Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
 
 
  46#include <linux/ptrace.h>
 
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#include <asm/archrandom.h>
  60#include <asm/processor.h>
 
  61#include <asm/irq.h>
  62#include <asm/irq_regs.h>
  63#include <asm/io.h>
  64
  65/*********************************************************************
  66 *
  67 * Initialization and readiness waiting.
  68 *
  69 * Much of the RNG infrastructure is devoted to various dependencies
  70 * being able to wait until the RNG has collected enough entropy and
  71 * is ready for safe consumption.
  72 *
  73 *********************************************************************/
  74
  75/*
  76 * crng_init is protected by base_crng->lock, and only increases
  77 * its value (from empty->early->ready).
  78 */
  79static enum {
  80	CRNG_EMPTY = 0, /* Little to no entropy collected */
  81	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  82	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  83} crng_init __read_mostly = CRNG_EMPTY;
  84static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  85#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  86/* Various types of waiters for crng_init->CRNG_READY transition. */
  87static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  88static struct fasync_struct *fasync;
  89static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
  90
  91/* Control how we warn userspace. */
  92static struct ratelimit_state urandom_warning =
  93	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  94static int ratelimit_disable __read_mostly =
  95	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
  96module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  97MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
  98
  99/*
 100 * Returns whether or not the input pool has been seeded and thus guaranteed
 101 * to supply cryptographically secure random numbers. This applies to: the
 102 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 103 * u16,u32,u64,long} family of functions.
 104 *
 105 * Returns: true if the input pool has been seeded.
 106 *          false if the input pool has not been seeded.
 107 */
 108bool rng_is_initialized(void)
 109{
 110	return crng_ready();
 111}
 112EXPORT_SYMBOL(rng_is_initialized);
 113
 114static void __cold crng_set_ready(struct work_struct *work)
 115{
 116	static_branch_enable(&crng_is_ready);
 117}
 118
 119/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 120static void try_to_generate_entropy(void);
 
 
 
 121
 122/*
 123 * Wait for the input pool to be seeded and thus guaranteed to supply
 124 * cryptographically secure random numbers. This applies to: the /dev/urandom
 125 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 126 * long} family of functions. Using any of these functions without first
 127 * calling this function forfeits the guarantee of security.
 128 *
 129 * Returns: 0 if the input pool has been seeded.
 130 *          -ERESTARTSYS if the function was interrupted by a signal.
 131 */
 132int wait_for_random_bytes(void)
 133{
 134	while (!crng_ready()) {
 135		int ret;
 136
 137		try_to_generate_entropy();
 138		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 139		if (ret)
 140			return ret > 0 ? 0 : ret;
 141	}
 142	return 0;
 143}
 144EXPORT_SYMBOL(wait_for_random_bytes);
 145
 146/*
 147 * Add a callback function that will be invoked when the crng is initialised,
 148 * or immediately if it already has been. Only use this is you are absolutely
 149 * sure it is required. Most users should instead be able to test
 150 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151 */
 152int __cold execute_with_initialized_rng(struct notifier_block *nb)
 153{
 154	unsigned long flags;
 155	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 156
 157	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 158	if (crng_ready())
 159		nb->notifier_call(nb, 0, NULL);
 160	else
 161		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 162	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 163	return ret;
 164}
 165
 166#define warn_unseeded_randomness() \
 167	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 168		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 169				__func__, (void *)_RET_IP_, crng_init)
 170
 
 
 171
 172/*********************************************************************
 173 *
 174 * Fast key erasure RNG, the "crng".
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175 *
 176 * These functions expand entropy from the entropy extractor into
 177 * long streams for external consumption using the "fast key erasure"
 178 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 179 *
 180 * There are a few exported interfaces for use by other drivers:
 181 *
 182 *	void get_random_bytes(void *buf, size_t len)
 183 *	u8 get_random_u8()
 184 *	u16 get_random_u16()
 185 *	u32 get_random_u32()
 186 *	u32 get_random_u32_below(u32 ceil)
 187 *	u32 get_random_u32_above(u32 floor)
 188 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 189 *	u64 get_random_u64()
 190 *	unsigned long get_random_long()
 191 *
 192 * These interfaces will return the requested number of random bytes
 193 * into the given buffer or as a return value. This is equivalent to
 194 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 195 * functions may be higher performance for one-off random integers,
 196 * because they do a bit of buffering and do not invoke reseeding
 197 * until the buffer is emptied.
 198 *
 199 *********************************************************************/
 200
 201enum {
 202	CRNG_RESEED_START_INTERVAL = HZ,
 203	CRNG_RESEED_INTERVAL = 60 * HZ
 204};
 
 
 
 
 205
 206static struct {
 207	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 208	unsigned long generation;
 209	spinlock_t lock;
 210} base_crng = {
 211	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 
 
 
 
 
 
 212};
 213
 214struct crng {
 215	u8 key[CHACHA_KEY_SIZE];
 216	unsigned long generation;
 217	local_lock_t lock;
 
 
 
 
 
 
 
 218};
 219
 220static DEFINE_PER_CPU(struct crng, crngs) = {
 221	.generation = ULONG_MAX,
 222	.lock = INIT_LOCAL_LOCK(crngs.lock),
 
 
 
 
 
 
 223};
 224
 225/*
 226 * Return the interval until the next reseeding, which is normally
 227 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 228 * proportional to the uptime.
 229 */
 230static unsigned int crng_reseed_interval(void)
 231{
 232	static bool early_boot = true;
 233
 234	if (unlikely(READ_ONCE(early_boot))) {
 235		time64_t uptime = ktime_get_seconds();
 236		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 237			WRITE_ONCE(early_boot, false);
 238		else
 239			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 240				     (unsigned int)uptime / 2 * HZ);
 241	}
 242	return CRNG_RESEED_INTERVAL;
 243}
 244
 245/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 246static void extract_entropy(void *buf, size_t len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247
 248/* This extracts a new crng key from the input pool. */
 249static void crng_reseed(struct work_struct *work)
 250{
 251	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 252	unsigned long flags;
 253	unsigned long next_gen;
 254	u8 key[CHACHA_KEY_SIZE];
 255
 256	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 257	if (likely(system_unbound_wq))
 258		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 259
 260	extract_entropy(key, sizeof(key));
 
 
 
 261
 262	/*
 263	 * We copy the new key into the base_crng, overwriting the old one,
 264	 * and update the generation counter. We avoid hitting ULONG_MAX,
 265	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 266	 * forces new CPUs that come online to always initialize.
 267	 */
 268	spin_lock_irqsave(&base_crng.lock, flags);
 269	memcpy(base_crng.key, key, sizeof(base_crng.key));
 270	next_gen = base_crng.generation + 1;
 271	if (next_gen == ULONG_MAX)
 272		++next_gen;
 273	WRITE_ONCE(base_crng.generation, next_gen);
 274	if (!static_branch_likely(&crng_is_ready))
 275		crng_init = CRNG_READY;
 276	spin_unlock_irqrestore(&base_crng.lock, flags);
 277	memzero_explicit(key, sizeof(key));
 278}
 279
 280/*
 281 * This generates a ChaCha block using the provided key, and then
 282 * immediately overwrites that key with half the block. It returns
 283 * the resultant ChaCha state to the user, along with the second
 284 * half of the block containing 32 bytes of random data that may
 285 * be used; random_data_len may not be greater than 32.
 286 *
 287 * The returned ChaCha state contains within it a copy of the old
 288 * key value, at index 4, so the state should always be zeroed out
 289 * immediately after using in order to maintain forward secrecy.
 290 * If the state cannot be erased in a timely manner, then it is
 291 * safer to set the random_data parameter to &chacha_state[4] so
 292 * that this function overwrites it before returning.
 293 */
 294static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 295				  u32 chacha_state[CHACHA_STATE_WORDS],
 296				  u8 *random_data, size_t random_data_len)
 297{
 298	u8 first_block[CHACHA_BLOCK_SIZE];
 299
 300	BUG_ON(random_data_len > 32);
 301
 302	chacha_init_consts(chacha_state);
 303	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 304	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 305	chacha20_block(chacha_state, first_block);
 306
 307	memcpy(key, first_block, CHACHA_KEY_SIZE);
 308	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 309	memzero_explicit(first_block, sizeof(first_block));
 
 310}
 311
 
 
 
 
 
 
 
 312/*
 313 * This function returns a ChaCha state that you may use for generating
 314 * random data. It also returns up to 32 bytes on its own of random data
 315 * that may be used; random_data_len may not be greater than 32.
 316 */
 317static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 318			    u8 *random_data, size_t random_data_len)
 319{
 320	unsigned long flags;
 321	struct crng *crng;
 322
 323	BUG_ON(random_data_len > 32);
 
 
 324
 325	/*
 326	 * For the fast path, we check whether we're ready, unlocked first, and
 327	 * then re-check once locked later. In the case where we're really not
 328	 * ready, we do fast key erasure with the base_crng directly, extracting
 329	 * when crng_init is CRNG_EMPTY.
 330	 */
 331	if (!crng_ready()) {
 332		bool ready;
 333
 334		spin_lock_irqsave(&base_crng.lock, flags);
 335		ready = crng_ready();
 336		if (!ready) {
 337			if (crng_init == CRNG_EMPTY)
 338				extract_entropy(base_crng.key, sizeof(base_crng.key));
 339			crng_fast_key_erasure(base_crng.key, chacha_state,
 340					      random_data, random_data_len);
 341		}
 342		spin_unlock_irqrestore(&base_crng.lock, flags);
 343		if (!ready)
 344			return;
 345	}
 346
 347	local_lock_irqsave(&crngs.lock, flags);
 348	crng = raw_cpu_ptr(&crngs);
 
 349
 350	/*
 351	 * If our per-cpu crng is older than the base_crng, then it means
 352	 * somebody reseeded the base_crng. In that case, we do fast key
 353	 * erasure on the base_crng, and use its output as the new key
 354	 * for our per-cpu crng. This brings us up to date with base_crng.
 355	 */
 356	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 357		spin_lock(&base_crng.lock);
 358		crng_fast_key_erasure(base_crng.key, chacha_state,
 359				      crng->key, sizeof(crng->key));
 360		crng->generation = base_crng.generation;
 361		spin_unlock(&base_crng.lock);
 362	}
 363
 364	/*
 365	 * Finally, when we've made it this far, our per-cpu crng has an up
 366	 * to date key, and we can do fast key erasure with it to produce
 367	 * some random data and a ChaCha state for the caller. All other
 368	 * branches of this function are "unlikely", so most of the time we
 369	 * should wind up here immediately.
 370	 */
 371	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 372	local_unlock_irqrestore(&crngs.lock, flags);
 373}
 374
 375static void _get_random_bytes(void *buf, size_t len)
 376{
 377	u32 chacha_state[CHACHA_STATE_WORDS];
 378	u8 tmp[CHACHA_BLOCK_SIZE];
 379	size_t first_block_len;
 380
 381	if (!len)
 382		return;
 383
 384	first_block_len = min_t(size_t, 32, len);
 385	crng_make_state(chacha_state, buf, first_block_len);
 386	len -= first_block_len;
 387	buf += first_block_len;
 388
 389	while (len) {
 390		if (len < CHACHA_BLOCK_SIZE) {
 391			chacha20_block(chacha_state, tmp);
 392			memcpy(buf, tmp, len);
 393			memzero_explicit(tmp, sizeof(tmp));
 394			break;
 395		}
 396
 397		chacha20_block(chacha_state, buf);
 398		if (unlikely(chacha_state[12] == 0))
 399			++chacha_state[13];
 400		len -= CHACHA_BLOCK_SIZE;
 401		buf += CHACHA_BLOCK_SIZE;
 402	}
 403
 404	memzero_explicit(chacha_state, sizeof(chacha_state));
 405}
 406
 407/*
 408 * This returns random bytes in arbitrary quantities. The quality of the
 409 * random bytes is good as /dev/urandom. In order to ensure that the
 410 * randomness provided by this function is okay, the function
 411 * wait_for_random_bytes() should be called and return 0 at least once
 412 * at any point prior.
 413 */
 414void get_random_bytes(void *buf, size_t len)
 415{
 416	warn_unseeded_randomness();
 417	_get_random_bytes(buf, len);
 418}
 419EXPORT_SYMBOL(get_random_bytes);
 420
 421static ssize_t get_random_bytes_user(struct iov_iter *iter)
 422{
 423	u32 chacha_state[CHACHA_STATE_WORDS];
 424	u8 block[CHACHA_BLOCK_SIZE];
 425	size_t ret = 0, copied;
 426
 427	if (unlikely(!iov_iter_count(iter)))
 428		return 0;
 429
 430	/*
 431	 * Immediately overwrite the ChaCha key at index 4 with random
 432	 * bytes, in case userspace causes copy_to_iter() below to sleep
 433	 * forever, so that we still retain forward secrecy in that case.
 434	 */
 435	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 436	/*
 437	 * However, if we're doing a read of len <= 32, we don't need to
 438	 * use chacha_state after, so we can simply return those bytes to
 439	 * the user directly.
 440	 */
 441	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 442		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 443		goto out_zero_chacha;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444	}
 445
 446	for (;;) {
 447		chacha20_block(chacha_state, block);
 448		if (unlikely(chacha_state[12] == 0))
 449			++chacha_state[13];
 450
 451		copied = copy_to_iter(block, sizeof(block), iter);
 452		ret += copied;
 453		if (!iov_iter_count(iter) || copied != sizeof(block))
 454			break;
 455
 456		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 457		if (ret % PAGE_SIZE == 0) {
 458			if (signal_pending(current))
 459				break;
 460			cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461		}
 462	}
 
