Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
 
 
  46#include <linux/ptrace.h>
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#include <asm/archrandom.h>
  60#include <asm/processor.h>
 
  61#include <asm/irq.h>
  62#include <asm/irq_regs.h>
  63#include <asm/io.h>
  64
  65/*********************************************************************
  66 *
  67 * Initialization and readiness waiting.
  68 *
  69 * Much of the RNG infrastructure is devoted to various dependencies
  70 * being able to wait until the RNG has collected enough entropy and
  71 * is ready for safe consumption.
  72 *
  73 *********************************************************************/
  74
  75/*
  76 * crng_init is protected by base_crng->lock, and only increases
  77 * its value (from empty->early->ready).
  78 */
  79static enum {
  80	CRNG_EMPTY = 0, /* Little to no entropy collected */
  81	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  82	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  83} crng_init __read_mostly = CRNG_EMPTY;
  84static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  85#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  86/* Various types of waiters for crng_init->CRNG_READY transition. */
  87static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  88static struct fasync_struct *fasync;
  89static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
  90
  91/* Control how we warn userspace. */
  92static struct ratelimit_state urandom_warning =
  93	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  94static int ratelimit_disable __read_mostly =
  95	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
  96module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  97MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
  98
  99/*
 100 * Returns whether or not the input pool has been seeded and thus guaranteed
 101 * to supply cryptographically secure random numbers. This applies to: the
 102 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 103 * u16,u32,u64,long} family of functions.
 104 *
 105 * Returns: true if the input pool has been seeded.
 106 *          false if the input pool has not been seeded.
 107 */
 108bool rng_is_initialized(void)
 109{
 110	return crng_ready();
 111}
 112EXPORT_SYMBOL(rng_is_initialized);
 113
 114static void __cold crng_set_ready(struct work_struct *work)
 115{
 116	static_branch_enable(&crng_is_ready);
 117}
 118
 119/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 120static void try_to_generate_entropy(void);
 121
 122/*
 123 * Wait for the input pool to be seeded and thus guaranteed to supply
 124 * cryptographically secure random numbers. This applies to: the /dev/urandom
 125 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 126 * long} family of functions. Using any of these functions without first
 127 * calling this function forfeits the guarantee of security.
 128 *
 129 * Returns: 0 if the input pool has been seeded.
 130 *          -ERESTARTSYS if the function was interrupted by a signal.
 131 */
 132int wait_for_random_bytes(void)
 133{
 134	while (!crng_ready()) {
 135		int ret;
 136
 137		try_to_generate_entropy();
 138		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 139		if (ret)
 140			return ret > 0 ? 0 : ret;
 141	}
 142	return 0;
 143}
 144EXPORT_SYMBOL(wait_for_random_bytes);
 145
 146/*
 147 * Add a callback function that will be invoked when the crng is initialised,
 148 * or immediately if it already has been. Only use this is you are absolutely
 149 * sure it is required. Most users should instead be able to test
 150 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 151 */
 152int __cold execute_with_initialized_rng(struct notifier_block *nb)
 153{
 154	unsigned long flags;
 155	int ret = 0;
 156
 157	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 158	if (crng_ready())
 159		nb->notifier_call(nb, 0, NULL);
 160	else
 161		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 162	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 163	return ret;
 164}
 165
 166#define warn_unseeded_randomness() \
 167	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 168		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 169				__func__, (void *)_RET_IP_, crng_init)
 170
 
 171
 172/*********************************************************************
 173 *
 174 * Fast key erasure RNG, the "crng".
 175 *
 176 * These functions expand entropy from the entropy extractor into
 177 * long streams for external consumption using the "fast key erasure"
 178 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 179 *
 180 * There are a few exported interfaces for use by other drivers:
 181 *
 182 *	void get_random_bytes(void *buf, size_t len)
 183 *	u8 get_random_u8()
 184 *	u16 get_random_u16()
 185 *	u32 get_random_u32()
 186 *	u32 get_random_u32_below(u32 ceil)
 187 *	u32 get_random_u32_above(u32 floor)
 188 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 189 *	u64 get_random_u64()
 190 *	unsigned long get_random_long()
 191 *
 192 * These interfaces will return the requested number of random bytes
 193 * into the given buffer or as a return value. This is equivalent to
 194 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 195 * functions may be higher performance for one-off random integers,
 196 * because they do a bit of buffering and do not invoke reseeding
 197 * until the buffer is emptied.
 198 *
 199 *********************************************************************/
 200
 201enum {
 202	CRNG_RESEED_START_INTERVAL = HZ,
 203	CRNG_RESEED_INTERVAL = 60 * HZ
 204};
 205
 206static struct {
 207	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 208	unsigned long generation;
 209	spinlock_t lock;
 210} base_crng = {
 211	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 212};
 213
 214struct crng {
 215	u8 key[CHACHA_KEY_SIZE];
 216	unsigned long generation;
 217	local_lock_t lock;
 218};
 219
 220static DEFINE_PER_CPU(struct crng, crngs) = {
 221	.generation = ULONG_MAX,
 222	.lock = INIT_LOCAL_LOCK(crngs.lock),
 223};
 224
 225/*
 226 * Return the interval until the next reseeding, which is normally
 227 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 228 * proportional to the uptime.
 229 */
 230static unsigned int crng_reseed_interval(void)
 231{
 232	static bool early_boot = true;
 233
 234	if (unlikely(READ_ONCE(early_boot))) {
 235		time64_t uptime = ktime_get_seconds();
 236		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 237			WRITE_ONCE(early_boot, false);
 238		else
 239			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 240				     (unsigned int)uptime / 2 * HZ);
 241	}
 242	return CRNG_RESEED_INTERVAL;
 243}
 244
 245/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 246static void extract_entropy(void *buf, size_t len);
 
 
 247
 248/* This extracts a new crng key from the input pool. */
 249static void crng_reseed(struct work_struct *work)
 250{
 251	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 252	unsigned long flags;
 253	unsigned long next_gen;
 254	u8 key[CHACHA_KEY_SIZE];
 255
 256	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 257	if (likely(system_unbound_wq))
 258		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 259
 260	extract_entropy(key, sizeof(key));
 
 
 
 261
 262	/*
 263	 * We copy the new key into the base_crng, overwriting the old one,
 264	 * and update the generation counter. We avoid hitting ULONG_MAX,
 265	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 266	 * forces new CPUs that come online to always initialize.
 267	 */
 268	spin_lock_irqsave(&base_crng.lock, flags);
 269	memcpy(base_crng.key, key, sizeof(base_crng.key));
 270	next_gen = base_crng.generation + 1;
 271	if (next_gen == ULONG_MAX)
 272		++next_gen;
 273	WRITE_ONCE(base_crng.generation, next_gen);
 274	if (!static_branch_likely(&crng_is_ready))
 275		crng_init = CRNG_READY;
 276	spin_unlock_irqrestore(&base_crng.lock, flags);
 277	memzero_explicit(key, sizeof(key));
 278}
 279
 280/*
 281 * This generates a ChaCha block using the provided key, and then
 282 * immediately overwrites that key with half the block. It returns
 283 * the resultant ChaCha state to the user, along with the second
 284 * half of the block containing 32 bytes of random data that may
 285 * be used; random_data_len may not be greater than 32.
 286 *
 287 * The returned ChaCha state contains within it a copy of the old
 288 * key value, at index 4, so the state should always be zeroed out
 289 * immediately after using in order to maintain forward secrecy.
 290 * If the state cannot be erased in a timely manner, then it is
 291 * safer to set the random_data parameter to &chacha_state[4] so
 292 * that this function overwrites it before returning.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293 */
 294static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 295				  u32 chacha_state[CHACHA_STATE_WORDS],
 296				  u8 *random_data, size_t random_data_len)
 297{
 298	u8 first_block[CHACHA_BLOCK_SIZE];
 299
 300	BUG_ON(random_data_len > 32);
 301
 302	chacha_init_consts(chacha_state);
 303	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 304	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 305	chacha20_block(chacha_state, first_block);
 306
 307	memcpy(key, first_block, CHACHA_KEY_SIZE);
 308	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 309	memzero_explicit(first_block, sizeof(first_block));
 310}
 311
 312/*
 313 * This function returns a ChaCha state that you may use for generating
 314 * random data. It also returns up to 32 bytes on its own of random data
 315 * that may be used; random_data_len may not be greater than 32.
 316 */
 317static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 318			    u8 *random_data, size_t random_data_len)
 319{
 320	unsigned long flags;
 321	struct crng *crng;
 322
 323	BUG_ON(random_data_len > 32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 324
 325	/*
 326	 * For the fast path, we check whether we're ready, unlocked first, and
 327	 * then re-check once locked later. In the case where we're really not
 328	 * ready, we do fast key erasure with the base_crng directly, extracting
 329	 * when crng_init is CRNG_EMPTY.
 330	 */
 331	if (!crng_ready()) {
 332		bool ready;
 333
 334		spin_lock_irqsave(&base_crng.lock, flags);
 335		ready = crng_ready();
 336		if (!ready) {
 337			if (crng_init == CRNG_EMPTY)
 338				extract_entropy(base_crng.key, sizeof(base_crng.key));
 339			crng_fast_key_erasure(base_crng.key, chacha_state,
 340					      random_data, random_data_len);
 341		}
 342		spin_unlock_irqrestore(&base_crng.lock, flags);
 343		if (!ready)
 344			return;
 345	}
 346
 347	local_lock_irqsave(&crngs.lock, flags);
 348	crng = raw_cpu_ptr(&crngs);
 
 
 
 
 
 
 
 349
 350	/*
 351	 * If our per-cpu crng is older than the base_crng, then it means
 352	 * somebody reseeded the base_crng. In that case, we do fast key
 353	 * erasure on the base_crng, and use its output as the new key
 354	 * for our per-cpu crng. This brings us up to date with base_crng.
 355	 */
 356	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 357		spin_lock(&base_crng.lock);
 358		crng_fast_key_erasure(base_crng.key, chacha_state,
 359				      crng->key, sizeof(crng->key));
 360		crng->generation = base_crng.generation;
 361		spin_unlock(&base_crng.lock);
 362	}
 363
 364	/*
 365	 * Finally, when we've made it this far, our per-cpu crng has an up
 366	 * to date key, and we can do fast key erasure with it to produce
 367	 * some random data and a ChaCha state for the caller. All other
 368	 * branches of this function are "unlikely", so most of the time we
 369	 * should wind up here immediately.
 370	 */
 371	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 372	local_unlock_irqrestore(&crngs.lock, flags);
 373}
 374
 375static void _get_random_bytes(void *buf, size_t len)
 376{
 377	u32 chacha_state[CHACHA_STATE_WORDS];
 378	u8 tmp[CHACHA_BLOCK_SIZE];
 379	size_t first_block_len;
 
 
 380
 381	if (!len)
 382		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 384	first_block_len = min_t(size_t, 32, len);
 385	crng_make_state(chacha_state, buf, first_block_len);
 386	len -= first_block_len;
 387	buf += first_block_len;
 388
 389	while (len) {
 390		if (len < CHACHA_BLOCK_SIZE) {
 391			chacha20_block(chacha_state, tmp);
 392			memcpy(buf, tmp, len);
 393			memzero_explicit(tmp, sizeof(tmp));
 394			break;
 395		}
 396
 397		chacha20_block(chacha_state, buf);
 398		if (unlikely(chacha_state[12] == 0))
 399			++chacha_state[13];
 400		len -= CHACHA_BLOCK_SIZE;
 401		buf += CHACHA_BLOCK_SIZE;
 
 
 402	}
 403
 404	memzero_explicit(chacha_state, sizeof(chacha_state));
 
 
 
 
 
 
 405}
 406
 407/*
 408 * This returns random bytes in arbitrary quantities. The quality of the
 409 * random bytes is good as /dev/urandom. In order to ensure that the
 410 * randomness provided by this function is okay, the function
 411 * wait_for_random_bytes() should be called and return 0 at least once
 412 * at any point prior.
 413 */
 414void get_random_bytes(void *buf, size_t len)
 415{
 416	warn_unseeded_randomness();
 417	_get_random_bytes(buf, len);
 418}
 419EXPORT_SYMBOL(get_random_bytes);
 420
 421static ssize_t get_random_bytes_user(struct iov_iter *iter)
 
