Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
   2/*
   3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 
 
 
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
   6 *
   7 * This driver produces cryptographically secure pseudorandom data. It is divided
   8 * into roughly six sections, each with a section header:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 *
  10 *   - Initialization and readiness waiting.
  11 *   - Fast key erasure RNG, the "crng".
  12 *   - Entropy accumulation and extraction routines.
  13 *   - Entropy collection routines.
  14 *   - Userspace reader/writer interfaces.
  15 *   - Sysctl interface.
  16 *
  17 * The high level overview is that there is one input pool, into which
  18 * various pieces of data are hashed. Prior to initialization, some of that
  19 * data is then "credited" as having a certain number of bits of entropy.
  20 * When enough bits of entropy are available, the hash is finalized and
  21 * handed as a key to a stream cipher that expands it indefinitely for
  22 * various consumers. This key is periodically refreshed as the various
  23 * entropy collectors, described below, add data to the input pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  24 */
  25
  26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27
  28#include <linux/utsname.h>
  29#include <linux/module.h>
  30#include <linux/kernel.h>
  31#include <linux/major.h>
  32#include <linux/string.h>
  33#include <linux/fcntl.h>
  34#include <linux/slab.h>
  35#include <linux/random.h>
  36#include <linux/poll.h>
  37#include <linux/init.h>
  38#include <linux/fs.h>
  39#include <linux/blkdev.h>
  40#include <linux/interrupt.h>
  41#include <linux/mm.h>
  42#include <linux/nodemask.h>
  43#include <linux/spinlock.h>
  44#include <linux/kthread.h>
  45#include <linux/percpu.h>
 
  46#include <linux/ptrace.h>
  47#include <linux/workqueue.h>
  48#include <linux/irq.h>
  49#include <linux/ratelimit.h>
  50#include <linux/syscalls.h>
  51#include <linux/completion.h>
  52#include <linux/uuid.h>
  53#include <linux/uaccess.h>
  54#include <linux/suspend.h>
  55#include <linux/siphash.h>
  56#include <linux/sched/isolation.h>
  57#include <crypto/chacha.h>
  58#include <crypto/blake2s.h>
  59#include <asm/archrandom.h>
  60#include <asm/processor.h>
 
  61#include <asm/irq.h>
  62#include <asm/irq_regs.h>
  63#include <asm/io.h>
  64
  65/*********************************************************************
  66 *
  67 * Initialization and readiness waiting.
  68 *
  69 * Much of the RNG infrastructure is devoted to various dependencies
  70 * being able to wait until the RNG has collected enough entropy and
  71 * is ready for safe consumption.
  72 *
  73 *********************************************************************/
  74
  75/*
  76 * crng_init is protected by base_crng->lock, and only increases
  77 * its value (from empty->early->ready).
  78 */
  79static enum {
  80	CRNG_EMPTY = 0, /* Little to no entropy collected */
  81	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
  82	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
  83} crng_init __read_mostly = CRNG_EMPTY;
  84static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
  85#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
  86/* Various types of waiters for crng_init->CRNG_READY transition. */
  87static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
  88static struct fasync_struct *fasync;
  89static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
  90
  91/* Control how we warn userspace. */
  92static struct ratelimit_state urandom_warning =
  93	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
  94static int ratelimit_disable __read_mostly =
  95	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
  96module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
  97MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98
  99/*
 100 * Returns whether or not the input pool has been seeded and thus guaranteed
 101 * to supply cryptographically secure random numbers. This applies to: the
 102 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 103 * u16,u32,u64,long} family of functions.
 104 *
 105 * Returns: true if the input pool has been seeded.
 106 *          false if the input pool has not been seeded.
 107 */
 108bool rng_is_initialized(void)
 109{
 110	return crng_ready();
 111}
 112EXPORT_SYMBOL(rng_is_initialized);
 113
 114static void __cold crng_set_ready(struct work_struct *work)
 115{
 116	static_branch_enable(&crng_is_ready);
 117}
 118
 119/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
 120static void try_to_generate_entropy(void);
 121
 122/*
 123 * Wait for the input pool to be seeded and thus guaranteed to supply
 124 * cryptographically secure random numbers. This applies to: the /dev/urandom
 125 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 126 * long} family of functions. Using any of these functions without first
 127 * calling this function forfeits the guarantee of security.
 128 *
 129 * Returns: 0 if the input pool has been seeded.
 130 *          -ERESTARTSYS if the function was interrupted by a signal.
 131 */
 132int wait_for_random_bytes(void)
 133{
 134	while (!crng_ready()) {
 135		int ret;
 136
 137		try_to_generate_entropy();
 138		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
 139		if (ret)
 140			return ret > 0 ? 0 : ret;
 141	}
 142	return 0;
 143}
 144EXPORT_SYMBOL(wait_for_random_bytes);
 145
 146/*
 147 * Add a callback function that will be invoked when the crng is initialised,
 148 * or immediately if it already has been. Only use this is you are absolutely
 149 * sure it is required. Most users should instead be able to test
 150 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 151 */
 152int __cold execute_with_initialized_rng(struct notifier_block *nb)
 153{
 154	unsigned long flags;
 155	int ret = 0;
 
 
 
 
 
 
 
 
 156
 157	spin_lock_irqsave(&random_ready_notifier.lock, flags);
 158	if (crng_ready())
 159		nb->notifier_call(nb, 0, NULL);
 160	else
 161		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
 162	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
 163	return ret;
 164}
 165
 166#define warn_unseeded_randomness() \
 167	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
 168		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
 169				__func__, (void *)_RET_IP_, crng_init)
 170
 
 
 171
 172/*********************************************************************
 173 *
 174 * Fast key erasure RNG, the "crng".
 175 *
 176 * These functions expand entropy from the entropy extractor into
 177 * long streams for external consumption using the "fast key erasure"
 178 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
 179 *
 180 * There are a few exported interfaces for use by other drivers:
 181 *
 182 *	void get_random_bytes(void *buf, size_t len)
 183 *	u8 get_random_u8()
 184 *	u16 get_random_u16()
 185 *	u32 get_random_u32()
 186 *	u32 get_random_u32_below(u32 ceil)
 187 *	u32 get_random_u32_above(u32 floor)
 188 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
 189 *	u64 get_random_u64()
 190 *	unsigned long get_random_long()
 191 *
 192 * These interfaces will return the requested number of random bytes
 193 * into the given buffer or as a return value. This is equivalent to
 194 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 195 * functions may be higher performance for one-off random integers,
 196 * because they do a bit of buffering and do not invoke reseeding
 197 * until the buffer is emptied.
 198 *
 199 *********************************************************************/
 200
 201enum {
 202	CRNG_RESEED_START_INTERVAL = HZ,
 203	CRNG_RESEED_INTERVAL = 60 * HZ
 204};
 
 
 205
 206static struct {
 207	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
 208	unsigned long generation;
 209	spinlock_t lock;
 210} base_crng = {
 211	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
 
 
 
 212};
 213
 214struct crng {
 215	u8 key[CHACHA_KEY_SIZE];
 216	unsigned long generation;
 217	local_lock_t lock;
 
 
 
 
 
 
 
 
 
 218};
 219
 220static DEFINE_PER_CPU(struct crng, crngs) = {
 221	.generation = ULONG_MAX,
 222	.lock = INIT_LOCAL_LOCK(crngs.lock),
 223};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224
 225/*
 226 * Return the interval until the next reseeding, which is normally
 227 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 228 * proportional to the uptime.
 229 */
 230static unsigned int crng_reseed_interval(void)
 231{
 232	static bool early_boot = true;
 233
 234	if (unlikely(READ_ONCE(early_boot))) {
 235		time64_t uptime = ktime_get_seconds();
 236		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
 237			WRITE_ONCE(early_boot, false);
 238		else
 239			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
 240				     (unsigned int)uptime / 2 * HZ);
 241	}
 242	return CRNG_RESEED_INTERVAL;
 243}
 244
 245/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
 246static void extract_entropy(void *buf, size_t len);
 
 247
 248/* This extracts a new crng key from the input pool. */
 249static void crng_reseed(struct work_struct *work)
 250{
 251	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
 252	unsigned long flags;
 253	unsigned long next_gen;
 254	u8 key[CHACHA_KEY_SIZE];
 255
 256	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
 257	if (likely(system_unbound_wq))
 258		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());
 259
 260	extract_entropy(key, sizeof(key));
 261
 262	/*
 263	 * We copy the new key into the base_crng, overwriting the old one,
 264	 * and update the generation counter. We avoid hitting ULONG_MAX,
 265	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
 266	 * forces new CPUs that come online to always initialize.
 267	 */
 268	spin_lock_irqsave(&base_crng.lock, flags);
 269	memcpy(base_crng.key, key, sizeof(base_crng.key));
 270	next_gen = base_crng.generation + 1;
 271	if (next_gen == ULONG_MAX)
 272		++next_gen;
 273	WRITE_ONCE(base_crng.generation, next_gen);
 274	if (!static_branch_likely(&crng_is_ready))
 275		crng_init = CRNG_READY;
 276	spin_unlock_irqrestore(&base_crng.lock, flags);
 277	memzero_explicit(key, sizeof(key));
 278}
 279
 280/*
 281 * This generates a ChaCha block using the provided key, and then
 282 * immediately overwrites that key with half the block. It returns
 283 * the resultant ChaCha state to the user, along with the second
 284 * half of the block containing 32 bytes of random data that may
 285 * be used; random_data_len may not be greater than 32.
 286 *
 287 * The returned ChaCha state contains within it a copy of the old
 288 * key value, at index 4, so the state should always be zeroed out
 289 * immediately after using in order to maintain forward secrecy.
 290 * If the state cannot be erased in a timely manner, then it is
 291 * safer to set the random_data parameter to &chacha_state[4] so
 292 * that this function overwrites it before returning.
 293 */
 294static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
 295				  u32 chacha_state[CHACHA_STATE_WORDS],
 296				  u8 *random_data, size_t random_data_len)
 297{
 298	u8 first_block[CHACHA_BLOCK_SIZE];
 299
 300	BUG_ON(random_data_len > 32);
 301
 302	chacha_init_consts(chacha_state);
 303	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
 304	memset(&chacha_state[12], 0, sizeof(u32) * 4);
 305	chacha20_block(chacha_state, first_block);
 306
 307	memcpy(key, first_block, CHACHA_KEY_SIZE);
 308	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
 309	memzero_explicit(first_block, sizeof(first_block));
 