 463
 464	memzero_explicit(block, sizeof(block));
 465out_zero_chacha:
 466	memzero_explicit(chacha_state, sizeof(chacha_state));
 467	return ret ? ret : -EFAULT;
 468}
 469
 470/*
 471 * Batched entropy returns random integers. The quality of the random
 472 * number is good as /dev/urandom. In order to ensure that the randomness
 473 * provided by this function is okay, the function wait_for_random_bytes()
 474 * should be called and return 0 at least once at any point prior.
 475 */
 476
 477#define DEFINE_BATCHED_ENTROPY(type)						\
 478struct batch_ ##type {								\
 479	/*									\
 480	 * We make this 1.5x a ChaCha block, so that we get the			\
 481	 * remaining 32 bytes from fast key erasure, plus one full		\
 482	 * block from the detached ChaCha state. We can increase		\
 483	 * the size of this later if needed so long as we keep the		\
 484	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 485	 */									\
 486	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 487	local_lock_t lock;							\
 488	unsigned long generation;						\
 489	unsigned int position;							\
 490};										\
 491										\
 492static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 493	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 494	.position = UINT_MAX							\
 495};										\
 496										\
 497type get_random_ ##type(void)							\
 498{										\
 499	type ret;								\
 500	unsigned long flags;							\
 501	struct batch_ ##type *batch;						\
 502	unsigned long next_gen;							\
 503										\
 504	warn_unseeded_randomness();						\
 505										\
 506	if  (!crng_ready()) {							\
 507		_get_random_bytes(&ret, sizeof(ret));				\
 508		return ret;							\
 509	}									\
 510										\
 511	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 512	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 513										\
 514	next_gen = READ_ONCE(base_crng.generation);				\
 515	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 516	    next_gen != batch->generation) {					\
 517		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 518		batch->position = 0;						\
 519		batch->generation = next_gen;					\
 520	}									\
 521										\
 522	ret = batch->entropy[batch->position];					\
 523	batch->entropy[batch->position] = 0;					\
 524	++batch->position;							\
 525	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 526	return ret;								\
 527}										\
 528EXPORT_SYMBOL(get_random_ ##type);
 529
 530DEFINE_BATCHED_ENTROPY(u8)
 531DEFINE_BATCHED_ENTROPY(u16)
 532DEFINE_BATCHED_ENTROPY(u32)
 533DEFINE_BATCHED_ENTROPY(u64)
 534
 535u32 __get_random_u32_below(u32 ceil)
 536{
 537	/*
 538	 * This is the slow path for variable ceil. It is still fast, most of
 539	 * the time, by doing traditional reciprocal multiplication and
 540	 * opportunistically comparing the lower half to ceil itself, before
 541	 * falling back to computing a larger bound, and then rejecting samples
 542	 * whose lower half would indicate a range indivisible by ceil. The use
 543	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 544	 * in 32-bits.
 545	 */
 546	u32 rand = get_random_u32();
 547	u64 mult;
 548
 549	/*
 550	 * This function is technically undefined for ceil == 0, and in fact
 551	 * for the non-underscored constant version in the header, we build bug
 552	 * on that. But for the non-constant case, it's convenient to have that
 553	 * evaluate to being a straight call to get_random_u32(), so that
 554	 * get_random_u32_inclusive() can work over its whole range without
 555	 * undefined behavior.
 556	 */
 557	if (unlikely(!ceil))
 558		return rand;
 559
 560	mult = (u64)ceil * rand;
 561	if (unlikely((u32)mult < ceil)) {
 562		u32 bound = -ceil % ceil;
 563		while (unlikely((u32)mult < bound))
 564			mult = (u64)ceil * get_random_u32();
 565	}
 566	return mult >> 32;
 567}
 568EXPORT_SYMBOL(__get_random_u32_below);
 569
 570#ifdef CONFIG_SMP
 571/*
 572 * This function is called when the CPU is coming up, with entry
 573 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 574 */
 575int __cold random_prepare_cpu(unsigned int cpu)
 576{
 577	/*
 578	 * When the cpu comes back online, immediately invalidate both
 579	 * the per-cpu crng and all batches, so that we serve fresh
 580	 * randomness.
 581	 */
 582	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 583	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 584	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 585	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 586	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 587	return 0;
 588}
 589#endif
 590
 591
 592/**********************************************************************
 593 *
 594 * Entropy accumulation and extraction routines.
 595 *
 596 * Callers may add entropy via:
 597 *
 598 *     static void mix_pool_bytes(const void *buf, size_t len)
 599 *
 600 * After which, if added entropy should be credited:
 601 *
 602 *     static void credit_init_bits(size_t bits)
 603 *
 604 * Finally, extract entropy via:
 605 *
 606 *     static void extract_entropy(void *buf, size_t len)
 607 *
 608 **********************************************************************/
 609
 610enum {
 611	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 612	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 613	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 614};
 615
 616static struct {
 617	struct blake2s_state hash;
 618	spinlock_t lock;
 619	unsigned int init_bits;
 620} input_pool = {
 621	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 622		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 623		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 624	.hash.outlen = BLAKE2S_HASH_SIZE,
 625	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 626};
 627
 628static void _mix_pool_bytes(const void *buf, size_t len)
 629{
 630	blake2s_update(&input_pool.hash, buf, len);
 631}
 632
 633/*
 634 * This function adds bytes into the input pool. It does not
 635 * update the initialization bit counter; the caller should call
 636 * credit_init_bits if this is appropriate.
 
 
 
 637 */
 638static void mix_pool_bytes(const void *buf, size_t len)
 639{
 
 640	unsigned long flags;
 641
 
 642	spin_lock_irqsave(&input_pool.lock, flags);
 643	_mix_pool_bytes(buf, len);
 
 644	spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
 
 
 
 645}
 
 
 
 646
 647/*
 648 * This is an HKDF-like construction for using the hashed collected entropy
 649 * as a PRF key, that's then expanded block-by-block.
 
 
 
 
 
 
 650 */
 651static void extract_entropy(void *buf, size_t len)
 652{
 653	unsigned long flags;
 654	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 655	struct {
 656		unsigned long rdseed[32 / sizeof(long)];
 657		size_t counter;
 658	} block;
 659	size_t i, longs;
 660
 661	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 662		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 663		if (longs) {
 664			i += longs;
 665			continue;
 666		}
 667		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 668		if (longs) {
 669			i += longs;
 670			continue;
 671		}
 672		block.rdseed[i++] = random_get_entropy();
 673	}
 674
 675	spin_lock_irqsave(&input_pool.lock, flags);
 676
 677	/* seed = HASHPRF(last_key, entropy_input) */
 678	blake2s_final(&input_pool.hash, seed);
 
 
 
 679
 680	/* next_key = HASHPRF(seed, RDSEED || 0) */
 681	block.counter = 0;
 682	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 683	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 
 684
 685	spin_unlock_irqrestore(&input_pool.lock, flags);
 686	memzero_explicit(next_key, sizeof(next_key));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687
 688	while (len) {
 689		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 690		/* output = HASHPRF(seed, RDSEED || ++counter) */
 691		++block.counter;
 692		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 693		len -= i;
 694		buf += i;
 695	}
 696
 697	memzero_explicit(seed, sizeof(seed));
 698	memzero_explicit(&block, sizeof(block));
 699}
 700
 701#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 702
 703static void __cold _credit_init_bits(size_t bits)
 704{
 705	static struct execute_work set_ready;
 706	unsigned int new, orig, add;
 707	unsigned long flags;
 708
 709	if (!bits)
 
 710		return;
 711
 712	add = min_t(size_t, bits, POOL_BITS);
 713
 714	orig = READ_ONCE(input_pool.init_bits);
 715	do {
 716		new = min_t(unsigned int, POOL_BITS, orig + add);
 717	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 718
 719	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 720		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 721		if (static_key_initialized)
 722			execute_in_process_context(crng_set_ready, &set_ready);
 723		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 724		wake_up_interruptible(&crng_init_wait);
 725		kill_fasync(&fasync, SIGIO, POLL_IN);
 726		pr_notice("crng init done\n");
 727		if (urandom_warning.missed)
 728			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 729				  urandom_warning.missed);
 730	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 731		spin_lock_irqsave(&base_crng.lock, flags);
 732		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 733		if (crng_init == CRNG_EMPTY) {
 734			extract_entropy(base_crng.key, sizeof(base_crng.key));
 735			crng_init = CRNG_EARLY;
 736		}
 737		spin_unlock_irqrestore(&base_crng.lock, flags);
 738	}
 739}
 
 740
 
 741
 742/**********************************************************************
 743 *
 744 * Entropy collection routines.
 745 *
 746 * The following exported functions are used for pushing entropy into
 747 * the above entropy accumulation routines:
 748 *
 749 *	void add_device_randomness(const void *buf, size_t len);
 750 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 751 *	void add_bootloader_randomness(const void *buf, size_t len);
 752 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 753 *	void add_interrupt_randomness(int irq);
 754 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 755 *	void add_disk_randomness(struct gendisk *disk);
 756 *
 757 * add_device_randomness() adds data to the input pool that
 758 * is likely to differ between two devices (or possibly even per boot).
 759 * This would be things like MAC addresses or serial numbers, or the
 760 * read-out of the RTC. This does *not* credit any actual entropy to
 761 * the pool, but it initializes the pool to different values for devices
 762 * that might otherwise be identical and have very little entropy
 763 * available to them (particularly common in the embedded world).
 764 *
 765 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 766 * entropy as specified by the caller. If the entropy pool is full it will
 767 * block until more entropy is needed.
 768 *
 769 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 770 * and device tree, and credits its input depending on whether or not the
 771 * command line option 'random.trust_bootloader'.
 772 *
 773 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 774 * representing the current instance of a VM to the pool, without crediting,
 775 * and then force-reseeds the crng so that it takes effect immediately.
 776 *
 777 * add_interrupt_randomness() uses the interrupt timing as random
 778 * inputs to the entropy pool. Using the cycle counters and the irq source
 779 * as inputs, it feeds the input pool roughly once a second or after 64
 780 * interrupts, crediting 1 bit of entropy for whichever comes first.
 781 *
 782 * add_input_randomness() uses the input layer interrupt timing, as well
 783 * as the event type information from the hardware.
 784 *
 785 * add_disk_randomness() uses what amounts to the seek time of block
 786 * layer request events, on a per-disk_devt basis, as input to the
 787 * entropy pool. Note that high-speed solid state drives with very low
 788 * seek times do not make for good sources of entropy, as their seek
 789 * times are usually fairly consistent.
 790 *
 791 * The last two routines try to estimate how many bits of entropy
 792 * to credit. They do this by keeping track of the first and second
 793 * order deltas of the event timings.
 794 *
 795 **********************************************************************/
 796
 797static bool trust_cpu __initdata = true;
 798static bool trust_bootloader __initdata = true;
 799static int __init parse_trust_cpu(char *arg)
 800{
 801	return kstrtobool(arg, &trust_cpu);
 802}
 803static int __init parse_trust_bootloader(char *arg)
 804{
 805	return kstrtobool(arg, &trust_bootloader);
 806}
 807early_param("random.trust_cpu", parse_trust_cpu);
 808early_param("random.trust_bootloader", parse_trust_bootloader);
 809
 810static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 811{
 812	unsigned long flags, entropy = random_get_entropy();
 813
 814	/*
 815	 * Encode a representation of how long the system has been suspended,
 816	 * in a way that is distinct from prior system suspends.
 817	 */
 818	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 819
 820	spin_lock_irqsave(&input_pool.lock, flags);
 821	_mix_pool_bytes(&action, sizeof(action));
 822	_mix_pool_bytes(stamps, sizeof(stamps));
 823	_mix_pool_bytes(&entropy, sizeof(entropy));
 824	spin_unlock_irqrestore(&input_pool.lock, flags);
 825
 826	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 827	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 828	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 829		crng_reseed(NULL);
 830		pr_notice("crng reseeded on system resumption\n");
 831	}
 832	return 0;
 833}
 
 
 
 834
 835static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 836
 837/*
 838 * This is called extremely early, before time keeping functionality is
 839 * available, but arch randomness is. Interrupts are not yet enabled.
 840 */
 841void __init random_init_early(const char *command_line)
 842{
 843	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 844	size_t i, longs, arch_bits;
 845
 846#if defined(LATENT_ENTROPY_PLUGIN)
 847	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 848	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 849#endif
 850
 851	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 852		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 853		if (longs) {
 854			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 855			i += longs;
 856			continue;
 857		}
 858		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 859		if (longs) {
 860			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 861			i += longs;
 862			continue;
 863		}
 864		arch_bits -= sizeof(*entropy) * 8;
 865		++i;
 866	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 869	_mix_pool_bytes(command_line, strlen(command_line));
 870
 871	/* Reseed if already seeded by earlier phases. */
 872	if (crng_ready())
 873		crng_reseed(NULL);
 874	else if (trust_cpu)
 875		_credit_init_bits(arch_bits);
 876}
 877
 878/*
 879 * This is called a little bit after the prior function, and now there is
 880 * access to timestamps counters. Interrupts are not yet enabled.
 881 */
 882void __init random_init(void)
 883{
 884	unsigned long entropy = random_get_entropy();
 885	ktime_t now = ktime_get_real();
 886
 887	_mix_pool_bytes(&now, sizeof(now));
 888	_mix_pool_bytes(&entropy, sizeof(entropy));
 889	add_latent_entropy();
 890
 891	/*
 892	 * If we were initialized by the cpu or bootloader before jump labels
 893	 * are initialized, then we should enable the static branch here, where
 894	 * it's guaranteed that jump labels have been initialized.
 
