cable length values, which are:
1775 *	Register Value		Cable Length
1776 *	0			< 50 meters
1777 *	1			50 - 80 meters
1778 *	2			80 - 110 meters
1779 *	3			110 - 140 meters
1780 *	4			> 140 meters
1781 **/
1782s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1783{
1784	struct e1000_phy_info *phy = &hw->phy;
1785	s32 ret_val;
1786	u16 phy_data, index;
1787
1788	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1789	if (ret_val)
1790		return ret_val;
1791
1792	index = FIELD_GET(M88E1000_PSSR_CABLE_LENGTH, phy_data);
 
1793
1794	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1795		return -E1000_ERR_PHY;
1796
1797	phy->min_cable_length = e1000_m88_cable_length_table[index];
1798	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1799
1800	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1801
1802	return 0;
1803}
1804
1805/**
1806 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  The automatic gain control (agc) normalizes the amplitude of the
1810 *  received signal, adjusting for the attenuation produced by the
1811 *  cable.  By reading the AGC registers, which represent the
1812 *  combination of coarse and fine gain value, the value can be put
1813 *  into a lookup table to obtain the approximate cable length
1814 *  for each channel.
1815 **/
1816s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1817{
1818	struct e1000_phy_info *phy = &hw->phy;
1819	s32 ret_val;
1820	u16 phy_data, i, agc_value = 0;
1821	u16 cur_agc_index, max_agc_index = 0;
1822	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1823	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1824		IGP02E1000_PHY_AGC_A,
1825		IGP02E1000_PHY_AGC_B,
1826		IGP02E1000_PHY_AGC_C,
1827		IGP02E1000_PHY_AGC_D
1828	};
1829
1830	/* Read the AGC registers for all channels */
1831	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1832		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1833		if (ret_val)
1834			return ret_val;
1835
1836		/* Getting bits 15:9, which represent the combination of
 
1837		 * coarse and fine gain values.  The result is a number
1838		 * that can be put into the lookup table to obtain the
1839		 * approximate cable length.
1840		 */
1841		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1842				 IGP02E1000_AGC_LENGTH_MASK);
1843
1844		/* Array index bound check. */
1845		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1846		    (cur_agc_index == 0))
1847			return -E1000_ERR_PHY;
1848
1849		/* Remove min & max AGC values from calculation. */
1850		if (e1000_igp_2_cable_length_table[min_agc_index] >
1851		    e1000_igp_2_cable_length_table[cur_agc_index])
1852			min_agc_index = cur_agc_index;
1853		if (e1000_igp_2_cable_length_table[max_agc_index] <
1854		    e1000_igp_2_cable_length_table[cur_agc_index])
1855			max_agc_index = cur_agc_index;
1856
1857		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1858	}
1859
1860	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1861		      e1000_igp_2_cable_length_table[max_agc_index]);
1862	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1863
1864	/* Calculate cable length with the error range of +/- 10 meters. */
1865	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1866				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1867	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1868
1869	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1870
1871	return 0;
1872}
1873
1874/**
1875 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1876 *  @hw: pointer to the HW structure
1877 *
1878 *  Valid for only copper links.  Read the PHY status register (sticky read)
1879 *  to verify that link is up.  Read the PHY special control register to
1880 *  determine the polarity and 10base-T extended distance.  Read the PHY
1881 *  special status register to determine MDI/MDIx and current speed.  If
1882 *  speed is 1000, then determine cable length, local and remote receiver.
1883 **/
1884s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1885{
1886	struct e1000_phy_info *phy = &hw->phy;
1887	s32 ret_val;
1888	u16 phy_data;
1889	bool link;
1890
1891	if (phy->media_type != e1000_media_type_copper) {
1892		e_dbg("Phy info is only valid for copper media\n");
1893		return -E1000_ERR_CONFIG;
1894	}
1895
1896	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1897	if (ret_val)
1898		return ret_val;
1899
1900	if (!link) {
1901		e_dbg("Phy info is only valid if link is up\n");
1902		return -E1000_ERR_CONFIG;
1903	}
1904
1905	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1906	if (ret_val)
1907		return ret_val;
1908
1909	phy->polarity_correction = !!(phy_data &
1910				      M88E1000_PSCR_POLARITY_REVERSAL);
1911
1912	ret_val = e1000_check_polarity_m88(hw);
1913	if (ret_val)
1914		return ret_val;
1915
1916	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1917	if (ret_val)
1918		return ret_val;
1919
1920	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1921
1922	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1923		ret_val = hw->phy.ops.get_cable_length(hw);
1924		if (ret_val)
1925			return ret_val;
1926
1927		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1928		if (ret_val)
1929			return ret_val;
1930
1931		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1932		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1933
1934		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1935		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1936	} else {
1937		/* Set values to "undefined" */
1938		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1939		phy->local_rx = e1000_1000t_rx_status_undefined;
1940		phy->remote_rx = e1000_1000t_rx_status_undefined;
1941	}
1942
1943	return ret_val;
1944}
1945
1946/**
1947 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1948 *  @hw: pointer to the HW structure
1949 *
1950 *  Read PHY status to determine if link is up.  If link is up, then
1951 *  set/determine 10base-T extended distance and polarity correction.  Read
1952 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1953 *  determine on the cable length, local and remote receiver.
1954 **/
1955s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1956{
1957	struct e1000_phy_info *phy = &hw->phy;
1958	s32 ret_val;
1959	u16 data;
1960	bool link;
1961
1962	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1963	if (ret_val)
1964		return ret_val;
1965
1966	if (!link) {
1967		e_dbg("Phy info is only valid if link is up\n");
1968		return -E1000_ERR_CONFIG;
1969	}
1970
1971	phy->polarity_correction = true;
1972
1973	ret_val = e1000_check_polarity_igp(hw);
1974	if (ret_val)
1975		return ret_val;
1976
1977	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1978	if (ret_val)
1979		return ret_val;
1980
1981	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1982
1983	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1984	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1985		ret_val = phy->ops.get_cable_length(hw);
1986		if (ret_val)
1987			return ret_val;
1988
1989		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1990		if (ret_val)
1991			return ret_val;
1992
1993		phy->local_rx = (data & LPA_1000LOCALRXOK)
1994		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1995
1996		phy->remote_rx = (data & LPA_1000REMRXOK)
1997		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
1998	} else {
1999		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2000		phy->local_rx = e1000_1000t_rx_status_undefined;
2001		phy->remote_rx = e1000_1000t_rx_status_undefined;
2002	}
2003
2004	return ret_val;
2005}
2006
2007/**
2008 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2009 *  @hw: pointer to the HW structure
2010 *
2011 *  Populates "phy" structure with various feature states.
2012 **/
2013s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2014{
2015	struct e1000_phy_info *phy = &hw->phy;
2016	s32 ret_val;
2017	u16 data;
2018	bool link;
2019
2020	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2021	if (ret_val)
2022		return ret_val;
2023
2024	if (!link) {
2025		e_dbg("Phy info is only valid if link is up\n");
2026		return -E1000_ERR_CONFIG;
2027	}
2028
2029	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2030	if (ret_val)
2031		return ret_val;
2032	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2033
2034	if (phy->polarity_correction) {
2035		ret_val = e1000_check_polarity_ife(hw);
2036		if (ret_val)
2037			return ret_val;
2038	} else {
2039		/* Polarity is forced */
2040		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2041				       ? e1000_rev_polarity_reversed
2042				       : e1000_rev_polarity_normal);
2043	}
2044
2045	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2046	if (ret_val)
2047		return ret_val;
2048
2049	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2050
2051	/* The following parameters are undefined for 10/100 operation. */
2052	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2053	phy->local_rx = e1000_1000t_rx_status_undefined;
2054	phy->remote_rx = e1000_1000t_rx_status_undefined;
2055
2056	return 0;
2057}
2058
2059/**
2060 *  e1000e_phy_sw_reset - PHY software reset
2061 *  @hw: pointer to the HW structure
2062 *
2063 *  Does a software reset of the PHY by reading the PHY control register and
2064 *  setting/write the control register reset bit to the PHY.
2065 **/
2066s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2067{
2068	s32 ret_val;
2069	u16 phy_ctrl;
2070
2071	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2072	if (ret_val)
2073		return ret_val;
2074
2075	phy_ctrl |= BMCR_RESET;
2076	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2077	if (ret_val)
2078		return ret_val;
2079
2080	udelay(1);
2081
2082	return ret_val;
2083}
2084
2085/**
2086 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2087 *  @hw: pointer to the HW structure
2088 *
2089 *  Verify the reset block is not blocking us from resetting.  Acquire
2090 *  semaphore (if necessary) and read/set/write the device control reset
2091 *  bit in the PHY.  Wait the appropriate delay time for the device to
2092 *  reset and release the semaphore (if necessary).
2093 **/
2094s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2095{
2096	struct e1000_phy_info *phy = &hw->phy;
2097	s32 ret_val;
2098	u32 ctrl;
2099
2100	if (phy->ops.check_reset_block) {
2101		ret_val = phy->ops.check_reset_block(hw);
2102		if (ret_val)
2103			return 0;
2104	}
2105
2106	ret_val = phy->ops.acquire(hw);
2107	if (ret_val)
2108		return ret_val;
2109
2110	ctrl = er32(CTRL);
2111	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2112	e1e_flush();
2113
2114	udelay(phy->reset_delay_us);
2115
2116	ew32(CTRL, ctrl);
2117	e1e_flush();
2118
2119	usleep_range(150, 300);
2120
2121	phy->ops.release(hw);
2122
2123	return phy->ops.get_cfg_done(hw);
2124}
2125
2126/**
2127 *  e1000e_get_cfg_done_generic - Generic configuration done
2128 *  @hw: pointer to the HW structure
2129 *
2130 *  Generic function to wait 10 milli-seconds for configuration to complete
2131 *  and return success.
2132 **/
2133s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2134{
2135	mdelay(10);
2136
2137	return 0;
2138}
2139
2140/**
2141 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2142 *  @hw: pointer to the HW structure
2143 *
2144 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2145 **/
2146s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2147{
2148	e_dbg("Running IGP 3 PHY init script\n");
2149
2150	/* PHY init IGP 3 */
2151	/* Enable rise/fall, 10-mode work in class-A */
2152	e1e_wphy(hw, 0x2F5B, 0x9018);
2153	/* Remove all caps from Replica path filter */
2154	e1e_wphy(hw, 0x2F52, 0x0000);
2155	/* Bias trimming for ADC, AFE and Driver (Default) */
2156	e1e_wphy(hw, 0x2FB1, 0x8B24);
2157	/* Increase Hybrid poly bias */
2158	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2159	/* Add 4% to Tx amplitude in Gig mode */
2160	e1e_wphy(hw, 0x2010, 0x10B0);
2161	/* Disable trimming (TTT) */
2162	e1e_wphy(hw, 0x2011, 0x0000);
2163	/* Poly DC correction to 94.6% + 2% for all channels */
2164	e1e_wphy(hw, 0x20DD, 0x249A);
2165	/* ABS DC correction to 95.9% */
2166	e1e_wphy(hw, 0x20DE, 0x00D3);
2167	/* BG temp curve trim */
2168	e1e_wphy(hw, 0x28B4, 0x04CE);
2169	/* Increasing ADC OPAMP stage 1 currents to max */
2170	e1e_wphy(hw, 0x2F70, 0x29E4);
2171	/* Force 1000 ( required for enabling PHY regs configuration) */
2172	e1e_wphy(hw, 0x0000, 0x0140);
2173	/* Set upd_freq to 6 */
2174	e1e_wphy(hw, 0x1F30, 0x1606);
2175	/* Disable NPDFE */
2176	e1e_wphy(hw, 0x1F31, 0xB814);
2177	/* Disable adaptive fixed FFE (Default) */
2178	e1e_wphy(hw, 0x1F35, 0x002A);
2179	/* Enable FFE hysteresis */
2180	e1e_wphy(hw, 0x1F3E, 0x0067);
2181	/* Fixed FFE for short cable lengths */
2182	e1e_wphy(hw, 0x1F54, 0x0065);
2183	/* Fixed FFE for medium cable lengths */
2184	e1e_wphy(hw, 0x1F55, 0x002A);
2185	/* Fixed FFE for long cable lengths */
2186	e1e_wphy(hw, 0x1F56, 0x002A);
2187	/* Enable Adaptive Clip Threshold */
2188	e1e_wphy(hw, 0x1F72, 0x3FB0);
2189	/* AHT reset limit to 1 */
2190	e1e_wphy(hw, 0x1F76, 0xC0FF);
2191	/* Set AHT master delay to 127 msec */
2192	e1e_wphy(hw, 0x1F77, 0x1DEC);
2193	/* Set scan bits for AHT */
2194	e1e_wphy(hw, 0x1F78, 0xF9EF);
2195	/* Set AHT Preset bits */
2196	e1e_wphy(hw, 0x1F79, 0x0210);
2197	/* Change integ_factor of channel A to 3 */
2198	e1e_wphy(hw, 0x1895, 0x0003);
2199	/* Change prop_factor of channels BCD to 8 */
2200	e1e_wphy(hw, 0x1796, 0x0008);
2201	/* Change cg_icount + enable integbp for channels BCD */
2202	e1e_wphy(hw, 0x1798, 0xD008);
2203	/* Change cg_icount + enable integbp + change prop_factor_master
 
2204	 * to 8 for channel A
2205	 */
2206	e1e_wphy(hw, 0x1898, 0xD918);
2207	/* Disable AHT in Slave mode on channel A */
2208	e1e_wphy(hw, 0x187A, 0x0800);
2209	/* Enable LPLU and disable AN to 1000 in non-D0a states,
 
2210	 * Enable SPD+B2B
2211	 */
2212	e1e_wphy(hw, 0x0019, 0x008D);
2213	/* Enable restart AN on an1000_dis change */
2214	e1e_wphy(hw, 0x001B, 0x2080);
2215	/* Enable wh_fifo read clock in 10/100 modes */
2216	e1e_wphy(hw, 0x0014, 0x0045);
2217	/* Restart AN, Speed selection is 1000 */
2218	e1e_wphy(hw, 0x0000, 0x1340);
2219
2220	return 0;
2221}
2222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2223/**
2224 *  e1000e_get_phy_type_from_id - Get PHY type from id
2225 *  @phy_id: phy_id read from the phy
2226 *
2227 *  Returns the phy type from the id.
2228 **/
2229enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2230{
2231	enum e1000_phy_type phy_type = e1000_phy_unknown;
2232
2233	switch (phy_id) {
2234	case M88E1000_I_PHY_ID:
2235	case M88E1000_E_PHY_ID:
2236	case M88E1111_I_PHY_ID:
2237	case M88E1011_I_PHY_ID:
2238		phy_type = e1000_phy_m88;
2239		break;
2240	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2241		phy_type = e1000_phy_igp_2;
2242		break;
2243	case GG82563_E_PHY_ID:
2244		phy_type = e1000_phy_gg82563;
2245		break;
2246	case IGP03E1000_E_PHY_ID:
2247		phy_type = e1000_phy_igp_3;
2248		break;
2249	case IFE_E_PHY_ID:
2250	case IFE_PLUS_E_PHY_ID:
2251	case IFE_C_E_PHY_ID:
2252		phy_type = e1000_phy_ife;
2253		break;
2254	case BME1000_E_PHY_ID:
2255	case BME1000_E_PHY_ID_R2:
2256		phy_type = e1000_phy_bm;
2257		break;
2258	case I82578_E_PHY_ID:
2259		phy_type = e1000_phy_82578;
2260		break;
2261	case I82577_E_PHY_ID:
2262		phy_type = e1000_phy_82577;
2263		break;
2264	case I82579_E_PHY_ID:
2265		phy_type = e1000_phy_82579;
2266		break;
2267	case I217_E_PHY_ID:
2268		phy_type = e1000_phy_i217;
2269		break;
2270	default:
2271		phy_type = e1000_phy_unknown;
2272		break;
2273	}
2274	return phy_type;
2275}
2276
2277/**
2278 *  e1000e_determine_phy_address - Determines PHY address.
2279 *  @hw: pointer to the HW structure
2280 *
2281 *  This uses a trial and error method to loop through possible PHY
2282 *  addresses. It tests each by reading the PHY ID registers and
2283 *  checking for a match.
2284 **/
2285s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2286{
2287	u32 phy_addr = 0;
2288	u32 i;
2289	enum e1000_phy_type phy_type = e1000_phy_unknown;
2290
2291	hw->phy.id = phy_type;
2292
2293	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2294		hw->phy.addr = phy_addr;
2295		i = 0;
2296
2297		do {
2298			e1000e_get_phy_id(hw);
2299			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2300
2301			/* If phy_type is valid, break - we found our
 