 422{
 423	u32 chacha_state[CHACHA_STATE_WORDS];
 424	u8 block[CHACHA_BLOCK_SIZE];
 425	size_t ret = 0, copied;
 426
 427	if (unlikely(!iov_iter_count(iter)))
 428		return 0;
 429
 430	/*
 431	 * Immediately overwrite the ChaCha key at index 4 with random
 432	 * bytes, in case userspace causes copy_to_iter() below to sleep
 433	 * forever, so that we still retain forward secrecy in that case.
 434	 */
 435	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 436	/*
 437	 * However, if we're doing a read of len <= 32, we don't need to
 438	 * use chacha_state after, so we can simply return those bytes to
 439	 * the user directly.
 440	 */
 441	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 442		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 443		goto out_zero_chacha;
 444	}
 445
 446	for (;;) {
 447		chacha20_block(chacha_state, block);
 448		if (unlikely(chacha_state[12] == 0))
 449			++chacha_state[13];
 450
 451		copied = copy_to_iter(block, sizeof(block), iter);
 452		ret += copied;
 453		if (!iov_iter_count(iter) || copied != sizeof(block))
 454			break;
 455
 456		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 457		if (ret % PAGE_SIZE == 0) {
 458			if (signal_pending(current))
 459				break;
 460			cond_resched();
 461		}
 462	}
 463
 464	memzero_explicit(block, sizeof(block));
 465out_zero_chacha:
 466	memzero_explicit(chacha_state, sizeof(chacha_state));
 467	return ret ? ret : -EFAULT;
 468}
 469
 470/*
 471 * Batched entropy returns random integers. The quality of the random
 472 * number is good as /dev/urandom. In order to ensure that the randomness
 473 * provided by this function is okay, the function wait_for_random_bytes()
 474 * should be called and return 0 at least once at any point prior.
 475 */
 476
 477#define DEFINE_BATCHED_ENTROPY(type)						\
 478struct batch_ ##type {								\
 479	/*									\
 480	 * We make this 1.5x a ChaCha block, so that we get the			\
 481	 * remaining 32 bytes from fast key erasure, plus one full		\
 482	 * block from the detached ChaCha state. We can increase		\
 483	 * the size of this later if needed so long as we keep the		\
 484	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 485	 */									\
 486	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 487	local_lock_t lock;							\
 488	unsigned long generation;						\
 489	unsigned int position;							\
 490};										\
 491										\
 492static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 493	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 494	.position = UINT_MAX							\
 495};										\
 496										\
 497type get_random_ ##type(void)							\
 498{										\
 499	type ret;								\
 500	unsigned long flags;							\
 501	struct batch_ ##type *batch;						\
 502	unsigned long next_gen;							\
 503										\
 504	warn_unseeded_randomness();						\
 505										\
 506	if  (!crng_ready()) {							\
 507		_get_random_bytes(&ret, sizeof(ret));				\
 508		return ret;							\
 509	}									\
 510										\
 511	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 512	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 513										\
 514	next_gen = READ_ONCE(base_crng.generation);				\
 515	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 516	    next_gen != batch->generation) {					\
 517		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 518		batch->position = 0;						\
 519		batch->generation = next_gen;					\
 520	}									\
 521										\
 522	ret = batch->entropy[batch->position];					\
 523	batch->entropy[batch->position] = 0;					\
 524	++batch->position;							\
 525	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 526	return ret;								\
 527}										\
 528EXPORT_SYMBOL(get_random_ ##type);
 529
 530DEFINE_BATCHED_ENTROPY(u8)
 531DEFINE_BATCHED_ENTROPY(u16)
 532DEFINE_BATCHED_ENTROPY(u32)
 533DEFINE_BATCHED_ENTROPY(u64)
 534
 535u32 __get_random_u32_below(u32 ceil)
 
 
 
 
 
 536{
 537	/*
 538	 * This is the slow path for variable ceil. It is still fast, most of
 539	 * the time, by doing traditional reciprocal multiplication and
 540	 * opportunistically comparing the lower half to ceil itself, before
 541	 * falling back to computing a larger bound, and then rejecting samples
 542	 * whose lower half would indicate a range indivisible by ceil. The use
 543	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 544	 * in 32-bits.
 545	 */
 546	u32 rand = get_random_u32();
 547	u64 mult;
 548
 549	/*
 550	 * This function is technically undefined for ceil == 0, and in fact
 551	 * for the non-underscored constant version in the header, we build bug
 552	 * on that. But for the non-constant case, it's convenient to have that
 553	 * evaluate to being a straight call to get_random_u32(), so that
 554	 * get_random_u32_inclusive() can work over its whole range without
 555	 * undefined behavior.
 556	 */
 557	if (unlikely(!ceil))
 558		return rand;
 559
 560	mult = (u64)ceil * rand;
 561	if (unlikely((u32)mult < ceil)) {
 562		u32 bound = -ceil % ceil;
 563		while (unlikely((u32)mult < bound))
 564			mult = (u64)ceil * get_random_u32();
 565	}
 566	return mult >> 32;
 
 567}
 568EXPORT_SYMBOL(__get_random_u32_below);
 569
 570#ifdef CONFIG_SMP
 571/*
 572 * This function is called when the CPU is coming up, with entry
 573 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 574 */
 575int __cold random_prepare_cpu(unsigned int cpu)
 576{
 577	/*
 578	 * When the cpu comes back online, immediately invalidate both
 579	 * the per-cpu crng and all batches, so that we serve fresh
 580	 * randomness.
 581	 */
 582	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 583	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 584	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 585	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 586	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 587	return 0;
 588}
 589#endif
 590
 
 
 591
 592/**********************************************************************
 593 *
 594 * Entropy accumulation and extraction routines.
 595 *
 596 * Callers may add entropy via:
 597 *
 598 *     static void mix_pool_bytes(const void *buf, size_t len)
 599 *
 600 * After which, if added entropy should be credited:
 601 *
 602 *     static void credit_init_bits(size_t bits)
 603 *
 604 * Finally, extract entropy via:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605 *
 606 *     static void extract_entropy(void *buf, size_t len)
 607 *
 608 **********************************************************************/
 609
 610enum {
 611	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 612	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 613	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 614};
 615
 616static struct {
 617	struct blake2s_state hash;
 618	spinlock_t lock;
 619	unsigned int init_bits;
 620} input_pool = {
 621	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 622		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 623		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 624	.hash.outlen = BLAKE2S_HASH_SIZE,
 625	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 626};
 627
 628static void _mix_pool_bytes(const void *buf, size_t len)
 629{
 630	blake2s_update(&input_pool.hash, buf, len);
 631}
 632
 633/*
 634 * This function adds bytes into the input pool. It does not
 635 * update the initialization bit counter; the caller should call
 636 * credit_init_bits if this is appropriate.
 
 
 
 637 */
 638static void mix_pool_bytes(const void *buf, size_t len)
 639{
 640	unsigned long flags;
 641
 642	spin_lock_irqsave(&input_pool.lock, flags);
 643	_mix_pool_bytes(buf, len);
 644	spin_unlock_irqrestore(&input_pool.lock, flags);
 
 645}
 
 
 
 646
 647/*
 648 * This is an HKDF-like construction for using the hashed collected entropy
 649 * as a PRF key, that's then expanded block-by-block.
 
 
 
 
 
 
 650 */
 651static void extract_entropy(void *buf, size_t len)
 652{
 653	unsigned long flags;
 654	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 655	struct {
 656		unsigned long rdseed[32 / sizeof(long)];
 657		size_t counter;
 658	} block;
 659	size_t i, longs;
 660
 661	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 662		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 663		if (longs) {
 664			i += longs;
 665			continue;
 666		}
 667		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 668		if (longs) {
 669			i += longs;
 670			continue;
 671		}
 672		block.rdseed[i++] = random_get_entropy();
 673	}
 674
 675	spin_lock_irqsave(&input_pool.lock, flags);
 
 
 
 
 
 
 
 
 
 676
 677	/* seed = HASHPRF(last_key, entropy_input) */
 678	blake2s_final(&input_pool.hash, seed);
 
 
 
 679
 680	/* next_key = HASHPRF(seed, RDSEED || 0) */
 681	block.counter = 0;
 682	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 683	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 684
 685	spin_unlock_irqrestore(&input_pool.lock, flags);
 686	memzero_explicit(next_key, sizeof(next_key));
 687
 688	while (len) {
 689		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 690		/* output = HASHPRF(seed, RDSEED || ++counter) */
 691		++block.counter;
 692		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 693		len -= i;
 694		buf += i;
 695	}
 
 
 
 
 696
 697	memzero_explicit(seed, sizeof(seed));
 698	memzero_explicit(&block, sizeof(block));
 
 
 
 
 
 
 
 
 699}
 700
 701#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 702
 703static void __cold _credit_init_bits(size_t bits)
 704{
 705	static struct execute_work set_ready;
 706	unsigned int new, orig, add;
 707	unsigned long flags;
 708
 709	if (!bits)
 
 710		return;
 711
 712	add = min_t(size_t, bits, POOL_BITS);
 713
 714	orig = READ_ONCE(input_pool.init_bits);
 715	do {
 716		new = min_t(unsigned int, POOL_BITS, orig + add);
 717	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 718
 719	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 720		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 721		if (static_key_initialized)
 722			execute_in_process_context(crng_set_ready, &set_ready);
 723		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 724		wake_up_interruptible(&crng_init_wait);
 725		kill_fasync(&fasync, SIGIO, POLL_IN);
 726		pr_notice("crng init done\n");
 727		if (urandom_warning.missed)
 728			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 729				  urandom_warning.missed);
 730	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 731		spin_lock_irqsave(&base_crng.lock, flags);
 732		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 733		if (crng_init == CRNG_EMPTY) {
 734			extract_entropy(base_crng.key, sizeof(base_crng.key));
 735			crng_init = CRNG_EARLY;
 736		}
 737		spin_unlock_irqrestore(&base_crng.lock, flags);
 738	}
 739}
 
 740
 
 741
 742/**********************************************************************
 743 *
 744 * Entropy collection routines.
 745 *
 746 * The following exported functions are used for pushing entropy into
 747 * the above entropy accumulation routines:
 748 *
 749 *	void add_device_randomness(const void *buf, size_t len);
 750 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 751 *	void add_bootloader_randomness(const void *buf, size_t len);
 752 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 753 *	void add_interrupt_randomness(int irq);
 754 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 755 *	void add_disk_randomness(struct gendisk *disk);
 756 *
 757 * add_device_randomness() adds data to the input pool that
 758 * is likely to differ between two devices (or possibly even per boot).
 759 * This would be things like MAC addresses or serial numbers, or the
 760 * read-out of the RTC. This does *not* credit any actual entropy to
 761 * the pool, but it initializes the pool to different values for devices
 762 * that might otherwise be identical and have very little entropy
 763 * available to them (particularly common in the embedded world).
 764 *
 765 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 766 * entropy as specified by the caller. If the entropy pool is full it will
 767 * block until more entropy is needed.
 768 *
 769 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 770 * and device tree, and credits its input depending on whether or not the
 771 * command line option 'random.trust_bootloader'.
 772 *
 773 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 774 * representing the current instance of a VM to the pool, without crediting,
 775 * and then force-reseeds the crng so that it takes effect immediately.
 776 *
 777 * add_interrupt_randomness() uses the interrupt timing as random
 778 * inputs to the entropy pool. Using the cycle counters and the irq source
 779 * as inputs, it feeds the input pool roughly once a second or after 64
 780 * interrupts, crediting 1 bit of entropy for whichever comes first.
 781 *
 782 * add_input_randomness() uses the input layer interrupt timing, as well
 783 * as the event type information from the hardware.
 784 *
 785 * add_disk_randomness() uses what amounts to the seek time of block
 786 * layer request events, on a per-disk_devt basis, as input to the
 787 * entropy pool. Note that high-speed solid state drives with very low
 788 * seek times do not make for good sources of entropy, as their seek
 789 * times are usually fairly consistent.
 790 *
 791 * The last two routines try to estimate how many bits of entropy
 792 * to credit. They do this by keeping track of the first and second
 793 * order deltas of the event timings.
 794 *
 795 **********************************************************************/
 796
 797static bool trust_cpu __initdata = true;
 798static bool trust_bootloader __initdata = true;
 799static int __init parse_trust_cpu(char *arg)
 800{
 801	return kstrtobool(arg, &trust_cpu);
 802}
 803static int __init parse_trust_bootloader(char *arg)
 804{
 805	return kstrtobool(arg, &trust_bootloader);
 806}
 807early_param("random.trust_cpu", parse_trust_cpu);
 808early_param("random.trust_bootloader", parse_trust_bootloader);
 