 310}
 311
 
 
 
 
 
 
 
 312/*
 313 * This function returns a ChaCha state that you may use for generating
 314 * random data. It also returns up to 32 bytes on its own of random data
 315 * that may be used; random_data_len may not be greater than 32.
 316 */
 317static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
 318			    u8 *random_data, size_t random_data_len)
 319{
 320	unsigned long flags;
 321	struct crng *crng;
 322
 323	BUG_ON(random_data_len > 32);
 324
 325	/*
 326	 * For the fast path, we check whether we're ready, unlocked first, and
 327	 * then re-check once locked later. In the case where we're really not
 328	 * ready, we do fast key erasure with the base_crng directly, extracting
 329	 * when crng_init is CRNG_EMPTY.
 330	 */
 331	if (!crng_ready()) {
 332		bool ready;
 333
 334		spin_lock_irqsave(&base_crng.lock, flags);
 335		ready = crng_ready();
 336		if (!ready) {
 337			if (crng_init == CRNG_EMPTY)
 338				extract_entropy(base_crng.key, sizeof(base_crng.key));
 339			crng_fast_key_erasure(base_crng.key, chacha_state,
 340					      random_data, random_data_len);
 341		}
 342		spin_unlock_irqrestore(&base_crng.lock, flags);
 343		if (!ready)
 344			return;
 345	}
 346
 347	local_lock_irqsave(&crngs.lock, flags);
 348	crng = raw_cpu_ptr(&crngs);
 
 349
 350	/*
 351	 * If our per-cpu crng is older than the base_crng, then it means
 352	 * somebody reseeded the base_crng. In that case, we do fast key
 353	 * erasure on the base_crng, and use its output as the new key
 354	 * for our per-cpu crng. This brings us up to date with base_crng.
 355	 */
 356	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
 357		spin_lock(&base_crng.lock);
 358		crng_fast_key_erasure(base_crng.key, chacha_state,
 359				      crng->key, sizeof(crng->key));
 360		crng->generation = base_crng.generation;
 361		spin_unlock(&base_crng.lock);
 362	}
 363
 364	/*
 365	 * Finally, when we've made it this far, our per-cpu crng has an up
 366	 * to date key, and we can do fast key erasure with it to produce
 367	 * some random data and a ChaCha state for the caller. All other
 368	 * branches of this function are "unlikely", so most of the time we
 369	 * should wind up here immediately.
 370	 */
 371	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
 372	local_unlock_irqrestore(&crngs.lock, flags);
 373}
 374
 375static void _get_random_bytes(void *buf, size_t len)
 376{
 377	u32 chacha_state[CHACHA_STATE_WORDS];
 378	u8 tmp[CHACHA_BLOCK_SIZE];
 379	size_t first_block_len;
 380
 381	if (!len)
 382		return;
 383
 384	first_block_len = min_t(size_t, 32, len);
 385	crng_make_state(chacha_state, buf, first_block_len);
 386	len -= first_block_len;
 387	buf += first_block_len;
 388
 389	while (len) {
 390		if (len < CHACHA_BLOCK_SIZE) {
 391			chacha20_block(chacha_state, tmp);
 392			memcpy(buf, tmp, len);
 393			memzero_explicit(tmp, sizeof(tmp));
 394			break;
 395		}
 396
 397		chacha20_block(chacha_state, buf);
 398		if (unlikely(chacha_state[12] == 0))
 399			++chacha_state[13];
 400		len -= CHACHA_BLOCK_SIZE;
 401		buf += CHACHA_BLOCK_SIZE;
 402	}
 403
 404	memzero_explicit(chacha_state, sizeof(chacha_state));
 405}
 406
 407/*
 408 * This returns random bytes in arbitrary quantities. The quality of the
 409 * random bytes is good as /dev/urandom. In order to ensure that the
 410 * randomness provided by this function is okay, the function
 411 * wait_for_random_bytes() should be called and return 0 at least once
 412 * at any point prior.
 413 */
 414void get_random_bytes(void *buf, size_t len)
 415{
 416	warn_unseeded_randomness();
 417	_get_random_bytes(buf, len);
 418}
 419EXPORT_SYMBOL(get_random_bytes);
 420
 421static ssize_t get_random_bytes_user(struct iov_iter *iter)
 422{
 423	u32 chacha_state[CHACHA_STATE_WORDS];
 424	u8 block[CHACHA_BLOCK_SIZE];
 425	size_t ret = 0, copied;
 426
 427	if (unlikely(!iov_iter_count(iter)))
 428		return 0;
 429
 430	/*
 431	 * Immediately overwrite the ChaCha key at index 4 with random
 432	 * bytes, in case userspace causes copy_to_iter() below to sleep
 433	 * forever, so that we still retain forward secrecy in that case.
 434	 */
 435	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
 436	/*
 437	 * However, if we're doing a read of len <= 32, we don't need to
 438	 * use chacha_state after, so we can simply return those bytes to
 439	 * the user directly.
 440	 */
 441	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
 442		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
 443		goto out_zero_chacha;
 444	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445
 446	for (;;) {
 447		chacha20_block(chacha_state, block);
 448		if (unlikely(chacha_state[12] == 0))
 449			++chacha_state[13];
 450
 451		copied = copy_to_iter(block, sizeof(block), iter);
 452		ret += copied;
 453		if (!iov_iter_count(iter) || copied != sizeof(block))
 454			break;
 455
 456		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
 457		if (ret % PAGE_SIZE == 0) {
 458			if (signal_pending(current))
 459				break;
 460			cond_resched();
 461		}
 462	}
 463
 464	memzero_explicit(block, sizeof(block));
 465out_zero_chacha:
 466	memzero_explicit(chacha_state, sizeof(chacha_state));
 467	return ret ? ret : -EFAULT;
 468}
 469
 470/*
 471 * Batched entropy returns random integers. The quality of the random
 472 * number is good as /dev/urandom. In order to ensure that the randomness
 473 * provided by this function is okay, the function wait_for_random_bytes()
 474 * should be called and return 0 at least once at any point prior.
 475 */
 476
 477#define DEFINE_BATCHED_ENTROPY(type)						\
 478struct batch_ ##type {								\
 479	/*									\
 480	 * We make this 1.5x a ChaCha block, so that we get the			\
 481	 * remaining 32 bytes from fast key erasure, plus one full		\
 482	 * block from the detached ChaCha state. We can increase		\
 483	 * the size of this later if needed so long as we keep the		\
 484	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
 485	 */									\
 486	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
 487	local_lock_t lock;							\
 488	unsigned long generation;						\
 489	unsigned int position;							\
 490};										\
 491										\
 492static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
 493	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
 494	.position = UINT_MAX							\
 495};										\
 496										\
 497type get_random_ ##type(void)							\
 498{										\
 499	type ret;								\
 500	unsigned long flags;							\
 501	struct batch_ ##type *batch;						\
 502	unsigned long next_gen;							\
 503										\
 504	warn_unseeded_randomness();						\
 505										\
 506	if  (!crng_ready()) {							\
 507		_get_random_bytes(&ret, sizeof(ret));				\
 508		return ret;							\
 509	}									\
 510										\
 511	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
 512	batch = raw_cpu_ptr(&batched_entropy_##type);				\
 513										\
 514	next_gen = READ_ONCE(base_crng.generation);				\
 515	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
 516	    next_gen != batch->generation) {					\
 517		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
 518		batch->position = 0;						\
 519		batch->generation = next_gen;					\
 520	}									\
 521										\
 522	ret = batch->entropy[batch->position];					\
 523	batch->entropy[batch->position] = 0;					\
 524	++batch->position;							\
 525	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
 526	return ret;								\
 527}										\
 528EXPORT_SYMBOL(get_random_ ##type);
 529
 530DEFINE_BATCHED_ENTROPY(u8)
 531DEFINE_BATCHED_ENTROPY(u16)
 532DEFINE_BATCHED_ENTROPY(u32)
 533DEFINE_BATCHED_ENTROPY(u64)
 534
 535u32 __get_random_u32_below(u32 ceil)
 536{
 537	/*
 538	 * This is the slow path for variable ceil. It is still fast, most of
 539	 * the time, by doing traditional reciprocal multiplication and
 540	 * opportunistically comparing the lower half to ceil itself, before
 541	 * falling back to computing a larger bound, and then rejecting samples
 542	 * whose lower half would indicate a range indivisible by ceil. The use
 543	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
 544	 * in 32-bits.
 545	 */
 546	u32 rand = get_random_u32();
 547	u64 mult;
 548
 549	/*
 550	 * This function is technically undefined for ceil == 0, and in fact
 551	 * for the non-underscored constant version in the header, we build bug
 552	 * on that. But for the non-constant case, it's convenient to have that
 553	 * evaluate to being a straight call to get_random_u32(), so that
 554	 * get_random_u32_inclusive() can work over its whole range without
 555	 * undefined behavior.
 556	 */
 557	if (unlikely(!ceil))
 558		return rand;
 559
 560	mult = (u64)ceil * rand;
 561	if (unlikely((u32)mult < ceil)) {
 562		u32 bound = -ceil % ceil;
 563		while (unlikely((u32)mult < bound))
 564			mult = (u64)ceil * get_random_u32();
 565	}
 566	return mult >> 32;
 567}
 568EXPORT_SYMBOL(__get_random_u32_below);
 569
 570#ifdef CONFIG_SMP
 571/*
 572 * This function is called when the CPU is coming up, with entry
 573 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 574 */
 575int __cold random_prepare_cpu(unsigned int cpu)
 576{
 577	/*
 578	 * When the cpu comes back online, immediately invalidate both
 579	 * the per-cpu crng and all batches, so that we serve fresh
 580	 * randomness.
 581	 */
 582	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
 583	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
 584	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
 585	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
 586	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
 587	return 0;
 588}
 589#endif
 590
 591
 592/**********************************************************************
 593 *
 594 * Entropy accumulation and extraction routines.
 595 *
 596 * Callers may add entropy via:
 597 *
 598 *     static void mix_pool_bytes(const void *buf, size_t len)
 599 *
 600 * After which, if added entropy should be credited:
 601 *
 602 *     static void credit_init_bits(size_t bits)
 603 *
 604 * Finally, extract entropy via:
 605 *
 606 *     static void extract_entropy(void *buf, size_t len)
 607 *
 608 **********************************************************************/
 609
 610enum {
 611	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
 612	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
 613	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
 614};
 615
 616static struct {
 617	struct blake2s_state hash;
 618	spinlock_t lock;
 619	unsigned int init_bits;
 620} input_pool = {
 621	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
 622		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
 623		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
 624	.hash.outlen = BLAKE2S_HASH_SIZE,
 625	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 626};
 627
 628static void _mix_pool_bytes(const void *buf, size_t len)
 