2302			 * PHY address
2303			 */
2304			if (phy_type != e1000_phy_unknown)
2305				return 0;
2306
2307			usleep_range(1000, 2000);
2308			i++;
2309		} while (i < 10);
2310	}
2311
2312	return -E1000_ERR_PHY_TYPE;
2313}
2314
2315/**
2316 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2317 *  @page: page to access
2318 *  @reg: register to check
2319 *
2320 *  Returns the phy address for the page requested.
2321 **/
2322static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2323{
2324	u32 phy_addr = 2;
2325
2326	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2327		phy_addr = 1;
2328
2329	return phy_addr;
2330}
2331
2332/**
2333 *  e1000e_write_phy_reg_bm - Write BM PHY register
2334 *  @hw: pointer to the HW structure
2335 *  @offset: register offset to write to
2336 *  @data: data to write at register offset
2337 *
2338 *  Acquires semaphore, if necessary, then writes the data to PHY register
2339 *  at the offset.  Release any acquired semaphores before exiting.
2340 **/
2341s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2342{
2343	s32 ret_val;
2344	u32 page = offset >> IGP_PAGE_SHIFT;
2345
2346	ret_val = hw->phy.ops.acquire(hw);
2347	if (ret_val)
2348		return ret_val;
2349
2350	/* Page 800 works differently than the rest so it has its own func */
2351	if (page == BM_WUC_PAGE) {
2352		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2353							 false, false);
2354		goto release;
2355	}
2356
2357	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2358
2359	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2360		u32 page_shift, page_select;
2361
2362		/* Page select is register 31 for phy address 1 and 22 for
 
2363		 * phy address 2 and 3. Page select is shifted only for
2364		 * phy address 1.
2365		 */
2366		if (hw->phy.addr == 1) {
2367			page_shift = IGP_PAGE_SHIFT;
2368			page_select = IGP01E1000_PHY_PAGE_SELECT;
2369		} else {
2370			page_shift = 0;
2371			page_select = BM_PHY_PAGE_SELECT;
2372		}
2373
2374		/* Page is shifted left, PHY expects (page x 32) */
2375		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2376						    (page << page_shift));
2377		if (ret_val)
2378			goto release;
2379	}
2380
2381	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2382					    data);
2383
2384release:
2385	hw->phy.ops.release(hw);
2386	return ret_val;
2387}
2388
2389/**
2390 *  e1000e_read_phy_reg_bm - Read BM PHY register
2391 *  @hw: pointer to the HW structure
2392 *  @offset: register offset to be read
2393 *  @data: pointer to the read data
2394 *
2395 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2396 *  and storing the retrieved information in data.  Release any acquired
2397 *  semaphores before exiting.
2398 **/
2399s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2400{
2401	s32 ret_val;
2402	u32 page = offset >> IGP_PAGE_SHIFT;
2403
2404	ret_val = hw->phy.ops.acquire(hw);
2405	if (ret_val)
2406		return ret_val;
2407
2408	/* Page 800 works differently than the rest so it has its own func */
2409	if (page == BM_WUC_PAGE) {
2410		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2411							 true, false);
2412		goto release;
2413	}
2414
2415	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2416
2417	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2418		u32 page_shift, page_select;
2419
2420		/* Page select is register 31 for phy address 1 and 22 for
 
2421		 * phy address 2 and 3. Page select is shifted only for
2422		 * phy address 1.
2423		 */
2424		if (hw->phy.addr == 1) {
2425			page_shift = IGP_PAGE_SHIFT;
2426			page_select = IGP01E1000_PHY_PAGE_SELECT;
2427		} else {
2428			page_shift = 0;
2429			page_select = BM_PHY_PAGE_SELECT;
2430		}
2431
2432		/* Page is shifted left, PHY expects (page x 32) */
2433		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2434						    (page << page_shift));
2435		if (ret_val)
2436			goto release;
2437	}
2438
2439	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2440					   data);
2441release:
2442	hw->phy.ops.release(hw);
2443	return ret_val;
2444}
2445
2446/**
2447 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2448 *  @hw: pointer to the HW structure
2449 *  @offset: register offset to be read
2450 *  @data: pointer to the read data
2451 *
2452 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2453 *  and storing the retrieved information in data.  Release any acquired
2454 *  semaphores before exiting.
2455 **/
2456s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2457{
2458	s32 ret_val;
2459	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2460
2461	ret_val = hw->phy.ops.acquire(hw);
2462	if (ret_val)
2463		return ret_val;
2464
2465	/* Page 800 works differently than the rest so it has its own func */
2466	if (page == BM_WUC_PAGE) {
2467		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2468							 true, false);
2469		goto release;
2470	}
2471
2472	hw->phy.addr = 1;
2473
2474	if (offset > MAX_PHY_MULTI_PAGE_REG) {
 
2475		/* Page is shifted left, PHY expects (page x 32) */
2476		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2477						    page);
2478
2479		if (ret_val)
2480			goto release;
2481	}
2482
2483	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2484					   data);
2485release:
2486	hw->phy.ops.release(hw);
2487	return ret_val;
2488}
2489
2490/**
2491 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2492 *  @hw: pointer to the HW structure
2493 *  @offset: register offset to write to
2494 *  @data: data to write at register offset
2495 *
2496 *  Acquires semaphore, if necessary, then writes the data to PHY register
2497 *  at the offset.  Release any acquired semaphores before exiting.
2498 **/
2499s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2500{
2501	s32 ret_val;
2502	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2503
2504	ret_val = hw->phy.ops.acquire(hw);
2505	if (ret_val)
2506		return ret_val;
2507
2508	/* Page 800 works differently than the rest so it has its own func */
2509	if (page == BM_WUC_PAGE) {
2510		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2511							 false, false);
2512		goto release;
2513	}
2514
2515	hw->phy.addr = 1;
2516
2517	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2518		/* Page is shifted left, PHY expects (page x 32) */
2519		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2520						    page);
2521
2522		if (ret_val)
2523			goto release;
2524	}
2525
2526	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2527					    data);
2528
2529release:
2530	hw->phy.ops.release(hw);
2531	return ret_val;
2532}
2533
2534/**
2535 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2536 *  @hw: pointer to the HW structure
2537 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2538 *
2539 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2540 *  address to store contents of the BM_WUC_ENABLE_REG register.
2541 **/
2542s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2543{
2544	s32 ret_val;
2545	u16 temp;
2546
2547	/* All page select, port ctrl and wakeup registers use phy address 1 */
2548	hw->phy.addr = 1;
2549
2550	/* Select Port Control Registers page */
2551	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2552	if (ret_val) {
2553		e_dbg("Could not set Port Control page\n");
2554		return ret_val;
2555	}
2556
2557	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2558	if (ret_val) {
2559		e_dbg("Could not read PHY register %d.%d\n",
2560		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2561		return ret_val;
2562	}
2563
2564	/* Enable both PHY wakeup mode and Wakeup register page writes.
 
2565	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2566	 */
2567	temp = *phy_reg;
2568	temp |= BM_WUC_ENABLE_BIT;
2569	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2570
2571	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2572	if (ret_val) {
2573		e_dbg("Could not write PHY register %d.%d\n",
2574		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2575		return ret_val;
2576	}
2577
2578	/* Select Host Wakeup Registers page - caller now able to write
 
2579	 * registers on the Wakeup registers page
2580	 */
2581	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2582}
2583
2584/**
2585 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2586 *  @hw: pointer to the HW structure
2587 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2588 *
2589 *  Restore BM_WUC_ENABLE_REG to its original value.
2590 *
2591 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2592 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2593 *  caller.
2594 **/
2595s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2596{
2597	s32 ret_val;
2598
2599	/* Select Port Control Registers page */
2600	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2601	if (ret_val) {
2602		e_dbg("Could not set Port Control page\n");
2603		return ret_val;
2604	}
2605
2606	/* Restore 769.17 to its original value */
2607	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2608	if (ret_val)
2609		e_dbg("Could not restore PHY register %d.%d\n",
2610		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2611
2612	return ret_val;
2613}
2614
2615/**
2616 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2617 *  @hw: pointer to the HW structure
2618 *  @offset: register offset to be read or written
2619 *  @data: pointer to the data to read or write
2620 *  @read: determines if operation is read or write
2621 *  @page_set: BM_WUC_PAGE already set and access enabled
2622 *
2623 *  Read the PHY register at offset and store the retrieved information in
2624 *  data, or write data to PHY register at offset.  Note the procedure to
2625 *  access the PHY wakeup registers is different than reading the other PHY
2626 *  registers. It works as such:
2627 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2628 *  2) Set page to 800 for host (801 if we were manageability)
2629 *  3) Write the address using the address opcode (0x11)
2630 *  4) Read or write the data using the data opcode (0x12)
2631 *  5) Restore 769.17.2 to its original value
2632 *
2633 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2634 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2635 *
2636 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2637 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2638 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2639 **/
2640static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2641					  u16 *data, bool read, bool page_set)
2642{
2643	s32 ret_val;
2644	u16 reg = BM_PHY_REG_NUM(offset);
2645	u16 page = BM_PHY_REG_PAGE(offset);
2646	u16 phy_reg = 0;
2647
2648	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2649	if ((hw->mac.type == e1000_pchlan) &&
2650	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2651		e_dbg("Attempting to access page %d while gig enabled.\n",
2652		      page);
2653
2654	if (!page_set) {
2655		/* Enable access to PHY wakeup registers */
2656		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2657		if (ret_val) {
2658			e_dbg("Could not enable PHY wakeup reg access\n");
2659			return ret_val;
2660		}
2661	}
2662
2663	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2664
2665	/* Write the Wakeup register page offset value using opcode 0x11 */
2666	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2667	if (ret_val) {
2668		e_dbg("Could not write address opcode to page %d\n", page);
2669		return ret_val;
2670	}
2671
2672	if (read) {
2673		/* Read the Wakeup register page value using opcode 0x12 */
2674		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2675						   data);
2676	} else {
2677		/* Write the Wakeup register page value using opcode 0x12 */
2678		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2679						    *data);
2680	}
2681
2682	if (ret_val) {
2683		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2684		return ret_val;
2685	}
2686
2687	if (!page_set)
2688		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2689
2690	return ret_val;
2691}
2692
2693/**
2694 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2695 * @hw: pointer to the HW structure
2696 *
2697 * In the case of a PHY power down to save power, or to turn off link during a
2698 * driver unload, or wake on lan is not enabled, restore the link to previous
2699 * settings.
2700 **/
2701void e1000_power_up_phy_copper(struct e1000_hw *hw)
2702{
2703	u16 mii_reg = 0;
2704	int ret;
2705
2706	/* The PHY will retain its settings across a power down/up cycle */
2707	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2708	if (ret) {
2709		e_dbg("Error reading PHY register\n");
2710		return;
2711	}
2712	mii_reg &= ~BMCR_PDOWN;
2713	e1e_wphy(hw, MII_BMCR, mii_reg);
2714}
2715
2716/**
2717 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2718 * @hw: pointer to the HW structure
2719 *
2720 * In the case of a PHY power down to save power, or to turn off link during a
2721 * driver unload, or wake on lan is not enabled, restore the link to previous
2722 * settings.
2723 **/
2724void e1000_power_down_phy_copper(struct e1000_hw *hw)
2725{
2726	u16 mii_reg = 0;
2727	int ret;
2728
2729	/* The PHY will retain its settings across a power down/up cycle */
2730	ret = e1e_rphy(hw, MII_BMCR, &mii_reg);
2731	if (ret) {
2732		e_dbg("Error reading PHY register\n");
2733		return;
2734	}
2735	mii_reg |= BMCR_PDOWN;
2736	e1e_wphy(hw, MII_BMCR, mii_reg);
2737	usleep_range(1000, 2000);
2738}
2739
2740/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2742 *  @hw: pointer to the HW structure
2743 *  @offset: register offset to be read
2744 *  @data: pointer to the read data
2745 *  @locked: semaphore has already been acquired or not
2746 *  @page_set: BM_WUC_PAGE already set and access enabled
2747 *
2748 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2749 *  and stores the retrieved information in data.  Release any acquired
2750 *  semaphore before exiting.
2751 **/
2752static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2753				   bool locked, bool page_set)
2754{
2755	s32 ret_val;
2756	u16 page = BM_PHY_REG_PAGE(offset);
2757	u16 reg = BM_PHY_REG_NUM(offset);
2758	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2759
2760	if (!locked) {
2761		ret_val = hw->phy.ops.acquire(hw);
2762		if (ret_val)
2763			return ret_val;
2764	}
2765
2766	/* Page 800 works differently than the rest so it has its own func */
2767	if (page == BM_WUC_PAGE) {
2768		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2769							 true, page_set);
2770		goto out;
2771	}
2772
2773	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2774		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2775							 data, true);
2776		goto out;
2777	}
2778
2779	if (!page_set) {
2780		if (page == HV_INTC_FC_PAGE_START)
2781			page = 0;
2782
2783		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2784			/* Page is shifted left, PHY expects (page x 32) */
2785			ret_val = e1000_set_page_igp(hw,
2786						     (page << IGP_PAGE_SHIFT));
2787
2788			hw->phy.addr = phy_addr;
2789
2790			if (ret_val)
2791				goto out;
2792		}
2793	}
2794
2795	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2796	      page << IGP_PAGE_SHIFT, reg);
2797
2798	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
 
2799out:
2800	if (!locked)
2801		hw->phy.ops.release(hw);
2802
2803	return ret_val;
2804}
2805
2806/**
2807 *  e1000_read_phy_reg_hv -  Read HV PHY register
2808 *  @hw: pointer to the HW structure
2809 *  @offset: register offset to be read
2810 *  @data: pointer to the read data
2811 *
2812 *  Acquires semaphore then reads the PHY register at offset and stores
2813 *  the retrieved information in data.  Release the acquired semaphore
2814 *  before exiting.
2815 **/
2816s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2817{
2818	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2819}
2820
2821/**
2822 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2823 *  @hw: pointer to the HW structure
2824 *  @offset: register offset to be read
2825 *  @data: pointer to the read data
2826 *
2827 *  Reads the PHY register at offset and stores the retrieved information
2828 *  in data.  Assumes semaphore already acquired.
2829 **/
2830s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2831{
2832	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2833}
2834
2835/**
2836 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2837 *  @hw: pointer to the HW structure
2838 *  @offset: register offset to write to
2839 *  @data: data to write at register offset
2840 *
2841 *  Reads the PHY register at offset and stores the retrieved information
2842 *  in data.  Assumes semaphore already acquired and page already set.
2843 **/
2844s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2845{
2846	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2847}
2848
2849/**
2850 *  __e1000_write_phy_reg_hv - Write HV PHY register
2851 *  @hw: pointer to the HW structure
2852 *  @offset: register offset to write to
2853 *  @data: data to write at register offset
2854 *  @locked: semaphore has already been acquired or not
2855 *  @page_set: BM_WUC_PAGE already set and access enabled
2856 *
2857 *  Acquires semaphore, if necessary, then writes the data to PHY register
2858 *  at the offset.  Release any acquired semaphores before exiting.
2859 **/
2860static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861				    bool locked, bool page_set)
2862{
2863	s32 ret_val;
2864	u16 page = BM_PHY_REG_PAGE(offset);
2865	u16 reg = BM_PHY_REG_NUM(offset);
2866	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867
2868	if (!locked) {
2869		ret_val = hw->phy.ops.acquire(hw);
2870		if (ret_val)
2871			return ret_val;
2872	}
2873
2874	/* Page 800 works differently than the rest so it has its own func */
2875	if (page == BM_WUC_PAGE) {
2876		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877							 false, page_set);
2878		goto out;
2879	}
2880
2881	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883							 &data, false);
2884		goto out;
2885	}
2886
2887	if (!page_set) {
2888		if (page == HV_INTC_FC_PAGE_START)
2889			page = 0;
2890
2891		/* Workaround MDIO accesses being disabled after entering IEEE
 
