Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
 
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 324	case e1000_pch_lnp:
 325	case e1000_pch_ptp:
 326	case e1000_pch_nvp:
 327		if (e1000_phy_is_accessible_pchlan(hw))
 328			break;
 329
 330		/* Before toggling LANPHYPC, see if PHY is accessible by
 
 331		 * forcing MAC to SMBus mode first.
 332		 */
 333		mac_reg = er32(CTRL_EXT);
 334		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 335		ew32(CTRL_EXT, mac_reg);
 336
 337		/* Wait 50 milliseconds for MAC to finish any retries
 338		 * that it might be trying to perform from previous
 339		 * attempts to acknowledge any phy read requests.
 
 
 340		 */
 341		msleep(50);
 
 
 342
 343		fallthrough;
 344	case e1000_pch2lan:
 345		if (e1000_phy_is_accessible_pchlan(hw))
 
 
 
 
 
 
 
 
 
 346			break;
 
 347
 348		fallthrough;
 349	case e1000_pchlan:
 350		if ((hw->mac.type == e1000_pchlan) &&
 351		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 352			break;
 353
 354		if (hw->phy.ops.check_reset_block(hw)) {
 355			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 356			ret_val = -E1000_ERR_PHY;
 357			break;
 358		}
 359
 360		/* Toggle LANPHYPC Value bit */
 361		e1000_toggle_lanphypc_pch_lpt(hw);
 362		if (hw->mac.type >= e1000_pch_lpt) {
 363			if (e1000_phy_is_accessible_pchlan(hw))
 364				break;
 365
 366			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 367			 * so ensure that the MAC is also out of SMBus mode
 368			 */
 369			mac_reg = er32(CTRL_EXT);
 370			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 371			ew32(CTRL_EXT, mac_reg);
 372
 373			if (e1000_phy_is_accessible_pchlan(hw))
 374				break;
 
 
 
 375
 376			ret_val = -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377		}
 378		break;
 379	default:
 380		break;
 381	}
 382
 383	hw->phy.ops.release(hw);
 384	if (!ret_val) {
 385
 386		/* Check to see if able to reset PHY.  Print error if not */
 387		if (hw->phy.ops.check_reset_block(hw)) {
 388			e_err("Reset blocked by ME\n");
 389			goto out;
 390		}
 391
 392		/* Reset the PHY before any access to it.  Doing so, ensures
 393		 * that the PHY is in a known good state before we read/write
 394		 * PHY registers.  The generic reset is sufficient here,
 395		 * because we haven't determined the PHY type yet.
 396		 */
 397		ret_val = e1000e_phy_hw_reset_generic(hw);
 398		if (ret_val)
 399			goto out;
 400
 401		/* On a successful reset, possibly need to wait for the PHY
 402		 * to quiesce to an accessible state before returning control
 403		 * to the calling function.  If the PHY does not quiesce, then
 404		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 405		 *  the PHY is in.
 406		 */
 407		ret_val = hw->phy.ops.check_reset_block(hw);
 408		if (ret_val)
 409			e_err("ME blocked access to PHY after reset\n");
 410	}
 411
 412out:
 413	/* Ungate automatic PHY configuration on non-managed 82579 */
 414	if ((hw->mac.type == e1000_pch2lan) &&
 415	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 416		usleep_range(10000, 11000);
 417		e1000_gate_hw_phy_config_ich8lan(hw, false);
 418	}
 419
 420	return ret_val;
 421}
 422
 423/**
 424 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 425 *  @hw: pointer to the HW structure
 426 *
 427 *  Initialize family-specific PHY parameters and function pointers.
 428 **/
 429static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 430{
 431	struct e1000_phy_info *phy = &hw->phy;
 432	s32 ret_val;
 433
 434	phy->addr = 1;
 435	phy->reset_delay_us = 100;
 436
 437	phy->ops.set_page = e1000_set_page_igp;
 438	phy->ops.read_reg = e1000_read_phy_reg_hv;
 439	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 440	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 441	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 442	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 443	phy->ops.write_reg = e1000_write_phy_reg_hv;
 444	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 445	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 446	phy->ops.power_up = e1000_power_up_phy_copper;
 447	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 448	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 449
 450	phy->id = e1000_phy_unknown;
 451
 452	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 453	if (ret_val)
 454		return ret_val;
 455
 456	if (phy->id == e1000_phy_unknown)
 457		switch (hw->mac.type) {
 458		default:
 459			ret_val = e1000e_get_phy_id(hw);
 460			if (ret_val)
 461				return ret_val;
 462			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 463				break;
 464			fallthrough;
 465		case e1000_pch2lan:
 466		case e1000_pch_lpt:
 467		case e1000_pch_spt:
 468		case e1000_pch_cnp:
 469		case e1000_pch_tgp:
 470		case e1000_pch_adp:
 471		case e1000_pch_mtp:
 472		case e1000_pch_lnp:
 473		case e1000_pch_ptp:
 474		case e1000_pch_nvp:
 475			/* In case the PHY needs to be in mdio slow mode,
 476			 * set slow mode and try to get the PHY id again.
 477			 */
 478			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 479			if (ret_val)
 480				return ret_val;
 481			ret_val = e1000e_get_phy_id(hw);
 482			if (ret_val)
 483				return ret_val;
 484			break;
 485		}
 486	phy->type = e1000e_get_phy_type_from_id(phy->id);
 487
 488	switch (phy->type) {
 489	case e1000_phy_82577:
 490	case e1000_phy_82579:
 491	case e1000_phy_i217:
 492		phy->ops.check_polarity = e1000_check_polarity_82577;
 493		phy->ops.force_speed_duplex =
 494		    e1000_phy_force_speed_duplex_82577;
 495		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 496		phy->ops.get_info = e1000_get_phy_info_82577;
 497		phy->ops.commit = e1000e_phy_sw_reset;
 498		break;
 499	case e1000_phy_82578:
 500		phy->ops.check_polarity = e1000_check_polarity_m88;
 501		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 502		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 503		phy->ops.get_info = e1000e_get_phy_info_m88;
 504		break;
 505	default:
 506		ret_val = -E1000_ERR_PHY;
 507		break;
 508	}
 509
 510	return ret_val;
 511}
 512
 513/**
 514 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Initialize family-specific PHY parameters and function pointers.
 518 **/
 519static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 520{
 521	struct e1000_phy_info *phy = &hw->phy;
 522	s32 ret_val;
 523	u16 i = 0;
 524
 525	phy->addr = 1;
 526	phy->reset_delay_us = 100;
 527
 528	phy->ops.power_up = e1000_power_up_phy_copper;
 529	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 530
 531	/* We may need to do this twice - once for IGP and if that fails,
 
 532	 * we'll set BM func pointers and try again
 533	 */
 534	ret_val = e1000e_determine_phy_address(hw);
 535	if (ret_val) {
 536		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 537		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 538		ret_val = e1000e_determine_phy_address(hw);
 539		if (ret_val) {
 540			e_dbg("Cannot determine PHY addr. Erroring out\n");
 541			return ret_val;
 542		}
 543	}
 544
 545	phy->id = 0;
 546	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 547	       (i++ < 100)) {
 548		usleep_range(1000, 1100);
 549		ret_val = e1000e_get_phy_id(hw);
 550		if (ret_val)
 551			return ret_val;
 552	}
 553
 554	/* Verify phy id */
 555	switch (phy->id) {
 556	case IGP03E1000_E_PHY_ID:
 557		phy->type = e1000_phy_igp_3;
 558		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 559		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 560		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 561		phy->ops.get_info = e1000e_get_phy_info_igp;
 562		phy->ops.check_polarity = e1000_check_polarity_igp;
 563		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 564		break;
 565	case IFE_E_PHY_ID:
 566	case IFE_PLUS_E_PHY_ID:
 567	case IFE_C_E_PHY_ID:
 568		phy->type = e1000_phy_ife;
 569		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 570		phy->ops.get_info = e1000_get_phy_info_ife;
 571		phy->ops.check_polarity = e1000_check_polarity_ife;
 572		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 573		break;
 574	case BME1000_E_PHY_ID:
 575		phy->type = e1000_phy_bm;
 576		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 577		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 578		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 579		phy->ops.commit = e1000e_phy_sw_reset;
 580		phy->ops.get_info = e1000e_get_phy_info_m88;
 581		phy->ops.check_polarity = e1000_check_polarity_m88;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 583		break;
 584	default:
 585		return -E1000_ERR_PHY;
 
 586	}
 587
 588	return 0;
 589}
 590
 591/**
 592 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 593 *  @hw: pointer to the HW structure
 594 *
 595 *  Initialize family-specific NVM parameters and function
 596 *  pointers.
 597 **/
 598static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 599{
 600	struct e1000_nvm_info *nvm = &hw->nvm;
 601	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 602	u32 gfpreg, sector_base_addr, sector_end_addr;
 603	u16 i;
 604	u32 nvm_size;
 605
 606	nvm->type = e1000_nvm_flash_sw;
 607
 608	if (hw->mac.type >= e1000_pch_spt) {
 609		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 610		 * STRAP register. This is because in SPT the GbE Flash region
 611		 * is no longer accessed through the flash registers. Instead,
 612		 * the mechanism has changed, and the Flash region access
 613		 * registers are now implemented in GbE memory space.
 614		 */
 615		nvm->flash_base_addr = 0;
 616		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 617		    * NVM_SIZE_MULTIPLIER;
 618		nvm->flash_bank_size = nvm_size / 2;
 619		/* Adjust to word count */
 620		nvm->flash_bank_size /= sizeof(u16);
 621		/* Set the base address for flash register access */
 622		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 623	} else {
 624		/* Can't read flash registers if register set isn't mapped. */
 625		if (!hw->flash_address) {
 626			e_dbg("ERROR: Flash registers not mapped\n");
 627			return -E1000_ERR_CONFIG;
 628		}
 629
 630		gfpreg = er32flash(ICH_FLASH_GFPREG);
 631
 632		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 633		 * Add 1 to sector_end_addr since this sector is included in
 634		 * the overall size.
 635		 */
 636		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 637		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 638
 639		/* flash_base_addr is byte-aligned */
 640		nvm->flash_base_addr = sector_base_addr
 641		    << FLASH_SECTOR_ADDR_SHIFT;
 642
 643		/* find total size of the NVM, then cut in half since the total
 644		 * size represents two separate NVM banks.
 645		 */
 646		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 647					<< FLASH_SECTOR_ADDR_SHIFT);
 648		nvm->flash_bank_size /= 2;
 649		/* Adjust to word count */
 650		nvm->flash_bank_size /= sizeof(u16);
 651	}
 
 
 
 
 
 
 
 
 
 
 
 652
 653	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 654
 655	/* Clear shadow ram */
 656	for (i = 0; i < nvm->word_size; i++) {
 657		dev_spec->shadow_ram[i].modified = false;
 658		dev_spec->shadow_ram[i].value = 0xFFFF;
 659	}
 660
 661	return 0;
 662}
 663
 664/**
 665 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 666 *  @hw: pointer to the HW structure
 667 *
 668 *  Initialize family-specific MAC parameters and function
 669 *  pointers.
 670 **/
 671static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 672{
 673	struct e1000_mac_info *mac = &hw->mac;
 674
 675	/* Set media type function pointer */
 676	hw->phy.media_type = e1000_media_type_copper;
 677
 678	/* Set mta register count */
 679	mac->mta_reg_count = 32;
 680	/* Set rar entry count */
 681	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 682	if (mac->type == e1000_ich8lan)
 683		mac->rar_entry_count--;
 684	/* FWSM register */
 685	mac->has_fwsm = true;
 686	/* ARC subsystem not supported */
 687	mac->arc_subsystem_valid = false;
 688	/* Adaptive IFS supported */
 689	mac->adaptive_ifs = true;
 690
 691	/* LED and other operations */
 692	switch (mac->type) {
 693	case e1000_ich8lan:
 694	case e1000_ich9lan:
 695	case e1000_ich10lan:
 696		/* check management mode */
 697		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 698		/* ID LED init */
 699		mac->ops.id_led_init = e1000e_id_led_init_generic;
 700		/* blink LED */
 701		mac->ops.blink_led = e1000e_blink_led_generic;
 702		/* setup LED */
 703		mac->ops.setup_led = e1000e_setup_led_generic;
 704		/* cleanup LED */
 705		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 706		/* turn on/off LED */
 707		mac->ops.led_on = e1000_led_on_ich8lan;
 708		mac->ops.led_off = e1000_led_off_ich8lan;
 709		break;
 710	case e1000_pch2lan:
 711		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 712		mac->ops.rar_set = e1000_rar_set_pch2lan;
 713		fallthrough;
 714	case e1000_pch_lpt:
 715	case e1000_pch_spt:
 716	case e1000_pch_cnp:
 717	case e1000_pch_tgp:
 718	case e1000_pch_adp:
 719	case e1000_pch_mtp:
 720	case e1000_pch_lnp:
 721	case e1000_pch_ptp:
 722	case e1000_pch_nvp:
 723	case e1000_pchlan:
 724		/* check management mode */
 725		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 726		/* ID LED init */
 727		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 728		/* setup LED */
 729		mac->ops.setup_led = e1000_setup_led_pchlan;
 730		/* cleanup LED */
 731		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 732		/* turn on/off LED */
 733		mac->ops.led_on = e1000_led_on_pchlan;
 734		mac->ops.led_off = e1000_led_off_pchlan;
 735		break;
 736	default:
 737		break;
 738	}
 739
 740	if (mac->type >= e1000_pch_lpt) {
 741		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 742		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 743		mac->ops.setup_physical_interface =
 744		    e1000_setup_copper_link_pch_lpt;
 745		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 746	}
 747
 748	/* Enable PCS Lock-loss workaround for ICH8 */
 749	if (mac->type == e1000_ich8lan)
 750		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 751
 752	return 0;
 753}
 754
 755/**
 756 *  __e1000_access_emi_reg_locked - Read/write EMI register
 757 *  @hw: pointer to the HW structure
 758 *  @address: EMI address to program
 759 *  @data: pointer to value to read/write from/to the EMI address
 760 *  @read: boolean flag to indicate read or write
 761 *
 762 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 763 **/
 764static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 765					 u16 *data, bool read)
 766{
 767	s32 ret_val;
 768
 769	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 770	if (ret_val)
 771		return ret_val;
 772
 773	if (read)
 774		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 775	else
 776		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 777
 778	return ret_val;
 779}
 780
 781/**
 782 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 783 *  @hw: pointer to the HW structure
 784 *  @addr: EMI address to program
 785 *  @data: value to be read from the EMI address
 786 *
 787 *  Assumes the SW/FW/HW Semaphore is already acquired.
 788 **/
 789s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 790{
 791	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 792}
 793
 794/**
 795 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 796 *  @hw: pointer to the HW structure
 797 *  @addr: EMI address to program
 798 *  @data: value to be written to the EMI address
 799 *
 800 *  Assumes the SW/FW/HW Semaphore is already acquired.
 801 **/
 802s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 803{
 804	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 805}
 806
 807/**
 808 *  e1000_set_eee_pchlan - Enable/disable EEE support
 809 *  @hw: pointer to the HW structure
 810 *
 811 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 812 *  the link and the EEE capabilities of the link partner.  The LPI Control
 813 *  register bits will remain set only if/when link is up.
 814 *
 815 *  EEE LPI must not be asserted earlier than one second after link is up.
 816 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 817 *  can be link issues with some switches.  Other devices can have EEE LPI
 818 *  enabled immediately upon link up since they have a timer in hardware which
 819 *  prevents LPI from being asserted too early.
 820 **/
 821s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 822{
 823	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 824	s32 ret_val;
 825	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 826
 827	switch (hw->phy.type) {
 828	case e1000_phy_82579:
 829		lpa = I82579_EEE_LP_ABILITY;
 830		pcs_status = I82579_EEE_PCS_STATUS;
 831		adv_addr = I82579_EEE_ADVERTISEMENT;
 832		break;
 833	case e1000_phy_i217:
 834		lpa = I217_EEE_LP_ABILITY;
 835		pcs_status = I217_EEE_PCS_STATUS;
 836		adv_addr = I217_EEE_ADVERTISEMENT;
 837		break;
 838	default:
 839		return 0;
 840	}
 841
 842	ret_val = hw->phy.ops.acquire(hw);
 843	if (ret_val)
 844		return ret_val;
 845
 846	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 847	if (ret_val)
 848		goto release;
 849
 850	/* Clear bits that enable EEE in various speeds */
 851	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 852
 853	/* Enable EEE if not disabled by user */
 854	if (!dev_spec->eee_disable) {
 855		/* Save off link partner's EEE ability */
 856		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 857						    &dev_spec->eee_lp_ability);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Read EEE advertisement */
 862		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 863		if (ret_val)
 864			goto release;
 865
 866		/* Enable EEE only for speeds in which the link partner is
 867		 * EEE capable and for which we advertise EEE.
 868		 */
 869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 870			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 871
 872		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 873			e1e_rphy_locked(hw, MII_LPA, &data);
 874			if (data & LPA_100FULL)
 875				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 876			else
 877				/* EEE is not supported in 100Half, so ignore
 878				 * partner's EEE in 100 ability if full-duplex
 879				 * is not advertised.
 880				 */
 881				dev_spec->eee_lp_ability &=
 882				    ~I82579_EEE_100_SUPPORTED;
 883		}
 884	}
 885
 886	if (hw->phy.type == e1000_phy_82579) {
 887		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 888						    &data);
 889		if (ret_val)
 890			goto release;
 891
 892		data &= ~I82579_LPI_100_PLL_SHUT;
 893		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 894						     data);
 895	}
 896
 897	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 898	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 899	if (ret_val)
 900		goto release;
 901
 902	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 903release:
 904	hw->phy.ops.release(hw);
 905
 906	return ret_val;
 907}
 908
 909/**
 910 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 911 *  @hw:   pointer to the HW structure
 912 *  @link: link up bool flag
 913 *
 914 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 915 *  preventing further DMA write requests.  Workaround the issue by disabling
 916 *  the de-assertion of the clock request when in 1Gpbs mode.
 917 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 918 *  speeds in order to avoid Tx hangs.
 919 **/
 920static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 921{
 922	u32 fextnvm6 = er32(FEXTNVM6);
 923	u32 status = er32(STATUS);
 924	s32 ret_val = 0;
 925	u16 reg;
 926
 927	if (link && (status & E1000_STATUS_SPEED_1000)) {
 
 928		ret_val = hw->phy.ops.acquire(hw);
 929		if (ret_val)
 930			return ret_val;
 931
 932		ret_val =
 933		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 934						&reg);
 935		if (ret_val)
 936			goto release;
 
 937
 938		ret_val =
 939		    e1000e_write_kmrn_reg_locked(hw,
 940						 E1000_KMRNCTRLSTA_K1_CONFIG,
 941						 reg &
 942						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 943		if (ret_val)
 944			goto release;
 945
 946		usleep_range(10, 20);
 947
 948		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 949
 950		ret_val =
 951		    e1000e_write_kmrn_reg_locked(hw,
 952						 E1000_KMRNCTRLSTA_K1_CONFIG,
 953						 reg);
 954release:
 955		hw->phy.ops.release(hw);
 956	} else {
 957		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 958		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 959
 960		if ((hw->phy.revision > 5) || !link ||
 961		    ((status & E1000_STATUS_SPEED_100) &&
 962		     (status & E1000_STATUS_FD)))
 963			goto update_fextnvm6;
 964
 965		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 966		if (ret_val)
 967			return ret_val;
 968
 969		/* Clear link status transmit timeout */
 970		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 971
 972		if (status & E1000_STATUS_SPEED_100) {
 973			/* Set inband Tx timeout to 5x10us for 100Half */
 974			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 975
 976			/* Do not extend the K1 entry latency for 100Half */
 977			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 978		} else {
 979			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 980			reg |= 50 <<
 981			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 982
 983			/* Extend the K1 entry latency for 10 Mbps */
 984			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 985		}
 986
 987		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 988		if (ret_val)
 989			return ret_val;
 990
 991update_fextnvm6:
 992		ew32(FEXTNVM6, fextnvm6);
 993	}
 994
 995	return ret_val;
 996}
 997
 998/**
 999 *  e1000_platform_pm_pch_lpt - Set platform power management values
1000 *  @hw: pointer to the HW structure
1001 *  @link: bool indicating link status
1002 *
1003 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 *  when link is up (which must not exceed the maximum latency supported
1006 *  by the platform), otherwise specify there is no LTR requirement.
1007 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 *  Capability register set, on this device LTR is set by writing the
1010 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 *  message to the PMC.
1013 **/
1014static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015{
1016	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1019	u32 lat_enc_d = 0;	/* latency decoded */
1020	u16 lat_enc = 0;	/* latency encoded */
1021
1022	if (link) {
1023		u16 speed, duplex, scale = 0;
1024		u16 max_snoop, max_nosnoop;
1025		u16 max_ltr_enc;	/* max LTR latency encoded */
1026		u64 value;
1027		u32 rxa;
1028
1029		if (!hw->adapter->max_frame_size) {
1030			e_dbg("max_frame_size not set.\n");
1031			return -E1000_ERR_CONFIG;
1032		}
1033
1034		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035		if (!speed) {
1036			e_dbg("Speed not set.\n");
1037			return -E1000_ERR_CONFIG;
1038		}
1039
1040		/* Rx Packet Buffer Allocation size (KB) */
1041		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043		/* Determine the maximum latency tolerated by the device.
1044		 *
1045		 * Per the PCIe spec, the tolerated latencies are encoded as
1046		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1049		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050		 */
1051		rxa *= 512;
1052		value = (rxa > hw->adapter->max_frame_size) ?
1053			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054			0;
1055
1056		while (value > PCI_LTR_VALUE_MASK) {
1057			scale++;
1058			value = DIV_ROUND_UP(value, BIT(5));
1059		}
1060		if (scale > E1000_LTRV_SCALE_MAX) {
1061			e_dbg("Invalid LTR latency scale %d\n", scale);
1062			return -E1000_ERR_CONFIG;
1063		}
1064		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066		/* Determine the maximum latency tolerated by the platform */
1067		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068				     &max_snoop);
1069		pci_read_config_word(hw->adapter->pdev,
1070				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074			     (1U << (E1000_LTRV_SCALE_FACTOR *
1075			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1076
1077		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1078			(1U << (E1000_LTRV_SCALE_FACTOR *
1079				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1080
1081		if (lat_enc_d > max_ltr_enc_d)
1082			lat_enc = max_ltr_enc;
1083	}
1084
1085	/* Set Snoop and No-Snoop latencies the same */
1086	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1087	ew32(LTRV, reg);
1088
1089	return 0;
1090}
1091
1092/**
1093 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1094 *  @hw: pointer to the HW structure
1095 *  @to_sx: boolean indicating a system power state transition to Sx
1096 *
1097 *  When link is down, configure ULP mode to significantly reduce the power
1098 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1099 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1100 *  system, configure the ULP mode by software.
1101 */
1102s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1103{
1104	u32 mac_reg;
1105	s32 ret_val = 0;
1106	u16 phy_reg;
1107	u16 oem_reg = 0;
1108
1109	if ((hw->mac.type < e1000_pch_lpt) ||
1110	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1111	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1113	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1114	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1115		return 0;
1116
1117	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1118		/* Request ME configure ULP mode in the PHY */
1119		mac_reg = er32(H2ME);
1120		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1121		ew32(H2ME, mac_reg);
1122
1123		goto out;
1124	}
1125
1126	if (!to_sx) {
1127		int i = 0;
1128
1129		/* Poll up to 5 seconds for Cable Disconnected indication */
1130		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1131			/* Bail if link is re-acquired */
1132			if (er32(STATUS) & E1000_STATUS_LU)
1133				return -E1000_ERR_PHY;
1134
1135			if (i++ == 100)
1136				break;
1137
1138			msleep(50);
1139		}
1140		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1141		      (er32(FEXT) &
1142		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1143	}
1144
1145	ret_val = hw->phy.ops.acquire(hw);
1146	if (ret_val)
1147		goto out;
1148
1149	/* Force SMBus mode in PHY */
1150	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1151	if (ret_val)
1152		goto release;
1153	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1154	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1155
1156	/* Force SMBus mode in MAC */
1157	mac_reg = er32(CTRL_EXT);
1158	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1159	ew32(CTRL_EXT, mac_reg);
1160
1161	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1162	 * LPLU and disable Gig speed when entering ULP
1163	 */
1164	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1165		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1166						       &oem_reg);
1167		if (ret_val)
1168			goto release;
1169
1170		phy_reg = oem_reg;
1171		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1172
1173		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1174							phy_reg);
1175
1176		if (ret_val)
1177			goto release;
1178	}
1179
1180	/* Set Inband ULP Exit, Reset to SMBus mode and
1181	 * Disable SMBus Release on PERST# in PHY
1182	 */
1183	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1184	if (ret_val)
1185		goto release;
1186	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1187		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1188	if (to_sx) {
1189		if (er32(WUFC) & E1000_WUFC_LNKC)
1190			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1191		else
1192			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193
1194		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1195		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1196	} else {
1197		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1198		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1199		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200	}
1201	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1202
1203	/* Set Disable SMBus Release on PERST# in MAC */
1204	mac_reg = er32(FEXTNVM7);
1205	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1206	ew32(FEXTNVM7, mac_reg);
1207
1208	/* Commit ULP changes in PHY by starting auto ULP configuration */
1209	phy_reg |= I218_ULP_CONFIG1_START;
1210	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1211
1212	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1213	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1214		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1215							oem_reg);
1216		if (ret_val)
1217			goto release;
1218	}
1219
1220release:
1221	hw->phy.ops.release(hw);
1222out:
1223	if (ret_val)
1224		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1225	else
1226		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1227
1228	return ret_val;
1229}
1230
1231/**
1232 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1233 *  @hw: pointer to the HW structure
1234 *  @force: boolean indicating whether or not to force disabling ULP
1235 *
1236 *  Un-configure ULP mode when link is up, the system is transitioned from
1237 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1238 *  system, poll for an indication from ME that ULP has been un-configured.
1239 *  If not on an ME enabled system, un-configure the ULP mode by software.
1240 *
1241 *  During nominal operation, this function is called when link is acquired
1242 *  to disable ULP mode (force=false); otherwise, for example when unloading
1243 *  the driver or during Sx->S0 transitions, this is called with force=true
1244 *  to forcibly disable ULP.
1245 */
1246static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1247{
1248	s32 ret_val = 0;
1249	u32 mac_reg;
1250	u16 phy_reg;
1251	int i = 0;
1252
1253	if ((hw->mac.type < e1000_pch_lpt) ||
1254	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1255	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1257	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1258	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1259		return 0;
1260
1261	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1262		struct e1000_adapter *adapter = hw->adapter;
1263		bool firmware_bug = false;
1264
1265		if (force) {
1266			/* Request ME un-configure ULP mode in the PHY */
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ULP;
1269			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1270			ew32(H2ME, mac_reg);
1271		}
1272
1273		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1274		 * If this takes more than 1 second, show a warning indicating a
1275		 * firmware bug
1276		 */
1277		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1278			if (i++ == 250) {
1279				ret_val = -E1000_ERR_PHY;
1280				goto out;
1281			}
1282			if (i > 100 && !firmware_bug)
1283				firmware_bug = true;
1284
1285			usleep_range(10000, 11000);
1286		}
1287		if (firmware_bug)
1288			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1289			       i * 10);
1290		else
1291			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1292			      i * 10);
1293
1294		if (force) {
1295			mac_reg = er32(H2ME);
1296			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1297			ew32(H2ME, mac_reg);
1298		} else {
1299			/* Clear H2ME.ULP after ME ULP configuration */
1300			mac_reg = er32(H2ME);
1301			mac_reg &= ~E1000_H2ME_ULP;
1302			ew32(H2ME, mac_reg);
1303		}
1304
1305		goto out;
1306	}
1307
1308	ret_val = hw->phy.ops.acquire(hw);
1309	if (ret_val)
1310		goto out;
1311
1312	if (force)
1313		/* Toggle LANPHYPC Value bit */
1314		e1000_toggle_lanphypc_pch_lpt(hw);
1315
1316	/* Unforce SMBus mode in PHY */
1317	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1318	if (ret_val) {
1319		/* The MAC might be in PCIe mode, so temporarily force to
1320		 * SMBus mode in order to access the PHY.
1321		 */
1322		mac_reg = er32(CTRL_EXT);
1323		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1324		ew32(CTRL_EXT, mac_reg);
1325
1326		msleep(50);
1327
1328		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1329						       &phy_reg);
1330		if (ret_val)
1331			goto release;
1332	}
1333	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1334	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1335
1336	/* Unforce SMBus mode in MAC */
1337	mac_reg = er32(CTRL_EXT);
1338	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1339	ew32(CTRL_EXT, mac_reg);
1340
1341	/* When ULP mode was previously entered, K1 was disabled by the
1342	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1343	 */
1344	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1345	if (ret_val)
1346		goto release;
1347	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1348	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1349
1350	/* Clear ULP enabled configuration */
1351	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1352	if (ret_val)
1353		goto release;
1354	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1355		     I218_ULP_CONFIG1_STICKY_ULP |
1356		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1357		     I218_ULP_CONFIG1_WOL_HOST |
1358		     I218_ULP_CONFIG1_INBAND_EXIT |
1359		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1360		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1361		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1362	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363
1364	/* Commit ULP changes by starting auto ULP configuration */
1365	phy_reg |= I218_ULP_CONFIG1_START;
1366	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1367
1368	/* Clear Disable SMBus Release on PERST# in MAC */
1369	mac_reg = er32(FEXTNVM7);
1370	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1371	ew32(FEXTNVM7, mac_reg);
1372
1373release:
1374	hw->phy.ops.release(hw);
1375	if (force) {
1376		e1000_phy_hw_reset(hw);
1377		msleep(50);
1378	}
1379out:
1380	if (ret_val)
1381		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1382	else
1383		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1384
1385	return ret_val;
1386}
1387
1388/**
1389 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1390 *  @hw: pointer to the HW structure
1391 *
1392 *  Checks to see of the link status of the hardware has changed.  If a
1393 *  change in link status has been detected, then we read the PHY registers
1394 *  to get the current speed/duplex if link exists.
1395 **/
1396static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1397{
1398	struct e1000_mac_info *mac = &hw->mac;
1399	s32 ret_val, tipg_reg = 0;
1400	u16 emi_addr, emi_val = 0;
1401	bool link;
1402	u16 phy_reg;
1403
1404	/* We only want to go out to the PHY registers to see if Auto-Neg
 
1405	 * has completed and/or if our link status has changed.  The
1406	 * get_link_status flag is set upon receiving a Link Status
1407	 * Change or Rx Sequence Error interrupt.
1408	 */
1409	if (!mac->get_link_status)
1410		return 0;
1411	mac->get_link_status = false;
1412
1413	/* First we want to see if the MII Status Register reports
 
1414	 * link.  If so, then we want to get the current speed/duplex
1415	 * of the PHY.
1416	 */
1417	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1418	if (ret_val)
1419		goto out;
1420
1421	if (hw->mac.type == e1000_pchlan) {
1422		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1423		if (ret_val)
1424			goto out;
1425	}
1426
1427	/* When connected at 10Mbps half-duplex, some parts are excessively
1428	 * aggressive resulting in many collisions. To avoid this, increase
1429	 * the IPG and reduce Rx latency in the PHY.
1430	 */
1431	if ((hw->mac.type >= e1000_pch2lan) && link) {
1432		u16 speed, duplex;
1433
1434		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1435		tipg_reg = er32(TIPG);
1436		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1437
1438		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1439			tipg_reg |= 0xFF;
1440			/* Reduce Rx latency in analog PHY */
1441			emi_val = 0;
1442		} else if (hw->mac.type >= e1000_pch_spt &&
1443			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1444			tipg_reg |= 0xC;
1445			emi_val = 1;
1446		} else {
1447
1448			/* Roll back the default values */
1449			tipg_reg |= 0x08;
1450			emi_val = 1;
1451		}
1452
1453		ew32(TIPG, tipg_reg);
1454
1455		ret_val = hw->phy.ops.acquire(hw);
1456		if (ret_val)
1457			goto out;
1458
1459		if (hw->mac.type == e1000_pch2lan)
1460			emi_addr = I82579_RX_CONFIG;
1461		else
1462			emi_addr = I217_RX_CONFIG;
1463		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1464
1465		if (hw->mac.type >= e1000_pch_lpt) {
1466			u16 phy_reg;
1467
1468			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1469			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1470			if (speed == SPEED_100 || speed == SPEED_10)
1471				phy_reg |= 0x3E8;
1472			else
1473				phy_reg |= 0xFA;
1474			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1475
1476			if (speed == SPEED_1000) {
1477				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1478							    &phy_reg);
1479
1480				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1481
1482				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1483							     phy_reg);
1484			}
1485		}
1486		hw->phy.ops.release(hw);
1487
1488		if (ret_val)
1489			goto out;
1490
1491		if (hw->mac.type >= e1000_pch_spt) {
1492			u16 data;
1493			u16 ptr_gap;
1494
1495			if (speed == SPEED_1000) {
1496				ret_val = hw->phy.ops.acquire(hw);
1497				if (ret_val)
1498					goto out;
1499
1500				ret_val = e1e_rphy_locked(hw,
1501							  PHY_REG(776, 20),
1502							  &data);
1503				if (ret_val) {
1504					hw->phy.ops.release(hw);
1505					goto out;
1506				}
1507
1508				ptr_gap = (data & (0x3FF << 2)) >> 2;
1509				if (ptr_gap < 0x18) {
1510					data &= ~(0x3FF << 2);
1511					data |= (0x18 << 2);
1512					ret_val =
1513					    e1e_wphy_locked(hw,
1514							    PHY_REG(776, 20),
1515							    data);
1516				}
1517				hw->phy.ops.release(hw);
1518				if (ret_val)
1519					goto out;
1520			} else {
1521				ret_val = hw->phy.ops.acquire(hw);
1522				if (ret_val)
1523					goto out;
1524
1525				ret_val = e1e_wphy_locked(hw,
1526							  PHY_REG(776, 20),
1527							  0xC023);
1528				hw->phy.ops.release(hw);
1529				if (ret_val)
1530					goto out;
1531
1532			}
1533		}
1534	}
1535
1536	/* I217 Packet Loss issue:
1537	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1538	 * on power up.
1539	 * Set the Beacon Duration for I217 to 8 usec
1540	 */
1541	if (hw->mac.type >= e1000_pch_lpt) {
1542		u32 mac_reg;
1543
1544		mac_reg = er32(FEXTNVM4);
1545		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1546		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1547		ew32(FEXTNVM4, mac_reg);
1548	}
1549
1550	/* Work-around I218 hang issue */
1551	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1552	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1553	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1554	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1555		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1556		if (ret_val)
1557			goto out;
1558	}
1559	if (hw->mac.type >= e1000_pch_lpt) {
1560		/* Set platform power management values for
1561		 * Latency Tolerance Reporting (LTR)
1562		 */
1563		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1564		if (ret_val)
1565			goto out;
1566	}
1567
1568	/* Clear link partner's EEE ability */
1569	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1570
1571	if (hw->mac.type >= e1000_pch_lpt) {
1572		u32 fextnvm6 = er32(FEXTNVM6);
1573
1574		if (hw->mac.type == e1000_pch_spt) {
1575			/* FEXTNVM6 K1-off workaround - for SPT only */
1576			u32 pcieanacfg = er32(PCIEANACFG);
1577
1578			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1579				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1580			else
1581				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1582		}
1583
1584		ew32(FEXTNVM6, fextnvm6);
1585	}
1586
1587	if (!link)
1588		goto out;
 
 
1589
1590	switch (hw->mac.type) {
1591	case e1000_pch2lan:
1592		ret_val = e1000_k1_workaround_lv(hw);
1593		if (ret_val)
1594			return ret_val;
1595		fallthrough;
1596	case e1000_pchlan:
1597		if (hw->phy.type == e1000_phy_82578) {
1598			ret_val = e1000_link_stall_workaround_hv(hw);
1599			if (ret_val)
1600				return ret_val;
1601		}
1602
1603		/* Workaround for PCHx parts in half-duplex:
 
1604		 * Set the number of preambles removed from the packet
1605		 * when it is passed from the PHY to the MAC to prevent
1606		 * the MAC from misinterpreting the packet type.
1607		 */
1608		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1609		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1610
1611		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1612			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1613
1614		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1615		break;
1616	default:
1617		break;
1618	}
1619
1620	/* Check if there was DownShift, must be checked
 
1621	 * immediately after link-up
1622	 */
1623	e1000e_check_downshift(hw);
1624
1625	/* Enable/Disable EEE after link up */
1626	if (hw->phy.type > e1000_phy_82579) {
1627		ret_val = e1000_set_eee_pchlan(hw);
1628		if (ret_val)
1629			return ret_val;
1630	}
1631
1632	/* If we are forcing speed/duplex, then we simply return since
 
1633	 * we have already determined whether we have link or not.
1634	 */
1635	if (!mac->autoneg)
1636		return -E1000_ERR_CONFIG;
1637
1638	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
1639	 * of MAC speed/duplex configuration.  So we only need to
1640	 * configure Collision Distance in the MAC.
1641	 */
1642	mac->ops.config_collision_dist(hw);
1643
1644	/* Configure Flow Control now that Auto-Neg has completed.
 