 895	 */
 896	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 897		crng_set_ready(NULL);
 898
 899	/* Reseed if already seeded by earlier phases. */
 900	if (crng_ready())
 901		crng_reseed(NULL);
 902
 903	WARN_ON(register_pm_notifier(&pm_notifier));
 904
 905	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 906		       "entropy collection will consequently suffer.");
 907}
 908
 909/*
 910 * Add device- or boot-specific data to the input pool to help
 911 * initialize it.
 912 *
 913 * None of this adds any entropy; it is meant to avoid the problem of
 914 * the entropy pool having similar initial state across largely
 915 * identical devices.
 916 */
 917void add_device_randomness(const void *buf, size_t len)
 918{
 919	unsigned long entropy = random_get_entropy();
 920	unsigned long flags;
 921
 922	spin_lock_irqsave(&input_pool.lock, flags);
 923	_mix_pool_bytes(&entropy, sizeof(entropy));
 924	_mix_pool_bytes(buf, len);
 925	spin_unlock_irqrestore(&input_pool.lock, flags);
 926}
 927EXPORT_SYMBOL(add_device_randomness);
 
 928
 929/*
 930 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 931 * may produce endless random bits, so this function will sleep for
 932 * some amount of time after, if the sleep_after parameter is true.
 933 */
 934void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 935{
 936	mix_pool_bytes(buf, len);
 937	credit_init_bits(entropy);
 938
 939	/*
 940	 * Throttle writing to once every reseed interval, unless we're not yet
 941	 * initialized or no entropy is credited.
 942	 */
 943	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 944		schedule_timeout_interruptible(crng_reseed_interval());
 945}
 946EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 947
 948/*
 949 * Handle random seed passed by bootloader, and credit it depending
 950 * on the command line option 'random.trust_bootloader'.
 
 951 */
 952void __init add_bootloader_randomness(const void *buf, size_t len)
 
 953{
 954	mix_pool_bytes(buf, len);
 955	if (trust_bootloader)
 956		credit_init_bits(len * 8);
 957}
 958
 959#if IS_ENABLED(CONFIG_VMGENID)
 960static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 961
 962/*
 963 * Handle a new unique VM ID, which is unique, not secret, so we
 964 * don't credit it, but we do immediately force a reseed after so
 965 * that it's used by the crng posthaste.
 966 */
 967void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 968{
 969	add_device_randomness(unique_vm_id, len);
 970	if (crng_ready()) {
 971		crng_reseed(NULL);
 972		pr_notice("crng reseeded due to virtual machine fork\n");
 973	}
 974	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 975}
 976#if IS_MODULE(CONFIG_VMGENID)
 977EXPORT_SYMBOL_GPL(add_vmfork_randomness);
 978#endif
 979
 980int __cold register_random_vmfork_notifier(struct notifier_block *nb)
 981{
 982	return blocking_notifier_chain_register(&vmfork_chain, nb);
 983}
 984EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
 985
 986int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
 987{
 988	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
 989}
 990EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
 991#endif
 992
 993struct fast_pool {
 994	unsigned long pool[4];
 995	unsigned long last;
 996	unsigned int count;
 997	struct timer_list mix;
 998};
 999
1000static void mix_interrupt_randomness(struct timer_list *work);
 
 
 
1001
1002static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1003#ifdef CONFIG_64BIT
1004#define FASTMIX_PERM SIPHASH_PERMUTATION
1005	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1006#else
1007#define FASTMIX_PERM HSIPHASH_PERMUTATION
1008	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1009#endif
1010	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1011};
1012
1013/*
1014 * This is [Half]SipHash-1-x, starting from an empty key. Because
1015 * the key is fixed, it assumes that its inputs are non-malicious,
1016 * and therefore this has no security on its own. s represents the
1017 * four-word SipHash state, while v represents a two-word input.
1018 */
1019static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1020{
1021	s[3] ^= v1;
1022	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1023	s[0] ^= v1;
1024	s[3] ^= v2;
1025	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1026	s[0] ^= v2;
1027}
1028
1029#ifdef CONFIG_SMP
1030/*
1031 * This function is called when the CPU has just come online, with
1032 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
1033 */
1034int __cold random_online_cpu(unsigned int cpu)
1035{
1036	/*
1037	 * During CPU shutdown and before CPU onlining, add_interrupt_
1038	 * randomness() may schedule mix_interrupt_randomness(), and
1039	 * set the MIX_INFLIGHT flag. However, because the worker can
1040	 * be scheduled on a different CPU during this period, that
1041	 * flag will never be cleared. For that reason, we zero out
1042	 * the flag here, which runs just after workqueues are onlined
1043	 * for the CPU again. This also has the effect of setting the
1044	 * irq randomness count to zero so that new accumulated irqs
1045	 * are fresh.
1046	 */
1047	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1048	return 0;
1049}
1050#endif
1051
1052static void mix_interrupt_randomness(struct timer_list *work)
1053{
1054	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1055	/*
1056	 * The size of the copied stack pool is explicitly 2 longs so that we
1057	 * only ever ingest half of the siphash output each time, retaining
1058	 * the other half as the next "key" that carries over. The entropy is
1059	 * supposed to be sufficiently dispersed between bits so on average
1060	 * we don't wind up "losing" some.
1061	 */
1062	unsigned long pool[2];
1063	unsigned int count;
1064
1065	/* Check to see if we're running on the wrong CPU due to hotplug. */
1066	local_irq_disable();
1067	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1068		local_irq_enable();
1069		return;
1070	}
1071
1072	/*
1073	 * Copy the pool to the stack so that the mixer always has a
1074	 * consistent view, before we reenable irqs again.
1075	 */
1076	memcpy(pool, fast_pool->pool, sizeof(pool));
1077	count = fast_pool->count;
1078	fast_pool->count = 0;
1079	fast_pool->last = jiffies;
1080	local_irq_enable();
1081
1082	mix_pool_bytes(pool, sizeof(pool));
1083	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1084
1085	memzero_explicit(pool, sizeof(pool));
1086}
 
 
 
 
 
1087
1088void add_interrupt_randomness(int irq)
1089{
1090	enum { MIX_INFLIGHT = 1U << 31 };
1091	unsigned long entropy = random_get_entropy();
1092	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1093	struct pt_regs *regs = get_irq_regs();
1094	unsigned int new_count;
1095
1096	fast_mix(fast_pool->pool, entropy,
1097		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1098	new_count = ++fast_pool->count;
1099
1100	if (new_count & MIX_INFLIGHT)
1101		return;
 
 
 
 
 
 
 
 
 
1102
1103	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1104		return;
1105
1106	fast_pool->count |= MIX_INFLIGHT;
1107	if (!timer_pending(&fast_pool->mix)) {
1108		fast_pool->mix.expires = jiffies;
1109		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
 
1110	}
1111}
1112EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1113
1114/* There is one of these per entropy source */
1115struct timer_rand_state {
1116	unsigned long last_time;
1117	long last_delta, last_delta2;
1118};
1119
1120/*
1121 * This function adds entropy to the entropy "pool" by using timing
1122 * delays. It uses the timer_rand_state structure to make an estimate
1123 * of how many bits of entropy this call has added to the pool. The
1124 * value "num" is also added to the pool; it should somehow describe
1125 * the type of event that just happened.
1126 */
1127static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1128{
1129	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1130	long delta, delta2, delta3;
1131	unsigned int bits;
 
 
 
 
1132
1133	/*
1134	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1135	 * sometime after, so mix into the fast pool.
1136	 */
1137	if (in_hardirq()) {
1138		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1139	} else {
1140		spin_lock_irqsave(&input_pool.lock, flags);
1141		_mix_pool_bytes(&entropy, sizeof(entropy));
1142		_mix_pool_bytes(&num, sizeof(num));
1143		spin_unlock_irqrestore(&input_pool.lock, flags);
1144	}
1145
1146	if (crng_ready())
1147		return;
 
 
1148
1149	/*
1150	 * Calculate number of bits of randomness we probably added.
1151	 * We take into account the first, second and third-order deltas
1152	 * in order to make our estimate.
 
 
 
 
1153	 */
1154	delta = now - READ_ONCE(state->last_time);
1155	WRITE_ONCE(state->last_time, now);
1156
1157	delta2 = delta - READ_ONCE(state->last_delta);
1158	WRITE_ONCE(state->last_delta, delta);
1159
1160	delta3 = delta2 - READ_ONCE(state->last_delta2);
1161	WRITE_ONCE(state->last_delta2, delta2);
1162
1163	if (delta < 0)
1164		delta = -delta;
1165	if (delta2 < 0)
1166		delta2 = -delta2;
1167	if (delta3 < 0)
1168		delta3 = -delta3;
1169	if (delta > delta2)
1170		delta = delta2;
1171	if (delta > delta3)
1172		delta = delta3;
1173
1174	/*
1175	 * delta is now minimum absolute delta. Round down by 1 bit
1176	 * on general principles, and limit entropy estimate to 11 bits.
 
1177	 */
1178	bits = min(fls(delta >> 1), 11);
 
 
1179
1180	/*
1181	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1182	 * will run after this, which uses a different crediting scheme of 1 bit
1183	 * per every 64 interrupts. In order to let that function do accounting
1184	 * close to the one in this function, we credit a full 64/64 bit per bit,
1185	 * and then subtract one to account for the extra one added.
1186	 */
1187	if (in_hardirq())
1188		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1189	else
1190		_credit_init_bits(bits);
1191}
1192
1193void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
 
 
 
 
 
 
 
 
 
 
1194{
1195	static unsigned char last_value;
1196	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
 
1197
1198	/* Ignore autorepeat and the like. */
1199	if (value == last_value)
1200		return;
 
 
 
 
 
 
 
 
 
 
 
 
1201
1202	last_value = value;
1203	add_timer_randomness(&input_timer_state,
1204			     (type << 4) ^ code ^ (code >> 4) ^ value);
1205}
1206EXPORT_SYMBOL_GPL(add_input_randomness);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207
1208#ifdef CONFIG_BLOCK
1209void add_disk_randomness(struct gendisk *disk)
1210{
1211	if (!disk || !disk->random)
1212		return;
1213	/* First major is 1, so we get >= 0x200 here. */
1214	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1215}
1216EXPORT_SYMBOL_GPL(add_disk_randomness);
1217
1218void __cold rand_initialize_disk(struct gendisk *disk)
 
 
 
 
 
1219{
1220	struct timer_rand_state *state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221
1222	/*
1223	 * If kzalloc returns null, we just won't use that entropy
1224	 * source.
1225	 */
1226	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1227	if (state) {
1228		state->last_time = INITIAL_JIFFIES;
1229		disk->random = state;
 
 
1230	}
 
 
 
 
 
1231}
1232#endif
1233
1234struct entropy_timer_state {
1235	unsigned long entropy;
1236	struct timer_list timer;
1237	atomic_t samples;
1238	unsigned int samples_per_bit;
1239};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240
1241/*
1242 * Each time the timer fires, we expect that we got an unpredictable jump in
1243 * the cycle counter. Even if the timer is running on another CPU, the timer
1244 * activity will be touching the stack of the CPU that is generating entropy.
1245 *
1246 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1247 * scheduled away, since that just makes the load more complex, but we do not
1248 * want the timer to keep ticking unless the entropy loop is running.
1249 *
1250 * So the re-arming always happens in the entropy loop itself.
 
 
1251 */
1252static void __cold entropy_timer(struct timer_list *timer)
1253{
1254	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1255	unsigned long entropy = random_get_entropy();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	mix_pool_bytes(&entropy, sizeof(entropy));
1258	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1259		credit_init_bits(1);
 
 
 
1260}
 
1261
1262/*
1263 * If we have an actual cycle counter, see if we can generate enough entropy
1264 * with timing noise.
1265 */
1266static void __cold try_to_generate_entropy(void)
1267{
1268	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1269	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1270	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1271	unsigned int i, num_different = 0;
1272	unsigned long last = random_get_entropy();
1273	int cpu = -1;
1274
1275	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1276		stack->entropy = random_get_entropy();
1277		if (stack->entropy != last)
1278			++num_different;
1279		last = stack->entropy;
1280	}
1281	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1282	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1283		return;
1284
1285	atomic_set(&stack->samples, 0);
1286	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1287	while (!crng_ready() && !signal_pending(current)) {
1288		/*
1289		 * Check !timer_pending() and then ensure that any previous callback has finished
1290		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1291		 */
1292		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1293			struct cpumask timer_cpus;
1294			unsigned int num_cpus;
1295
1296			/*
1297			 * Preemption must be disabled here, both to read the current CPU number
1298			 * and to avoid scheduling a timer on a dead CPU.
1299			 */
1300			preempt_disable();
1301
1302			/* Only schedule callbacks on timer CPUs that are online. */
1303			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1304			num_cpus = cpumask_weight(&timer_cpus);
1305			/* In very bizarre case of misconfiguration, fallback to all online. */
1306			if (unlikely(num_cpus == 0)) {
1307				timer_cpus = *cpu_online_mask;
1308				num_cpus = cpumask_weight(&timer_cpus);
1309			}
1310
1311			/* Basic CPU round-robin, which avoids the current CPU. */
1312			do {
1313				cpu = cpumask_next(cpu, &timer_cpus);
1314				if (cpu >= nr_cpu_ids)
1315					cpu = cpumask_first(&timer_cpus);
1316			} while (cpu == smp_processor_id() && num_cpus > 1);
1317
1318			/* Expiring the timer at `jiffies` means it's the next tick. */
1319			stack->timer.expires = jiffies;
 
 
 
 
 
 
 
 
 
 
 
1320
1321			add_timer_on(&stack->timer, cpu);
 
 
 
1322
1323			preempt_enable();
1324		}
1325		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1326		schedule();
1327		stack->entropy = random_get_entropy();
 
1328	}
1329	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1330
1331	del_timer_sync(&stack->timer);
1332	destroy_timer_on_stack(&stack->timer);
1333}
 