 
 
 
 629{
 630	blake2s_update(&input_pool.hash, buf, len);
 631}
 
 632
 633/*
 634 * This function adds bytes into the input pool. It does not
 635 * update the initialization bit counter; the caller should call
 636 * credit_init_bits if this is appropriate.
 637 */
 638static void mix_pool_bytes(const void *buf, size_t len)
 639{
 640	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 641
 642	spin_lock_irqsave(&input_pool.lock, flags);
 643	_mix_pool_bytes(buf, len);
 644	spin_unlock_irqrestore(&input_pool.lock, flags);
 645}
 646
 647/*
 648 * This is an HKDF-like construction for using the hashed collected entropy
 649 * as a PRF key, that's then expanded block-by-block.
 650 */
 651static void extract_entropy(void *buf, size_t len)
 652{
 653	unsigned long flags;
 654	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
 655	struct {
 656		unsigned long rdseed[32 / sizeof(long)];
 657		size_t counter;
 658	} block;
 659	size_t i, longs;
 660
 661	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
 662		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 663		if (longs) {
 664			i += longs;
 665			continue;
 666		}
 667		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
 668		if (longs) {
 669			i += longs;
 670			continue;
 671		}
 672		block.rdseed[i++] = random_get_entropy();
 673	}
 674
 675	spin_lock_irqsave(&input_pool.lock, flags);
 
 676
 677	/* seed = HASHPRF(last_key, entropy_input) */
 678	blake2s_final(&input_pool.hash, seed);
 
 
 
 
 
 679
 680	/* next_key = HASHPRF(seed, RDSEED || 0) */
 681	block.counter = 0;
 682	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
 683	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
 
 
 
 
 
 
 
 
 684
 685	spin_unlock_irqrestore(&input_pool.lock, flags);
 686	memzero_explicit(next_key, sizeof(next_key));
 
 
 
 
 687
 688	while (len) {
 689		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
 690		/* output = HASHPRF(seed, RDSEED || ++counter) */
 691		++block.counter;
 692		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
 693		len -= i;
 694		buf += i;
 
 
 
 
 
 
 695	}
 696
 697	memzero_explicit(seed, sizeof(seed));
 698	memzero_explicit(&block, sizeof(block));
 699}
 700
 701#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
 702
 703static void __cold _credit_init_bits(size_t bits)
 
 
 
 
 
 
 
 
 
 
 
 
 704{
 705	static struct execute_work set_ready;
 706	unsigned int new, orig, add;
 707	unsigned long flags;
 
 708
 709	if (!bits)
 710		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711
 712	add = min_t(size_t, bits, POOL_BITS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713
 714	orig = READ_ONCE(input_pool.init_bits);
 715	do {
 716		new = min_t(unsigned int, POOL_BITS, orig + add);
 717	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
 
 
 
 
 718
 719	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
 720		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
 721		if (static_key_initialized)
 722			execute_in_process_context(crng_set_ready, &set_ready);
 723		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724		wake_up_interruptible(&crng_init_wait);
 725		kill_fasync(&fasync, SIGIO, POLL_IN);
 726		pr_notice("crng init done\n");
 727		if (urandom_warning.missed)
 
 
 
 
 
 728			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 729				  urandom_warning.missed);
 730	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
 731		spin_lock_irqsave(&base_crng.lock, flags);
 732		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
 733		if (crng_init == CRNG_EMPTY) {
 734			extract_entropy(base_crng.key, sizeof(base_crng.key));
 735			crng_init = CRNG_EARLY;
 736		}
 737		spin_unlock_irqrestore(&base_crng.lock, flags);
 738	}
 739}
 740
 741
 742/**********************************************************************
 743 *
 744 * Entropy collection routines.
 745 *
 746 * The following exported functions are used for pushing entropy into
 747 * the above entropy accumulation routines:
 748 *
 749 *	void add_device_randomness(const void *buf, size_t len);
 750 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
 751 *	void add_bootloader_randomness(const void *buf, size_t len);
 752 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
 753 *	void add_interrupt_randomness(int irq);
 754 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
 755 *	void add_disk_randomness(struct gendisk *disk);
 756 *
 757 * add_device_randomness() adds data to the input pool that
 758 * is likely to differ between two devices (or possibly even per boot).
 759 * This would be things like MAC addresses or serial numbers, or the
 760 * read-out of the RTC. This does *not* credit any actual entropy to
 761 * the pool, but it initializes the pool to different values for devices
 762 * that might otherwise be identical and have very little entropy
 763 * available to them (particularly common in the embedded world).
 764 *
 765 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 766 * entropy as specified by the caller. If the entropy pool is full it will
 767 * block until more entropy is needed.
 768 *
 769 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 770 * and device tree, and credits its input depending on whether or not the
 771 * command line option 'random.trust_bootloader'.
 772 *
 773 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 774 * representing the current instance of a VM to the pool, without crediting,
 775 * and then force-reseeds the crng so that it takes effect immediately.
 776 *
 777 * add_interrupt_randomness() uses the interrupt timing as random
 778 * inputs to the entropy pool. Using the cycle counters and the irq source
 779 * as inputs, it feeds the input pool roughly once a second or after 64
 780 * interrupts, crediting 1 bit of entropy for whichever comes first.
 781 *
 782 * add_input_randomness() uses the input layer interrupt timing, as well
 783 * as the event type information from the hardware.
 784 *
 785 * add_disk_randomness() uses what amounts to the seek time of block
 786 * layer request events, on a per-disk_devt basis, as input to the
 787 * entropy pool. Note that high-speed solid state drives with very low
 788 * seek times do not make for good sources of entropy, as their seek
 789 * times are usually fairly consistent.
 790 *
 791 * The last two routines try to estimate how many bits of entropy
 792 * to credit. They do this by keeping track of the first and second
 793 * order deltas of the event timings.
 794 *
 795 **********************************************************************/
 796
 797static bool trust_cpu __initdata = true;
 798static bool trust_bootloader __initdata = true;
 799static int __init parse_trust_cpu(char *arg)
 800{
 801	return kstrtobool(arg, &trust_cpu);
 802}
 803static int __init parse_trust_bootloader(char *arg)
 804{
 805	return kstrtobool(arg, &trust_bootloader);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806}
 807early_param("random.trust_cpu", parse_trust_cpu);
 808early_param("random.trust_bootloader", parse_trust_bootloader);
 809
 810static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
 
 
 
 
 
 811{
 812	unsigned long flags, entropy = random_get_entropy();
 813
 814	/*
 815	 * Encode a representation of how long the system has been suspended,
 816	 * in a way that is distinct from prior system suspends.
 817	 */
 818	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
 819
 820	spin_lock_irqsave(&input_pool.lock, flags);
 821	_mix_pool_bytes(&action, sizeof(action));
 822	_mix_pool_bytes(stamps, sizeof(stamps));
 823	_mix_pool_bytes(&entropy, sizeof(entropy));
 824	spin_unlock_irqrestore(&input_pool.lock, flags);
 825
 826	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
 827	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
 828	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
 829		crng_reseed(NULL);
 830		pr_notice("crng reseeded on system resumption\n");
 831	}
 832	return 0;
 
 
 
 
 
 833}
 834
 835static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
 836
 837/*
 838 * This is called extremely early, before time keeping functionality is
 839 * available, but arch randomness is. Interrupts are not yet enabled.
 840 */
 841void __init random_init_early(const char *command_line)
 842{
 843	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
 844	size_t i, longs, arch_bits;
 845
 846#if defined(LATENT_ENTROPY_PLUGIN)
 847	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
 848	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
 
 849#endif
 
 
 
 
 
 
 
 
 
 850
 851	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
 852		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
 853		if (longs) {
 854			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 855			i += longs;
 856			continue;
 
 
 857		}
 858		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
 859		if (longs) {
 860			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
 861			i += longs;
 862			continue;
 
 863		}
 864		arch_bits -= sizeof(*entropy) * 8;
 865		++i;
 
 
 866	}
 
 867
 868	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
 869	_mix_pool_bytes(command_line, strlen(command_line));
 870
 871	/* Reseed if already seeded by earlier phases. */
 872	if (crng_ready())
 873		crng_reseed(NULL);
 874	else if (trust_cpu)
 875		_credit_init_bits(arch_bits);
 876}
 877
 878/*
 879 * This is called a little bit after the prior function, and now there is
 880 * access to timestamps counters. Interrupts are not yet enabled.
 881 */
 882void __init random_init(void)
 883{
 884	unsigned long entropy = random_get_entropy();
 885	ktime_t now = ktime_get_real();
 886
 887	_mix_pool_bytes(&now, sizeof(now));
 888	_mix_pool_bytes(&entropy, sizeof(entropy));
 889	add_latent_entropy();
 890
 891	/*
 892	 * If we were initialized by the cpu or bootloader before jump labels
 893	 * are initialized, then we should enable the static branch here, where
 894	 * it's guaranteed that jump labels have been initialized.
 895	 */
 896	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
 897		crng_set_ready(NULL);
 898
 899	/* Reseed if already seeded by earlier phases. */
 900	if (crng_ready())
 901		crng_reseed(NULL);
 
 
 902
 903	WARN_ON(register_pm_notifier(&pm_notifier));
 
 
 
 
 904
 905	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
 906		       "entropy collection will consequently suffer.");
 907}
 908
 909/*
 910 * Add device- or boot-specific data to the input pool to help
 911 * initialize it.
 912 *
 913 * None of this adds any entropy; it is meant to avoid the problem of
 914 * the entropy pool having similar initial state across largely
 915 * identical devices.
 916 */
 917void add_device_randomness(const void *buf, size_t len)
 918{
 919	unsigned long entropy = random_get_entropy();
 920	unsigned long flags;
 921
 
 
 
 
 922	spin_lock_irqsave(&input_pool.lock, flags);
 923	_mix_pool_bytes(&entropy, sizeof(entropy));
 924	_mix_pool_bytes(buf, len);
 925	spin_unlock_irqrestore(&input_pool.lock, flags);
 926}
 927EXPORT_SYMBOL(add_device_randomness);
 928
 
 
 929/*
 930 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 931 * may produce endless random bits, so this function will sleep for
 932 * some amount of time after, if the sleep_after parameter is true.
 