1645	 * First, we need to restore the desired flow control
1646	 * settings because we may have had to re-autoneg with a
1647	 * different link partner.
1648	 */
1649	ret_val = e1000e_config_fc_after_link_up(hw);
1650	if (ret_val)
1651		e_dbg("Error configuring flow control\n");
1652
1653	return ret_val;
1654
1655out:
1656	mac->get_link_status = true;
1657	return ret_val;
1658}
1659
1660static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1661{
1662	struct e1000_hw *hw = &adapter->hw;
1663	s32 rc;
1664
1665	rc = e1000_init_mac_params_ich8lan(hw);
1666	if (rc)
1667		return rc;
1668
1669	rc = e1000_init_nvm_params_ich8lan(hw);
1670	if (rc)
1671		return rc;
1672
1673	switch (hw->mac.type) {
1674	case e1000_ich8lan:
1675	case e1000_ich9lan:
1676	case e1000_ich10lan:
1677		rc = e1000_init_phy_params_ich8lan(hw);
1678		break;
1679	case e1000_pchlan:
1680	case e1000_pch2lan:
1681	case e1000_pch_lpt:
1682	case e1000_pch_spt:
1683	case e1000_pch_cnp:
1684	case e1000_pch_tgp:
1685	case e1000_pch_adp:
1686	case e1000_pch_mtp:
1687	case e1000_pch_lnp:
1688	case e1000_pch_ptp:
1689	case e1000_pch_nvp:
1690		rc = e1000_init_phy_params_pchlan(hw);
1691		break;
1692	default:
1693		break;
1694	}
1695	if (rc)
1696		return rc;
1697
1698	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
 
1699	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1700	 */
1701	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1702	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1703	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1704		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1705		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1706
1707		hw->mac.ops.blink_led = NULL;
1708	}
1709
1710	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1711	    (adapter->hw.phy.type != e1000_phy_ife))
1712		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1713
1714	/* Enable workaround for 82579 w/ ME enabled */
1715	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1716	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1717		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1718
 
 
 
 
1719	return 0;
1720}
1721
1722static DEFINE_MUTEX(nvm_mutex);
1723
1724/**
1725 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1726 *  @hw: pointer to the HW structure
1727 *
1728 *  Acquires the mutex for performing NVM operations.
1729 **/
1730static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1731{
1732	mutex_lock(&nvm_mutex);
1733
1734	return 0;
1735}
1736
1737/**
1738 *  e1000_release_nvm_ich8lan - Release NVM mutex
1739 *  @hw: pointer to the HW structure
1740 *
1741 *  Releases the mutex used while performing NVM operations.
1742 **/
1743static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1744{
1745	mutex_unlock(&nvm_mutex);
1746}
1747
1748/**
1749 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1750 *  @hw: pointer to the HW structure
1751 *
1752 *  Acquires the software control flag for performing PHY and select
1753 *  MAC CSR accesses.
1754 **/
1755static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1756{
1757	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1758	s32 ret_val = 0;
1759
1760	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1761			     &hw->adapter->state)) {
1762		e_dbg("contention for Phy access\n");
1763		return -E1000_ERR_PHY;
1764	}
1765
1766	while (timeout) {
1767		extcnf_ctrl = er32(EXTCNF_CTRL);
1768		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1769			break;
1770
1771		mdelay(1);
1772		timeout--;
1773	}
1774
1775	if (!timeout) {
1776		e_dbg("SW has already locked the resource.\n");
1777		ret_val = -E1000_ERR_CONFIG;
1778		goto out;
1779	}
1780
1781	timeout = SW_FLAG_TIMEOUT;
1782
1783	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1784	ew32(EXTCNF_CTRL, extcnf_ctrl);
1785
1786	while (timeout) {
1787		extcnf_ctrl = er32(EXTCNF_CTRL);
1788		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1789			break;
1790
1791		mdelay(1);
1792		timeout--;
1793	}
1794
1795	if (!timeout) {
1796		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1797		      er32(FWSM), extcnf_ctrl);
1798		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1799		ew32(EXTCNF_CTRL, extcnf_ctrl);
1800		ret_val = -E1000_ERR_CONFIG;
1801		goto out;
1802	}
1803
1804out:
1805	if (ret_val)
1806		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1807
1808	return ret_val;
1809}
1810
1811/**
1812 *  e1000_release_swflag_ich8lan - Release software control flag
1813 *  @hw: pointer to the HW structure
1814 *
1815 *  Releases the software control flag for performing PHY and select
1816 *  MAC CSR accesses.
1817 **/
1818static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1819{
1820	u32 extcnf_ctrl;
1821
1822	extcnf_ctrl = er32(EXTCNF_CTRL);
1823
1824	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1825		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1826		ew32(EXTCNF_CTRL, extcnf_ctrl);
1827	} else {
1828		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1829	}
1830
1831	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1832}
1833
1834/**
1835 *  e1000_check_mng_mode_ich8lan - Checks management mode
1836 *  @hw: pointer to the HW structure
1837 *
1838 *  This checks if the adapter has any manageability enabled.
1839 *  This is a function pointer entry point only called by read/write
1840 *  routines for the PHY and NVM parts.
1841 **/
1842static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1843{
1844	u32 fwsm;
1845
1846	fwsm = er32(FWSM);
1847	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1848		((fwsm & E1000_FWSM_MODE_MASK) ==
1849		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1850}
1851
1852/**
1853 *  e1000_check_mng_mode_pchlan - Checks management mode
1854 *  @hw: pointer to the HW structure
1855 *
1856 *  This checks if the adapter has iAMT enabled.
1857 *  This is a function pointer entry point only called by read/write
1858 *  routines for the PHY and NVM parts.
1859 **/
1860static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1861{
1862	u32 fwsm;
1863
1864	fwsm = er32(FWSM);
1865	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1866	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1867}
1868
1869/**
1870 *  e1000_rar_set_pch2lan - Set receive address register
1871 *  @hw: pointer to the HW structure
1872 *  @addr: pointer to the receive address
1873 *  @index: receive address array register
1874 *
1875 *  Sets the receive address array register at index to the address passed
1876 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1877 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1878 *  Use SHRA[0-3] in place of those reserved for ME.
1879 **/
1880static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1881{
1882	u32 rar_low, rar_high;
1883
1884	/* HW expects these in little endian so we reverse the byte order
 
1885	 * from network order (big endian) to little endian
1886	 */
1887	rar_low = ((u32)addr[0] |
1888		   ((u32)addr[1] << 8) |
1889		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1890
1891	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1892
1893	/* If MAC address zero, no need to set the AV bit */
1894	if (rar_low || rar_high)
1895		rar_high |= E1000_RAH_AV;
1896
1897	if (index == 0) {
1898		ew32(RAL(index), rar_low);
1899		e1e_flush();
1900		ew32(RAH(index), rar_high);
1901		e1e_flush();
1902		return 0;
1903	}
1904
1905	/* RAR[1-6] are owned by manageability.  Skip those and program the
1906	 * next address into the SHRA register array.
1907	 */
1908	if (index < (u32)(hw->mac.rar_entry_count)) {
1909		s32 ret_val;
1910
1911		ret_val = e1000_acquire_swflag_ich8lan(hw);
1912		if (ret_val)
1913			goto out;
1914
1915		ew32(SHRAL(index - 1), rar_low);
1916		e1e_flush();
1917		ew32(SHRAH(index - 1), rar_high);
1918		e1e_flush();
1919
1920		e1000_release_swflag_ich8lan(hw);
1921
1922		/* verify the register updates */
1923		if ((er32(SHRAL(index - 1)) == rar_low) &&
1924		    (er32(SHRAH(index - 1)) == rar_high))
1925			return 0;
1926
1927		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1928		      (index - 1), er32(FWSM));
1929	}
1930
1931out:
1932	e_dbg("Failed to write receive address at index %d\n", index);
1933	return -E1000_ERR_CONFIG;
1934}
1935
1936/**
1937 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1938 *  @hw: pointer to the HW structure
1939 *
1940 *  Get the number of available receive registers that the Host can
1941 *  program. SHRA[0-10] are the shared receive address registers
1942 *  that are shared between the Host and manageability engine (ME).
1943 *  ME can reserve any number of addresses and the host needs to be
1944 *  able to tell how many available registers it has access to.
1945 **/
1946static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1947{
1948	u32 wlock_mac;
1949	u32 num_entries;
1950
1951	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1952	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1953
1954	switch (wlock_mac) {
1955	case 0:
1956		/* All SHRA[0..10] and RAR[0] available */
1957		num_entries = hw->mac.rar_entry_count;
1958		break;
1959	case 1:
1960		/* Only RAR[0] available */
1961		num_entries = 1;
1962		break;
1963	default:
1964		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1965		num_entries = wlock_mac + 1;
1966		break;
1967	}
1968
1969	return num_entries;
1970}
1971
1972/**
1973 *  e1000_rar_set_pch_lpt - Set receive address registers
1974 *  @hw: pointer to the HW structure
1975 *  @addr: pointer to the receive address
1976 *  @index: receive address array register
1977 *
1978 *  Sets the receive address register array at index to the address passed
1979 *  in by addr. For LPT, RAR[0] is the base address register that is to
1980 *  contain the MAC address. SHRA[0-10] are the shared receive address
1981 *  registers that are shared between the Host and manageability engine (ME).
1982 **/
1983static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1984{
1985	u32 rar_low, rar_high;
1986	u32 wlock_mac;
1987
1988	/* HW expects these in little endian so we reverse the byte order
 
1989	 * from network order (big endian) to little endian
1990	 */
1991	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1992		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1993
1994	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1995
1996	/* If MAC address zero, no need to set the AV bit */
1997	if (rar_low || rar_high)
1998		rar_high |= E1000_RAH_AV;
1999
2000	if (index == 0) {
2001		ew32(RAL(index), rar_low);
2002		e1e_flush();
2003		ew32(RAH(index), rar_high);
2004		e1e_flush();
2005		return 0;
2006	}
2007
2008	/* The manageability engine (ME) can lock certain SHRAR registers that
 
2009	 * it is using - those registers are unavailable for use.
2010	 */
2011	if (index < hw->mac.rar_entry_count) {
2012		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2013		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2014
2015		/* Check if all SHRAR registers are locked */
2016		if (wlock_mac == 1)
2017			goto out;
2018
2019		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2020			s32 ret_val;
2021
2022			ret_val = e1000_acquire_swflag_ich8lan(hw);
2023
2024			if (ret_val)
2025				goto out;
2026
2027			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2028			e1e_flush();
2029			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2030			e1e_flush();
2031
2032			e1000_release_swflag_ich8lan(hw);
2033
2034			/* verify the register updates */
2035			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2036			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2037				return 0;
2038		}
2039	}
2040
2041out:
2042	e_dbg("Failed to write receive address at index %d\n", index);
2043	return -E1000_ERR_CONFIG;
2044}
2045
2046/**
2047 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2048 *  @hw: pointer to the HW structure
2049 *
2050 *  Checks if firmware is blocking the reset of the PHY.
2051 *  This is a function pointer entry point only called by
2052 *  reset routines.
2053 **/
2054static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2055{
2056	bool blocked = false;
2057	int i = 0;
 
2058
2059	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2060	       (i++ < 30))
2061		usleep_range(10000, 11000);
2062	return blocked ? E1000_BLK_PHY_RESET : 0;
2063}
2064
2065/**
2066 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2067 *  @hw: pointer to the HW structure
2068 *
2069 *  Assumes semaphore already acquired.
2070 *
2071 **/
2072static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2073{
2074	u16 phy_data;
2075	u32 strap = er32(STRAP);
2076	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2077	s32 ret_val;
 
2078
2079	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2080
2081	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2082	if (ret_val)
2083		return ret_val;
2084
2085	phy_data &= ~HV_SMB_ADDR_MASK;
2086	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2087	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2088
2089	if (hw->phy.type == e1000_phy_i217) {
2090		/* Restore SMBus frequency */
2091		if (freq--) {
2092			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2093			phy_data |= (freq & BIT(0)) <<
2094			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2095			phy_data |= (freq & BIT(1)) <<
2096			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2097		} else {
2098			e_dbg("Unsupported SMB frequency in PHY\n");
2099		}
2100	}
2101
2102	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2103}
2104
2105/**
2106 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2107 *  @hw:   pointer to the HW structure
2108 *
2109 *  SW should configure the LCD from the NVM extended configuration region
2110 *  as a workaround for certain parts.
2111 **/
2112static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2113{
2114	struct e1000_phy_info *phy = &hw->phy;
2115	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2116	s32 ret_val = 0;
2117	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2118
2119	/* Initialize the PHY from the NVM on ICH platforms.  This
 
2120	 * is needed due to an issue where the NVM configuration is
2121	 * not properly autoloaded after power transitions.
2122	 * Therefore, after each PHY reset, we will load the
2123	 * configuration data out of the NVM manually.
2124	 */
2125	switch (hw->mac.type) {
2126	case e1000_ich8lan:
2127		if (phy->type != e1000_phy_igp_3)
2128			return ret_val;
2129
2130		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2131		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2132			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2133			break;
2134		}
2135		fallthrough;
2136	case e1000_pchlan:
2137	case e1000_pch2lan:
2138	case e1000_pch_lpt:
2139	case e1000_pch_spt:
2140	case e1000_pch_cnp:
2141	case e1000_pch_tgp:
2142	case e1000_pch_adp:
2143	case e1000_pch_mtp:
2144	case e1000_pch_lnp:
2145	case e1000_pch_ptp:
2146	case e1000_pch_nvp:
2147		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2148		break;
2149	default:
2150		return ret_val;
2151	}
2152
2153	ret_val = hw->phy.ops.acquire(hw);
2154	if (ret_val)
2155		return ret_val;
2156
2157	data = er32(FEXTNVM);
2158	if (!(data & sw_cfg_mask))
2159		goto release;
2160
2161	/* Make sure HW does not configure LCD from PHY
 
2162	 * extended configuration before SW configuration
2163	 */
2164	data = er32(EXTCNF_CTRL);
2165	if ((hw->mac.type < e1000_pch2lan) &&
2166	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2167		goto release;
2168
2169	cnf_size = er32(EXTCNF_SIZE);
2170	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2171	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2172	if (!cnf_size)
2173		goto release;
2174
2175	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2176	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2177
2178	if (((hw->mac.type == e1000_pchlan) &&
2179	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2180	    (hw->mac.type > e1000_pchlan)) {
2181		/* HW configures the SMBus address and LEDs when the
 
2182		 * OEM and LCD Write Enable bits are set in the NVM.
2183		 * When both NVM bits are cleared, SW will configure
2184		 * them instead.
2185		 */
2186		ret_val = e1000_write_smbus_addr(hw);
2187		if (ret_val)
2188			goto release;
2189
2190		data = er32(LEDCTL);
2191		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2192							(u16)data);
2193		if (ret_val)
2194			goto release;
2195	}
2196
2197	/* Configure LCD from extended configuration region. */
2198
2199	/* cnf_base_addr is in DWORD */
2200	word_addr = (u16)(cnf_base_addr << 1);
2201
2202	for (i = 0; i < cnf_size; i++) {
2203		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
 
2204		if (ret_val)
2205			goto release;
2206
2207		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2208					 1, &reg_addr);
2209		if (ret_val)
2210			goto release;
2211
2212		/* Save off the PHY page for future writes. */
2213		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2214			phy_page = reg_data;
2215			continue;
2216		}
2217
2218		reg_addr &= PHY_REG_MASK;
2219		reg_addr |= phy_page;
2220
2221		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2222		if (ret_val)
2223			goto release;
2224	}
2225
2226release:
2227	hw->phy.ops.release(hw);
2228	return ret_val;
2229}
2230
2231/**
2232 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2233 *  @hw:   pointer to the HW structure
2234 *  @link: link up bool flag
2235 *
2236 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2237 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2238 *  If link is down, the function will restore the default K1 setting located
2239 *  in the NVM.
2240 **/
2241static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2242{
2243	s32 ret_val = 0;
2244	u16 status_reg = 0;
2245	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2246
2247	if (hw->mac.type != e1000_pchlan)
2248		return 0;
2249
2250	/* Wrap the whole flow with the sw flag */
2251	ret_val = hw->phy.ops.acquire(hw);
2252	if (ret_val)
2253		return ret_val;
2254
2255	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2256	if (link) {
2257		if (hw->phy.type == e1000_phy_82578) {
2258			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2259						  &status_reg);
2260			if (ret_val)
2261				goto release;
2262
2263			status_reg &= (BM_CS_STATUS_LINK_UP |
2264				       BM_CS_STATUS_RESOLVED |
2265				       BM_CS_STATUS_SPEED_MASK);
2266
2267			if (status_reg == (BM_CS_STATUS_LINK_UP |
2268					   BM_CS_STATUS_RESOLVED |
2269					   BM_CS_STATUS_SPEED_1000))
2270				k1_enable = false;
2271		}
2272
2273		if (hw->phy.type == e1000_phy_82577) {
2274			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2275			if (ret_val)
2276				goto release;
2277
2278			status_reg &= (HV_M_STATUS_LINK_UP |
2279				       HV_M_STATUS_AUTONEG_COMPLETE |
2280				       HV_M_STATUS_SPEED_MASK);
2281
2282			if (status_reg == (HV_M_STATUS_LINK_UP |
2283					   HV_M_STATUS_AUTONEG_COMPLETE |
2284					   HV_M_STATUS_SPEED_1000))
2285				k1_enable = false;
2286		}
2287
2288		/* Link stall fix for link up */
2289		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2290		if (ret_val)
2291			goto release;
2292
2293	} else {
2294		/* Link stall fix for link down */
2295		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2296		if (ret_val)
2297			goto release;
2298	}
2299
2300	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2301
2302release:
2303	hw->phy.ops.release(hw);
2304
2305	return ret_val;
2306}
2307
2308/**
2309 *  e1000_configure_k1_ich8lan - Configure K1 power state
2310 *  @hw: pointer to the HW structure
2311 *  @k1_enable: K1 state to configure
2312 *
2313 *  Configure the K1 power state based on the provided parameter.
2314 *  Assumes semaphore already acquired.
2315 *
2316 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2317 **/
2318s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2319{
2320	s32 ret_val;
2321	u32 ctrl_reg = 0;
2322	u32 ctrl_ext = 0;
2323	u32 reg = 0;
2324	u16 kmrn_reg = 0;
2325
2326	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2327					      &kmrn_reg);
2328	if (ret_val)
2329		return ret_val;
2330
2331	if (k1_enable)
2332		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2333	else
2334		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2335
2336	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2337					       kmrn_reg);
2338	if (ret_val)
2339		return ret_val;
2340
2341	usleep_range(20, 40);
2342	ctrl_ext = er32(CTRL_EXT);
2343	ctrl_reg = er32(CTRL);
2344
2345	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2346	reg |= E1000_CTRL_FRCSPD;
2347	ew32(CTRL, reg);
2348
2349	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2350	e1e_flush();
2351	usleep_range(20, 40);
2352	ew32(CTRL, ctrl_reg);
2353	ew32(CTRL_EXT, ctrl_ext);
2354	e1e_flush();
2355	usleep_range(20, 40);
2356
2357	return 0;
2358}
2359
2360/**
2361 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2362 *  @hw:       pointer to the HW structure
2363 *  @d0_state: boolean if entering d0 or d3 device state
2364 *
2365 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2366 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2367 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2368 **/
2369static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2370{
2371	s32 ret_val = 0;
2372	u32 mac_reg;
2373	u16 oem_reg;
2374
2375	if (hw->mac.type < e1000_pchlan)
2376		return ret_val;
2377
2378	ret_val = hw->phy.ops.acquire(hw);
2379	if (ret_val)
2380		return ret_val;
2381
2382	if (hw->mac.type == e1000_pchlan) {
2383		mac_reg = er32(EXTCNF_CTRL);
2384		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2385			goto release;
2386	}
2387
2388	mac_reg = er32(FEXTNVM);
2389	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2390		goto release;
2391
2392	mac_reg = er32(PHY_CTRL);
2393
2394	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2395	if (ret_val)
2396		goto release;
2397
2398	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2399
2400	if (d0_state) {
2401		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2402			oem_reg |= HV_OEM_BITS_GBE_DIS;
2403
2404		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2405			oem_reg |= HV_OEM_BITS_LPLU;
2406	} else {
2407		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2408			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2409			oem_reg |= HV_OEM_BITS_GBE_DIS;
2410
2411		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2412			       E1000_PHY_CTRL_NOND0A_LPLU))
2413			oem_reg |= HV_OEM_BITS_LPLU;
2414	}
2415
2416	/* Set Restart auto-neg to activate the bits */
2417	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2418	    !hw->phy.ops.check_reset_block(hw))
2419		oem_reg |= HV_OEM_BITS_RESTART_AN;
2420
2421	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2422
2423release:
2424	hw->phy.ops.release(hw);
2425
2426	return ret_val;
2427}
2428
 
2429/**
2430 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2431 *  @hw:   pointer to the HW structure
2432 **/
2433static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2434{
2435	s32 ret_val;
2436	u16 data;
2437
2438	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2439	if (ret_val)
2440		return ret_val;
2441
2442	data |= HV_KMRN_MDIO_SLOW;
2443
2444	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2445
2446	return ret_val;
2447}
2448
2449/**
2450 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2451 *  @hw: pointer to the HW structure
2452 *
2453 *  A series of PHY workarounds to be done after every PHY reset.
2454 **/
2455static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2456{
2457	s32 ret_val = 0;
2458	u16 phy_data;
2459
2460	if (hw->mac.type != e1000_pchlan)
2461		return 0;
2462
2463	/* Set MDIO slow mode before any other MDIO access */
2464	if (hw->phy.type == e1000_phy_82577) {
2465		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2466		if (ret_val)
2467			return ret_val;
2468	}
2469
2470	if (((hw->phy.type == e1000_phy_82577) &&
2471	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2472	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2473		/* Disable generation of early preamble */
2474		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2475		if (ret_val)
2476			return ret_val;
2477
2478		/* Preamble tuning for SSC */
2479		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (hw->phy.type == e1000_phy_82578) {
2485		/* Return registers to default by doing a soft reset then
 
2486		 * writing 0x3140 to the control register.
2487		 */
2488		if (hw->phy.revision < 2) {
2489			e1000e_phy_sw_reset(hw);
2490			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2491			if (ret_val)
2492				return ret_val;
2493		}
2494	}
2495
2496	/* Select page 0 */
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
2500
2501	hw->phy.addr = 1;
2502	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2503	hw->phy.ops.release(hw);
2504	if (ret_val)
2505		return ret_val;
2506
2507	/* Configure the K1 Si workaround during phy reset assuming there is
 
2508	 * link so that it disables K1 if link is in 1Gbps.
2509	 */
2510	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2511	if (ret_val)
2512		return ret_val;
2513
2514	/* Workaround for link disconnects on a busy hub in half duplex */
2515	ret_val = hw->phy.ops.acquire(hw);
2516	if (ret_val)
2517		return ret_val;
2518	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2519	if (ret_val)
2520		goto release;
2521	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2522	if (ret_val)
2523		goto release;
2524
2525	/* set MSE higher to enable link to stay up when noise is high */
2526	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2527release:
2528	hw->phy.ops.release(hw);
2529
2530	return ret_val;
2531}
2532
2533/**
2534 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2535 *  @hw:   pointer to the HW structure
2536 **/
2537void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2538{
2539	u32 mac_reg;
2540	u16 i, phy_reg = 0;
2541	s32 ret_val;
2542
2543	ret_val = hw->phy.ops.acquire(hw);
2544	if (ret_val)
2545		return;
2546	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547	if (ret_val)
2548		goto release;
2549
2550	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2551	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2552		mac_reg = er32(RAL(i));
2553		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2554					   (u16)(mac_reg & 0xFFFF));
2555		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2556					   (u16)((mac_reg >> 16) & 0xFFFF));
2557
2558		mac_reg = er32(RAH(i));
2559		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2560					   (u16)(mac_reg & 0xFFFF));
2561		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2562					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2563	}
2564
2565	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2566
2567release:
2568	hw->phy.ops.release(hw);
2569}
2570
2571/**
2572 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2573 *  with 82579 PHY
2574 *  @hw: pointer to the HW structure
2575 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2576 **/
2577s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2578{
2579	s32 ret_val = 0;
2580	u16 phy_reg, data;
2581	u32 mac_reg;
2582	u16 i;
2583
2584	if (hw->mac.type < e1000_pch2lan)
2585		return 0;
2586
2587	/* disable Rx path while enabling/disabling workaround */
2588	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2589	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2590	if (ret_val)
2591		return ret_val;
2592
2593	if (enable) {
2594		/* Write Rx addresses (rar_entry_count for RAL/H, and
 
2595		 * SHRAL/H) and initial CRC values to the MAC
2596		 */
2597		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2598			u8 mac_addr[ETH_ALEN] = { 0 };
2599			u32 addr_high, addr_low;
2600
2601			addr_high = er32(RAH(i));
2602			if (!(addr_high & E1000_RAH_AV))
2603				continue;
2604			addr_low = er32(RAL(i));
2605			mac_addr[0] = (addr_low & 0xFF);
2606			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2607			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2608			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2609			mac_addr[4] = (addr_high & 0xFF);
2610			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2611
2612			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2613		}
2614
2615		/* Write Rx addresses to the PHY */
2616		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2617
2618		/* Enable jumbo frame workaround in the MAC */
2619		mac_reg = er32(FFLT_DBG);
2620		mac_reg &= ~BIT(14);
2621		mac_reg |= (7 << 15);
2622		ew32(FFLT_DBG, mac_reg);
2623
2624		mac_reg = er32(RCTL);
2625		mac_reg |= E1000_RCTL_SECRC;
2626		ew32(RCTL, mac_reg);
2627
2628		ret_val = e1000e_read_kmrn_reg(hw,
2629					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2630					       &data);
2631		if (ret_val)
2632			return ret_val;
2633		ret_val = e1000e_write_kmrn_reg(hw,
2634						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2635						data | BIT(0));
2636		if (ret_val)
2637			return ret_val;
2638		ret_val = e1000e_read_kmrn_reg(hw,
2639					       E1000_KMRNCTRLSTA_HD_CTRL,
2640					       &data);
2641		if (ret_val)
2642			return ret_val;
2643		data &= ~(0xF << 8);
2644		data |= (0xB << 8);
2645		ret_val = e1000e_write_kmrn_reg(hw,
2646						E1000_KMRNCTRLSTA_HD_CTRL,
2647						data);
2648		if (ret_val)
2649			return ret_val;
2650
2651		/* Enable jumbo frame workaround in the PHY */
2652		e1e_rphy(hw, PHY_REG(769, 23), &data);
2653		data &= ~(0x7F << 5);
2654		data |= (0x37 << 5);
2655		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2656		if (ret_val)
2657			return ret_val;
2658		e1e_rphy(hw, PHY_REG(769, 16), &data);
2659		data &= ~BIT(13);
2660		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2661		if (ret_val)
2662			return ret_val;
2663		e1e_rphy(hw, PHY_REG(776, 20), &data);
2664		data &= ~(0x3FF << 2);
2665		data |= (E1000_TX_PTR_GAP << 2);
2666		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2667		if (ret_val)
2668			return ret_val;
2669		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, HV_PM_CTRL, &data);
2673		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2674		if (ret_val)
2675			return ret_val;
2676	} else {
2677		/* Write MAC register values back to h/w defaults */
2678		mac_reg = er32(FFLT_DBG);
2679		mac_reg &= ~(0xF << 14);
2680		ew32(FFLT_DBG, mac_reg);
2681
2682		mac_reg = er32(RCTL);
2683		mac_reg &= ~E1000_RCTL_SECRC;
2684		ew32(RCTL, mac_reg);
2685
2686		ret_val = e1000e_read_kmrn_reg(hw,
2687					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2688					       &data);
2689		if (ret_val)
2690			return ret_val;
2691		ret_val = e1000e_write_kmrn_reg(hw,
2692						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2693						data & ~BIT(0));
2694		if (ret_val)
2695			return ret_val;
2696		ret_val = e1000e_read_kmrn_reg(hw,
2697					       E1000_KMRNCTRLSTA_HD_CTRL,
2698					       &data);
2699		if (ret_val)
2700			return ret_val;
2701		data &= ~(0xF << 8);
2702		data |= (0xB << 8);
2703		ret_val = e1000e_write_kmrn_reg(hw,
2704						E1000_KMRNCTRLSTA_HD_CTRL,
2705						data);
2706		if (ret_val)
2707			return ret_val;
2708
2709		/* Write PHY register values back to h/w defaults */
2710		e1e_rphy(hw, PHY_REG(769, 23), &data);
2711		data &= ~(0x7F << 5);
2712		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2713		if (ret_val)
2714			return ret_val;
2715		e1e_rphy(hw, PHY_REG(769, 16), &data);
2716		data |= BIT(13);
2717		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2718		if (ret_val)
2719			return ret_val;
2720		e1e_rphy(hw, PHY_REG(776, 20), &data);
2721		data &= ~(0x3FF << 2);
2722		data |= (0x8 << 2);
2723		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2724		if (ret_val)
2725			return ret_val;
2726		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, HV_PM_CTRL, &data);
2730		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2731		if (ret_val)
2732			return ret_val;
2733	}
2734
2735	/* re-enable Rx path after enabling/disabling workaround */
2736	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2737}
2738
2739/**
2740 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2741 *  @hw: pointer to the HW structure
2742 *
2743 *  A series of PHY workarounds to be done after every PHY reset.
2744 **/
2745static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2746{
2747	s32 ret_val = 0;
2748
2749	if (hw->mac.type != e1000_pch2lan)
2750		return 0;
2751
2752	/* Set MDIO slow mode before any other MDIO access */
2753	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2754	if (ret_val)
2755		return ret_val;
2756
2757	ret_val = hw->phy.ops.acquire(hw);
2758	if (ret_val)
2759		return ret_val;
 
 
 
2760	/* set MSE higher to enable link to stay up when noise is high */
2761	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
 
 
 
2762	if (ret_val)
2763		goto release;
2764	/* drop link after 5 times MSE threshold was reached */
2765	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2766release:
2767	hw->phy.ops.release(hw);
2768
2769	return ret_val;
2770}
2771
2772/**
2773 *  e1000_k1_workaround_lv - K1 Si workaround
2774 *  @hw:   pointer to the HW structure
2775 *
2776 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2777 *  Disable K1 in 1000Mbps and 100Mbps
2778 **/
2779static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2780{
2781	s32 ret_val = 0;
2782	u16 status_reg = 0;
 
 
2783
2784	if (hw->mac.type != e1000_pch2lan)
2785		return 0;
2786
2787	/* Set K1 beacon duration based on 10Mbs speed */
2788	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2789	if (ret_val)
2790		return ret_val;
2791
2792	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2793	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2794		if (status_reg &
2795		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
 
 
 
 
 
 
2796			u16 pm_phy_reg;
2797
2798			/* LV 1G/100 Packet drop issue wa  */
 
 
2799			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2800			if (ret_val)
2801				return ret_val;
2802			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2803			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2804			if (ret_val)
2805				return ret_val;
2806		} else {
2807			u32 mac_reg;
2808
2809			mac_reg = er32(FEXTNVM4);
2810			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2811			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2812			ew32(FEXTNVM4, mac_reg);
2813		}
 
 
2814	}
2815
2816	return ret_val;
2817}
2818
2819/**
2820 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2821 *  @hw:   pointer to the HW structure
2822 *  @gate: boolean set to true to gate, false to ungate
2823 *
2824 *  Gate/ungate the automatic PHY configuration via hardware; perform
2825 *  the configuration via software instead.
2826 **/
2827static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2828{
2829	u32 extcnf_ctrl;
2830
2831	if (hw->mac.type < e1000_pch2lan)
2832		return;
2833
2834	extcnf_ctrl = er32(EXTCNF_CTRL);
2835
2836	if (gate)
2837		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838	else
2839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2840
2841	ew32(EXTCNF_CTRL, extcnf_ctrl);
2842}
2843
2844/**
2845 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2846 *  @hw: pointer to the HW structure
2847 *
2848 *  Check the appropriate indication the MAC has finished configuring the
2849 *  PHY after a software reset.
2850 **/
2851static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2852{
2853	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2854
2855	/* Wait for basic configuration completes before proceeding */
2856	do {
2857		data = er32(STATUS);
2858		data &= E1000_STATUS_LAN_INIT_DONE;
2859		usleep_range(100, 200);
2860	} while ((!data) && --loop);
2861
2862	/* If basic configuration is incomplete before the above loop
 
2863	 * count reaches 0, loading the configuration from NVM will
2864	 * leave the PHY in a bad state possibly resulting in no link.
2865	 */
2866	if (loop == 0)
2867		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2868
2869	/* Clear the Init Done bit for the next init event */
2870	data = er32(STATUS);
2871	data &= ~E1000_STATUS_LAN_INIT_DONE;
2872	ew32(STATUS, data);
2873}
2874
2875/**
2876 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2877 *  @hw: pointer to the HW structure
2878 **/
2879static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2880{
2881	s32 ret_val = 0;
2882	u16 reg;
2883
2884	if (hw->phy.ops.check_reset_block(hw))
2885		return 0;
2886
2887	/* Allow time for h/w to get to quiescent state after reset */
2888	usleep_range(10000, 11000);
2889
2890	/* Perform any necessary post-reset workarounds */
2891	switch (hw->mac.type) {
2892	case e1000_pchlan:
2893		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2894		if (ret_val)
2895			return ret_val;
2896		break;
2897	case e1000_pch2lan:
2898		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2899		if (ret_val)
2900			return ret_val;
2901		break;
2902	default:
2903		break;
2904	}
2905
2906	/* Clear the host wakeup bit after lcd reset */
2907	if (hw->mac.type >= e1000_pchlan) {
2908		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2909		reg &= ~BM_WUC_HOST_WU_BIT;
2910		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2911	}
2912
2913	/* Configure the LCD with the extended configuration region in NVM */
2914	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2915	if (ret_val)
2916		return ret_val;
2917
2918	/* Configure the LCD with the OEM bits in NVM */
2919	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2920
2921	if (hw->mac.type == e1000_pch2lan) {
2922		/* Ungate automatic PHY configuration on non-managed 82579 */
2923		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2924			usleep_range(10000, 11000);
2925			e1000_gate_hw_phy_config_ich8lan(hw, false);
2926		}
2927
2928		/* Set EEE LPI Update Timer to 200usec */
2929		ret_val = hw->phy.ops.acquire(hw);
2930		if (ret_val)
2931			return ret_val;
2932		ret_val = e1000_write_emi_reg_locked(hw,
2933						     I82579_LPI_UPDATE_TIMER,
2934						     0x1387);
 