1334
1335
1336/**********************************************************************
1337 *
1338 * Userspace reader/writer interfaces.
1339 *
1340 * getrandom(2) is the primary modern interface into the RNG and should
1341 * be used in preference to anything else.
1342 *
1343 * Reading from /dev/random has the same functionality as calling
1344 * getrandom(2) with flags=0. In earlier versions, however, it had
1345 * vastly different semantics and should therefore be avoided, to
1346 * prevent backwards compatibility issues.
1347 *
1348 * Reading from /dev/urandom has the same functionality as calling
1349 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1350 * waiting for the RNG to be ready, it should not be used.
1351 *
1352 * Writing to either /dev/random or /dev/urandom adds entropy to
1353 * the input pool but does not credit it.
1354 *
1355 * Polling on /dev/random indicates when the RNG is initialized, on
1356 * the read side, and when it wants new entropy, on the write side.
1357 *
1358 * Both /dev/random and /dev/urandom have the same set of ioctls for
1359 * adding entropy, getting the entropy count, zeroing the count, and
1360 * reseeding the crng.
1361 *
1362 **********************************************************************/
1363
1364SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
 
 
1365{
1366	struct iov_iter iter;
1367	int ret;
1368
1369	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1370		return -EINVAL;
1371
1372	/*
1373	 * Requesting insecure and blocking randomness at the same time makes
1374	 * no sense.
1375	 */
1376	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1377		return -EINVAL;
1378
1379	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1380		if (flags & GRND_NONBLOCK)
1381			return -EAGAIN;
1382		ret = wait_for_random_bytes();
1383		if (unlikely(ret))
1384			return ret;
1385	}
 
 
 
1386
1387	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1388	if (unlikely(ret))
1389		return ret;
1390	return get_random_bytes_user(&iter);
 
 
 
 
 
 
 
 
 
 
 
 
1391}
 
1392
1393static __poll_t random_poll(struct file *file, poll_table *wait)
 
1394{
1395	poll_wait(file, &crng_init_wait, wait);
1396	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
 
 
 
 
 
 
 
 
 
1397}
 
1398
1399static ssize_t write_pool_user(struct iov_iter *iter)
 
1400{
1401	u8 block[BLAKE2S_BLOCK_SIZE];
1402	ssize_t ret = 0;
1403	size_t copied;
1404
1405	if (unlikely(!iov_iter_count(iter)))
1406		return 0;
1407
1408	for (;;) {
1409		copied = copy_from_iter(block, sizeof(block), iter);
1410		ret += copied;
1411		mix_pool_bytes(block, copied);
1412		if (!iov_iter_count(iter) || copied != sizeof(block))
1413			break;
 
 
 
 
1414
1415		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1416		if (ret % PAGE_SIZE == 0) {
1417			if (signal_pending(current))
1418				break;
1419			cond_resched();
1420		}
 
 
 
1421	}
 
1422
1423	memzero_explicit(block, sizeof(block));
1424	return ret ? ret : -EFAULT;
 
 
1425}
1426
1427static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1428{
1429	return write_pool_user(iter);
 
 
 
 
 
 
 
 
 
 
 
 
1430}
1431
1432static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1433{
1434	static int maxwarn = 10;
1435
1436	/*
1437	 * Opportunistically attempt to initialize the RNG on platforms that
1438	 * have fast cycle counters, but don't (for now) require it to succeed.
1439	 */
1440	if (!crng_ready())
1441		try_to_generate_entropy();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1442
1443	if (!crng_ready()) {
1444		if (!ratelimit_disable && maxwarn <= 0)
1445			++urandom_warning.missed;
1446		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1447			--maxwarn;
1448			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1449				  current->comm, iov_iter_count(iter));
1450		}
1451	}
1452
1453	return get_random_bytes_user(iter);
1454}
1455
1456static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1457{
1458	int ret;
1459
1460	if (!crng_ready() &&
1461	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1462	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1463		return -EAGAIN;
1464
1465	ret = wait_for_random_bytes();
1466	if (ret != 0)
1467		return ret;
1468	return get_random_bytes_user(iter);
 
1469}
1470
1471static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1472{
 
1473	int __user *p = (int __user *)arg;
1474	int ent_count;
1475
1476	switch (cmd) {
1477	case RNDGETENTCNT:
1478		/* Inherently racy, no point locking. */
1479		if (put_user(input_pool.init_bits, p))
 
1480			return -EFAULT;
1481		return 0;
1482	case RNDADDTOENTCNT:
1483		if (!capable(CAP_SYS_ADMIN))
1484			return -EPERM;
1485		if (get_user(ent_count, p))
1486			return -EFAULT;
1487		if (ent_count < 0)
1488			return -EINVAL;
1489		credit_init_bits(ent_count);
1490		return 0;
1491	case RNDADDENTROPY: {
1492		struct iov_iter iter;
1493		ssize_t ret;
1494		int len;
1495
1496		if (!capable(CAP_SYS_ADMIN))
1497			return -EPERM;
1498		if (get_user(ent_count, p++))
1499			return -EFAULT;
1500		if (ent_count < 0)
1501			return -EINVAL;
1502		if (get_user(len, p++))
1503			return -EFAULT;
1504		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1505		if (unlikely(ret))
1506			return ret;
1507		ret = write_pool_user(&iter);
1508		if (unlikely(ret < 0))
1509			return ret;
1510		/* Since we're crediting, enforce that it was all written into the pool. */
1511		if (unlikely(ret != len))
1512			return -EFAULT;
1513		credit_init_bits(ent_count);
 
 
 
 
1514		return 0;
1515	}
1516	case RNDZAPENTCNT:
1517	case RNDCLEARPOOL:
1518		/* No longer has any effect. */
1519		if (!capable(CAP_SYS_ADMIN))
1520			return -EPERM;
1521		return 0;
1522	case RNDRESEEDCRNG:
1523		if (!capable(CAP_SYS_ADMIN))
1524			return -EPERM;
1525		if (!crng_ready())
1526			return -ENODATA;
1527		crng_reseed(NULL);
1528		return 0;
1529	default:
1530		return -EINVAL;
1531	}
1532}
1533
1534static int random_fasync(int fd, struct file *filp, int on)
1535{
1536	return fasync_helper(fd, filp, on, &fasync);
1537}
1538
1539const struct file_operations random_fops = {
1540	.read_iter = random_read_iter,
1541	.write_iter = random_write_iter,
1542	.poll = random_poll,
1543	.unlocked_ioctl = random_ioctl,
1544	.compat_ioctl = compat_ptr_ioctl,
1545	.fasync = random_fasync,
1546	.llseek = noop_llseek,
1547	.splice_read = copy_splice_read,
1548	.splice_write = iter_file_splice_write,
1549};
1550
1551const struct file_operations urandom_fops = {
1552	.read_iter = urandom_read_iter,
1553	.write_iter = random_write_iter,
1554	.unlocked_ioctl = random_ioctl,
1555	.compat_ioctl = compat_ptr_ioctl,
1556	.fasync = random_fasync,
1557	.llseek = noop_llseek,
1558	.splice_read = copy_splice_read,
1559	.splice_write = iter_file_splice_write,
1560};
1561
 
 
 
 
 
1562
1563/********************************************************************
1564 *
1565 * Sysctl interface.
1566 *
1567 * These are partly unused legacy knobs with dummy values to not break
1568 * userspace and partly still useful things. They are usually accessible
1569 * in /proc/sys/kernel/random/ and are as follows:
1570 *
1571 * - boot_id - a UUID representing the current boot.
1572 *
1573 * - uuid - a random UUID, different each time the file is read.
1574 *
1575 * - poolsize - the number of bits of entropy that the input pool can
1576 *   hold, tied to the POOL_BITS constant.
1577 *
1578 * - entropy_avail - the number of bits of entropy currently in the
1579 *   input pool. Always <= poolsize.
 
 
1580 *
1581 * - write_wakeup_threshold - the amount of entropy in the input pool
1582 *   below which write polls to /dev/random will unblock, requesting
1583 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1584 *   to avoid breaking old userspaces, but writing to it does not
1585 *   change any behavior of the RNG.
 
 
 
 
 
 
 
 
 
 
 
 
 
1586 *
1587 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1588 *   It is writable to avoid breaking old userspaces, but writing
1589 *   to it does not change any behavior of the RNG.
1590 *
1591 ********************************************************************/
1592
1593#ifdef CONFIG_SYSCTL
1594
1595#include <linux/sysctl.h>
1596
1597static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1598static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1599static int sysctl_poolsize = POOL_BITS;
1600static u8 sysctl_bootid[UUID_SIZE];
1601
1602/*
1603 * This function is used to return both the bootid UUID, and random
1604 * UUID. The difference is in whether table->data is NULL; if it is,
1605 * then a new UUID is generated and returned to the user.
 
 
 
 
1606 */
1607static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1608			size_t *lenp, loff_t *ppos)
1609{
1610	u8 tmp_uuid[UUID_SIZE], *uuid;
1611	char uuid_string[UUID_STRING_LEN + 1];
1612	struct ctl_table fake_table = {
1613		.data = uuid_string,
1614		.maxlen = UUID_STRING_LEN
1615	};
1616
1617	if (write)
1618		return -EPERM;
1619
1620	uuid = table->data;
1621	if (!uuid) {
1622		uuid = tmp_uuid;
1623		generate_random_uuid(uuid);
1624	} else {
1625		static DEFINE_SPINLOCK(bootid_spinlock);
1626
1627		spin_lock(&bootid_spinlock);
1628		if (!uuid[8])
1629			generate_random_uuid(uuid);
1630		spin_unlock(&bootid_spinlock);
1631	}
1632
1633	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1634	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
 
 
 
 
1635}
1636
1637/* The same as proc_dointvec, but writes don't change anything. */
1638static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1639			    size_t *lenp, loff_t *ppos)
 
 
1640{
1641	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
 
 
 
 
 
 
 
 
1642}
1643
1644static struct ctl_table random_table[] = {
 
 
1645	{
1646		.procname	= "poolsize",
1647		.data		= &sysctl_poolsize,
1648		.maxlen		= sizeof(int),
1649		.mode		= 0444,
1650		.proc_handler	= proc_dointvec,
1651	},
1652	{
1653		.procname	= "entropy_avail",
1654		.data		= &input_pool.init_bits,
1655		.maxlen		= sizeof(int),
1656		.mode		= 0444,
1657		.proc_handler	= proc_dointvec,
 
 
 
 
 
 
 
 
 
 
1658	},
1659	{
1660		.procname	= "write_wakeup_threshold",
1661		.data		= &sysctl_random_write_wakeup_bits,
1662		.maxlen		= sizeof(int),
1663		.mode		= 0644,
1664		.proc_handler	= proc_do_rointvec,
 
 
1665	},
1666	{
1667		.procname	= "urandom_min_reseed_secs",
1668		.data		= &sysctl_random_min_urandom_seed,
1669		.maxlen		= sizeof(int),
1670		.mode		= 0644,
1671		.proc_handler	= proc_do_rointvec,
1672	},
1673	{
1674		.procname	= "boot_id",
1675		.data		= &sysctl_bootid,
 
1676		.mode		= 0444,
1677		.proc_handler	= proc_do_uuid,
1678	},
1679	{
1680		.procname	= "uuid",
 
1681		.mode		= 0444,
1682		.proc_handler	= proc_do_uuid,
1683	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684};
 
 
 
 
 
 
 
 
 
1685
1686/*
1687 * random_init() is called before sysctl_init(),
1688 * so we cannot call register_sysctl_init() in random_init()
 
 
1689 */
1690static int __init random_sysctls_init(void)
 
1691{
1692	register_sysctl_init("kernel/random", random_table);
1693	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1694}
1695device_initcall(random_sysctls_init);
1696#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v4.6
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *	void add_device_randomness(const void *buf, unsigned int size);
 129 * 	void add_input_randomness(unsigned int type, unsigned int code,
 130 *                                unsigned int value);
 131 *	void add_interrupt_randomness(int irq, int irq_flags);
 132 * 	void add_disk_randomness(struct gendisk *disk);
 133 *
 134 * add_device_randomness() is for adding data to the random pool that
 135 * is likely to differ between two devices (or possibly even per boot).
 136 * This would be things like MAC addresses or serial numbers, or the
 137 * read-out of the RTC. This does *not* add any actual entropy to the
 138 * pool, but it initializes the pool to different values for devices
 139 * that might otherwise be identical and have very little entropy
 140 * available to them (particularly common in the embedded world).
 141 *
 142 * add_input_randomness() uses the input layer interrupt timing, as well as
 143 * the event type information from the hardware.
 144 *
 145 * add_interrupt_randomness() uses the interrupt timing as random
 146 * inputs to the entropy pool. Using the cycle counters and the irq source
 147 * as inputs, it feeds the randomness roughly once a second.
 148 *
 149 * add_disk_randomness() uses what amounts to the seek time of block
 150 * layer request events, on a per-disk_devt basis, as input to the
 151 * entropy pool. Note that high-speed solid state drives with very low
 152 * seek times do not make for good sources of entropy, as their seek
 153 * times are usually fairly consistent.
 154 *
 155 * All of these routines try to estimate how many bits of randomness a
 156 * particular randomness source.  They do this by keeping track of the
 157 * first and second order deltas of the event timings.
 158 *
 159 * Ensuring unpredictability at system startup
 160 * ============================================
 161 *
 162 * When any operating system starts up, it will go through a sequence
 163 * of actions that are fairly predictable by an adversary, especially
 164 * if the start-up does not involve interaction with a human operator.
 165 * This reduces the actual number of bits of unpredictability in the
 166 * entropy pool below the value in entropy_count.  In order to
 167 * counteract this effect, it helps to carry information in the
 168 * entropy pool across shut-downs and start-ups.  To do this, put the
 169 * following lines an appropriate script which is run during the boot
 170 * sequence:
 171 *
 172 *	echo "Initializing random number generator..."
 173 *	random_seed=/var/run/random-seed
 174 *	# Carry a random seed from start-up to start-up
 175 *	# Load and then save the whole entropy pool
 176 *	if [ -f $random_seed ]; then
 177 *		cat $random_seed >/dev/urandom
 178 *	else
 179 *		touch $random_seed
 180 *	fi
 181 *	chmod 600 $random_seed
 182 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 183 *
 184 * and the following lines in an appropriate script which is run as
 185 * the system is shutdown:
 186 *
 187 *	# Carry a random seed from shut-down to start-up
 188 *	# Save the whole entropy pool
 189 *	echo "Saving random seed..."
 190 *	random_seed=/var/run/random-seed
 191 *	touch $random_seed
 192 *	chmod 600 $random_seed
 193 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 194 *
 195 * For example, on most modern systems using the System V init
 196 * scripts, such code fragments would be found in
 197 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 199 *
 200 * Effectively, these commands cause the contents of the entropy pool
 201 * to be saved at shut-down time and reloaded into the entropy pool at
 202 * start-up.  (The 'dd' in the addition to the bootup script is to
 203 * make sure that /etc/random-seed is different for every start-up,
 204 * even if the system crashes without executing rc.0.)  Even with
 205 * complete knowledge of the start-up activities, predicting the state
 206 * of the entropy pool requires knowledge of the previous history of
 207 * the system.
 208 *
 209 * Configuring the /dev/random driver under Linux
 210 * ==============================================
 211 *
 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 213 * the /dev/mem major number (#1).  So if your system does not have
 214 * /dev/random and /dev/urandom created already, they can be created
 215 * by using the commands:
 216 *
 217 * 	mknod /dev/random c 1 8
 218 * 	mknod /dev/urandom c 1 9
 219 *
 220 * Acknowledgements:
 221 * =================
 222 *
 223 * Ideas for constructing this random number generator were derived
 224 * from Pretty Good Privacy's random number generator, and from private
 225 * discussions with Phil Karn.  Colin Plumb provided a faster random
 226 * number generator, which speed up the mixing function of the entropy
 227 * pool, taken from PGPfone.  Dale Worley has also contributed many
 228 * useful ideas and suggestions to improve this driver.
 229 *
 230 * Any flaws in the design are solely my responsibility, and should
 231 * not be attributed to the Phil, Colin, or any of authors of PGP.
 232 *
 233 * Further background information on this topic may be obtained from
 234 * RFC 1750, "Randomness Recommendations for Security", by Donald
 235 * Eastlake, Steve Crocker, and Jeff Schiller.
 236 */
 237
 