 809
 810static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 811{
 812	unsigned long flags, entropy = random_get_entropy();
 
 
 
 
 813
 814	/*
 815	 * Encode a representation of how long the system has been suspended,
 816	 * in a way that is distinct from prior system suspends.
 817	 */
 818	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 
 
 819
 820	spin_lock_irqsave(&input_pool.lock, flags);
 821	_mix_pool_bytes(&action, sizeof(action));
 822	_mix_pool_bytes(stamps, sizeof(stamps));
 823	_mix_pool_bytes(&entropy, sizeof(entropy));
 824	spin_unlock_irqrestore(&input_pool.lock, flags);
 825
 826	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 827	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 828	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 829		crng_reseed(NULL);
 830		pr_notice("crng reseeded on system resumption\n");
 
 
 
 831	}
 832	return 0;
 833}
 834
 835static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 836
 837/*
 838 * This is called extremely early, before time keeping functionality is
 839 * available, but arch randomness is. Interrupts are not yet enabled.
 840 */
 841void __init random_init_early(const char *command_line)
 842{
 843	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 844	size_t i, longs, arch_bits;
 
 
 
 845
 846#if defined(LATENT_ENTROPY_PLUGIN)
 847	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 848	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 849#endif
 850
 851	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 852		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 853		if (longs) {
 854			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 855			i += longs;
 856			continue;
 857		}
 858		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 859		if (longs) {
 860			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 861			i += longs;
 862			continue;
 863		}
 864		arch_bits -= sizeof(*entropy) * 8;
 865		++i;
 866	}
 867
 868	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 869	_mix_pool_bytes(command_line, strlen(command_line));
 870
 871	/* Reseed if already seeded by earlier phases. */
 872	if (crng_ready())
 873		crng_reseed(NULL);
 874	else if (trust_cpu)
 875		_credit_init_bits(arch_bits);
 876}
 877
 878/*
 879 * This is called a little bit after the prior function, and now there is
 880 * access to timestamps counters. Interrupts are not yet enabled.
 
 881 */
 882void __init random_init(void)
 883{
 884	unsigned long entropy = random_get_entropy();
 885	ktime_t now = ktime_get_real();
 886
 887	_mix_pool_bytes(&now, sizeof(now));
 888	_mix_pool_bytes(&entropy, sizeof(entropy));
 889	add_latent_entropy();
 
 
 890
 891	/*
 892	 * If we were initialized by the cpu or bootloader before jump labels
 893	 * are initialized, then we should enable the static branch here, where
 894	 * it's guaranteed that jump labels have been initialized.
 895	 */
 896	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 897		crng_set_ready(NULL);
 898
 899	/* Reseed if already seeded by earlier phases. */
 900	if (crng_ready())
 901		crng_reseed(NULL);
 902
 903	WARN_ON(register_pm_notifier(&pm_notifier));
 904
 905	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 906		       "entropy collection will consequently suffer.");
 
 907}
 908
 909/*
 910 * Add device- or boot-specific data to the input pool to help
 911 * initialize it.
 912 *
 913 * None of this adds any entropy; it is meant to avoid the problem of
 914 * the entropy pool having similar initial state across largely
 915 * identical devices.
 
 
 
 916 */
 917void add_device_randomness(const void *buf, size_t len)
 
 
 918{
 919	unsigned long entropy = random_get_entropy();
 920	unsigned long flags;
 921
 922	spin_lock_irqsave(&input_pool.lock, flags);
 923	_mix_pool_bytes(&entropy, sizeof(entropy));
 924	_mix_pool_bytes(buf, len);
 925	spin_unlock_irqrestore(&input_pool.lock, flags);
 926}
 927EXPORT_SYMBOL(add_device_randomness);
 928
 929/*
 930 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 931 * may produce endless random bits, so this function will sleep for
 932 * some amount of time after, if the sleep_after parameter is true.
 933 */
 934void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 935{
 936	mix_pool_bytes(buf, len);
 937	credit_init_bits(entropy);
 
 
 938
 939	/*
 940	 * Throttle writing to once every reseed interval, unless we're not yet
 941	 * initialized or no entropy is credited.
 942	 */
 943	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 944		schedule_timeout_interruptible(crng_reseed_interval());
 945}
 946EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 947
 948/*
 949 * Handle random seed passed by bootloader, and credit it depending
 950 * on the command line option 'random.trust_bootloader'.
 951 */
 952void __init add_bootloader_randomness(const void *buf, size_t len)
 953{
 954	mix_pool_bytes(buf, len);
 955	if (trust_bootloader)
 956		credit_init_bits(len * 8);
 957}
 958
 959#if IS_ENABLED(CONFIG_VMGENID)
 960static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 961
 962/*
 963 * Handle a new unique VM ID, which is unique, not secret, so we
 964 * don't credit it, but we do immediately force a reseed after so
 965 * that it's used by the crng posthaste.
 966 */
 967void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 968{
 969	add_device_randomness(unique_vm_id, len);
 970	if (crng_ready()) {
 971		crng_reseed(NULL);
 972		pr_notice("crng reseeded due to virtual machine fork\n");
 973	}
 974	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 975}
 976#if IS_MODULE(CONFIG_VMGENID)
 977EXPORT_SYMBOL_GPL(add_vmfork_randomness);
 978#endif
 979
 980int __cold register_random_vmfork_notifier(struct notifier_block *nb)
 981{
 982	return blocking_notifier_chain_register(&vmfork_chain, nb);
 983}
 984EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
 985
 986int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
 987{
 988	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
 989}
 990EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
 991#endif
 992
 993struct fast_pool {
 994	unsigned long pool[4];
 995	unsigned long last;
 996	unsigned int count;
 997	struct timer_list mix;
 998};
 999
1000static void mix_interrupt_randomness(struct timer_list *work);
1001
1002static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1003#ifdef CONFIG_64BIT
1004#define FASTMIX_PERM SIPHASH_PERMUTATION
1005	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1006#else
1007#define FASTMIX_PERM HSIPHASH_PERMUTATION
1008	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1009#endif
1010	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1011};
1012
1013/*
1014 * This is [Half]SipHash-1-x, starting from an empty key. Because
1015 * the key is fixed, it assumes that its inputs are non-malicious,
1016 * and therefore this has no security on its own. s represents the
1017 * four-word SipHash state, while v represents a two-word input.
1018 */
1019static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1020{
1021	s[3] ^= v1;
1022	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1023	s[0] ^= v1;
1024	s[3] ^= v2;
1025	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1026	s[0] ^= v2;
1027}
1028
1029#ifdef CONFIG_SMP
1030/*
1031 * This function is called when the CPU has just come online, with
1032 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1033 */
1034int __cold random_online_cpu(unsigned int cpu)
1035{
1036	/*
1037	 * During CPU shutdown and before CPU onlining, add_interrupt_
1038	 * randomness() may schedule mix_interrupt_randomness(), and
1039	 * set the MIX_INFLIGHT flag. However, because the worker can
1040	 * be scheduled on a different CPU during this period, that
1041	 * flag will never be cleared. For that reason, we zero out
1042	 * the flag here, which runs just after workqueues are onlined
1043	 * for the CPU again. This also has the effect of setting the
1044	 * irq randomness count to zero so that new accumulated irqs
1045	 * are fresh.
1046	 */
1047	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1048	return 0;
1049}
1050#endif
1051
1052static void mix_interrupt_randomness(struct timer_list *work)
1053{
1054	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1055	/*
1056	 * The size of the copied stack pool is explicitly 2 longs so that we
1057	 * only ever ingest half of the siphash output each time, retaining
1058	 * the other half as the next "key" that carries over. The entropy is
1059	 * supposed to be sufficiently dispersed between bits so on average
1060	 * we don't wind up "losing" some.
1061	 */
1062	unsigned long pool[2];
1063	unsigned int count;
1064
1065	/* Check to see if we're running on the wrong CPU due to hotplug. */
1066	local_irq_disable();
1067	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1068		local_irq_enable();
1069		return;
1070	}
1071
1072	/*
1073	 * Copy the pool to the stack so that the mixer always has a
1074	 * consistent view, before we reenable irqs again.
 
1075	 */
1076	memcpy(pool, fast_pool->pool, sizeof(pool));
1077	count = fast_pool->count;
1078	fast_pool->count = 0;
1079	fast_pool->last = jiffies;
1080	local_irq_enable();
1081
1082	mix_pool_bytes(pool, sizeof(pool));
1083	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
 
 
 
 
 
 
 
 
1084
1085	memzero_explicit(pool, sizeof(pool));
 
1086}
1087
1088void add_interrupt_randomness(int irq)
 
1089{
1090	enum { MIX_INFLIGHT = 1U << 31 };
1091	unsigned long entropy = random_get_entropy();
1092	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1093	struct pt_regs *regs = get_irq_regs();
1094	unsigned int new_count;
1095
1096	fast_mix(fast_pool->pool, entropy,
1097		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1098	new_count = ++fast_pool->count;
1099
1100	if (new_count & MIX_INFLIGHT)
1101		return;
1102
1103	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1104		return;
1105
1106	fast_pool->count |= MIX_INFLIGHT;
1107	if (!timer_pending(&fast_pool->mix)) {
1108		fast_pool->mix.expires = jiffies;
1109		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
 
 
 
 
 
 
 
1110	}
1111}
1112EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1113
1114/* There is one of these per entropy source */
1115struct timer_rand_state {
1116	unsigned long last_time;
1117	long last_delta, last_delta2;
1118};
1119
1120/*
1121 * This function adds entropy to the entropy "pool" by using timing
1122 * delays. It uses the timer_rand_state structure to make an estimate
1123 * of how many bits of entropy this call has added to the pool. The
1124 * value "num" is also added to the pool; it should somehow describe
1125 * the type of event that just happened.
1126 */
1127static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1128{
1129	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1130	long delta, delta2, delta3;
1131	unsigned int bits;
1132
1133	/*
1134	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1135	 * sometime after, so mix into the fast pool.
1136	 */
1137	if (in_hardirq()) {
1138		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1139	} else {
1140		spin_lock_irqsave(&input_pool.lock, flags);
1141		_mix_pool_bytes(&entropy, sizeof(entropy));
1142		_mix_pool_bytes(&num, sizeof(num));
1143		spin_unlock_irqrestore(&input_pool.lock, flags);
1144	}
 
1145
1146	if (crng_ready())
1147		return;
 
 
 
 
1148
1149	/*
1150	 * Calculate number of bits of randomness we probably added.
1151	 * We take into account the first, second and third-order deltas
1152	 * in order to make our estimate.
1153	 */
1154	delta = now - READ_ONCE(state->last_time);
1155	WRITE_ONCE(state->last_time, now);
1156
1157	delta2 = delta - READ_ONCE(state->last_delta);
1158	WRITE_ONCE(state->last_delta, delta);
1159
1160	delta3 = delta2 - READ_ONCE(state->last_delta2);
1161	WRITE_ONCE(state->last_delta2, delta2);
 
 
 
 
 
 
 
 
 
1162
1163	if (delta < 0)
1164		delta = -delta;
1165	if (delta2 < 0)
1166		delta2 = -delta2;
1167	if (delta3 < 0)
1168		delta3 = -delta3;
1169	if (delta > delta2)
1170		delta = delta2;
1171	if (delta > delta3)
1172		delta = delta3;
 
 
 
 
 
 
 
 
1173
1174	/*
1175	 * delta is now minimum absolute delta. Round down by 1 bit
1176	 * on general principles, and limit entropy estimate to 11 bits.
1177	 */
1178	bits = min(fls(delta >> 1), 11);
 