2935		hw->phy.ops.release(hw);
2936	}
2937
2938	return ret_val;
2939}
2940
2941/**
2942 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2943 *  @hw: pointer to the HW structure
2944 *
2945 *  Resets the PHY
2946 *  This is a function pointer entry point called by drivers
2947 *  or other shared routines.
2948 **/
2949static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2950{
2951	s32 ret_val = 0;
2952
2953	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2954	if ((hw->mac.type == e1000_pch2lan) &&
2955	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2956		e1000_gate_hw_phy_config_ich8lan(hw, true);
2957
2958	ret_val = e1000e_phy_hw_reset_generic(hw);
2959	if (ret_val)
2960		return ret_val;
2961
2962	return e1000_post_phy_reset_ich8lan(hw);
2963}
2964
2965/**
2966 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2967 *  @hw: pointer to the HW structure
2968 *  @active: true to enable LPLU, false to disable
2969 *
2970 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2971 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2972 *  the phy speed. This function will manually set the LPLU bit and restart
2973 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2974 *  since it configures the same bit.
2975 **/
2976static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2977{
2978	s32 ret_val;
2979	u16 oem_reg;
2980
2981	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2982	if (ret_val)
2983		return ret_val;
2984
2985	if (active)
2986		oem_reg |= HV_OEM_BITS_LPLU;
2987	else
2988		oem_reg &= ~HV_OEM_BITS_LPLU;
2989
2990	if (!hw->phy.ops.check_reset_block(hw))
2991		oem_reg |= HV_OEM_BITS_RESTART_AN;
2992
2993	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2994}
2995
2996/**
2997 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2998 *  @hw: pointer to the HW structure
2999 *  @active: true to enable LPLU, false to disable
3000 *
3001 *  Sets the LPLU D0 state according to the active flag.  When
3002 *  activating LPLU this function also disables smart speed
3003 *  and vice versa.  LPLU will not be activated unless the
3004 *  device autonegotiation advertisement meets standards of
3005 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3006 *  This is a function pointer entry point only called by
3007 *  PHY setup routines.
3008 **/
3009static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3010{
3011	struct e1000_phy_info *phy = &hw->phy;
3012	u32 phy_ctrl;
3013	s32 ret_val = 0;
3014	u16 data;
3015
3016	if (phy->type == e1000_phy_ife)
3017		return 0;
3018
3019	phy_ctrl = er32(PHY_CTRL);
3020
3021	if (active) {
3022		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3023		ew32(PHY_CTRL, phy_ctrl);
3024
3025		if (phy->type != e1000_phy_igp_3)
3026			return 0;
3027
3028		/* Call gig speed drop workaround on LPLU before accessing
 
3029		 * any PHY registers
3030		 */
3031		if (hw->mac.type == e1000_ich8lan)
3032			e1000e_gig_downshift_workaround_ich8lan(hw);
3033
3034		/* When LPLU is enabled, we should disable SmartSpeed */
3035		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3036		if (ret_val)
3037			return ret_val;
3038		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3039		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3040		if (ret_val)
3041			return ret_val;
3042	} else {
3043		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3044		ew32(PHY_CTRL, phy_ctrl);
3045
3046		if (phy->type != e1000_phy_igp_3)
3047			return 0;
3048
3049		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3050		 * during Dx states where the power conservation is most
3051		 * important.  During driver activity we should enable
3052		 * SmartSpeed, so performance is maintained.
3053		 */
3054		if (phy->smart_speed == e1000_smart_speed_on) {
3055			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3056					   &data);
3057			if (ret_val)
3058				return ret_val;
3059
3060			data |= IGP01E1000_PSCFR_SMART_SPEED;
3061			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062					   data);
3063			if (ret_val)
3064				return ret_val;
3065		} else if (phy->smart_speed == e1000_smart_speed_off) {
3066			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067					   &data);
3068			if (ret_val)
3069				return ret_val;
3070
3071			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3072			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3073					   data);
3074			if (ret_val)
3075				return ret_val;
3076		}
3077	}
3078
3079	return 0;
3080}
3081
3082/**
3083 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3084 *  @hw: pointer to the HW structure
3085 *  @active: true to enable LPLU, false to disable
3086 *
3087 *  Sets the LPLU D3 state according to the active flag.  When
3088 *  activating LPLU this function also disables smart speed
3089 *  and vice versa.  LPLU will not be activated unless the
3090 *  device autonegotiation advertisement meets standards of
3091 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3092 *  This is a function pointer entry point only called by
3093 *  PHY setup routines.
3094 **/
3095static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3096{
3097	struct e1000_phy_info *phy = &hw->phy;
3098	u32 phy_ctrl;
3099	s32 ret_val = 0;
3100	u16 data;
3101
3102	phy_ctrl = er32(PHY_CTRL);
3103
3104	if (!active) {
3105		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3106		ew32(PHY_CTRL, phy_ctrl);
3107
3108		if (phy->type != e1000_phy_igp_3)
3109			return 0;
3110
3111		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3112		 * during Dx states where the power conservation is most
3113		 * important.  During driver activity we should enable
3114		 * SmartSpeed, so performance is maintained.
3115		 */
3116		if (phy->smart_speed == e1000_smart_speed_on) {
3117			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3118					   &data);
3119			if (ret_val)
3120				return ret_val;
3121
3122			data |= IGP01E1000_PSCFR_SMART_SPEED;
3123			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3124					   data);
3125			if (ret_val)
3126				return ret_val;
3127		} else if (phy->smart_speed == e1000_smart_speed_off) {
3128			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3129					   &data);
3130			if (ret_val)
3131				return ret_val;
3132
3133			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3134			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3135					   data);
3136			if (ret_val)
3137				return ret_val;
3138		}
3139	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3140		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3141		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3142		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3143		ew32(PHY_CTRL, phy_ctrl);
3144
3145		if (phy->type != e1000_phy_igp_3)
3146			return 0;
3147
3148		/* Call gig speed drop workaround on LPLU before accessing
 
3149		 * any PHY registers
3150		 */
3151		if (hw->mac.type == e1000_ich8lan)
3152			e1000e_gig_downshift_workaround_ich8lan(hw);
3153
3154		/* When LPLU is enabled, we should disable SmartSpeed */
3155		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3156		if (ret_val)
3157			return ret_val;
3158
3159		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3160		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3161	}
3162
3163	return ret_val;
3164}
3165
3166/**
3167 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3168 *  @hw: pointer to the HW structure
3169 *  @bank:  pointer to the variable that returns the active bank
3170 *
3171 *  Reads signature byte from the NVM using the flash access registers.
3172 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3173 **/
3174static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3175{
3176	u32 eecd;
3177	struct e1000_nvm_info *nvm = &hw->nvm;
3178	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3179	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3180	u32 nvm_dword = 0;
3181	u8 sig_byte = 0;
3182	s32 ret_val;
3183
3184	switch (hw->mac.type) {
3185	case e1000_pch_spt:
3186	case e1000_pch_cnp:
3187	case e1000_pch_tgp:
3188	case e1000_pch_adp:
3189	case e1000_pch_mtp:
3190	case e1000_pch_lnp:
3191	case e1000_pch_ptp:
3192	case e1000_pch_nvp:
3193		bank1_offset = nvm->flash_bank_size;
3194		act_offset = E1000_ICH_NVM_SIG_WORD;
3195
3196		/* set bank to 0 in case flash read fails */
3197		*bank = 0;
3198
3199		/* Check bank 0 */
3200		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3201							 &nvm_dword);
3202		if (ret_val)
3203			return ret_val;
3204		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3205		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3206		    E1000_ICH_NVM_SIG_VALUE) {
3207			*bank = 0;
3208			return 0;
3209		}
3210
3211		/* Check bank 1 */
3212		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3213							 bank1_offset,
3214							 &nvm_dword);
3215		if (ret_val)
3216			return ret_val;
3217		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3218		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3219		    E1000_ICH_NVM_SIG_VALUE) {
3220			*bank = 1;
3221			return 0;
3222		}
3223
3224		e_dbg("ERROR: No valid NVM bank present\n");
3225		return -E1000_ERR_NVM;
3226	case e1000_ich8lan:
3227	case e1000_ich9lan:
3228		eecd = er32(EECD);
3229		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230		    E1000_EECD_SEC1VAL_VALID_MASK) {
3231			if (eecd & E1000_EECD_SEC1VAL)
3232				*bank = 1;
3233			else
3234				*bank = 0;
3235
3236			return 0;
3237		}
3238		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239		fallthrough;
3240	default:
3241		/* set bank to 0 in case flash read fails */
3242		*bank = 0;
3243
3244		/* Check bank 0 */
3245		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246							&sig_byte);
3247		if (ret_val)
3248			return ret_val;
3249		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250		    E1000_ICH_NVM_SIG_VALUE) {
3251			*bank = 0;
3252			return 0;
3253		}
3254
3255		/* Check bank 1 */
3256		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257							bank1_offset,
3258							&sig_byte);
3259		if (ret_val)
3260			return ret_val;
3261		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262		    E1000_ICH_NVM_SIG_VALUE) {
3263			*bank = 1;
3264			return 0;
3265		}
3266
3267		e_dbg("ERROR: No valid NVM bank present\n");
3268		return -E1000_ERR_NVM;
3269	}
3270}
3271
3272/**
3273 *  e1000_read_nvm_spt - NVM access for SPT
3274 *  @hw: pointer to the HW structure
3275 *  @offset: The offset (in bytes) of the word(s) to read.
3276 *  @words: Size of data to read in words.
3277 *  @data: pointer to the word(s) to read at offset.
3278 *
3279 *  Reads a word(s) from the NVM
3280 **/
3281static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3282			      u16 *data)
3283{
3284	struct e1000_nvm_info *nvm = &hw->nvm;
3285	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286	u32 act_offset;
3287	s32 ret_val = 0;
3288	u32 bank = 0;
3289	u32 dword = 0;
3290	u16 offset_to_read;
3291	u16 i;
3292
3293	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294	    (words == 0)) {
3295		e_dbg("nvm parameter(s) out of bounds\n");
3296		ret_val = -E1000_ERR_NVM;
3297		goto out;
3298	}
3299
3300	nvm->ops.acquire(hw);
3301
3302	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303	if (ret_val) {
3304		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305		bank = 0;
3306	}
3307
3308	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309	act_offset += offset;
3310
3311	ret_val = 0;
3312
3313	for (i = 0; i < words; i += 2) {
3314		if (words - i == 1) {
3315			if (dev_spec->shadow_ram[offset + i].modified) {
3316				data[i] =
3317				    dev_spec->shadow_ram[offset + i].value;
3318			} else {
3319				offset_to_read = act_offset + i -
3320				    ((act_offset + i) % 2);
3321				ret_val =
3322				  e1000_read_flash_dword_ich8lan(hw,
3323								 offset_to_read,
3324								 &dword);
3325				if (ret_val)
3326					break;
3327				if ((act_offset + i) % 2 == 0)
3328					data[i] = (u16)(dword & 0xFFFF);
3329				else
3330					data[i] = (u16)((dword >> 16) & 0xFFFF);
3331			}
3332		} else {
3333			offset_to_read = act_offset + i;
3334			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3335			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3336				ret_val =
3337				  e1000_read_flash_dword_ich8lan(hw,
3338								 offset_to_read,
3339								 &dword);
3340				if (ret_val)
3341					break;
3342			}
3343			if (dev_spec->shadow_ram[offset + i].modified)
3344				data[i] =
3345				    dev_spec->shadow_ram[offset + i].value;
3346			else
3347				data[i] = (u16)(dword & 0xFFFF);
3348			if (dev_spec->shadow_ram[offset + i].modified)
3349				data[i + 1] =
3350				    dev_spec->shadow_ram[offset + i + 1].value;
3351			else
3352				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3353		}
3354	}
3355
3356	nvm->ops.release(hw);
3357
3358out:
3359	if (ret_val)
3360		e_dbg("NVM read error: %d\n", ret_val);
3361
3362	return ret_val;
3363}
3364
3365/**
3366 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3367 *  @hw: pointer to the HW structure
3368 *  @offset: The offset (in bytes) of the word(s) to read.
3369 *  @words: Size of data to read in words
3370 *  @data: Pointer to the word(s) to read at offset.
3371 *
3372 *  Reads a word(s) from the NVM using the flash access registers.
3373 **/
3374static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3375				  u16 *data)
3376{
3377	struct e1000_nvm_info *nvm = &hw->nvm;
3378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3379	u32 act_offset;
3380	s32 ret_val = 0;
3381	u32 bank = 0;
3382	u16 i, word;
3383
3384	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3385	    (words == 0)) {
3386		e_dbg("nvm parameter(s) out of bounds\n");
3387		ret_val = -E1000_ERR_NVM;
3388		goto out;
3389	}
3390
3391	nvm->ops.acquire(hw);
3392
3393	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3394	if (ret_val) {
3395		e_dbg("Could not detect valid bank, assuming bank 0\n");
3396		bank = 0;
3397	}
3398
3399	act_offset = (bank) ? nvm->flash_bank_size : 0;
3400	act_offset += offset;
3401
3402	ret_val = 0;
3403	for (i = 0; i < words; i++) {
3404		if (dev_spec->shadow_ram[offset + i].modified) {
3405			data[i] = dev_spec->shadow_ram[offset + i].value;
3406		} else {
3407			ret_val = e1000_read_flash_word_ich8lan(hw,
3408								act_offset + i,
3409								&word);
3410			if (ret_val)
3411				break;
3412			data[i] = word;
3413		}
3414	}
3415
3416	nvm->ops.release(hw);
3417
3418out:
3419	if (ret_val)
3420		e_dbg("NVM read error: %d\n", ret_val);
3421
3422	return ret_val;
3423}
3424
3425/**
3426 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3427 *  @hw: pointer to the HW structure
3428 *
3429 *  This function does initial flash setup so that a new read/write/erase cycle
3430 *  can be started.
3431 **/
3432static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3433{
3434	union ich8_hws_flash_status hsfsts;
3435	s32 ret_val = -E1000_ERR_NVM;
3436
3437	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3438
3439	/* Check if the flash descriptor is valid */
3440	if (!hsfsts.hsf_status.fldesvalid) {
3441		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3442		return -E1000_ERR_NVM;
3443	}
3444
3445	/* Clear FCERR and DAEL in hw status by writing 1 */
3446	hsfsts.hsf_status.flcerr = 1;
3447	hsfsts.hsf_status.dael = 1;
3448	if (hw->mac.type >= e1000_pch_spt)
3449		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3450	else
3451		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3452
3453	/* Either we should have a hardware SPI cycle in progress
 
 
 
3454	 * bit to check against, in order to start a new cycle or
3455	 * FDONE bit should be changed in the hardware so that it
3456	 * is 1 after hardware reset, which can then be used as an
3457	 * indication whether a cycle is in progress or has been
3458	 * completed.
3459	 */
3460
3461	if (!hsfsts.hsf_status.flcinprog) {
3462		/* There is no cycle running at present,
 
3463		 * so we can start a cycle.
3464		 * Begin by setting Flash Cycle Done.
3465		 */
3466		hsfsts.hsf_status.flcdone = 1;
3467		if (hw->mac.type >= e1000_pch_spt)
3468			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3469		else
3470			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3471		ret_val = 0;
3472	} else {
3473		s32 i;
3474
3475		/* Otherwise poll for sometime so the current
 
3476		 * cycle has a chance to end before giving up.
3477		 */
3478		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3479			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3480			if (!hsfsts.hsf_status.flcinprog) {
3481				ret_val = 0;
3482				break;
3483			}
3484			udelay(1);
3485		}
3486		if (!ret_val) {
3487			/* Successful in waiting for previous cycle to timeout,
 
3488			 * now set the Flash Cycle Done.
3489			 */
3490			hsfsts.hsf_status.flcdone = 1;
3491			if (hw->mac.type >= e1000_pch_spt)
3492				ew32flash(ICH_FLASH_HSFSTS,
3493					  hsfsts.regval & 0xFFFF);
3494			else
3495				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3496		} else {
3497			e_dbg("Flash controller busy, cannot get access\n");
3498		}
3499	}
3500
3501	return ret_val;
3502}
3503
3504/**
3505 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3506 *  @hw: pointer to the HW structure
3507 *  @timeout: maximum time to wait for completion
3508 *
3509 *  This function starts a flash cycle and waits for its completion.
3510 **/
3511static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3512{
3513	union ich8_hws_flash_ctrl hsflctl;
3514	union ich8_hws_flash_status hsfsts;
3515	u32 i = 0;
3516
3517	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3518	if (hw->mac.type >= e1000_pch_spt)
3519		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3520	else
3521		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3522	hsflctl.hsf_ctrl.flcgo = 1;
3523
3524	if (hw->mac.type >= e1000_pch_spt)
3525		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3526	else
3527		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3528
3529	/* wait till FDONE bit is set to 1 */
3530	do {
3531		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3532		if (hsfsts.hsf_status.flcdone)
3533			break;
3534		udelay(1);
3535	} while (i++ < timeout);
3536
3537	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3538		return 0;
3539
3540	return -E1000_ERR_NVM;
3541}
3542
3543/**
3544 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3545 *  @hw: pointer to the HW structure
3546 *  @offset: offset to data location
3547 *  @data: pointer to the location for storing the data
3548 *
3549 *  Reads the flash dword at offset into data.  Offset is converted
3550 *  to bytes before read.
3551 **/
3552static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3553					  u32 *data)
3554{
3555	/* Must convert word offset into bytes. */
3556	offset <<= 1;
3557	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3558}
3559
3560/**
3561 *  e1000_read_flash_word_ich8lan - Read word from flash
3562 *  @hw: pointer to the HW structure
3563 *  @offset: offset to data location
3564 *  @data: pointer to the location for storing the data
3565 *
3566 *  Reads the flash word at offset into data.  Offset is converted
3567 *  to bytes before read.
3568 **/
3569static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3570					 u16 *data)
3571{
3572	/* Must convert offset into bytes. */
3573	offset <<= 1;
3574
3575	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3576}
3577
3578/**
3579 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3580 *  @hw: pointer to the HW structure
3581 *  @offset: The offset of the byte to read.
3582 *  @data: Pointer to a byte to store the value read.
3583 *
3584 *  Reads a single byte from the NVM using the flash access registers.
3585 **/
3586static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3587					 u8 *data)
3588{
3589	s32 ret_val;
3590	u16 word = 0;
3591
3592	/* In SPT, only 32 bits access is supported,
3593	 * so this function should not be called.
3594	 */
3595	if (hw->mac.type >= e1000_pch_spt)
3596		return -E1000_ERR_NVM;
3597	else
3598		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3599
3600	if (ret_val)
3601		return ret_val;
3602
3603	*data = (u8)word;
3604
3605	return 0;
3606}
3607
3608/**
3609 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3610 *  @hw: pointer to the HW structure
3611 *  @offset: The offset (in bytes) of the byte or word to read.
3612 *  @size: Size of data to read, 1=byte 2=word
3613 *  @data: Pointer to the word to store the value read.
3614 *
3615 *  Reads a byte or word from the NVM using the flash access registers.
3616 **/
3617static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3618					 u8 size, u16 *data)
3619{
3620	union ich8_hws_flash_status hsfsts;
3621	union ich8_hws_flash_ctrl hsflctl;
3622	u32 flash_linear_addr;
3623	u32 flash_data = 0;
3624	s32 ret_val = -E1000_ERR_NVM;
3625	u8 count = 0;
3626
3627	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3628		return -E1000_ERR_NVM;
3629
3630	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3631			     hw->nvm.flash_base_addr);
3632
3633	do {
3634		udelay(1);
3635		/* Steps */
3636		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3637		if (ret_val)
3638			break;
3639
3640		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3641		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3642		hsflctl.hsf_ctrl.fldbcount = size - 1;
3643		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3644		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3645
3646		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3647
3648		ret_val =
3649		    e1000_flash_cycle_ich8lan(hw,
3650					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3651
3652		/* Check if FCERR is set to 1, if set to 1, clear it
 
3653		 * and try the whole sequence a few more times, else
3654		 * read in (shift in) the Flash Data0, the order is
3655		 * least significant byte first msb to lsb
3656		 */
3657		if (!ret_val) {
3658			flash_data = er32flash(ICH_FLASH_FDATA0);
3659			if (size == 1)
3660				*data = (u8)(flash_data & 0x000000FF);
3661			else if (size == 2)
3662				*data = (u16)(flash_data & 0x0000FFFF);
3663			break;
3664		} else {
3665			/* If we've gotten here, then things are probably
3666			 * completely hosed, but if the error condition is
3667			 * detected, it won't hurt to give it another try...
3668			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3669			 */
3670			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671			if (hsfsts.hsf_status.flcerr) {
3672				/* Repeat for some time before giving up. */
3673				continue;
3674			} else if (!hsfsts.hsf_status.flcdone) {
3675				e_dbg("Timeout error - flash cycle did not complete.\n");
3676				break;
3677			}
3678		}
3679	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3680
3681	return ret_val;
3682}
3683
3684/**
3685 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3686 *  @hw: pointer to the HW structure
3687 *  @offset: The offset (in bytes) of the dword to read.
3688 *  @data: Pointer to the dword to store the value read.
3689 *
3690 *  Reads a byte or word from the NVM using the flash access registers.
3691 **/
3692
3693static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3694					   u32 *data)
3695{
3696	union ich8_hws_flash_status hsfsts;
3697	union ich8_hws_flash_ctrl hsflctl;
3698	u32 flash_linear_addr;
3699	s32 ret_val = -E1000_ERR_NVM;
3700	u8 count = 0;
3701
3702	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3703		return -E1000_ERR_NVM;
3704	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3705			     hw->nvm.flash_base_addr);
3706
3707	do {
3708		udelay(1);
3709		/* Steps */
3710		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3711		if (ret_val)
3712			break;
3713		/* In SPT, This register is in Lan memory space, not flash.
3714		 * Therefore, only 32 bit access is supported
3715		 */
3716		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3717
3718		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3719		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3720		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3721		/* In SPT, This register is in Lan memory space, not flash.
3722		 * Therefore, only 32 bit access is supported
3723		 */
3724		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3725		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3726
3727		ret_val =
3728		   e1000_flash_cycle_ich8lan(hw,
3729					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3730
3731		/* Check if FCERR is set to 1, if set to 1, clear it
3732		 * and try the whole sequence a few more times, else
3733		 * read in (shift in) the Flash Data0, the order is
3734		 * least significant byte first msb to lsb
3735		 */
3736		if (!ret_val) {
3737			*data = er32flash(ICH_FLASH_FDATA0);
3738			break;
3739		} else {
3740			/* If we've gotten here, then things are probably
3741			 * completely hosed, but if the error condition is
3742			 * detected, it won't hurt to give it another try...
3743			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3744			 */
3745			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3746			if (hsfsts.hsf_status.flcerr) {
3747				/* Repeat for some time before giving up. */
3748				continue;
3749			} else if (!hsfsts.hsf_status.flcdone) {
3750				e_dbg("Timeout error - flash cycle did not complete.\n");
3751				break;
3752			}
3753		}
3754	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3755
3756	return ret_val;
3757}
3758
3759/**
3760 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3761 *  @hw: pointer to the HW structure
3762 *  @offset: The offset (in bytes) of the word(s) to write.
3763 *  @words: Size of data to write in words
3764 *  @data: Pointer to the word(s) to write at offset.
3765 *
3766 *  Writes a byte or word to the NVM using the flash access registers.
3767 **/
3768static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3769				   u16 *data)
3770{
3771	struct e1000_nvm_info *nvm = &hw->nvm;
3772	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3773	u16 i;
3774
3775	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3776	    (words == 0)) {
3777		e_dbg("nvm parameter(s) out of bounds\n");
3778		return -E1000_ERR_NVM;
3779	}
3780
3781	nvm->ops.acquire(hw);
3782
3783	for (i = 0; i < words; i++) {
3784		dev_spec->shadow_ram[offset + i].modified = true;
3785		dev_spec->shadow_ram[offset + i].value = data[i];
3786	}
3787
3788	nvm->ops.release(hw);
3789
3790	return 0;
3791}
3792
3793/**
3794 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3795 *  @hw: pointer to the HW structure
3796 *
3797 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3798 *  which writes the checksum to the shadow ram.  The changes in the shadow
3799 *  ram are then committed to the EEPROM by processing each bank at a time
3800 *  checking for the modified bit and writing only the pending changes.
3801 *  After a successful commit, the shadow ram is cleared and is ready for
3802 *  future writes.
3803 **/
3804static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3805{
3806	struct e1000_nvm_info *nvm = &hw->nvm;
3807	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3808	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3809	s32 ret_val;
3810	u32 dword = 0;
3811
3812	ret_val = e1000e_update_nvm_checksum_generic(hw);
3813	if (ret_val)
3814		goto out;
3815
3816	if (nvm->type != e1000_nvm_flash_sw)
3817		goto out;
3818
3819	nvm->ops.acquire(hw);
3820
3821	/* We're writing to the opposite bank so if we're on bank 1,
3822	 * write to bank 0 etc.  We also need to erase the segment that
3823	 * is going to be written
3824	 */
3825	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3826	if (ret_val) {
3827		e_dbg("Could not detect valid bank, assuming bank 0\n");
3828		bank = 0;
3829	}
3830
3831	if (bank == 0) {
3832		new_bank_offset = nvm->flash_bank_size;
3833		old_bank_offset = 0;
3834		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3835		if (ret_val)
3836			goto release;
3837	} else {
3838		old_bank_offset = nvm->flash_bank_size;
3839		new_bank_offset = 0;
3840		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3841		if (ret_val)
3842			goto release;
3843	}
3844	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3845		/* Determine whether to write the value stored
3846		 * in the other NVM bank or a modified value stored
3847		 * in the shadow RAM
3848		 */
3849		ret_val = e1000_read_flash_dword_ich8lan(hw,
3850							 i + old_bank_offset,
3851							 &dword);
3852
3853		if (dev_spec->shadow_ram[i].modified) {
3854			dword &= 0xffff0000;
3855			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3856		}
3857		if (dev_spec->shadow_ram[i + 1].modified) {
3858			dword &= 0x0000ffff;
3859			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3860				  << 16);
3861		}
3862		if (ret_val)
3863			break;
3864
3865		/* If the word is 0x13, then make sure the signature bits
3866		 * (15:14) are 11b until the commit has completed.
3867		 * This will allow us to write 10b which indicates the
3868		 * signature is valid.  We want to do this after the write
3869		 * has completed so that we don't mark the segment valid
3870		 * while the write is still in progress
3871		 */
3872		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3873			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3874
3875		/* Convert offset to bytes. */
3876		act_offset = (i + new_bank_offset) << 1;
3877
3878		usleep_range(100, 200);
3879
3880		/* Write the data to the new bank. Offset in words */
3881		act_offset = i + new_bank_offset;
3882		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3883								dword);
3884		if (ret_val)
3885			break;
3886	}
3887
3888	/* Don't bother writing the segment valid bits if sector
3889	 * programming failed.
3890	 */
3891	if (ret_val) {
3892		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3893		e_dbg("Flash commit failed.\n");
3894		goto release;
3895	}
3896
3897	/* Finally validate the new segment by setting bit 15:14
3898	 * to 10b in word 0x13 , this can be done without an
3899	 * erase as well since these bits are 11 to start with
3900	 * and we need to change bit 14 to 0b
3901	 */
3902	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3903
3904	/*offset in words but we read dword */
3905	--act_offset;
3906	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3907
3908	if (ret_val)
3909		goto release;
3910
3911	dword &= 0xBFFFFFFF;
3912	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3913
3914	if (ret_val)
3915		goto release;
3916
3917	/* offset in words but we read dword */
3918	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3919	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3920
3921	if (ret_val)
3922		goto release;
3923
3924	dword &= 0x00FFFFFF;
3925	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3926
3927	if (ret_val)
3928		goto release;
3929
3930	/* Great!  Everything worked, we can now clear the cached entries. */
3931	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3932		dev_spec->shadow_ram[i].modified = false;
3933		dev_spec->shadow_ram[i].value = 0xFFFF;
3934	}
3935
3936release:
3937	nvm->ops.release(hw);
3938
3939	/* Reload the EEPROM, or else modifications will not appear
3940	 * until after the next adapter reset.
3941	 */
3942	if (!ret_val) {
3943		nvm->ops.reload(hw);
3944		usleep_range(10000, 11000);
3945	}
3946
3947out:
3948	if (ret_val)
3949		e_dbg("NVM update error: %d\n", ret_val);
3950
3951	return ret_val;
3952}
3953
3954/**
3955 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3956 *  @hw: pointer to the HW structure
3957 *
3958 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3959 *  which writes the checksum to the shadow ram.  The changes in the shadow
3960 *  ram are then committed to the EEPROM by processing each bank at a time
3961 *  checking for the modified bit and writing only the pending changes.
3962 *  After a successful commit, the shadow ram is cleared and is ready for
3963 *  future writes.
3964 **/
3965static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3966{
3967	struct e1000_nvm_info *nvm = &hw->nvm;
3968	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3969	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3970	s32 ret_val;
3971	u16 data = 0;
3972
3973	ret_val = e1000e_update_nvm_checksum_generic(hw);
3974	if (ret_val)
3975		goto out;
3976
3977	if (nvm->type != e1000_nvm_flash_sw)
3978		goto out;
3979
3980	nvm->ops.acquire(hw);
3981
3982	/* We're writing to the opposite bank so if we're on bank 1,
 
3983	 * write to bank 0 etc.  We also need to erase the segment that
3984	 * is going to be written
3985	 */
3986	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3987	if (ret_val) {
3988		e_dbg("Could not detect valid bank, assuming bank 0\n");
3989		bank = 0;
3990	}
3991
3992	if (bank == 0) {
3993		new_bank_offset = nvm->flash_bank_size;
3994		old_bank_offset = 0;
3995		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3996		if (ret_val)
3997			goto release;
3998	} else {
3999		old_bank_offset = nvm->flash_bank_size;
4000		new_bank_offset = 0;
4001		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4002		if (ret_val)
4003			goto release;
4004	}
 
4005	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
 
 
 
 
 
4006		if (dev_spec->shadow_ram[i].modified) {
4007			data = dev_spec->shadow_ram[i].value;
4008		} else {
4009			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4010								old_bank_offset,
4011								&data);
4012			if (ret_val)
4013				break;
4014		}
4015
4016		/* If the word is 0x13, then make sure the signature bits
 
4017		 * (15:14) are 11b until the commit has completed.
4018		 * This will allow us to write 10b which indicates the
4019		 * signature is valid.  We want to do this after the write
4020		 * has completed so that we don't mark the segment valid
4021		 * while the write is still in progress
4022		 */
4023		if (i == E1000_ICH_NVM_SIG_WORD)
4024			data |= E1000_ICH_NVM_SIG_MASK;
4025
4026		/* Convert offset to bytes. */
4027		act_offset = (i + new_bank_offset) << 1;
4028
4029		usleep_range(100, 200);
4030		/* Write the bytes to the new bank. */
4031		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4032							       act_offset,
4033							       (u8)data);
4034		if (ret_val)
4035			break;
4036
4037		usleep_range(100, 200);
4038		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4039							       act_offset + 1,
4040							       (u8)(data >> 8));
4041		if (ret_val)
4042			break;
4043	}
4044
4045	/* Don't bother writing the segment valid bits if sector
 
4046	 * programming failed.
4047	 */
4048	if (ret_val) {
4049		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4050		e_dbg("Flash commit failed.\n");
4051		goto release;
4052	}
4053
4054	/* Finally validate the new segment by setting bit 15:14
 
4055	 * to 10b in word 0x13 , this can be done without an
4056	 * erase as well since these bits are 11 to start with
4057	 * and we need to change bit 14 to 0b
4058	 */
4059	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4060	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4061	if (ret_val)
4062		goto release;
4063
4064	data &= 0xBFFF;
4065	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4066						       act_offset * 2 + 1,
4067						       (u8)(data >> 8));
4068	if (ret_val)
4069		goto release;
4070
4071	/* And invalidate the previously valid segment by setting
 
4072	 * its signature word (0x13) high_byte to 0b. This can be
4073	 * done without an erase because flash erase sets all bits
4074	 * to 1's. We can write 1's to 0's without an erase
4075	 */
4076	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4077	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4078	if (ret_val)
4079		goto release;
4080
4081	/* Great!  Everything worked, we can now clear the cached entries. */
4082	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4083		dev_spec->shadow_ram[i].modified = false;
4084		dev_spec->shadow_ram[i].value = 0xFFFF;
4085	}
4086
4087release:
4088	nvm->ops.release(hw);
4089
4090	/* Reload the EEPROM, or else modifications will not appear
 
4091	 * until after the next adapter reset.
4092	 */
4093	if (!ret_val) {
4094		nvm->ops.reload(hw);
4095		usleep_range(10000, 11000);
4096	}
4097
4098out:
4099	if (ret_val)
4100		e_dbg("NVM update error: %d\n", ret_val);
4101
4102	return ret_val;
4103}
4104
4105/**
4106 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4107 *  @hw: pointer to the HW structure
4108 *
4109 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4110 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4111 *  calculated, in which case we need to calculate the checksum and set bit 6.
4112 **/
4113static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4114{
4115	s32 ret_val;
4116	u16 data;
4117	u16 word;
4118	u16 valid_csum_mask;
4119
4120	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4121	 * the checksum needs to be fixed.  This bit is an indication that
4122	 * the NVM was prepared by OEM software and did not calculate
4123	 * the checksum...a likely scenario.
 
4124	 */
4125	switch (hw->mac.type) {
4126	case e1000_pch_lpt:
4127	case e1000_pch_spt:
4128	case e1000_pch_cnp:
4129	case e1000_pch_tgp:
4130	case e1000_pch_adp:
4131	case e1000_pch_mtp:
4132	case e1000_pch_lnp:
4133	case e1000_pch_ptp:
4134	case e1000_pch_nvp:
4135		word = NVM_COMPAT;
4136		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4137		break;
4138	default:
4139		word = NVM_FUTURE_INIT_WORD1;
4140		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4141		break;
4142	}
4143
4144	ret_val = e1000_read_nvm(hw, word, 1, &data);
4145	if (ret_val)
4146		return ret_val;
4147
4148	if (!(data & valid_csum_mask)) {
4149		e_dbg("NVM Checksum valid bit not set\n");
4150
4151		if (hw->mac.type < e1000_pch_tgp) {
4152			data |= valid_csum_mask;
4153			ret_val = e1000_write_nvm(hw, word, 1, &data);
4154			if (ret_val)
4155				return ret_val;
4156			ret_val = e1000e_update_nvm_checksum(hw);
4157			if (ret_val)
4158				return ret_val;
4159		}
4160	}
4161
4162	return e1000e_validate_nvm_checksum_generic(hw);
4163}
4164
4165/**
4166 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4167 *  @hw: pointer to the HW structure
4168 *
4169 *  To prevent malicious write/erase of the NVM, set it to be read-only
4170 *  so that the hardware ignores all write/erase cycles of the NVM via
4171 *  the flash control registers.  The shadow-ram copy of the NVM will
4172 *  still be updated, however any updates to this copy will not stick
4173 *  across driver reloads.
4174 **/
4175void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4176{
4177	struct e1000_nvm_info *nvm = &hw->nvm;
4178	union ich8_flash_protected_range pr0;
4179	union ich8_hws_flash_status hsfsts;
4180	u32 gfpreg;
4181
4182	nvm->ops.acquire(hw);
4183
4184	gfpreg = er32flash(ICH_FLASH_GFPREG);
4185
4186	/* Write-protect GbE Sector of NVM */
4187	pr0.regval = er32flash(ICH_FLASH_PR0);
4188	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4189	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4190	pr0.range.wpe = true;
4191	ew32flash(ICH_FLASH_PR0, pr0.regval);
4192
4193	/* Lock down a subset of GbE Flash Control Registers, e.g.
 