 
 
 
 
 933 */
 934void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
 935{
 936	mix_pool_bytes(buf, len);
 937	credit_init_bits(entropy);
 
 
 
 
 
 
 
 
 
 
 
 938
 939	/*
 940	 * Throttle writing to once every reseed interval, unless we're not yet
 941	 * initialized or no entropy is credited.
 
 942	 */
 943	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
 944		schedule_timeout_interruptible(crng_reseed_interval());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945}
 946EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
 947
 948/*
 949 * Handle random seed passed by bootloader, and credit it depending
 950 * on the command line option 'random.trust_bootloader'.
 951 */
 952void __init add_bootloader_randomness(const void *buf, size_t len)
 953{
 954	mix_pool_bytes(buf, len);
 955	if (trust_bootloader)
 956		credit_init_bits(len * 8);
 
 
 
 
 
 
 
 957}
 
 958
 959#if IS_ENABLED(CONFIG_VMGENID)
 960static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
 961
 962/*
 963 * Handle a new unique VM ID, which is unique, not secret, so we
 964 * don't credit it, but we do immediately force a reseed after so
 965 * that it's used by the crng posthaste.
 966 */
 967void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
 
 968{
 969	add_device_randomness(unique_vm_id, len);
 970	if (crng_ready()) {
 971		crng_reseed(NULL);
 972		pr_notice("crng reseeded due to virtual machine fork\n");
 973	}
 974	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
 
 
 975}
 976#if IS_MODULE(CONFIG_VMGENID)
 977EXPORT_SYMBOL_GPL(add_vmfork_randomness);
 978#endif
 979
 980int __cold register_random_vmfork_notifier(struct notifier_block *nb)
 981{
 982	return blocking_notifier_chain_register(&vmfork_chain, nb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983}
 984EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
 985
 986int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
 
 987{
 988	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
 
 
 
 
 989}
 990EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
 991#endif
 992
 993struct fast_pool {
 994	unsigned long pool[4];
 995	unsigned long last;
 996	unsigned int count;
 997	struct timer_list mix;
 998};
 999
1000static void mix_interrupt_randomness(struct timer_list *work);
1001
1002static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
1003#ifdef CONFIG_64BIT
1004#define FASTMIX_PERM SIPHASH_PERMUTATION
1005	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1006#else
1007#define FASTMIX_PERM HSIPHASH_PERMUTATION
1008	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1009#endif
1010	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1011};
1012
1013/*
1014 * This is [Half]SipHash-1-x, starting from an empty key. Because
1015 * the key is fixed, it assumes that its inputs are non-malicious,
1016 * and therefore this has no security on its own. s represents the
1017 * four-word SipHash state, while v represents a two-word input.
1018 */
1019static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
 
1020{
1021	s[3] ^= v1;
1022	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1023	s[0] ^= v1;
1024	s[3] ^= v2;
1025	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1026	s[0] ^= v2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027}
1028
1029#ifdef CONFIG_SMP
1030/*
1031 * This function is called when the CPU has just come online, with
1032 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 
1033 */
1034int __cold random_online_cpu(unsigned int cpu)
1035{
 
 
 
 
 
 
 
 
1036	/*
1037	 * During CPU shutdown and before CPU onlining, add_interrupt_
1038	 * randomness() may schedule mix_interrupt_randomness(), and
1039	 * set the MIX_INFLIGHT flag. However, because the worker can
1040	 * be scheduled on a different CPU during this period, that
1041	 * flag will never be cleared. For that reason, we zero out
1042	 * the flag here, which runs just after workqueues are onlined
1043	 * for the CPU again. This also has the effect of setting the
1044	 * irq randomness count to zero so that new accumulated irqs
1045	 * are fresh.
1046	 */
1047	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
1048	return 0;
1049}
1050#endif
 
 
 
 
 
 
 
 
1051
1052static void mix_interrupt_randomness(struct timer_list *work)
1053{
1054	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1055	/*
1056	 * The size of the copied stack pool is explicitly 2 longs so that we
1057	 * only ever ingest half of the siphash output each time, retaining
1058	 * the other half as the next "key" that carries over. The entropy is
1059	 * supposed to be sufficiently dispersed between bits so on average
1060	 * we don't wind up "losing" some.
 
 
1061	 */
1062	unsigned long pool[2];
1063	unsigned int count;
1064
1065	/* Check to see if we're running on the wrong CPU due to hotplug. */
1066	local_irq_disable();
1067	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
1068		local_irq_enable();
1069		return;
1070	}
1071
1072	/*
1073	 * Copy the pool to the stack so that the mixer always has a
1074	 * consistent view, before we reenable irqs again.
 
1075	 */
1076	memcpy(pool, fast_pool->pool, sizeof(pool));
1077	count = fast_pool->count;
1078	fast_pool->count = 0;
1079	fast_pool->last = jiffies;
1080	local_irq_enable();
1081
1082	mix_pool_bytes(pool, sizeof(pool));
1083	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1084
1085	memzero_explicit(pool, sizeof(pool));
 
1086}
1087
1088void add_interrupt_randomness(int irq)
 
1089{
1090	enum { MIX_INFLIGHT = 1U << 31 };
1091	unsigned long entropy = random_get_entropy();
1092	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1093	struct pt_regs *regs = get_irq_regs();
1094	unsigned int new_count;
1095
1096	fast_mix(fast_pool->pool, entropy,
1097		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1098	new_count = ++fast_pool->count;
1099
1100	if (new_count & MIX_INFLIGHT)
1101		return;
 
 
 
 
 
 
 
 
 
 
 
1102
1103	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1104		return;
1105
1106	fast_pool->count |= MIX_INFLIGHT;
1107	if (!timer_pending(&fast_pool->mix)) {
1108		fast_pool->mix.expires = jiffies;
1109		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1110	}
1111}
1112EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1113
1114/* There is one of these per entropy source */
1115struct timer_rand_state {
1116	unsigned long last_time;
1117	long last_delta, last_delta2;
1118};
1119
1120/*
1121 * This function adds entropy to the entropy "pool" by using timing
1122 * delays. It uses the timer_rand_state structure to make an estimate
1123 * of how many bits of entropy this call has added to the pool. The
1124 * value "num" is also added to the pool; it should somehow describe
1125 * the type of event that just happened.
 
 
1126 */
1127static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
 
1128{
1129	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1130	long delta, delta2, delta3;
1131	unsigned int bits;
1132
1133	/*
1134	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1135	 * sometime after, so mix into the fast pool.
1136	 */
1137	if (in_hardirq()) {
1138		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1139	} else {
1140		spin_lock_irqsave(&input_pool.lock, flags);
1141		_mix_pool_bytes(&entropy, sizeof(entropy));
1142		_mix_pool_bytes(&num, sizeof(num));
1143		spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
1144	}
1145
1146	if (crng_ready())
1147		return;
1148
1149	/*
1150	 * Calculate number of bits of randomness we probably added.
1151	 * We take into account the first, second and third-order deltas
1152	 * in order to make our estimate.
1153	 */
1154	delta = now - READ_ONCE(state->last_time);
1155	WRITE_ONCE(state->last_time, now);
1156
1157	delta2 = delta - READ_ONCE(state->last_delta);
1158	WRITE_ONCE(state->last_delta, delta);
1159
1160	delta3 = delta2 - READ_ONCE(state->last_delta2);
1161	WRITE_ONCE(state->last_delta2, delta2);
 
 
 
 
 
 
1162
1163	if (delta < 0)
1164		delta = -delta;
1165	if (delta2 < 0)
1166		delta2 = -delta2;
1167	if (delta3 < 0)
1168		delta3 = -delta3;
1169	if (delta > delta2)
1170		delta = delta2;
1171	if (delta > delta3)
1172		delta = delta3;
 
 
 
1173
1174	/*
1175	 * delta is now minimum absolute delta. Round down by 1 bit
1176	 * on general principles, and limit entropy estimate to 11 bits.
1177	 */
1178	bits = min(fls(delta >> 1), 11);
 
 
 
 
 
 
 
 
1179
1180	/*
1181	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1182	 * will run after this, which uses a different crediting scheme of 1 bit
1183	 * per every 64 interrupts. In order to let that function do accounting
1184	 * close to the one in this function, we credit a full 64/64 bit per bit,
1185	 * and then subtract one to account for the extra one added.
1186	 */
1187	if (in_hardirq())
1188		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1189	else
1190		_credit_init_bits(bits);
 
 
 
 
1191}
1192
1193void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1194{
1195	static unsigned char last_value;
1196	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1197
1198	/* Ignore autorepeat and the like. */
1199	if (value == last_value)
1200		return;
 
1201
1202	last_value = value;
1203	add_timer_randomness(&input_timer_state,
1204			     (type << 4) ^ code ^ (code >> 4) ^ value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1205}
1206EXPORT_SYMBOL_GPL(add_input_randomness);
1207
1208#ifdef CONFIG_BLOCK
1209void add_disk_randomness(struct gendisk *disk)
 
 
 
1210{
1211	if (!disk || !disk->random)
 
 
 
 
 
 
 
 
1212		return;
1213	/* First major is 1, so we get >= 0x200 here. */
1214	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 
 
 
 
 
 
 
 
 
 
 
1215}
1216EXPORT_SYMBOL_GPL(add_disk_randomness);
1217
1218void __cold rand_initialize_disk(struct gendisk *disk)
 
 
 
 
 
 
 
 
 
 
1219{
1220	struct timer_rand_state *state;
 
1221
1222	/*
1223	 * If kzalloc returns null, we just won't use that entropy
1224	 * source.
1225	 */
1226	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1227	if (state) {
1228		state->last_time = INITIAL_JIFFIES;
1229		disk->random = state;
1230	}
 
1231}
1232#endif
1233
1234struct entropy_timer_state {
1235	unsigned long entropy;
1236	struct timer_list timer;
1237	atomic_t samples;
1238	unsigned int samples_per_bit;
1239};
 
 
 
 
 
 
 
 
1240
1241/*
1242 * Each time the timer fires, we expect that we got an unpredictable jump in
1243 * the cycle counter. Even if the timer is running on another CPU, the timer
1244 * activity will be touching the stack of the CPU that is generating entropy.
1245 *
1246 * Note that we don't re-arm the timer in the timer itself - we are happy to be
1247 * scheduled away, since that just makes the load more complex, but we do not
1248 * want the timer to keep ticking unless the entropy loop is running.
1249 *
1250 * So the re-arming always happens in the entropy loop itself.
 