 
1179
1180	/*
1181	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1182	 * will run after this, which uses a different crediting scheme of 1 bit
1183	 * per every 64 interrupts. In order to let that function do accounting
1184	 * close to the one in this function, we credit a full 64/64 bit per bit,
1185	 * and then subtract one to account for the extra one added.
1186	 */
1187	if (in_hardirq())
1188		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1189	else
1190		_credit_init_bits(bits);
1191}
 
1192
1193void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1194{
1195	static unsigned char last_value;
1196	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1197
1198	/* Ignore autorepeat and the like. */
1199	if (value == last_value)
1200		return;
 
 
 
 
 
 
 
 
 
 
 
1201
1202	last_value = value;
1203	add_timer_randomness(&input_timer_state,
1204			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 
 
 
 
 
1205}
1206EXPORT_SYMBOL_GPL(add_input_randomness);
1207
1208#ifdef CONFIG_BLOCK
1209void add_disk_randomness(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
1210{
1211	if (!disk || !disk->random)
1212		return;
1213	/* First major is 1, so we get >= 0x200 here. */
1214	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1215}
1216EXPORT_SYMBOL_GPL(add_disk_randomness);
1217
1218void __cold rand_initialize_disk(struct gendisk *disk)
 
1219{
1220	struct timer_rand_state *state;
1221
1222	/*
1223	 * If kzalloc returns null, we just won't use that entropy
1224	 * source.
1225	 */
1226	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1227	if (state) {
1228		state->last_time = INITIAL_JIFFIES;
1229		disk->random = state;
1230	}
1231}
1232#endif
1233
1234struct entropy_timer_state {
1235	unsigned long entropy;
1236	struct timer_list timer;
1237	atomic_t samples;
1238	unsigned int samples_per_bit;
1239};
1240
1241/*
1242 * Each time the timer fires, we expect that we got an unpredictable jump in
1243 * the cycle counter. Even if the timer is running on another CPU, the timer
1244 * activity will be touching the stack of the CPU that is generating entropy.
1245 *
1246 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1247 * scheduled away, since that just makes the load more complex, but we do not
1248 * want the timer to keep ticking unless the entropy loop is running.
1249 *
1250 * So the re-arming always happens in the entropy loop itself.
1251 */
1252static void __cold entropy_timer(struct timer_list *timer)
1253{
1254	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1255	unsigned long entropy = random_get_entropy();
1256
1257	mix_pool_bytes(&entropy, sizeof(entropy));
1258	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1259		credit_init_bits(1);
1260}
1261
1262/*
1263 * If we have an actual cycle counter, see if we can generate enough entropy
1264 * with timing noise.
1265 */
1266static void __cold try_to_generate_entropy(void)
1267{
1268	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1269	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1270	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1271	unsigned int i, num_different = 0;
1272	unsigned long last = random_get_entropy();
1273	int cpu = -1;
1274
1275	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1276		stack->entropy = random_get_entropy();
1277		if (stack->entropy != last)
1278			++num_different;
1279		last = stack->entropy;
1280	}
1281	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1282	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1283		return;
1284
1285	atomic_set(&stack->samples, 0);
1286	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1287	while (!crng_ready() && !signal_pending(current)) {
1288		/*
1289		 * Check !timer_pending() and then ensure that any previous callback has finished
1290		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1291		 */
1292		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1293			struct cpumask timer_cpus;
1294			unsigned int num_cpus;
1295
1296			/*
1297			 * Preemption must be disabled here, both to read the current CPU number
1298			 * and to avoid scheduling a timer on a dead CPU.
1299			 */
1300			preempt_disable();
1301
1302			/* Only schedule callbacks on timer CPUs that are online. */
1303			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1304			num_cpus = cpumask_weight(&timer_cpus);
1305			/* In very bizarre case of misconfiguration, fallback to all online. */
1306			if (unlikely(num_cpus == 0)) {
1307				timer_cpus = *cpu_online_mask;
1308				num_cpus = cpumask_weight(&timer_cpus);
1309			}
1310
1311			/* Basic CPU round-robin, which avoids the current CPU. */
1312			do {
1313				cpu = cpumask_next(cpu, &timer_cpus);
1314				if (cpu >= nr_cpu_ids)
1315					cpu = cpumask_first(&timer_cpus);
1316			} while (cpu == smp_processor_id() && num_cpus > 1);
1317
1318			/* Expiring the timer at `jiffies` means it's the next tick. */
1319			stack->timer.expires = jiffies;
1320
1321			add_timer_on(&stack->timer, cpu);
1322
1323			preempt_enable();
1324		}
1325		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1326		schedule();
1327		stack->entropy = random_get_entropy();
1328	}
1329	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1330
1331	del_timer_sync(&stack->timer);
1332	destroy_timer_on_stack(&stack->timer);
1333}
 
 
1334
 
1335
1336/**********************************************************************
1337 *
1338 * Userspace reader/writer interfaces.
1339 *
1340 * getrandom(2) is the primary modern interface into the RNG and should
1341 * be used in preference to anything else.
1342 *
1343 * Reading from /dev/random has the same functionality as calling
1344 * getrandom(2) with flags=0. In earlier versions, however, it had
1345 * vastly different semantics and should therefore be avoided, to
1346 * prevent backwards compatibility issues.
1347 *
1348 * Reading from /dev/urandom has the same functionality as calling
1349 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1350 * waiting for the RNG to be ready, it should not be used.
1351 *
1352 * Writing to either /dev/random or /dev/urandom adds entropy to
1353 * the input pool but does not credit it.
1354 *
1355 * Polling on /dev/random indicates when the RNG is initialized, on
1356 * the read side, and when it wants new entropy, on the write side.
1357 *
1358 * Both /dev/random and /dev/urandom have the same set of ioctls for
1359 * adding entropy, getting the entropy count, zeroing the count, and
1360 * reseeding the crng.
1361 *
1362 **********************************************************************/
1363
1364SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1365{
1366	struct iov_iter iter;
1367	int ret;
1368
1369	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1370		return -EINVAL;
 
 
1371
1372	/*
1373	 * Requesting insecure and blocking randomness at the same time makes
1374	 * no sense.
1375	 */
1376	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1377		return -EINVAL;
1378
1379	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1380		if (flags & GRND_NONBLOCK)
1381			return -EAGAIN;
1382		ret = wait_for_random_bytes();
1383		if (unlikely(ret))
1384			return ret;
 
 
 
1385	}
1386
1387	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1388	if (unlikely(ret))
1389		return ret;
1390	return get_random_bytes_user(&iter);
1391}
1392
1393static __poll_t random_poll(struct file *file, poll_table *wait)
 
1394{
1395	poll_wait(file, &crng_init_wait, wait);
1396	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1397}
1398
1399static ssize_t write_pool_user(struct iov_iter *iter)
 
1400{
1401	u8 block[BLAKE2S_BLOCK_SIZE];
1402	ssize_t ret = 0;
1403	size_t copied;
1404
1405	if (unlikely(!iov_iter_count(iter)))
1406		return 0;
1407
1408	for (;;) {
1409		copied = copy_from_iter(block, sizeof(block), iter);
1410		ret += copied;
1411		mix_pool_bytes(block, copied);
1412		if (!iov_iter_count(iter) || copied != sizeof(block))
1413			break;
1414
1415		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1416		if (ret % PAGE_SIZE == 0) {
1417			if (signal_pending(current))
1418				break;
1419			cond_resched();
1420		}
1421	}
1422
1423	memzero_explicit(block, sizeof(block));
1424	return ret ? ret : -EFAULT;
1425}
1426
1427static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1428{
1429	return write_pool_user(iter);
1430}
 
1431
1432static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1433{
1434	static int maxwarn = 10;
 
1435
1436	/*
1437	 * Opportunistically attempt to initialize the RNG on platforms that
1438	 * have fast cycle counters, but don't (for now) require it to succeed.
1439	 */
1440	if (!crng_ready())
1441		try_to_generate_entropy();
1442
1443	if (!crng_ready()) {
1444		if (!ratelimit_disable && maxwarn <= 0)
1445			++urandom_warning.missed;
1446		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1447			--maxwarn;
1448			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1449				  current->comm, iov_iter_count(iter));
1450		}
1451	}
1452
1453	return get_random_bytes_user(iter);
1454}
1455
1456static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1457{
1458	int ret;
1459
1460	if (!crng_ready() &&
1461	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1462	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1463		return -EAGAIN;
1464
1465	ret = wait_for_random_bytes();
1466	if (ret != 0)
1467		return ret;
1468	return get_random_bytes_user(iter);
 
 
 
 
1469}
1470
1471static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1472{
 
1473	int __user *p = (int __user *)arg;
1474	int ent_count;
1475
1476	switch (cmd) {
1477	case RNDGETENTCNT:
1478		/* Inherently racy, no point locking. */
1479		if (put_user(input_pool.init_bits, p))
1480			return -EFAULT;
1481		return 0;
1482	case RNDADDTOENTCNT:
1483		if (!capable(CAP_SYS_ADMIN))
1484			return -EPERM;
1485		if (get_user(ent_count, p))
1486			return -EFAULT;
1487		if (ent_count < 0)
1488			return -EINVAL;
1489		credit_init_bits(ent_count);
1490		return 0;
1491	case RNDADDENTROPY: {
1492		struct iov_iter iter;
1493		ssize_t ret;
1494		int len;
1495
1496		if (!capable(CAP_SYS_ADMIN))
1497			return -EPERM;
1498		if (get_user(ent_count, p++))
1499			return -EFAULT;
1500		if (ent_count < 0)
1501			return -EINVAL;
1502		if (get_user(len, p++))
1503			return -EFAULT;
1504		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1505		if (unlikely(ret))
1506			return ret;
1507		ret = write_pool_user(&iter);
1508		if (unlikely(ret < 0))
1509			return ret;
1510		/* Since we're crediting, enforce that it was all written into the pool. */
1511		if (unlikely(ret != len))
1512			return -EFAULT;
1513		credit_init_bits(ent_count);
 
 
 
 
1514		return 0;
1515	}
1516	case RNDZAPENTCNT:
1517	case RNDCLEARPOOL:
1518		/* No longer has any effect. */
1519		if (!capable(CAP_SYS_ADMIN))
1520			return -EPERM;
1521		return 0;
1522	case RNDRESEEDCRNG:
1523		if (!capable(CAP_SYS_ADMIN))
1524			return -EPERM;
1525		if (!crng_ready())
1526			return -ENODATA;
1527		crng_reseed(NULL);
1528		return 0;
1529	default:
1530		return -EINVAL;
1531	}
1532}
1533
1534static int random_fasync(int fd, struct file *filp, int on)
1535{
1536	return fasync_helper(fd, filp, on, &fasync);
1537}
1538
1539const struct file_operations random_fops = {
1540	.read_iter = random_read_iter,
1541	.write_iter = random_write_iter,
1542	.poll = random_poll,
1543	.unlocked_ioctl = random_ioctl,
1544	.compat_ioctl = compat_ptr_ioctl,
1545	.fasync = random_fasync,
1546	.llseek = noop_llseek,
1547	.splice_read = copy_splice_read,
1548	.splice_write = iter_file_splice_write,
1549};
1550
1551const struct file_operations urandom_fops = {
1552	.read_iter = urandom_read_iter,
1553	.write_iter = random_write_iter,
1554	.unlocked_ioctl = random_ioctl,
1555	.compat_ioctl = compat_ptr_ioctl,
1556	.fasync = random_fasync,
1557	.llseek = noop_llseek,
1558	.splice_read = copy_splice_read,
1559	.splice_write = iter_file_splice_write,
1560};
1561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563/********************************************************************
1564 *
1565 * Sysctl interface.
1566 *
1567 * These are partly unused legacy knobs with dummy values to not break
1568 * userspace and partly still useful things. They are usually accessible
1569 * in /proc/sys/kernel/random/ and are as follows:
1570 *
1571 * - boot_id - a UUID representing the current boot.
1572 *
1573 * - uuid - a random UUID, different each time the file is read.
1574 *
1575 * - poolsize - the number of bits of entropy that the input pool can
1576 *   hold, tied to the POOL_BITS constant.
1577 *
1578 * - entropy_avail - the number of bits of entropy currently in the
1579 *   input pool. Always <= poolsize.
1580 *
1581 * - write_wakeup_threshold - the amount of entropy in the input pool
1582 *   below which write polls to /dev/random will unblock, requesting
1583 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1584 *   to avoid breaking old userspaces, but writing to it does not
1585 *   change any behavior of the RNG.
1586 *
1587 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1588 *   It is writable to avoid breaking old userspaces, but writing
1589 *   to it does not change any behavior of the RNG.
1590 *
1591 ********************************************************************/
1592
1593#ifdef CONFIG_SYSCTL
1594
1595#include <linux/sysctl.h>
1596
1597static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1598static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1599static int sysctl_poolsize = POOL_BITS;
1600static u8 sysctl_bootid[UUID_SIZE];
1601
1602/*
1603 * This function is used to return both the bootid UUID, and random
1604 * UUID. The difference is in whether table->data is NULL; if it is,
1605 * then a new UUID is generated and returned to the user.
 