4194	 * PR0 to prevent the write-protection from being lifted.
4195	 * Once FLOCKDN is set, the registers protected by it cannot
4196	 * be written until FLOCKDN is cleared by a hardware reset.
4197	 */
4198	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4199	hsfsts.hsf_status.flockdn = true;
4200	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4201
4202	nvm->ops.release(hw);
4203}
4204
4205/**
4206 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4207 *  @hw: pointer to the HW structure
4208 *  @offset: The offset (in bytes) of the byte/word to read.
4209 *  @size: Size of data to read, 1=byte 2=word
4210 *  @data: The byte(s) to write to the NVM.
4211 *
4212 *  Writes one/two bytes to the NVM using the flash access registers.
4213 **/
4214static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4215					  u8 size, u16 data)
4216{
4217	union ich8_hws_flash_status hsfsts;
4218	union ich8_hws_flash_ctrl hsflctl;
4219	u32 flash_linear_addr;
4220	u32 flash_data = 0;
4221	s32 ret_val;
4222	u8 count = 0;
4223
4224	if (hw->mac.type >= e1000_pch_spt) {
4225		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226			return -E1000_ERR_NVM;
4227	} else {
4228		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4229			return -E1000_ERR_NVM;
4230	}
4231
4232	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4233			     hw->nvm.flash_base_addr);
4234
4235	do {
4236		udelay(1);
4237		/* Steps */
4238		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4239		if (ret_val)
4240			break;
4241		/* In SPT, This register is in Lan memory space, not
4242		 * flash.  Therefore, only 32 bit access is supported
4243		 */
4244		if (hw->mac.type >= e1000_pch_spt)
4245			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4246		else
4247			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4248
 
4249		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4250		hsflctl.hsf_ctrl.fldbcount = size - 1;
4251		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4252		/* In SPT, This register is in Lan memory space,
4253		 * not flash.  Therefore, only 32 bit access is
4254		 * supported
4255		 */
4256		if (hw->mac.type >= e1000_pch_spt)
4257			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4258		else
4259			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4260
4261		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4262
4263		if (size == 1)
4264			flash_data = (u32)data & 0x00FF;
4265		else
4266			flash_data = (u32)data;
4267
4268		ew32flash(ICH_FLASH_FDATA0, flash_data);
4269
4270		/* check if FCERR is set to 1 , if set to 1, clear it
 
4271		 * and try the whole sequence a few more times else done
4272		 */
4273		ret_val =
4274		    e1000_flash_cycle_ich8lan(hw,
4275					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4276		if (!ret_val)
4277			break;
4278
4279		/* If we're here, then things are most likely
 
4280		 * completely hosed, but if the error condition
4281		 * is detected, it won't hurt to give it another
4282		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4283		 */
4284		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4285		if (hsfsts.hsf_status.flcerr)
4286			/* Repeat for some time before giving up. */
4287			continue;
4288		if (!hsfsts.hsf_status.flcdone) {
4289			e_dbg("Timeout error - flash cycle did not complete.\n");
4290			break;
4291		}
4292	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4293
4294	return ret_val;
4295}
4296
4297/**
4298*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4299*  @hw: pointer to the HW structure
4300*  @offset: The offset (in bytes) of the dwords to read.
4301*  @data: The 4 bytes to write to the NVM.
4302*
4303*  Writes one/two/four bytes to the NVM using the flash access registers.
4304**/
4305static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4306					    u32 data)
4307{
4308	union ich8_hws_flash_status hsfsts;
4309	union ich8_hws_flash_ctrl hsflctl;
4310	u32 flash_linear_addr;
4311	s32 ret_val;
4312	u8 count = 0;
4313
4314	if (hw->mac.type >= e1000_pch_spt) {
4315		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4316			return -E1000_ERR_NVM;
4317	}
4318	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4319			     hw->nvm.flash_base_addr);
4320	do {
4321		udelay(1);
4322		/* Steps */
4323		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4324		if (ret_val)
4325			break;
4326
4327		/* In SPT, This register is in Lan memory space, not
4328		 * flash.  Therefore, only 32 bit access is supported
4329		 */
4330		if (hw->mac.type >= e1000_pch_spt)
4331			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4332			    >> 16;
4333		else
4334			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4335
4336		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4337		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4338
4339		/* In SPT, This register is in Lan memory space,
4340		 * not flash.  Therefore, only 32 bit access is
4341		 * supported
4342		 */
4343		if (hw->mac.type >= e1000_pch_spt)
4344			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4345		else
4346			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4347
4348		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4349
4350		ew32flash(ICH_FLASH_FDATA0, data);
4351
4352		/* check if FCERR is set to 1 , if set to 1, clear it
4353		 * and try the whole sequence a few more times else done
4354		 */
4355		ret_val =
4356		   e1000_flash_cycle_ich8lan(hw,
4357					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4358
4359		if (!ret_val)
4360			break;
4361
4362		/* If we're here, then things are most likely
4363		 * completely hosed, but if the error condition
4364		 * is detected, it won't hurt to give it another
4365		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4366		 */
4367		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4368
4369		if (hsfsts.hsf_status.flcerr)
4370			/* Repeat for some time before giving up. */
4371			continue;
4372		if (!hsfsts.hsf_status.flcdone) {
4373			e_dbg("Timeout error - flash cycle did not complete.\n");
4374			break;
4375		}
4376	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4377
4378	return ret_val;
4379}
4380
4381/**
4382 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4383 *  @hw: pointer to the HW structure
4384 *  @offset: The index of the byte to read.
4385 *  @data: The byte to write to the NVM.
4386 *
4387 *  Writes a single byte to the NVM using the flash access registers.
4388 **/
4389static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4390					  u8 data)
4391{
4392	u16 word = (u16)data;
4393
4394	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4395}
4396
4397/**
4398*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4399*  @hw: pointer to the HW structure
4400*  @offset: The offset of the word to write.
4401*  @dword: The dword to write to the NVM.
4402*
4403*  Writes a single dword to the NVM using the flash access registers.
4404*  Goes through a retry algorithm before giving up.
4405**/
4406static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4407						 u32 offset, u32 dword)
4408{
4409	s32 ret_val;
4410	u16 program_retries;
4411
4412	/* Must convert word offset into bytes. */
4413	offset <<= 1;
4414	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4415
4416	if (!ret_val)
4417		return ret_val;
4418	for (program_retries = 0; program_retries < 100; program_retries++) {
4419		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4420		usleep_range(100, 200);
4421		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4422		if (!ret_val)
4423			break;
4424	}
4425	if (program_retries == 100)
4426		return -E1000_ERR_NVM;
4427
4428	return 0;
4429}
4430
4431/**
4432 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4433 *  @hw: pointer to the HW structure
4434 *  @offset: The offset of the byte to write.
4435 *  @byte: The byte to write to the NVM.
4436 *
4437 *  Writes a single byte to the NVM using the flash access registers.
4438 *  Goes through a retry algorithm before giving up.
4439 **/
4440static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4441						u32 offset, u8 byte)
4442{
4443	s32 ret_val;
4444	u16 program_retries;
4445
4446	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4447	if (!ret_val)
4448		return ret_val;
4449
4450	for (program_retries = 0; program_retries < 100; program_retries++) {
4451		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4452		usleep_range(100, 200);
4453		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4454		if (!ret_val)
4455			break;
4456	}
4457	if (program_retries == 100)
4458		return -E1000_ERR_NVM;
4459
4460	return 0;
4461}
4462
4463/**
4464 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4465 *  @hw: pointer to the HW structure
4466 *  @bank: 0 for first bank, 1 for second bank, etc.
4467 *
4468 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4469 *  bank N is 4096 * N + flash_reg_addr.
4470 **/
4471static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4472{
4473	struct e1000_nvm_info *nvm = &hw->nvm;
4474	union ich8_hws_flash_status hsfsts;
4475	union ich8_hws_flash_ctrl hsflctl;
4476	u32 flash_linear_addr;
4477	/* bank size is in 16bit words - adjust to bytes */
4478	u32 flash_bank_size = nvm->flash_bank_size * 2;
4479	s32 ret_val;
4480	s32 count = 0;
4481	s32 j, iteration, sector_size;
4482
4483	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4484
4485	/* Determine HW Sector size: Read BERASE bits of hw flash status
 
4486	 * register
4487	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4488	 *     consecutive sectors.  The start index for the nth Hw sector
4489	 *     can be calculated as = bank * 4096 + n * 256
4490	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4491	 *     The start index for the nth Hw sector can be calculated
4492	 *     as = bank * 4096
4493	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4494	 *     (ich9 only, otherwise error condition)
4495	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4496	 */
4497	switch (hsfsts.hsf_status.berasesz) {
4498	case 0:
4499		/* Hw sector size 256 */
4500		sector_size = ICH_FLASH_SEG_SIZE_256;
4501		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4502		break;
4503	case 1:
4504		sector_size = ICH_FLASH_SEG_SIZE_4K;
4505		iteration = 1;
4506		break;
4507	case 2:
4508		sector_size = ICH_FLASH_SEG_SIZE_8K;
4509		iteration = 1;
4510		break;
4511	case 3:
4512		sector_size = ICH_FLASH_SEG_SIZE_64K;
4513		iteration = 1;
4514		break;
4515	default:
4516		return -E1000_ERR_NVM;
4517	}
4518
4519	/* Start with the base address, then add the sector offset. */
4520	flash_linear_addr = hw->nvm.flash_base_addr;
4521	flash_linear_addr += (bank) ? flash_bank_size : 0;
4522
4523	for (j = 0; j < iteration; j++) {
4524		do {
4525			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4526
4527			/* Steps */
4528			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4529			if (ret_val)
4530				return ret_val;
4531
4532			/* Write a value 11 (block Erase) in Flash
 
4533			 * Cycle field in hw flash control
4534			 */
4535			if (hw->mac.type >= e1000_pch_spt)
4536				hsflctl.regval =
4537				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4538			else
4539				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4540
4541			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4542			if (hw->mac.type >= e1000_pch_spt)
4543				ew32flash(ICH_FLASH_HSFSTS,
4544					  hsflctl.regval << 16);
4545			else
4546				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4547
4548			/* Write the last 24 bits of an index within the
 
4549			 * block into Flash Linear address field in Flash
4550			 * Address.
4551			 */
4552			flash_linear_addr += (j * sector_size);
4553			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4554
4555			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
 
4556			if (!ret_val)
4557				break;
4558
4559			/* Check if FCERR is set to 1.  If 1,
 
4560			 * clear it and try the whole sequence
4561			 * a few more times else Done
4562			 */
4563			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4564			if (hsfsts.hsf_status.flcerr)
4565				/* repeat for some time before giving up */
4566				continue;
4567			else if (!hsfsts.hsf_status.flcdone)
4568				return ret_val;
4569		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4570	}
4571
4572	return 0;
4573}
4574
4575/**
4576 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4577 *  @hw: pointer to the HW structure
4578 *  @data: Pointer to the LED settings
4579 *
4580 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4581 *  settings is all 0's or F's, set the LED default to a valid LED default
4582 *  setting.
4583 **/
4584static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4585{
4586	s32 ret_val;
4587
4588	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4589	if (ret_val) {
4590		e_dbg("NVM Read Error\n");
4591		return ret_val;
4592	}
4593
4594	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
 
4595		*data = ID_LED_DEFAULT_ICH8LAN;
4596
4597	return 0;
4598}
4599
4600/**
4601 *  e1000_id_led_init_pchlan - store LED configurations
4602 *  @hw: pointer to the HW structure
4603 *
4604 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4605 *  the PHY LED configuration register.
4606 *
4607 *  PCH also does not have an "always on" or "always off" mode which
4608 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4609 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4610 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4611 *  link based on logic in e1000_led_[on|off]_pchlan().
4612 **/
4613static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4614{
4615	struct e1000_mac_info *mac = &hw->mac;
4616	s32 ret_val;
4617	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4618	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4619	u16 data, i, temp, shift;
4620
4621	/* Get default ID LED modes */
4622	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4623	if (ret_val)
4624		return ret_val;
4625
4626	mac->ledctl_default = er32(LEDCTL);
4627	mac->ledctl_mode1 = mac->ledctl_default;
4628	mac->ledctl_mode2 = mac->ledctl_default;
4629
4630	for (i = 0; i < 4; i++) {
4631		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4632		shift = (i * 5);
4633		switch (temp) {
4634		case ID_LED_ON1_DEF2:
4635		case ID_LED_ON1_ON2:
4636		case ID_LED_ON1_OFF2:
4637			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638			mac->ledctl_mode1 |= (ledctl_on << shift);
4639			break;
4640		case ID_LED_OFF1_DEF2:
4641		case ID_LED_OFF1_ON2:
4642		case ID_LED_OFF1_OFF2:
4643			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4644			mac->ledctl_mode1 |= (ledctl_off << shift);
4645			break;
4646		default:
4647			/* Do nothing */
4648			break;
4649		}
4650		switch (temp) {
4651		case ID_LED_DEF1_ON2:
4652		case ID_LED_ON1_ON2:
4653		case ID_LED_OFF1_ON2:
4654			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655			mac->ledctl_mode2 |= (ledctl_on << shift);
4656			break;
4657		case ID_LED_DEF1_OFF2:
4658		case ID_LED_ON1_OFF2:
4659		case ID_LED_OFF1_OFF2:
4660			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4661			mac->ledctl_mode2 |= (ledctl_off << shift);
4662			break;
4663		default:
4664			/* Do nothing */
4665			break;
4666		}
4667	}
4668
4669	return 0;
4670}
4671
4672/**
4673 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4674 *  @hw: pointer to the HW structure
4675 *
4676 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4677 *  register, so the bus width is hard coded.
4678 **/
4679static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4680{
4681	struct e1000_bus_info *bus = &hw->bus;
4682	s32 ret_val;
4683
4684	ret_val = e1000e_get_bus_info_pcie(hw);
4685
4686	/* ICH devices are "PCI Express"-ish.  They have
 
4687	 * a configuration space, but do not contain
4688	 * PCI Express Capability registers, so bus width
4689	 * must be hardcoded.
4690	 */
4691	if (bus->width == e1000_bus_width_unknown)
4692		bus->width = e1000_bus_width_pcie_x1;
4693
4694	return ret_val;
4695}
4696
4697/**
4698 *  e1000_reset_hw_ich8lan - Reset the hardware
4699 *  @hw: pointer to the HW structure
4700 *
4701 *  Does a full reset of the hardware which includes a reset of the PHY and
4702 *  MAC.
4703 **/
4704static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4705{
4706	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4707	u16 kum_cfg;
4708	u32 ctrl, reg;
4709	s32 ret_val;
4710
4711	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
4712	 * on the last TLP read/write transaction when MAC is reset.
4713	 */
4714	ret_val = e1000e_disable_pcie_master(hw);
4715	if (ret_val)
4716		e_dbg("PCI-E Master disable polling has failed.\n");
4717
4718	e_dbg("Masking off all interrupts\n");
4719	ew32(IMC, 0xffffffff);
4720
4721	/* Disable the Transmit and Receive units.  Then delay to allow
 
4722	 * any pending transactions to complete before we hit the MAC
4723	 * with the global reset.
4724	 */
4725	ew32(RCTL, 0);
4726	ew32(TCTL, E1000_TCTL_PSP);
4727	e1e_flush();
4728
4729	usleep_range(10000, 11000);
4730
4731	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4732	if (hw->mac.type == e1000_ich8lan) {
4733		/* Set Tx and Rx buffer allocation to 8k apiece. */
4734		ew32(PBA, E1000_PBA_8K);
4735		/* Set Packet Buffer Size to 16k. */
4736		ew32(PBS, E1000_PBS_16K);
4737	}
4738
4739	if (hw->mac.type == e1000_pchlan) {
4740		/* Save the NVM K1 bit setting */
4741		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4742		if (ret_val)
4743			return ret_val;
4744
4745		if (kum_cfg & E1000_NVM_K1_ENABLE)
4746			dev_spec->nvm_k1_enabled = true;
4747		else
4748			dev_spec->nvm_k1_enabled = false;
4749	}
4750
4751	ctrl = er32(CTRL);
4752
4753	if (!hw->phy.ops.check_reset_block(hw)) {
4754		/* Full-chip reset requires MAC and PHY reset at the same
 
4755		 * time to make sure the interface between MAC and the
4756		 * external PHY is reset.
4757		 */
4758		ctrl |= E1000_CTRL_PHY_RST;
4759
4760		/* Gate automatic PHY configuration by hardware on
 
4761		 * non-managed 82579
4762		 */
4763		if ((hw->mac.type == e1000_pch2lan) &&
4764		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4765			e1000_gate_hw_phy_config_ich8lan(hw, true);
4766	}
4767	ret_val = e1000_acquire_swflag_ich8lan(hw);
4768	e_dbg("Issuing a global reset to ich8lan\n");
4769	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4770	/* cannot issue a flush here because it hangs the hardware */
4771	msleep(20);
4772
4773	/* Set Phy Config Counter to 50msec */
4774	if (hw->mac.type == e1000_pch2lan) {
4775		reg = er32(FEXTNVM3);
4776		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4777		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4778		ew32(FEXTNVM3, reg);
4779	}
4780
4781	if (!ret_val)
4782		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4783
4784	if (ctrl & E1000_CTRL_PHY_RST) {
4785		ret_val = hw->phy.ops.get_cfg_done(hw);
4786		if (ret_val)
4787			return ret_val;
4788
4789		ret_val = e1000_post_phy_reset_ich8lan(hw);
4790		if (ret_val)
4791			return ret_val;
4792	}
4793
4794	/* For PCH, this write will make sure that any noise
 
4795	 * will be detected as a CRC error and be dropped rather than show up
4796	 * as a bad packet to the DMA engine.
4797	 */
4798	if (hw->mac.type == e1000_pchlan)
4799		ew32(CRC_OFFSET, 0x65656565);
4800
4801	ew32(IMC, 0xffffffff);
4802	er32(ICR);
4803
4804	reg = er32(KABGTXD);
4805	reg |= E1000_KABGTXD_BGSQLBIAS;
4806	ew32(KABGTXD, reg);
4807
4808	return 0;
4809}
4810
4811/**
4812 *  e1000_init_hw_ich8lan - Initialize the hardware
4813 *  @hw: pointer to the HW structure
4814 *
4815 *  Prepares the hardware for transmit and receive by doing the following:
4816 *   - initialize hardware bits
4817 *   - initialize LED identification
4818 *   - setup receive address registers
4819 *   - setup flow control
4820 *   - setup transmit descriptors
4821 *   - clear statistics
4822 **/
4823static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4824{
4825	struct e1000_mac_info *mac = &hw->mac;
4826	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4827	s32 ret_val;
4828	u16 i;
4829
4830	e1000_initialize_hw_bits_ich8lan(hw);
4831
4832	/* Initialize identification LED */
4833	ret_val = mac->ops.id_led_init(hw);
4834	/* An error is not fatal and we should not stop init due to this */
4835	if (ret_val)
4836		e_dbg("Error initializing identification LED\n");
 
4837
4838	/* Setup the receive address. */
4839	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4840
4841	/* Zero out the Multicast HASH table */
4842	e_dbg("Zeroing the MTA\n");
4843	for (i = 0; i < mac->mta_reg_count; i++)
4844		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4845
4846	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
 
4847	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4848	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4849	 */
4850	if (hw->phy.type == e1000_phy_82578) {
4851		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4852		i &= ~BM_WUC_HOST_WU_BIT;
4853		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4854		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4855		if (ret_val)
4856			return ret_val;
4857	}
4858
4859	/* Setup link and flow control */
4860	ret_val = mac->ops.setup_link(hw);
4861
4862	/* Set the transmit descriptor write-back policy for both queues */
4863	txdctl = er32(TXDCTL(0));
4864	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865		  E1000_TXDCTL_FULL_TX_DESC_WB);
4866	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868	ew32(TXDCTL(0), txdctl);
4869	txdctl = er32(TXDCTL(1));
4870	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4871		  E1000_TXDCTL_FULL_TX_DESC_WB);
4872	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4873		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4874	ew32(TXDCTL(1), txdctl);
4875
4876	/* ICH8 has opposite polarity of no_snoop bits.
 
4877	 * By default, we should use snoop behavior.
4878	 */
4879	if (mac->type == e1000_ich8lan)
4880		snoop = PCIE_ICH8_SNOOP_ALL;
4881	else
4882		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4883	e1000e_set_pcie_no_snoop(hw, snoop);
4884
4885	/* Enable workaround for packet loss issue on TGP PCH
4886	 * Do not gate DMA clock from the modPHY block
4887	 */
4888	if (mac->type >= e1000_pch_tgp) {
4889		fflt_dbg = er32(FFLT_DBG);
4890		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4891		ew32(FFLT_DBG, fflt_dbg);
4892	}
4893
4894	ctrl_ext = er32(CTRL_EXT);
4895	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4896	ew32(CTRL_EXT, ctrl_ext);
4897
4898	/* Clear all of the statistics registers (clear on read).  It is
 
4899	 * important that we do this after we have tried to establish link
4900	 * because the symbol error count will increment wildly if there
4901	 * is no link.
4902	 */
4903	e1000_clear_hw_cntrs_ich8lan(hw);
4904
4905	return ret_val;
4906}
4907
4908/**
4909 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4910 *  @hw: pointer to the HW structure
4911 *
4912 *  Sets/Clears required hardware bits necessary for correctly setting up the
4913 *  hardware for transmit and receive.
4914 **/
4915static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4916{
4917	u32 reg;
4918
4919	/* Extended Device Control */
4920	reg = er32(CTRL_EXT);
4921	reg |= BIT(22);
4922	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4923	if (hw->mac.type >= e1000_pchlan)
4924		reg |= E1000_CTRL_EXT_PHYPDEN;
4925	ew32(CTRL_EXT, reg);
4926
4927	/* Transmit Descriptor Control 0 */
4928	reg = er32(TXDCTL(0));
4929	reg |= BIT(22);
4930	ew32(TXDCTL(0), reg);
4931
4932	/* Transmit Descriptor Control 1 */
4933	reg = er32(TXDCTL(1));
4934	reg |= BIT(22);
4935	ew32(TXDCTL(1), reg);
4936
4937	/* Transmit Arbitration Control 0 */
4938	reg = er32(TARC(0));
4939	if (hw->mac.type == e1000_ich8lan)
4940		reg |= BIT(28) | BIT(29);
4941	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4942	ew32(TARC(0), reg);
4943
4944	/* Transmit Arbitration Control 1 */
4945	reg = er32(TARC(1));
4946	if (er32(TCTL) & E1000_TCTL_MULR)
4947		reg &= ~BIT(28);
4948	else
4949		reg |= BIT(28);
4950	reg |= BIT(24) | BIT(26) | BIT(30);
4951	ew32(TARC(1), reg);
4952
4953	/* Device Status */
4954	if (hw->mac.type == e1000_ich8lan) {
4955		reg = er32(STATUS);
4956		reg &= ~BIT(31);
4957		ew32(STATUS, reg);
4958	}
4959
4960	/* work-around descriptor data corruption issue during nfs v2 udp
 
4961	 * traffic, just disable the nfs filtering capability
4962	 */
4963	reg = er32(RFCTL);
4964	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4965
4966	/* Disable IPv6 extension header parsing because some malformed
 
4967	 * IPv6 headers can hang the Rx.
4968	 */
4969	if (hw->mac.type == e1000_ich8lan)
4970		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4971	ew32(RFCTL, reg);
4972
4973	/* Enable ECC on Lynxpoint */
4974	if (hw->mac.type >= e1000_pch_lpt) {
4975		reg = er32(PBECCSTS);
4976		reg |= E1000_PBECCSTS_ECC_ENABLE;
4977		ew32(PBECCSTS, reg);
4978
4979		reg = er32(CTRL);
4980		reg |= E1000_CTRL_MEHE;
4981		ew32(CTRL, reg);
4982	}
4983}
4984
4985/**
4986 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4987 *  @hw: pointer to the HW structure
4988 *
4989 *  Determines which flow control settings to use, then configures flow
4990 *  control.  Calls the appropriate media-specific link configuration
4991 *  function.  Assuming the adapter has a valid link partner, a valid link
4992 *  should be established.  Assumes the hardware has previously been reset
4993 *  and the transmitter and receiver are not enabled.
4994 **/
4995static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4996{
4997	s32 ret_val;
4998
4999	if (hw->phy.ops.check_reset_block(hw))
5000		return 0;
5001
5002	/* ICH parts do not have a word in the NVM to determine
 
5003	 * the default flow control setting, so we explicitly
5004	 * set it to full.
5005	 */
5006	if (hw->fc.requested_mode == e1000_fc_default) {
5007		/* Workaround h/w hang when Tx flow control enabled */
5008		if (hw->mac.type == e1000_pchlan)
5009			hw->fc.requested_mode = e1000_fc_rx_pause;
5010		else
5011			hw->fc.requested_mode = e1000_fc_full;
5012	}
5013
5014	/* Save off the requested flow control mode for use later.  Depending
 
5015	 * on the link partner's capabilities, we may or may not use this mode.
5016	 */
5017	hw->fc.current_mode = hw->fc.requested_mode;
5018
5019	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 
5020
5021	/* Continue to configure the copper link. */
5022	ret_val = hw->mac.ops.setup_physical_interface(hw);
5023	if (ret_val)
5024		return ret_val;
5025
5026	ew32(FCTTV, hw->fc.pause_time);
5027	if ((hw->phy.type == e1000_phy_82578) ||
5028	    (hw->phy.type == e1000_phy_82579) ||
5029	    (hw->phy.type == e1000_phy_i217) ||
5030	    (hw->phy.type == e1000_phy_82577)) {
5031		ew32(FCRTV_PCH, hw->fc.refresh_time);
5032
5033		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5034				   hw->fc.pause_time);
5035		if (ret_val)
5036			return ret_val;
5037	}
5038
5039	return e1000e_set_fc_watermarks(hw);
5040}
5041
5042/**
5043 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5044 *  @hw: pointer to the HW structure
5045 *
5046 *  Configures the kumeran interface to the PHY to wait the appropriate time
5047 *  when polling the PHY, then call the generic setup_copper_link to finish
5048 *  configuring the copper link.
5049 **/
5050static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5051{
5052	u32 ctrl;
5053	s32 ret_val;
5054	u16 reg_data;
5055
5056	ctrl = er32(CTRL);
5057	ctrl |= E1000_CTRL_SLU;
5058	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5059	ew32(CTRL, ctrl);
5060
5061	/* Set the mac to wait the maximum time between each iteration
 
5062	 * and increase the max iterations when polling the phy;
5063	 * this fixes erroneous timeouts at 10Mbps.
5064	 */
5065	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5066	if (ret_val)
5067		return ret_val;
5068	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5069				       &reg_data);
5070	if (ret_val)
5071		return ret_val;
5072	reg_data |= 0x3F;
5073	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5074					reg_data);
5075	if (ret_val)
5076		return ret_val;
5077
5078	switch (hw->phy.type) {
5079	case e1000_phy_igp_3:
5080		ret_val = e1000e_copper_link_setup_igp(hw);
5081		if (ret_val)
5082			return ret_val;
5083		break;
5084	case e1000_phy_bm:
5085	case e1000_phy_82578:
5086		ret_val = e1000e_copper_link_setup_m88(hw);
5087		if (ret_val)
5088			return ret_val;
5089		break;
5090	case e1000_phy_82577:
5091	case e1000_phy_82579:
 
5092		ret_val = e1000_copper_link_setup_82577(hw);
5093		if (ret_val)
5094			return ret_val;
5095		break;
5096	case e1000_phy_ife:
5097		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5098		if (ret_val)
5099			return ret_val;
5100
5101		reg_data &= ~IFE_PMC_AUTO_MDIX;
5102
5103		switch (hw->phy.mdix) {
5104		case 1:
5105			reg_data &= ~IFE_PMC_FORCE_MDIX;
5106			break;
5107		case 2:
5108			reg_data |= IFE_PMC_FORCE_MDIX;
5109			break;
5110		case 0:
5111		default:
5112			reg_data |= IFE_PMC_AUTO_MDIX;
5113			break;
5114		}
5115		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5116		if (ret_val)
5117			return ret_val;
5118		break;
5119	default:
5120		break;
5121	}
5122
5123	return e1000e_setup_copper_link(hw);
5124}
5125
5126/**
5127 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5128 *  @hw: pointer to the HW structure
5129 *
5130 *  Calls the PHY specific link setup function and then calls the
5131 *  generic setup_copper_link to finish configuring the link for
5132 *  Lynxpoint PCH devices
5133 **/
5134static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5135{
5136	u32 ctrl;
5137	s32 ret_val;
5138
5139	ctrl = er32(CTRL);
5140	ctrl |= E1000_CTRL_SLU;
5141	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5142	ew32(CTRL, ctrl);
5143
5144	ret_val = e1000_copper_link_setup_82577(hw);
5145	if (ret_val)
5146		return ret_val;
5147
5148	return e1000e_setup_copper_link(hw);
5149}
5150
5151/**
5152 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5153 *  @hw: pointer to the HW structure
5154 *  @speed: pointer to store current link speed
5155 *  @duplex: pointer to store the current link duplex
5156 *
5157 *  Calls the generic get_speed_and_duplex to retrieve the current link
5158 *  information and then calls the Kumeran lock loss workaround for links at
5159 *  gigabit speeds.
5160 **/
5161static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5162					  u16 *duplex)
5163{
5164	s32 ret_val;
5165
5166	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5167	if (ret_val)
5168		return ret_val;
5169
5170	if ((hw->mac.type == e1000_ich8lan) &&
5171	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
 
5172		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5173	}
5174
5175	return ret_val;
5176}
5177
5178/**
5179 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5180 *  @hw: pointer to the HW structure
5181 *
5182 *  Work-around for 82566 Kumeran PCS lock loss:
5183 *  On link status change (i.e. PCI reset, speed change) and link is up and
5184 *  speed is gigabit-
5185 *    0) if workaround is optionally disabled do nothing
5186 *    1) wait 1ms for Kumeran link to come up
5187 *    2) check Kumeran Diagnostic register PCS lock loss bit
5188 *    3) if not set the link is locked (all is good), otherwise...
5189 *    4) reset the PHY
5190 *    5) repeat up to 10 times
5191 *  Note: this is only called for IGP3 copper when speed is 1gb.
5192 **/
5193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5194{
5195	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5196	u32 phy_ctrl;
5197	s32 ret_val;
5198	u16 i, data;
5199	bool link;
5200
5201	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5202		return 0;
5203
5204	/* Make sure link is up before proceeding.  If not just return.
 
5205	 * Attempting this while link is negotiating fouled up link
5206	 * stability
5207	 */
5208	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5209	if (!link)
5210		return 0;
5211
5212	for (i = 0; i < 10; i++) {
5213		/* read once to clear */
5214		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5215		if (ret_val)
5216			return ret_val;
5217		/* and again to get new status */
5218		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219		if (ret_val)
5220			return ret_val;
5221
5222		/* check for PCS lock */
5223		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5224			return 0;
5225
5226		/* Issue PHY reset */
5227		e1000_phy_hw_reset(hw);
5228		mdelay(5);
5229	}
5230	/* Disable GigE link negotiation */
5231	phy_ctrl = er32(PHY_CTRL);
5232	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5233		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234	ew32(PHY_CTRL, phy_ctrl);
5235
5236	/* Call gig speed drop workaround on Gig disable before accessing
 
5237	 * any PHY registers
5238	 */
5239	e1000e_gig_downshift_workaround_ich8lan(hw);
5240
5241	/* unable to acquire PCS lock */
5242	return -E1000_ERR_PHY;
5243}
5244
5245/**
5246 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5247 *  @hw: pointer to the HW structure
5248 *  @state: boolean value used to set the current Kumeran workaround state
5249 *
5250 *  If ICH8, set the current Kumeran workaround state (enabled - true
5251 *  /disabled - false).
5252 **/
5253void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5254						  bool state)
5255{
5256	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5257
5258	if (hw->mac.type != e1000_ich8lan) {
5259		e_dbg("Workaround applies to ICH8 only.\n");
5260		return;
5261	}
5262
5263	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5264}
5265
5266/**
5267 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5268 *  @hw: pointer to the HW structure
5269 *
5270 *  Workaround for 82566 power-down on D3 entry:
5271 *    1) disable gigabit link
5272 *    2) write VR power-down enable
5273 *    3) read it back
5274 *  Continue if successful, else issue LCD reset and repeat
5275 **/
5276void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5277{
5278	u32 reg;
5279	u16 data;
5280	u8 retry = 0;
5281
5282	if (hw->phy.type != e1000_phy_igp_3)
5283		return;
5284
5285	/* Try the workaround twice (if needed) */
5286	do {
5287		/* Disable link */
5288		reg = er32(PHY_CTRL);
5289		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5290			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5291		ew32(PHY_CTRL, reg);
5292
5293		/* Call gig speed drop workaround on Gig disable before
 
5294		 * accessing any PHY registers
5295		 */
5296		if (hw->mac.type == e1000_ich8lan)
5297			e1000e_gig_downshift_workaround_ich8lan(hw);
5298
5299		/* Write VR power-down enable */
5300		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5301		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5302		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5303
5304		/* Read it back and test */
5305		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5306		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5307		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5308			break;
5309
5310		/* Issue PHY reset and repeat at most one more time */
5311		reg = er32(CTRL);
5312		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5313		retry++;
5314	} while (retry);
5315}
5316
5317/**
5318 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5319 *  @hw: pointer to the HW structure
5320 *
5321 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5322 *  LPLU, Gig disable, MDIC PHY reset):
5323 *    1) Set Kumeran Near-end loopback
5324 *    2) Clear Kumeran Near-end loopback
5325 *  Should only be called for ICH8[m] devices with any 1G Phy.
5326 **/
5327void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5328{
5329	s32 ret_val;
5330	u16 reg_data;
5331
5332	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5333		return;
5334
5335	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5336				       &reg_data);
5337	if (ret_val)
5338		return;
5339	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5340	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5341					reg_data);
5342	if (ret_val)
5343		return;
5344	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5345	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
 
5346}
5347
5348/**
5349 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5350 *  @hw: pointer to the HW structure
5351 *
5352 *  During S0 to Sx transition, it is possible the link remains at gig
5353 *  instead of negotiating to a lower speed.  Before going to Sx, set
5354 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5355 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5356 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5357 *  needs to be written.
5358 *  Parts that support (and are linked to a partner which support) EEE in
5359 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5360 *  than 10Mbps w/o EEE.
5361 **/
5362void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5363{
5364	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5365	u32 phy_ctrl;
5366	s32 ret_val;
5367
5368	phy_ctrl = er32(PHY_CTRL);
5369	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5370
5371	if (hw->phy.type == e1000_phy_i217) {
5372		u16 phy_reg, device_id = hw->adapter->pdev->device;
5373
5374		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5375		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5376		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5377		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5378		    (hw->mac.type >= e1000_pch_spt)) {
5379			u32 fextnvm6 = er32(FEXTNVM6);
5380
5381			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5382		}
5383
5384		ret_val = hw->phy.ops.acquire(hw);
5385		if (ret_val)
5386			goto out;
5387
5388		if (!dev_spec->eee_disable) {
5389			u16 eee_advert;
5390
5391			ret_val =
5392			    e1000_read_emi_reg_locked(hw,
5393						      I217_EEE_ADVERTISEMENT,
5394						      &eee_advert);
5395			if (ret_val)
5396				goto release;
 
5397
5398			/* Disable LPLU if both link partners support 100BaseT
 
5399			 * EEE and 100Full is advertised on both ends of the
5400			 * link, and enable Auto Enable LPI since there will
5401			 * be no driver to enable LPI while in Sx.
5402			 */
5403			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5404			    (dev_spec->eee_lp_ability &
5405			     I82579_EEE_100_SUPPORTED) &&
5406			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5407				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5408					      E1000_PHY_CTRL_NOND0A_LPLU);
5409
5410				/* Set Auto Enable LPI after link up */
5411				e1e_rphy_locked(hw,
5412						I217_LPI_GPIO_CTRL, &phy_reg);
5413				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414				e1e_wphy_locked(hw,
5415						I217_LPI_GPIO_CTRL, phy_reg);
5416			}
5417		}
5418
5419		/* For i217 Intel Rapid Start Technology support,
 
5420		 * when the system is going into Sx and no manageability engine
5421		 * is present, the driver must configure proxy to reset only on
5422		 * power good.  LPI (Low Power Idle) state must also reset only
5423		 * on power good, as well as the MTA (Multicast table array).
5424		 * The SMBus release must also be disabled on LCD reset.
5425		 */
5426		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
5427			/* Enable proxy to reset only on power good. */
5428			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5429			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5430			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5431
5432			/* Set bit enable LPI (EEE) to reset only on
 
5433			 * power good.
5434			 */
5435			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5436			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5437			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5438
5439			/* Disable the SMB release on LCD reset. */
5440			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5441			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5442			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5443		}
5444
5445		/* Enable MTA to reset for Intel Rapid Start Technology
 
5446		 * Support
5447		 */
5448		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5449		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5450		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5451
5452release:
5453		hw->phy.ops.release(hw);
5454	}
5455out:
5456	ew32(PHY_CTRL, phy_ctrl);
5457
5458	if (hw->mac.type == e1000_ich8lan)
5459		e1000e_gig_downshift_workaround_ich8lan(hw);
5460
5461	if (hw->mac.type >= e1000_pchlan) {
5462		e1000_oem_bits_config_ich8lan(hw, false);
5463
5464		/* Reset PHY to activate OEM bits on 82577/8 */
5465		if (hw->mac.type == e1000_pchlan)
5466			e1000e_phy_hw_reset_generic(hw);
5467
5468		ret_val = hw->phy.ops.acquire(hw);
5469		if (ret_val)
5470			return;
5471		e1000_write_smbus_addr(hw);
5472		hw->phy.ops.release(hw);
5473	}
5474}
5475
5476/**
5477 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5478 *  @hw: pointer to the HW structure
5479 *
5480 *  During Sx to S0 transitions on non-managed devices or managed devices
5481 *  on which PHY resets are not blocked, if the PHY registers cannot be
5482 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5483 *  the PHY.
5484 *  On i217, setup Intel Rapid Start Technology.
5485 **/
5486void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5487{
5488	s32 ret_val;
5489
5490	if (hw->mac.type < e1000_pch2lan)
5491		return;
5492
5493	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5494	if (ret_val) {
5495		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5496		return;
5497	}
5498
5499	/* For i217 Intel Rapid Start Technology support when the system
 