2892		 * Power Down (when bit 11 of the PHY Control register is set)
2893		 */
2894		if ((hw->phy.type == e1000_phy_82578) &&
2895		    (hw->phy.revision >= 1) &&
2896		    (hw->phy.addr == 2) &&
2897		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2898			u16 data2 = 0x7EFF;
2899
2900			ret_val = e1000_access_phy_debug_regs_hv(hw,
2901								 BIT(6) | 0x3,
2902								 &data2, false);
2903			if (ret_val)
2904				goto out;
2905		}
2906
2907		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2908			/* Page is shifted left, PHY expects (page x 32) */
2909			ret_val = e1000_set_page_igp(hw,
2910						     (page << IGP_PAGE_SHIFT));
2911
2912			hw->phy.addr = phy_addr;
2913
2914			if (ret_val)
2915				goto out;
2916		}
2917	}
2918
2919	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2920	      page << IGP_PAGE_SHIFT, reg);
2921
2922	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2923					    data);
2924
2925out:
2926	if (!locked)
2927		hw->phy.ops.release(hw);
2928
2929	return ret_val;
2930}
2931
2932/**
2933 *  e1000_write_phy_reg_hv - Write HV PHY register
2934 *  @hw: pointer to the HW structure
2935 *  @offset: register offset to write to
2936 *  @data: data to write at register offset
2937 *
2938 *  Acquires semaphore then writes the data to PHY register at the offset.
2939 *  Release the acquired semaphores before exiting.
2940 **/
2941s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2942{
2943	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2944}
2945
2946/**
2947 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2948 *  @hw: pointer to the HW structure
2949 *  @offset: register offset to write to
2950 *  @data: data to write at register offset
2951 *
2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
2953 *  already acquired.
2954 **/
2955s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2956{
2957	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2958}
2959
2960/**
2961 *  e1000_write_phy_reg_page_hv - Write HV PHY register
2962 *  @hw: pointer to the HW structure
2963 *  @offset: register offset to write to
2964 *  @data: data to write at register offset
2965 *
2966 *  Writes the data to PHY register at the offset.  Assumes semaphore
2967 *  already acquired and page already set.
2968 **/
2969s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2970{
2971	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2972}
2973
2974/**
2975 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2976 *  @page: page to be accessed
2977 **/
2978static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979{
2980	u32 phy_addr = 2;
2981
2982	if (page >= HV_INTC_FC_PAGE_START)
2983		phy_addr = 1;
2984
2985	return phy_addr;
2986}
2987
2988/**
2989 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990 *  @hw: pointer to the HW structure
2991 *  @offset: register offset to be read or written
2992 *  @data: pointer to the data to be read or written
2993 *  @read: determines if operation is read or write
2994 *
2995 *  Reads the PHY register at offset and stores the retrieved information
2996 *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997 *  to access these regs uses the address port and data port to read/write.
2998 *  These accesses done with PHY address 2 and without using pages.
2999 **/
3000static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001					  u16 *data, bool read)
3002{
3003	s32 ret_val;
3004	u32 addr_reg;
3005	u32 data_reg;
3006
3007	/* This takes care of the difference with desktop vs mobile phy */
3008	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3009		    I82578_ADDR_REG : I82577_ADDR_REG);
3010	data_reg = addr_reg + 1;
3011
3012	/* All operations in this function are phy address 2 */
3013	hw->phy.addr = 2;
3014
3015	/* masking with 0x3F to remove the page from offset */
3016	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017	if (ret_val) {
3018		e_dbg("Could not write the Address Offset port register\n");
3019		return ret_val;
3020	}
3021
3022	/* Read or write the data value next */
3023	if (read)
3024		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025	else
3026		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027
3028	if (ret_val)
3029		e_dbg("Could not access the Data port register\n");
3030
3031	return ret_val;
3032}
3033
3034/**
3035 *  e1000_link_stall_workaround_hv - Si workaround
3036 *  @hw: pointer to the HW structure
3037 *
3038 *  This function works around a Si bug where the link partner can get
3039 *  a link up indication before the PHY does.  If small packets are sent
3040 *  by the link partner they can be placed in the packet buffer without
3041 *  being properly accounted for by the PHY and will stall preventing
3042 *  further packets from being received.  The workaround is to clear the
3043 *  packet buffer after the PHY detects link up.
3044 **/
3045s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3046{
3047	s32 ret_val = 0;
3048	u16 data;
3049
3050	if (hw->phy.type != e1000_phy_82578)
3051		return 0;
3052
3053	/* Do not apply workaround if in PHY loopback bit 14 set */
3054	ret_val = e1e_rphy(hw, MII_BMCR, &data);
3055	if (ret_val) {
3056		e_dbg("Error reading PHY register\n");
3057		return ret_val;
3058	}
3059	if (data & BMCR_LOOPBACK)
3060		return 0;
3061
3062	/* check if link is up and at 1Gbps */
3063	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3064	if (ret_val)
3065		return ret_val;
3066
3067	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3068		 BM_CS_STATUS_SPEED_MASK);
3069
3070	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3071		     BM_CS_STATUS_SPEED_1000))
3072		return 0;
3073
3074	msleep(200);
3075
3076	/* flush the packets in the fifo buffer */
3077	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3078			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3079			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3080	if (ret_val)
3081		return ret_val;
3082
3083	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3084}
3085
3086/**
3087 *  e1000_check_polarity_82577 - Checks the polarity.
3088 *  @hw: pointer to the HW structure
3089 *
3090 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3091 *
3092 *  Polarity is determined based on the PHY specific status register.
3093 **/
3094s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3095{
3096	struct e1000_phy_info *phy = &hw->phy;
3097	s32 ret_val;
3098	u16 data;
3099
3100	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3101
3102	if (!ret_val)
3103		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3104				       ? e1000_rev_polarity_reversed
3105				       : e1000_rev_polarity_normal);
3106
3107	return ret_val;
3108}
3109
3110/**
3111 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3112 *  @hw: pointer to the HW structure
3113 *
3114 *  Calls the PHY setup function to force speed and duplex.
3115 **/
3116s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3117{
3118	struct e1000_phy_info *phy = &hw->phy;
3119	s32 ret_val;
3120	u16 phy_data;
3121	bool link;
3122
3123	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3124	if (ret_val)
3125		return ret_val;
3126
3127	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3128
3129	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3130	if (ret_val)
3131		return ret_val;
3132
3133	udelay(1);
3134
3135	if (phy->autoneg_wait_to_complete) {
3136		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3137
3138		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3139						      100000, &link);
3140		if (ret_val)
3141			return ret_val;
3142
3143		if (!link)
3144			e_dbg("Link taking longer than expected.\n");
3145
3146		/* Try once more */
3147		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3148						      100000, &link);
3149	}
3150
3151	return ret_val;
3152}
3153
3154/**
3155 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3156 *  @hw: pointer to the HW structure
3157 *
3158 *  Read PHY status to determine if link is up.  If link is up, then
3159 *  set/determine 10base-T extended distance and polarity correction.  Read
3160 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3161 *  determine on the cable length, local and remote receiver.
3162 **/
3163s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3164{
3165	struct e1000_phy_info *phy = &hw->phy;
3166	s32 ret_val;
3167	u16 data;
3168	bool link;
3169
3170	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3171	if (ret_val)
3172		return ret_val;
3173
3174	if (!link) {
3175		e_dbg("Phy info is only valid if link is up\n");
3176		return -E1000_ERR_CONFIG;
3177	}
3178
3179	phy->polarity_correction = true;
3180
3181	ret_val = e1000_check_polarity_82577(hw);
3182	if (ret_val)
3183		return ret_val;
3184
3185	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3186	if (ret_val)
3187		return ret_val;
3188
3189	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3190
3191	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3192	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3193		ret_val = hw->phy.ops.get_cable_length(hw);
3194		if (ret_val)
3195			return ret_val;
3196
3197		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3198		if (ret_val)
3199			return ret_val;
3200
3201		phy->local_rx = (data & LPA_1000LOCALRXOK)
3202		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3203
3204		phy->remote_rx = (data & LPA_1000REMRXOK)
3205		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
 
3206	} else {
3207		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3208		phy->local_rx = e1000_1000t_rx_status_undefined;
3209		phy->remote_rx = e1000_1000t_rx_status_undefined;
3210	}
3211
3212	return 0;
3213}
3214
3215/**
3216 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3217 *  @hw: pointer to the HW structure
3218 *
3219 * Reads the diagnostic status register and verifies result is valid before
3220 * placing it in the phy_cable_length field.
3221 **/
3222s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3223{
3224	struct e1000_phy_info *phy = &hw->phy;
3225	s32 ret_val;
3226	u16 phy_data, length;
3227
3228	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3229	if (ret_val)
3230		return ret_val;
3231
3232	length = FIELD_GET(I82577_DSTATUS_CABLE_LENGTH, phy_data);
 
3233
3234	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3235		return -E1000_ERR_PHY;
3236
3237	phy->cable_length = length;
3238
3239	return 0;
3240}
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
 
  30
  31static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
  32static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
  33static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
  34static s32 e1000_wait_autoneg(struct e1000_hw *hw);
  35static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
  36static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
  37					  u16 *data, bool read, bool page_set);
  38static u32 e1000_get_phy_addr_for_hv_page(u32 page);
  39static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
  40                                          u16 *data, bool read);
  41
  42/* Cable length tables */
  43static const u16 e1000_m88_cable_length_table[] = {
  44	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
 
 
  45#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
  46		ARRAY_SIZE(e1000_m88_cable_length_table)
  47
  48static const u16 e1000_igp_2_cable_length_table[] = {
  49	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
  50	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
  51	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
  52	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
  53	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
  54	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
  55	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
  56	124};
 
 
  57#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
  58		ARRAY_SIZE(e1000_igp_2_cable_length_table)
  59
  60#define BM_PHY_REG_PAGE(offset) \
  61	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
  62#define BM_PHY_REG_NUM(offset) \
  63	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
  64	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
  65		~MAX_PHY_REG_ADDRESS)))
  66
  67#define HV_INTC_FC_PAGE_START             768
  68#define I82578_ADDR_REG                   29
  69#define I82577_ADDR_REG                   16
  70#define I82577_CFG_REG                    22
  71#define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
  72#define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
  73#define I82577_CTRL_REG                   23
  74
  75/* 82577 specific PHY registers */
  76#define I82577_PHY_CTRL_2            18
  77#define I82577_PHY_STATUS_2          26
  78#define I82577_PHY_DIAG_STATUS       31
  79
  80/* I82577 PHY Status 2 */
  81#define I82577_PHY_STATUS2_REV_POLARITY   0x0400
  82#define I82577_PHY_STATUS2_MDIX           0x0800
  83#define I82577_PHY_STATUS2_SPEED_MASK     0x0300
  84#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
  85
  86/* I82577 PHY Control 2 */
  87#define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
  88#define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
  89
  90/* I82577 PHY Diagnostics Status */
  91#define I82577_DSTATUS_CABLE_LENGTH       0x03FC
  92#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
  93
  94/* BM PHY Copper Specific Control 1 */
  95#define BM_CS_CTRL1                       16
  96
  97#define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
  98#define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
  99#define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
 100
 101/**
 102 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
 103 *  @hw: pointer to the HW structure
 104 *
 105 *  Read the PHY management control register and check whether a PHY reset
 106 *  is blocked.  If a reset is not blocked return 0, otherwise
 107 *  return E1000_BLK_PHY_RESET (12).
 108 **/
 109s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
 110{
 111	u32 manc;
 112
 113	manc = er32(MANC);
 114
 115	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
 116	       E1000_BLK_PHY_RESET : 0;
 117}
 118
 119/**
 120 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
 121 *  @hw: pointer to the HW structure
 122 *
 123 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
 124 *  revision in the hardware structure.
 125 **/
 126s32 e1000e_get_phy_id(struct e1000_hw *hw)
 127{
 128	struct e1000_phy_info *phy = &hw->phy;
 129	s32 ret_val = 0;
 130	u16 phy_id;
 131	u16 retry_count = 0;
 132
 133	if (!phy->ops.read_reg)
 134		return 0;
 135
 136	while (retry_count < 2) {
 137		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
 138		if (ret_val)
 139			return ret_val;
 140
 141		phy->id = (u32)(phy_id << 16);
 142		udelay(20);
 143		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
 144		if (ret_val)
 145			return ret_val;
 146
 147		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
 148		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
 149
 150		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
 151			return 0;
 152
 153		retry_count++;
 154	}
 155
 156	return 0;
 157}
 158
 159/**
 160 *  e1000e_phy_reset_dsp - Reset PHY DSP
 161 *  @hw: pointer to the HW structure
 162 *
 163 *  Reset the digital signal processor.
 164 **/
 165s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
 166{
 167	s32 ret_val;
 168
 169	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
 170	if (ret_val)
 171		return ret_val;
 172
 173	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
 174}
 175
 176/**
 177 *  e1000e_read_phy_reg_mdic - Read MDI control register
 178 *  @hw: pointer to the HW structure
 179 *  @offset: register offset to be read
 180 *  @data: pointer to the read data
 181 *
 182 *  Reads the MDI control register in the PHY at offset and stores the
 183 *  information read to data.
 184 **/
 185s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
 186{
 187	struct e1000_phy_info *phy = &hw->phy;
 188	u32 i, mdic = 0;
 189
 190	if (offset > MAX_PHY_REG_ADDRESS) {
 191		e_dbg("PHY Address %d is out of range\n", offset);
 192		return -E1000_ERR_PARAM;
 193	}
 194
 195	/*
 196	 * Set up Op-code, Phy Address, and register offset in the MDI
 197	 * Control register.  The MAC will take care of interfacing with the
 198	 * PHY to retrieve the desired data.
 199	 */
 200	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
 201		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 202		(E1000_MDIC_OP_READ));
 203
 204	ew32(MDIC, mdic);
 205
 206	/*
 207	 * Poll the ready bit to see if the MDI read completed
 208	 * Increasing the time out as testing showed failures with
 209	 * the lower time out
 210	 */
 211	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 212		udelay(50);
 213		mdic = er32(MDIC);
 214		if (mdic & E1000_MDIC_READY)
 215			break;
 216	}
 217	if (!(mdic & E1000_MDIC_READY)) {
 218		e_dbg("MDI Read did not complete\n");
 219		return -E1000_ERR_PHY;
 220	}
 221	if (mdic & E1000_MDIC_ERROR) {
 222		e_dbg("MDI Error\n");
 
 
 
 
 
 223		return -E1000_ERR_PHY;
 224	}
 225	*data = (u16) mdic;
 226
 227	/*
 228	 * Allow some time after each MDIC transaction to avoid
 229	 * reading duplicate data in the next MDIC transaction.
 230	 */
 231	if (hw->mac.type == e1000_pch2lan)
 232		udelay(100);
 233
 234	return 0;
 235}
 236
 237/**
 238 *  e1000e_write_phy_reg_mdic - Write MDI control register
 239 *  @hw: pointer to the HW structure
 240 *  @offset: register offset to write to
 241 *  @data: data to write to register at offset
 242 *
 243 *  Writes data to MDI control register in the PHY at offset.
 244 **/
 245s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
 246{
 247	struct e1000_phy_info *phy = &hw->phy;
 248	u32 i, mdic = 0;
 249
 250	if (offset > MAX_PHY_REG_ADDRESS) {
 251		e_dbg("PHY Address %d is out of range\n", offset);
 252		return -E1000_ERR_PARAM;
 253	}
 254
 255	/*
 256	 * Set up Op-code, Phy Address, and register offset in the MDI
 257	 * Control register.  The MAC will take care of interfacing with the
 258	 * PHY to retrieve the desired data.
 259	 */
 260	mdic = (((u32)data) |
 261		(offset << E1000_MDIC_REG_SHIFT) |
 262		(phy->addr << E1000_MDIC_PHY_SHIFT) |
 263		(E1000_MDIC_OP_WRITE));
 264
 265	ew32(MDIC, mdic);
 266
 267	/*
 268	 * Poll the ready bit to see if the MDI read completed
 269	 * Increasing the time out as testing showed failures with
 270	 * the lower time out
 271	 */
 272	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
 273		udelay(50);
 274		mdic = er32(MDIC);
 275		if (mdic & E1000_MDIC_READY)
 276			break;
 277	}
 278	if (!(mdic & E1000_MDIC_READY)) {
 279		e_dbg("MDI Write did not complete\n");
 280		return -E1000_ERR_PHY;
 281	}
 282	if (mdic & E1000_MDIC_ERROR) {
 283		e_dbg("MDI Error\n");
 
 
 
 
 