 
1251 */
1252static void __cold entropy_timer(struct timer_list *timer)
1253{
1254	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1255	unsigned long entropy = random_get_entropy();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257	mix_pool_bytes(&entropy, sizeof(entropy));
1258	if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0)
1259		credit_init_bits(1);
 
 
 
1260}
 
1261
1262/*
1263 * If we have an actual cycle counter, see if we can generate enough entropy
1264 * with timing noise.
1265 */
1266static void __cold try_to_generate_entropy(void)
1267{
1268	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1269	u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1];
1270	struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES);
1271	unsigned int i, num_different = 0;
1272	unsigned long last = random_get_entropy();
1273	int cpu = -1;
1274
1275	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1276		stack->entropy = random_get_entropy();
1277		if (stack->entropy != last)
1278			++num_different;
1279		last = stack->entropy;
1280	}
1281	stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1282	if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT)
1283		return;
1284
1285	atomic_set(&stack->samples, 0);
1286	timer_setup_on_stack(&stack->timer, entropy_timer, 0);
1287	while (!crng_ready() && !signal_pending(current)) {
1288		/*
1289		 * Check !timer_pending() and then ensure that any previous callback has finished
1290		 * executing by checking try_to_del_timer_sync(), before queueing the next one.
1291		 */
1292		if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) {
1293			struct cpumask timer_cpus;
1294			unsigned int num_cpus;
1295
1296			/*
1297			 * Preemption must be disabled here, both to read the current CPU number
1298			 * and to avoid scheduling a timer on a dead CPU.
1299			 */
1300			preempt_disable();
1301
1302			/* Only schedule callbacks on timer CPUs that are online. */
1303			cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask);
1304			num_cpus = cpumask_weight(&timer_cpus);
1305			/* In very bizarre case of misconfiguration, fallback to all online. */
1306			if (unlikely(num_cpus == 0)) {
1307				timer_cpus = *cpu_online_mask;
1308				num_cpus = cpumask_weight(&timer_cpus);
1309			}
1310
1311			/* Basic CPU round-robin, which avoids the current CPU. */
1312			do {
1313				cpu = cpumask_next(cpu, &timer_cpus);
1314				if (cpu >= nr_cpu_ids)
1315					cpu = cpumask_first(&timer_cpus);
1316			} while (cpu == smp_processor_id() && num_cpus > 1);
 
 
 
 
 
 
 
 
 
 
1317
1318			/* Expiring the timer at `jiffies` means it's the next tick. */
1319			stack->timer.expires = jiffies;
 
 
1320
1321			add_timer_on(&stack->timer, cpu);
 
1322
1323			preempt_enable();
1324		}
1325		mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1326		schedule();
1327		stack->entropy = random_get_entropy();
1328	}
1329	mix_pool_bytes(&stack->entropy, sizeof(stack->entropy));
1330
1331	del_timer_sync(&stack->timer);
1332	destroy_timer_on_stack(&stack->timer);
1333}
 
1334
1335
1336/**********************************************************************
1337 *
1338 * Userspace reader/writer interfaces.
1339 *
1340 * getrandom(2) is the primary modern interface into the RNG and should
1341 * be used in preference to anything else.
1342 *
1343 * Reading from /dev/random has the same functionality as calling
1344 * getrandom(2) with flags=0. In earlier versions, however, it had
1345 * vastly different semantics and should therefore be avoided, to
1346 * prevent backwards compatibility issues.
1347 *
1348 * Reading from /dev/urandom has the same functionality as calling
1349 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1350 * waiting for the RNG to be ready, it should not be used.
1351 *
1352 * Writing to either /dev/random or /dev/urandom adds entropy to
1353 * the input pool but does not credit it.
1354 *
1355 * Polling on /dev/random indicates when the RNG is initialized, on
1356 * the read side, and when it wants new entropy, on the write side.
1357 *
1358 * Both /dev/random and /dev/urandom have the same set of ioctls for
1359 * adding entropy, getting the entropy count, zeroing the count, and
1360 * reseeding the crng.
1361 *
1362 **********************************************************************/
1363
1364SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
 
 
1365{
1366	struct iov_iter iter;
1367	int ret;
 
1368
1369	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1370		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372	/*
1373	 * Requesting insecure and blocking randomness at the same time makes
1374	 * no sense.
1375	 */
1376	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1377		return -EINVAL;
1378
1379	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1380		if (flags & GRND_NONBLOCK)
1381			return -EAGAIN;
1382		ret = wait_for_random_bytes();
1383		if (unlikely(ret))
1384			return ret;
1385	}
1386
1387	ret = import_ubuf(ITER_DEST, ubuf, len, &iter);
1388	if (unlikely(ret))
1389		return ret;
1390	return get_random_bytes_user(&iter);
1391}
 
1392
1393static __poll_t random_poll(struct file *file, poll_table *wait)
 
 
1394{
1395	poll_wait(file, &crng_init_wait, wait);
1396	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
 
 
 
 
1397}
1398
1399static ssize_t write_pool_user(struct iov_iter *iter)
 
1400{
1401	u8 block[BLAKE2S_BLOCK_SIZE];
1402	ssize_t ret = 0;
1403	size_t copied;
1404
1405	if (unlikely(!iov_iter_count(iter)))
1406		return 0;
 
 
 
 
 
 
 
1407
1408	for (;;) {
1409		copied = copy_from_iter(block, sizeof(block), iter);
1410		ret += copied;
1411		mix_pool_bytes(block, copied);
1412		if (!iov_iter_count(iter) || copied != sizeof(block))
1413			break;
1414
1415		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1416		if (ret % PAGE_SIZE == 0) {
1417			if (signal_pending(current))
1418				break;
1419			cond_resched();
1420		}
1421	}
1422
1423	memzero_explicit(block, sizeof(block));
1424	return ret ? ret : -EFAULT;
 
 
1425}
1426
1427static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1428{
1429	return write_pool_user(iter);
 
 
 
 
 
 
 
 
 
1430}
1431
1432static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1433{
1434	static int maxwarn = 10;
 
 
1435
1436	/*
1437	 * Opportunistically attempt to initialize the RNG on platforms that
1438	 * have fast cycle counters, but don't (for now) require it to succeed.
1439	 */
1440	if (!crng_ready())
1441		try_to_generate_entropy();
1442
1443	if (!crng_ready()) {
1444		if (!ratelimit_disable && maxwarn <= 0)
1445			++urandom_warning.missed;
1446		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1447			--maxwarn;
1448			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1449				  current->comm, iov_iter_count(iter));
1450		}
 
 
 
 
 
 
1451	}
1452
1453	return get_random_bytes_user(iter);
1454}
1455
1456static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
 
1457{
1458	int ret;
1459
1460	if (!crng_ready() &&
1461	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
1462	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1463		return -EAGAIN;
1464
1465	ret = wait_for_random_bytes();
1466	if (ret != 0)
1467		return ret;
1468	return get_random_bytes_user(iter);
 
1469}
1470
1471static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1472{
 
1473	int __user *p = (int __user *)arg;
1474	int ent_count;
1475
1476	switch (cmd) {
1477	case RNDGETENTCNT:
1478		/* Inherently racy, no point locking. */
1479		if (put_user(input_pool.init_bits, p))
 
1480			return -EFAULT;
1481		return 0;
1482	case RNDADDTOENTCNT:
1483		if (!capable(CAP_SYS_ADMIN))
1484			return -EPERM;
1485		if (get_user(ent_count, p))
1486			return -EFAULT;
1487		if (ent_count < 0)
1488			return -EINVAL;
1489		credit_init_bits(ent_count);
1490		return 0;
1491	case RNDADDENTROPY: {
1492		struct iov_iter iter;
1493		ssize_t ret;
1494		int len;
1495
1496		if (!capable(CAP_SYS_ADMIN))
1497			return -EPERM;
1498		if (get_user(ent_count, p++))
1499			return -EFAULT;
1500		if (ent_count < 0)
1501			return -EINVAL;
1502		if (get_user(len, p++))
1503			return -EFAULT;
1504		ret = import_ubuf(ITER_SOURCE, p, len, &iter);
1505		if (unlikely(ret))
1506			return ret;
1507		ret = write_pool_user(&iter);
1508		if (unlikely(ret < 0))
1509			return ret;
1510		/* Since we're crediting, enforce that it was all written into the pool. */
1511		if (unlikely(ret != len))
1512			return -EFAULT;
1513		credit_init_bits(ent_count);
1514		return 0;
1515	}
 
 
1516	case RNDZAPENTCNT:
1517	case RNDCLEARPOOL:
1518		/* No longer has any effect. */
 
 
 
1519		if (!capable(CAP_SYS_ADMIN))
1520			return -EPERM;
 
1521		return 0;
1522	case RNDRESEEDCRNG:
1523		if (!capable(CAP_SYS_ADMIN))
1524			return -EPERM;
1525		if (!crng_ready())
1526			return -ENODATA;
1527		crng_reseed(NULL);
 