 
 238#include <linux/utsname.h>
 239#include <linux/module.h>
 240#include <linux/kernel.h>
 241#include <linux/major.h>
 242#include <linux/string.h>
 243#include <linux/fcntl.h>
 244#include <linux/slab.h>
 245#include <linux/random.h>
 246#include <linux/poll.h>
 247#include <linux/init.h>
 248#include <linux/fs.h>
 249#include <linux/genhd.h>
 250#include <linux/interrupt.h>
 251#include <linux/mm.h>
 
 252#include <linux/spinlock.h>
 253#include <linux/kthread.h>
 254#include <linux/percpu.h>
 255#include <linux/cryptohash.h>
 256#include <linux/fips.h>
 257#include <linux/ptrace.h>
 258#include <linux/kmemcheck.h>
 259#include <linux/workqueue.h>
 260#include <linux/irq.h>
 
 261#include <linux/syscalls.h>
 262#include <linux/completion.h>
 263
 
 
 
 
 
 
 
 264#include <asm/processor.h>
 265#include <asm/uaccess.h>
 266#include <asm/irq.h>
 267#include <asm/irq_regs.h>
 268#include <asm/io.h>
 269
 270#define CREATE_TRACE_POINTS
 271#include <trace/events/random.h>
 272
 273/* #define ADD_INTERRUPT_BENCH */
 
 
 
 
 
 274
 275/*
 276 * Configuration information
 
 277 */
 278#define INPUT_POOL_SHIFT	12
 279#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 280#define OUTPUT_POOL_SHIFT	10
 281#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 282#define SEC_XFER_SIZE		512
 283#define EXTRACT_SIZE		10
 284
 285#define DEBUG_RANDOM_BOOT 0
 
 
 
 286
 287#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 
 
 
 
 
 
 288
 289/*
 290 * To allow fractional bits to be tracked, the entropy_count field is
 291 * denominated in units of 1/8th bits.
 
 
 292 *
 293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 294 * credit_entropy_bits() needs to be 64 bits wide.
 295 */
 296#define ENTROPY_SHIFT 3
 297#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 
 
 
 
 
 
 
 
 298
 299/*
 300 * The minimum number of bits of entropy before we wake up a read on
 301 * /dev/random.  Should be enough to do a significant reseed.
 302 */
 303static int random_read_wakeup_bits = 64;
 304
 305/*
 306 * If the entropy count falls under this number of bits, then we
 307 * should wake up processes which are selecting or polling on write
 308 * access to /dev/random.
 
 
 
 
 
 309 */
 310static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 
 
 
 311
 312/*
 313 * The minimum number of seconds between urandom pool reseeding.  We
 314 * do this to limit the amount of entropy that can be drained from the
 315 * input pool even if there are heavy demands on /dev/urandom.
 316 */
 317static int random_min_urandom_seed = 60;
 
 
 318
 319/*
 320 * Originally, we used a primitive polynomial of degree .poolwords
 321 * over GF(2).  The taps for various sizes are defined below.  They
 322 * were chosen to be evenly spaced except for the last tap, which is 1
 323 * to get the twisting happening as fast as possible.
 324 *
 325 * For the purposes of better mixing, we use the CRC-32 polynomial as
 326 * well to make a (modified) twisted Generalized Feedback Shift
 327 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 328 * generators.  ACM Transactions on Modeling and Computer Simulation
 329 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 330 * GFSR generators II.  ACM Transactions on Modeling and Computer
 331 * Simulation 4:254-266)
 332 *
 333 * Thanks to Colin Plumb for suggesting this.
 334 *
 335 * The mixing operation is much less sensitive than the output hash,
 336 * where we use SHA-1.  All that we want of mixing operation is that
 337 * it be a good non-cryptographic hash; i.e. it not produce collisions
 338 * when fed "random" data of the sort we expect to see.  As long as
 339 * the pool state differs for different inputs, we have preserved the
 340 * input entropy and done a good job.  The fact that an intelligent
 341 * attacker can construct inputs that will produce controlled
 342 * alterations to the pool's state is not important because we don't
 343 * consider such inputs to contribute any randomness.  The only
 344 * property we need with respect to them is that the attacker can't
 345 * increase his/her knowledge of the pool's state.  Since all
 346 * additions are reversible (knowing the final state and the input,
 347 * you can reconstruct the initial state), if an attacker has any
 348 * uncertainty about the initial state, he/she can only shuffle that
 349 * uncertainty about, but never cause any collisions (which would
 350 * decrease the uncertainty).
 351 *
 352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 353 * Videau in their paper, "The Linux Pseudorandom Number Generator
 354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 355 * paper, they point out that we are not using a true Twisted GFSR,
 356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 357 * is, with only three taps, instead of the six that we are using).
 358 * As a result, the resulting polynomial is neither primitive nor
 359 * irreducible, and hence does not have a maximal period over
 360 * GF(2**32).  They suggest a slight change to the generator
 361 * polynomial which improves the resulting TGFSR polynomial to be
 362 * irreducible, which we have made here.
 363 */
 364static struct poolinfo {
 365	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 366#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 367	int tap1, tap2, tap3, tap4, tap5;
 368} poolinfo_table[] = {
 369	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 370	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 371	{ S(128),	104,	76,	51,	25,	1 },
 372	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 373	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 374	{ S(32),	26,	19,	14,	7,	1 },
 375#if 0
 376	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 377	{ S(2048),	1638,	1231,	819,	411,	1 },
 378
 379	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 380	{ S(1024),	817,	615,	412,	204,	1 },
 
 
 
 
 
 
 381
 382	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 383	{ S(1024),	819,	616,	410,	207,	2 },
 
 
 384
 385	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 386	{ S(512),	411,	308,	208,	104,	1 },
 387
 388	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 389	{ S(512),	409,	307,	206,	102,	2 },
 390	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 391	{ S(512),	409,	309,	205,	103,	2 },
 392
 393	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 394	{ S(256),	205,	155,	101,	52,	1 },
 395
 396	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 397	{ S(128),	103,	78,	51,	27,	2 },
 398
 399	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 400	{ S(64),	52,	39,	26,	14,	1 },
 401#endif
 402};
 403
 404/*
 405 * Static global variables
 406 */
 407static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 408static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 409static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
 410static struct fasync_struct *fasync;
 411
 412static DEFINE_SPINLOCK(random_ready_list_lock);
 413static LIST_HEAD(random_ready_list);
 414
 415/**********************************************************************
 416 *
 417 * OS independent entropy store.   Here are the functions which handle
 418 * storing entropy in an entropy pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419 *
 420 **********************************************************************/
 421
 422struct entropy_store;
 423struct entropy_store {
 424	/* read-only data: */
 425	const struct poolinfo *poolinfo;
 426	__u32 *pool;
 427	const char *name;
 428	struct entropy_store *pull;
 429	struct work_struct push_work;
 430
 431	/* read-write data: */
 432	unsigned long last_pulled;
 
 433	spinlock_t lock;
 434	unsigned short add_ptr;
 435	unsigned short input_rotate;
 436	int entropy_count;
 437	int entropy_total;
 438	unsigned int initialized:1;
 439	unsigned int limit:1;
 440	unsigned int last_data_init:1;
 441	__u8 last_data[EXTRACT_SIZE];
 442};
 443
 444static void push_to_pool(struct work_struct *work);
 445static __u32 input_pool_data[INPUT_POOL_WORDS];
 446static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 447static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 448
 449static struct entropy_store input_pool = {
 450	.poolinfo = &poolinfo_table[0],
 451	.name = "input",
 452	.limit = 1,
 453	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 454	.pool = input_pool_data
 455};
 456
 457static struct entropy_store blocking_pool = {
 458	.poolinfo = &poolinfo_table[1],
 459	.name = "blocking",
 460	.limit = 1,
 461	.pull = &input_pool,
 462	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 463	.pool = blocking_pool_data,
 464	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 465					push_to_pool),
 466};
 467
 468static struct entropy_store nonblocking_pool = {
 469	.poolinfo = &poolinfo_table[1],
 470	.name = "nonblocking",
 471	.pull = &input_pool,
 472	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
 473	.pool = nonblocking_pool_data,
 474	.push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
 475					push_to_pool),
 476};
 
 
 
 
 
 
 
 
 
 
 477
 478static __u32 const twist_table[8] = {
 479	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 480	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 481
 482/*
 483 * This function adds bytes into the entropy "pool".  It does not
 484 * update the entropy estimate.  The caller should call
 485 * credit_entropy_bits if this is appropriate.
 486 *
 487 * The pool is stirred with a primitive polynomial of the appropriate
 488 * degree, and then twisted.  We twist by three bits at a time because
 489 * it's cheap to do so and helps slightly in the expected case where
 490 * the entropy is concentrated in the low-order bits.
 491 */
 492static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 493			    int nbytes)
 494{
 495	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 496	int input_rotate;
 497	int wordmask = r->poolinfo->poolwords - 1;
 498	const char *bytes = in;
 499	__u32 w;
 500
 501	tap1 = r->poolinfo->tap1;
 502	tap2 = r->poolinfo->tap2;
 503	tap3 = r->poolinfo->tap3;
 504	tap4 = r->poolinfo->tap4;
 505	tap5 = r->poolinfo->tap5;
 506
 507	input_rotate = r->input_rotate;
 508	i = r->add_ptr;
 509
 510	/* mix one byte at a time to simplify size handling and churn faster */
 511	while (nbytes--) {
 512		w = rol32(*bytes++, input_rotate);
 513		i = (i - 1) & wordmask;
 514
 515		/* XOR in the various taps */
 516		w ^= r->pool[i];
 517		w ^= r->pool[(i + tap1) & wordmask];
 518		w ^= r->pool[(i + tap2) & wordmask];
 519		w ^= r->pool[(i + tap3) & wordmask];
 520		w ^= r->pool[(i + tap4) & wordmask];
 521		w ^= r->pool[(i + tap5) & wordmask];
 522
 523		/* Mix the result back in with a twist */
 524		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 
 
 
 
 
 525
 526		/*
 527		 * Normally, we add 7 bits of rotation to the pool.
 528		 * At the beginning of the pool, add an extra 7 bits
 529		 * rotation, so that successive passes spread the
 530		 * input bits across the pool evenly.
 531		 */
 532		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 533	}
 534
 535	r->input_rotate = input_rotate;
 536	r->add_ptr = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537}
 538
 539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 540			     int nbytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541{
 542	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 543	_mix_pool_bytes(r, in, nbytes);
 544}
 545
 546static void mix_pool_bytes(struct entropy_store *r, const void *in,
 547			   int nbytes)
 548{
 549	unsigned long flags;
 550
 551	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 552	spin_lock_irqsave(&r->lock, flags);
 553	_mix_pool_bytes(r, in, nbytes);
 554	spin_unlock_irqrestore(&r->lock, flags);
 555}
 556
 557struct fast_pool {
 558	__u32		pool[4];
 559	unsigned long	last;
 560	unsigned short	reg_idx;
 561	unsigned char	count;
 562};
 563
 564/*
 565 * This is a fast mixing routine used by the interrupt randomness
 566 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 567 * locks that might be needed are taken by the caller.
 568 */
 569static void fast_mix(struct fast_pool *f)
 
 570{
 571	__u32 a = f->pool[0],	b = f->pool[1];
 572	__u32 c = f->pool[2],	d = f->pool[3];
 573
 574	a += b;			c += d;
 575	b = rol32(b, 6);	d = rol32(d, 27);
 576	d ^= a;			b ^= c;
 577
 578	a += b;			c += d;
 579	b = rol32(b, 16);	d = rol32(d, 14);
 580	d ^= a;			b ^= c;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581
 582	a += b;			c += d;
 583	b = rol32(b, 6);	d = rol32(d, 27);
 584	d ^= a;			b ^= c;
 585
 586	a += b;			c += d;
 587	b = rol32(b, 16);	d = rol32(d, 14);
 588	d ^= a;			b ^= c;
 
 
 
 
 
 
 
 
 
 
 589
 590	f->pool[0] = a;  f->pool[1] = b;
 591	f->pool[2] = c;  f->pool[3] = d;
 592	f->count++;
 
 
 
 
 
 
 593}
 594
 595static void process_random_ready_list(void)
 596{
 597	unsigned long flags;
 598	struct random_ready_callback *rdy, *tmp;
 
 
 
 
 599
 600	spin_lock_irqsave(&random_ready_list_lock, flags);
 601	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 602		struct module *owner = rdy->owner;
 
 
 
 
 
 
 
 
 
 603
 604		list_del_init(&rdy->list);
 605		rdy->func(rdy);
 606		module_put(owner);
 
 
 607	}
 608	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 609}
 610
 611/*
 612 * Credit (or debit) the entropy store with n bits of entropy.
 613 * Use credit_entropy_bits_safe() if the value comes from userspace
 614 * or otherwise should be checked for extreme values.
 