 284		return -E1000_ERR_PHY;
 285	}
 286
 287	/*
 288	 * Allow some time after each MDIC transaction to avoid
 289	 * reading duplicate data in the next MDIC transaction.
 290	 */
 291	if (hw->mac.type == e1000_pch2lan)
 292		udelay(100);
 293
 294	return 0;
 295}
 296
 297/**
 298 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
 299 *  @hw: pointer to the HW structure
 300 *  @offset: register offset to be read
 301 *  @data: pointer to the read data
 302 *
 303 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 304 *  and storing the retrieved information in data.  Release any acquired
 305 *  semaphores before exiting.
 306 **/
 307s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
 308{
 309	s32 ret_val;
 310
 311	ret_val = hw->phy.ops.acquire(hw);
 312	if (ret_val)
 313		return ret_val;
 314
 315	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 316					   data);
 317
 318	hw->phy.ops.release(hw);
 319
 320	return ret_val;
 321}
 322
 323/**
 324 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
 325 *  @hw: pointer to the HW structure
 326 *  @offset: register offset to write to
 327 *  @data: data to write at register offset
 328 *
 329 *  Acquires semaphore, if necessary, then writes the data to PHY register
 330 *  at the offset.  Release any acquired semaphores before exiting.
 331 **/
 332s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
 333{
 334	s32 ret_val;
 335
 336	ret_val = hw->phy.ops.acquire(hw);
 337	if (ret_val)
 338		return ret_val;
 339
 340	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
 341					    data);
 342
 343	hw->phy.ops.release(hw);
 344
 345	return ret_val;
 346}
 347
 348/**
 349 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
 350 *  @hw: pointer to the HW structure
 351 *  @page: page to set (shifted left when necessary)
 352 *
 353 *  Sets PHY page required for PHY register access.  Assumes semaphore is
 354 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
 355 *  must set it appropriately (if necessary) after this function returns.
 356 **/
 357s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
 358{
 359	e_dbg("Setting page 0x%x\n", page);
 360
 361	hw->phy.addr = 1;
 362
 363	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
 364}
 365
 366/**
 367 *  __e1000e_read_phy_reg_igp - Read igp PHY register
 368 *  @hw: pointer to the HW structure
 369 *  @offset: register offset to be read
 370 *  @data: pointer to the read data
 371 *  @locked: semaphore has already been acquired or not
 372 *
 373 *  Acquires semaphore, if necessary, then reads the PHY register at offset
 374 *  and stores the retrieved information in data.  Release any acquired
 375 *  semaphores before exiting.
 376 **/
 377static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
 378                                    bool locked)
 379{
 380	s32 ret_val = 0;
 381
 382	if (!locked) {
 383		if (!hw->phy.ops.acquire)
 384			return 0;
 385
 386		ret_val = hw->phy.ops.acquire(hw);
 387		if (ret_val)
 388			return ret_val;
 389	}
 390
 391	if (offset > MAX_PHY_MULTI_PAGE_REG)
 392		ret_val = e1000e_write_phy_reg_mdic(hw,
 393						    IGP01E1000_PHY_PAGE_SELECT,
 394						    (u16)offset);
 395	if (!ret_val)
 396		ret_val = e1000e_read_phy_reg_mdic(hw,
 397						   MAX_PHY_REG_ADDRESS & offset,
 398						   data);
 399	if (!locked)
 400		hw->phy.ops.release(hw);
 401
 402	return ret_val;
 403}
 404
 405/**
 406 *  e1000e_read_phy_reg_igp - Read igp PHY register
 407 *  @hw: pointer to the HW structure
 408 *  @offset: register offset to be read
 409 *  @data: pointer to the read data
 410 *
 411 *  Acquires semaphore then reads the PHY register at offset and stores the
 412 *  retrieved information in data.
 413 *  Release the acquired semaphore before exiting.
 414 **/
 415s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
 416{
 417	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
 418}
 419
 420/**
 421 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
 422 *  @hw: pointer to the HW structure
 423 *  @offset: register offset to be read
 424 *  @data: pointer to the read data
 425 *
 426 *  Reads the PHY register at offset and stores the retrieved information
 427 *  in data.  Assumes semaphore already acquired.
 428 **/
 429s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 430{
 431	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
 432}
 433
 434/**
 435 *  e1000e_write_phy_reg_igp - Write igp PHY register
 436 *  @hw: pointer to the HW structure
 437 *  @offset: register offset to write to
 438 *  @data: data to write at register offset
 439 *  @locked: semaphore has already been acquired or not
 440 *
 441 *  Acquires semaphore, if necessary, then writes the data to PHY register
 442 *  at the offset.  Release any acquired semaphores before exiting.
 443 **/
 444static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
 445                                     bool locked)
 446{
 447	s32 ret_val = 0;
 448
 449	if (!locked) {
 450		if (!hw->phy.ops.acquire)
 451			return 0;
 452
 453		ret_val = hw->phy.ops.acquire(hw);
 454		if (ret_val)
 455			return ret_val;
 456	}
 457
 458	if (offset > MAX_PHY_MULTI_PAGE_REG)
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    IGP01E1000_PHY_PAGE_SELECT,
 461						    (u16)offset);
 462	if (!ret_val)
 463		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
 464							offset,
 465						    data);
 466	if (!locked)
 467		hw->phy.ops.release(hw);
 468
 469	return ret_val;
 470}
 471
 472/**
 473 *  e1000e_write_phy_reg_igp - Write igp PHY register
 474 *  @hw: pointer to the HW structure
 475 *  @offset: register offset to write to
 476 *  @data: data to write at register offset
 477 *
 478 *  Acquires semaphore then writes the data to PHY register
 479 *  at the offset.  Release any acquired semaphores before exiting.
 480 **/
 481s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
 482{
 483	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
 484}
 485
 486/**
 487 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
 488 *  @hw: pointer to the HW structure
 489 *  @offset: register offset to write to
 490 *  @data: data to write at register offset
 491 *
 492 *  Writes the data to PHY register at the offset.
 493 *  Assumes semaphore already acquired.
 494 **/
 495s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
 496{
 497	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
 498}
 499
 500/**
 501 *  __e1000_read_kmrn_reg - Read kumeran register
 502 *  @hw: pointer to the HW structure
 503 *  @offset: register offset to be read
 504 *  @data: pointer to the read data
 505 *  @locked: semaphore has already been acquired or not
 506 *
 507 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
 508 *  using the kumeran interface.  The information retrieved is stored in data.
 509 *  Release any acquired semaphores before exiting.
 510 **/
 511static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
 512                                 bool locked)
 513{
 514	u32 kmrnctrlsta;
 515
 516	if (!locked) {
 517		s32 ret_val = 0;
 518
 519		if (!hw->phy.ops.acquire)
 520			return 0;
 521
 522		ret_val = hw->phy.ops.acquire(hw);
 523		if (ret_val)
 524			return ret_val;
 525	}
 526
 527	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 528		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
 529	ew32(KMRNCTRLSTA, kmrnctrlsta);
 530	e1e_flush();
 531
 532	udelay(2);
 533
 534	kmrnctrlsta = er32(KMRNCTRLSTA);
 535	*data = (u16)kmrnctrlsta;
 536
 537	if (!locked)
 538		hw->phy.ops.release(hw);
 539
 540	return 0;
 541}
 542
 543/**
 544 *  e1000e_read_kmrn_reg -  Read kumeran register
 545 *  @hw: pointer to the HW structure
 546 *  @offset: register offset to be read
 547 *  @data: pointer to the read data
 548 *
 549 *  Acquires semaphore then reads the PHY register at offset using the
 550 *  kumeran interface.  The information retrieved is stored in data.
 551 *  Release the acquired semaphore before exiting.
 552 **/
 553s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
 554{
 555	return __e1000_read_kmrn_reg(hw, offset, data, false);
 556}
 557
 558/**
 559 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
 560 *  @hw: pointer to the HW structure
 561 *  @offset: register offset to be read
 562 *  @data: pointer to the read data
 563 *
 564 *  Reads the PHY register at offset using the kumeran interface.  The
 565 *  information retrieved is stored in data.
 566 *  Assumes semaphore already acquired.
 567 **/
 568s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
 569{
 570	return __e1000_read_kmrn_reg(hw, offset, data, true);
 571}
 572
 573/**
 574 *  __e1000_write_kmrn_reg - Write kumeran register
 575 *  @hw: pointer to the HW structure
 576 *  @offset: register offset to write to
 577 *  @data: data to write at register offset
 578 *  @locked: semaphore has already been acquired or not
 579 *
 580 *  Acquires semaphore, if necessary.  Then write the data to PHY register
 581 *  at the offset using the kumeran interface.  Release any acquired semaphores
 582 *  before exiting.
 583 **/
 584static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
 585                                  bool locked)
 586{
 587	u32 kmrnctrlsta;
 588
 589	if (!locked) {
 590		s32 ret_val = 0;
 591
 592		if (!hw->phy.ops.acquire)
 593			return 0;
 594
 595		ret_val = hw->phy.ops.acquire(hw);
 596		if (ret_val)
 597			return ret_val;
 598	}
 599
 600	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
 601		       E1000_KMRNCTRLSTA_OFFSET) | data;
 602	ew32(KMRNCTRLSTA, kmrnctrlsta);
 603	e1e_flush();
 604
 605	udelay(2);
 606
 607	if (!locked)
 608		hw->phy.ops.release(hw);
 609
 610	return 0;
 611}
 612
 613/**
 614 *  e1000e_write_kmrn_reg -  Write kumeran register
 615 *  @hw: pointer to the HW structure
 616 *  @offset: register offset to write to
 617 *  @data: data to write at register offset
 618 *
 619 *  Acquires semaphore then writes the data to the PHY register at the offset
 620 *  using the kumeran interface.  Release the acquired semaphore before exiting.
 621 **/
 622s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
 623{
 624	return __e1000_write_kmrn_reg(hw, offset, data, false);
 625}
 626
 627/**
 628 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
 629 *  @hw: pointer to the HW structure
 630 *  @offset: register offset to write to
 631 *  @data: data to write at register offset
 632 *
 633 *  Write the data to PHY register at the offset using the kumeran interface.
 634 *  Assumes semaphore already acquired.
 635 **/
 636s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
 637{
 638	return __e1000_write_kmrn_reg(hw, offset, data, true);
 639}
 640
 641/**
 642 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
 643 *  @hw: pointer to the HW structure
 644 *
 645 *  Sets up Master/slave mode
 646 **/
 647static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
 648{
 649	s32 ret_val;
 650	u16 phy_data;
 651
 652	/* Resolve Master/Slave mode */
 653	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
 654	if (ret_val)
 655		return ret_val;
 656
 657	/* load defaults for future use */
 658	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
 659	    ((phy_data & CR_1000T_MS_VALUE) ?
 660	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
 661
 662	switch (hw->phy.ms_type) {
 663	case e1000_ms_force_master:
 664		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
 665		break;
 666	case e1000_ms_force_slave:
 667		phy_data |= CR_1000T_MS_ENABLE;
 668		phy_data &= ~(CR_1000T_MS_VALUE);
 669		break;
 670	case e1000_ms_auto:
 671		phy_data &= ~CR_1000T_MS_ENABLE;
 672		/* fall-through */
 673	default:
 674		break;
 675	}
 676
 677	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
 678}
 679
 680/**
 681 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
 682 *  @hw: pointer to the HW structure
 683 *
 684 *  Sets up Carrier-sense on Transmit and downshift values.
 685 **/
 686s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
 687{
 688	s32 ret_val;
 689	u16 phy_data;
 690
 691	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 692	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
 693	if (ret_val)
 694		return ret_val;
 695
 696	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
 697
 698	/* Enable downshift */
 699	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
 700
 701	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
 702	if (ret_val)
 703		return ret_val;
 704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705	return e1000_set_master_slave_mode(hw);
 706}
 707
 708/**
 709 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
 710 *  @hw: pointer to the HW structure
 711 *
 712 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
 713 *  and downshift values are set also.
 714 **/
 715s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
 716{
 717	struct e1000_phy_info *phy = &hw->phy;
 718	s32 ret_val;
 719	u16 phy_data;
 720
 721	/* Enable CRS on Tx. This must be set for half-duplex operation. */
 722	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 723	if (ret_val)
 724		return ret_val;
 725
 726	/* For BM PHY this bit is downshift enable */
 727	if (phy->type != e1000_phy_bm)
 728		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
 729
 730	/*
 731	 * Options:
 732	 *   MDI/MDI-X = 0 (default)
 733	 *   0 - Auto for all speeds
 734	 *   1 - MDI mode
 735	 *   2 - MDI-X mode
 736	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 737	 */
 738	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
 739
 740	switch (phy->mdix) {
 741	case 1:
 742		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
 743		break;
 744	case 2:
 745		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
 746		break;
 747	case 3:
 748		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
 749		break;
 750	case 0:
 751	default:
 752		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
 753		break;
 754	}
 755
 756	/*
 757	 * Options:
 758	 *   disable_polarity_correction = 0 (default)
 759	 *       Automatic Correction for Reversed Cable Polarity
 760	 *   0 - Disabled
 761	 *   1 - Enabled
 762	 */
 763	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
 764	if (phy->disable_polarity_correction)
 765		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
 766
 767	/* Enable downshift on BM (disabled by default) */
 768	if (phy->type == e1000_phy_bm) {
 769		/* For 82574/82583, first disable then enable downshift */
 770		if (phy->id == BME1000_E_PHY_ID_R2) {
 771			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
 772			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
 773					   phy_data);
 774			if (ret_val)
 775				return ret_val;
 776			/* Commit the changes. */
 777			ret_val = e1000e_commit_phy(hw);
 778			if (ret_val) {
 779				e_dbg("Error committing the PHY changes\n");
 780				return ret_val;
 781			}
 782		}
 783
 784		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
 785	}
 786
 787	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
 788	if (ret_val)
 789		return ret_val;
 790
 791	if ((phy->type == e1000_phy_m88) &&
 792	    (phy->revision < E1000_REVISION_4) &&
 793	    (phy->id != BME1000_E_PHY_ID_R2)) {
 794		/*
 795		 * Force TX_CLK in the Extended PHY Specific Control Register
 796		 * to 25MHz clock.
 797		 */
 798		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 799		if (ret_val)
 800			return ret_val;
 801
 802		phy_data |= M88E1000_EPSCR_TX_CLK_25;
 803
 804		if ((phy->revision == 2) &&
 805		    (phy->id == M88E1111_I_PHY_ID)) {
 806			/* 82573L PHY - set the downshift counter to 5x. */
 807			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
 808			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
 809		} else {
 810			/* Configure Master and Slave downshift values */
 811			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
 812				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
 813			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
 814				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
 815		}
 816		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 817		if (ret_val)
 818			return ret_val;
 819	}
 820
 821	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
 822		/* Set PHY page 0, register 29 to 0x0003 */
 823		ret_val = e1e_wphy(hw, 29, 0x0003);
 824		if (ret_val)
 825			return ret_val;
 826
 827		/* Set PHY page 0, register 30 to 0x0000 */
 828		ret_val = e1e_wphy(hw, 30, 0x0000);
 829		if (ret_val)
 830			return ret_val;
 831	}
 832
 833	/* Commit the changes. */
 834	ret_val = e1000e_commit_phy(hw);
 835	if (ret_val) {
 836		e_dbg("Error committing the PHY changes\n");
 837		return ret_val;
 
 
 838	}
 839
 840	if (phy->type == e1000_phy_82578) {
 841		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
 842		if (ret_val)
 843			return ret_val;
 844
 845		/* 82578 PHY - set the downshift count to 1x. */
 846		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
 847		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
 848		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
 849		if (ret_val)
 850			return ret_val;
 851	}
 852
 853	return 0;
 854}
 855
 856/**
 857 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
 858 *  @hw: pointer to the HW structure
 859 *
 860 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
 861 *  igp PHY's.
 862 **/
 863s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
 864{
 865	struct e1000_phy_info *phy = &hw->phy;
 866	s32 ret_val;
 867	u16 data;
 868
 869	ret_val = e1000_phy_hw_reset(hw);
 870	if (ret_val) {
 871		e_dbg("Error resetting the PHY.\n");
 872		return ret_val;
 873	}
 874
 875	/*
 876	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
 877	 * timeout issues when LFS is enabled.
 878	 */
 879	msleep(100);
 880
 881	/* disable lplu d0 during driver init */
 882	ret_val = e1000_set_d0_lplu_state(hw, false);
 883	if (ret_val) {
 884		e_dbg("Error Disabling LPLU D0\n");
 885		return ret_val;
 