5500	 * is transitioning from Sx and no manageability engine is present
5501	 * configure SMBus to restore on reset, disable proxy, and enable
5502	 * the reset on MTA (Multicast table array).
5503	 */
5504	if (hw->phy.type == e1000_phy_i217) {
5505		u16 phy_reg;
5506
5507		ret_val = hw->phy.ops.acquire(hw);
5508		if (ret_val) {
5509			e_dbg("Failed to setup iRST\n");
5510			return;
5511		}
5512
5513		/* Clear Auto Enable LPI after link up */
5514		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5515		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5516		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5517
5518		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5519			/* Restore clear on SMB if no manageability engine
 
5520			 * is present
5521			 */
5522			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5523			if (ret_val)
5524				goto release;
5525			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5526			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5527
5528			/* Disable Proxy */
5529			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5530		}
5531		/* Enable reset on MTA */
5532		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5533		if (ret_val)
5534			goto release;
5535		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5536		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5537release:
5538		if (ret_val)
5539			e_dbg("Error %d in resume workarounds\n", ret_val);
5540		hw->phy.ops.release(hw);
5541	}
5542}
5543
5544/**
5545 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5546 *  @hw: pointer to the HW structure
5547 *
5548 *  Return the LED back to the default configuration.
5549 **/
5550static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5551{
5552	if (hw->phy.type == e1000_phy_ife)
5553		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5554
5555	ew32(LEDCTL, hw->mac.ledctl_default);
5556	return 0;
5557}
5558
5559/**
5560 *  e1000_led_on_ich8lan - Turn LEDs on
5561 *  @hw: pointer to the HW structure
5562 *
5563 *  Turn on the LEDs.
5564 **/
5565static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5566{
5567	if (hw->phy.type == e1000_phy_ife)
5568		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5569				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5570
5571	ew32(LEDCTL, hw->mac.ledctl_mode2);
5572	return 0;
5573}
5574
5575/**
5576 *  e1000_led_off_ich8lan - Turn LEDs off
5577 *  @hw: pointer to the HW structure
5578 *
5579 *  Turn off the LEDs.
5580 **/
5581static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5582{
5583	if (hw->phy.type == e1000_phy_ife)
5584		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5585				(IFE_PSCL_PROBE_MODE |
5586				 IFE_PSCL_PROBE_LEDS_OFF));
5587
5588	ew32(LEDCTL, hw->mac.ledctl_mode1);
5589	return 0;
5590}
5591
5592/**
5593 *  e1000_setup_led_pchlan - Configures SW controllable LED
5594 *  @hw: pointer to the HW structure
5595 *
5596 *  This prepares the SW controllable LED for use.
5597 **/
5598static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5599{
5600	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5601}
5602
5603/**
5604 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5605 *  @hw: pointer to the HW structure
5606 *
5607 *  Return the LED back to the default configuration.
5608 **/
5609static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5610{
5611	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5612}
5613
5614/**
5615 *  e1000_led_on_pchlan - Turn LEDs on
5616 *  @hw: pointer to the HW structure
5617 *
5618 *  Turn on the LEDs.
5619 **/
5620static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5621{
5622	u16 data = (u16)hw->mac.ledctl_mode2;
5623	u32 i, led;
5624
5625	/* If no link, then turn LED on by setting the invert bit
 
5626	 * for each LED that's mode is "link_up" in ledctl_mode2.
5627	 */
5628	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5629		for (i = 0; i < 3; i++) {
5630			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5631			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5632			    E1000_LEDCTL_MODE_LINK_UP)
5633				continue;
5634			if (led & E1000_PHY_LED0_IVRT)
5635				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5636			else
5637				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5638		}
5639	}
5640
5641	return e1e_wphy(hw, HV_LED_CONFIG, data);
5642}
5643
5644/**
5645 *  e1000_led_off_pchlan - Turn LEDs off
5646 *  @hw: pointer to the HW structure
5647 *
5648 *  Turn off the LEDs.
5649 **/
5650static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5651{
5652	u16 data = (u16)hw->mac.ledctl_mode1;
5653	u32 i, led;
5654
5655	/* If no link, then turn LED off by clearing the invert bit
 
5656	 * for each LED that's mode is "link_up" in ledctl_mode1.
5657	 */
5658	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5659		for (i = 0; i < 3; i++) {
5660			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5661			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5662			    E1000_LEDCTL_MODE_LINK_UP)
5663				continue;
5664			if (led & E1000_PHY_LED0_IVRT)
5665				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5666			else
5667				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5668		}
5669	}
5670
5671	return e1e_wphy(hw, HV_LED_CONFIG, data);
5672}
5673
5674/**
5675 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5676 *  @hw: pointer to the HW structure
5677 *
5678 *  Read appropriate register for the config done bit for completion status
5679 *  and configure the PHY through s/w for EEPROM-less parts.
5680 *
5681 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5682 *  config done bit, so only an error is logged and continues.  If we were
5683 *  to return with error, EEPROM-less silicon would not be able to be reset
5684 *  or change link.
5685 **/
5686static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5687{
5688	s32 ret_val = 0;
5689	u32 bank = 0;
5690	u32 status;
5691
5692	e1000e_get_cfg_done_generic(hw);
5693
5694	/* Wait for indication from h/w that it has completed basic config */
5695	if (hw->mac.type >= e1000_ich10lan) {
5696		e1000_lan_init_done_ich8lan(hw);
5697	} else {
5698		ret_val = e1000e_get_auto_rd_done(hw);
5699		if (ret_val) {
5700			/* When auto config read does not complete, do not
 
5701			 * return with an error. This can happen in situations
5702			 * where there is no eeprom and prevents getting link.
5703			 */
5704			e_dbg("Auto Read Done did not complete\n");
5705			ret_val = 0;
5706		}
5707	}
5708
5709	/* Clear PHY Reset Asserted bit */
5710	status = er32(STATUS);
5711	if (status & E1000_STATUS_PHYRA)
5712		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5713	else
5714		e_dbg("PHY Reset Asserted not set - needs delay\n");
5715
5716	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5717	if (hw->mac.type <= e1000_ich9lan) {
5718		if (!(er32(EECD) & E1000_EECD_PRES) &&
5719		    (hw->phy.type == e1000_phy_igp_3)) {
5720			e1000e_phy_init_script_igp3(hw);
5721		}
5722	} else {
5723		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5724			/* Maybe we should do a basic PHY config */
5725			e_dbg("EEPROM not present\n");
5726			ret_val = -E1000_ERR_CONFIG;
5727		}
5728	}
5729
5730	return ret_val;
5731}
5732
5733/**
5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5735 * @hw: pointer to the HW structure
5736 *
5737 * In the case of a PHY power down to save power, or to turn off link during a
5738 * driver unload, or wake on lan is not enabled, remove the link.
5739 **/
5740static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5741{
5742	/* If the management interface is not enabled, then power down */
5743	if (!(hw->mac.ops.check_mng_mode(hw) ||
5744	      hw->phy.ops.check_reset_block(hw)))
5745		e1000_power_down_phy_copper(hw);
5746}
5747
5748/**
5749 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5750 *  @hw: pointer to the HW structure
5751 *
5752 *  Clears hardware counters specific to the silicon family and calls
5753 *  clear_hw_cntrs_generic to clear all general purpose counters.
5754 **/
5755static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5756{
5757	u16 phy_data;
5758	s32 ret_val;
5759
5760	e1000e_clear_hw_cntrs_base(hw);
5761
5762	er32(ALGNERRC);
5763	er32(RXERRC);
5764	er32(TNCRS);
5765	er32(CEXTERR);
5766	er32(TSCTC);
5767	er32(TSCTFC);
5768
5769	er32(MGTPRC);
5770	er32(MGTPDC);
5771	er32(MGTPTC);
5772
5773	er32(IAC);
5774	er32(ICRXOC);
5775
5776	/* Clear PHY statistics registers */
5777	if ((hw->phy.type == e1000_phy_82578) ||
5778	    (hw->phy.type == e1000_phy_82579) ||
5779	    (hw->phy.type == e1000_phy_i217) ||
5780	    (hw->phy.type == e1000_phy_82577)) {
5781		ret_val = hw->phy.ops.acquire(hw);
5782		if (ret_val)
5783			return;
5784		ret_val = hw->phy.ops.set_page(hw,
5785					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5786		if (ret_val)
5787			goto release;
5788		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5790		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5791		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5792		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5799		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5800		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5801		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5802release:
5803		hw->phy.ops.release(hw);
5804	}
5805}
5806
5807static const struct e1000_mac_operations ich8_mac_ops = {
5808	/* check_mng_mode dependent on mac type */
5809	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5810	/* cleanup_led dependent on mac type */
5811	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5812	.get_bus_info		= e1000_get_bus_info_ich8lan,
5813	.set_lan_id		= e1000_set_lan_id_single_port,
5814	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5815	/* led_on dependent on mac type */
5816	/* led_off dependent on mac type */
5817	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5818	.reset_hw		= e1000_reset_hw_ich8lan,
5819	.init_hw		= e1000_init_hw_ich8lan,
5820	.setup_link		= e1000_setup_link_ich8lan,
5821	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5822	/* id_led_init dependent on mac type */
5823	.config_collision_dist	= e1000e_config_collision_dist_generic,
5824	.rar_set		= e1000e_rar_set_generic,
5825	.rar_get_count		= e1000e_rar_get_count_generic,
5826};
5827
5828static const struct e1000_phy_operations ich8_phy_ops = {
5829	.acquire		= e1000_acquire_swflag_ich8lan,
5830	.check_reset_block	= e1000_check_reset_block_ich8lan,
5831	.commit			= NULL,
5832	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5833	.get_cable_length	= e1000e_get_cable_length_igp_2,
5834	.read_reg		= e1000e_read_phy_reg_igp,
5835	.release		= e1000_release_swflag_ich8lan,
5836	.reset			= e1000_phy_hw_reset_ich8lan,
5837	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5838	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5839	.write_reg		= e1000e_write_phy_reg_igp,
5840};
5841
5842static const struct e1000_nvm_operations ich8_nvm_ops = {
5843	.acquire		= e1000_acquire_nvm_ich8lan,
5844	.read			= e1000_read_nvm_ich8lan,
5845	.release		= e1000_release_nvm_ich8lan,
5846	.reload			= e1000e_reload_nvm_generic,
5847	.update			= e1000_update_nvm_checksum_ich8lan,
5848	.valid_led_default	= e1000_valid_led_default_ich8lan,
5849	.validate		= e1000_validate_nvm_checksum_ich8lan,
5850	.write			= e1000_write_nvm_ich8lan,
5851};
5852
5853static const struct e1000_nvm_operations spt_nvm_ops = {
5854	.acquire		= e1000_acquire_nvm_ich8lan,
5855	.release		= e1000_release_nvm_ich8lan,
5856	.read			= e1000_read_nvm_spt,
5857	.update			= e1000_update_nvm_checksum_spt,
5858	.reload			= e1000e_reload_nvm_generic,
5859	.valid_led_default	= e1000_valid_led_default_ich8lan,
5860	.validate		= e1000_validate_nvm_checksum_ich8lan,
5861	.write			= e1000_write_nvm_ich8lan,
5862};
5863
5864const struct e1000_info e1000_ich8_info = {
5865	.mac			= e1000_ich8lan,
5866	.flags			= FLAG_HAS_WOL
5867				  | FLAG_IS_ICH
5868				  | FLAG_HAS_CTRLEXT_ON_LOAD
5869				  | FLAG_HAS_AMT
5870				  | FLAG_HAS_FLASH
5871				  | FLAG_APME_IN_WUC,
5872	.pba			= 8,
5873	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5874	.get_variants		= e1000_get_variants_ich8lan,
5875	.mac_ops		= &ich8_mac_ops,
5876	.phy_ops		= &ich8_phy_ops,
5877	.nvm_ops		= &ich8_nvm_ops,
5878};
5879
5880const struct e1000_info e1000_ich9_info = {
5881	.mac			= e1000_ich9lan,
5882	.flags			= FLAG_HAS_JUMBO_FRAMES
5883				  | FLAG_IS_ICH
5884				  | FLAG_HAS_WOL
5885				  | FLAG_HAS_CTRLEXT_ON_LOAD
5886				  | FLAG_HAS_AMT
5887				  | FLAG_HAS_FLASH
5888				  | FLAG_APME_IN_WUC,
5889	.pba			= 18,
5890	.max_hw_frame_size	= DEFAULT_JUMBO,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_ich10_info = {
5898	.mac			= e1000_ich10lan,
5899	.flags			= FLAG_HAS_JUMBO_FRAMES
5900				  | FLAG_IS_ICH
5901				  | FLAG_HAS_WOL
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_APME_IN_WUC,
5906	.pba			= 18,
5907	.max_hw_frame_size	= DEFAULT_JUMBO,
5908	.get_variants		= e1000_get_variants_ich8lan,
5909	.mac_ops		= &ich8_mac_ops,
5910	.phy_ops		= &ich8_phy_ops,
5911	.nvm_ops		= &ich8_nvm_ops,
5912};
5913
5914const struct e1000_info e1000_pch_info = {
5915	.mac			= e1000_pchlan,
5916	.flags			= FLAG_IS_ICH
5917				  | FLAG_HAS_WOL
5918				  | FLAG_HAS_CTRLEXT_ON_LOAD
5919				  | FLAG_HAS_AMT
5920				  | FLAG_HAS_FLASH
5921				  | FLAG_HAS_JUMBO_FRAMES
5922				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5923				  | FLAG_APME_IN_WUC,
5924	.flags2			= FLAG2_HAS_PHY_STATS,
5925	.pba			= 26,
5926	.max_hw_frame_size	= 4096,
5927	.get_variants		= e1000_get_variants_ich8lan,
5928	.mac_ops		= &ich8_mac_ops,
5929	.phy_ops		= &ich8_phy_ops,
5930	.nvm_ops		= &ich8_nvm_ops,
5931};
5932
5933const struct e1000_info e1000_pch2_info = {
5934	.mac			= e1000_pch2lan,
5935	.flags			= FLAG_IS_ICH
5936				  | FLAG_HAS_WOL
5937				  | FLAG_HAS_HW_TIMESTAMP
5938				  | FLAG_HAS_CTRLEXT_ON_LOAD
5939				  | FLAG_HAS_AMT
5940				  | FLAG_HAS_FLASH
5941				  | FLAG_HAS_JUMBO_FRAMES
5942				  | FLAG_APME_IN_WUC,
5943	.flags2			= FLAG2_HAS_PHY_STATS
5944				  | FLAG2_HAS_EEE
5945				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5946	.pba			= 26,
5947	.max_hw_frame_size	= 9022,
5948	.get_variants		= e1000_get_variants_ich8lan,
5949	.mac_ops		= &ich8_mac_ops,
5950	.phy_ops		= &ich8_phy_ops,
5951	.nvm_ops		= &ich8_nvm_ops,
5952};
5953
5954const struct e1000_info e1000_pch_lpt_info = {
5955	.mac			= e1000_pch_lpt,
5956	.flags			= FLAG_IS_ICH
5957				  | FLAG_HAS_WOL
5958				  | FLAG_HAS_HW_TIMESTAMP
5959				  | FLAG_HAS_CTRLEXT_ON_LOAD
5960				  | FLAG_HAS_AMT
5961				  | FLAG_HAS_FLASH
5962				  | FLAG_HAS_JUMBO_FRAMES
5963				  | FLAG_APME_IN_WUC,
5964	.flags2			= FLAG2_HAS_PHY_STATS
5965				  | FLAG2_HAS_EEE
5966				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5967	.pba			= 26,
5968	.max_hw_frame_size	= 9022,
5969	.get_variants		= e1000_get_variants_ich8lan,
5970	.mac_ops		= &ich8_mac_ops,
5971	.phy_ops		= &ich8_phy_ops,
5972	.nvm_ops		= &ich8_nvm_ops,
5973};
5974
5975const struct e1000_info e1000_pch_spt_info = {
5976	.mac			= e1000_pch_spt,
5977	.flags			= FLAG_IS_ICH
5978				  | FLAG_HAS_WOL
5979				  | FLAG_HAS_HW_TIMESTAMP
5980				  | FLAG_HAS_CTRLEXT_ON_LOAD
5981				  | FLAG_HAS_AMT
5982				  | FLAG_HAS_FLASH
5983				  | FLAG_HAS_JUMBO_FRAMES
5984				  | FLAG_APME_IN_WUC,
5985	.flags2			= FLAG2_HAS_PHY_STATS
5986				  | FLAG2_HAS_EEE,
5987	.pba			= 26,
5988	.max_hw_frame_size	= 9022,
5989	.get_variants		= e1000_get_variants_ich8lan,
5990	.mac_ops		= &ich8_mac_ops,
5991	.phy_ops		= &ich8_phy_ops,
5992	.nvm_ops		= &spt_nvm_ops,
5993};
5994
5995const struct e1000_info e1000_pch_cnp_info = {
5996	.mac			= e1000_pch_cnp,
5997	.flags			= FLAG_IS_ICH
5998				  | FLAG_HAS_WOL
5999				  | FLAG_HAS_HW_TIMESTAMP
6000				  | FLAG_HAS_CTRLEXT_ON_LOAD
6001				  | FLAG_HAS_AMT
6002				  | FLAG_HAS_FLASH
6003				  | FLAG_HAS_JUMBO_FRAMES
6004				  | FLAG_APME_IN_WUC,
6005	.flags2			= FLAG2_HAS_PHY_STATS
6006				  | FLAG2_HAS_EEE,
6007	.pba			= 26,
6008	.max_hw_frame_size	= 9022,
6009	.get_variants		= e1000_get_variants_ich8lan,
6010	.mac_ops		= &ich8_mac_ops,
6011	.phy_ops		= &ich8_phy_ops,
6012	.nvm_ops		= &spt_nvm_ops,
6013};
6014
6015const struct e1000_info e1000_pch_tgp_info = {
6016	.mac			= e1000_pch_tgp,
6017	.flags			= FLAG_IS_ICH
6018				  | FLAG_HAS_WOL
6019				  | FLAG_HAS_HW_TIMESTAMP
6020				  | FLAG_HAS_CTRLEXT_ON_LOAD
6021				  | FLAG_HAS_AMT
6022				  | FLAG_HAS_FLASH
6023				  | FLAG_HAS_JUMBO_FRAMES
6024				  | FLAG_APME_IN_WUC,
6025	.flags2			= FLAG2_HAS_PHY_STATS
6026				  | FLAG2_HAS_EEE,
6027	.pba			= 26,
6028	.max_hw_frame_size	= 9022,
6029	.get_variants		= e1000_get_variants_ich8lan,
6030	.mac_ops		= &ich8_mac_ops,
6031	.phy_ops		= &ich8_phy_ops,
6032	.nvm_ops		= &spt_nvm_ops,
6033};
6034
6035const struct e1000_info e1000_pch_adp_info = {
6036	.mac			= e1000_pch_adp,
6037	.flags			= FLAG_IS_ICH
6038				  | FLAG_HAS_WOL
6039				  | FLAG_HAS_HW_TIMESTAMP
6040				  | FLAG_HAS_CTRLEXT_ON_LOAD
6041				  | FLAG_HAS_AMT
6042				  | FLAG_HAS_FLASH
6043				  | FLAG_HAS_JUMBO_FRAMES
6044				  | FLAG_APME_IN_WUC,
6045	.flags2			= FLAG2_HAS_PHY_STATS
6046				  | FLAG2_HAS_EEE,
6047	.pba			= 26,
6048	.max_hw_frame_size	= 9022,
6049	.get_variants		= e1000_get_variants_ich8lan,
6050	.mac_ops		= &ich8_mac_ops,
6051	.phy_ops		= &ich8_phy_ops,
6052	.nvm_ops		= &spt_nvm_ops,
6053};
6054
6055const struct e1000_info e1000_pch_mtp_info = {
6056	.mac			= e1000_pch_mtp,
6057	.flags			= FLAG_IS_ICH
6058				  | FLAG_HAS_WOL
6059				  | FLAG_HAS_HW_TIMESTAMP
6060				  | FLAG_HAS_CTRLEXT_ON_LOAD
6061				  | FLAG_HAS_AMT
6062				  | FLAG_HAS_FLASH
6063				  | FLAG_HAS_JUMBO_FRAMES
6064				  | FLAG_APME_IN_WUC,
6065	.flags2			= FLAG2_HAS_PHY_STATS
6066				  | FLAG2_HAS_EEE,
6067	.pba			= 26,
6068	.max_hw_frame_size	= 9022,
6069	.get_variants		= e1000_get_variants_ich8lan,
6070	.mac_ops		= &ich8_mac_ops,
6071	.phy_ops		= &ich8_phy_ops,
6072	.nvm_ops		= &spt_nvm_ops,
6073};
v3.5.6
   1/*******************************************************************************
 
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
 
 
 
 
 
 
 
 
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG		0x0000
  62#define ICH_FLASH_HSFSTS		0x0004
  63#define ICH_FLASH_HSFCTL		0x0006
  64#define ICH_FLASH_FADDR			0x0008
  65#define ICH_FLASH_FDATA0		0x0010
  66#define ICH_FLASH_PR0			0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
  73
  74#define ICH_CYCLE_READ			0
  75#define ICH_CYCLE_WRITE			2
  76#define ICH_CYCLE_ERASE			3
  77
  78#define FLASH_GFPREG_BASE_MASK		0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT		12
  80
  81#define ICH_FLASH_SEG_SIZE_256		256
  82#define ICH_FLASH_SEG_SIZE_4K		4096
  83#define ICH_FLASH_SEG_SIZE_8K		8192
  84#define ICH_FLASH_SEG_SIZE_64K		65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID		0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE		0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94				 (ID_LED_DEF1_OFF2 <<  8) | \
  95				 (ID_LED_DEF1_ON2  <<  4) | \
  96				 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD		0x13
  99#define E1000_ICH_NVM_SIG_MASK		0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG		1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
 109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
 110
 111#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 114
 115#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
 116
 117#define E1000_ICH_RAR_ENTRIES		7
 118#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
 119#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
 120
 121#define PHY_PAGE_SHIFT 5
 122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 123			   ((reg) & MAX_PHY_REG_ADDRESS))
 124#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 125#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 126
 127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
 128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 129#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
 130
 131#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
 132
 133#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 134
 135/* SMBus Control Phy Register */
 136#define CV_SMB_CTRL		PHY_REG(769, 23)
 137#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
 138
 139/* SMBus Address Phy Register */
 140#define HV_SMB_ADDR            PHY_REG(768, 26)
 141#define HV_SMB_ADDR_MASK       0x007F
 142#define HV_SMB_ADDR_PEC_EN     0x0200
 143#define HV_SMB_ADDR_VALID      0x0080
 144#define HV_SMB_ADDR_FREQ_MASK           0x1100
 145#define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
 146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
 147
 148/* PHY Power Management Control */
 149#define HV_PM_CTRL		PHY_REG(770, 17)
 150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
 151
 152/* PHY Low Power Idle Control */
 153#define I82579_LPI_CTRL				PHY_REG(772, 20)
 154#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
 155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
 156
 157/* EMI Registers */
 158#define I82579_EMI_ADDR         0x10
 159#define I82579_EMI_DATA         0x11
 160#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
 161#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
 162#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
 163#define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
 164#define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
 165#define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
 166
 167/* Intel Rapid Start Technology Support */
 168#define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
 169#define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
 170#define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
 171#define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
 172#define I217_CGFREG                     PHY_REG(772, 29)
 173#define I217_CGFREG_ENABLE_MTA_RESET    0x0002
 174#define I217_MEMPWR                     PHY_REG(772, 26)
 175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
 176
 177/* Strapping Option Register - RO */
 178#define E1000_STRAP                     0x0000C
 179#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 181#define E1000_STRAP_SMT_FREQ_MASK       0x00003000
 182#define E1000_STRAP_SMT_FREQ_SHIFT      12
 183
 184/* OEM Bits Phy Register */
 185#define HV_OEM_BITS            PHY_REG(768, 25)
 186#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 187#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 189
 190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 191#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 192
 193/* KMRN Mode Control */
 194#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 195#define HV_KMRN_MDIO_SLOW      0x0400
 196
 197/* KMRN FIFO Control and Status */
 198#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
 199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
 200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
 201
 202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 203/* Offset 04h HSFSTS */
 204union ich8_hws_flash_status {
 205	struct ich8_hsfsts {
 206		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 207		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 208		u16 dael       :1; /* bit 2 Direct Access error Log */
 209		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 210		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 211		u16 reserved1  :2; /* bit 13:6 Reserved */
 212		u16 reserved2  :6; /* bit 13:6 Reserved */
 213		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 214		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 215	} hsf_status;
 216	u16 regval;
 217};
 218
 219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 220/* Offset 06h FLCTL */
 221union ich8_hws_flash_ctrl {
 222	struct ich8_hsflctl {
 223		u16 flcgo      :1;   /* 0 Flash Cycle Go */
 224		u16 flcycle    :2;   /* 2:1 Flash Cycle */
 225		u16 reserved   :5;   /* 7:3 Reserved  */
 226		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 227		u16 flockdn    :6;   /* 15:10 Reserved */
 228	} hsf_ctrl;
 229	u16 regval;
 230};
 231
 232/* ICH Flash Region Access Permissions */
 233union ich8_hws_flash_regacc {
 234	struct ich8_flracc {
 235		u32 grra      :8; /* 0:7 GbE region Read Access */
 236		u32 grwa      :8; /* 8:15 GbE region Write Access */
 237		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 238		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 239	} hsf_flregacc;
 240	u16 regval;
 241};
 242
 243/* ICH Flash Protected Region */
 244union ich8_flash_protected_range {
 245	struct ich8_pr {
 246		u32 base:13;     /* 0:12 Protected Range Base */
 247		u32 reserved1:2; /* 13:14 Reserved */
 248		u32 rpe:1;       /* 15 Read Protection Enable */
 249		u32 limit:13;    /* 16:28 Protected Range Limit */
 250		u32 reserved2:2; /* 29:30 Reserved */
 251		u32 wpe:1;       /* 31 Write Protection Enable */
 252	} range;
 253	u32 regval;
 254};
 255
 256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 261						u32 offset, u8 byte);
 262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 263					 u8 *data);
 264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 265					 u16 *data);
 266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 267					 u8 size, u16 *data);
 268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 
 
 
 
 
 
 
 269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 282static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 
 288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 
 
 
 290
 291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 292{
 293	return readw(hw->flash_address + reg);
 294}
 295
 296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 297{
 298	return readl(hw->flash_address + reg);
 299}
 300
 301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 302{
 303	writew(val, hw->flash_address + reg);
 304}
 305
 306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 307{
 308	writel(val, hw->flash_address + reg);
 309}
 310
 311#define er16flash(reg)		__er16flash(hw, (reg))
 312#define er32flash(reg)		__er32flash(hw, (reg))
 313#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 314#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 315
 316/**
 317 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 318 *  @hw: pointer to the HW structure
 319 *
 320 *  Test access to the PHY registers by reading the PHY ID registers.  If
 321 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 322 *  otherwise assume the read PHY ID is correct if it is valid.
 323 *
 324 *  Assumes the sw/fw/hw semaphore is already acquired.
 325 **/
 326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 327{
 328	u16 phy_reg = 0;
 329	u32 phy_id = 0;
 330	s32 ret_val;
 331	u16 retry_count;
 
 332
 333	for (retry_count = 0; retry_count < 2; retry_count++) {
 334		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
 335		if (ret_val || (phy_reg == 0xFFFF))
 336			continue;
 337		phy_id = (u32)(phy_reg << 16);
 338
 339		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
 340		if (ret_val || (phy_reg == 0xFFFF)) {
 341			phy_id = 0;
 342			continue;
 343		}
 344		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 345		break;
 346	}
 347
 348	if (hw->phy.id) {
 349		if (hw->phy.id == phy_id)
 350			return true;
 351	} else if (phy_id) {
 352		hw->phy.id = phy_id;
 353		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 354		return true;
 355	}
 356
 357	/*
 358	 * In case the PHY needs to be in mdio slow mode,
 359	 * set slow mode and try to get the PHY id again.
 360	 */
 361	hw->phy.ops.release(hw);
 362	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 363	if (!ret_val)
 364		ret_val = e1000e_get_phy_id(hw);
 365	hw->phy.ops.acquire(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	return !ret_val;
 
 368}
 369
 370/**
 371 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 372 *  @hw: pointer to the HW structure
 373 *
 374 *  Workarounds/flow necessary for PHY initialization during driver load
 375 *  and resume paths.
 376 **/
 377static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 378{
 
 379	u32 mac_reg, fwsm = er32(FWSM);
 380	s32 ret_val;
 381	u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	ret_val = hw->phy.ops.acquire(hw);
 384	if (ret_val) {
 385		e_dbg("Failed to initialize PHY flow\n");
 386		return ret_val;
 387	}
 388
 389	/*
 390	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 391	 * inaccessible and resetting the PHY is not blocked, toggle the
 392	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 393	 */
 394	switch (hw->mac.type) {
 395	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
 396		if (e1000_phy_is_accessible_pchlan(hw))
 397			break;
 398
 399		/*
 400		 * Before toggling LANPHYPC, see if PHY is accessible by
 401		 * forcing MAC to SMBus mode first.
 402		 */
 403		mac_reg = er32(CTRL_EXT);
 404		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 405		ew32(CTRL_EXT, mac_reg);
 406
 407		/* fall-through */
 408	case e1000_pch2lan:
 409		/*
 410		 * Gate automatic PHY configuration by hardware on
 411		 * non-managed 82579
 412		 */
 413		if ((hw->mac.type == e1000_pch2lan) &&
 414		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
 415			e1000_gate_hw_phy_config_ich8lan(hw, true);
 416
 417		if (e1000_phy_is_accessible_pchlan(hw)) {
 418			if (hw->mac.type == e1000_pch_lpt) {
 419				/* Unforce SMBus mode in PHY */
 420				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 421				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 422				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 423
 424				/* Unforce SMBus mode in MAC */
 425				mac_reg = er32(CTRL_EXT);
 426				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 427				ew32(CTRL_EXT, mac_reg);
 428			}
 429			break;
 430		}
 431
 432		/* fall-through */
 433	case e1000_pchlan:
 434		if ((hw->mac.type == e1000_pchlan) &&
 435		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 436			break;
 437
 438		if (hw->phy.ops.check_reset_block(hw)) {
 439			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 
 440			break;
 441		}
 442
 443		e_dbg("Toggling LANPHYPC\n");
 
 
 
 
 
 
 
 
 
 
 
 444
 445		/* Set Phy Config Counter to 50msec */
 446		mac_reg = er32(FEXTNVM3);
 447		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 448		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 449		ew32(FEXTNVM3, mac_reg);
 450
 451		/* Toggle LANPHYPC Value bit */
 452		mac_reg = er32(CTRL);
 453		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 454		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 455		ew32(CTRL, mac_reg);
 456		e1e_flush();
 457		udelay(10);
 458		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 459		ew32(CTRL, mac_reg);
 460		e1e_flush();
 461		if (hw->mac.type < e1000_pch_lpt) {
 462			msleep(50);
 463		} else {
 464			u16 count = 20;
 465			do {
 466				usleep_range(5000, 10000);
 467			} while (!(er32(CTRL_EXT) &
 468				   E1000_CTRL_EXT_LPCD) && count--);
 469		}
 470		break;
 471	default:
 472		break;
 473	}
 474
 475	hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	/*
 478	 * Reset the PHY before any access to it.  Doing so, ensures
 479	 * that the PHY is in a known good state before we read/write
 480	 * PHY registers.  The generic reset is sufficient here,
 481	 * because we haven't determined the PHY type yet.
 482	 */
 483	ret_val = e1000e_phy_hw_reset_generic(hw);
 
 
 
 484
 
 485	/* Ungate automatic PHY configuration on non-managed 82579 */
 486	if ((hw->mac.type == e1000_pch2lan) &&
 487	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 488		usleep_range(10000, 20000);
 489		e1000_gate_hw_phy_config_ich8lan(hw, false);
 490	}
 491
 492	return ret_val;
 493}
 494
 495/**
 496 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 497 *  @hw: pointer to the HW structure
 498 *
 499 *  Initialize family-specific PHY parameters and function pointers.
 500 **/
 501static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 502{
 503	struct e1000_phy_info *phy = &hw->phy;
 504	s32 ret_val = 0;
 505
 506	phy->addr                     = 1;
 507	phy->reset_delay_us           = 100;
 508
 509	phy->ops.set_page             = e1000_set_page_igp;
 510	phy->ops.read_reg             = e1000_read_phy_reg_hv;
 511	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 512	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
 513	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 514	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 515	phy->ops.write_reg            = e1000_write_phy_reg_hv;
 516	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 517	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
 518	phy->ops.power_up             = e1000_power_up_phy_copper;
 519	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 520	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 521
 522	phy->id = e1000_phy_unknown;
 523
 524	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 525	if (ret_val)
 526		return ret_val;
 527
 528	if (phy->id == e1000_phy_unknown)
 529		switch (hw->mac.type) {
 530		default:
 531			ret_val = e1000e_get_phy_id(hw);
 532			if (ret_val)
 533				return ret_val;
 534			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 535				break;
 536			/* fall-through */
 537		case e1000_pch2lan:
 538		case e1000_pch_lpt:
 539			/*
 540			 * In case the PHY needs to be in mdio slow mode,
 
 
 
 
 
 
 
 541			 * set slow mode and try to get the PHY id again.
 542			 */
 543			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 544			if (ret_val)
 545				return ret_val;
 546			ret_val = e1000e_get_phy_id(hw);
 547			if (ret_val)
 548				return ret_val;
 549			break;
 550		}
 551	phy->type = e1000e_get_phy_type_from_id(phy->id);
 552
 553	switch (phy->type) {
 554	case e1000_phy_82577:
 555	case e1000_phy_82579:
 556	case e1000_phy_i217:
 557		phy->ops.check_polarity = e1000_check_polarity_82577;
 558		phy->ops.force_speed_duplex =
 559		    e1000_phy_force_speed_duplex_82577;
 560		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 561		phy->ops.get_info = e1000_get_phy_info_82577;
 562		phy->ops.commit = e1000e_phy_sw_reset;
 563		break;
 564	case e1000_phy_82578:
 565		phy->ops.check_polarity = e1000_check_polarity_m88;
 566		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 567		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 568		phy->ops.get_info = e1000e_get_phy_info_m88;
 569		break;
 570	default:
 571		ret_val = -E1000_ERR_PHY;
 572		break;
 573	}
 574
 575	return ret_val;
 576}
 577
 578/**
 579 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 580 *  @hw: pointer to the HW structure
 581 *
 582 *  Initialize family-specific PHY parameters and function pointers.
 583 **/
 584static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_phy_info *phy = &hw->phy;
 587	s32 ret_val;
 588	u16 i = 0;
 589
 590	phy->addr			= 1;
 591	phy->reset_delay_us		= 100;
 592
 593	phy->ops.power_up               = e1000_power_up_phy_copper;
 594	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 595
 596	/*
 597	 * We may need to do this twice - once for IGP and if that fails,
 598	 * we'll set BM func pointers and try again
 599	 */
 600	ret_val = e1000e_determine_phy_address(hw);
 601	if (ret_val) {
 602		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 603		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 604		ret_val = e1000e_determine_phy_address(hw);
 605		if (ret_val) {
 606			e_dbg("Cannot determine PHY addr. Erroring out\n");
 607			return ret_val;
 608		}
 609	}
 610
 611	phy->id = 0;
 612	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 613	       (i++ < 100)) {
 614		usleep_range(1000, 2000);
 615		ret_val = e1000e_get_phy_id(hw);
 616		if (ret_val)
 617			return ret_val;
 618	}
 619
 620	/* Verify phy id */
 621	switch (phy->id) {
 622	case IGP03E1000_E_PHY_ID:
 623		phy->type = e1000_phy_igp_3;
 624		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 625		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 626		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 627		phy->ops.get_info = e1000e_get_phy_info_igp;
 628		phy->ops.check_polarity = e1000_check_polarity_igp;
 629		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 630		break;
 631	case IFE_E_PHY_ID:
 632	case IFE_PLUS_E_PHY_ID:
 633	case IFE_C_E_PHY_ID:
 634		phy->type = e1000_phy_ife;
 635		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 636		phy->ops.get_info = e1000_get_phy_info_ife;
 637		phy->ops.check_polarity = e1000_check_polarity_ife;
 638		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 639		break;
 640	case BME1000_E_PHY_ID:
 641		phy->type = e1000_phy_bm;
 642		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 643		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 644		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 645		phy->ops.commit = e1000e_phy_sw_reset;
 646		phy->ops.get_info = e1000e_get_phy_info_m88;
 647		phy->ops.check_polarity = e1000_check_polarity_m88;
 648		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 649		break;
 650	default:
 651		return -E1000_ERR_PHY;
 652		break;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Initialize family-specific NVM parameters and function
 663 *  pointers.
 664 **/
 665static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 666{
 667	struct e1000_nvm_info *nvm = &hw->nvm;
 668	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 669	u32 gfpreg, sector_base_addr, sector_end_addr;
 670	u16 i;
 
 
 
 671
 672	/* Can't read flash registers if the register set isn't mapped. */
 673	if (!hw->flash_address) {
 674		e_dbg("ERROR: Flash registers not mapped\n");
 675		return -E1000_ERR_CONFIG;
 676	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678	nvm->type = e1000_nvm_flash_sw;
 
 
 
 
 
 679
 680	gfpreg = er32flash(ICH_FLASH_GFPREG);
 
 
 681
 682	/*
 683	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
 684	 * Add 1 to sector_end_addr since this sector is included in
 685	 * the overall size.
 686	 */
 687	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 688	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 689
 690	/* flash_base_addr is byte-aligned */
 691	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 692
 693	/*
 694	 * find total size of the NVM, then cut in half since the total
 695	 * size represents two separate NVM banks.
 696	 */
 697	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 698				<< FLASH_SECTOR_ADDR_SHIFT;
 699	nvm->flash_bank_size /= 2;
 700	/* Adjust to word count */
 701	nvm->flash_bank_size /= sizeof(u16);
 702
 703	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 704
 705	/* Clear shadow ram */
 706	for (i = 0; i < nvm->word_size; i++) {
 707		dev_spec->shadow_ram[i].modified = false;
 708		dev_spec->shadow_ram[i].value    = 0xFFFF;
 709	}
 710
 711	return 0;
 712}
 713
 714/**
 715 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Initialize family-specific MAC parameters and function
 719 *  pointers.
 720 **/
 721static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 722{
 723	struct e1000_mac_info *mac = &hw->mac;
 724
 725	/* Set media type function pointer */
 726	hw->phy.media_type = e1000_media_type_copper;
 727
 728	/* Set mta register count */
 729	mac->mta_reg_count = 32;
 730	/* Set rar entry count */
 731	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 732	if (mac->type == e1000_ich8lan)
 733		mac->rar_entry_count--;
 734	/* FWSM register */
 735	mac->has_fwsm = true;
 736	/* ARC subsystem not supported */
 737	mac->arc_subsystem_valid = false;
 738	/* Adaptive IFS supported */
 739	mac->adaptive_ifs = true;
 740
 741	/* LED and other operations */
 742	switch (mac->type) {
 743	case e1000_ich8lan:
 744	case e1000_ich9lan:
 745	case e1000_ich10lan:
 746		/* check management mode */
 747		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 748		/* ID LED init */
 749		mac->ops.id_led_init = e1000e_id_led_init_generic;
 750		/* blink LED */
 751		mac->ops.blink_led = e1000e_blink_led_generic;
 752		/* setup LED */
 753		mac->ops.setup_led = e1000e_setup_led_generic;
 754		/* cleanup LED */
 755		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 756		/* turn on/off LED */
 757		mac->ops.led_on = e1000_led_on_ich8lan;
 758		mac->ops.led_off = e1000_led_off_ich8lan;
 759		break;
 760	case e1000_pch2lan:
 761		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 762		mac->ops.rar_set = e1000_rar_set_pch2lan;
 763		/* fall-through */
 764	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
 765	case e1000_pchlan:
 766		/* check management mode */
 767		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 768		/* ID LED init */
 769		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 770		/* setup LED */
 771		mac->ops.setup_led = e1000_setup_led_pchlan;
 772		/* cleanup LED */
 773		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 774		/* turn on/off LED */
 775		mac->ops.led_on = e1000_led_on_pchlan;
 776		mac->ops.led_off = e1000_led_off_pchlan;
 777		break;
 778	default:
 779		break;
 780	}
 781
 782	if (mac->type == e1000_pch_lpt) {
 783		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 784		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 
 
 
 785	}
 786
 787	/* Enable PCS Lock-loss workaround for ICH8 */
 788	if (mac->type == e1000_ich8lan)
 789		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 790
 791	/*
 792	 * Gate automatic PHY configuration by hardware on managed
 793	 * 82579 and i217
 794	 */
 795	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
 796	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 797		e1000_gate_hw_phy_config_ich8lan(hw, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	return 0;
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 807 *  the LPI Control register will remain set only if/when link is up.
 