 
 
 
1606 */
1607static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1608			size_t *lenp, loff_t *ppos)
1609{
1610	u8 tmp_uuid[UUID_SIZE], *uuid;
1611	char uuid_string[UUID_STRING_LEN + 1];
1612	struct ctl_table fake_table = {
1613		.data = uuid_string,
1614		.maxlen = UUID_STRING_LEN
1615	};
1616
1617	if (write)
1618		return -EPERM;
1619
1620	uuid = table->data;
1621	if (!uuid) {
1622		uuid = tmp_uuid;
1623		generate_random_uuid(uuid);
1624	} else {
1625		static DEFINE_SPINLOCK(bootid_spinlock);
1626
1627		spin_lock(&bootid_spinlock);
1628		if (!uuid[8])
1629			generate_random_uuid(uuid);
1630		spin_unlock(&bootid_spinlock);
1631	}
1632
1633	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1634	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1635}
1636
1637/* The same as proc_dointvec, but writes don't change anything. */
1638static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1639			    size_t *lenp, loff_t *ppos)
1640{
1641	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1642}
1643
1644static struct ctl_table random_table[] = {
 
1645	{
1646		.procname	= "poolsize",
1647		.data		= &sysctl_poolsize,
1648		.maxlen		= sizeof(int),
1649		.mode		= 0444,
1650		.proc_handler	= proc_dointvec,
1651	},
1652	{
1653		.procname	= "entropy_avail",
1654		.data		= &input_pool.init_bits,
1655		.maxlen		= sizeof(int),
1656		.mode		= 0444,
1657		.proc_handler	= proc_dointvec,
 
1658	},
1659	{
1660		.procname	= "write_wakeup_threshold",
1661		.data		= &sysctl_random_write_wakeup_bits,
1662		.maxlen		= sizeof(int),
1663		.mode		= 0644,
1664		.proc_handler	= proc_do_rointvec,
 
 
1665	},
1666	{
1667		.procname	= "urandom_min_reseed_secs",
1668		.data		= &sysctl_random_min_urandom_seed,
1669		.maxlen		= sizeof(int),
1670		.mode		= 0644,
1671		.proc_handler	= proc_do_rointvec,
 
 
1672	},
1673	{
1674		.procname	= "boot_id",
1675		.data		= &sysctl_bootid,
 
1676		.mode		= 0444,
1677		.proc_handler	= proc_do_uuid,
1678	},
1679	{
1680		.procname	= "uuid",
 
1681		.mode		= 0444,
1682		.proc_handler	= proc_do_uuid,
1683	},
 
1684};
 
 
 
 
 
 
 
 
 
 
1685
1686/*
1687 * random_init() is called before sysctl_init(),
1688 * so we cannot call register_sysctl_init() in random_init()
 
 
1689 */
1690static int __init random_sysctls_init(void)
 
1691{
1692	register_sysctl_init("kernel/random", random_table);
1693	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694}
1695device_initcall(random_sysctls_init);
1696#endif
v3.5.6
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *	void add_device_randomness(const void *buf, unsigned int size);
 129 * 	void add_input_randomness(unsigned int type, unsigned int code,
 130 *                                unsigned int value);
 131 *	void add_interrupt_randomness(int irq, int irq_flags);
 132 * 	void add_disk_randomness(struct gendisk *disk);
 133 *
 134 * add_device_randomness() is for adding data to the random pool that
 135 * is likely to differ between two devices (or possibly even per boot).
 136 * This would be things like MAC addresses or serial numbers, or the
 137 * read-out of the RTC. This does *not* add any actual entropy to the
 138 * pool, but it initializes the pool to different values for devices
 139 * that might otherwise be identical and have very little entropy
 140 * available to them (particularly common in the embedded world).
 141 *
 142 * add_input_randomness() uses the input layer interrupt timing, as well as
 143 * the event type information from the hardware.
 144 *
 145 * add_interrupt_randomness() uses the interrupt timing as random
 146 * inputs to the entropy pool. Using the cycle counters and the irq source
 147 * as inputs, it feeds the randomness roughly once a second.
 148 *
 149 * add_disk_randomness() uses what amounts to the seek time of block
 150 * layer request events, on a per-disk_devt basis, as input to the
 151 * entropy pool. Note that high-speed solid state drives with very low
 152 * seek times do not make for good sources of entropy, as their seek
 153 * times are usually fairly consistent.
 154 *
 155 * All of these routines try to estimate how many bits of randomness a
 156 * particular randomness source.  They do this by keeping track of the
 157 * first and second order deltas of the event timings.
 158 *
 159 * Ensuring unpredictability at system startup
 160 * ============================================
 161 *
 162 * When any operating system starts up, it will go through a sequence
 163 * of actions that are fairly predictable by an adversary, especially
 164 * if the start-up does not involve interaction with a human operator.
 165 * This reduces the actual number of bits of unpredictability in the
 166 * entropy pool below the value in entropy_count.  In order to
 167 * counteract this effect, it helps to carry information in the
 168 * entropy pool across shut-downs and start-ups.  To do this, put the
 169 * following lines an appropriate script which is run during the boot
 170 * sequence:
 171 *
 172 *	echo "Initializing random number generator..."
 173 *	random_seed=/var/run/random-seed
 174 *	# Carry a random seed from start-up to start-up
 175 *	# Load and then save the whole entropy pool
 176 *	if [ -f $random_seed ]; then
 177 *		cat $random_seed >/dev/urandom
 178 *	else
 179 *		touch $random_seed
 180 *	fi
 181 *	chmod 600 $random_seed
 182 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 183 *
 184 * and the following lines in an appropriate script which is run as
 185 * the system is shutdown:
 186 *
 187 *	# Carry a random seed from shut-down to start-up
 188 *	# Save the whole entropy pool
 189 *	echo "Saving random seed..."
 190 *	random_seed=/var/run/random-seed
 191 *	touch $random_seed
 192 *	chmod 600 $random_seed
 193 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 194 *
 195 * For example, on most modern systems using the System V init
 196 * scripts, such code fragments would be found in
 197 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 199 *
 200 * Effectively, these commands cause the contents of the entropy pool
 201 * to be saved at shut-down time and reloaded into the entropy pool at
 202 * start-up.  (The 'dd' in the addition to the bootup script is to
 203 * make sure that /etc/random-seed is different for every start-up,
 204 * even if the system crashes without executing rc.0.)  Even with
 205 * complete knowledge of the start-up activities, predicting the state
 206 * of the entropy pool requires knowledge of the previous history of
 207 * the system.
 208 *
 209 * Configuring the /dev/random driver under Linux
 210 * ==============================================
 211 *
 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 213 * the /dev/mem major number (#1).  So if your system does not have
 214 * /dev/random and /dev/urandom created already, they can be created
 215 * by using the commands:
 216 *
 217 * 	mknod /dev/random c 1 8
 218 * 	mknod /dev/urandom c 1 9
 219 *
 220 * Acknowledgements:
 221 * =================
 222 *
 223 * Ideas for constructing this random number generator were derived
 224 * from Pretty Good Privacy's random number generator, and from private
 225 * discussions with Phil Karn.  Colin Plumb provided a faster random
 226 * number generator, which speed up the mixing function of the entropy
 227 * pool, taken from PGPfone.  Dale Worley has also contributed many
 228 * useful ideas and suggestions to improve this driver.
 229 *
 230 * Any flaws in the design are solely my responsibility, and should
 231 * not be attributed to the Phil, Colin, or any of authors of PGP.
 232 *
 233 * Further background information on this topic may be obtained from
 234 * RFC 1750, "Randomness Recommendations for Security", by Donald
 235 * Eastlake, Steve Crocker, and Jeff Schiller.
 236 */
 237
 
 
 238#include <linux/utsname.h>
 239#include <linux/module.h>
 240#include <linux/kernel.h>
 241#include <linux/major.h>
 242#include <linux/string.h>
 243#include <linux/fcntl.h>
 244#include <linux/slab.h>
 245#include <linux/random.h>
 246#include <linux/poll.h>
 247#include <linux/init.h>
 248#include <linux/fs.h>
 249#include <linux/genhd.h>
 250#include <linux/interrupt.h>
 251#include <linux/mm.h>
 
 252#include <linux/spinlock.h>
 
 253#include <linux/percpu.h>
 254#include <linux/cryptohash.h>
 255#include <linux/fips.h>
 256#include <linux/ptrace.h>
 257#include <linux/kmemcheck.h>
 258
 259#ifdef CONFIG_GENERIC_HARDIRQS
 260# include <linux/irq.h>
 261#endif
 262
 
 
 
 
 
 
 
 263#include <asm/processor.h>
 264#include <asm/uaccess.h>
 265#include <asm/irq.h>
 266#include <asm/irq_regs.h>
 267#include <asm/io.h>
 268
 269#define CREATE_TRACE_POINTS
 270#include <trace/events/random.h>
 
 
 
 
 
 
 
 271
 272/*
 273 * Configuration information
 
 274 */
 275#define INPUT_POOL_WORDS 128
 276#define OUTPUT_POOL_WORDS 32
 277#define SEC_XFER_SIZE 512
 278#define EXTRACT_SIZE 10
 
 
 
 
 
 
 
 279
 280#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 
 
 
 
 
 
 281
 282/*
 283 * The minimum number of bits of entropy before we wake up a read on
 284 * /dev/random.  Should be enough to do a significant reseed.
 
 
 
 
 
 285 */
 286static int random_read_wakeup_thresh = 64;
 
 
 
 
 
 
 
 
 
 
 
 
 287
 288/*
 289 * If the entropy count falls under this number of bits, then we
 290 * should wake up processes which are selecting or polling on write
 291 * access to /dev/random.
 
 
 
 
 
 292 */
 293static int random_write_wakeup_thresh = 128;
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295/*
 296 * When the input pool goes over trickle_thresh, start dropping most
 297 * samples to avoid wasting CPU time and reduce lock contention.
 