 
 886	}
 887	/* Configure mdi-mdix settings */
 888	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
 889	if (ret_val)
 890		return ret_val;
 891
 892	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
 893
 894	switch (phy->mdix) {
 895	case 1:
 896		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
 897		break;
 898	case 2:
 899		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
 900		break;
 901	case 0:
 902	default:
 903		data |= IGP01E1000_PSCR_AUTO_MDIX;
 904		break;
 905	}
 906	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
 907	if (ret_val)
 908		return ret_val;
 909
 910	/* set auto-master slave resolution settings */
 911	if (hw->mac.autoneg) {
 912		/*
 913		 * when autonegotiation advertisement is only 1000Mbps then we
 914		 * should disable SmartSpeed and enable Auto MasterSlave
 915		 * resolution as hardware default.
 916		 */
 917		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
 918			/* Disable SmartSpeed */
 919			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 920					   &data);
 921			if (ret_val)
 922				return ret_val;
 923
 924			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 925			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
 926					   data);
 927			if (ret_val)
 928				return ret_val;
 929
 930			/* Set auto Master/Slave resolution process */
 931			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
 932			if (ret_val)
 933				return ret_val;
 934
 935			data &= ~CR_1000T_MS_ENABLE;
 936			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
 937			if (ret_val)
 938				return ret_val;
 939		}
 940
 941		ret_val = e1000_set_master_slave_mode(hw);
 942	}
 943
 944	return ret_val;
 945}
 946
 947/**
 948 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
 949 *  @hw: pointer to the HW structure
 950 *
 951 *  Reads the MII auto-neg advertisement register and/or the 1000T control
 952 *  register and if the PHY is already setup for auto-negotiation, then
 953 *  return successful.  Otherwise, setup advertisement and flow control to
 954 *  the appropriate values for the wanted auto-negotiation.
 955 **/
 956static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
 957{
 958	struct e1000_phy_info *phy = &hw->phy;
 959	s32 ret_val;
 960	u16 mii_autoneg_adv_reg;
 961	u16 mii_1000t_ctrl_reg = 0;
 962
 963	phy->autoneg_advertised &= phy->autoneg_mask;
 964
 965	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 966	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
 967	if (ret_val)
 968		return ret_val;
 969
 970	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
 971		/* Read the MII 1000Base-T Control Register (Address 9). */
 972		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
 973		if (ret_val)
 974			return ret_val;
 975	}
 976
 977	/*
 978	 * Need to parse both autoneg_advertised and fc and set up
 979	 * the appropriate PHY registers.  First we will parse for
 980	 * autoneg_advertised software override.  Since we can advertise
 981	 * a plethora of combinations, we need to check each bit
 982	 * individually.
 983	 */
 984
 985	/*
 986	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 987	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 988	 * the  1000Base-T Control Register (Address 9).
 989	 */
 990	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
 991				 NWAY_AR_100TX_HD_CAPS |
 992				 NWAY_AR_10T_FD_CAPS   |
 993				 NWAY_AR_10T_HD_CAPS);
 994	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
 995
 996	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
 997
 998	/* Do we want to advertise 10 Mb Half Duplex? */
 999	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1000		e_dbg("Advertise 10mb Half duplex\n");
1001		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1002	}
1003
1004	/* Do we want to advertise 10 Mb Full Duplex? */
1005	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1006		e_dbg("Advertise 10mb Full duplex\n");
1007		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1008	}
1009
1010	/* Do we want to advertise 100 Mb Half Duplex? */
1011	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1012		e_dbg("Advertise 100mb Half duplex\n");
1013		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1014	}
1015
1016	/* Do we want to advertise 100 Mb Full Duplex? */
1017	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1018		e_dbg("Advertise 100mb Full duplex\n");
1019		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1020	}
1021
1022	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1023	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1024		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1025
1026	/* Do we want to advertise 1000 Mb Full Duplex? */
1027	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1028		e_dbg("Advertise 1000mb Full duplex\n");
1029		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1030	}
1031
1032	/*
1033	 * Check for a software override of the flow control settings, and
1034	 * setup the PHY advertisement registers accordingly.  If
1035	 * auto-negotiation is enabled, then software will have to set the
1036	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1037	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1038	 * negotiation.
1039	 *
1040	 * The possible values of the "fc" parameter are:
1041	 *      0:  Flow control is completely disabled
1042	 *      1:  Rx flow control is enabled (we can receive pause frames
1043	 *          but not send pause frames).
1044	 *      2:  Tx flow control is enabled (we can send pause frames
1045	 *          but we do not support receiving pause frames).
1046	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1047	 *  other:  No software override.  The flow control configuration
1048	 *          in the EEPROM is used.
1049	 */
1050	switch (hw->fc.current_mode) {
1051	case e1000_fc_none:
1052		/*
1053		 * Flow control (Rx & Tx) is completely disabled by a
1054		 * software over-ride.
1055		 */
1056		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
 
 
1057		break;
1058	case e1000_fc_rx_pause:
1059		/*
1060		 * Rx Flow control is enabled, and Tx Flow control is
1061		 * disabled, by a software over-ride.
1062		 *
1063		 * Since there really isn't a way to advertise that we are
1064		 * capable of Rx Pause ONLY, we will advertise that we
1065		 * support both symmetric and asymmetric Rx PAUSE.  Later
1066		 * (in e1000e_config_fc_after_link_up) we will disable the
1067		 * hw's ability to send PAUSE frames.
1068		 */
1069		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
 
 
1070		break;
1071	case e1000_fc_tx_pause:
1072		/*
1073		 * Tx Flow control is enabled, and Rx Flow control is
1074		 * disabled, by a software over-ride.
1075		 */
1076		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1077		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
 
 
1078		break;
1079	case e1000_fc_full:
1080		/*
1081		 * Flow control (both Rx and Tx) is enabled by a software
1082		 * over-ride.
1083		 */
1084		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
 
 
 
1085		break;
1086	default:
1087		e_dbg("Flow control param set incorrectly\n");
1088		return -E1000_ERR_CONFIG;
1089	}
1090
1091	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1092	if (ret_val)
1093		return ret_val;
1094
1095	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1096
1097	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1098		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1099
1100	return ret_val;
1101}
1102
1103/**
1104 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1105 *  @hw: pointer to the HW structure
1106 *
1107 *  Performs initial bounds checking on autoneg advertisement parameter, then
1108 *  configure to advertise the full capability.  Setup the PHY to autoneg
1109 *  and restart the negotiation process between the link partner.  If
1110 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1111 **/
1112static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1113{
1114	struct e1000_phy_info *phy = &hw->phy;
1115	s32 ret_val;
1116	u16 phy_ctrl;
1117
1118	/*
1119	 * Perform some bounds checking on the autoneg advertisement
1120	 * parameter.
1121	 */
1122	phy->autoneg_advertised &= phy->autoneg_mask;
1123
1124	/*
1125	 * If autoneg_advertised is zero, we assume it was not defaulted
1126	 * by the calling code so we set to advertise full capability.
1127	 */
1128	if (!phy->autoneg_advertised)
1129		phy->autoneg_advertised = phy->autoneg_mask;
1130
1131	e_dbg("Reconfiguring auto-neg advertisement params\n");
1132	ret_val = e1000_phy_setup_autoneg(hw);
1133	if (ret_val) {
1134		e_dbg("Error Setting up Auto-Negotiation\n");
1135		return ret_val;
1136	}
1137	e_dbg("Restarting Auto-Neg\n");
1138
1139	/*
1140	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1141	 * the Auto Neg Restart bit in the PHY control register.
1142	 */
1143	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1144	if (ret_val)
1145		return ret_val;
1146
1147	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1148	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1149	if (ret_val)
1150		return ret_val;
1151
1152	/*
1153	 * Does the user want to wait for Auto-Neg to complete here, or
1154	 * check at a later time (for example, callback routine).
1155	 */
1156	if (phy->autoneg_wait_to_complete) {
1157		ret_val = e1000_wait_autoneg(hw);
1158		if (ret_val) {
1159			e_dbg("Error while waiting for autoneg to complete\n");
1160			return ret_val;
1161		}
1162	}
1163
1164	hw->mac.get_link_status = true;
1165
1166	return ret_val;
1167}
1168
1169/**
1170 *  e1000e_setup_copper_link - Configure copper link settings
1171 *  @hw: pointer to the HW structure
1172 *
1173 *  Calls the appropriate function to configure the link for auto-neg or forced
1174 *  speed and duplex.  Then we check for link, once link is established calls
1175 *  to configure collision distance and flow control are called.  If link is
1176 *  not established, we return -E1000_ERR_PHY (-2).
1177 **/
1178s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1179{
1180	s32 ret_val;
1181	bool link;
1182
1183	if (hw->mac.autoneg) {
1184		/*
1185		 * Setup autoneg and flow control advertisement and perform
1186		 * autonegotiation.
1187		 */
1188		ret_val = e1000_copper_link_autoneg(hw);
1189		if (ret_val)
1190			return ret_val;
1191	} else {
1192		/*
1193		 * PHY will be set to 10H, 10F, 100H or 100F
1194		 * depending on user settings.
1195		 */
1196		e_dbg("Forcing Speed and Duplex\n");
1197		ret_val = e1000_phy_force_speed_duplex(hw);
1198		if (ret_val) {
1199			e_dbg("Error Forcing Speed and Duplex\n");
1200			return ret_val;
1201		}
1202	}
1203
1204	/*
1205	 * Check link status. Wait up to 100 microseconds for link to become
1206	 * valid.
1207	 */
1208	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1209					      &link);
1210	if (ret_val)
1211		return ret_val;
1212
1213	if (link) {
1214		e_dbg("Valid link established!!!\n");
1215		hw->mac.ops.config_collision_dist(hw);
1216		ret_val = e1000e_config_fc_after_link_up(hw);
1217	} else {
1218		e_dbg("Unable to establish link!!!\n");
1219	}
1220
1221	return ret_val;
1222}
1223
1224/**
1225 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1226 *  @hw: pointer to the HW structure
1227 *
1228 *  Calls the PHY setup function to force speed and duplex.  Clears the
1229 *  auto-crossover to force MDI manually.  Waits for link and returns
1230 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1231 **/
1232s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1233{
1234	struct e1000_phy_info *phy = &hw->phy;
1235	s32 ret_val;
1236	u16 phy_data;
1237	bool link;
1238
1239	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1240	if (ret_val)
1241		return ret_val;
1242
1243	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1244
1245	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1246	if (ret_val)
1247		return ret_val;
1248
1249	/*
1250	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1251	 * forced whenever speed and duplex are forced.
1252	 */
1253	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1254	if (ret_val)
1255		return ret_val;
1256
1257	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1258	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1259
1260	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1261	if (ret_val)
1262		return ret_val;
1263
1264	e_dbg("IGP PSCR: %X\n", phy_data);
1265
1266	udelay(1);
1267
1268	if (phy->autoneg_wait_to_complete) {
1269		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1270
1271		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1272						      100000, &link);
1273		if (ret_val)
1274			return ret_val;
1275
1276		if (!link)
1277			e_dbg("Link taking longer than expected.\n");
1278
1279		/* Try once more */
1280		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1281						      100000, &link);
1282	}
1283
1284	return ret_val;
1285}
1286
1287/**
1288 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1289 *  @hw: pointer to the HW structure
1290 *
1291 *  Calls the PHY setup function to force speed and duplex.  Clears the
1292 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1293 *  changes.  If time expires while waiting for link up, we reset the DSP.
1294 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1295 *  successful completion, else return corresponding error code.
1296 **/
1297s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1298{
1299	struct e1000_phy_info *phy = &hw->phy;
1300	s32 ret_val;
1301	u16 phy_data;
1302	bool link;
1303
1304	/*
1305	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1306	 * forced whenever speed and duplex are forced.
1307	 */
1308	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1309	if (ret_val)
1310		return ret_val;
1311
1312	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1313	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1314	if (ret_val)
1315		return ret_val;
1316
1317	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1318
1319	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1320	if (ret_val)
1321		return ret_val;
1322
1323	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1324
1325	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1326	if (ret_val)
1327		return ret_val;
1328
1329	/* Reset the phy to commit changes. */
1330	ret_val = e1000e_commit_phy(hw);
1331	if (ret_val)
1332		return ret_val;
 
 
1333
1334	if (phy->autoneg_wait_to_complete) {
1335		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1336
1337		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1338						     100000, &link);
1339		if (ret_val)
1340			return ret_val;
1341
1342		if (!link) {
1343			if (hw->phy.type != e1000_phy_m88) {
1344				e_dbg("Link taking longer than expected.\n");
1345			} else {
1346				/*
1347				 * We didn't get link.
1348				 * Reset the DSP and cross our fingers.
1349				 */
1350				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1351						   0x001d);
1352				if (ret_val)
1353					return ret_val;
1354				ret_val = e1000e_phy_reset_dsp(hw);
1355				if (ret_val)
1356					return ret_val;
1357			}
1358		}
1359
1360		/* Try once more */
1361		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1362						     100000, &link);
1363		if (ret_val)
1364			return ret_val;
1365	}
1366
1367	if (hw->phy.type != e1000_phy_m88)
1368		return 0;
1369
1370	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1371	if (ret_val)
1372		return ret_val;
1373
1374	/*
1375	 * Resetting the phy means we need to re-force TX_CLK in the
1376	 * Extended PHY Specific Control Register to 25MHz clock from
1377	 * the reset value of 2.5MHz.
1378	 */
1379	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1380	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1381	if (ret_val)
1382		return ret_val;
1383
1384	/*
1385	 * In addition, we must re-enable CRS on Tx for both half and full
1386	 * duplex.
1387	 */
1388	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1389	if (ret_val)
1390		return ret_val;
1391
1392	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1393	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1394
1395	return ret_val;
1396}
1397
1398/**
1399 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1400 *  @hw: pointer to the HW structure
1401 *
1402 *  Forces the speed and duplex settings of the PHY.
1403 *  This is a function pointer entry point only called by
1404 *  PHY setup routines.
1405 **/
1406s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1407{
1408	struct e1000_phy_info *phy = &hw->phy;
1409	s32 ret_val;
1410	u16 data;
1411	bool link;
1412
1413	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1414	if (ret_val)
1415		return ret_val;
1416
1417	e1000e_phy_force_speed_duplex_setup(hw, &data);
1418
1419	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1420	if (ret_val)
1421		return ret_val;
1422
1423	/* Disable MDI-X support for 10/100 */
1424	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1425	if (ret_val)
1426		return ret_val;
1427
1428	data &= ~IFE_PMC_AUTO_MDIX;
1429	data &= ~IFE_PMC_FORCE_MDIX;
1430
1431	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1432	if (ret_val)
1433		return ret_val;
1434
1435	e_dbg("IFE PMC: %X\n", data);
1436
1437	udelay(1);
1438
1439	if (phy->autoneg_wait_to_complete) {
1440		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1441
1442		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1443						      100000, &link);
1444		if (ret_val)
1445			return ret_val;
1446
1447		if (!link)
1448			e_dbg("Link taking longer than expected.\n");
1449
1450		/* Try once more */
1451		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1452						      100000, &link);
1453		if (ret_val)
1454			return ret_val;
1455	}
1456
1457	return 0;
1458}
1459
1460/**
1461 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1462 *  @hw: pointer to the HW structure
1463 *  @phy_ctrl: pointer to current value of PHY_CONTROL
1464 *
1465 *  Forces speed and duplex on the PHY by doing the following: disable flow
1466 *  control, force speed/duplex on the MAC, disable auto speed detection,
1467 *  disable auto-negotiation, configure duplex, configure speed, configure
1468 *  the collision distance, write configuration to CTRL register.  The
1469 *  caller must write to the PHY_CONTROL register for these settings to
1470 *  take affect.
1471 **/
1472void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1473{
1474	struct e1000_mac_info *mac = &hw->mac;
1475	u32 ctrl;
1476
1477	/* Turn off flow control when forcing speed/duplex */
1478	hw->fc.current_mode = e1000_fc_none;
1479
1480	/* Force speed/duplex on the mac */
1481	ctrl = er32(CTRL);
1482	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1483	ctrl &= ~E1000_CTRL_SPD_SEL;
1484
1485	/* Disable Auto Speed Detection */
1486	ctrl &= ~E1000_CTRL_ASDE;
1487
1488	/* Disable autoneg on the phy */
1489	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1490
1491	/* Forcing Full or Half Duplex? */
1492	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1493		ctrl &= ~E1000_CTRL_FD;
1494		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1495		e_dbg("Half Duplex\n");
1496	} else {
1497		ctrl |= E1000_CTRL_FD;
1498		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1499		e_dbg("Full Duplex\n");
1500	}
1501
1502	/* Forcing 10mb or 100mb? */
1503	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1504		ctrl |= E1000_CTRL_SPD_100;
1505		*phy_ctrl |= MII_CR_SPEED_100;
1506		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1507		e_dbg("Forcing 100mb\n");
1508	} else {
1509		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1510		*phy_ctrl |= MII_CR_SPEED_10;
1511		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1512		e_dbg("Forcing 10mb\n");
1513	}
1514
1515	hw->mac.ops.config_collision_dist(hw);
1516
1517	ew32(CTRL, ctrl);
1518}
1519
1520/**
1521 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1522 *  @hw: pointer to the HW structure
1523 *  @active: boolean used to enable/disable lplu
1524 *
1525 *  Success returns 0, Failure returns 1
1526 *
1527 *  The low power link up (lplu) state is set to the power management level D3
1528 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1529 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1530 *  is used during Dx states where the power conservation is most important.
1531 *  During driver activity, SmartSpeed should be enabled so performance is
1532 *  maintained.
1533 **/
1534s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1535{
1536	struct e1000_phy_info *phy = &hw->phy;
1537	s32 ret_val;
1538	u16 data;
1539
1540	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1541	if (ret_val)
1542		return ret_val;
1543
1544	if (!active) {
1545		data &= ~IGP02E1000_PM_D3_LPLU;
1546		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1547		if (ret_val)
1548			return ret_val;
1549		/*
1550		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1551		 * during Dx states where the power conservation is most
1552		 * important.  During driver activity we should enable
1553		 * SmartSpeed, so performance is maintained.
1554		 */
1555		if (phy->smart_speed == e1000_smart_speed_on) {
1556			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1557					   &data);
1558			if (ret_val)
1559				return ret_val;
1560
1561			data |= IGP01E1000_PSCFR_SMART_SPEED;
1562			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1563					   data);
1564			if (ret_val)
1565				return ret_val;
1566		} else if (phy->smart_speed == e1000_smart_speed_off) {
1567			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1568					   &data);
1569			if (ret_val)
1570				return ret_val;
1571
1572			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1573			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1574					   data);
1575			if (ret_val)
1576				return ret_val;
1577		}
1578	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1579		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1580		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1581		data |= IGP02E1000_PM_D3_LPLU;
1582		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1583		if (ret_val)
1584			return ret_val;
1585
1586		/* When LPLU is enabled, we should disable SmartSpeed */
1587		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1588		if (ret_val)
1589			return ret_val;
1590
1591		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1592		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1593	}
1594
1595	return ret_val;
1596}
1597
1598/**
1599 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1600 *  @hw: pointer to the HW structure
1601 *
1602 *  Success returns 0, Failure returns 1
1603 *
1604 *  A downshift is detected by querying the PHY link health.
1605 **/
1606s32 e1000e_check_downshift(struct e1000_hw *hw)
1607{
1608	struct e1000_phy_info *phy = &hw->phy;
1609	s32 ret_val;
1610	u16 phy_data, offset, mask;
1611
1612	switch (phy->type) {
1613	case e1000_phy_m88:
1614	case e1000_phy_gg82563:
1615	case e1000_phy_bm:
1616	case e1000_phy_82578:
1617		offset	= M88E1000_PHY_SPEC_STATUS;
1618		mask	= M88E1000_PSSR_DOWNSHIFT;
1619		break;
1620	case e1000_phy_igp_2:
1621	case e1000_phy_igp_3:
1622		offset	= IGP01E1000_PHY_LINK_HEALTH;
1623		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1624		break;
1625	default:
1626		/* speed downshift not supported */
1627		phy->speed_downgraded = false;
1628		return 0;
1629	}
1630
1631	ret_val = e1e_rphy(hw, offset, &phy_data);
1632
1633	if (!ret_val)
1634		phy->speed_downgraded = !!(phy_data & mask);
1635
1636	return ret_val;
1637}
1638
1639/**
1640 *  e1000_check_polarity_m88 - Checks the polarity.
1641 *  @hw: pointer to the HW structure
1642 *
1643 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1644 *
1645 *  Polarity is determined based on the PHY specific status register.
1646 **/
1647s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1648{
1649	struct e1000_phy_info *phy = &hw->phy;
1650	s32 ret_val;
1651	u16 data;
1652
1653	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1654
1655	if (!ret_val)
1656		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1657				      ? e1000_rev_polarity_reversed
1658				      : e1000_rev_polarity_normal;
1659
1660	return ret_val;
1661}
1662
1663/**
1664 *  e1000_check_polarity_igp - Checks the polarity.
1665 *  @hw: pointer to the HW structure
1666 *
1667 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1668 *
1669 *  Polarity is determined based on the PHY port status register, and the
1670 *  current speed (since there is no polarity at 100Mbps).
1671 **/
1672s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1673{
1674	struct e1000_phy_info *phy = &hw->phy;
1675	s32 ret_val;
1676	u16 data, offset, mask;
1677
1678	/*
1679	 * Polarity is determined based on the speed of
1680	 * our connection.
1681	 */
1682	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1683	if (ret_val)
1684		return ret_val;
1685
1686	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1687	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1688		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1689		mask	= IGP01E1000_PHY_POLARITY_MASK;
1690	} else {
1691		/*
1692		 * This really only applies to 10Mbps since
1693		 * there is no polarity for 100Mbps (always 0).
1694		 */
1695		offset	= IGP01E1000_PHY_PORT_STATUS;
1696		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1697	}
1698
1699	ret_val = e1e_rphy(hw, offset, &data);
1700
1701	if (!ret_val)
1702		phy->cable_polarity = (data & mask)
1703				      ? e1000_rev_polarity_reversed
1704				      : e1000_rev_polarity_normal;
1705
1706	return ret_val;
1707}
1708
1709/**
1710 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1711 *  @hw: pointer to the HW structure
1712 *
1713 *  Polarity is determined on the polarity reversal feature being enabled.
1714 **/
1715s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1716{
1717	struct e1000_phy_info *phy = &hw->phy;
1718	s32 ret_val;
1719	u16 phy_data, offset, mask;
1720
1721	/*
1722	 * Polarity is determined based on the reversal feature being enabled.
1723	 */
1724	if (phy->polarity_correction) {
1725		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1726		mask = IFE_PESC_POLARITY_REVERSED;
1727	} else {
1728		offset = IFE_PHY_SPECIAL_CONTROL;
1729		mask = IFE_PSC_FORCE_POLARITY;
1730	}
1731
1732	ret_val = e1e_rphy(hw, offset, &phy_data);
1733
1734	if (!ret_val)
1735		phy->cable_polarity = (phy_data & mask)
1736		                       ? e1000_rev_polarity_reversed
1737		                       : e1000_rev_polarity_normal;
1738
1739	return ret_val;
1740}
1741
1742/**
1743 *  e1000_wait_autoneg - Wait for auto-neg completion
1744 *  @hw: pointer to the HW structure
1745 *
1746 *  Waits for auto-negotiation to complete or for the auto-negotiation time
1747 *  limit to expire, which ever happens first.
1748 **/
1749static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1750{
1751	s32 ret_val = 0;
1752	u16 i, phy_status;
1753
1754	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1755	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1756		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1757		if (ret_val)
1758			break;
1759		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1760		if (ret_val)
1761			break;
1762		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1763			break;
1764		msleep(100);
1765	}
1766
1767	/*
1768	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1769	 * has completed.
1770	 */
1771	return ret_val;
1772}
1773
1774/**
1775 *  e1000e_phy_has_link_generic - Polls PHY for link
1776 *  @hw: pointer to the HW structure
1777 *  @iterations: number of times to poll for link
1778 *  @usec_interval: delay between polling attempts
1779 *  @success: pointer to whether polling was successful or not
1780 *
1781 *  Polls the PHY status register for link, 'iterations' number of times.
1782 **/
1783s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1784			       u32 usec_interval, bool *success)
1785{
1786	s32 ret_val = 0;
1787	u16 i, phy_status;
1788
 