 
 
 
 
 
 
 808 **/
 809static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 810{
 811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 812	s32 ret_val = 0;
 813	u16 phy_reg;
 814
 815	if ((hw->phy.type != e1000_phy_82579) &&
 816	    (hw->phy.type != e1000_phy_i217))
 
 
 
 
 
 
 
 
 
 
 817		return 0;
 
 818
 819	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 820	if (ret_val)
 821		return ret_val;
 822
 823	if (dev_spec->eee_disable)
 824		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 825	else
 826		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827
 828	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 
 829	if (ret_val)
 830		return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
 833		/* Save off link partner's EEE ability */
 834		ret_val = hw->phy.ops.acquire(hw);
 835		if (ret_val)
 836			return ret_val;
 837		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
 838					  I217_EEE_LP_ABILITY);
 
 
 839		if (ret_val)
 840			goto release;
 841		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
 842
 843		/*
 844		 * EEE is not supported in 100Half, so ignore partner's EEE
 845		 * in 100 ability if full-duplex is not advertised.
 846		 */
 847		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
 848		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
 849			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
 
 
 
 
 
 
 
 
 
 850release:
 851		hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	}
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	return 0;
 855}
 856
 857/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Checks to see of the link status of the hardware has changed.  If a
 862 *  change in link status has been detected, then we read the PHY registers
 863 *  to get the current speed/duplex if link exists.
 864 **/
 865static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 866{
 867	struct e1000_mac_info *mac = &hw->mac;
 868	s32 ret_val;
 
 869	bool link;
 870	u16 phy_reg;
 871
 872	/*
 873	 * We only want to go out to the PHY registers to see if Auto-Neg
 874	 * has completed and/or if our link status has changed.  The
 875	 * get_link_status flag is set upon receiving a Link Status
 876	 * Change or Rx Sequence Error interrupt.
 877	 */
 878	if (!mac->get_link_status)
 879		return 0;
 
 880
 881	/*
 882	 * First we want to see if the MII Status Register reports
 883	 * link.  If so, then we want to get the current speed/duplex
 884	 * of the PHY.
 885	 */
 886	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 887	if (ret_val)
 888		return ret_val;
 889
 890	if (hw->mac.type == e1000_pchlan) {
 891		ret_val = e1000_k1_gig_workaround_hv(hw, link);
 892		if (ret_val)
 893			return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	}
 895
 896	/* Clear link partner's EEE ability */
 897	hw->dev_spec.ich8lan.eee_lp_ability = 0;
 898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899	if (!link)
 900		return 0; /* No link detected */
 901
 902	mac->get_link_status = false;
 903
 904	switch (hw->mac.type) {
 905	case e1000_pch2lan:
 906		ret_val = e1000_k1_workaround_lv(hw);
 907		if (ret_val)
 908			return ret_val;
 909		/* fall-thru */
 910	case e1000_pchlan:
 911		if (hw->phy.type == e1000_phy_82578) {
 912			ret_val = e1000_link_stall_workaround_hv(hw);
 913			if (ret_val)
 914				return ret_val;
 915		}
 916
 917		/*
 918		 * Workaround for PCHx parts in half-duplex:
 919		 * Set the number of preambles removed from the packet
 920		 * when it is passed from the PHY to the MAC to prevent
 921		 * the MAC from misinterpreting the packet type.
 922		 */
 923		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
 924		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
 925
 926		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
 927			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
 928
 929		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
 930		break;
 931	default:
 932		break;
 933	}
 934
 935	/*
 936	 * Check if there was DownShift, must be checked
 937	 * immediately after link-up
 938	 */
 939	e1000e_check_downshift(hw);
 940
 941	/* Enable/Disable EEE after link up */
 942	ret_val = e1000_set_eee_pchlan(hw);
 943	if (ret_val)
 944		return ret_val;
 
 
 945
 946	/*
 947	 * If we are forcing speed/duplex, then we simply return since
 948	 * we have already determined whether we have link or not.
 949	 */
 950	if (!mac->autoneg)
 951		return -E1000_ERR_CONFIG;
 952
 953	/*
 954	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 955	 * of MAC speed/duplex configuration.  So we only need to
 956	 * configure Collision Distance in the MAC.
 957	 */
 958	mac->ops.config_collision_dist(hw);
 959
 960	/*
 961	 * Configure Flow Control now that Auto-Neg has completed.
 962	 * First, we need to restore the desired flow control
 963	 * settings because we may have had to re-autoneg with a
 964	 * different link partner.
 965	 */
 966	ret_val = e1000e_config_fc_after_link_up(hw);
 967	if (ret_val)
 968		e_dbg("Error configuring flow control\n");
 969
 970	return ret_val;
 
 
 
 
 971}
 972
 973static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 974{
 975	struct e1000_hw *hw = &adapter->hw;
 976	s32 rc;
 977
 978	rc = e1000_init_mac_params_ich8lan(hw);
 979	if (rc)
 980		return rc;
 981
 982	rc = e1000_init_nvm_params_ich8lan(hw);
 983	if (rc)
 984		return rc;
 985
 986	switch (hw->mac.type) {
 987	case e1000_ich8lan:
 988	case e1000_ich9lan:
 989	case e1000_ich10lan:
 990		rc = e1000_init_phy_params_ich8lan(hw);
 991		break;
 992	case e1000_pchlan:
 993	case e1000_pch2lan:
 994	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
 995		rc = e1000_init_phy_params_pchlan(hw);
 996		break;
 997	default:
 998		break;
 999	}
1000	if (rc)
1001		return rc;
1002
1003	/*
1004	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006	 */
1007	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013		hw->mac.ops.blink_led = NULL;
1014	}
1015
1016	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017	    (adapter->hw.phy.type != e1000_phy_ife))
1018		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020	/* Enable workaround for 82579 w/ ME enabled */
1021	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025	/* Disable EEE by default until IEEE802.3az spec is finalized */
1026	if (adapter->flags2 & FLAG2_HAS_EEE)
1027		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029	return 0;
1030}
1031
1032static DEFINE_MUTEX(nvm_mutex);
1033
1034/**
1035 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036 *  @hw: pointer to the HW structure
1037 *
1038 *  Acquires the mutex for performing NVM operations.
1039 **/
1040static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041{
1042	mutex_lock(&nvm_mutex);
1043
1044	return 0;
1045}
1046
1047/**
1048 *  e1000_release_nvm_ich8lan - Release NVM mutex
1049 *  @hw: pointer to the HW structure
1050 *
1051 *  Releases the mutex used while performing NVM operations.
1052 **/
1053static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054{
1055	mutex_unlock(&nvm_mutex);
1056}
1057
1058/**
1059 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060 *  @hw: pointer to the HW structure
1061 *
1062 *  Acquires the software control flag for performing PHY and select
1063 *  MAC CSR accesses.
1064 **/
1065static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066{
1067	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068	s32 ret_val = 0;
1069
1070	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071			     &hw->adapter->state)) {
1072		e_dbg("contention for Phy access\n");
1073		return -E1000_ERR_PHY;
1074	}
1075
1076	while (timeout) {
1077		extcnf_ctrl = er32(EXTCNF_CTRL);
1078		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079			break;
1080
1081		mdelay(1);
1082		timeout--;
1083	}
1084
1085	if (!timeout) {
1086		e_dbg("SW has already locked the resource.\n");
1087		ret_val = -E1000_ERR_CONFIG;
1088		goto out;
1089	}
1090
1091	timeout = SW_FLAG_TIMEOUT;
1092
1093	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094	ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096	while (timeout) {
1097		extcnf_ctrl = er32(EXTCNF_CTRL);
1098		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099			break;
1100
1101		mdelay(1);
1102		timeout--;
1103	}
1104
1105	if (!timeout) {
1106		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107		      er32(FWSM), extcnf_ctrl);
1108		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109		ew32(EXTCNF_CTRL, extcnf_ctrl);
1110		ret_val = -E1000_ERR_CONFIG;
1111		goto out;
1112	}
1113
1114out:
1115	if (ret_val)
1116		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000_release_swflag_ich8lan - Release software control flag
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Releases the software control flag for performing PHY and select
1126 *  MAC CSR accesses.
1127 **/
1128static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129{
1130	u32 extcnf_ctrl;
1131
1132	extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136		ew32(EXTCNF_CTRL, extcnf_ctrl);
1137	} else {
1138		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139	}
1140
1141	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142}
1143
1144/**
1145 *  e1000_check_mng_mode_ich8lan - Checks management mode
1146 *  @hw: pointer to the HW structure
1147 *
1148 *  This checks if the adapter has any manageability enabled.
1149 *  This is a function pointer entry point only called by read/write
1150 *  routines for the PHY and NVM parts.
1151 **/
1152static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153{
1154	u32 fwsm;
1155
1156	fwsm = er32(FWSM);
1157	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1159		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160}
1161
1162/**
1163 *  e1000_check_mng_mode_pchlan - Checks management mode
1164 *  @hw: pointer to the HW structure
1165 *
1166 *  This checks if the adapter has iAMT enabled.
1167 *  This is a function pointer entry point only called by read/write
1168 *  routines for the PHY and NVM parts.
1169 **/
1170static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171{
1172	u32 fwsm;
1173
1174	fwsm = er32(FWSM);
1175	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177}
1178
1179/**
1180 *  e1000_rar_set_pch2lan - Set receive address register
1181 *  @hw: pointer to the HW structure
1182 *  @addr: pointer to the receive address
1183 *  @index: receive address array register
1184 *
1185 *  Sets the receive address array register at index to the address passed
1186 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188 *  Use SHRA[0-3] in place of those reserved for ME.
1189 **/
1190static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191{
1192	u32 rar_low, rar_high;
1193
1194	/*
1195	 * HW expects these in little endian so we reverse the byte order
1196	 * from network order (big endian) to little endian
1197	 */
1198	rar_low = ((u32)addr[0] |
1199		   ((u32)addr[1] << 8) |
1200		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204	/* If MAC address zero, no need to set the AV bit */
1205	if (rar_low || rar_high)
1206		rar_high |= E1000_RAH_AV;
1207
1208	if (index == 0) {
1209		ew32(RAL(index), rar_low);
1210		e1e_flush();
1211		ew32(RAH(index), rar_high);
1212		e1e_flush();
1213		return;
1214	}
1215
1216	if (index < hw->mac.rar_entry_count) {
 
 
 
1217		s32 ret_val;
1218
1219		ret_val = e1000_acquire_swflag_ich8lan(hw);
1220		if (ret_val)
1221			goto out;
1222
1223		ew32(SHRAL(index - 1), rar_low);
1224		e1e_flush();
1225		ew32(SHRAH(index - 1), rar_high);
1226		e1e_flush();
1227
1228		e1000_release_swflag_ich8lan(hw);
1229
1230		/* verify the register updates */
1231		if ((er32(SHRAL(index - 1)) == rar_low) &&
1232		    (er32(SHRAH(index - 1)) == rar_high))
1233			return;
1234
1235		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236		      (index - 1), er32(FWSM));
1237	}
1238
1239out:
1240	e_dbg("Failed to write receive address at index %d\n", index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243/**
1244 *  e1000_rar_set_pch_lpt - Set receive address registers
1245 *  @hw: pointer to the HW structure
1246 *  @addr: pointer to the receive address
1247 *  @index: receive address array register
1248 *
1249 *  Sets the receive address register array at index to the address passed
1250 *  in by addr. For LPT, RAR[0] is the base address register that is to
1251 *  contain the MAC address. SHRA[0-10] are the shared receive address
1252 *  registers that are shared between the Host and manageability engine (ME).
1253 **/
1254static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255{
1256	u32 rar_low, rar_high;
1257	u32 wlock_mac;
1258
1259	/*
1260	 * HW expects these in little endian so we reverse the byte order
1261	 * from network order (big endian) to little endian
1262	 */
1263	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268	/* If MAC address zero, no need to set the AV bit */
1269	if (rar_low || rar_high)
1270		rar_high |= E1000_RAH_AV;
1271
1272	if (index == 0) {
1273		ew32(RAL(index), rar_low);
1274		e1e_flush();
1275		ew32(RAH(index), rar_high);
1276		e1e_flush();
1277		return;
1278	}
1279
1280	/*
1281	 * The manageability engine (ME) can lock certain SHRAR registers that
1282	 * it is using - those registers are unavailable for use.
1283	 */
1284	if (index < hw->mac.rar_entry_count) {
1285		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288		/* Check if all SHRAR registers are locked */
1289		if (wlock_mac == 1)
1290			goto out;
1291
1292		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293			s32 ret_val;
1294
1295			ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297			if (ret_val)
1298				goto out;
1299
1300			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301			e1e_flush();
1302			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303			e1e_flush();
1304
1305			e1000_release_swflag_ich8lan(hw);
1306
1307			/* verify the register updates */
1308			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310				return;
1311		}
1312	}
1313
1314out:
1315	e_dbg("Failed to write receive address at index %d\n", index);
 
1316}
1317
1318/**
1319 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320 *  @hw: pointer to the HW structure
1321 *
1322 *  Checks if firmware is blocking the reset of the PHY.
1323 *  This is a function pointer entry point only called by
1324 *  reset routines.
1325 **/
1326static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327{
1328	u32 fwsm;
1329
1330	fwsm = er32(FWSM);
1331
1332	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 
 
 
1333}
1334
1335/**
1336 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337 *  @hw: pointer to the HW structure
1338 *
1339 *  Assumes semaphore already acquired.
1340 *
1341 **/
1342static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343{
1344	u16 phy_data;
1345	u32 strap = er32(STRAP);
1346	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347	    E1000_STRAP_SMT_FREQ_SHIFT;
1348	s32 ret_val = 0;
1349
1350	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data &= ~HV_SMB_ADDR_MASK;
1357	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360	if (hw->phy.type == e1000_phy_i217) {
1361		/* Restore SMBus frequency */
1362		if (freq--) {
1363			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364			phy_data |= (freq & (1 << 0)) <<
1365			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366			phy_data |= (freq & (1 << 1)) <<
1367			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368		} else {
1369			e_dbg("Unsupported SMB frequency in PHY\n");
1370		}
1371	}
1372
1373	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374}
1375
1376/**
1377 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378 *  @hw:   pointer to the HW structure
1379 *
1380 *  SW should configure the LCD from the NVM extended configuration region
1381 *  as a workaround for certain parts.
1382 **/
1383static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384{
1385	struct e1000_phy_info *phy = &hw->phy;
1386	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387	s32 ret_val = 0;
1388	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390	/*
1391	 * Initialize the PHY from the NVM on ICH platforms.  This
1392	 * is needed due to an issue where the NVM configuration is
1393	 * not properly autoloaded after power transitions.
1394	 * Therefore, after each PHY reset, we will load the
1395	 * configuration data out of the NVM manually.
1396	 */
1397	switch (hw->mac.type) {
1398	case e1000_ich8lan:
1399		if (phy->type != e1000_phy_igp_3)
1400			return ret_val;
1401
1402		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405			break;
1406		}
1407		/* Fall-thru */
1408	case e1000_pchlan:
1409	case e1000_pch2lan:
1410	case e1000_pch_lpt:
 
 
 
 
 
 
 
 
1411		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412		break;
1413	default:
1414		return ret_val;
1415	}
1416
1417	ret_val = hw->phy.ops.acquire(hw);
1418	if (ret_val)
1419		return ret_val;
1420
1421	data = er32(FEXTNVM);
1422	if (!(data & sw_cfg_mask))
1423		goto release;
1424
1425	/*
1426	 * Make sure HW does not configure LCD from PHY
1427	 * extended configuration before SW configuration
1428	 */
1429	data = er32(EXTCNF_CTRL);
1430	if ((hw->mac.type < e1000_pch2lan) &&
1431	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432		goto release;
1433
1434	cnf_size = er32(EXTCNF_SIZE);
1435	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437	if (!cnf_size)
1438		goto release;
1439
1440	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443	if (((hw->mac.type == e1000_pchlan) &&
1444	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445	    (hw->mac.type > e1000_pchlan)) {
1446		/*
1447		 * HW configures the SMBus address and LEDs when the
1448		 * OEM and LCD Write Enable bits are set in the NVM.
1449		 * When both NVM bits are cleared, SW will configure
1450		 * them instead.
1451		 */
1452		ret_val = e1000_write_smbus_addr(hw);
1453		if (ret_val)
1454			goto release;
1455
1456		data = er32(LEDCTL);
1457		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458							(u16)data);
1459		if (ret_val)
1460			goto release;
1461	}
1462
1463	/* Configure LCD from extended configuration region. */
1464
1465	/* cnf_base_addr is in DWORD */
1466	word_addr = (u16)(cnf_base_addr << 1);
1467
1468	for (i = 0; i < cnf_size; i++) {
1469		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470					 &reg_data);
1471		if (ret_val)
1472			goto release;
1473
1474		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475					 1, &reg_addr);
1476		if (ret_val)
1477			goto release;
1478
1479		/* Save off the PHY page for future writes. */
1480		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481			phy_page = reg_data;
1482			continue;
1483		}
1484
1485		reg_addr &= PHY_REG_MASK;
1486		reg_addr |= phy_page;
1487
1488		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489		if (ret_val)
1490			goto release;
1491	}
1492
1493release:
1494	hw->phy.ops.release(hw);
1495	return ret_val;
1496}
1497
1498/**
1499 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500 *  @hw:   pointer to the HW structure
1501 *  @link: link up bool flag
1502 *
1503 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505 *  If link is down, the function will restore the default K1 setting located
1506 *  in the NVM.
1507 **/
1508static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509{
1510	s32 ret_val = 0;
1511	u16 status_reg = 0;
1512	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514	if (hw->mac.type != e1000_pchlan)
1515		return 0;
1516
1517	/* Wrap the whole flow with the sw flag */
1518	ret_val = hw->phy.ops.acquire(hw);
1519	if (ret_val)
1520		return ret_val;
1521
1522	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523	if (link) {
1524		if (hw->phy.type == e1000_phy_82578) {
1525			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526						  &status_reg);
1527			if (ret_val)
1528				goto release;
1529
1530			status_reg &= BM_CS_STATUS_LINK_UP |
1531			              BM_CS_STATUS_RESOLVED |
1532			              BM_CS_STATUS_SPEED_MASK;
1533
1534			if (status_reg == (BM_CS_STATUS_LINK_UP |
1535			                   BM_CS_STATUS_RESOLVED |
1536			                   BM_CS_STATUS_SPEED_1000))
1537				k1_enable = false;
1538		}
1539
1540		if (hw->phy.type == e1000_phy_82577) {
1541			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542			if (ret_val)
1543				goto release;
1544
1545			status_reg &= HV_M_STATUS_LINK_UP |
1546			              HV_M_STATUS_AUTONEG_COMPLETE |
1547			              HV_M_STATUS_SPEED_MASK;
1548
1549			if (status_reg == (HV_M_STATUS_LINK_UP |
1550			                   HV_M_STATUS_AUTONEG_COMPLETE |
1551			                   HV_M_STATUS_SPEED_1000))
1552				k1_enable = false;
1553		}
1554
1555		/* Link stall fix for link up */
1556		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557		if (ret_val)
1558			goto release;
1559
1560	} else {
1561		/* Link stall fix for link down */
1562		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563		if (ret_val)
1564			goto release;
1565	}
1566
1567	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569release:
1570	hw->phy.ops.release(hw);
1571
1572	return ret_val;
1573}
1574
1575/**
1576 *  e1000_configure_k1_ich8lan - Configure K1 power state
1577 *  @hw: pointer to the HW structure
1578 *  @enable: K1 state to configure
1579 *
1580 *  Configure the K1 power state based on the provided parameter.
1581 *  Assumes semaphore already acquired.
1582 *
1583 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584 **/
1585s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586{
1587	s32 ret_val = 0;
1588	u32 ctrl_reg = 0;
1589	u32 ctrl_ext = 0;
1590	u32 reg = 0;
1591	u16 kmrn_reg = 0;
1592
1593	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594					      &kmrn_reg);
1595	if (ret_val)
1596		return ret_val;
1597
1598	if (k1_enable)
1599		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600	else
1601		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604					       kmrn_reg);
1605	if (ret_val)
1606		return ret_val;
1607
1608	udelay(20);
1609	ctrl_ext = er32(CTRL_EXT);
1610	ctrl_reg = er32(CTRL);
1611
1612	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613	reg |= E1000_CTRL_FRCSPD;
1614	ew32(CTRL, reg);
1615
1616	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617	e1e_flush();
1618	udelay(20);
1619	ew32(CTRL, ctrl_reg);
1620	ew32(CTRL_EXT, ctrl_ext);
1621	e1e_flush();
1622	udelay(20);
1623
1624	return 0;
1625}
1626
1627/**
1628 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629 *  @hw:       pointer to the HW structure
1630 *  @d0_state: boolean if entering d0 or d3 device state
1631 *
1632 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635 **/
1636static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637{
1638	s32 ret_val = 0;
1639	u32 mac_reg;
1640	u16 oem_reg;
1641
1642	if (hw->mac.type < e1000_pchlan)
1643		return ret_val;
1644
1645	ret_val = hw->phy.ops.acquire(hw);
1646	if (ret_val)
1647		return ret_val;
1648
1649	if (hw->mac.type == e1000_pchlan) {
1650		mac_reg = er32(EXTCNF_CTRL);
1651		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652			goto release;
1653	}
1654
1655	mac_reg = er32(FEXTNVM);
1656	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657		goto release;
1658
1659	mac_reg = er32(PHY_CTRL);
1660
1661	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662	if (ret_val)
1663		goto release;
1664
1665	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667	if (d0_state) {
1668		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669			oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672			oem_reg |= HV_OEM_BITS_LPLU;
1673	} else {
1674		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676			oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679			       E1000_PHY_CTRL_NOND0A_LPLU))
1680			oem_reg |= HV_OEM_BITS_LPLU;
1681	}
1682
1683	/* Set Restart auto-neg to activate the bits */
1684	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685	    !hw->phy.ops.check_reset_block(hw))
1686		oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690release:
1691	hw->phy.ops.release(hw);
1692
1693	return ret_val;
1694}
1695
1696
1697/**
1698 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699 *  @hw:   pointer to the HW structure
1700 **/
1701static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702{
1703	s32 ret_val;
1704	u16 data;
1705
1706	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707	if (ret_val)
1708		return ret_val;
1709
1710	data |= HV_KMRN_MDIO_SLOW;
1711
1712	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714	return ret_val;
1715}
1716
1717/**
1718 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719 *  done after every PHY reset.
 
 
1720 **/
1721static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722{
1723	s32 ret_val = 0;
1724	u16 phy_data;
1725
1726	if (hw->mac.type != e1000_pchlan)
1727		return 0;
1728
1729	/* Set MDIO slow mode before any other MDIO access */
1730	if (hw->phy.type == e1000_phy_82577) {
1731		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732		if (ret_val)
1733			return ret_val;
1734	}
1735
1736	if (((hw->phy.type == e1000_phy_82577) &&
1737	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739		/* Disable generation of early preamble */
1740		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741		if (ret_val)
1742			return ret_val;
1743
1744		/* Preamble tuning for SSC */
1745		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746		if (ret_val)
1747			return ret_val;
1748	}
1749
1750	if (hw->phy.type == e1000_phy_82578) {
1751		/*
1752		 * Return registers to default by doing a soft reset then
1753		 * writing 0x3140 to the control register.
1754		 */
1755		if (hw->phy.revision < 2) {
1756			e1000e_phy_sw_reset(hw);
1757			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
 
 
1758		}
1759	}
1760
1761	/* Select page 0 */
1762	ret_val = hw->phy.ops.acquire(hw);
1763	if (ret_val)
1764		return ret_val;
1765
1766	hw->phy.addr = 1;
1767	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768	hw->phy.ops.release(hw);
1769	if (ret_val)
1770		return ret_val;
1771
1772	/*
1773	 * Configure the K1 Si workaround during phy reset assuming there is
1774	 * link so that it disables K1 if link is in 1Gbps.
1775	 */
1776	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777	if (ret_val)
1778		return ret_val;
1779
1780	/* Workaround for link disconnects on a busy hub in half duplex */
1781	ret_val = hw->phy.ops.acquire(hw);
1782	if (ret_val)
1783		return ret_val;
1784	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785	if (ret_val)
1786		goto release;
1787	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
 
 
 
 
 
1788release:
1789	hw->phy.ops.release(hw);
1790
1791	return ret_val;
1792}
1793
1794/**
1795 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796 *  @hw:   pointer to the HW structure
1797 **/
1798void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799{
1800	u32 mac_reg;
1801	u16 i, phy_reg = 0;
1802	s32 ret_val;
1803
1804	ret_val = hw->phy.ops.acquire(hw);
1805	if (ret_val)
1806		return;
1807	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808	if (ret_val)
1809		goto release;
1810
1811	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813		mac_reg = er32(RAL(i));
1814		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815					   (u16)(mac_reg & 0xFFFF));
1816		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817					   (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819		mac_reg = er32(RAH(i));
1820		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821					   (u16)(mac_reg & 0xFFFF));
1822		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823					   (u16)((mac_reg & E1000_RAH_AV)
1824						 >> 16));
1825	}
1826
1827	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829release:
1830	hw->phy.ops.release(hw);
1831}
1832
1833/**
1834 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835 *  with 82579 PHY
1836 *  @hw: pointer to the HW structure
1837 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838 **/
1839s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840{
1841	s32 ret_val = 0;
1842	u16 phy_reg, data;
1843	u32 mac_reg;
1844	u16 i;
1845
1846	if (hw->mac.type < e1000_pch2lan)
1847		return 0;
1848
1849	/* disable Rx path while enabling/disabling workaround */
1850	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852	if (ret_val)
1853		return ret_val;
1854
1855	if (enable) {
1856		/*
1857		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858		 * SHRAL/H) and initial CRC values to the MAC
1859		 */
1860		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861			u8 mac_addr[ETH_ALEN] = {0};
1862			u32 addr_high, addr_low;
1863
1864			addr_high = er32(RAH(i));
1865			if (!(addr_high & E1000_RAH_AV))
1866				continue;
1867			addr_low = er32(RAL(i));
1868			mac_addr[0] = (addr_low & 0xFF);
1869			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872			mac_addr[4] = (addr_high & 0xFF);
1873			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876		}
1877
1878		/* Write Rx addresses to the PHY */
1879		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881		/* Enable jumbo frame workaround in the MAC */
1882		mac_reg = er32(FFLT_DBG);
1883		mac_reg &= ~(1 << 14);
1884		mac_reg |= (7 << 15);
1885		ew32(FFLT_DBG, mac_reg);
1886
1887		mac_reg = er32(RCTL);
1888		mac_reg |= E1000_RCTL_SECRC;
1889		ew32(RCTL, mac_reg);
1890
1891		ret_val = e1000e_read_kmrn_reg(hw,
1892						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893						&data);
1894		if (ret_val)
1895			return ret_val;
1896		ret_val = e1000e_write_kmrn_reg(hw,
1897						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898						data | (1 << 0));
1899		if (ret_val)
1900			return ret_val;
1901		ret_val = e1000e_read_kmrn_reg(hw,
1902						E1000_KMRNCTRLSTA_HD_CTRL,
1903						&data);
1904		if (ret_val)
1905			return ret_val;
1906		data &= ~(0xF << 8);
1907		data |= (0xB << 8);
1908		ret_val = e1000e_write_kmrn_reg(hw,
1909						E1000_KMRNCTRLSTA_HD_CTRL,
1910						data);
1911		if (ret_val)
1912			return ret_val;
1913
1914		/* Enable jumbo frame workaround in the PHY */
1915		e1e_rphy(hw, PHY_REG(769, 23), &data);
1916		data &= ~(0x7F << 5);
1917		data |= (0x37 << 5);
1918		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919		if (ret_val)
1920			return ret_val;
1921		e1e_rphy(hw, PHY_REG(769, 16), &data);
1922		data &= ~(1 << 13);
1923		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924		if (ret_val)
1925			return ret_val;
1926		e1e_rphy(hw, PHY_REG(776, 20), &data);
1927		data &= ~(0x3FF << 2);
1928		data |= (0x1A << 2);
1929		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930		if (ret_val)
1931			return ret_val;
1932		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933		if (ret_val)
1934			return ret_val;
1935		e1e_rphy(hw, HV_PM_CTRL, &data);
1936		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937		if (ret_val)
1938			return ret_val;
1939	} else {
1940		/* Write MAC register values back to h/w defaults */
1941		mac_reg = er32(FFLT_DBG);
1942		mac_reg &= ~(0xF << 14);
1943		ew32(FFLT_DBG, mac_reg);
1944
1945		mac_reg = er32(RCTL);
1946		mac_reg &= ~E1000_RCTL_SECRC;
1947		ew32(RCTL, mac_reg);
1948
1949		ret_val = e1000e_read_kmrn_reg(hw,
1950						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951						&data);
1952		if (ret_val)
1953			return ret_val;
1954		ret_val = e1000e_write_kmrn_reg(hw,
1955						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956						data & ~(1 << 0));
1957		if (ret_val)
1958			return ret_val;
1959		ret_val = e1000e_read_kmrn_reg(hw,
1960						E1000_KMRNCTRLSTA_HD_CTRL,
1961						&data);
1962		if (ret_val)
1963			return ret_val;
1964		data &= ~(0xF << 8);
1965		data |= (0xB << 8);
1966		ret_val = e1000e_write_kmrn_reg(hw,
1967						E1000_KMRNCTRLSTA_HD_CTRL,
1968						data);
1969		if (ret_val)
1970			return ret_val;
1971
1972		/* Write PHY register values back to h/w defaults */
1973		e1e_rphy(hw, PHY_REG(769, 23), &data);
1974		data &= ~(0x7F << 5);
1975		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976		if (ret_val)
1977			return ret_val;
1978		e1e_rphy(hw, PHY_REG(769, 16), &data);
1979		data |= (1 << 13);
1980		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981		if (ret_val)
1982			return ret_val;
1983		e1e_rphy(hw, PHY_REG(776, 20), &data);
1984		data &= ~(0x3FF << 2);
1985		data |= (0x8 << 2);
1986		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987		if (ret_val)
1988			return ret_val;
1989		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990		if (ret_val)
1991			return ret_val;
1992		e1e_rphy(hw, HV_PM_CTRL, &data);
1993		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994		if (ret_val)
1995			return ret_val;
1996	}
1997
1998	/* re-enable Rx path after enabling/disabling workaround */
1999	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000}
2001
2002/**
2003 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004 *  done after every PHY reset.
 