 
 298 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 299
 300static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
 
 
 
 301
 302static DEFINE_PER_CPU(int, trickle_count);
 303
 304/*
 305 * A pool of size .poolwords is stirred with a primitive polynomial
 306 * of degree .poolwords over GF(2).  The taps for various sizes are
 307 * defined below.  They are chosen to be evenly spaced (minimum RMS
 308 * distance from evenly spaced; the numbers in the comments are a
 309 * scaled squared error sum) except for the last tap, which is 1 to
 310 * get the twisting happening as fast as possible.
 311 */
 312static struct poolinfo {
 313	int poolwords;
 314	int tap1, tap2, tap3, tap4, tap5;
 315} poolinfo_table[] = {
 316	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
 317	{ 128,	103,	76,	51,	25,	1 },
 318	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
 319	{ 32,	26,	20,	14,	7,	1 },
 320#if 0
 321	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 322	{ 2048,	1638,	1231,	819,	411,	1 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323
 324	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 325	{ 1024,	817,	615,	412,	204,	1 },
 
 
 
 326
 327	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 328	{ 1024,	819,	616,	410,	207,	2 },
 
 
 329
 330	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 331	{ 512,	411,	308,	208,	104,	1 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332
 333	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 334	{ 512,	409,	307,	206,	102,	2 },
 335	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 336	{ 512,	409,	309,	205,	103,	2 },
 337
 338	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 339	{ 256,	205,	155,	101,	52,	1 },
 
 
 
 
 
 340
 341	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 342	{ 128,	103,	78,	51,	27,	2 },
 
 343
 344	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 345	{ 64,	52,	39,	26,	14,	1 },
 346#endif
 347};
 348
 349#define POOLBITS	poolwords*32
 350#define POOLBYTES	poolwords*4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351
 352/*
 353 * For the purposes of better mixing, we use the CRC-32 polynomial as
 354 * well to make a twisted Generalized Feedback Shift Reigster
 
 
 
 355 *
 356 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 357 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 358 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 359 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 360 *
 361 * Thanks to Colin Plumb for suggesting this.
 362 *
 363 * We have not analyzed the resultant polynomial to prove it primitive;
 364 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 365 * of a random large-degree polynomial over GF(2) are more than large enough
 366 * that periodicity is not a concern.
 367 *
 368 * The input hash is much less sensitive than the output hash.  All
 369 * that we want of it is that it be a good non-cryptographic hash;
 370 * i.e. it not produce collisions when fed "random" data of the sort
 371 * we expect to see.  As long as the pool state differs for different
 372 * inputs, we have preserved the input entropy and done a good job.
 373 * The fact that an intelligent attacker can construct inputs that
 374 * will produce controlled alterations to the pool's state is not
 375 * important because we don't consider such inputs to contribute any
 376 * randomness.  The only property we need with respect to them is that
 377 * the attacker can't increase his/her knowledge of the pool's state.
 378 * Since all additions are reversible (knowing the final state and the
 379 * input, you can reconstruct the initial state), if an attacker has
 380 * any uncertainty about the initial state, he/she can only shuffle
 381 * that uncertainty about, but never cause any collisions (which would
 382 * decrease the uncertainty).
 383 *
 384 * The chosen system lets the state of the pool be (essentially) the input
 385 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 386 * this is a universal class of hash functions, meaning that the chance
 387 * of a collision is limited by the attacker's knowledge of the generator
 388 * polynomail, so if it is chosen at random, an attacker can never force
 389 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 390 * ###--> it is unknown to the processes generating the input entropy. <-###
 391 * Because of this important property, this is a good, collision-resistant
 392 * hash; hash collisions will occur no more often than chance.
 393 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394
 395/*
 396 * Static global variables
 
 
 397 */
 398static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 399static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 400static struct fasync_struct *fasync;
 
 
 401
 402#if 0
 403static bool debug;
 404module_param(debug, bool, 0644);
 405#define DEBUG_ENT(fmt, arg...) do { \
 406	if (debug) \
 407		printk(KERN_DEBUG "random %04d %04d %04d: " \
 408		fmt,\
 409		input_pool.entropy_count,\
 410		blocking_pool.entropy_count,\
 411		nonblocking_pool.entropy_count,\
 412		## arg); } while (0)
 413#else
 414#define DEBUG_ENT(fmt, arg...) do {} while (0)
 415#endif
 416
 417/**********************************************************************
 418 *
 419 * OS independent entropy store.   Here are the functions which handle
 420 * storing entropy in an entropy pool.
 421 *
 422 **********************************************************************/
 
 
 423
 424struct entropy_store;
 425struct entropy_store {
 426	/* read-only data: */
 427	struct poolinfo *poolinfo;
 428	__u32 *pool;
 429	const char *name;
 430	struct entropy_store *pull;
 431	int limit;
 
 
 
 
 432
 433	/* read-write data: */
 434	spinlock_t lock;
 435	unsigned add_ptr;
 436	unsigned input_rotate;
 437	int entropy_count;
 438	int entropy_total;
 439	unsigned int initialized:1;
 440	__u8 last_data[EXTRACT_SIZE];
 441};
 442
 443static __u32 input_pool_data[INPUT_POOL_WORDS];
 444static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 445static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 446
 447static struct entropy_store input_pool = {
 448	.poolinfo = &poolinfo_table[0],
 449	.name = "input",
 450	.limit = 1,
 451	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
 452	.pool = input_pool_data
 453};
 
 
 454
 455static struct entropy_store blocking_pool = {
 456	.poolinfo = &poolinfo_table[1],
 457	.name = "blocking",
 458	.limit = 1,
 459	.pull = &input_pool,
 460	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
 461	.pool = blocking_pool_data
 462};
 
 
 463
 464static struct entropy_store nonblocking_pool = {
 465	.poolinfo = &poolinfo_table[1],
 466	.name = "nonblocking",
 467	.pull = &input_pool,
 468	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
 469	.pool = nonblocking_pool_data
 470};
 471
 472static __u32 const twist_table[8] = {
 473	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 474	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 475
 476/*
 477 * This function adds bytes into the entropy "pool".  It does not
 478 * update the entropy estimate.  The caller should call
 479 * credit_entropy_bits if this is appropriate.
 480 *
 481 * The pool is stirred with a primitive polynomial of the appropriate
 482 * degree, and then twisted.  We twist by three bits at a time because
 483 * it's cheap to do so and helps slightly in the expected case where
 484 * the entropy is concentrated in the low-order bits.
 485 */
 486static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 487			    int nbytes, __u8 out[64])
 488{
 489	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
 490	int input_rotate;
 491	int wordmask = r->poolinfo->poolwords - 1;
 492	const char *bytes = in;
 493	__u32 w;
 494
 495	tap1 = r->poolinfo->tap1;
 496	tap2 = r->poolinfo->tap2;
 497	tap3 = r->poolinfo->tap3;
 498	tap4 = r->poolinfo->tap4;
 499	tap5 = r->poolinfo->tap5;
 500
 501	smp_rmb();
 502	input_rotate = ACCESS_ONCE(r->input_rotate);
 503	i = ACCESS_ONCE(r->add_ptr);
 504
 505	/* mix one byte at a time to simplify size handling and churn faster */
 506	while (nbytes--) {
 507		w = rol32(*bytes++, input_rotate & 31);
 508		i = (i - 1) & wordmask;
 509
 510		/* XOR in the various taps */
 511		w ^= r->pool[i];
 512		w ^= r->pool[(i + tap1) & wordmask];
 513		w ^= r->pool[(i + tap2) & wordmask];
 514		w ^= r->pool[(i + tap3) & wordmask];
 515		w ^= r->pool[(i + tap4) & wordmask];
 516		w ^= r->pool[(i + tap5) & wordmask];
 517
 518		/* Mix the result back in with a twist */
 519		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 
 
 
 
 
 
 
 
 
 
 520
 521		/*
 522		 * Normally, we add 7 bits of rotation to the pool.
 523		 * At the beginning of the pool, add an extra 7 bits
 524		 * rotation, so that successive passes spread the
 525		 * input bits across the pool evenly.
 526		 */
 527		input_rotate += i ? 7 : 14;
 528	}
 529
 530	ACCESS_ONCE(r->input_rotate) = input_rotate;
 531	ACCESS_ONCE(r->add_ptr) = i;
 532	smp_wmb();
 533
 534	if (out)
 535		for (j = 0; j < 16; j++)
 536			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
 537}
 538
 539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 540			     int nbytes, __u8 out[64])
 
 
 
 
 
 
 541{
 542	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 543	_mix_pool_bytes(r, in, nbytes, out);
 544}
 
 545
 546static void mix_pool_bytes(struct entropy_store *r, const void *in,
 547			   int nbytes, __u8 out[64])
 548{
 549	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550
 551	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 552	spin_lock_irqsave(&r->lock, flags);
 553	_mix_pool_bytes(r, in, nbytes, out);
 554	spin_unlock_irqrestore(&r->lock, flags);
 555}
 
 
 556
 557struct fast_pool {
 558	__u32		pool[4];
 559	unsigned long	last;
 560	unsigned short	count;
 561	unsigned char	rotate;
 562	unsigned char	last_timer_intr;
 563};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565/*
 566 * This is a fast mixing routine used by the interrupt randomness
 567 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 568 * locks that might be needed are taken by the caller.
 569 */
 570static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
 571{
 572	const char	*bytes = in;
 573	__u32		w;
 574	unsigned	i = f->count;
 575	unsigned	input_rotate = f->rotate;
 
 
 
 
 
 
 
 576
 577	while (nbytes--) {
 578		w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
 579			f->pool[(i + 1) & 3];
 580		f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
 581		input_rotate += (i++ & 3) ? 7 : 14;
 
 
 
 
 
 
 
 
 
 
 
 582	}
 583	f->count = i;
 584	f->rotate = input_rotate;
 585}
 
 586
 
 587/*
 588 * Credit (or debit) the entropy store with n bits of entropy
 
 589 */
 590static void credit_entropy_bits(struct entropy_store *r, int nbits)
 591{
 592	int entropy_count, orig;
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594	if (!nbits)
 595		return;
 596
 597	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
 598retry:
 599	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
 600	entropy_count += nbits;
 601
 602	if (entropy_count < 0) {
 603		DEBUG_ENT("negative entropy/overflow\n");
 604		entropy_count = 0;
 605	} else if (entropy_count > r->poolinfo->POOLBITS)
 606		entropy_count = r->poolinfo->POOLBITS;
 607	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 608		goto retry;
 609
 610	if (!r->initialized && nbits > 0) {
 611		r->entropy_total += nbits;
 612		if (r->entropy_total > 128)
 613			r->initialized = 1;
 614	}
 615
 616	trace_credit_entropy_bits(r->name, nbits, entropy_count,
 617				  r->entropy_total, _RET_IP_);
 618
 619	/* should we wake readers? */
 620	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
 621		wake_up_interruptible(&random_read_wait);
 622		kill_fasync(&fasync, SIGIO, POLL_IN);
 623	}
 624}
 625
 626/*********************************************************************
 627 *
 628 * Entropy input management
 629 *
 630 *********************************************************************/
 
 
 
 
 
 
 631
 632/* There is one of these per entropy source */
 633struct timer_rand_state {
 634	cycles_t last_time;
 635	long last_delta, last_delta2;
 636	unsigned dont_count_entropy:1;
 
 
 
 
 
 637};
 638
 
 
 
 
 
 639/*
 640 * Add device- or boot-specific data to the input and nonblocking
 641 * pools to help initialize them to unique values.
 642 *
 643 * None of this adds any entropy, it is meant to avoid the
 644 * problem of the nonblocking pool having similar initial state
 645 * across largely identical devices.
 646 */
 647void add_device_randomness(const void *buf, unsigned int size)
 648{
 649	unsigned long time = get_cycles() ^ jiffies;
 650
 651	mix_pool_bytes(&input_pool, buf, size, NULL);
 652	mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
 653	mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
 654	mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
 655}
 656EXPORT_SYMBOL(add_device_randomness);
 657
 658static struct timer_rand_state input_timer_state;
 659
 660/*
 661 * This function adds entropy to the entropy "pool" by using timing
 662 * delays.  It uses the timer_rand_state structure to make an estimate
 663 * of how many bits of entropy this call has added to the pool.
 664 *
 665 * The number "num" is also added to the pool - it should somehow describe
 666 * the type of event which just happened.  This is currently 0-255 for
 667 * keyboard scan codes, and 256 upwards for interrupts.
 668 *
 669 */
 670static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 671{
 
 
 672	struct {
 673		long jiffies;
 674		unsigned cycles;
 675		unsigned num;
 676	} sample;
 677	long delta, delta2, delta3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 678
 679	preempt_disable();
 680	/* if over the trickle threshold, use only 1 in 4096 samples */
 681	if (input_pool.entropy_count > trickle_thresh &&
 682	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
 683		goto out;
 684
 685	sample.jiffies = jiffies;
 686	sample.cycles = get_cycles();
 687	sample.num = num;
 688	mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
 689
 690	/*
 691	 * Calculate number of bits of randomness we probably added.
 692	 * We take into account the first, second and third-order deltas
 693	 * in order to make our estimate.
 694	 */
 695
 696	if (!state->dont_count_entropy) {
 697		delta = sample.jiffies - state->last_time;
 698		state->last_time = sample.jiffies;
 699
 700		delta2 = delta - state->last_delta;
 701		state->last_delta = delta;
 702
 703		delta3 = delta2 - state->last_delta2;
 704		state->last_delta2 = delta2;
 705
 706		if (delta < 0)
 707			delta = -delta;
 708		if (delta2 < 0)
 709			delta2 = -delta2;
 710		if (delta3 < 0)
 711			delta3 = -delta3;
 712		if (delta > delta2)
 713			delta = delta2;
 714		if (delta > delta3)
 715			delta = delta3;
 716
 717		/*
 718		 * delta is now minimum absolute delta.
 719		 * Round down by 1 bit on general principles,
 720		 * and limit entropy entimate to 12 bits.
 721		 */
 722		credit_entropy_bits(&input_pool,
 723				    min_t(int, fls(delta>>1), 11));
 724	}
 725out:
 726	preempt_enable();
 727}
 728
 729void add_input_randomness(unsigned int type, unsigned int code,
 730				 unsigned int value)
 