1789	for (i = 0; i < iterations; i++) {
1790		/*
1791		 * Some PHYs require the PHY_STATUS register to be read
1792		 * twice due to the link bit being sticky.  No harm doing
1793		 * it across the board.
1794		 */
1795		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1796		if (ret_val)
1797			/*
1798			 * If the first read fails, another entity may have
1799			 * ownership of the resources, wait and try again to
1800			 * see if they have relinquished the resources yet.
1801			 */
1802			udelay(usec_interval);
1803		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
 
 
 
 
1804		if (ret_val)
1805			break;
1806		if (phy_status & MII_SR_LINK_STATUS)
 
1807			break;
 
1808		if (usec_interval >= 1000)
1809			mdelay(usec_interval/1000);
1810		else
1811			udelay(usec_interval);
1812	}
1813
1814	*success = (i < iterations);
1815
1816	return ret_val;
1817}
1818
1819/**
1820 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1821 *  @hw: pointer to the HW structure
1822 *
1823 *  Reads the PHY specific status register to retrieve the cable length
1824 *  information.  The cable length is determined by averaging the minimum and
1825 *  maximum values to get the "average" cable length.  The m88 PHY has four
1826 *  possible cable length values, which are:
1827 *	Register Value		Cable Length
1828 *	0			< 50 meters
1829 *	1			50 - 80 meters
1830 *	2			80 - 110 meters
1831 *	3			110 - 140 meters
1832 *	4			> 140 meters
1833 **/
1834s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1835{
1836	struct e1000_phy_info *phy = &hw->phy;
1837	s32 ret_val;
1838	u16 phy_data, index;
1839
1840	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1841	if (ret_val)
1842		return ret_val;
1843
1844	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1845	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1846
1847	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1848		return -E1000_ERR_PHY;
1849
1850	phy->min_cable_length = e1000_m88_cable_length_table[index];
1851	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1852
1853	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1854
1855	return 0;
1856}
1857
1858/**
1859 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1860 *  @hw: pointer to the HW structure
1861 *
1862 *  The automatic gain control (agc) normalizes the amplitude of the
1863 *  received signal, adjusting for the attenuation produced by the
1864 *  cable.  By reading the AGC registers, which represent the
1865 *  combination of coarse and fine gain value, the value can be put
1866 *  into a lookup table to obtain the approximate cable length
1867 *  for each channel.
1868 **/
1869s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1870{
1871	struct e1000_phy_info *phy = &hw->phy;
1872	s32 ret_val;
1873	u16 phy_data, i, agc_value = 0;
1874	u16 cur_agc_index, max_agc_index = 0;
1875	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1876	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1877	       IGP02E1000_PHY_AGC_A,
1878	       IGP02E1000_PHY_AGC_B,
1879	       IGP02E1000_PHY_AGC_C,
1880	       IGP02E1000_PHY_AGC_D
1881	};
1882
1883	/* Read the AGC registers for all channels */
1884	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1885		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1886		if (ret_val)
1887			return ret_val;
1888
1889		/*
1890		 * Getting bits 15:9, which represent the combination of
1891		 * coarse and fine gain values.  The result is a number
1892		 * that can be put into the lookup table to obtain the
1893		 * approximate cable length.
1894		 */
1895		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1896				IGP02E1000_AGC_LENGTH_MASK;
1897
1898		/* Array index bound check. */
1899		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1900		    (cur_agc_index == 0))
1901			return -E1000_ERR_PHY;
1902
1903		/* Remove min & max AGC values from calculation. */
1904		if (e1000_igp_2_cable_length_table[min_agc_index] >
1905		    e1000_igp_2_cable_length_table[cur_agc_index])
1906			min_agc_index = cur_agc_index;
1907		if (e1000_igp_2_cable_length_table[max_agc_index] <
1908		    e1000_igp_2_cable_length_table[cur_agc_index])
1909			max_agc_index = cur_agc_index;
1910
1911		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1912	}
1913
1914	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1915		      e1000_igp_2_cable_length_table[max_agc_index]);
1916	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1917
1918	/* Calculate cable length with the error range of +/- 10 meters. */
1919	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1920				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1921	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1922
1923	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1924
1925	return 0;
1926}
1927
1928/**
1929 *  e1000e_get_phy_info_m88 - Retrieve PHY information
1930 *  @hw: pointer to the HW structure
1931 *
1932 *  Valid for only copper links.  Read the PHY status register (sticky read)
1933 *  to verify that link is up.  Read the PHY special control register to
1934 *  determine the polarity and 10base-T extended distance.  Read the PHY
1935 *  special status register to determine MDI/MDIx and current speed.  If
1936 *  speed is 1000, then determine cable length, local and remote receiver.
1937 **/
1938s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1939{
1940	struct e1000_phy_info *phy = &hw->phy;
1941	s32  ret_val;
1942	u16 phy_data;
1943	bool link;
1944
1945	if (phy->media_type != e1000_media_type_copper) {
1946		e_dbg("Phy info is only valid for copper media\n");
1947		return -E1000_ERR_CONFIG;
1948	}
1949
1950	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1951	if (ret_val)
1952		return ret_val;
1953
1954	if (!link) {
1955		e_dbg("Phy info is only valid if link is up\n");
1956		return -E1000_ERR_CONFIG;
1957	}
1958
1959	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1960	if (ret_val)
1961		return ret_val;
1962
1963	phy->polarity_correction = !!(phy_data &
1964				      M88E1000_PSCR_POLARITY_REVERSAL);
1965
1966	ret_val = e1000_check_polarity_m88(hw);
1967	if (ret_val)
1968		return ret_val;
1969
1970	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1971	if (ret_val)
1972		return ret_val;
1973
1974	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1975
1976	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1977		ret_val = e1000_get_cable_length(hw);
1978		if (ret_val)
1979			return ret_val;
1980
1981		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1982		if (ret_val)
1983			return ret_val;
1984
1985		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1986				? e1000_1000t_rx_status_ok
1987				: e1000_1000t_rx_status_not_ok;
1988
1989		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1990				 ? e1000_1000t_rx_status_ok
1991				 : e1000_1000t_rx_status_not_ok;
1992	} else {
1993		/* Set values to "undefined" */
1994		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1995		phy->local_rx = e1000_1000t_rx_status_undefined;
1996		phy->remote_rx = e1000_1000t_rx_status_undefined;
1997	}
1998
1999	return ret_val;
2000}
2001
2002/**
2003 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2004 *  @hw: pointer to the HW structure
2005 *
2006 *  Read PHY status to determine if link is up.  If link is up, then
2007 *  set/determine 10base-T extended distance and polarity correction.  Read
2008 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2009 *  determine on the cable length, local and remote receiver.
2010 **/
2011s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2012{
2013	struct e1000_phy_info *phy = &hw->phy;
2014	s32 ret_val;
2015	u16 data;
2016	bool link;
2017
2018	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2019	if (ret_val)
2020		return ret_val;
2021
2022	if (!link) {
2023		e_dbg("Phy info is only valid if link is up\n");
2024		return -E1000_ERR_CONFIG;
2025	}
2026
2027	phy->polarity_correction = true;
2028
2029	ret_val = e1000_check_polarity_igp(hw);
2030	if (ret_val)
2031		return ret_val;
2032
2033	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2034	if (ret_val)
2035		return ret_val;
2036
2037	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2038
2039	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2040	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2041		ret_val = e1000_get_cable_length(hw);
2042		if (ret_val)
2043			return ret_val;
2044
2045		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2046		if (ret_val)
2047			return ret_val;
2048
2049		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2050				? e1000_1000t_rx_status_ok
2051				: e1000_1000t_rx_status_not_ok;
2052
2053		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2054				 ? e1000_1000t_rx_status_ok
2055				 : e1000_1000t_rx_status_not_ok;
2056	} else {
2057		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2058		phy->local_rx = e1000_1000t_rx_status_undefined;
2059		phy->remote_rx = e1000_1000t_rx_status_undefined;
2060	}
2061
2062	return ret_val;
2063}
2064
2065/**
2066 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Populates "phy" structure with various feature states.
2070 **/
2071s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2072{
2073	struct e1000_phy_info *phy = &hw->phy;
2074	s32 ret_val;
2075	u16 data;
2076	bool link;
2077
2078	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2079	if (ret_val)
2080		return ret_val;
2081
2082	if (!link) {
2083		e_dbg("Phy info is only valid if link is up\n");
2084		return -E1000_ERR_CONFIG;
2085	}
2086
2087	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2088	if (ret_val)
2089		return ret_val;
2090	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2091
2092	if (phy->polarity_correction) {
2093		ret_val = e1000_check_polarity_ife(hw);
2094		if (ret_val)
2095			return ret_val;
2096	} else {
2097		/* Polarity is forced */
2098		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2099		                      ? e1000_rev_polarity_reversed
2100		                      : e1000_rev_polarity_normal;
2101	}
2102
2103	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2104	if (ret_val)
2105		return ret_val;
2106
2107	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2108
2109	/* The following parameters are undefined for 10/100 operation. */
2110	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2111	phy->local_rx = e1000_1000t_rx_status_undefined;
2112	phy->remote_rx = e1000_1000t_rx_status_undefined;
2113
2114	return 0;
2115}
2116
2117/**
2118 *  e1000e_phy_sw_reset - PHY software reset
2119 *  @hw: pointer to the HW structure
2120 *
2121 *  Does a software reset of the PHY by reading the PHY control register and
2122 *  setting/write the control register reset bit to the PHY.
2123 **/
2124s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2125{
2126	s32 ret_val;
2127	u16 phy_ctrl;
2128
2129	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2130	if (ret_val)
2131		return ret_val;
2132
2133	phy_ctrl |= MII_CR_RESET;
2134	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2135	if (ret_val)
2136		return ret_val;
2137
2138	udelay(1);
2139
2140	return ret_val;
2141}
2142
2143/**
2144 *  e1000e_phy_hw_reset_generic - PHY hardware reset
2145 *  @hw: pointer to the HW structure
2146 *
2147 *  Verify the reset block is not blocking us from resetting.  Acquire
2148 *  semaphore (if necessary) and read/set/write the device control reset
2149 *  bit in the PHY.  Wait the appropriate delay time for the device to
2150 *  reset and release the semaphore (if necessary).
2151 **/
2152s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2153{
2154	struct e1000_phy_info *phy = &hw->phy;
2155	s32 ret_val;
2156	u32 ctrl;
2157
2158	if (phy->ops.check_reset_block) {
2159		ret_val = phy->ops.check_reset_block(hw);
2160		if (ret_val)
2161			return 0;
2162	}
2163
2164	ret_val = phy->ops.acquire(hw);
2165	if (ret_val)
2166		return ret_val;
2167
2168	ctrl = er32(CTRL);
2169	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2170	e1e_flush();
2171
2172	udelay(phy->reset_delay_us);
2173
2174	ew32(CTRL, ctrl);
2175	e1e_flush();
2176
2177	udelay(150);
2178
2179	phy->ops.release(hw);
2180
2181	return e1000_get_phy_cfg_done(hw);
2182}
2183
2184/**
2185 *  e1000e_get_cfg_done - Generic configuration done
2186 *  @hw: pointer to the HW structure
2187 *
2188 *  Generic function to wait 10 milli-seconds for configuration to complete
2189 *  and return success.
2190 **/
2191s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2192{
2193	mdelay(10);
2194
2195	return 0;
2196}
2197
2198/**
2199 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2200 *  @hw: pointer to the HW structure
2201 *
2202 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2203 **/
2204s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2205{
2206	e_dbg("Running IGP 3 PHY init script\n");
2207
2208	/* PHY init IGP 3 */
2209	/* Enable rise/fall, 10-mode work in class-A */
2210	e1e_wphy(hw, 0x2F5B, 0x9018);
2211	/* Remove all caps from Replica path filter */
2212	e1e_wphy(hw, 0x2F52, 0x0000);
2213	/* Bias trimming for ADC, AFE and Driver (Default) */
2214	e1e_wphy(hw, 0x2FB1, 0x8B24);
2215	/* Increase Hybrid poly bias */
2216	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2217	/* Add 4% to Tx amplitude in Gig mode */
2218	e1e_wphy(hw, 0x2010, 0x10B0);
2219	/* Disable trimming (TTT) */
2220	e1e_wphy(hw, 0x2011, 0x0000);
2221	/* Poly DC correction to 94.6% + 2% for all channels */
2222	e1e_wphy(hw, 0x20DD, 0x249A);
2223	/* ABS DC correction to 95.9% */
2224	e1e_wphy(hw, 0x20DE, 0x00D3);
2225	/* BG temp curve trim */
2226	e1e_wphy(hw, 0x28B4, 0x04CE);
2227	/* Increasing ADC OPAMP stage 1 currents to max */
2228	e1e_wphy(hw, 0x2F70, 0x29E4);
2229	/* Force 1000 ( required for enabling PHY regs configuration) */
2230	e1e_wphy(hw, 0x0000, 0x0140);
2231	/* Set upd_freq to 6 */
2232	e1e_wphy(hw, 0x1F30, 0x1606);
2233	/* Disable NPDFE */
2234	e1e_wphy(hw, 0x1F31, 0xB814);
2235	/* Disable adaptive fixed FFE (Default) */
2236	e1e_wphy(hw, 0x1F35, 0x002A);
2237	/* Enable FFE hysteresis */
2238	e1e_wphy(hw, 0x1F3E, 0x0067);
2239	/* Fixed FFE for short cable lengths */
2240	e1e_wphy(hw, 0x1F54, 0x0065);
2241	/* Fixed FFE for medium cable lengths */
2242	e1e_wphy(hw, 0x1F55, 0x002A);
2243	/* Fixed FFE for long cable lengths */
2244	e1e_wphy(hw, 0x1F56, 0x002A);
2245	/* Enable Adaptive Clip Threshold */
2246	e1e_wphy(hw, 0x1F72, 0x3FB0);
2247	/* AHT reset limit to 1 */
2248	e1e_wphy(hw, 0x1F76, 0xC0FF);
2249	/* Set AHT master delay to 127 msec */
2250	e1e_wphy(hw, 0x1F77, 0x1DEC);
2251	/* Set scan bits for AHT */
2252	e1e_wphy(hw, 0x1F78, 0xF9EF);
2253	/* Set AHT Preset bits */
2254	e1e_wphy(hw, 0x1F79, 0x0210);
2255	/* Change integ_factor of channel A to 3 */
2256	e1e_wphy(hw, 0x1895, 0x0003);
2257	/* Change prop_factor of channels BCD to 8 */
2258	e1e_wphy(hw, 0x1796, 0x0008);
2259	/* Change cg_icount + enable integbp for channels BCD */
2260	e1e_wphy(hw, 0x1798, 0xD008);
2261	/*
2262	 * Change cg_icount + enable integbp + change prop_factor_master
2263	 * to 8 for channel A
2264	 */
2265	e1e_wphy(hw, 0x1898, 0xD918);
2266	/* Disable AHT in Slave mode on channel A */
2267	e1e_wphy(hw, 0x187A, 0x0800);
2268	/*
2269	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2270	 * Enable SPD+B2B
2271	 */
2272	e1e_wphy(hw, 0x0019, 0x008D);
2273	/* Enable restart AN on an1000_dis change */
2274	e1e_wphy(hw, 0x001B, 0x2080);
2275	/* Enable wh_fifo read clock in 10/100 modes */
2276	e1e_wphy(hw, 0x0014, 0x0045);
2277	/* Restart AN, Speed selection is 1000 */
2278	e1e_wphy(hw, 0x0000, 0x1340);
2279
2280	return 0;
2281}
2282
2283/* Internal function pointers */
2284
2285/**
2286 *  e1000_get_phy_cfg_done - Generic PHY configuration done
2287 *  @hw: pointer to the HW structure
2288 *
2289 *  Return success if silicon family did not implement a family specific
2290 *  get_cfg_done function.
2291 **/
2292static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2293{
2294	if (hw->phy.ops.get_cfg_done)
2295		return hw->phy.ops.get_cfg_done(hw);
2296
2297	return 0;
2298}
2299
2300/**
2301 *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2302 *  @hw: pointer to the HW structure
2303 *
2304 *  When the silicon family has not implemented a forced speed/duplex
2305 *  function for the PHY, simply return 0.
2306 **/
2307static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2308{
2309	if (hw->phy.ops.force_speed_duplex)
2310		return hw->phy.ops.force_speed_duplex(hw);
2311
2312	return 0;
2313}
2314
2315/**
2316 *  e1000e_get_phy_type_from_id - Get PHY type from id
2317 *  @phy_id: phy_id read from the phy
2318 *
2319 *  Returns the phy type from the id.
2320 **/
2321enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2322{
2323	enum e1000_phy_type phy_type = e1000_phy_unknown;
2324
2325	switch (phy_id) {
2326	case M88E1000_I_PHY_ID:
2327	case M88E1000_E_PHY_ID:
2328	case M88E1111_I_PHY_ID:
2329	case M88E1011_I_PHY_ID:
2330		phy_type = e1000_phy_m88;
2331		break;
2332	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2333		phy_type = e1000_phy_igp_2;
2334		break;
2335	case GG82563_E_PHY_ID:
2336		phy_type = e1000_phy_gg82563;
2337		break;
2338	case IGP03E1000_E_PHY_ID:
2339		phy_type = e1000_phy_igp_3;
2340		break;
2341	case IFE_E_PHY_ID:
2342	case IFE_PLUS_E_PHY_ID:
2343	case IFE_C_E_PHY_ID:
2344		phy_type = e1000_phy_ife;
2345		break;
2346	case BME1000_E_PHY_ID:
2347	case BME1000_E_PHY_ID_R2:
2348		phy_type = e1000_phy_bm;
2349		break;
2350	case I82578_E_PHY_ID:
2351		phy_type = e1000_phy_82578;
2352		break;
2353	case I82577_E_PHY_ID:
2354		phy_type = e1000_phy_82577;
2355		break;
2356	case I82579_E_PHY_ID:
2357		phy_type = e1000_phy_82579;
2358		break;
2359	case I217_E_PHY_ID:
2360		phy_type = e1000_phy_i217;
2361		break;
2362	default:
2363		phy_type = e1000_phy_unknown;
2364		break;
2365	}
2366	return phy_type;
2367}
2368
2369/**
2370 *  e1000e_determine_phy_address - Determines PHY address.
2371 *  @hw: pointer to the HW structure
2372 *
2373 *  This uses a trial and error method to loop through possible PHY
2374 *  addresses. It tests each by reading the PHY ID registers and
2375 *  checking for a match.
2376 **/
2377s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2378{
2379	u32 phy_addr = 0;
2380	u32 i;
2381	enum e1000_phy_type phy_type = e1000_phy_unknown;
2382
2383	hw->phy.id = phy_type;
2384
2385	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2386		hw->phy.addr = phy_addr;
2387		i = 0;
2388
2389		do {
2390			e1000e_get_phy_id(hw);
2391			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2392
2393			/*
2394			 * If phy_type is valid, break - we found our
2395			 * PHY address
2396			 */
2397			if (phy_type  != e1000_phy_unknown)
2398				return 0;
2399
2400			usleep_range(1000, 2000);
2401			i++;
2402		} while (i < 10);
2403	}
2404
2405	return -E1000_ERR_PHY_TYPE;
2406}
2407
2408/**
2409 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2410 *  @page: page to access
 