 
2005 **/
2006static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007{
2008	s32 ret_val = 0;
2009
2010	if (hw->mac.type != e1000_pch2lan)
2011		return 0;
2012
2013	/* Set MDIO slow mode before any other MDIO access */
2014	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 
 
2015
2016	ret_val = hw->phy.ops.acquire(hw);
2017	if (ret_val)
2018		return ret_val;
2019	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020	if (ret_val)
2021		goto release;
2022	/* set MSE higher to enable link to stay up when noise is high */
2023	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024	if (ret_val)
2025		goto release;
2026	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027	if (ret_val)
2028		goto release;
2029	/* drop link after 5 times MSE threshold was reached */
2030	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031release:
2032	hw->phy.ops.release(hw);
2033
2034	return ret_val;
2035}
2036
2037/**
2038 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039 *  @hw:   pointer to the HW structure
2040 *
2041 *  Workaround to set the K1 beacon duration for 82579 parts
 
2042 **/
2043static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044{
2045	s32 ret_val = 0;
2046	u16 status_reg = 0;
2047	u32 mac_reg;
2048	u16 phy_reg;
2049
2050	if (hw->mac.type != e1000_pch2lan)
2051		return 0;
2052
2053	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055	if (ret_val)
2056		return ret_val;
2057
2058	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060		mac_reg = er32(FEXTNVM4);
2061		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064		if (ret_val)
2065			return ret_val;
2066
2067		if (status_reg & HV_M_STATUS_SPEED_1000) {
2068			u16 pm_phy_reg;
2069
2070			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072			/* LV 1G Packet drop issue wa  */
2073			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074			if (ret_val)
2075				return ret_val;
2076			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078			if (ret_val)
2079				return ret_val;
2080		} else {
 
 
 
 
2081			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083		}
2084		ew32(FEXTNVM4, mac_reg);
2085		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086	}
2087
2088	return ret_val;
2089}
2090
2091/**
2092 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093 *  @hw:   pointer to the HW structure
2094 *  @gate: boolean set to true to gate, false to ungate
2095 *
2096 *  Gate/ungate the automatic PHY configuration via hardware; perform
2097 *  the configuration via software instead.
2098 **/
2099static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100{
2101	u32 extcnf_ctrl;
2102
2103	if (hw->mac.type < e1000_pch2lan)
2104		return;
2105
2106	extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108	if (gate)
2109		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110	else
2111		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113	ew32(EXTCNF_CTRL, extcnf_ctrl);
2114}
2115
2116/**
2117 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Check the appropriate indication the MAC has finished configuring the
2121 *  PHY after a software reset.
2122 **/
2123static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124{
2125	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127	/* Wait for basic configuration completes before proceeding */
2128	do {
2129		data = er32(STATUS);
2130		data &= E1000_STATUS_LAN_INIT_DONE;
2131		udelay(100);
2132	} while ((!data) && --loop);
2133
2134	/*
2135	 * If basic configuration is incomplete before the above loop
2136	 * count reaches 0, loading the configuration from NVM will
2137	 * leave the PHY in a bad state possibly resulting in no link.
2138	 */
2139	if (loop == 0)
2140		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142	/* Clear the Init Done bit for the next init event */
2143	data = er32(STATUS);
2144	data &= ~E1000_STATUS_LAN_INIT_DONE;
2145	ew32(STATUS, data);
2146}
2147
2148/**
2149 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150 *  @hw: pointer to the HW structure
2151 **/
2152static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153{
2154	s32 ret_val = 0;
2155	u16 reg;
2156
2157	if (hw->phy.ops.check_reset_block(hw))
2158		return 0;
2159
2160	/* Allow time for h/w to get to quiescent state after reset */
2161	usleep_range(10000, 20000);
2162
2163	/* Perform any necessary post-reset workarounds */
2164	switch (hw->mac.type) {
2165	case e1000_pchlan:
2166		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167		if (ret_val)
2168			return ret_val;
2169		break;
2170	case e1000_pch2lan:
2171		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172		if (ret_val)
2173			return ret_val;
2174		break;
2175	default:
2176		break;
2177	}
2178
2179	/* Clear the host wakeup bit after lcd reset */
2180	if (hw->mac.type >= e1000_pchlan) {
2181		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182		reg &= ~BM_WUC_HOST_WU_BIT;
2183		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184	}
2185
2186	/* Configure the LCD with the extended configuration region in NVM */
2187	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188	if (ret_val)
2189		return ret_val;
2190
2191	/* Configure the LCD with the OEM bits in NVM */
2192	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194	if (hw->mac.type == e1000_pch2lan) {
2195		/* Ungate automatic PHY configuration on non-managed 82579 */
2196		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197			usleep_range(10000, 20000);
2198			e1000_gate_hw_phy_config_ich8lan(hw, false);
2199		}
2200
2201		/* Set EEE LPI Update Timer to 200usec */
2202		ret_val = hw->phy.ops.acquire(hw);
2203		if (ret_val)
2204			return ret_val;
2205		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206					  I82579_LPI_UPDATE_TIMER);
2207		if (!ret_val)
2208			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209		hw->phy.ops.release(hw);
2210	}
2211
2212	return ret_val;
2213}
2214
2215/**
2216 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217 *  @hw: pointer to the HW structure
2218 *
2219 *  Resets the PHY
2220 *  This is a function pointer entry point called by drivers
2221 *  or other shared routines.
2222 **/
2223static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226
2227	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228	if ((hw->mac.type == e1000_pch2lan) &&
2229	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230		e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232	ret_val = e1000e_phy_hw_reset_generic(hw);
2233	if (ret_val)
2234		return ret_val;
2235
2236	return e1000_post_phy_reset_ich8lan(hw);
2237}
2238
2239/**
2240 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241 *  @hw: pointer to the HW structure
2242 *  @active: true to enable LPLU, false to disable
2243 *
2244 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246 *  the phy speed. This function will manually set the LPLU bit and restart
2247 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248 *  since it configures the same bit.
2249 **/
2250static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251{
2252	s32 ret_val = 0;
2253	u16 oem_reg;
2254
2255	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256	if (ret_val)
2257		return ret_val;
2258
2259	if (active)
2260		oem_reg |= HV_OEM_BITS_LPLU;
2261	else
2262		oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264	if (!hw->phy.ops.check_reset_block(hw))
2265		oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268}
2269
2270/**
2271 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272 *  @hw: pointer to the HW structure
2273 *  @active: true to enable LPLU, false to disable
2274 *
2275 *  Sets the LPLU D0 state according to the active flag.  When
2276 *  activating LPLU this function also disables smart speed
2277 *  and vice versa.  LPLU will not be activated unless the
2278 *  device autonegotiation advertisement meets standards of
2279 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280 *  This is a function pointer entry point only called by
2281 *  PHY setup routines.
2282 **/
2283static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284{
2285	struct e1000_phy_info *phy = &hw->phy;
2286	u32 phy_ctrl;
2287	s32 ret_val = 0;
2288	u16 data;
2289
2290	if (phy->type == e1000_phy_ife)
2291		return 0;
2292
2293	phy_ctrl = er32(PHY_CTRL);
2294
2295	if (active) {
2296		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297		ew32(PHY_CTRL, phy_ctrl);
2298
2299		if (phy->type != e1000_phy_igp_3)
2300			return 0;
2301
2302		/*
2303		 * Call gig speed drop workaround on LPLU before accessing
2304		 * any PHY registers
2305		 */
2306		if (hw->mac.type == e1000_ich8lan)
2307			e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309		/* When LPLU is enabled, we should disable SmartSpeed */
2310		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 
 
2311		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313		if (ret_val)
2314			return ret_val;
2315	} else {
2316		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317		ew32(PHY_CTRL, phy_ctrl);
2318
2319		if (phy->type != e1000_phy_igp_3)
2320			return 0;
2321
2322		/*
2323		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324		 * during Dx states where the power conservation is most
2325		 * important.  During driver activity we should enable
2326		 * SmartSpeed, so performance is maintained.
2327		 */
2328		if (phy->smart_speed == e1000_smart_speed_on) {
2329			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330					   &data);
2331			if (ret_val)
2332				return ret_val;
2333
2334			data |= IGP01E1000_PSCFR_SMART_SPEED;
2335			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336					   data);
2337			if (ret_val)
2338				return ret_val;
2339		} else if (phy->smart_speed == e1000_smart_speed_off) {
2340			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341					   &data);
2342			if (ret_val)
2343				return ret_val;
2344
2345			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347					   data);
2348			if (ret_val)
2349				return ret_val;
2350		}
2351	}
2352
2353	return 0;
2354}
2355
2356/**
2357 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358 *  @hw: pointer to the HW structure
2359 *  @active: true to enable LPLU, false to disable
2360 *
2361 *  Sets the LPLU D3 state according to the active flag.  When
2362 *  activating LPLU this function also disables smart speed
2363 *  and vice versa.  LPLU will not be activated unless the
2364 *  device autonegotiation advertisement meets standards of
2365 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366 *  This is a function pointer entry point only called by
2367 *  PHY setup routines.
2368 **/
2369static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370{
2371	struct e1000_phy_info *phy = &hw->phy;
2372	u32 phy_ctrl;
2373	s32 ret_val = 0;
2374	u16 data;
2375
2376	phy_ctrl = er32(PHY_CTRL);
2377
2378	if (!active) {
2379		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380		ew32(PHY_CTRL, phy_ctrl);
2381
2382		if (phy->type != e1000_phy_igp_3)
2383			return 0;
2384
2385		/*
2386		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387		 * during Dx states where the power conservation is most
2388		 * important.  During driver activity we should enable
2389		 * SmartSpeed, so performance is maintained.
2390		 */
2391		if (phy->smart_speed == e1000_smart_speed_on) {
2392			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393					   &data);
2394			if (ret_val)
2395				return ret_val;
2396
2397			data |= IGP01E1000_PSCFR_SMART_SPEED;
2398			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399					   data);
2400			if (ret_val)
2401				return ret_val;
2402		} else if (phy->smart_speed == e1000_smart_speed_off) {
2403			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404					   &data);
2405			if (ret_val)
2406				return ret_val;
2407
2408			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410					   data);
2411			if (ret_val)
2412				return ret_val;
2413		}
2414	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418		ew32(PHY_CTRL, phy_ctrl);
2419
2420		if (phy->type != e1000_phy_igp_3)
2421			return 0;
2422
2423		/*
2424		 * Call gig speed drop workaround on LPLU before accessing
2425		 * any PHY registers
2426		 */
2427		if (hw->mac.type == e1000_ich8lan)
2428			e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430		/* When LPLU is enabled, we should disable SmartSpeed */
2431		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432		if (ret_val)
2433			return ret_val;
2434
2435		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437	}
2438
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444 *  @hw: pointer to the HW structure
2445 *  @bank:  pointer to the variable that returns the active bank
2446 *
2447 *  Reads signature byte from the NVM using the flash access registers.
2448 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449 **/
2450static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451{
2452	u32 eecd;
2453	struct e1000_nvm_info *nvm = &hw->nvm;
2454	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
 
2456	u8 sig_byte = 0;
2457	s32 ret_val;
2458
2459	switch (hw->mac.type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	case e1000_ich8lan:
2461	case e1000_ich9lan:
2462		eecd = er32(EECD);
2463		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464		    E1000_EECD_SEC1VAL_VALID_MASK) {
2465			if (eecd & E1000_EECD_SEC1VAL)
2466				*bank = 1;
2467			else
2468				*bank = 0;
2469
2470			return 0;
2471		}
2472		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473		/* fall-thru */
2474	default:
2475		/* set bank to 0 in case flash read fails */
2476		*bank = 0;
2477
2478		/* Check bank 0 */
2479		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480		                                        &sig_byte);
2481		if (ret_val)
2482			return ret_val;
2483		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484		    E1000_ICH_NVM_SIG_VALUE) {
2485			*bank = 0;
2486			return 0;
2487		}
2488
2489		/* Check bank 1 */
2490		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491		                                        bank1_offset,
2492		                                        &sig_byte);
2493		if (ret_val)
2494			return ret_val;
2495		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496		    E1000_ICH_NVM_SIG_VALUE) {
2497			*bank = 1;
2498			return 0;
2499		}
2500
2501		e_dbg("ERROR: No valid NVM bank present\n");
2502		return -E1000_ERR_NVM;
2503	}
2504}
2505
2506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508 *  @hw: pointer to the HW structure
2509 *  @offset: The offset (in bytes) of the word(s) to read.
2510 *  @words: Size of data to read in words
2511 *  @data: Pointer to the word(s) to read at offset.
2512 *
2513 *  Reads a word(s) from the NVM using the flash access registers.
2514 **/
2515static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516				  u16 *data)
2517{
2518	struct e1000_nvm_info *nvm = &hw->nvm;
2519	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520	u32 act_offset;
2521	s32 ret_val = 0;
2522	u32 bank = 0;
2523	u16 i, word;
2524
2525	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526	    (words == 0)) {
2527		e_dbg("nvm parameter(s) out of bounds\n");
2528		ret_val = -E1000_ERR_NVM;
2529		goto out;
2530	}
2531
2532	nvm->ops.acquire(hw);
2533
2534	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535	if (ret_val) {
2536		e_dbg("Could not detect valid bank, assuming bank 0\n");
2537		bank = 0;
2538	}
2539
2540	act_offset = (bank) ? nvm->flash_bank_size : 0;
2541	act_offset += offset;
2542
2543	ret_val = 0;
2544	for (i = 0; i < words; i++) {
2545		if (dev_spec->shadow_ram[offset+i].modified) {
2546			data[i] = dev_spec->shadow_ram[offset+i].value;
2547		} else {
2548			ret_val = e1000_read_flash_word_ich8lan(hw,
2549								act_offset + i,
2550								&word);
2551			if (ret_val)
2552				break;
2553			data[i] = word;
2554		}
2555	}
2556
2557	nvm->ops.release(hw);
2558
2559out:
2560	if (ret_val)
2561		e_dbg("NVM read error: %d\n", ret_val);
2562
2563	return ret_val;
2564}
2565
2566/**
2567 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568 *  @hw: pointer to the HW structure
2569 *
2570 *  This function does initial flash setup so that a new read/write/erase cycle
2571 *  can be started.
2572 **/
2573static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574{
2575	union ich8_hws_flash_status hsfsts;
2576	s32 ret_val = -E1000_ERR_NVM;
2577
2578	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580	/* Check if the flash descriptor is valid */
2581	if (!hsfsts.hsf_status.fldesvalid) {
2582		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583		return -E1000_ERR_NVM;
2584	}
2585
2586	/* Clear FCERR and DAEL in hw status by writing 1 */
2587	hsfsts.hsf_status.flcerr = 1;
2588	hsfsts.hsf_status.dael = 1;
 
 
 
 
2589
2590	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592	/*
2593	 * Either we should have a hardware SPI cycle in progress
2594	 * bit to check against, in order to start a new cycle or
2595	 * FDONE bit should be changed in the hardware so that it
2596	 * is 1 after hardware reset, which can then be used as an
2597	 * indication whether a cycle is in progress or has been
2598	 * completed.
2599	 */
2600
2601	if (!hsfsts.hsf_status.flcinprog) {
2602		/*
2603		 * There is no cycle running at present,
2604		 * so we can start a cycle.
2605		 * Begin by setting Flash Cycle Done.
2606		 */
2607		hsfsts.hsf_status.flcdone = 1;
2608		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
2609		ret_val = 0;
2610	} else {
2611		s32 i;
2612
2613		/*
2614		 * Otherwise poll for sometime so the current
2615		 * cycle has a chance to end before giving up.
2616		 */
2617		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619			if (!hsfsts.hsf_status.flcinprog) {
2620				ret_val = 0;
2621				break;
2622			}
2623			udelay(1);
2624		}
2625		if (!ret_val) {
2626			/*
2627			 * Successful in waiting for previous cycle to timeout,
2628			 * now set the Flash Cycle Done.
2629			 */
2630			hsfsts.hsf_status.flcdone = 1;
2631			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
 
2632		} else {
2633			e_dbg("Flash controller busy, cannot get access\n");
2634		}
2635	}
2636
2637	return ret_val;
2638}
2639
2640/**
2641 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642 *  @hw: pointer to the HW structure
2643 *  @timeout: maximum time to wait for completion
2644 *
2645 *  This function starts a flash cycle and waits for its completion.
2646 **/
2647static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648{
2649	union ich8_hws_flash_ctrl hsflctl;
2650	union ich8_hws_flash_status hsfsts;
2651	u32 i = 0;
2652
2653	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
2655	hsflctl.hsf_ctrl.flcgo = 1;
2656	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
2657
2658	/* wait till FDONE bit is set to 1 */
2659	do {
2660		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661		if (hsfsts.hsf_status.flcdone)
2662			break;
2663		udelay(1);
2664	} while (i++ < timeout);
2665
2666	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667		return 0;
2668
2669	return -E1000_ERR_NVM;
2670}
2671
2672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2673 *  e1000_read_flash_word_ich8lan - Read word from flash
2674 *  @hw: pointer to the HW structure
2675 *  @offset: offset to data location
2676 *  @data: pointer to the location for storing the data
2677 *
2678 *  Reads the flash word at offset into data.  Offset is converted
2679 *  to bytes before read.
2680 **/
2681static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682					 u16 *data)
2683{
2684	/* Must convert offset into bytes. */
2685	offset <<= 1;
2686
2687	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688}
2689
2690/**
2691 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692 *  @hw: pointer to the HW structure
2693 *  @offset: The offset of the byte to read.
2694 *  @data: Pointer to a byte to store the value read.
2695 *
2696 *  Reads a single byte from the NVM using the flash access registers.
2697 **/
2698static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699					 u8 *data)
2700{
2701	s32 ret_val;
2702	u16 word = 0;
2703
2704	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
 
 
 
 
 
 
 
2705	if (ret_val)
2706		return ret_val;
2707
2708	*data = (u8)word;
2709
2710	return 0;
2711}
2712
2713/**
2714 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715 *  @hw: pointer to the HW structure
2716 *  @offset: The offset (in bytes) of the byte or word to read.
2717 *  @size: Size of data to read, 1=byte 2=word
2718 *  @data: Pointer to the word to store the value read.
2719 *
2720 *  Reads a byte or word from the NVM using the flash access registers.
2721 **/
2722static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723					 u8 size, u16 *data)
2724{
2725	union ich8_hws_flash_status hsfsts;
2726	union ich8_hws_flash_ctrl hsflctl;
2727	u32 flash_linear_addr;
2728	u32 flash_data = 0;
2729	s32 ret_val = -E1000_ERR_NVM;
2730	u8 count = 0;
2731
2732	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733		return -E1000_ERR_NVM;
2734
2735	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736			    hw->nvm.flash_base_addr;
2737
2738	do {
2739		udelay(1);
2740		/* Steps */
2741		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742		if (ret_val)
2743			break;
2744
2745		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747		hsflctl.hsf_ctrl.fldbcount = size - 1;
2748		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753		ret_val = e1000_flash_cycle_ich8lan(hw,
2754						ICH_FLASH_READ_COMMAND_TIMEOUT);
 
2755
2756		/*
2757		 * Check if FCERR is set to 1, if set to 1, clear it
2758		 * and try the whole sequence a few more times, else
2759		 * read in (shift in) the Flash Data0, the order is
2760		 * least significant byte first msb to lsb
2761		 */
2762		if (!ret_val) {
2763			flash_data = er32flash(ICH_FLASH_FDATA0);
2764			if (size == 1)
2765				*data = (u8)(flash_data & 0x000000FF);
2766			else if (size == 2)
2767				*data = (u16)(flash_data & 0x0000FFFF);
2768			break;
2769		} else {
2770			/*
2771			 * If we've gotten here, then things are probably
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772			 * completely hosed, but if the error condition is
2773			 * detected, it won't hurt to give it another try...
2774			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775			 */
2776			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777			if (hsfsts.hsf_status.flcerr) {
2778				/* Repeat for some time before giving up. */
2779				continue;
2780			} else if (!hsfsts.hsf_status.flcdone) {
2781				e_dbg("Timeout error - flash cycle did not complete.\n");
2782				break;
2783			}
2784		}
2785	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792 *  @hw: pointer to the HW structure
2793 *  @offset: The offset (in bytes) of the word(s) to write.
2794 *  @words: Size of data to write in words
2795 *  @data: Pointer to the word(s) to write at offset.
2796 *
2797 *  Writes a byte or word to the NVM using the flash access registers.
2798 **/
2799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800				   u16 *data)
2801{
2802	struct e1000_nvm_info *nvm = &hw->nvm;
2803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804	u16 i;
2805
2806	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807	    (words == 0)) {
2808		e_dbg("nvm parameter(s) out of bounds\n");
2809		return -E1000_ERR_NVM;
2810	}
2811
2812	nvm->ops.acquire(hw);
2813
2814	for (i = 0; i < words; i++) {
2815		dev_spec->shadow_ram[offset+i].modified = true;
2816		dev_spec->shadow_ram[offset+i].value = data[i];
2817	}
2818
2819	nvm->ops.release(hw);
2820
2821	return 0;
2822}
2823
2824/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2825 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826 *  @hw: pointer to the HW structure
2827 *
2828 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829 *  which writes the checksum to the shadow ram.  The changes in the shadow
2830 *  ram are then committed to the EEPROM by processing each bank at a time
2831 *  checking for the modified bit and writing only the pending changes.
2832 *  After a successful commit, the shadow ram is cleared and is ready for
2833 *  future writes.
2834 **/
2835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836{
2837	struct e1000_nvm_info *nvm = &hw->nvm;
2838	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840	s32 ret_val;
2841	u16 data;
2842
2843	ret_val = e1000e_update_nvm_checksum_generic(hw);
2844	if (ret_val)
2845		goto out;
2846
2847	if (nvm->type != e1000_nvm_flash_sw)
2848		goto out;
2849
2850	nvm->ops.acquire(hw);
2851
2852	/*
2853	 * We're writing to the opposite bank so if we're on bank 1,
2854	 * write to bank 0 etc.  We also need to erase the segment that
2855	 * is going to be written
2856	 */
2857	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858	if (ret_val) {
2859		e_dbg("Could not detect valid bank, assuming bank 0\n");
2860		bank = 0;
2861	}
2862
2863	if (bank == 0) {
2864		new_bank_offset = nvm->flash_bank_size;
2865		old_bank_offset = 0;
2866		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867		if (ret_val)
2868			goto release;
2869	} else {
2870		old_bank_offset = nvm->flash_bank_size;
2871		new_bank_offset = 0;
2872		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873		if (ret_val)
2874			goto release;
2875	}
2876
2877	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878		/*
2879		 * Determine whether to write the value stored
2880		 * in the other NVM bank or a modified value stored
2881		 * in the shadow RAM
2882		 */
2883		if (dev_spec->shadow_ram[i].modified) {
2884			data = dev_spec->shadow_ram[i].value;
2885		} else {
2886			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887			                                        old_bank_offset,
2888			                                        &data);
2889			if (ret_val)
2890				break;
2891		}
2892
2893		/*
2894		 * If the word is 0x13, then make sure the signature bits
2895		 * (15:14) are 11b until the commit has completed.
2896		 * This will allow us to write 10b which indicates the
2897		 * signature is valid.  We want to do this after the write
2898		 * has completed so that we don't mark the segment valid
2899		 * while the write is still in progress
2900		 */
2901		if (i == E1000_ICH_NVM_SIG_WORD)
2902			data |= E1000_ICH_NVM_SIG_MASK;
2903
2904		/* Convert offset to bytes. */
2905		act_offset = (i + new_bank_offset) << 1;
2906
2907		udelay(100);
2908		/* Write the bytes to the new bank. */
2909		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910							       act_offset,
2911							       (u8)data);
2912		if (ret_val)
2913			break;
2914
2915		udelay(100);
2916		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917							  act_offset + 1,
2918							  (u8)(data >> 8));
2919		if (ret_val)
2920			break;
2921	}
2922
2923	/*
2924	 * Don't bother writing the segment valid bits if sector
2925	 * programming failed.
2926	 */
2927	if (ret_val) {
2928		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929		e_dbg("Flash commit failed.\n");
2930		goto release;
2931	}
2932
2933	/*
2934	 * Finally validate the new segment by setting bit 15:14
2935	 * to 10b in word 0x13 , this can be done without an
2936	 * erase as well since these bits are 11 to start with
2937	 * and we need to change bit 14 to 0b
2938	 */
2939	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941	if (ret_val)
2942		goto release;
2943
2944	data &= 0xBFFF;
2945	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946						       act_offset * 2 + 1,
2947						       (u8)(data >> 8));
2948	if (ret_val)
2949		goto release;
2950
2951	/*
2952	 * And invalidate the previously valid segment by setting
2953	 * its signature word (0x13) high_byte to 0b. This can be
2954	 * done without an erase because flash erase sets all bits
2955	 * to 1's. We can write 1's to 0's without an erase
2956	 */
2957	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959	if (ret_val)
2960		goto release;
2961
2962	/* Great!  Everything worked, we can now clear the cached entries. */
2963	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964		dev_spec->shadow_ram[i].modified = false;
2965		dev_spec->shadow_ram[i].value = 0xFFFF;
2966	}
2967
2968release:
2969	nvm->ops.release(hw);
2970
2971	/*
2972	 * Reload the EEPROM, or else modifications will not appear
2973	 * until after the next adapter reset.
2974	 */
2975	if (!ret_val) {
2976		nvm->ops.reload(hw);
2977		usleep_range(10000, 20000);
2978	}
2979
2980out:
2981	if (ret_val)
2982		e_dbg("NVM update error: %d\n", ret_val);
2983
2984	return ret_val;
2985}
2986
2987/**
2988 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989 *  @hw: pointer to the HW structure
2990 *
2991 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993 *  calculated, in which case we need to calculate the checksum and set bit 6.
2994 **/
2995static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996{
2997	s32 ret_val;
2998	u16 data;
 
 
2999
3000	/*
3001	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002	 * needs to be fixed.  This bit is an indication that the NVM
3003	 * was prepared by OEM software and did not calculate the
3004	 * checksum...a likely scenario.
3005	 */
3006	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007	if (ret_val)
3008		return ret_val;
3009
3010	if (!(data & 0x40)) {
3011		data |= 0x40;
3012		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013		if (ret_val)
3014			return ret_val;
3015		ret_val = e1000e_update_nvm_checksum(hw);
3016		if (ret_val)
3017			return ret_val;
 
 
 
 
3018	}
3019
3020	return e1000e_validate_nvm_checksum_generic(hw);
3021}
3022
3023/**
3024 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025 *  @hw: pointer to the HW structure
3026 *
3027 *  To prevent malicious write/erase of the NVM, set it to be read-only
3028 *  so that the hardware ignores all write/erase cycles of the NVM via
3029 *  the flash control registers.  The shadow-ram copy of the NVM will
3030 *  still be updated, however any updates to this copy will not stick
3031 *  across driver reloads.
3032 **/
3033void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034{
3035	struct e1000_nvm_info *nvm = &hw->nvm;
3036	union ich8_flash_protected_range pr0;
3037	union ich8_hws_flash_status hsfsts;
3038	u32 gfpreg;
3039
3040	nvm->ops.acquire(hw);
3041
3042	gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044	/* Write-protect GbE Sector of NVM */
3045	pr0.regval = er32flash(ICH_FLASH_PR0);
3046	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048	pr0.range.wpe = true;
3049	ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051	/*
3052	 * Lock down a subset of GbE Flash Control Registers, e.g.
3053	 * PR0 to prevent the write-protection from being lifted.
3054	 * Once FLOCKDN is set, the registers protected by it cannot
3055	 * be written until FLOCKDN is cleared by a hardware reset.
3056	 */
3057	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058	hsfsts.hsf_status.flockdn = true;
3059	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061	nvm->ops.release(hw);
3062}
3063
3064/**
3065 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066 *  @hw: pointer to the HW structure
3067 *  @offset: The offset (in bytes) of the byte/word to read.
3068 *  @size: Size of data to read, 1=byte 2=word
3069 *  @data: The byte(s) to write to the NVM.
3070 *
3071 *  Writes one/two bytes to the NVM using the flash access registers.
3072 **/
3073static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074					  u8 size, u16 data)
3075{
3076	union ich8_hws_flash_status hsfsts;
3077	union ich8_hws_flash_ctrl hsflctl;
3078	u32 flash_linear_addr;
3079	u32 flash_data = 0;
3080	s32 ret_val;
3081	u8 count = 0;
3082
3083	if (size < 1 || size > 2 || data > size * 0xff ||
3084	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085		return -E1000_ERR_NVM;
 
 
 
 
3086
3087	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088			    hw->nvm.flash_base_addr;
3089
3090	do {
3091		udelay(1);
3092		/* Steps */
3093		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094		if (ret_val)
3095			break;
 
 
 
 
 
 
 
3096
3097		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099		hsflctl.hsf_ctrl.fldbcount = size -1;
3100		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
 
 
 
3102
3103		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105		if (size == 1)
3106			flash_data = (u32)data & 0x00FF;
3107		else
3108			flash_data = (u32)data;
3109
3110		ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112		/*
3113		 * check if FCERR is set to 1 , if set to 1, clear it
3114		 * and try the whole sequence a few more times else done
3115		 */
3116		ret_val = e1000_flash_cycle_ich8lan(hw,
3117					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
 
3118		if (!ret_val)
3119			break;
3120
3121		/*
3122		 * If we're here, then things are most likely
3123		 * completely hosed, but if the error condition
3124		 * is detected, it won't hurt to give it another
3125		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126		 */
3127		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128		if (hsfsts.hsf_status.flcerr)
3129			/* Repeat for some time before giving up. */
3130			continue;
3131		if (!hsfsts.hsf_status.flcdone) {
3132			e_dbg("Timeout error - flash cycle did not complete.\n");
3133			break;
3134		}
3135	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137	return ret_val;
3138}
3139
3140/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142 *  @hw: pointer to the HW structure
3143 *  @offset: The index of the byte to read.
3144 *  @data: The byte to write to the NVM.
3145 *
3146 *  Writes a single byte to the NVM using the flash access registers.
3147 **/
3148static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149					  u8 data)
3150{
3151	u16 word = (u16)data;
3152
3153	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154}
3155
3156/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158 *  @hw: pointer to the HW structure
3159 *  @offset: The offset of the byte to write.
3160 *  @byte: The byte to write to the NVM.
3161 *
3162 *  Writes a single byte to the NVM using the flash access registers.
3163 *  Goes through a retry algorithm before giving up.
3164 **/
3165static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166						u32 offset, u8 byte)
3167{
3168	s32 ret_val;
3169	u16 program_retries;
3170
3171	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172	if (!ret_val)
3173		return ret_val;
3174
3175	for (program_retries = 0; program_retries < 100; program_retries++) {
3176		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177		udelay(100);
3178		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179		if (!ret_val)
3180			break;
3181	}
3182	if (program_retries == 100)
3183		return -E1000_ERR_NVM;
3184
3185	return 0;
3186}
3187
3188/**
3189 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190 *  @hw: pointer to the HW structure
3191 *  @bank: 0 for first bank, 1 for second bank, etc.
3192 *
3193 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194 *  bank N is 4096 * N + flash_reg_addr.
3195 **/
3196static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197{
3198	struct e1000_nvm_info *nvm = &hw->nvm;
3199	union ich8_hws_flash_status hsfsts;
3200	union ich8_hws_flash_ctrl hsflctl;
3201	u32 flash_linear_addr;
3202	/* bank size is in 16bit words - adjust to bytes */
3203	u32 flash_bank_size = nvm->flash_bank_size * 2;
3204	s32 ret_val;
3205	s32 count = 0;
3206	s32 j, iteration, sector_size;
3207
3208	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210	/*
3211	 * Determine HW Sector size: Read BERASE bits of hw flash status
3212	 * register
3213	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214	 *     consecutive sectors.  The start index for the nth Hw sector
3215	 *     can be calculated as = bank * 4096 + n * 256
3216	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217	 *     The start index for the nth Hw sector can be calculated
3218	 *     as = bank * 4096
3219	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220	 *     (ich9 only, otherwise error condition)
3221	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222	 */
3223	switch (hsfsts.hsf_status.berasesz) {
3224	case 0:
3225		/* Hw sector size 256 */
3226		sector_size = ICH_FLASH_SEG_SIZE_256;
3227		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228		break;
3229	case 1:
3230		sector_size = ICH_FLASH_SEG_SIZE_4K;
3231		iteration = 1;
3232		break;
3233	case 2:
3234		sector_size = ICH_FLASH_SEG_SIZE_8K;
3235		iteration = 1;
3236		break;
3237	case 3:
3238		sector_size = ICH_FLASH_SEG_SIZE_64K;
3239		iteration = 1;
3240		break;
3241	default:
3242		return -E1000_ERR_NVM;
3243	}
3244
3245	/* Start with the base address, then add the sector offset. */
3246	flash_linear_addr = hw->nvm.flash_base_addr;
3247	flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249	for (j = 0; j < iteration ; j++) {
3250		do {
 
 
3251			/* Steps */
3252			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253			if (ret_val)
3254				return ret_val;
3255
3256			/*
3257			 * Write a value 11 (block Erase) in Flash
3258			 * Cycle field in hw flash control
3259			 */
3260			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
 
 
3261			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
3263
3264			/*
3265			 * Write the last 24 bits of an index within the
3266			 * block into Flash Linear address field in Flash
3267			 * Address.
3268			 */
3269			flash_linear_addr += (j * sector_size);
3270			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272			ret_val = e1000_flash_cycle_ich8lan(hw,
3273					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274			if (!ret_val)
3275				break;
3276
3277			/*
3278			 * Check if FCERR is set to 1.  If 1,
3279			 * clear it and try the whole sequence
3280			 * a few more times else Done
3281			 */
3282			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283			if (hsfsts.hsf_status.flcerr)
3284				/* repeat for some time before giving up */
3285				continue;
3286			else if (!hsfsts.hsf_status.flcdone)
3287				return ret_val;
3288		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289	}
3290
3291	return 0;
3292}
3293
3294/**
3295 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296 *  @hw: pointer to the HW structure
3297 *  @data: Pointer to the LED settings
3298 *
3299 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300 *  settings is all 0's or F's, set the LED default to a valid LED default
3301 *  setting.
3302 **/
3303static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304{
3305	s32 ret_val;
3306
3307	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308	if (ret_val) {
3309		e_dbg("NVM Read Error\n");
3310		return ret_val;
3311	}
3312
3313	if (*data == ID_LED_RESERVED_0000 ||
3314	    *data == ID_LED_RESERVED_FFFF)
3315		*data = ID_LED_DEFAULT_ICH8LAN;
3316
3317	return 0;
3318}
3319
3320/**
3321 *  e1000_id_led_init_pchlan - store LED configurations
3322 *  @hw: pointer to the HW structure
3323 *
3324 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325 *  the PHY LED configuration register.
3326 *
3327 *  PCH also does not have an "always on" or "always off" mode which
3328 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331 *  link based on logic in e1000_led_[on|off]_pchlan().
3332 **/
3333static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334{
3335	struct e1000_mac_info *mac = &hw->mac;
3336	s32 ret_val;
3337	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339	u16 data, i, temp, shift;
3340
3341	/* Get default ID LED modes */
3342	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343	if (ret_val)
3344		return ret_val;
3345
3346	mac->ledctl_default = er32(LEDCTL);
3347	mac->ledctl_mode1 = mac->ledctl_default;
3348	mac->ledctl_mode2 = mac->ledctl_default;
3349
3350	for (i = 0; i < 4; i++) {
3351		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352		shift = (i * 5);
3353		switch (temp) {
3354		case ID_LED_ON1_DEF2:
3355		case ID_LED_ON1_ON2:
3356		case ID_LED_ON1_OFF2:
3357			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358			mac->ledctl_mode1 |= (ledctl_on << shift);
3359			break;
3360		case ID_LED_OFF1_DEF2:
3361		case ID_LED_OFF1_ON2:
3362		case ID_LED_OFF1_OFF2:
3363			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364			mac->ledctl_mode1 |= (ledctl_off << shift);
3365			break;
3366		default:
3367			/* Do nothing */
3368			break;
3369		}
3370		switch (temp) {
3371		case ID_LED_DEF1_ON2:
3372		case ID_LED_ON1_ON2:
3373		case ID_LED_OFF1_ON2:
3374			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375			mac->ledctl_mode2 |= (ledctl_on << shift);
3376			break;
3377		case ID_LED_DEF1_OFF2:
3378		case ID_LED_ON1_OFF2:
3379		case ID_LED_OFF1_OFF2:
3380			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381			mac->ledctl_mode2 |= (ledctl_off << shift);
3382			break;
3383		default:
3384			/* Do nothing */
3385			break;
3386		}
3387	}
3388
3389	return 0;
3390}
3391
3392/**
3393 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394 *  @hw: pointer to the HW structure
3395 *
3396 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397 *  register, so the the bus width is hard coded.
3398 **/
3399static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400{
3401	struct e1000_bus_info *bus = &hw->bus;
3402	s32 ret_val;
3403
3404	ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406	/*
3407	 * ICH devices are "PCI Express"-ish.  They have
3408	 * a configuration space, but do not contain
3409	 * PCI Express Capability registers, so bus width
3410	 * must be hardcoded.
3411	 */
3412	if (bus->width == e1000_bus_width_unknown)
3413		bus->width = e1000_bus_width_pcie_x1;
3414
3415	return ret_val;
3416}
3417
3418/**
3419 *  e1000_reset_hw_ich8lan - Reset the hardware
3420 *  @hw: pointer to the HW structure
3421 *
3422 *  Does a full reset of the hardware which includes a reset of the PHY and
3423 *  MAC.
3424 **/
3425static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426{
3427	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428	u16 kum_cfg;
3429	u32 ctrl, reg;
3430	s32 ret_val;
3431
3432	/*
3433	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434	 * on the last TLP read/write transaction when MAC is reset.
3435	 */
3436	ret_val = e1000e_disable_pcie_master(hw);
3437	if (ret_val)
3438		e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440	e_dbg("Masking off all interrupts\n");
3441	ew32(IMC, 0xffffffff);
3442
3443	/*
3444	 * Disable the Transmit and Receive units.  Then delay to allow
3445	 * any pending transactions to complete before we hit the MAC
3446	 * with the global reset.
3447	 */
3448	ew32(RCTL, 0);
3449	ew32(TCTL, E1000_TCTL_PSP);
3450	e1e_flush();
3451
3452	usleep_range(10000, 20000);
3453
3454	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3455	if (hw->mac.type == e1000_ich8lan) {
3456		/* Set Tx and Rx buffer allocation to 8k apiece. */
3457		ew32(PBA, E1000_PBA_8K);
3458		/* Set Packet Buffer Size to 16k. */
3459		ew32(PBS, E1000_PBS_16K);
3460	}
3461
3462	if (hw->mac.type == e1000_pchlan) {
3463		/* Save the NVM K1 bit setting */
3464		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465		if (ret_val)
3466			return ret_val;
3467
3468		if (kum_cfg & E1000_NVM_K1_ENABLE)
3469			dev_spec->nvm_k1_enabled = true;
3470		else
3471			dev_spec->nvm_k1_enabled = false;
3472	}
3473
3474	ctrl = er32(CTRL);
3475
3476	if (!hw->phy.ops.check_reset_block(hw)) {
3477		/*
3478		 * Full-chip reset requires MAC and PHY reset at the same
3479		 * time to make sure the interface between MAC and the
3480		 * external PHY is reset.
3481		 */
3482		ctrl |= E1000_CTRL_PHY_RST;
3483
3484		/*
3485		 * Gate automatic PHY configuration by hardware on
3486		 * non-managed 82579
3487		 */
3488		if ((hw->mac.type == e1000_pch2lan) &&
3489		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490			e1000_gate_hw_phy_config_ich8lan(hw, true);
3491	}
3492	ret_val = e1000_acquire_swflag_ich8lan(hw);
3493	e_dbg("Issuing a global reset to ich8lan\n");
3494	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495	/* cannot issue a flush here because it hangs the hardware */
3496	msleep(20);
3497
3498	/* Set Phy Config Counter to 50msec */
3499	if (hw->mac.type == e1000_pch2lan) {
3500		reg = er32(FEXTNVM3);
3501		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503		ew32(FEXTNVM3, reg);
3504	}
3505
3506	if (!ret_val)
3507		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509	if (ctrl & E1000_CTRL_PHY_RST) {
3510		ret_val = hw->phy.ops.get_cfg_done(hw);
3511		if (ret_val)
3512			return ret_val;
3513
3514		ret_val = e1000_post_phy_reset_ich8lan(hw);
3515		if (ret_val)
3516			return ret_val;
3517	}
3518
3519	/*
3520	 * For PCH, this write will make sure that any noise
3521	 * will be detected as a CRC error and be dropped rather than show up
3522	 * as a bad packet to the DMA engine.
3523	 */
3524	if (hw->mac.type == e1000_pchlan)
3525		ew32(CRC_OFFSET, 0x65656565);
3526
3527	ew32(IMC, 0xffffffff);
3528	er32(ICR);
3529
3530	reg = er32(KABGTXD);
3531	reg |= E1000_KABGTXD_BGSQLBIAS;
3532	ew32(KABGTXD, reg);
3533
3534	return 0;
3535}
3536
3537/**
3538 *  e1000_init_hw_ich8lan - Initialize the hardware
3539 *  @hw: pointer to the HW structure
3540 *
3541 *  Prepares the hardware for transmit and receive by doing the following:
3542 *   - initialize hardware bits
3543 *   - initialize LED identification
3544 *   - setup receive address registers
3545 *   - setup flow control
3546 *   - setup transmit descriptors
3547 *   - clear statistics
3548 **/
3549static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550{
3551	struct e1000_mac_info *mac = &hw->mac;
3552	u32 ctrl_ext, txdctl, snoop;
3553	s32 ret_val;
3554	u16 i;
3555
3556	e1000_initialize_hw_bits_ich8lan(hw);
3557
3558	/* Initialize identification LED */
3559	ret_val = mac->ops.id_led_init(hw);
 