 731{
 732	static unsigned char last_value;
 
 
 733
 734	/* ignore autorepeat and the like */
 735	if (value == last_value)
 736		return;
 737
 738	DEBUG_ENT("input event\n");
 739	last_value = value;
 740	add_timer_randomness(&input_timer_state,
 741			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742}
 743EXPORT_SYMBOL_GPL(add_input_randomness);
 744
 745static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 746
 747void add_interrupt_randomness(int irq, int irq_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748{
 749	struct entropy_store	*r;
 750	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
 751	struct pt_regs		*regs = get_irq_regs();
 752	unsigned long		now = jiffies;
 753	__u32			input[4], cycles = get_cycles();
 754
 755	input[0] = cycles ^ jiffies;
 756	input[1] = irq;
 757	if (regs) {
 758		__u64 ip = instruction_pointer(regs);
 759		input[2] = ip;
 760		input[3] = ip >> 32;
 761	}
 762
 763	fast_mix(fast_pool, input, sizeof(input));
 764
 765	if ((fast_pool->count & 1023) &&
 766	    !time_after(now, fast_pool->last + HZ))
 767		return;
 768
 769	fast_pool->last = now;
 770
 771	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 772	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
 773	/*
 774	 * If we don't have a valid cycle counter, and we see
 775	 * back-to-back timer interrupts, then skip giving credit for
 776	 * any entropy.
 777	 */
 778	if (cycles == 0) {
 779		if (irq_flags & __IRQF_TIMER) {
 780			if (fast_pool->last_timer_intr)
 781				return;
 782			fast_pool->last_timer_intr = 1;
 783		} else
 784			fast_pool->last_timer_intr = 0;
 785	}
 786	credit_entropy_bits(r, 1);
 787}
 788
 789#ifdef CONFIG_BLOCK
 790void add_disk_randomness(struct gendisk *disk)
 
 
 
 
 
 791{
 792	if (!disk || !disk->random)
 793		return;
 794	/* first major is 1, so we get >= 0x200 here */
 795	DEBUG_ENT("disk event %d:%d\n",
 796		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
 797
 798	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 799}
 
 800#endif
 801
 802/*********************************************************************
 803 *
 804 * Entropy extraction routines
 805 *
 806 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807
 808static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 809			       size_t nbytes, int min, int rsvd);
 
 
 
 
 810
 811/*
 812 * This utility inline function is responsible for transferring entropy
 813 * from the primary pool to the secondary extraction pool. We make
 814 * sure we pull enough for a 'catastrophic reseed'.
 815 */
 816static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 817{
 818	__u32	tmp[OUTPUT_POOL_WORDS];
 
 819
 820	if (r->pull && r->entropy_count < nbytes * 8 &&
 821	    r->entropy_count < r->poolinfo->POOLBITS) {
 822		/* If we're limited, always leave two wakeup worth's BITS */
 823		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
 824		int bytes = nbytes;
 825
 826		/* pull at least as many as BYTES as wakeup BITS */
 827		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
 828		/* but never more than the buffer size */
 829		bytes = min_t(int, bytes, sizeof(tmp));
 
 
 
 830
 831		DEBUG_ENT("going to reseed %s with %d bits "
 832			  "(%d of %d requested)\n",
 833			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
 834
 835		bytes = extract_entropy(r->pull, tmp, bytes,
 836					random_read_wakeup_thresh / 8, rsvd);
 837		mix_pool_bytes(r, tmp, bytes, NULL);
 838		credit_entropy_bits(r, bytes*8);
 839	}
 840}
 841
 842/*
 843 * These functions extracts randomness from the "entropy pool", and
 844 * returns it in a buffer.
 845 *
 846 * The min parameter specifies the minimum amount we can pull before
 847 * failing to avoid races that defeat catastrophic reseeding while the
 848 * reserved parameter indicates how much entropy we must leave in the
 849 * pool after each pull to avoid starving other readers.
 850 *
 851 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 852 */
 853
 854static size_t account(struct entropy_store *r, size_t nbytes, int min,
 855		      int reserved)
 856{
 
 857	unsigned long flags;
 858
 859	/* Hold lock while accounting */
 860	spin_lock_irqsave(&r->lock, flags);
 
 
 
 
 861
 862	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
 863	DEBUG_ENT("trying to extract %d bits from %s\n",
 864		  nbytes * 8, r->name);
 865
 866	/* Can we pull enough? */
 867	if (r->entropy_count / 8 < min + reserved) {
 868		nbytes = 0;
 869	} else {
 870		/* If limited, never pull more than available */
 871		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
 872			nbytes = r->entropy_count/8 - reserved;
 873
 874		if (r->entropy_count / 8 >= nbytes + reserved)
 875			r->entropy_count -= nbytes*8;
 876		else
 877			r->entropy_count = reserved;
 
 
 
 
 878
 879		if (r->entropy_count < random_write_wakeup_thresh) {
 880			wake_up_interruptible(&random_write_wait);
 881			kill_fasync(&fasync, SIGIO, POLL_OUT);
 882		}
 883	}
 
 
 
 
 
 884
 885	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
 886		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
 887
 888	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889
 890	return nbytes;
 
 
 891}
 
 892
 893static void extract_buf(struct entropy_store *r, __u8 *out)
 894{
 895	int i;
 896	union {
 897		__u32 w[5];
 898		unsigned long l[LONGS(EXTRACT_SIZE)];
 899	} hash;
 900	__u32 workspace[SHA_WORKSPACE_WORDS];
 901	__u8 extract[64];
 902	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	/* Generate a hash across the pool, 16 words (512 bits) at a time */
 905	sha_init(hash.w);
 906	spin_lock_irqsave(&r->lock, flags);
 907	for (i = 0; i < r->poolinfo->poolwords; i += 16)
 908		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
 
 
 
 
 
 
 
 
 
 
 909
 
 
 
 
 
 
 
 910	/*
 911	 * We mix the hash back into the pool to prevent backtracking
 912	 * attacks (where the attacker knows the state of the pool
 913	 * plus the current outputs, and attempts to find previous
 914	 * ouputs), unless the hash function can be inverted. By
 915	 * mixing at least a SHA1 worth of hash data back, we make
 916	 * brute-forcing the feedback as hard as brute-forcing the
 917	 * hash.
 
 
 918	 */
 919	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
 920	spin_unlock_irqrestore(&r->lock, flags);
 
 
 921
 
 
 
 922	/*
 923	 * To avoid duplicates, we atomically extract a portion of the
 924	 * pool while mixing, and hash one final time.
 
 
 
 925	 */
 926	sha_transform(hash.w, extract, workspace);
 927	memset(extract, 0, sizeof(extract));
 928	memset(workspace, 0, sizeof(workspace));
 
 
 
 
 
 
 929
 930	/*
 931	 * In case the hash function has some recognizable output
 932	 * pattern, we fold it in half. Thus, we always feed back
 933	 * twice as much data as we output.
 934	 */
 935	hash.w[0] ^= hash.w[3];
 936	hash.w[1] ^= hash.w[4];
 937	hash.w[2] ^= rol32(hash.w[2], 16);
 
 
 938
 939	/*
 940	 * If we have a architectural hardware random number
 941	 * generator, mix that in, too.
 942	 */
 943	for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
 944		unsigned long v;
 945		if (!arch_get_random_long(&v))
 946			break;
 947		hash.l[i] ^= v;
 948	}
 949
 950	memcpy(out, &hash, EXTRACT_SIZE);
 951	memset(&hash, 0, sizeof(hash));
 952}
 953
 954static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 955				 size_t nbytes, int min, int reserved)
 956{
 957	ssize_t ret = 0, i;
 958	__u8 tmp[EXTRACT_SIZE];
 
 
 
 959
 960	trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
 961	xfer_secondary_pool(r, nbytes);
 962	nbytes = account(r, nbytes, min, reserved);
 963
 964	while (nbytes) {
 965		extract_buf(r, tmp);
 966
 967		if (fips_enabled) {
 968			unsigned long flags;
 969
 970			spin_lock_irqsave(&r->lock, flags);
 971			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
 972				panic("Hardware RNG duplicated output!\n");
 973			memcpy(r->last_data, tmp, EXTRACT_SIZE);
 974			spin_unlock_irqrestore(&r->lock, flags);
 975		}
 976		i = min_t(int, nbytes, EXTRACT_SIZE);
 977		memcpy(buf, tmp, i);
 978		nbytes -= i;
 979		buf += i;
 980		ret += i;
 981	}
 
 
 982
 983	/* Wipe data just returned from memory */
 984	memset(tmp, 0, sizeof(tmp));
 
 
 
 985
 986	return ret;
 987}
 988
 989static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
 990				    size_t nbytes)
 
 
 
 991{
 992	ssize_t ret = 0, i;
 993	__u8 tmp[EXTRACT_SIZE];
 
 994
 995	trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
 996	xfer_secondary_pool(r, nbytes);
 997	nbytes = account(r, nbytes, 0, 0);
 998
 999	while (nbytes) {
1000		if (need_resched()) {
1001			if (signal_pending(current)) {
1002				if (ret == 0)
1003					ret = -ERESTARTSYS;
1004				break;
1005			}
1006			schedule();
1007		}
1008
1009		extract_buf(r, tmp);
1010		i = min_t(int, nbytes, EXTRACT_SIZE);
1011		if (copy_to_user(buf, tmp, i)) {
1012			ret = -EFAULT;
1013			break;
1014		}
1015
1016		nbytes -= i;
1017		buf += i;
1018		ret += i;
1019	}
1020
1021	/* Wipe data just returned from memory */
1022	memset(tmp, 0, sizeof(tmp));
1023
1024	return ret;
1025}
1026
1027/*
1028 * This function is the exported kernel interface.  It returns some
1029 * number of good random numbers, suitable for key generation, seeding
1030 * TCP sequence numbers, etc.  It does not use the hw random number
1031 * generator, if available; use get_random_bytes_arch() for that.
1032 */
1033void get_random_bytes(void *buf, int nbytes)
1034{
1035	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1036}
1037EXPORT_SYMBOL(get_random_bytes);
1038
1039/*
1040 * This function will use the architecture-specific hardware random
1041 * number generator if it is available.  The arch-specific hw RNG will
1042 * almost certainly be faster than what we can do in software, but it
1043 * is impossible to verify that it is implemented securely (as
1044 * opposed, to, say, the AES encryption of a sequence number using a
1045 * key known by the NSA).  So it's useful if we need the speed, but
1046 * only if we're willing to trust the hardware manufacturer not to
1047 * have put in a back door.
1048 */
1049void get_random_bytes_arch(void *buf, int nbytes)
1050{
1051	char *p = buf;
1052
1053	trace_get_random_bytes(nbytes, _RET_IP_);
1054	while (nbytes) {
1055		unsigned long v;
1056		int chunk = min(nbytes, (int)sizeof(unsigned long));
1057
1058		if (!arch_get_random_long(&v))
1059			break;
1060		
1061		memcpy(p, &v, chunk);
1062		p += chunk;
1063		nbytes -= chunk;
1064	}
1065
1066	if (nbytes)
1067		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
 
 
 
 
 
 
 
 
 
1068}
1069EXPORT_SYMBOL(get_random_bytes_arch);
1070
 
 
 
 
1071
1072/*
1073 * init_std_data - initialize pool with system data
1074 *
1075 * @r: pool to initialize
1076 *
1077 * This function clears the pool's entropy count and mixes some system
1078 * data into the pool to prepare it for use. The pool is not cleared
1079 * as that can only decrease the entropy in the pool.
1080 */
1081static void init_std_data(struct entropy_store *r)
1082{
1083	int i;
1084	ktime_t now = ktime_get_real();
1085	unsigned long rv;
1086
1087	r->entropy_count = 0;
1088	r->entropy_total = 0;
1089	mix_pool_bytes(r, &now, sizeof(now), NULL);
1090	for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1091		if (!arch_get_random_long(&rv))
1092			break;
1093		mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1094	}
1095	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1096}
 