 
 615 */
 616static void credit_entropy_bits(struct entropy_store *r, int nbits)
 617{
 618	int entropy_count, orig;
 619	const int pool_size = r->poolinfo->poolfracbits;
 620	int nfrac = nbits << ENTROPY_SHIFT;
 
 621
 622	if (!nbits)
 623		return;
 
 
 
 
 
 
 624
 625retry:
 626	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
 627	if (nfrac < 0) {
 628		/* Debit */
 629		entropy_count += nfrac;
 630	} else {
 631		/*
 632		 * Credit: we have to account for the possibility of
 633		 * overwriting already present entropy.	 Even in the
 634		 * ideal case of pure Shannon entropy, new contributions
 635		 * approach the full value asymptotically:
 636		 *
 637		 * entropy <- entropy + (pool_size - entropy) *
 638		 *	(1 - exp(-add_entropy/pool_size))
 639		 *
 640		 * For add_entropy <= pool_size/2 then
 641		 * (1 - exp(-add_entropy/pool_size)) >=
 642		 *    (add_entropy/pool_size)*0.7869...
 643		 * so we can approximate the exponential with
 644		 * 3/4*add_entropy/pool_size and still be on the
 645		 * safe side by adding at most pool_size/2 at a time.
 646		 *
 647		 * The use of pool_size-2 in the while statement is to
 648		 * prevent rounding artifacts from making the loop
 649		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 650		 * turns no matter how large nbits is.
 651		 */
 652		int pnfrac = nfrac;
 653		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 654		/* The +2 corresponds to the /4 in the denominator */
 655
 656		do {
 657			unsigned int anfrac = min(pnfrac, pool_size/2);
 658			unsigned int add =
 659				((pool_size - entropy_count)*anfrac*3) >> s;
 660
 661			entropy_count += add;
 662			pnfrac -= anfrac;
 663		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 664	}
 665
 666	if (unlikely(entropy_count < 0)) {
 667		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 668			r->name, entropy_count);
 669		WARN_ON(1);
 670		entropy_count = 0;
 671	} else if (entropy_count > pool_size)
 672		entropy_count = pool_size;
 673	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 674		goto retry;
 675
 676	r->entropy_total += nbits;
 677	if (!r->initialized && r->entropy_total > 128) {
 678		r->initialized = 1;
 679		r->entropy_total = 0;
 680		if (r == &nonblocking_pool) {
 681			prandom_reseed_late();
 682			process_random_ready_list();
 683			wake_up_all(&urandom_init_wait);
 684			pr_notice("random: %s pool is initialized\n", r->name);
 685		}
 686	}
 687
 688	trace_credit_entropy_bits(r->name, nbits,
 689				  entropy_count >> ENTROPY_SHIFT,
 690				  r->entropy_total, _RET_IP_);
 691
 692	if (r == &input_pool) {
 693		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 694
 695		/* should we wake readers? */
 696		if (entropy_bits >= random_read_wakeup_bits) {
 697			wake_up_interruptible(&random_read_wait);
 698			kill_fasync(&fasync, SIGIO, POLL_IN);
 699		}
 700		/* If the input pool is getting full, send some
 701		 * entropy to the two output pools, flipping back and
 702		 * forth between them, until the output pools are 75%
 703		 * full.
 704		 */
 705		if (entropy_bits > random_write_wakeup_bits &&
 706		    r->initialized &&
 707		    r->entropy_total >= 2*random_read_wakeup_bits) {
 708			static struct entropy_store *last = &blocking_pool;
 709			struct entropy_store *other = &blocking_pool;
 710
 711			if (last == &blocking_pool)
 712				other = &nonblocking_pool;
 713			if (other->entropy_count <=
 714			    3 * other->poolinfo->poolfracbits / 4)
 715				last = other;
 716			if (last->entropy_count <=
 717			    3 * last->poolinfo->poolfracbits / 4) {
 718				schedule_work(&last->push_work);
 719				r->entropy_total = 0;
 720			}
 721		}
 722	}
 723}
 724
 725static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726{
 727	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
 
 
 
 
 
 
 
 
 
 
 728
 729	/* Cap the value to avoid overflows */
 730	nbits = min(nbits,  nbits_max);
 731	nbits = max(nbits, -nbits_max);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732
 733	credit_entropy_bits(r, nbits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734}
 
 735
 736/*********************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 737 *
 738 * Entropy input management
 739 *
 740 *********************************************************************/
 
 
 
 
 
 
 741
 742/* There is one of these per entropy source */
 743struct timer_rand_state {
 744	cycles_t last_time;
 745	long last_delta, last_delta2;
 746	unsigned dont_count_entropy:1;
 
 
 
 
 
 747};
 748
 749#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 
 
 
 750
 751/*
 752 * Add device- or boot-specific data to the input and nonblocking
 753 * pools to help initialize them to unique values.
 754 *
 755 * None of this adds any entropy, it is meant to avoid the
 756 * problem of the nonblocking pool having similar initial state
 757 * across largely identical devices.
 758 */
 759void add_device_randomness(const void *buf, unsigned int size)
 760{
 761	unsigned long time = random_get_entropy() ^ jiffies;
 762	unsigned long flags;
 763
 764	trace_add_device_randomness(size, _RET_IP_);
 765	spin_lock_irqsave(&input_pool.lock, flags);
 766	_mix_pool_bytes(&input_pool, buf, size);
 767	_mix_pool_bytes(&input_pool, &time, sizeof(time));
 768	spin_unlock_irqrestore(&input_pool.lock, flags);
 769
 770	spin_lock_irqsave(&nonblocking_pool.lock, flags);
 771	_mix_pool_bytes(&nonblocking_pool, buf, size);
 772	_mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
 773	spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
 774}
 775EXPORT_SYMBOL(add_device_randomness);
 776
 777static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
 778
 779/*
 780 * This function adds entropy to the entropy "pool" by using timing
 781 * delays.  It uses the timer_rand_state structure to make an estimate
 782 * of how many bits of entropy this call has added to the pool.
 783 *
 784 * The number "num" is also added to the pool - it should somehow describe
 785 * the type of event which just happened.  This is currently 0-255 for
 786 * keyboard scan codes, and 256 upwards for interrupts.
 787 *
 788 */
 789static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 790{
 791	struct entropy_store	*r;
 
 792	struct {
 793		long jiffies;
 794		unsigned cycles;
 795		unsigned num;
 796	} sample;
 797	long delta, delta2, delta3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	preempt_disable();
 800
 801	sample.jiffies = jiffies;
 802	sample.cycles = random_get_entropy();
 803	sample.num = num;
 804	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 805	mix_pool_bytes(r, &sample, sizeof(sample));
 806
 807	/*
 808	 * Calculate number of bits of randomness we probably added.
 809	 * We take into account the first, second and third-order deltas
 810	 * in order to make our estimate.
 811	 */
 812
 813	if (!state->dont_count_entropy) {
 814		delta = sample.jiffies - state->last_time;
 815		state->last_time = sample.jiffies;
 816
 817		delta2 = delta - state->last_delta;
 818		state->last_delta = delta;
 819
 820		delta3 = delta2 - state->last_delta2;
 821		state->last_delta2 = delta2;
 822
 823		if (delta < 0)
 824			delta = -delta;
 825		if (delta2 < 0)
 826			delta2 = -delta2;
 827		if (delta3 < 0)
 828			delta3 = -delta3;
 829		if (delta > delta2)
 830			delta = delta2;
 831		if (delta > delta3)
 832			delta = delta3;
 833
 834		/*
 835		 * delta is now minimum absolute delta.
 836		 * Round down by 1 bit on general principles,
 837		 * and limit entropy entimate to 12 bits.
 838		 */
 839		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
 
 840	}
 841	preempt_enable();
 
 
 842}
 843
 844void add_input_randomness(unsigned int type, unsigned int code,
 845				 unsigned int value)
 
 846{
 847	static unsigned char last_value;
 
 
 848
 849	/* ignore autorepeat and the like */
 850	if (value == last_value)
 851		return;
 852
 853	last_value = value;
 854	add_timer_randomness(&input_timer_state,
 855			     (type << 4) ^ code ^ (code >> 4) ^ value);
 856	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857}
 858EXPORT_SYMBOL_GPL(add_input_randomness);
 859
 860static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 861
 862#ifdef ADD_INTERRUPT_BENCH
 863static unsigned long avg_cycles, avg_deviation;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 864
 865#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
 866#define FIXED_1_2 (1 << (AVG_SHIFT-1))
 
 
 
 
 
 
 
 
 
 
 867
 868static void add_interrupt_bench(cycles_t start)
 869{
 870        long delta = random_get_entropy() - start;
 
 
 
 
 
 
 
 
 
 
 
 
 871
 872        /* Use a weighted moving average */
 873        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
 874        avg_cycles += delta;
 875        /* And average deviation */
 876        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
 877        avg_deviation += delta;
 
 878}
 879#else
 880#define add_interrupt_bench(x)
 881#endif
 882
 883static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
 
 
 
 
 
 
 884{
 885	__u32 *ptr = (__u32 *) regs;
 
 
 
 
 
 
 886
 887	if (regs == NULL)
 888		return 0;
 889	if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
 890		f->reg_idx = 0;
 891	return *(ptr + f->reg_idx++);
 892}
 893
 894void add_interrupt_randomness(int irq, int irq_flags)
 895{
 896	struct entropy_store	*r;
 897	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
 898	struct pt_regs		*regs = get_irq_regs();
 899	unsigned long		now = jiffies;
 900	cycles_t		cycles = random_get_entropy();
 901	__u32			c_high, j_high;
 902	__u64			ip;
 903	unsigned long		seed;
 904	int			credit = 0;
 905
 906	if (cycles == 0)
 907		cycles = get_reg(fast_pool, regs);
 908	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
 909	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
 910	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
 911	fast_pool->pool[1] ^= now ^ c_high;
 912	ip = regs ? instruction_pointer(regs) : _RET_IP_;
 913	fast_pool->pool[2] ^= ip;
 914	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
 915		get_reg(fast_pool, regs);
 916
 917	fast_mix(fast_pool);
 918	add_interrupt_bench(cycles);
 919
 920	if ((fast_pool->count < 64) &&
 921	    !time_after(now, fast_pool->last + HZ))
 922		return;
 
 
 
 923
 924	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 925	if (!spin_trylock(&r->lock))
 926		return;
 
 
 
 
 
 927
 928	fast_pool->last = now;
 929	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
 
 930
 931	/*
 932	 * If we have architectural seed generator, produce a seed and
 933	 * add it to the pool.  For the sake of paranoia don't let the
 934	 * architectural seed generator dominate the input from the
 935	 * interrupt noise.
 936	 */
 937	if (arch_get_random_seed_long(&seed)) {
 938		__mix_pool_bytes(r, &seed, sizeof(seed));
 939		credit = 1;
 940	}
 941	spin_unlock(&r->lock);
 
 942
 943	fast_pool->count = 0;
 944
 945	/* award one bit for the contents of the fast pool */
 946	credit_entropy_bits(r, credit + 1);
 947}
 948
 949#ifdef CONFIG_BLOCK
 950void add_disk_randomness(struct gendisk *disk)
 
 
 
 
 
 
 
 951{
 952	if (!disk || !disk->random)
 953		return;
 954	/* first major is 1, so we get >= 0x200 here */
 955	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 956	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
 
 
 957}
 958EXPORT_SYMBOL_GPL(add_disk_randomness);
 959#endif
 960
 961/*********************************************************************
 962 *
 963 * Entropy extraction routines
 964 *
 965 *********************************************************************/
 
 
 
 
 966
 967static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 968			       size_t nbytes, int min, int rsvd);
 
 
 
 
 
 
 969
 970/*
 971 * This utility inline function is responsible for transferring entropy
 972 * from the primary pool to the secondary extraction pool. We make
 973 * sure we pull enough for a 'catastrophic reseed'.
 974 */
 975static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
 976static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 977{
 978	if (!r->pull ||
 979	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
 980	    r->entropy_count > r->poolinfo->poolfracbits)
 981		return;
 982
 983	if (r->limit == 0 && random_min_urandom_seed) {
 984		unsigned long now = jiffies;
 985
 986		if (time_before(now,
 987				r->last_pulled + random_min_urandom_seed * HZ))
 988			return;
 989		r->last_pulled = now;
 
 
 
 
 
 
 
 990	}
 
 
 
 
 
 991
 992	_xfer_secondary_pool(r, nbytes);
 
 
 993}
 
 994
 995static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 996{
 997	__u32	tmp[OUTPUT_POOL_WORDS];
 
 
 
 998
 999	/* For /dev/random's pool, always leave two wakeups' worth */
1000	int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1001	int bytes = nbytes;
 
 
 