3560	if (ret_val)
3561		e_dbg("Error initializing identification LED\n");
3562		/* This is not fatal and we should not stop init due to this */
3563
3564	/* Setup the receive address. */
3565	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567	/* Zero out the Multicast HASH table */
3568	e_dbg("Zeroing the MTA\n");
3569	for (i = 0; i < mac->mta_reg_count; i++)
3570		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572	/*
3573	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3575	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576	 */
3577	if (hw->phy.type == e1000_phy_82578) {
3578		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579		i &= ~BM_WUC_HOST_WU_BIT;
3580		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582		if (ret_val)
3583			return ret_val;
3584	}
3585
3586	/* Setup link and flow control */
3587	ret_val = mac->ops.setup_link(hw);
3588
3589	/* Set the transmit descriptor write-back policy for both queues */
3590	txdctl = er32(TXDCTL(0));
3591	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592		 E1000_TXDCTL_FULL_TX_DESC_WB;
3593	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595	ew32(TXDCTL(0), txdctl);
3596	txdctl = er32(TXDCTL(1));
3597	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598		 E1000_TXDCTL_FULL_TX_DESC_WB;
3599	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601	ew32(TXDCTL(1), txdctl);
3602
3603	/*
3604	 * ICH8 has opposite polarity of no_snoop bits.
3605	 * By default, we should use snoop behavior.
3606	 */
3607	if (mac->type == e1000_ich8lan)
3608		snoop = PCIE_ICH8_SNOOP_ALL;
3609	else
3610		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611	e1000e_set_pcie_no_snoop(hw, snoop);
3612
 
 
 
 
 
 
 
 
 
3613	ctrl_ext = er32(CTRL_EXT);
3614	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615	ew32(CTRL_EXT, ctrl_ext);
3616
3617	/*
3618	 * Clear all of the statistics registers (clear on read).  It is
3619	 * important that we do this after we have tried to establish link
3620	 * because the symbol error count will increment wildly if there
3621	 * is no link.
3622	 */
3623	e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625	return ret_val;
3626}
 
3627/**
3628 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629 *  @hw: pointer to the HW structure
3630 *
3631 *  Sets/Clears required hardware bits necessary for correctly setting up the
3632 *  hardware for transmit and receive.
3633 **/
3634static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635{
3636	u32 reg;
3637
3638	/* Extended Device Control */
3639	reg = er32(CTRL_EXT);
3640	reg |= (1 << 22);
3641	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642	if (hw->mac.type >= e1000_pchlan)
3643		reg |= E1000_CTRL_EXT_PHYPDEN;
3644	ew32(CTRL_EXT, reg);
3645
3646	/* Transmit Descriptor Control 0 */
3647	reg = er32(TXDCTL(0));
3648	reg |= (1 << 22);
3649	ew32(TXDCTL(0), reg);
3650
3651	/* Transmit Descriptor Control 1 */
3652	reg = er32(TXDCTL(1));
3653	reg |= (1 << 22);
3654	ew32(TXDCTL(1), reg);
3655
3656	/* Transmit Arbitration Control 0 */
3657	reg = er32(TARC(0));
3658	if (hw->mac.type == e1000_ich8lan)
3659		reg |= (1 << 28) | (1 << 29);
3660	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661	ew32(TARC(0), reg);
3662
3663	/* Transmit Arbitration Control 1 */
3664	reg = er32(TARC(1));
3665	if (er32(TCTL) & E1000_TCTL_MULR)
3666		reg &= ~(1 << 28);
3667	else
3668		reg |= (1 << 28);
3669	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670	ew32(TARC(1), reg);
3671
3672	/* Device Status */
3673	if (hw->mac.type == e1000_ich8lan) {
3674		reg = er32(STATUS);
3675		reg &= ~(1 << 31);
3676		ew32(STATUS, reg);
3677	}
3678
3679	/*
3680	 * work-around descriptor data corruption issue during nfs v2 udp
3681	 * traffic, just disable the nfs filtering capability
3682	 */
3683	reg = er32(RFCTL);
3684	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686	/*
3687	 * Disable IPv6 extension header parsing because some malformed
3688	 * IPv6 headers can hang the Rx.
3689	 */
3690	if (hw->mac.type == e1000_ich8lan)
3691		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692	ew32(RFCTL, reg);
 
 
 
 
 
 
 
 
 
 
 
3693}
3694
3695/**
3696 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697 *  @hw: pointer to the HW structure
3698 *
3699 *  Determines which flow control settings to use, then configures flow
3700 *  control.  Calls the appropriate media-specific link configuration
3701 *  function.  Assuming the adapter has a valid link partner, a valid link
3702 *  should be established.  Assumes the hardware has previously been reset
3703 *  and the transmitter and receiver are not enabled.
3704 **/
3705static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706{
3707	s32 ret_val;
3708
3709	if (hw->phy.ops.check_reset_block(hw))
3710		return 0;
3711
3712	/*
3713	 * ICH parts do not have a word in the NVM to determine
3714	 * the default flow control setting, so we explicitly
3715	 * set it to full.
3716	 */
3717	if (hw->fc.requested_mode == e1000_fc_default) {
3718		/* Workaround h/w hang when Tx flow control enabled */
3719		if (hw->mac.type == e1000_pchlan)
3720			hw->fc.requested_mode = e1000_fc_rx_pause;
3721		else
3722			hw->fc.requested_mode = e1000_fc_full;
3723	}
3724
3725	/*
3726	 * Save off the requested flow control mode for use later.  Depending
3727	 * on the link partner's capabilities, we may or may not use this mode.
3728	 */
3729	hw->fc.current_mode = hw->fc.requested_mode;
3730
3731	e_dbg("After fix-ups FlowControl is now = %x\n",
3732		hw->fc.current_mode);
3733
3734	/* Continue to configure the copper link. */
3735	ret_val = hw->mac.ops.setup_physical_interface(hw);
3736	if (ret_val)
3737		return ret_val;
3738
3739	ew32(FCTTV, hw->fc.pause_time);
3740	if ((hw->phy.type == e1000_phy_82578) ||
3741	    (hw->phy.type == e1000_phy_82579) ||
3742	    (hw->phy.type == e1000_phy_i217) ||
3743	    (hw->phy.type == e1000_phy_82577)) {
3744		ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747				   hw->fc.pause_time);
3748		if (ret_val)
3749			return ret_val;
3750	}
3751
3752	return e1000e_set_fc_watermarks(hw);
3753}
3754
3755/**
3756 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757 *  @hw: pointer to the HW structure
3758 *
3759 *  Configures the kumeran interface to the PHY to wait the appropriate time
3760 *  when polling the PHY, then call the generic setup_copper_link to finish
3761 *  configuring the copper link.
3762 **/
3763static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764{
3765	u32 ctrl;
3766	s32 ret_val;
3767	u16 reg_data;
3768
3769	ctrl = er32(CTRL);
3770	ctrl |= E1000_CTRL_SLU;
3771	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772	ew32(CTRL, ctrl);
3773
3774	/*
3775	 * Set the mac to wait the maximum time between each iteration
3776	 * and increase the max iterations when polling the phy;
3777	 * this fixes erroneous timeouts at 10Mbps.
3778	 */
3779	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780	if (ret_val)
3781		return ret_val;
3782	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783	                               &reg_data);
3784	if (ret_val)
3785		return ret_val;
3786	reg_data |= 0x3F;
3787	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788	                                reg_data);
3789	if (ret_val)
3790		return ret_val;
3791
3792	switch (hw->phy.type) {
3793	case e1000_phy_igp_3:
3794		ret_val = e1000e_copper_link_setup_igp(hw);
3795		if (ret_val)
3796			return ret_val;
3797		break;
3798	case e1000_phy_bm:
3799	case e1000_phy_82578:
3800		ret_val = e1000e_copper_link_setup_m88(hw);
3801		if (ret_val)
3802			return ret_val;
3803		break;
3804	case e1000_phy_82577:
3805	case e1000_phy_82579:
3806	case e1000_phy_i217:
3807		ret_val = e1000_copper_link_setup_82577(hw);
3808		if (ret_val)
3809			return ret_val;
3810		break;
3811	case e1000_phy_ife:
3812		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813		if (ret_val)
3814			return ret_val;
3815
3816		reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818		switch (hw->phy.mdix) {
3819		case 1:
3820			reg_data &= ~IFE_PMC_FORCE_MDIX;
3821			break;
3822		case 2:
3823			reg_data |= IFE_PMC_FORCE_MDIX;
3824			break;
3825		case 0:
3826		default:
3827			reg_data |= IFE_PMC_AUTO_MDIX;
3828			break;
3829		}
3830		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831		if (ret_val)
3832			return ret_val;
3833		break;
3834	default:
3835		break;
3836	}
3837
3838	return e1000e_setup_copper_link(hw);
3839}
3840
3841/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843 *  @hw: pointer to the HW structure
3844 *  @speed: pointer to store current link speed
3845 *  @duplex: pointer to store the current link duplex
3846 *
3847 *  Calls the generic get_speed_and_duplex to retrieve the current link
3848 *  information and then calls the Kumeran lock loss workaround for links at
3849 *  gigabit speeds.
3850 **/
3851static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852					  u16 *duplex)
3853{
3854	s32 ret_val;
3855
3856	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857	if (ret_val)
3858		return ret_val;
3859
3860	if ((hw->mac.type == e1000_ich8lan) &&
3861	    (hw->phy.type == e1000_phy_igp_3) &&
3862	    (*speed == SPEED_1000)) {
3863		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864	}
3865
3866	return ret_val;
3867}
3868
3869/**
3870 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871 *  @hw: pointer to the HW structure
3872 *
3873 *  Work-around for 82566 Kumeran PCS lock loss:
3874 *  On link status change (i.e. PCI reset, speed change) and link is up and
3875 *  speed is gigabit-
3876 *    0) if workaround is optionally disabled do nothing
3877 *    1) wait 1ms for Kumeran link to come up
3878 *    2) check Kumeran Diagnostic register PCS lock loss bit
3879 *    3) if not set the link is locked (all is good), otherwise...
3880 *    4) reset the PHY
3881 *    5) repeat up to 10 times
3882 *  Note: this is only called for IGP3 copper when speed is 1gb.
3883 **/
3884static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885{
3886	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887	u32 phy_ctrl;
3888	s32 ret_val;
3889	u16 i, data;
3890	bool link;
3891
3892	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893		return 0;
3894
3895	/*
3896	 * Make sure link is up before proceeding.  If not just return.
3897	 * Attempting this while link is negotiating fouled up link
3898	 * stability
3899	 */
3900	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901	if (!link)
3902		return 0;
3903
3904	for (i = 0; i < 10; i++) {
3905		/* read once to clear */
3906		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907		if (ret_val)
3908			return ret_val;
3909		/* and again to get new status */
3910		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911		if (ret_val)
3912			return ret_val;
3913
3914		/* check for PCS lock */
3915		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916			return 0;
3917
3918		/* Issue PHY reset */
3919		e1000_phy_hw_reset(hw);
3920		mdelay(5);
3921	}
3922	/* Disable GigE link negotiation */
3923	phy_ctrl = er32(PHY_CTRL);
3924	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926	ew32(PHY_CTRL, phy_ctrl);
3927
3928	/*
3929	 * Call gig speed drop workaround on Gig disable before accessing
3930	 * any PHY registers
3931	 */
3932	e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934	/* unable to acquire PCS lock */
3935	return -E1000_ERR_PHY;
3936}
3937
3938/**
3939 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940 *  @hw: pointer to the HW structure
3941 *  @state: boolean value used to set the current Kumeran workaround state
3942 *
3943 *  If ICH8, set the current Kumeran workaround state (enabled - true
3944 *  /disabled - false).
3945 **/
3946void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947						 bool state)
3948{
3949	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951	if (hw->mac.type != e1000_ich8lan) {
3952		e_dbg("Workaround applies to ICH8 only.\n");
3953		return;
3954	}
3955
3956	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957}
3958
3959/**
3960 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961 *  @hw: pointer to the HW structure
3962 *
3963 *  Workaround for 82566 power-down on D3 entry:
3964 *    1) disable gigabit link
3965 *    2) write VR power-down enable
3966 *    3) read it back
3967 *  Continue if successful, else issue LCD reset and repeat
3968 **/
3969void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970{
3971	u32 reg;
3972	u16 data;
3973	u8  retry = 0;
3974
3975	if (hw->phy.type != e1000_phy_igp_3)
3976		return;
3977
3978	/* Try the workaround twice (if needed) */
3979	do {
3980		/* Disable link */
3981		reg = er32(PHY_CTRL);
3982		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984		ew32(PHY_CTRL, reg);
3985
3986		/*
3987		 * Call gig speed drop workaround on Gig disable before
3988		 * accessing any PHY registers
3989		 */
3990		if (hw->mac.type == e1000_ich8lan)
3991			e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993		/* Write VR power-down enable */
3994		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998		/* Read it back and test */
3999		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002			break;
4003
4004		/* Issue PHY reset and repeat at most one more time */
4005		reg = er32(CTRL);
4006		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007		retry++;
4008	} while (retry);
4009}
4010
4011/**
4012 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013 *  @hw: pointer to the HW structure
4014 *
4015 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016 *  LPLU, Gig disable, MDIC PHY reset):
4017 *    1) Set Kumeran Near-end loopback
4018 *    2) Clear Kumeran Near-end loopback
4019 *  Should only be called for ICH8[m] devices with any 1G Phy.
4020 **/
4021void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022{
4023	s32 ret_val;
4024	u16 reg_data;
4025
4026	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027		return;
4028
4029	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030				      &reg_data);
4031	if (ret_val)
4032		return;
4033	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035				       reg_data);
4036	if (ret_val)
4037		return;
4038	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040				       reg_data);
4041}
4042
4043/**
4044 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045 *  @hw: pointer to the HW structure
4046 *
4047 *  During S0 to Sx transition, it is possible the link remains at gig
4048 *  instead of negotiating to a lower speed.  Before going to Sx, set
4049 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052 *  needs to be written.
4053 *  Parts that support (and are linked to a partner which support) EEE in
4054 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055 *  than 10Mbps w/o EEE.
4056 **/
4057void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058{
4059	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060	u32 phy_ctrl;
4061	s32 ret_val;
4062
4063	phy_ctrl = er32(PHY_CTRL);
4064	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
 
4065	if (hw->phy.type == e1000_phy_i217) {
4066		u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
4067
4068		ret_val = hw->phy.ops.acquire(hw);
4069		if (ret_val)
4070			goto out;
4071
4072		if (!dev_spec->eee_disable) {
4073			u16 eee_advert;
4074
4075			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076						  I217_EEE_ADVERTISEMENT);
 
 
4077			if (ret_val)
4078				goto release;
4079			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081			/*
4082			 * Disable LPLU if both link partners support 100BaseT
4083			 * EEE and 100Full is advertised on both ends of the
4084			 * link.
 
4085			 */
4086			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087			    (dev_spec->eee_lp_ability &
4088			     I217_EEE_100_SUPPORTED) &&
4089			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091					      E1000_PHY_CTRL_NOND0A_LPLU);
 
 
 
 
 
 
 
 
4092		}
4093
4094		/*
4095		 * For i217 Intel Rapid Start Technology support,
4096		 * when the system is going into Sx and no manageability engine
4097		 * is present, the driver must configure proxy to reset only on
4098		 * power good.  LPI (Low Power Idle) state must also reset only
4099		 * on power good, as well as the MTA (Multicast table array).
4100		 * The SMBus release must also be disabled on LCD reset.
4101		 */
4102		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104			/* Enable proxy to reset only on power good. */
4105			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109			/*
4110			 * Set bit enable LPI (EEE) to reset only on
4111			 * power good.
4112			 */
4113			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117			/* Disable the SMB release on LCD reset. */
4118			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121		}
4122
4123		/*
4124		 * Enable MTA to reset for Intel Rapid Start Technology
4125		 * Support
4126		 */
4127		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131release:
4132		hw->phy.ops.release(hw);
4133	}
4134out:
4135	ew32(PHY_CTRL, phy_ctrl);
4136
4137	if (hw->mac.type == e1000_ich8lan)
4138		e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140	if (hw->mac.type >= e1000_pchlan) {
4141		e1000_oem_bits_config_ich8lan(hw, false);
4142
4143		/* Reset PHY to activate OEM bits on 82577/8 */
4144		if (hw->mac.type == e1000_pchlan)
4145			e1000e_phy_hw_reset_generic(hw);
4146
4147		ret_val = hw->phy.ops.acquire(hw);
4148		if (ret_val)
4149			return;
4150		e1000_write_smbus_addr(hw);
4151		hw->phy.ops.release(hw);
4152	}
4153}
4154
4155/**
4156 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157 *  @hw: pointer to the HW structure
4158 *
4159 *  During Sx to S0 transitions on non-managed devices or managed devices
4160 *  on which PHY resets are not blocked, if the PHY registers cannot be
4161 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162 *  the PHY.
4163 *  On i217, setup Intel Rapid Start Technology.
4164 **/
4165void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166{
4167	s32 ret_val;
4168
4169	if (hw->mac.type < e1000_pch2lan)
4170		return;
4171
4172	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173	if (ret_val) {
4174		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175		return;
4176	}
4177
4178	/*
4179	 * For i217 Intel Rapid Start Technology support when the system
4180	 * is transitioning from Sx and no manageability engine is present
4181	 * configure SMBus to restore on reset, disable proxy, and enable
4182	 * the reset on MTA (Multicast table array).
4183	 */
4184	if (hw->phy.type == e1000_phy_i217) {
4185		u16 phy_reg;
4186
4187		ret_val = hw->phy.ops.acquire(hw);
4188		if (ret_val) {
4189			e_dbg("Failed to setup iRST\n");
4190			return;
4191		}
4192
 
 
 
 
 
4193		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194			/*
4195			 * Restore clear on SMB if no manageability engine
4196			 * is present
4197			 */
4198			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199			if (ret_val)
4200				goto release;
4201			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204			/* Disable Proxy */
4205			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206		}
4207		/* Enable reset on MTA */
4208		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209		if (ret_val)
4210			goto release;
4211		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213release:
4214		if (ret_val)
4215			e_dbg("Error %d in resume workarounds\n", ret_val);
4216		hw->phy.ops.release(hw);
4217	}
4218}
4219
4220/**
4221 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222 *  @hw: pointer to the HW structure
4223 *
4224 *  Return the LED back to the default configuration.
4225 **/
4226static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227{
4228	if (hw->phy.type == e1000_phy_ife)
4229		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231	ew32(LEDCTL, hw->mac.ledctl_default);
4232	return 0;
4233}
4234
4235/**
4236 *  e1000_led_on_ich8lan - Turn LEDs on
4237 *  @hw: pointer to the HW structure
4238 *
4239 *  Turn on the LEDs.
4240 **/
4241static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242{
4243	if (hw->phy.type == e1000_phy_ife)
4244		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247	ew32(LEDCTL, hw->mac.ledctl_mode2);
4248	return 0;
4249}
4250
4251/**
4252 *  e1000_led_off_ich8lan - Turn LEDs off
4253 *  @hw: pointer to the HW structure
4254 *
4255 *  Turn off the LEDs.
4256 **/
4257static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258{
4259	if (hw->phy.type == e1000_phy_ife)
4260		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261				(IFE_PSCL_PROBE_MODE |
4262				 IFE_PSCL_PROBE_LEDS_OFF));
4263
4264	ew32(LEDCTL, hw->mac.ledctl_mode1);
4265	return 0;
4266}
4267
4268/**
4269 *  e1000_setup_led_pchlan - Configures SW controllable LED
4270 *  @hw: pointer to the HW structure
4271 *
4272 *  This prepares the SW controllable LED for use.
4273 **/
4274static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275{
4276	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277}
4278
4279/**
4280 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281 *  @hw: pointer to the HW structure
4282 *
4283 *  Return the LED back to the default configuration.
4284 **/
4285static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286{
4287	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288}
4289
4290/**
4291 *  e1000_led_on_pchlan - Turn LEDs on
4292 *  @hw: pointer to the HW structure
4293 *
4294 *  Turn on the LEDs.
4295 **/
4296static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297{
4298	u16 data = (u16)hw->mac.ledctl_mode2;
4299	u32 i, led;
4300
4301	/*
4302	 * If no link, then turn LED on by setting the invert bit
4303	 * for each LED that's mode is "link_up" in ledctl_mode2.
4304	 */
4305	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306		for (i = 0; i < 3; i++) {
4307			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309			    E1000_LEDCTL_MODE_LINK_UP)
4310				continue;
4311			if (led & E1000_PHY_LED0_IVRT)
4312				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313			else
4314				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315		}
4316	}
4317
4318	return e1e_wphy(hw, HV_LED_CONFIG, data);
4319}
4320
4321/**
4322 *  e1000_led_off_pchlan - Turn LEDs off
4323 *  @hw: pointer to the HW structure
4324 *
4325 *  Turn off the LEDs.
4326 **/
4327static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328{
4329	u16 data = (u16)hw->mac.ledctl_mode1;
4330	u32 i, led;
4331
4332	/*
4333	 * If no link, then turn LED off by clearing the invert bit
4334	 * for each LED that's mode is "link_up" in ledctl_mode1.
4335	 */
4336	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337		for (i = 0; i < 3; i++) {
4338			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340			    E1000_LEDCTL_MODE_LINK_UP)
4341				continue;
4342			if (led & E1000_PHY_LED0_IVRT)
4343				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344			else
4345				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346		}
4347	}
4348
4349	return e1e_wphy(hw, HV_LED_CONFIG, data);
4350}
4351
4352/**
4353 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354 *  @hw: pointer to the HW structure
4355 *
4356 *  Read appropriate register for the config done bit for completion status
4357 *  and configure the PHY through s/w for EEPROM-less parts.
4358 *
4359 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360 *  config done bit, so only an error is logged and continues.  If we were
4361 *  to return with error, EEPROM-less silicon would not be able to be reset
4362 *  or change link.
4363 **/
4364static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365{
4366	s32 ret_val = 0;
4367	u32 bank = 0;
4368	u32 status;
4369
4370	e1000e_get_cfg_done(hw);
4371
4372	/* Wait for indication from h/w that it has completed basic config */
4373	if (hw->mac.type >= e1000_ich10lan) {
4374		e1000_lan_init_done_ich8lan(hw);
4375	} else {
4376		ret_val = e1000e_get_auto_rd_done(hw);
4377		if (ret_val) {
4378			/*
4379			 * When auto config read does not complete, do not
4380			 * return with an error. This can happen in situations
4381			 * where there is no eeprom and prevents getting link.
4382			 */
4383			e_dbg("Auto Read Done did not complete\n");
4384			ret_val = 0;
4385		}
4386	}
4387
4388	/* Clear PHY Reset Asserted bit */
4389	status = er32(STATUS);
4390	if (status & E1000_STATUS_PHYRA)
4391		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392	else
4393		e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396	if (hw->mac.type <= e1000_ich9lan) {
4397		if (!(er32(EECD) & E1000_EECD_PRES) &&
4398		    (hw->phy.type == e1000_phy_igp_3)) {
4399			e1000e_phy_init_script_igp3(hw);
4400		}
4401	} else {
4402		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403			/* Maybe we should do a basic PHY config */
4404			e_dbg("EEPROM not present\n");
4405			ret_val = -E1000_ERR_CONFIG;
4406		}
4407	}
4408
4409	return ret_val;
4410}
4411
4412/**
4413 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414 * @hw: pointer to the HW structure
4415 *
4416 * In the case of a PHY power down to save power, or to turn off link during a
4417 * driver unload, or wake on lan is not enabled, remove the link.
4418 **/
4419static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420{
4421	/* If the management interface is not enabled, then power down */
4422	if (!(hw->mac.ops.check_mng_mode(hw) ||
4423	      hw->phy.ops.check_reset_block(hw)))
4424		e1000_power_down_phy_copper(hw);
4425}
4426
4427/**
4428 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429 *  @hw: pointer to the HW structure
4430 *
4431 *  Clears hardware counters specific to the silicon family and calls
4432 *  clear_hw_cntrs_generic to clear all general purpose counters.
4433 **/
4434static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435{
4436	u16 phy_data;
4437	s32 ret_val;
4438
4439	e1000e_clear_hw_cntrs_base(hw);
4440
4441	er32(ALGNERRC);
4442	er32(RXERRC);
4443	er32(TNCRS);
4444	er32(CEXTERR);
4445	er32(TSCTC);
4446	er32(TSCTFC);
4447
4448	er32(MGTPRC);
4449	er32(MGTPDC);
4450	er32(MGTPTC);
4451
4452	er32(IAC);
4453	er32(ICRXOC);
4454
4455	/* Clear PHY statistics registers */
4456	if ((hw->phy.type == e1000_phy_82578) ||
4457	    (hw->phy.type == e1000_phy_82579) ||
4458	    (hw->phy.type == e1000_phy_i217) ||
4459	    (hw->phy.type == e1000_phy_82577)) {
4460		ret_val = hw->phy.ops.acquire(hw);
4461		if (ret_val)
4462			return;
4463		ret_val = hw->phy.ops.set_page(hw,
4464					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465		if (ret_val)
4466			goto release;
4467		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481release:
4482		hw->phy.ops.release(hw);
4483	}
4484}
4485
4486static const struct e1000_mac_operations ich8_mac_ops = {
4487	/* check_mng_mode dependent on mac type */
4488	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4489	/* cleanup_led dependent on mac type */
4490	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4491	.get_bus_info		= e1000_get_bus_info_ich8lan,
4492	.set_lan_id		= e1000_set_lan_id_single_port,
4493	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4494	/* led_on dependent on mac type */
4495	/* led_off dependent on mac type */
4496	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4497	.reset_hw		= e1000_reset_hw_ich8lan,
4498	.init_hw		= e1000_init_hw_ich8lan,
4499	.setup_link		= e1000_setup_link_ich8lan,
4500	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501	/* id_led_init dependent on mac type */
4502	.config_collision_dist	= e1000e_config_collision_dist_generic,
4503	.rar_set		= e1000e_rar_set_generic,
 
4504};
4505
4506static const struct e1000_phy_operations ich8_phy_ops = {
4507	.acquire		= e1000_acquire_swflag_ich8lan,
4508	.check_reset_block	= e1000_check_reset_block_ich8lan,
4509	.commit			= NULL,
4510	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4511	.get_cable_length	= e1000e_get_cable_length_igp_2,
4512	.read_reg		= e1000e_read_phy_reg_igp,
4513	.release		= e1000_release_swflag_ich8lan,
4514	.reset			= e1000_phy_hw_reset_ich8lan,
4515	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4516	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4517	.write_reg		= e1000e_write_phy_reg_igp,
4518};
4519
4520static const struct e1000_nvm_operations ich8_nvm_ops = {
4521	.acquire		= e1000_acquire_nvm_ich8lan,
4522	.read		 	= e1000_read_nvm_ich8lan,
4523	.release		= e1000_release_nvm_ich8lan,
4524	.reload			= e1000e_reload_nvm_generic,
4525	.update			= e1000_update_nvm_checksum_ich8lan,
4526	.valid_led_default	= e1000_valid_led_default_ich8lan,
4527	.validate		= e1000_validate_nvm_checksum_ich8lan,
4528	.write			= e1000_write_nvm_ich8lan,
4529};
4530
 
 
 
 
 
 
 
 
 
 
 
4531const struct e1000_info e1000_ich8_info = {
4532	.mac			= e1000_ich8lan,
4533	.flags			= FLAG_HAS_WOL
4534				  | FLAG_IS_ICH
4535				  | FLAG_HAS_CTRLEXT_ON_LOAD
4536				  | FLAG_HAS_AMT
4537				  | FLAG_HAS_FLASH
4538				  | FLAG_APME_IN_WUC,
4539	.pba			= 8,
4540	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4541	.get_variants		= e1000_get_variants_ich8lan,
4542	.mac_ops		= &ich8_mac_ops,
4543	.phy_ops		= &ich8_phy_ops,
4544	.nvm_ops		= &ich8_nvm_ops,
4545};
4546
4547const struct e1000_info e1000_ich9_info = {
4548	.mac			= e1000_ich9lan,
4549	.flags			= FLAG_HAS_JUMBO_FRAMES
4550				  | FLAG_IS_ICH
4551				  | FLAG_HAS_WOL
4552				  | FLAG_HAS_CTRLEXT_ON_LOAD
4553				  | FLAG_HAS_AMT
4554				  | FLAG_HAS_FLASH
4555				  | FLAG_APME_IN_WUC,
4556	.pba			= 18,
4557	.max_hw_frame_size	= DEFAULT_JUMBO,
4558	.get_variants		= e1000_get_variants_ich8lan,
4559	.mac_ops		= &ich8_mac_ops,
4560	.phy_ops		= &ich8_phy_ops,
4561	.nvm_ops		= &ich8_nvm_ops,
4562};
4563
4564const struct e1000_info e1000_ich10_info = {
4565	.mac			= e1000_ich10lan,
4566	.flags			= FLAG_HAS_JUMBO_FRAMES
4567				  | FLAG_IS_ICH
4568				  | FLAG_HAS_WOL
4569				  | FLAG_HAS_CTRLEXT_ON_LOAD
4570				  | FLAG_HAS_AMT
4571				  | FLAG_HAS_FLASH
4572				  | FLAG_APME_IN_WUC,
4573	.pba			= 18,
4574	.max_hw_frame_size	= DEFAULT_JUMBO,
4575	.get_variants		= e1000_get_variants_ich8lan,
4576	.mac_ops		= &ich8_mac_ops,
4577	.phy_ops		= &ich8_phy_ops,
4578	.nvm_ops		= &ich8_nvm_ops,
4579};
4580
4581const struct e1000_info e1000_pch_info = {
4582	.mac			= e1000_pchlan,
4583	.flags			= FLAG_IS_ICH
4584				  | FLAG_HAS_WOL
4585				  | FLAG_HAS_CTRLEXT_ON_LOAD
4586				  | FLAG_HAS_AMT
4587				  | FLAG_HAS_FLASH
4588				  | FLAG_HAS_JUMBO_FRAMES
4589				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590				  | FLAG_APME_IN_WUC,
4591	.flags2			= FLAG2_HAS_PHY_STATS,
4592	.pba			= 26,
4593	.max_hw_frame_size	= 4096,
4594	.get_variants		= e1000_get_variants_ich8lan,
4595	.mac_ops		= &ich8_mac_ops,
4596	.phy_ops		= &ich8_phy_ops,
4597	.nvm_ops		= &ich8_nvm_ops,
4598};
4599
4600const struct e1000_info e1000_pch2_info = {
4601	.mac			= e1000_pch2lan,
4602	.flags			= FLAG_IS_ICH
4603				  | FLAG_HAS_WOL
 
4604				  | FLAG_HAS_CTRLEXT_ON_LOAD
4605				  | FLAG_HAS_AMT
4606				  | FLAG_HAS_FLASH
4607				  | FLAG_HAS_JUMBO_FRAMES
4608				  | FLAG_APME_IN_WUC,
4609	.flags2			= FLAG2_HAS_PHY_STATS
4610				  | FLAG2_HAS_EEE,
 
4611	.pba			= 26,
4612	.max_hw_frame_size	= DEFAULT_JUMBO,
4613	.get_variants		= e1000_get_variants_ich8lan,
4614	.mac_ops		= &ich8_mac_ops,
4615	.phy_ops		= &ich8_phy_ops,
4616	.nvm_ops		= &ich8_nvm_ops,
4617};
4618
4619const struct e1000_info e1000_pch_lpt_info = {
4620	.mac			= e1000_pch_lpt,
4621	.flags			= FLAG_IS_ICH
4622				  | FLAG_HAS_WOL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4623				  | FLAG_HAS_CTRLEXT_ON_LOAD
4624				  | FLAG_HAS_AMT
4625				  | FLAG_HAS_FLASH
4626				  | FLAG_HAS_JUMBO_FRAMES
4627				  | FLAG_APME_IN_WUC,
4628	.flags2			= FLAG2_HAS_PHY_STATS
4629				  | FLAG2_HAS_EEE,
4630	.pba			= 26,
4631	.max_hw_frame_size	= DEFAULT_JUMBO,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632	.get_variants		= e1000_get_variants_ich8lan,
4633	.mac_ops		= &ich8_mac_ops,
4634	.phy_ops		= &ich8_phy_ops,
4635	.nvm_ops		= &ich8_nvm_ops,
4636};