1097
1098/*
1099 * Note that setup_arch() may call add_device_randomness()
1100 * long before we get here. This allows seeding of the pools
1101 * with some platform dependent data very early in the boot
1102 * process. But it limits our options here. We must use
1103 * statically allocated structures that already have all
1104 * initializations complete at compile time. We should also
1105 * take care not to overwrite the precious per platform data
1106 * we were given.
1107 */
1108static int rand_initialize(void)
1109{
1110	init_std_data(&input_pool);
1111	init_std_data(&blocking_pool);
1112	init_std_data(&nonblocking_pool);
1113	return 0;
1114}
1115module_init(rand_initialize);
1116
1117#ifdef CONFIG_BLOCK
1118void rand_initialize_disk(struct gendisk *disk)
1119{
1120	struct timer_rand_state *state;
1121
1122	/*
1123	 * If kzalloc returns null, we just won't use that entropy
1124	 * source.
1125	 */
1126	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1127	if (state)
 
1128		disk->random = state;
 
1129}
1130#endif
1131
1132static ssize_t
1133random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134{
1135	ssize_t n, retval = 0, count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136
1137	if (nbytes == 0)
1138		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139
1140	while (nbytes > 0) {
1141		n = nbytes;
1142		if (n > SEC_XFER_SIZE)
1143			n = SEC_XFER_SIZE;
 
 
1144
1145		DEBUG_ENT("reading %d bits\n", n*8);
 
1146
1147		n = extract_entropy_user(&blocking_pool, buf, n);
1148
1149		DEBUG_ENT("read got %d bits (%d still needed)\n",
1150			  n*8, (nbytes-n)*8);
 
 
 
 
 
1151
1152		if (n == 0) {
1153			if (file->f_flags & O_NONBLOCK) {
1154				retval = -EAGAIN;
1155				break;
1156			}
1157
1158			DEBUG_ENT("sleeping?\n");
1159
1160			wait_event_interruptible(random_read_wait,
1161				input_pool.entropy_count >=
1162						 random_read_wakeup_thresh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
1164			DEBUG_ENT("awake\n");
 
 
 
1165
1166			if (signal_pending(current)) {
1167				retval = -ERESTARTSYS;
1168				break;
1169			}
1170
1171			continue;
1172		}
 
 
 
 
1173
1174		if (n < 0) {
1175			retval = n;
1176			break;
1177		}
1178		count += n;
1179		buf += n;
1180		nbytes -= n;
1181		break;		/* This break makes the device work */
1182				/* like a named pipe */
1183	}
1184
1185	return (count ? count : retval);
 
 
 
1186}
1187
1188static ssize_t
1189urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1190{
1191	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
 
1192}
1193
1194static unsigned int
1195random_poll(struct file *file, poll_table * wait)
1196{
1197	unsigned int mask;
 
 
 
 
 
1198
1199	poll_wait(file, &random_read_wait, wait);
1200	poll_wait(file, &random_write_wait, wait);
1201	mask = 0;
1202	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1203		mask |= POLLIN | POLLRDNORM;
1204	if (input_pool.entropy_count < random_write_wakeup_thresh)
1205		mask |= POLLOUT | POLLWRNORM;
1206	return mask;
 
 
 
 
 
 
 
 
 
1207}
1208
1209static int
1210write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1211{
1212	size_t bytes;
1213	__u32 buf[16];
1214	const char __user *p = buffer;
1215
1216	while (count > 0) {
1217		bytes = min(count, sizeof(buf));
1218		if (copy_from_user(&buf, p, bytes))
1219			return -EFAULT;
1220
1221		count -= bytes;
1222		p += bytes;
 
 
 
 
1223
1224		mix_pool_bytes(r, buf, bytes, NULL);
1225		cond_resched();
 
 
 
 
 
 
1226	}
1227
1228	return 0;
1229}
1230
1231static ssize_t random_write(struct file *file, const char __user *buffer,
1232			    size_t count, loff_t *ppos)
1233{
1234	size_t ret;
 
 
 
 
 
1235
1236	ret = write_pool(&blocking_pool, buffer, count);
1237	if (ret)
1238		return ret;
1239	ret = write_pool(&nonblocking_pool, buffer, count);
1240	if (ret)
1241		return ret;
1242
1243	return (ssize_t)count;
1244}
1245
1246static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1247{
1248	int size, ent_count;
1249	int __user *p = (int __user *)arg;
1250	int retval;
1251
1252	switch (cmd) {
1253	case RNDGETENTCNT:
1254		/* inherently racy, no point locking */
1255		if (put_user(input_pool.entropy_count, p))
1256			return -EFAULT;
1257		return 0;
1258	case RNDADDTOENTCNT:
1259		if (!capable(CAP_SYS_ADMIN))
1260			return -EPERM;
1261		if (get_user(ent_count, p))
1262			return -EFAULT;
1263		credit_entropy_bits(&input_pool, ent_count);
 
 
1264		return 0;
1265	case RNDADDENTROPY:
 
 
 
 
1266		if (!capable(CAP_SYS_ADMIN))
1267			return -EPERM;
1268		if (get_user(ent_count, p++))
1269			return -EFAULT;
1270		if (ent_count < 0)
1271			return -EINVAL;
1272		if (get_user(size, p++))
 
 
 
 
 
 
 
 
 
1273			return -EFAULT;
1274		retval = write_pool(&input_pool, (const char __user *)p,
1275				    size);
1276		if (retval < 0)
1277			return retval;
1278		credit_entropy_bits(&input_pool, ent_count);
1279		return 0;
 
1280	case RNDZAPENTCNT:
1281	case RNDCLEARPOOL:
1282		/* Clear the entropy pool counters. */
 
 
 
 
1283		if (!capable(CAP_SYS_ADMIN))
1284			return -EPERM;
1285		rand_initialize();
 
 
1286		return 0;
1287	default:
1288		return -EINVAL;
1289	}
1290}
1291
1292static int random_fasync(int fd, struct file *filp, int on)
1293{
1294	return fasync_helper(fd, filp, on, &fasync);
1295}
1296
1297const struct file_operations random_fops = {
1298	.read  = random_read,
1299	.write = random_write,
1300	.poll  = random_poll,
1301	.unlocked_ioctl = random_ioctl,
 
1302	.fasync = random_fasync,
1303	.llseek = noop_llseek,
 
 
1304};
1305
1306const struct file_operations urandom_fops = {
1307	.read  = urandom_read,
1308	.write = random_write,
1309	.unlocked_ioctl = random_ioctl,
 
1310	.fasync = random_fasync,
1311	.llseek = noop_llseek,
 
 
1312};
1313
1314/***************************************************************
1315 * Random UUID interface
1316 *
1317 * Used here for a Boot ID, but can be useful for other kernel
1318 * drivers.
1319 ***************************************************************/
1320
1321/*
1322 * Generate random UUID
1323 */
1324void generate_random_uuid(unsigned char uuid_out[16])
1325{
1326	get_random_bytes(uuid_out, 16);
1327	/* Set UUID version to 4 --- truly random generation */
1328	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1329	/* Set the UUID variant to DCE */
1330	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1331}
1332EXPORT_SYMBOL(generate_random_uuid);
1333
1334/********************************************************************
1335 *
1336 * Sysctl interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337 *
1338 ********************************************************************/
1339
1340#ifdef CONFIG_SYSCTL
1341
1342#include <linux/sysctl.h>
1343
1344static int min_read_thresh = 8, min_write_thresh;
1345static int max_read_thresh = INPUT_POOL_WORDS * 32;
1346static int max_write_thresh = INPUT_POOL_WORDS * 32;
1347static char sysctl_bootid[16];
1348
1349/*
1350 * These functions is used to return both the bootid UUID, and random
1351 * UUID.  The difference is in whether table->data is NULL; if it is,
1352 * then a new UUID is generated and returned to the user.
1353 *
1354 * If the user accesses this via the proc interface, it will be returned
1355 * as an ASCII string in the standard UUID format.  If accesses via the
1356 * sysctl system call, it is returned as 16 bytes of binary data.
1357 */
1358static int proc_do_uuid(ctl_table *table, int write,
1359			void __user *buffer, size_t *lenp, loff_t *ppos)
1360{
1361	ctl_table fake_table;
1362	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
1363
1364	uuid = table->data;
1365	if (!uuid) {
1366		uuid = tmp_uuid;
1367		generate_random_uuid(uuid);
1368	} else {
1369		static DEFINE_SPINLOCK(bootid_spinlock);
1370
1371		spin_lock(&bootid_spinlock);
1372		if (!uuid[8])
1373			generate_random_uuid(uuid);
1374		spin_unlock(&bootid_spinlock);
1375	}
1376
1377	sprintf(buf, "%pU", uuid);
 
 
1378
1379	fake_table.data = buf;
1380	fake_table.maxlen = sizeof(buf);
1381
1382	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
 
1383}
1384
1385static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1386ctl_table random_table[] = {
1387	{
1388		.procname	= "poolsize",
1389		.data		= &sysctl_poolsize,
1390		.maxlen		= sizeof(int),
1391		.mode		= 0444,
1392		.proc_handler	= proc_dointvec,
1393	},
1394	{
1395		.procname	= "entropy_avail",
 
1396		.maxlen		= sizeof(int),
1397		.mode		= 0444,
1398		.proc_handler	= proc_dointvec,
1399		.data		= &input_pool.entropy_count,
1400	},
1401	{
1402		.procname	= "read_wakeup_threshold",
1403		.data		= &random_read_wakeup_thresh,
1404		.maxlen		= sizeof(int),
1405		.mode		= 0644,
1406		.proc_handler	= proc_dointvec_minmax,
1407		.extra1		= &min_read_thresh,
1408		.extra2		= &max_read_thresh,
1409	},
1410	{
1411		.procname	= "write_wakeup_threshold",
1412		.data		= &random_write_wakeup_thresh,
1413		.maxlen		= sizeof(int),
1414		.mode		= 0644,
1415		.proc_handler	= proc_dointvec_minmax,
1416		.extra1		= &min_write_thresh,
1417		.extra2		= &max_write_thresh,
1418	},
1419	{
1420		.procname	= "boot_id",
1421		.data		= &sysctl_bootid,
1422		.maxlen		= 16,
1423		.mode		= 0444,
1424		.proc_handler	= proc_do_uuid,
1425	},
1426	{
1427		.procname	= "uuid",
1428		.maxlen		= 16,
1429		.mode		= 0444,
1430		.proc_handler	= proc_do_uuid,
1431	},
1432	{ }
1433};
1434#endif 	/* CONFIG_SYSCTL */
1435
1436static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1437
1438static int __init random_int_secret_init(void)
1439{
1440	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1441	return 0;
1442}
1443late_initcall(random_int_secret_init);
1444
1445/*
1446 * Get a random word for internal kernel use only. Similar to urandom but
1447 * with the goal of minimal entropy pool depletion. As a result, the random
1448 * value is not cryptographically secure but for several uses the cost of
1449 * depleting entropy is too high
1450 */
1451DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1452unsigned int get_random_int(void)
1453{
1454	__u32 *hash;
1455	unsigned int ret;
1456
1457	if (arch_get_random_int(&ret))
1458		return ret;
1459
1460	hash = get_cpu_var(get_random_int_hash);
1461
1462	hash[0] += current->pid + jiffies + get_cycles();
1463	md5_transform(hash, random_int_secret);
1464	ret = hash[0];
1465	put_cpu_var(get_random_int_hash);
1466
1467	return ret;
1468}
1469
1470/*
1471 * randomize_range() returns a start address such that
1472 *
1473 *    [...... <range> .....]
1474 *  start                  end
1475 *
1476 * a <range> with size "len" starting at the return value is inside in the
1477 * area defined by [start, end], but is otherwise randomized.
1478 */
1479unsigned long
1480randomize_range(unsigned long start, unsigned long end, unsigned long len)
1481{
1482	unsigned long range = end - len - start;
1483
1484	if (end <= start + len)
1485		return 0;
1486	return PAGE_ALIGN(get_random_int() % range + start);
1487}