1002
1003	/* pull at least as much as a wakeup */
1004	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1005	/* but never more than the buffer size */
1006	bytes = min_t(int, bytes, sizeof(tmp));
1007
1008	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1009				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1010	bytes = extract_entropy(r->pull, tmp, bytes,
1011				random_read_wakeup_bits / 8, rsvd_bytes);
1012	mix_pool_bytes(r, tmp, bytes);
1013	credit_entropy_bits(r, bytes*8);
1014}
 
 
 
1015
1016/*
1017 * Used as a workqueue function so that when the input pool is getting
1018 * full, we can "spill over" some entropy to the output pools.  That
1019 * way the output pools can store some of the excess entropy instead
1020 * of letting it go to waste.
1021 */
1022static void push_to_pool(struct work_struct *work)
1023{
1024	struct entropy_store *r = container_of(work, struct entropy_store,
1025					      push_work);
1026	BUG_ON(!r);
1027	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1028	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1029			   r->pull->entropy_count >> ENTROPY_SHIFT);
1030}
1031
 
1032/*
1033 * This function decides how many bytes to actually take from the
1034 * given pool, and also debits the entropy count accordingly.
1035 */
1036static size_t account(struct entropy_store *r, size_t nbytes, int min,
1037		      int reserved)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038{
1039	int entropy_count, orig;
1040	size_t ibytes, nfrac;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041
1042	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
 
1043
1044	/* Can we pull enough? */
1045retry:
1046	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1047	ibytes = nbytes;
1048	/* If limited, never pull more than available */
1049	if (r->limit) {
1050		int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1051
1052		if ((have_bytes -= reserved) < 0)
1053			have_bytes = 0;
1054		ibytes = min_t(size_t, ibytes, have_bytes);
1055	}
1056	if (ibytes < min)
1057		ibytes = 0;
 
 
 
 
 
1058
1059	if (unlikely(entropy_count < 0)) {
1060		pr_warn("random: negative entropy count: pool %s count %d\n",
1061			r->name, entropy_count);
1062		WARN_ON(1);
1063		entropy_count = 0;
1064	}
1065	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1066	if ((size_t) entropy_count > nfrac)
1067		entropy_count -= nfrac;
1068	else
1069		entropy_count = 0;
1070
1071	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1072		goto retry;
1073
1074	trace_debit_entropy(r->name, 8 * ibytes);
1075	if (ibytes &&
1076	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1077		wake_up_interruptible(&random_write_wait);
1078		kill_fasync(&fasync, SIGIO, POLL_OUT);
1079	}
 
 
1080
1081	return ibytes;
1082}
 
 
 
1083
1084/*
1085 * This function does the actual extraction for extract_entropy and
1086 * extract_entropy_user.
1087 *
1088 * Note: we assume that .poolwords is a multiple of 16 words.
 
1089 */
1090static void extract_buf(struct entropy_store *r, __u8 *out)
1091{
1092	int i;
1093	union {
1094		__u32 w[5];
1095		unsigned long l[LONGS(20)];
1096	} hash;
1097	__u32 workspace[SHA_WORKSPACE_WORDS];
1098	unsigned long flags;
1099
1100	/*
1101	 * If we have an architectural hardware random number
1102	 * generator, use it for SHA's initial vector
1103	 */
1104	sha_init(hash.w);
1105	for (i = 0; i < LONGS(20); i++) {
1106		unsigned long v;
1107		if (!arch_get_random_long(&v))
1108			break;
1109		hash.l[i] = v;
 
1110	}
1111
1112	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1113	spin_lock_irqsave(&r->lock, flags);
1114	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1115		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1116
1117	/*
1118	 * We mix the hash back into the pool to prevent backtracking
1119	 * attacks (where the attacker knows the state of the pool
1120	 * plus the current outputs, and attempts to find previous
1121	 * ouputs), unless the hash function can be inverted. By
1122	 * mixing at least a SHA1 worth of hash data back, we make
1123	 * brute-forcing the feedback as hard as brute-forcing the
1124	 * hash.
1125	 */
1126	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1127	spin_unlock_irqrestore(&r->lock, flags);
 
 
 
 
 
 
1128
1129	memzero_explicit(workspace, sizeof(workspace));
 
 
 
 
 
 
 
 
 
1130
1131	/*
1132	 * In case the hash function has some recognizable output
1133	 * pattern, we fold it in half. Thus, we always feed back
1134	 * twice as much data as we output.
1135	 */
1136	hash.w[0] ^= hash.w[3];
1137	hash.w[1] ^= hash.w[4];
1138	hash.w[2] ^= rol32(hash.w[2], 16);
1139
1140	memcpy(out, &hash, EXTRACT_SIZE);
1141	memzero_explicit(&hash, sizeof(hash));
 
 
 
 
 
 
 
 
 
1142}
1143
1144/*
1145 * This function extracts randomness from the "entropy pool", and
1146 * returns it in a buffer.
1147 *
1148 * The min parameter specifies the minimum amount we can pull before
1149 * failing to avoid races that defeat catastrophic reseeding while the
1150 * reserved parameter indicates how much entropy we must leave in the
1151 * pool after each pull to avoid starving other readers.
1152 */
1153static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1154				 size_t nbytes, int min, int reserved)
1155{
1156	ssize_t ret = 0, i;
1157	__u8 tmp[EXTRACT_SIZE];
1158	unsigned long flags;
1159
1160	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1161	if (fips_enabled) {
1162		spin_lock_irqsave(&r->lock, flags);
1163		if (!r->last_data_init) {
1164			r->last_data_init = 1;
1165			spin_unlock_irqrestore(&r->lock, flags);
1166			trace_extract_entropy(r->name, EXTRACT_SIZE,
1167					      ENTROPY_BITS(r), _RET_IP_);
1168			xfer_secondary_pool(r, EXTRACT_SIZE);
1169			extract_buf(r, tmp);
1170			spin_lock_irqsave(&r->lock, flags);
1171			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1172		}
1173		spin_unlock_irqrestore(&r->lock, flags);
1174	}
1175
1176	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1177	xfer_secondary_pool(r, nbytes);
1178	nbytes = account(r, nbytes, min, reserved);
1179
1180	while (nbytes) {
1181		extract_buf(r, tmp);
1182
1183		if (fips_enabled) {
1184			spin_lock_irqsave(&r->lock, flags);
1185			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1186				panic("Hardware RNG duplicated output!\n");
1187			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1188			spin_unlock_irqrestore(&r->lock, flags);
1189		}
1190		i = min_t(int, nbytes, EXTRACT_SIZE);
1191		memcpy(buf, tmp, i);
1192		nbytes -= i;
1193		buf += i;
1194		ret += i;
1195	}
1196
1197	/* Wipe data just returned from memory */
1198	memzero_explicit(tmp, sizeof(tmp));
1199
1200	return ret;
 
 
 
1201}
 
1202
1203/*
1204 * This function extracts randomness from the "entropy pool", and
1205 * returns it in a userspace buffer.
1206 */
1207static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1208				    size_t nbytes)
1209{
1210	ssize_t ret = 0, i;
1211	__u8 tmp[EXTRACT_SIZE];
1212	int large_request = (nbytes > 256);
1213
1214	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1215	xfer_secondary_pool(r, nbytes);
1216	nbytes = account(r, nbytes, 0, 0);
1217
1218	while (nbytes) {
1219		if (large_request && need_resched()) {
1220			if (signal_pending(current)) {
1221				if (ret == 0)
1222					ret = -ERESTARTSYS;
1223				break;
1224			}
1225			schedule();
1226		}
1227
1228		extract_buf(r, tmp);
1229		i = min_t(int, nbytes, EXTRACT_SIZE);
1230		if (copy_to_user(buf, tmp, i)) {
1231			ret = -EFAULT;
1232			break;
1233		}
1234
1235		nbytes -= i;
1236		buf += i;
1237		ret += i;
1238	}
1239
1240	/* Wipe data just returned from memory */
1241	memzero_explicit(tmp, sizeof(tmp));
1242
1243	return ret;
1244}
 
1245
1246/*
1247 * This function is the exported kernel interface.  It returns some
1248 * number of good random numbers, suitable for key generation, seeding
1249 * TCP sequence numbers, etc.  It does not rely on the hardware random
1250 * number generator.  For random bytes direct from the hardware RNG
1251 * (when available), use get_random_bytes_arch().
1252 */
1253void get_random_bytes(void *buf, int nbytes)
1254{
1255#if DEBUG_RANDOM_BOOT > 0
1256	if (unlikely(nonblocking_pool.initialized == 0))
1257		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1258		       "with %d bits of entropy available\n",
1259		       (void *) _RET_IP_,
1260		       nonblocking_pool.entropy_total);
1261#endif
1262	trace_get_random_bytes(nbytes, _RET_IP_);
1263	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1264}
1265EXPORT_SYMBOL(get_random_bytes);
1266
1267/*
1268 * Add a callback function that will be invoked when the nonblocking
1269 * pool is initialised.
 
 
 
 
 
1270 *
1271 * returns: 0 if callback is successfully added
1272 *	    -EALREADY if pool is already initialised (callback not called)
1273 *	    -ENOENT if module for callback is not alive
1274 */
1275int add_random_ready_callback(struct random_ready_callback *rdy)
1276{
1277	struct module *owner;
1278	unsigned long flags;
1279	int err = -EALREADY;
1280
1281	if (likely(nonblocking_pool.initialized))
1282		return err;
1283
1284	owner = rdy->owner;
1285	if (!try_module_get(owner))
1286		return -ENOENT;
1287
1288	spin_lock_irqsave(&random_ready_list_lock, flags);
1289	if (nonblocking_pool.initialized)
1290		goto out;
1291
1292	owner = NULL;
1293
1294	list_add(&rdy->list, &random_ready_list);
1295	err = 0;
1296
1297out:
1298	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1299
1300	module_put(owner);
1301
1302	return err;
1303}
1304EXPORT_SYMBOL(add_random_ready_callback);
1305
1306/*
1307 * Delete a previously registered readiness callback function.
 
1308 */
1309void del_random_ready_callback(struct random_ready_callback *rdy)
1310{
1311	unsigned long flags;
1312	struct module *owner = NULL;
 
 
 
 
1313
1314	spin_lock_irqsave(&random_ready_list_lock, flags);
1315	if (!list_empty(&rdy->list)) {
1316		list_del_init(&rdy->list);
1317		owner = rdy->owner;
 
1318	}
1319	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 
1320
1321	module_put(owner);
1322}
1323EXPORT_SYMBOL(del_random_ready_callback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324
1325/*
1326 * This function will use the architecture-specific hardware random
1327 * number generator if it is available.  The arch-specific hw RNG will
1328 * almost certainly be faster than what we can do in software, but it
1329 * is impossible to verify that it is implemented securely (as
1330 * opposed, to, say, the AES encryption of a sequence number using a
1331 * key known by the NSA).  So it's useful if we need the speed, but
1332 * only if we're willing to trust the hardware manufacturer not to
1333 * have put in a back door.
1334 */
1335void get_random_bytes_arch(void *buf, int nbytes)
1336{
1337	char *p = buf;
1338
1339	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1340	while (nbytes) {
1341		unsigned long v;
1342		int chunk = min(nbytes, (int)sizeof(unsigned long));
1343
1344		if (!arch_get_random_long(&v))
1345			break;
1346		
1347		memcpy(p, &v, chunk);
1348		p += chunk;
1349		nbytes -= chunk;
1350	}
 
1351
1352	if (nbytes)
1353		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1354}
1355EXPORT_SYMBOL(get_random_bytes_arch);
1356
1357
1358/*
1359 * init_std_data - initialize pool with system data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360 *
1361 * @r: pool to initialize
 
 
1362 *
1363 * This function clears the pool's entropy count and mixes some system
1364 * data into the pool to prepare it for use. The pool is not cleared
1365 * as that can only decrease the entropy in the pool.
1366 */
1367static void init_std_data(struct entropy_store *r)
1368{
1369	int i;
1370	ktime_t now = ktime_get_real();
1371	unsigned long rv;
 
 
 
 
 
 
 
 
 
1372
1373	r->last_pulled = jiffies;
1374	mix_pool_bytes(r, &now, sizeof(now));
1375	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1376		if (!arch_get_random_seed_long(&rv) &&
1377		    !arch_get_random_long(&rv))
1378			rv = random_get_entropy();
1379		mix_pool_bytes(r, &rv, sizeof(rv));
1380	}
1381	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1382}
1383
1384/*
1385 * Note that setup_arch() may call add_device_randomness()
1386 * long before we get here. This allows seeding of the pools
1387 * with some platform dependent data very early in the boot
1388 * process. But it limits our options here. We must use
1389 * statically allocated structures that already have all
1390 * initializations complete at compile time. We should also
1391 * take care not to overwrite the precious per platform data
1392 * we were given.
1393 */
1394static int rand_initialize(void)
1395{
1396	init_std_data(&input_pool);
1397	init_std_data(&blocking_pool);
1398	init_std_data(&nonblocking_pool);
1399	return 0;
1400}
1401early_initcall(rand_initialize);
1402
1403#ifdef CONFIG_BLOCK
1404void rand_initialize_disk(struct gendisk *disk)
1405{
1406	struct timer_rand_state *state;
1407
1408	/*
1409	 * If kzalloc returns null, we just won't use that entropy
1410	 * source.
1411	 */
1412	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1413	if (state) {
1414		state->last_time = INITIAL_JIFFIES;
1415		disk->random = state;
1416	}
1417}
1418#endif
1419
1420static ssize_t
1421_random_read(int nonblock, char __user *buf, size_t nbytes)
1422{
1423	ssize_t n;
 