1528		return 0;
1529	default:
1530		return -EINVAL;
1531	}
1532}
1533
1534static int random_fasync(int fd, struct file *filp, int on)
1535{
1536	return fasync_helper(fd, filp, on, &fasync);
1537}
1538
1539const struct file_operations random_fops = {
1540	.read_iter = random_read_iter,
1541	.write_iter = random_write_iter,
1542	.poll = random_poll,
1543	.unlocked_ioctl = random_ioctl,
1544	.compat_ioctl = compat_ptr_ioctl,
1545	.fasync = random_fasync,
1546	.llseek = noop_llseek,
1547	.splice_read = copy_splice_read,
1548	.splice_write = iter_file_splice_write,
1549};
1550
1551const struct file_operations urandom_fops = {
1552	.read_iter = urandom_read_iter,
1553	.write_iter = random_write_iter,
1554	.unlocked_ioctl = random_ioctl,
1555	.compat_ioctl = compat_ptr_ioctl,
1556	.fasync = random_fasync,
1557	.llseek = noop_llseek,
1558	.splice_read = copy_splice_read,
1559	.splice_write = iter_file_splice_write,
1560};
1561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563/********************************************************************
1564 *
1565 * Sysctl interface.
1566 *
1567 * These are partly unused legacy knobs with dummy values to not break
1568 * userspace and partly still useful things. They are usually accessible
1569 * in /proc/sys/kernel/random/ and are as follows:
1570 *
1571 * - boot_id - a UUID representing the current boot.
1572 *
1573 * - uuid - a random UUID, different each time the file is read.
1574 *
1575 * - poolsize - the number of bits of entropy that the input pool can
1576 *   hold, tied to the POOL_BITS constant.
1577 *
1578 * - entropy_avail - the number of bits of entropy currently in the
1579 *   input pool. Always <= poolsize.
1580 *
1581 * - write_wakeup_threshold - the amount of entropy in the input pool
1582 *   below which write polls to /dev/random will unblock, requesting
1583 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1584 *   to avoid breaking old userspaces, but writing to it does not
1585 *   change any behavior of the RNG.
1586 *
1587 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1588 *   It is writable to avoid breaking old userspaces, but writing
1589 *   to it does not change any behavior of the RNG.
1590 *
1591 ********************************************************************/
1592
1593#ifdef CONFIG_SYSCTL
1594
1595#include <linux/sysctl.h>
1596
1597static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1598static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1599static int sysctl_poolsize = POOL_BITS;
1600static u8 sysctl_bootid[UUID_SIZE];
1601
1602/*
1603 * This function is used to return both the bootid UUID, and random
1604 * UUID. The difference is in whether table->data is NULL; if it is,
1605 * then a new UUID is generated and returned to the user.
 
 
 
 
1606 */
1607static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1608			size_t *lenp, loff_t *ppos)
1609{
1610	u8 tmp_uuid[UUID_SIZE], *uuid;
1611	char uuid_string[UUID_STRING_LEN + 1];
1612	struct ctl_table fake_table = {
1613		.data = uuid_string,
1614		.maxlen = UUID_STRING_LEN
1615	};
1616
1617	if (write)
1618		return -EPERM;
1619
1620	uuid = table->data;
1621	if (!uuid) {
1622		uuid = tmp_uuid;
1623		generate_random_uuid(uuid);
1624	} else {
1625		static DEFINE_SPINLOCK(bootid_spinlock);
1626
1627		spin_lock(&bootid_spinlock);
1628		if (!uuid[8])
1629			generate_random_uuid(uuid);
1630		spin_unlock(&bootid_spinlock);
1631	}
1632
1633	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1634	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
 
 
 
 
1635}
1636
1637/* The same as proc_dointvec, but writes don't change anything. */
1638static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1639			    size_t *lenp, loff_t *ppos)
 
 
1640{
1641	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
 
 
 
 
 
 
 
 
1642}
1643
1644static struct ctl_table random_table[] = {
 
 
1645	{
1646		.procname	= "poolsize",
1647		.data		= &sysctl_poolsize,
1648		.maxlen		= sizeof(int),
1649		.mode		= 0444,
1650		.proc_handler	= proc_dointvec,
1651	},
1652	{
1653		.procname	= "entropy_avail",
1654		.data		= &input_pool.init_bits,
1655		.maxlen		= sizeof(int),
1656		.mode		= 0444,
1657		.proc_handler	= proc_dointvec,
 
1658	},
1659	{
1660		.procname	= "write_wakeup_threshold",
1661		.data		= &sysctl_random_write_wakeup_bits,
1662		.maxlen		= sizeof(int),
1663		.mode		= 0644,
1664		.proc_handler	= proc_do_rointvec,
 
 
1665	},
1666	{
1667		.procname	= "urandom_min_reseed_secs",
1668		.data		= &sysctl_random_min_urandom_seed,
1669		.maxlen		= sizeof(int),
1670		.mode		= 0644,
1671		.proc_handler	= proc_do_rointvec,
1672	},
1673	{
1674		.procname	= "boot_id",
1675		.data		= &sysctl_bootid,
 
1676		.mode		= 0444,
1677		.proc_handler	= proc_do_uuid,
1678	},
1679	{
1680		.procname	= "uuid",
 
1681		.mode		= 0444,
1682		.proc_handler	= proc_do_uuid,
1683	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684};
1685
1686/*
1687 * random_init() is called before sysctl_init(),
1688 * so we cannot call register_sysctl_init() in random_init()
 
 
 
 
1689 */
1690static int __init random_sysctls_init(void)
 
 
 
 
1691{
1692	register_sysctl_init("kernel/random", random_table);
1693	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694}
1695device_initcall(random_sysctls_init);
1696#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
 
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
 
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are four exported interfaces; two for use within the kernel,
 105 * and two or use from userspace.
 106 *
 107 * Exported interfaces ---- userspace output
 108 * -----------------------------------------
 109 *
 110 * The userspace interfaces are two character devices /dev/random and
 111 * /dev/urandom.  /dev/random is suitable for use when very high
 112 * quality randomness is desired (for example, for key generation or
 113 * one-time pads), as it will only return a maximum of the number of
 114 * bits of randomness (as estimated by the random number generator)
 115 * contained in the entropy pool.
 116 *
 117 * The /dev/urandom device does not have this limit, and will return
 118 * as many bytes as are requested.  As more and more random bytes are
 119 * requested without giving time for the entropy pool to recharge,
 120 * this will result in random numbers that are merely cryptographically
 121 * strong.  For many applications, however, this is acceptable.
 122 *
 123 * Exported interfaces ---- kernel output
 124 * --------------------------------------
 125 *
 126 * The primary kernel interface is
 127 *
 128 * 	void get_random_bytes(void *buf, int nbytes);
 129 *
 130 * This interface will return the requested number of random bytes,
 131 * and place it in the requested buffer.  This is equivalent to a
 132 * read from /dev/urandom.
 133 *
 134 * For less critical applications, there are the functions:
 135 *
 136 * 	u32 get_random_u32()
 137 * 	u64 get_random_u64()
 138 * 	unsigned int get_random_int()
 139 * 	unsigned long get_random_long()
 140 *
 141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 142 * and so do not deplete the entropy pool as much.  These are recommended
 143 * for most in-kernel operations *if the result is going to be stored in
 144 * the kernel*.
 145 *
 146 * Specifically, the get_random_int() family do not attempt to do
 147 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 148 * by snapshotting the VM), you can figure out previous get_random_int()
 149 * return values.  But if the value is stored in the kernel anyway,
 150 * this is not a problem.
 151 *
 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 153 * network cookies); given outputs 1..n, it's not feasible to predict
 154 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 155 * the kernel later; the get_random_int() engine is not reseeded as
 156 * often as the get_random_bytes() one.
 157 *
 158 * get_random_bytes() is needed for keys that need to stay secret after
 159 * they are erased from the kernel.  For example, any key that will
 160 * be wrapped and stored encrypted.  And session encryption keys: we'd
 161 * like to know that after the session is closed and the keys erased,
 162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 163 *
 164 * But for network ports/cookies, stack canaries, PRNG seeds, address
 165 * space layout randomization, session *authentication* keys, or other
 166 * applications where the sensitive data is stored in the kernel in
 167 * plaintext for as long as it's sensitive, the get_random_int() family
 168 * is just fine.
 169 *
 170 * Consider ASLR.  We want to keep the address space secret from an
 171 * outside attacker while the process is running, but once the address
 172 * space is torn down, it's of no use to an attacker any more.  And it's
 173 * stored in kernel data structures as long as it's alive, so worrying
 174 * about an attacker's ability to extrapolate it from the get_random_int()
 175 * CRNG is silly.
 176 *
 177 * Even some cryptographic keys are safe to generate with get_random_int().
 178 * In particular, keys for SipHash are generally fine.  Here, knowledge
 179 * of the key authorizes you to do something to a kernel object (inject
 180 * packets to a network connection, or flood a hash table), and the
 181 * key is stored with the object being protected.  Once it goes away,
 182 * we no longer care if anyone knows the key.
 183 *
 184 * prandom_u32()
 185 * -------------
 186 *
 187 * For even weaker applications, see the pseudorandom generator
 188 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 189 * numbers aren't security-critical at all, these are *far* cheaper.
 190 * Useful for self-tests, random error simulation, randomized backoffs,
 191 * and any other application where you trust that nobody is trying to
 192 * maliciously mess with you by guessing the "random" numbers.
 193 *
 194 * Exported interfaces ---- input
 195 * ==============================
 196 *
 197 * The current exported interfaces for gathering environmental noise
 198 * from the devices are:
 199 *
 200 *	void add_device_randomness(const void *buf, unsigned int size);
 201 * 	void add_input_randomness(unsigned int type, unsigned int code,
 202 *                                unsigned int value);
 203 *	void add_interrupt_randomness(int irq, int irq_flags);
 204 * 	void add_disk_randomness(struct gendisk *disk);
 205 *
 206 * add_device_randomness() is for adding data to the random pool that
 207 * is likely to differ between two devices (or possibly even per boot).
 208 * This would be things like MAC addresses or serial numbers, or the
 209 * read-out of the RTC. This does *not* add any actual entropy to the
 210 * pool, but it initializes the pool to different values for devices
 211 * that might otherwise be identical and have very little entropy
 212 * available to them (particularly common in the embedded world).
 213 *
 214 * add_input_randomness() uses the input layer interrupt timing, as well as
 215 * the event type information from the hardware.
 216 *
 217 * add_interrupt_randomness() uses the interrupt timing as random
 218 * inputs to the entropy pool. Using the cycle counters and the irq source
 219 * as inputs, it feeds the randomness roughly once a second.
 220 *
 221 * add_disk_randomness() uses what amounts to the seek time of block
 222 * layer request events, on a per-disk_devt basis, as input to the
 223 * entropy pool. Note that high-speed solid state drives with very low
 224 * seek times do not make for good sources of entropy, as their seek
 225 * times are usually fairly consistent.
 226 *
 227 * All of these routines try to estimate how many bits of randomness a
 228 * particular randomness source.  They do this by keeping track of the
 229 * first and second order deltas of the event timings.
 230 *
 231 * Ensuring unpredictability at system startup
 232 * ============================================
 233 *
 234 * When any operating system starts up, it will go through a sequence
 235 * of actions that are fairly predictable by an adversary, especially
 236 * if the start-up does not involve interaction with a human operator.
 237 * This reduces the actual number of bits of unpredictability in the
 238 * entropy pool below the value in entropy_count.  In order to
 239 * counteract this effect, it helps to carry information in the
 240 * entropy pool across shut-downs and start-ups.  To do this, put the
 241 * following lines an appropriate script which is run during the boot
 242 * sequence:
 243 *
 244 *	echo "Initializing random number generator..."
 245 *	random_seed=/var/run/random-seed
 246 *	# Carry a random seed from start-up to start-up
 247 *	# Load and then save the whole entropy pool
 248 *	if [ -f $random_seed ]; then
 249 *		cat $random_seed >/dev/urandom
 250 *	else
 251 *		touch $random_seed
 252 *	fi
 253 *	chmod 600 $random_seed
 254 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 255 *
 256 * and the following lines in an appropriate script which is run as
 257 * the system is shutdown:
 258 *
 259 *	# Carry a random seed from shut-down to start-up
 260 *	# Save the whole entropy pool
 261 *	echo "Saving random seed..."
 262 *	random_seed=/var/run/random-seed
 263 *	touch $random_seed
 264 *	chmod 600 $random_seed
 265 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 266 *
 267 * For example, on most modern systems using the System V init
 268 * scripts, such code fragments would be found in
 269 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 271 *
 272 * Effectively, these commands cause the contents of the entropy pool
 273 * to be saved at shut-down time and reloaded into the entropy pool at
 274 * start-up.  (The 'dd' in the addition to the bootup script is to
 275 * make sure that /etc/random-seed is different for every start-up,
 276 * even if the system crashes without executing rc.0.)  Even with
 277 * complete knowledge of the start-up activities, predicting the state
 278 * of the entropy pool requires knowledge of the previous history of
 279 * the system.
 280 *
 281 * Configuring the /dev/random driver under Linux
 282 * ==============================================
 283 *
 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 285 * the /dev/mem major number (#1).  So if your system does not have
 286 * /dev/random and /dev/urandom created already, they can be created
 287 * by using the commands:
 288 *
 289 * 	mknod /dev/random c 1 8
 290 * 	mknod /dev/urandom c 1 9
 291 *
 292 * Acknowledgements:
 293 * =================
 294 *
 295 * Ideas for constructing this random number generator were derived
 296 * from Pretty Good Privacy's random number generator, and from private
 297 * discussions with Phil Karn.  Colin Plumb provided a faster random
 298 * number generator, which speed up the mixing function of the entropy
 299 * pool, taken from PGPfone.  Dale Worley has also contributed many
 300 * useful ideas and suggestions to improve this driver.
 301 *
 302 * Any flaws in the design are solely my responsibility, and should
 303 * not be attributed to the Phil, Colin, or any of authors of PGP.
 304 *
 305 * Further background information on this topic may be obtained from
 306 * RFC 1750, "Randomness Recommendations for Security", by Donald
 307 * Eastlake, Steve Crocker, and Jeff Schiller.
 308 */
 309
 310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 311
 312#include <linux/utsname.h>
 313#include <linux/module.h>
 314#include <linux/kernel.h>
 315#include <linux/major.h>
 316#include <linux/string.h>
 317#include <linux/fcntl.h>
 318#include <linux/slab.h>
 319#include <linux/random.h>
 320#include <linux/poll.h>
 321#include <linux/init.h>
 322#include <linux/fs.h>
 323#include <linux/genhd.h>
 324#include <linux/interrupt.h>
 325#include <linux/mm.h>
 326#include <linux/nodemask.h>
 327#include <linux/spinlock.h>
 328#include <linux/kthread.h>
 329#include <linux/percpu.h>
 330#include <linux/fips.h>
 331#include <linux/ptrace.h>
 332#include <linux/workqueue.h>
 333#include <linux/irq.h>
 334#include <linux/ratelimit.h>
 335#include <linux/syscalls.h>
 336#include <linux/completion.h>
 337#include <linux/uuid.h>
 