2411 *
2412 *  Returns the phy address for the page requested.
2413 **/
2414static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2415{
2416	u32 phy_addr = 2;
2417
2418	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2419		phy_addr = 1;
2420
2421	return phy_addr;
2422}
2423
2424/**
2425 *  e1000e_write_phy_reg_bm - Write BM PHY register
2426 *  @hw: pointer to the HW structure
2427 *  @offset: register offset to write to
2428 *  @data: data to write at register offset
2429 *
2430 *  Acquires semaphore, if necessary, then writes the data to PHY register
2431 *  at the offset.  Release any acquired semaphores before exiting.
2432 **/
2433s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2434{
2435	s32 ret_val;
2436	u32 page = offset >> IGP_PAGE_SHIFT;
2437
2438	ret_val = hw->phy.ops.acquire(hw);
2439	if (ret_val)
2440		return ret_val;
2441
2442	/* Page 800 works differently than the rest so it has its own func */
2443	if (page == BM_WUC_PAGE) {
2444		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2445							 false, false);
2446		goto release;
2447	}
2448
2449	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2450
2451	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2452		u32 page_shift, page_select;
2453
2454		/*
2455		 * Page select is register 31 for phy address 1 and 22 for
2456		 * phy address 2 and 3. Page select is shifted only for
2457		 * phy address 1.
2458		 */
2459		if (hw->phy.addr == 1) {
2460			page_shift = IGP_PAGE_SHIFT;
2461			page_select = IGP01E1000_PHY_PAGE_SELECT;
2462		} else {
2463			page_shift = 0;
2464			page_select = BM_PHY_PAGE_SELECT;
2465		}
2466
2467		/* Page is shifted left, PHY expects (page x 32) */
2468		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2469		                                    (page << page_shift));
2470		if (ret_val)
2471			goto release;
2472	}
2473
2474	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2475	                                    data);
2476
2477release:
2478	hw->phy.ops.release(hw);
2479	return ret_val;
2480}
2481
2482/**
2483 *  e1000e_read_phy_reg_bm - Read BM PHY register
2484 *  @hw: pointer to the HW structure
2485 *  @offset: register offset to be read
2486 *  @data: pointer to the read data
2487 *
2488 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2489 *  and storing the retrieved information in data.  Release any acquired
2490 *  semaphores before exiting.
2491 **/
2492s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2493{
2494	s32 ret_val;
2495	u32 page = offset >> IGP_PAGE_SHIFT;
2496
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	/* Page 800 works differently than the rest so it has its own func */
2502	if (page == BM_WUC_PAGE) {
2503		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2504							 true, false);
2505		goto release;
2506	}
2507
2508	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2509
2510	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2511		u32 page_shift, page_select;
2512
2513		/*
2514		 * Page select is register 31 for phy address 1 and 22 for
2515		 * phy address 2 and 3. Page select is shifted only for
2516		 * phy address 1.
2517		 */
2518		if (hw->phy.addr == 1) {
2519			page_shift = IGP_PAGE_SHIFT;
2520			page_select = IGP01E1000_PHY_PAGE_SELECT;
2521		} else {
2522			page_shift = 0;
2523			page_select = BM_PHY_PAGE_SELECT;
2524		}
2525
2526		/* Page is shifted left, PHY expects (page x 32) */
2527		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2528		                                    (page << page_shift));
2529		if (ret_val)
2530			goto release;
2531	}
2532
2533	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2534	                                   data);
2535release:
2536	hw->phy.ops.release(hw);
2537	return ret_val;
2538}
2539
2540/**
2541 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2542 *  @hw: pointer to the HW structure
2543 *  @offset: register offset to be read
2544 *  @data: pointer to the read data
2545 *
2546 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2547 *  and storing the retrieved information in data.  Release any acquired
2548 *  semaphores before exiting.
2549 **/
2550s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2551{
2552	s32 ret_val;
2553	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2554
2555	ret_val = hw->phy.ops.acquire(hw);
2556	if (ret_val)
2557		return ret_val;
2558
2559	/* Page 800 works differently than the rest so it has its own func */
2560	if (page == BM_WUC_PAGE) {
2561		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2562							 true, false);
2563		goto release;
2564	}
2565
2566	hw->phy.addr = 1;
2567
2568	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2569
2570		/* Page is shifted left, PHY expects (page x 32) */
2571		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2572						    page);
2573
2574		if (ret_val)
2575			goto release;
2576	}
2577
2578	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2579					   data);
2580release:
2581	hw->phy.ops.release(hw);
2582	return ret_val;
2583}
2584
2585/**
2586 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2587 *  @hw: pointer to the HW structure
2588 *  @offset: register offset to write to
2589 *  @data: data to write at register offset
2590 *
2591 *  Acquires semaphore, if necessary, then writes the data to PHY register
2592 *  at the offset.  Release any acquired semaphores before exiting.
2593 **/
2594s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2595{
2596	s32 ret_val;
2597	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2598
2599	ret_val = hw->phy.ops.acquire(hw);
2600	if (ret_val)
2601		return ret_val;
2602
2603	/* Page 800 works differently than the rest so it has its own func */
2604	if (page == BM_WUC_PAGE) {
2605		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2606							 false, false);
2607		goto release;
2608	}
2609
2610	hw->phy.addr = 1;
2611
2612	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2613		/* Page is shifted left, PHY expects (page x 32) */
2614		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2615						    page);
2616
2617		if (ret_val)
2618			goto release;
2619	}
2620
2621	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2622					    data);
2623
2624release:
2625	hw->phy.ops.release(hw);
2626	return ret_val;
2627}
2628
2629/**
2630 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2631 *  @hw: pointer to the HW structure
2632 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2633 *
2634 *  Assumes semaphore already acquired and phy_reg points to a valid memory
2635 *  address to store contents of the BM_WUC_ENABLE_REG register.
2636 **/
2637s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2638{
2639	s32 ret_val;
2640	u16 temp;
2641
2642	/* All page select, port ctrl and wakeup registers use phy address 1 */
2643	hw->phy.addr = 1;
2644
2645	/* Select Port Control Registers page */
2646	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2647	if (ret_val) {
2648		e_dbg("Could not set Port Control page\n");
2649		return ret_val;
2650	}
2651
2652	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2653	if (ret_val) {
2654		e_dbg("Could not read PHY register %d.%d\n",
2655		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2656		return ret_val;
2657	}
2658
2659	/*
2660	 * Enable both PHY wakeup mode and Wakeup register page writes.
2661	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2662	 */
2663	temp = *phy_reg;
2664	temp |= BM_WUC_ENABLE_BIT;
2665	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2666
2667	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2668	if (ret_val) {
2669		e_dbg("Could not write PHY register %d.%d\n",
2670		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2671		return ret_val;
2672	}
2673
2674	/*
2675	 * Select Host Wakeup Registers page - caller now able to write
2676	 * registers on the Wakeup registers page
2677	 */
2678	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2679}
2680
2681/**
2682 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2683 *  @hw: pointer to the HW structure
2684 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2685 *
2686 *  Restore BM_WUC_ENABLE_REG to its original value.
2687 *
2688 *  Assumes semaphore already acquired and *phy_reg is the contents of the
2689 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2690 *  caller.
2691 **/
2692s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2693{
2694	s32 ret_val = 0;
2695
2696	/* Select Port Control Registers page */
2697	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2698	if (ret_val) {
2699		e_dbg("Could not set Port Control page\n");
2700		return ret_val;
2701	}
2702
2703	/* Restore 769.17 to its original value */
2704	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2705	if (ret_val)
2706		e_dbg("Could not restore PHY register %d.%d\n",
2707		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2708
2709	return ret_val;
2710}
2711
2712/**
2713 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2714 *  @hw: pointer to the HW structure
2715 *  @offset: register offset to be read or written
2716 *  @data: pointer to the data to read or write
2717 *  @read: determines if operation is read or write
2718 *  @page_set: BM_WUC_PAGE already set and access enabled
2719 *
2720 *  Read the PHY register at offset and store the retrieved information in
2721 *  data, or write data to PHY register at offset.  Note the procedure to
2722 *  access the PHY wakeup registers is different than reading the other PHY
2723 *  registers. It works as such:
2724 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2725 *  2) Set page to 800 for host (801 if we were manageability)
2726 *  3) Write the address using the address opcode (0x11)
2727 *  4) Read or write the data using the data opcode (0x12)
2728 *  5) Restore 769.17.2 to its original value
2729 *
2730 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2731 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2732 *
2733 *  Assumes semaphore is already acquired.  When page_set==true, assumes
2734 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2735 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2736 **/
2737static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2738					  u16 *data, bool read, bool page_set)
2739{
2740	s32 ret_val;
2741	u16 reg = BM_PHY_REG_NUM(offset);
2742	u16 page = BM_PHY_REG_PAGE(offset);
2743	u16 phy_reg = 0;
2744
2745	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2746	if ((hw->mac.type == e1000_pchlan) &&
2747	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2748		e_dbg("Attempting to access page %d while gig enabled.\n",
2749		      page);
2750
2751	if (!page_set) {
2752		/* Enable access to PHY wakeup registers */
2753		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2754		if (ret_val) {
2755			e_dbg("Could not enable PHY wakeup reg access\n");
2756			return ret_val;
2757		}
2758	}
2759
2760	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2761
2762	/* Write the Wakeup register page offset value using opcode 0x11 */
2763	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2764	if (ret_val) {
2765		e_dbg("Could not write address opcode to page %d\n", page);
2766		return ret_val;
2767	}
2768
2769	if (read) {
2770		/* Read the Wakeup register page value using opcode 0x12 */
2771		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2772		                                   data);
2773	} else {
2774		/* Write the Wakeup register page value using opcode 0x12 */
2775		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2776						    *data);
2777	}
2778
2779	if (ret_val) {
2780		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2781		return ret_val;
2782	}
2783
2784	if (!page_set)
2785		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2792 * @hw: pointer to the HW structure
2793 *
2794 * In the case of a PHY power down to save power, or to turn off link during a
2795 * driver unload, or wake on lan is not enabled, restore the link to previous
2796 * settings.
2797 **/
2798void e1000_power_up_phy_copper(struct e1000_hw *hw)
2799{
2800	u16 mii_reg = 0;
 