 
1424
1425	if (nbytes == 0)
1426		return 0;
1427
1428	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1429	while (1) {
1430		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1431		if (n < 0)
1432			return n;
1433		trace_random_read(n*8, (nbytes-n)*8,
1434				  ENTROPY_BITS(&blocking_pool),
1435				  ENTROPY_BITS(&input_pool));
1436		if (n > 0)
1437			return n;
1438
1439		/* Pool is (near) empty.  Maybe wait and retry. */
1440		if (nonblock)
1441			return -EAGAIN;
1442
1443		wait_event_interruptible(random_read_wait,
1444			ENTROPY_BITS(&input_pool) >=
1445			random_read_wakeup_bits);
1446		if (signal_pending(current))
1447			return -ERESTARTSYS;
1448	}
1449}
1450
1451static ssize_t
1452random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1453{
1454	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1455}
1456
1457static ssize_t
1458urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1459{
1460	int ret;
1461
1462	if (unlikely(nonblocking_pool.initialized == 0))
1463		printk_once(KERN_NOTICE "random: %s urandom read "
1464			    "with %d bits of entropy available\n",
1465			    current->comm, nonblocking_pool.entropy_total);
1466
1467	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1468	ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1469
1470	trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1471			   ENTROPY_BITS(&input_pool));
1472	return ret;
1473}
1474
1475static unsigned int
1476random_poll(struct file *file, poll_table * wait)
1477{
1478	unsigned int mask;
1479
1480	poll_wait(file, &random_read_wait, wait);
1481	poll_wait(file, &random_write_wait, wait);
1482	mask = 0;
1483	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1484		mask |= POLLIN | POLLRDNORM;
1485	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1486		mask |= POLLOUT | POLLWRNORM;
1487	return mask;
1488}
1489
1490static int
1491write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1492{
1493	size_t bytes;
1494	__u32 buf[16];
1495	const char __user *p = buffer;
1496
1497	while (count > 0) {
1498		bytes = min(count, sizeof(buf));
1499		if (copy_from_user(&buf, p, bytes))
1500			return -EFAULT;
1501
1502		count -= bytes;
1503		p += bytes;
1504
1505		mix_pool_bytes(r, buf, bytes);
1506		cond_resched();
 
 
 
1507	}
1508
1509	return 0;
1510}
1511
1512static ssize_t random_write(struct file *file, const char __user *buffer,
1513			    size_t count, loff_t *ppos)
1514{
1515	size_t ret;
1516
1517	ret = write_pool(&blocking_pool, buffer, count);
1518	if (ret)
1519		return ret;
1520	ret = write_pool(&nonblocking_pool, buffer, count);
1521	if (ret)
 
 
1522		return ret;
1523
1524	return (ssize_t)count;
1525}
1526
1527static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1528{
1529	int size, ent_count;
1530	int __user *p = (int __user *)arg;
1531	int retval;
1532
1533	switch (cmd) {
1534	case RNDGETENTCNT:
1535		/* inherently racy, no point locking */
1536		ent_count = ENTROPY_BITS(&input_pool);
1537		if (put_user(ent_count, p))
1538			return -EFAULT;
1539		return 0;
1540	case RNDADDTOENTCNT:
1541		if (!capable(CAP_SYS_ADMIN))
1542			return -EPERM;
1543		if (get_user(ent_count, p))
1544			return -EFAULT;
1545		credit_entropy_bits_safe(&input_pool, ent_count);
 
 
1546		return 0;
1547	case RNDADDENTROPY:
 
 
 
 
1548		if (!capable(CAP_SYS_ADMIN))
1549			return -EPERM;
1550		if (get_user(ent_count, p++))
1551			return -EFAULT;
1552		if (ent_count < 0)
1553			return -EINVAL;
1554		if (get_user(size, p++))
 
 
 
 
 
 
 
 
 
1555			return -EFAULT;
1556		retval = write_pool(&input_pool, (const char __user *)p,
1557				    size);
1558		if (retval < 0)
1559			return retval;
1560		credit_entropy_bits_safe(&input_pool, ent_count);
1561		return 0;
 
1562	case RNDZAPENTCNT:
1563	case RNDCLEARPOOL:
1564		/*
1565		 * Clear the entropy pool counters. We no longer clear
1566		 * the entropy pool, as that's silly.
1567		 */
 
1568		if (!capable(CAP_SYS_ADMIN))
1569			return -EPERM;
1570		input_pool.entropy_count = 0;
1571		nonblocking_pool.entropy_count = 0;
1572		blocking_pool.entropy_count = 0;
1573		return 0;
1574	default:
1575		return -EINVAL;
1576	}
1577}
1578
1579static int random_fasync(int fd, struct file *filp, int on)
1580{
1581	return fasync_helper(fd, filp, on, &fasync);
1582}
1583
1584const struct file_operations random_fops = {
1585	.read  = random_read,
1586	.write = random_write,
1587	.poll  = random_poll,
1588	.unlocked_ioctl = random_ioctl,
 
1589	.fasync = random_fasync,
1590	.llseek = noop_llseek,
 
 
1591};
1592
1593const struct file_operations urandom_fops = {
1594	.read  = urandom_read,
1595	.write = random_write,
1596	.unlocked_ioctl = random_ioctl,
 
1597	.fasync = random_fasync,
1598	.llseek = noop_llseek,
 
 
1599};
1600
1601SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1602		unsigned int, flags)
1603{
1604	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1605		return -EINVAL;
1606
1607	if (count > INT_MAX)
1608		count = INT_MAX;
1609
1610	if (flags & GRND_RANDOM)
1611		return _random_read(flags & GRND_NONBLOCK, buf, count);
1612
1613	if (unlikely(nonblocking_pool.initialized == 0)) {
1614		if (flags & GRND_NONBLOCK)
1615			return -EAGAIN;
1616		wait_event_interruptible(urandom_init_wait,
1617					 nonblocking_pool.initialized);
1618		if (signal_pending(current))
1619			return -ERESTARTSYS;
1620	}
1621	return urandom_read(NULL, buf, count, NULL);
1622}
1623
1624/***************************************************************
1625 * Random UUID interface
1626 *
1627 * Used here for a Boot ID, but can be useful for other kernel
1628 * drivers.
1629 ***************************************************************/
1630
1631/*
1632 * Generate random UUID
1633 */
1634void generate_random_uuid(unsigned char uuid_out[16])
1635{
1636	get_random_bytes(uuid_out, 16);
1637	/* Set UUID version to 4 --- truly random generation */
1638	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1639	/* Set the UUID variant to DCE */
1640	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1641}
1642EXPORT_SYMBOL(generate_random_uuid);
1643
1644/********************************************************************
1645 *
1646 * Sysctl interface
 
 
1647 *
1648 ********************************************************************/
1649
1650#ifdef CONFIG_SYSCTL
1651
1652#include <linux/sysctl.h>
1653
1654static int min_read_thresh = 8, min_write_thresh;
1655static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1656static int max_write_thresh = INPUT_POOL_WORDS * 32;
1657static char sysctl_bootid[16];
1658
1659/*
1660 * This function is used to return both the bootid UUID, and random
1661 * UUID.  The difference is in whether table->data is NULL; if it is,
1662 * then a new UUID is generated and returned to the user.
1663 *
1664 * If the user accesses this via the proc interface, the UUID will be
1665 * returned as an ASCII string in the standard UUID format; if via the
1666 * sysctl system call, as 16 bytes of binary data.
1667 */
1668static int proc_do_uuid(struct ctl_table *table, int write,
1669			void __user *buffer, size_t *lenp, loff_t *ppos)
1670{
1671	struct ctl_table fake_table;
1672	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
1673
1674	uuid = table->data;
1675	if (!uuid) {
1676		uuid = tmp_uuid;
1677		generate_random_uuid(uuid);
1678	} else {
1679		static DEFINE_SPINLOCK(bootid_spinlock);
1680
1681		spin_lock(&bootid_spinlock);
1682		if (!uuid[8])
1683			generate_random_uuid(uuid);
1684		spin_unlock(&bootid_spinlock);
1685	}
1686
1687	sprintf(buf, "%pU", uuid);
1688
1689	fake_table.data = buf;
1690	fake_table.maxlen = sizeof(buf);
1691
1692	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1693}
1694
1695/*
1696 * Return entropy available scaled to integral bits
1697 */
1698static int proc_do_entropy(struct ctl_table *table, int write,
1699			   void __user *buffer, size_t *lenp, loff_t *ppos)
1700{
1701	struct ctl_table fake_table;
1702	int entropy_count;
1703
1704	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1705
1706	fake_table.data = &entropy_count;
1707	fake_table.maxlen = sizeof(entropy_count);
1708
1709	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1710}
1711
1712static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1713extern struct ctl_table random_table[];
1714struct ctl_table random_table[] = {
1715	{
1716		.procname	= "poolsize",
1717		.data		= &sysctl_poolsize,
1718		.maxlen		= sizeof(int),
1719		.mode		= 0444,
1720		.proc_handler	= proc_dointvec,
1721	},
1722	{
1723		.procname	= "entropy_avail",
 
1724		.maxlen		= sizeof(int),
1725		.mode		= 0444,
1726		.proc_handler	= proc_do_entropy,
1727		.data		= &input_pool.entropy_count,
1728	},
1729	{
1730		.procname	= "read_wakeup_threshold",
1731		.data		= &random_read_wakeup_bits,
1732		.maxlen		= sizeof(int),
1733		.mode		= 0644,
1734		.proc_handler	= proc_dointvec_minmax,
1735		.extra1		= &min_read_thresh,
1736		.extra2		= &max_read_thresh,
1737	},
1738	{
1739		.procname	= "write_wakeup_threshold",
1740		.data		= &random_write_wakeup_bits,
1741		.maxlen		= sizeof(int),
1742		.mode		= 0644,
1743		.proc_handler	= proc_dointvec_minmax,
1744		.extra1		= &min_write_thresh,
1745		.extra2		= &max_write_thresh,
1746	},
1747	{
1748		.procname	= "urandom_min_reseed_secs",
1749		.data		= &random_min_urandom_seed,
1750		.maxlen		= sizeof(int),
1751		.mode		= 0644,
1752		.proc_handler	= proc_dointvec,
1753	},
1754	{
1755		.procname	= "boot_id",
1756		.data		= &sysctl_bootid,
1757		.maxlen		= 16,
1758		.mode		= 0444,
1759		.proc_handler	= proc_do_uuid,
1760	},
1761	{
1762		.procname	= "uuid",
1763		.maxlen		= 16,
1764		.mode		= 0444,
1765		.proc_handler	= proc_do_uuid,
1766	},
1767#ifdef ADD_INTERRUPT_BENCH
1768	{
1769		.procname	= "add_interrupt_avg_cycles",
1770		.data		= &avg_cycles,
1771		.maxlen		= sizeof(avg_cycles),
1772		.mode		= 0444,
1773		.proc_handler	= proc_doulongvec_minmax,
1774	},
1775	{
1776		.procname	= "add_interrupt_avg_deviation",
1777		.data		= &avg_deviation,
1778		.maxlen		= sizeof(avg_deviation),
1779		.mode		= 0444,
1780		.proc_handler	= proc_doulongvec_minmax,
1781	},
1782#endif
1783	{ }
1784};
1785#endif 	/* CONFIG_SYSCTL */
1786
1787static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1788
1789int random_int_secret_init(void)
1790{
1791	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1792	return 0;
1793}
1794
1795/*
1796 * Get a random word for internal kernel use only. Similar to urandom but
1797 * with the goal of minimal entropy pool depletion. As a result, the random
1798 * value is not cryptographically secure but for several uses the cost of
1799 * depleting entropy is too high
1800 */
1801static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1802unsigned int get_random_int(void)
1803{
1804	__u32 *hash;
1805	unsigned int ret;
1806
1807	if (arch_get_random_int(&ret))
1808		return ret;
1809
1810	hash = get_cpu_var(get_random_int_hash);
1811
1812	hash[0] += current->pid + jiffies + random_get_entropy();
1813	md5_transform(hash, random_int_secret);
1814	ret = hash[0];
1815	put_cpu_var(get_random_int_hash);
1816
1817	return ret;
1818}
1819EXPORT_SYMBOL(get_random_int);
1820
1821/*
1822 * Same as get_random_int(), but returns unsigned long.
1823 */
1824unsigned long get_random_long(void)
1825{
1826	__u32 *hash;
1827	unsigned long ret;
1828
1829	if (arch_get_random_long(&ret))
1830		return ret;
1831
1832	hash = get_cpu_var(get_random_int_hash);
1833
1834	hash[0] += current->pid + jiffies + random_get_entropy();
1835	md5_transform(hash, random_int_secret);
1836	ret = *(unsigned long *)hash;
1837	put_cpu_var(get_random_int_hash);
1838
1839	return ret;
1840}
1841EXPORT_SYMBOL(get_random_long);
1842
1843/*
1844 * randomize_range() returns a start address such that
1845 *
1846 *    [...... <range> .....]
1847 *  start                  end
1848 *
1849 * a <range> with size "len" starting at the return value is inside in the
1850 * area defined by [start, end], but is otherwise randomized.
1851 */
1852unsigned long
1853randomize_range(unsigned long start, unsigned long end, unsigned long len)
1854{
1855	unsigned long range = end - len - start;
1856
1857	if (end <= start + len)
1858		return 0;
1859	return PAGE_ALIGN(get_random_int() % range + start);
1860}
1861
1862/* Interface for in-kernel drivers of true hardware RNGs.
1863 * Those devices may produce endless random bits and will be throttled
1864 * when our pool is full.
1865 */
1866void add_hwgenerator_randomness(const char *buffer, size_t count,
1867				size_t entropy)
1868{
1869	struct entropy_store *poolp = &input_pool;
1870
1871	/* Suspend writing if we're above the trickle threshold.
1872	 * We'll be woken up again once below random_write_wakeup_thresh,
1873	 * or when the calling thread is about to terminate.
1874	 */
1875	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
1876			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1877	mix_pool_bytes(poolp, buffer, count);
1878	credit_entropy_bits(poolp, entropy);
1879}
1880EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);