 
 
 
 338#include <crypto/chacha.h>
 339#include <crypto/sha1.h>
 340
 341#include <asm/processor.h>
 342#include <linux/uaccess.h>
 343#include <asm/irq.h>
 344#include <asm/irq_regs.h>
 345#include <asm/io.h>
 346
 347#define CREATE_TRACE_POINTS
 348#include <trace/events/random.h>
 349
 350/* #define ADD_INTERRUPT_BENCH */
 
 
 
 
 
 351
 352/*
 353 * Configuration information
 
 354 */
 355#define INPUT_POOL_SHIFT	12
 356#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 357#define OUTPUT_POOL_SHIFT	10
 358#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 359#define EXTRACT_SIZE		10
 360
 361
 362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 363
 364/*
 365 * To allow fractional bits to be tracked, the entropy_count field is
 366 * denominated in units of 1/8th bits.
 367 *
 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
 369 * credit_entropy_bits() needs to be 64 bits wide.
 370 */
 371#define ENTROPY_SHIFT 3
 372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 373
 374/*
 375 * If the entropy count falls under this number of bits, then we
 376 * should wake up processes which are selecting or polling on write
 377 * access to /dev/random.
 378 */
 379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 380
 381/*
 382 * Originally, we used a primitive polynomial of degree .poolwords
 383 * over GF(2).  The taps for various sizes are defined below.  They
 384 * were chosen to be evenly spaced except for the last tap, which is 1
 385 * to get the twisting happening as fast as possible.
 386 *
 387 * For the purposes of better mixing, we use the CRC-32 polynomial as
 388 * well to make a (modified) twisted Generalized Feedback Shift
 389 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 390 * generators.  ACM Transactions on Modeling and Computer Simulation
 391 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 392 * GFSR generators II.  ACM Transactions on Modeling and Computer
 393 * Simulation 4:254-266)
 394 *
 395 * Thanks to Colin Plumb for suggesting this.
 396 *
 397 * The mixing operation is much less sensitive than the output hash,
 398 * where we use SHA-1.  All that we want of mixing operation is that
 399 * it be a good non-cryptographic hash; i.e. it not produce collisions
 400 * when fed "random" data of the sort we expect to see.  As long as
 401 * the pool state differs for different inputs, we have preserved the
 402 * input entropy and done a good job.  The fact that an intelligent
 403 * attacker can construct inputs that will produce controlled
 404 * alterations to the pool's state is not important because we don't
 405 * consider such inputs to contribute any randomness.  The only
 406 * property we need with respect to them is that the attacker can't
 407 * increase his/her knowledge of the pool's state.  Since all
 408 * additions are reversible (knowing the final state and the input,
 409 * you can reconstruct the initial state), if an attacker has any
 410 * uncertainty about the initial state, he/she can only shuffle that
 411 * uncertainty about, but never cause any collisions (which would
 412 * decrease the uncertainty).
 413 *
 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 415 * Videau in their paper, "The Linux Pseudorandom Number Generator
 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 417 * paper, they point out that we are not using a true Twisted GFSR,
 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 419 * is, with only three taps, instead of the six that we are using).
 420 * As a result, the resulting polynomial is neither primitive nor
 421 * irreducible, and hence does not have a maximal period over
 422 * GF(2**32).  They suggest a slight change to the generator
 423 * polynomial which improves the resulting TGFSR polynomial to be
 424 * irreducible, which we have made here.
 425 */
 426static const struct poolinfo {
 427	int poolbitshift, poolwords, poolbytes, poolfracbits;
 428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
 429	int tap1, tap2, tap3, tap4, tap5;
 430} poolinfo_table[] = {
 431	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 432	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 433	{ S(128),	104,	76,	51,	25,	1 },
 434};
 435
 436/*
 437 * Static global variables
 
 
 
 
 
 
 438 */
 439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 440static struct fasync_struct *fasync;
 
 
 
 
 
 
 
 
 441
 442static DEFINE_SPINLOCK(random_ready_list_lock);
 443static LIST_HEAD(random_ready_list);
 444
 445struct crng_state {
 446	__u32		state[16];
 447	unsigned long	init_time;
 448	spinlock_t	lock;
 449};
 
 
 
 
 
 
 
 
 
 450
 451static struct crng_state primary_crng = {
 452	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 453};
 
 
 
 
 
 454
 455/*
 456 * crng_init =  0 --> Uninitialized
 457 *		1 --> Initialized
 458 *		2 --> Initialized from input_pool
 459 *
 460 * crng_init is protected by primary_crng->lock, and only increases
 461 * its value (from 0->1->2).
 462 */
 463static int crng_init = 0;
 464#define crng_ready() (likely(crng_init > 1))
 465static int crng_init_cnt = 0;
 466static unsigned long crng_global_init_time = 0;
 467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
 468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
 469static void _crng_backtrack_protect(struct crng_state *crng,
 470				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
 471static void process_random_ready_list(void);
 472static void _get_random_bytes(void *buf, int nbytes);
 473
 474static struct ratelimit_state unseeded_warning =
 475	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 476static struct ratelimit_state urandom_warning =
 477	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 
 
 
 
 478
 479static int ratelimit_disable __read_mostly;
 
 
 
 480
 481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 483
 484/**********************************************************************
 
 
 485 *
 486 * OS independent entropy store.   Here are the functions which handle
 487 * storing entropy in an entropy pool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488 *
 489 **********************************************************************/
 490
 491struct entropy_store;
 492struct entropy_store {
 493	/* read-only data: */
 494	const struct poolinfo *poolinfo;
 495	__u32 *pool;
 496	const char *name;
 497
 498	/* read-write data: */
 