2801
2802	/* The PHY will retain its settings across a power down/up cycle */
2803	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2804	mii_reg &= ~MII_CR_POWER_DOWN;
2805	e1e_wphy(hw, PHY_CONTROL, mii_reg);
 
 
 
 
2806}
2807
2808/**
2809 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2810 * @hw: pointer to the HW structure
2811 *
2812 * In the case of a PHY power down to save power, or to turn off link during a
2813 * driver unload, or wake on lan is not enabled, restore the link to previous
2814 * settings.
2815 **/
2816void e1000_power_down_phy_copper(struct e1000_hw *hw)
2817{
2818	u16 mii_reg = 0;
 
2819
2820	/* The PHY will retain its settings across a power down/up cycle */
2821	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2822	mii_reg |= MII_CR_POWER_DOWN;
2823	e1e_wphy(hw, PHY_CONTROL, mii_reg);
 
 
 
 
2824	usleep_range(1000, 2000);
2825}
2826
2827/**
2828 *  e1000e_commit_phy - Soft PHY reset
2829 *  @hw: pointer to the HW structure
2830 *
2831 *  Performs a soft PHY reset on those that apply. This is a function pointer
2832 *  entry point called by drivers.
2833 **/
2834s32 e1000e_commit_phy(struct e1000_hw *hw)
2835{
2836	if (hw->phy.ops.commit)
2837		return hw->phy.ops.commit(hw);
2838
2839	return 0;
2840}
2841
2842/**
2843 *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2844 *  @hw: pointer to the HW structure
2845 *  @active: boolean used to enable/disable lplu
2846 *
2847 *  Success returns 0, Failure returns 1
2848 *
2849 *  The low power link up (lplu) state is set to the power management level D0
2850 *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2851 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2852 *  is used during Dx states where the power conservation is most important.
2853 *  During driver activity, SmartSpeed should be enabled so performance is
2854 *  maintained.  This is a function pointer entry point called by drivers.
2855 **/
2856static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2857{
2858	if (hw->phy.ops.set_d0_lplu_state)
2859		return hw->phy.ops.set_d0_lplu_state(hw, active);
2860
2861	return 0;
2862}
2863
2864/**
2865 *  __e1000_read_phy_reg_hv -  Read HV PHY register
2866 *  @hw: pointer to the HW structure
2867 *  @offset: register offset to be read
2868 *  @data: pointer to the read data
2869 *  @locked: semaphore has already been acquired or not
 
2870 *
2871 *  Acquires semaphore, if necessary, then reads the PHY register at offset
2872 *  and stores the retrieved information in data.  Release any acquired
2873 *  semaphore before exiting.
2874 **/
2875static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2876				   bool locked, bool page_set)
2877{
2878	s32 ret_val;
2879	u16 page = BM_PHY_REG_PAGE(offset);
2880	u16 reg = BM_PHY_REG_NUM(offset);
2881	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2882
2883	if (!locked) {
2884		ret_val = hw->phy.ops.acquire(hw);
2885		if (ret_val)
2886			return ret_val;
2887	}
2888
2889	/* Page 800 works differently than the rest so it has its own func */
2890	if (page == BM_WUC_PAGE) {
2891		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2892							 true, page_set);
2893		goto out;
2894	}
2895
2896	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2897		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2898		                                         data, true);
2899		goto out;
2900	}
2901
2902	if (!page_set) {
2903		if (page == HV_INTC_FC_PAGE_START)
2904			page = 0;
2905
2906		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2907			/* Page is shifted left, PHY expects (page x 32) */
2908			ret_val = e1000_set_page_igp(hw,
2909						     (page << IGP_PAGE_SHIFT));
2910
2911			hw->phy.addr = phy_addr;
2912
2913			if (ret_val)
2914				goto out;
2915		}
2916	}
2917
2918	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2919	      page << IGP_PAGE_SHIFT, reg);
2920
2921	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2922	                                  data);
2923out:
2924	if (!locked)
2925		hw->phy.ops.release(hw);
2926
2927	return ret_val;
2928}
2929
2930/**
2931 *  e1000_read_phy_reg_hv -  Read HV PHY register
2932 *  @hw: pointer to the HW structure
2933 *  @offset: register offset to be read
2934 *  @data: pointer to the read data
2935 *
2936 *  Acquires semaphore then reads the PHY register at offset and stores
2937 *  the retrieved information in data.  Release the acquired semaphore
2938 *  before exiting.
2939 **/
2940s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2941{
2942	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2943}
2944
2945/**
2946 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2947 *  @hw: pointer to the HW structure
2948 *  @offset: register offset to be read
2949 *  @data: pointer to the read data
2950 *
2951 *  Reads the PHY register at offset and stores the retrieved information
2952 *  in data.  Assumes semaphore already acquired.
2953 **/
2954s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2955{
2956	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2957}
2958
2959/**
2960 *  e1000_read_phy_reg_page_hv - Read HV PHY register
2961 *  @hw: pointer to the HW structure
2962 *  @offset: register offset to write to
2963 *  @data: data to write at register offset
2964 *
2965 *  Reads the PHY register at offset and stores the retrieved information
2966 *  in data.  Assumes semaphore already acquired and page already set.
2967 **/
2968s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2969{
2970	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2971}
2972
2973/**
2974 *  __e1000_write_phy_reg_hv - Write HV PHY register
2975 *  @hw: pointer to the HW structure
2976 *  @offset: register offset to write to
2977 *  @data: data to write at register offset
2978 *  @locked: semaphore has already been acquired or not
 
2979 *
2980 *  Acquires semaphore, if necessary, then writes the data to PHY register
2981 *  at the offset.  Release any acquired semaphores before exiting.
2982 **/
2983static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2984				    bool locked, bool page_set)
2985{
2986	s32 ret_val;
2987	u16 page = BM_PHY_REG_PAGE(offset);
2988	u16 reg = BM_PHY_REG_NUM(offset);
2989	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2990
2991	if (!locked) {
2992		ret_val = hw->phy.ops.acquire(hw);
2993		if (ret_val)
2994			return ret_val;
2995	}
2996
2997	/* Page 800 works differently than the rest so it has its own func */
2998	if (page == BM_WUC_PAGE) {
2999		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3000							 false, page_set);
3001		goto out;
3002	}
3003
3004	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3005		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3006		                                         &data, false);
3007		goto out;
3008	}
3009
3010	if (!page_set) {
3011		if (page == HV_INTC_FC_PAGE_START)
3012			page = 0;
3013
3014		/*
3015		 * Workaround MDIO accesses being disabled after entering IEEE
3016		 * Power Down (when bit 11 of the PHY Control register is set)
3017		 */
3018		if ((hw->phy.type == e1000_phy_82578) &&
3019		    (hw->phy.revision >= 1) &&
3020		    (hw->phy.addr == 2) &&
3021		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3022			u16 data2 = 0x7EFF;
 
3023			ret_val = e1000_access_phy_debug_regs_hv(hw,
3024								 (1 << 6) | 0x3,
3025								 &data2, false);
3026			if (ret_val)
3027				goto out;
3028		}
3029
3030		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3031			/* Page is shifted left, PHY expects (page x 32) */
3032			ret_val = e1000_set_page_igp(hw,
3033						     (page << IGP_PAGE_SHIFT));
3034
3035			hw->phy.addr = phy_addr;
3036
3037			if (ret_val)
3038				goto out;
3039		}
3040	}
3041
3042	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3043	      page << IGP_PAGE_SHIFT, reg);
3044
3045	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3046	                                  data);
3047
3048out:
3049	if (!locked)
3050		hw->phy.ops.release(hw);
3051
3052	return ret_val;
3053}
3054
3055/**
3056 *  e1000_write_phy_reg_hv - Write HV PHY register
3057 *  @hw: pointer to the HW structure
3058 *  @offset: register offset to write to
3059 *  @data: data to write at register offset
3060 *
3061 *  Acquires semaphore then writes the data to PHY register at the offset.
3062 *  Release the acquired semaphores before exiting.
3063 **/
3064s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3065{
3066	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3067}
3068
3069/**
3070 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3071 *  @hw: pointer to the HW structure
3072 *  @offset: register offset to write to
3073 *  @data: data to write at register offset
3074 *
3075 *  Writes the data to PHY register at the offset.  Assumes semaphore
3076 *  already acquired.
3077 **/
3078s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3079{
3080	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3081}
3082
3083/**
3084 *  e1000_write_phy_reg_page_hv - Write HV PHY register
3085 *  @hw: pointer to the HW structure
3086 *  @offset: register offset to write to
3087 *  @data: data to write at register offset
3088 *
3089 *  Writes the data to PHY register at the offset.  Assumes semaphore
3090 *  already acquired and page already set.
3091 **/
3092s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3093{
3094	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3095}
3096
3097/**
3098 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3099 *  @page: page to be accessed
3100 **/
3101static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3102{
3103	u32 phy_addr = 2;
3104
3105	if (page >= HV_INTC_FC_PAGE_START)
3106		phy_addr = 1;
3107
3108	return phy_addr;
3109}
3110
3111/**
3112 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3113 *  @hw: pointer to the HW structure
3114 *  @offset: register offset to be read or written
3115 *  @data: pointer to the data to be read or written
3116 *  @read: determines if operation is read or write
3117 *
3118 *  Reads the PHY register at offset and stores the retreived information
3119 *  in data.  Assumes semaphore already acquired.  Note that the procedure
3120 *  to access these regs uses the address port and data port to read/write.
3121 *  These accesses done with PHY address 2 and without using pages.
3122 **/
3123static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3124                                          u16 *data, bool read)
3125{
3126	s32 ret_val;
3127	u32 addr_reg = 0;
3128	u32 data_reg = 0;
3129
3130	/* This takes care of the difference with desktop vs mobile phy */
3131	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3132	           I82578_ADDR_REG : I82577_ADDR_REG;
3133	data_reg = addr_reg + 1;
3134
3135	/* All operations in this function are phy address 2 */
3136	hw->phy.addr = 2;
3137
3138	/* masking with 0x3F to remove the page from offset */
3139	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3140	if (ret_val) {
3141		e_dbg("Could not write the Address Offset port register\n");
3142		return ret_val;
3143	}
3144
3145	/* Read or write the data value next */
3146	if (read)
3147		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3148	else
3149		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3150
3151	if (ret_val)
3152		e_dbg("Could not access the Data port register\n");
3153
3154	return ret_val;
3155}
3156
3157/**
3158 *  e1000_link_stall_workaround_hv - Si workaround
3159 *  @hw: pointer to the HW structure
3160 *
3161 *  This function works around a Si bug where the link partner can get
3162 *  a link up indication before the PHY does.  If small packets are sent
3163 *  by the link partner they can be placed in the packet buffer without
3164 *  being properly accounted for by the PHY and will stall preventing
3165 *  further packets from being received.  The workaround is to clear the
3166 *  packet buffer after the PHY detects link up.
3167 **/
3168s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3169{
3170	s32 ret_val = 0;
3171	u16 data;
3172
3173	if (hw->phy.type != e1000_phy_82578)
3174		return 0;
3175
3176	/* Do not apply workaround if in PHY loopback bit 14 set */
3177	e1e_rphy(hw, PHY_CONTROL, &data);
3178	if (data & PHY_CONTROL_LB)
 
 
 
 
3179		return 0;
3180
3181	/* check if link is up and at 1Gbps */
3182	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3183	if (ret_val)
3184		return ret_val;
3185
3186	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3187		BM_CS_STATUS_SPEED_MASK;
3188
3189	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3190		     BM_CS_STATUS_SPEED_1000))
3191		return 0;
3192
3193	msleep(200);
3194
3195	/* flush the packets in the fifo buffer */
3196	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3197			   HV_MUX_DATA_CTRL_FORCE_SPEED);
 
3198	if (ret_val)
3199		return ret_val;
3200
3201	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3202}
3203
3204/**
3205 *  e1000_check_polarity_82577 - Checks the polarity.
3206 *  @hw: pointer to the HW structure
3207 *
3208 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3209 *
3210 *  Polarity is determined based on the PHY specific status register.
3211 **/
3212s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3213{
3214	struct e1000_phy_info *phy = &hw->phy;
3215	s32 ret_val;
3216	u16 data;
3217
3218	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3219
3220	if (!ret_val)
3221		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3222		                      ? e1000_rev_polarity_reversed
3223		                      : e1000_rev_polarity_normal;
3224
3225	return ret_val;
3226}
3227
3228/**
3229 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3230 *  @hw: pointer to the HW structure
3231 *
3232 *  Calls the PHY setup function to force speed and duplex.
3233 **/
3234s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3235{
3236	struct e1000_phy_info *phy = &hw->phy;
3237	s32 ret_val;
3238	u16 phy_data;
3239	bool link;
3240
3241	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3242	if (ret_val)
3243		return ret_val;
3244
3245	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3246
3247	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3248	if (ret_val)
3249		return ret_val;
3250
3251	udelay(1);
3252
3253	if (phy->autoneg_wait_to_complete) {
3254		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3255
3256		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3257						      100000, &link);
3258		if (ret_val)
3259			return ret_val;
3260
3261		if (!link)
3262			e_dbg("Link taking longer than expected.\n");
3263
3264		/* Try once more */
3265		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3266						      100000, &link);
3267	}
3268
3269	return ret_val;
3270}
3271
3272/**
3273 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3274 *  @hw: pointer to the HW structure
3275 *
3276 *  Read PHY status to determine if link is up.  If link is up, then
3277 *  set/determine 10base-T extended distance and polarity correction.  Read
3278 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3279 *  determine on the cable length, local and remote receiver.
3280 **/
3281s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3282{
3283	struct e1000_phy_info *phy = &hw->phy;
3284	s32 ret_val;
3285	u16 data;
3286	bool link;
3287
3288	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3289	if (ret_val)
3290		return ret_val;
3291
3292	if (!link) {
3293		e_dbg("Phy info is only valid if link is up\n");
3294		return -E1000_ERR_CONFIG;
3295	}
3296
3297	phy->polarity_correction = true;
3298
3299	ret_val = e1000_check_polarity_82577(hw);
3300	if (ret_val)
3301		return ret_val;
3302
3303	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3304	if (ret_val)
3305		return ret_val;
3306
3307	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3308
3309	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3310	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3311		ret_val = hw->phy.ops.get_cable_length(hw);
3312		if (ret_val)
3313			return ret_val;
3314
3315		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3316		if (ret_val)
3317			return ret_val;
3318
3319		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3320		                ? e1000_1000t_rx_status_ok
3321		                : e1000_1000t_rx_status_not_ok;
3322
3323		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3324		                 ? e1000_1000t_rx_status_ok
3325		                 : e1000_1000t_rx_status_not_ok;
3326	} else {
3327		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3328		phy->local_rx = e1000_1000t_rx_status_undefined;
3329		phy->remote_rx = e1000_1000t_rx_status_undefined;
3330	}
3331
3332	return 0;
3333}
3334
3335/**
3336 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3337 *  @hw: pointer to the HW structure
3338 *
3339 * Reads the diagnostic status register and verifies result is valid before
3340 * placing it in the phy_cable_length field.
3341 **/
3342s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3343{
3344	struct e1000_phy_info *phy = &hw->phy;
3345	s32 ret_val;
3346	u16 phy_data, length;
3347
3348	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3349	if (ret_val)
3350		return ret_val;
3351
3352	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3353	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3354
3355	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3356		ret_val = -E1000_ERR_PHY;
3357
3358	phy->cable_length = length;
3359
3360	return 0;
3361}