 
 499	spinlock_t lock;
 500	unsigned short add_ptr;
 501	unsigned short input_rotate;
 502	int entropy_count;
 503	unsigned int last_data_init:1;
 504	__u8 last_data[EXTRACT_SIZE];
 505};
 506
 507static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 508			       size_t nbytes, int min, int rsvd);
 509static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 510				size_t nbytes, int fips);
 511
 512static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 513static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 514
 515static struct entropy_store input_pool = {
 516	.poolinfo = &poolinfo_table[0],
 517	.name = "input",
 518	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 519	.pool = input_pool_data
 520};
 521
 522static __u32 const twist_table[8] = {
 523	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 524	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 525
 526/*
 527 * This function adds bytes into the entropy "pool".  It does not
 528 * update the entropy estimate.  The caller should call
 529 * credit_entropy_bits if this is appropriate.
 530 *
 531 * The pool is stirred with a primitive polynomial of the appropriate
 532 * degree, and then twisted.  We twist by three bits at a time because
 533 * it's cheap to do so and helps slightly in the expected case where
 534 * the entropy is concentrated in the low-order bits.
 535 */
 536static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 537			    int nbytes)
 538{
 539	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 540	int input_rotate;
 541	int wordmask = r->poolinfo->poolwords - 1;
 542	const char *bytes = in;
 543	__u32 w;
 544
 545	tap1 = r->poolinfo->tap1;
 546	tap2 = r->poolinfo->tap2;
 547	tap3 = r->poolinfo->tap3;
 548	tap4 = r->poolinfo->tap4;
 549	tap5 = r->poolinfo->tap5;
 550
 551	input_rotate = r->input_rotate;
 552	i = r->add_ptr;
 553
 554	/* mix one byte at a time to simplify size handling and churn faster */
 555	while (nbytes--) {
 556		w = rol32(*bytes++, input_rotate);
 557		i = (i - 1) & wordmask;
 558
 559		/* XOR in the various taps */
 560		w ^= r->pool[i];
 561		w ^= r->pool[(i + tap1) & wordmask];
 562		w ^= r->pool[(i + tap2) & wordmask];
 563		w ^= r->pool[(i + tap3) & wordmask];
 564		w ^= r->pool[(i + tap4) & wordmask];
 565		w ^= r->pool[(i + tap5) & wordmask];
 566
 567		/* Mix the result back in with a twist */
 568		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 
 
 
 
 
 
 569
 570		/*
 571		 * Normally, we add 7 bits of rotation to the pool.
 572		 * At the beginning of the pool, add an extra 7 bits
 573		 * rotation, so that successive passes spread the
 574		 * input bits across the pool evenly.
 575		 */
 576		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 577	}
 
 
 578
 579	r->input_rotate = input_rotate;
 580	r->add_ptr = i;
 581}
 582
 583static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 584			     int nbytes)
 585{
 586	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 587	_mix_pool_bytes(r, in, nbytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588}
 589
 590static void mix_pool_bytes(struct entropy_store *r, const void *in,
 591			   int nbytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592{
 593	unsigned long flags;
 
 
 
 
 
 
 
 594
 595	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 596	spin_lock_irqsave(&r->lock, flags);
 597	_mix_pool_bytes(r, in, nbytes);
 598	spin_unlock_irqrestore(&r->lock, flags);
 599}
 600
 601struct fast_pool {
 602	__u32		pool[4];
 603	unsigned long	last;
 604	unsigned short	reg_idx;
 605	unsigned char	count;
 606};
 607
 608/*
 609 * This is a fast mixing routine used by the interrupt randomness
 610 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 611 * locks that might be needed are taken by the caller.
 612 */
 613static void fast_mix(struct fast_pool *f)
 
 614{
 615	__u32 a = f->pool[0],	b = f->pool[1];
 616	__u32 c = f->pool[2],	d = f->pool[3];
 
 
 617
 618	a += b;			c += d;
 619	b = rol32(b, 6);	d = rol32(d, 27);
 620	d ^= a;			b ^= c;
 
 
 
 
 
 621
 622	a += b;			c += d;
 623	b = rol32(b, 16);	d = rol32(d, 14);
 624	d ^= a;			b ^= c;
 
 
 
 
 
 
 
 
 
 625
 626	a += b;			c += d;
 627	b = rol32(b, 6);	d = rol32(d, 27);
 628	d ^= a;			b ^= c;
 629
 630	a += b;			c += d;
 631	b = rol32(b, 16);	d = rol32(d, 14);
 632	d ^= a;			b ^= c;
 
 
 
 
 
 
 
 
 
 
 633
 634	f->pool[0] = a;  f->pool[1] = b;
 635	f->pool[2] = c;  f->pool[3] = d;
 636	f->count++;
 
 
 
 
 
 
 637}
 638
 639static void process_random_ready_list(void)
 640{
 641	unsigned long flags;
 642	struct random_ready_callback *rdy, *tmp;
 
 
 
 
 643
 644	spin_lock_irqsave(&random_ready_list_lock, flags);
 645	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 646		struct module *owner = rdy->owner;
 
 
 
 
 
 
 
 
 
 647
 648		list_del_init(&rdy->list);
 649		rdy->func(rdy);
 650		module_put(owner);
 
 
 651	}
 652	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 653}
 654
 655/*
 656 * Credit (or debit) the entropy store with n bits of entropy.
 657 * Use credit_entropy_bits_safe() if the value comes from userspace
 658 * or otherwise should be checked for extreme values.
 
 
 659 */
 660static void credit_entropy_bits(struct entropy_store *r, int nbits)
 
 
 
 
 
 
 
 661{
 662	int entropy_count, orig;
 663	const int pool_size = r->poolinfo->poolfracbits;
 664	int nfrac = nbits << ENTROPY_SHIFT;
 665
 666	if (!nbits)
 667		return;
 668
 669retry:
 670	entropy_count = orig = READ_ONCE(r->entropy_count);
 671	if (nfrac < 0) {
 672		/* Debit */
 673		entropy_count += nfrac;
 674	} else {
 675		/*
 676		 * Credit: we have to account for the possibility of
 677		 * overwriting already present entropy.	 Even in the
 678		 * ideal case of pure Shannon entropy, new contributions
 679		 * approach the full value asymptotically:
 680		 *
 681		 * entropy <- entropy + (pool_size - entropy) *
 682		 *	(1 - exp(-add_entropy/pool_size))
 683		 *
 684		 * For add_entropy <= pool_size/2 then
 685		 * (1 - exp(-add_entropy/pool_size)) >=
 686		 *    (add_entropy/pool_size)*0.7869...
 687		 * so we can approximate the exponential with
 688		 * 3/4*add_entropy/pool_size and still be on the
 689		 * safe side by adding at most pool_size/2 at a time.
 690		 *
 691		 * The use of pool_size-2 in the while statement is to
 692		 * prevent rounding artifacts from making the loop
 693		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 694		 * turns no matter how large nbits is.
 695		 */
 696		int pnfrac = nfrac;
 697		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 698		/* The +2 corresponds to the /4 in the denominator */
 699
 700		do {
 701			unsigned int anfrac = min(pnfrac, pool_size/2);
 702			unsigned int add =
 703				((pool_size - entropy_count)*anfrac*3) >> s;
 
 
 
 
 
 704
 705			entropy_count += add;
 706			pnfrac -= anfrac;
 707		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 
 
 
 708	}
 709
 710	if (WARN_ON(entropy_count < 0)) {
 711		pr_warn("negative entropy/overflow: pool %s count %d\n",
 712			r->name, entropy_count);
 713		entropy_count = 0;
 714	} else if (entropy_count > pool_size)
 715		entropy_count = pool_size;
 716	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 717		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718
 719	trace_credit_entropy_bits(r->name, nbits,
 720				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 721
 722	if (r == &input_pool) {
 723		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 
 
 
 
 
 
 
 
 724
 725		if (crng_init < 2 && entropy_bits >= 128)
 726			crng_reseed(&primary_crng, r);
 
 
 
 727	}
 
 728}
 
 729
 730static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 
 
 
 
 
 731{
 732	const int nbits_max = r->poolinfo->poolwords * 32;
 733
 734	if (nbits < 0)
 735		return -EINVAL;
 736
 737	/* Cap the value to avoid overflows */
 738	nbits = min(nbits,  nbits_max);
 739
 740	credit_entropy_bits(r, nbits);
 
 741	return 0;
 742}
 
 743
 744/*********************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 745 *
 746 * CRNG using CHACHA20
 747 *
 748 *********************************************************************/
 749
 750#define CRNG_RESEED_INTERVAL (300*HZ)
 
 
 
 
 751
 752static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 753
 754#ifdef CONFIG_NUMA
 755/*
 756 * Hack to deal with crazy userspace progams when they are all trying
 757 * to access /dev/urandom in parallel.  The programs are almost
 758 * certainly doing something terribly wrong, but we'll work around
 759 * their brain damage.
 760 */
 761static struct crng_state **crng_node_pool __read_mostly;
 762#endif
 763
 764static void invalidate_batched_entropy(void);
 765static void numa_crng_init(void);
 766
 767static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 768static int __init parse_trust_cpu(char *arg)
 769{
 770	return kstrtobool(arg, &trust_cpu);
 771}
 772early_param("random.trust_cpu", parse_trust_cpu);
 773
 774static bool crng_init_try_arch(struct crng_state *crng)
 
 
 
 
 
 775{
 776	int		i;
 777	bool		arch_init = true;
 778	unsigned long	rv;
 779
 780	for (i = 4; i < 16; i++) {
 781		if (!arch_get_random_seed_long(&rv) &&
 782		    !arch_get_random_long(&rv)) {
 783			rv = random_get_entropy();
 784			arch_init = false;
 785		}
 786		crng->state[i] ^= rv;
 787	}
 788
 789	return arch_init;
 
 
 790}
 791
 792static bool __init crng_init_try_arch_early(struct crng_state *crng)
 
 
 
 
 793{
 794	int		i;
 795	bool		arch_init = true;
 796	unsigned long	rv;
 797
 798	for (i = 4; i < 16; i++) {
 799		if (!arch_get_random_seed_long_early(&rv) &&
 800		    !arch_get_random_long_early(&rv)) {
 801			rv = random_get_entropy();
 802			arch_init = false;
 
 
 
 
 
 
 
 
 
 803		}
 804		crng->state[i] ^= rv;
 805	}
 806
 807	return arch_init;
 808}
 809
 810static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
 811{
 812	chacha_init_consts(crng->state);
 813	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 814	crng_init_try_arch(crng);
 815	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 816}
 817
 818static void __init crng_initialize_primary(struct crng_state *crng)
 819{
 820	chacha_init_consts(crng->state);
 821	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
 822	if (crng_init_try_arch_early(crng) && trust_cpu) {
 823		invalidate_batched_entropy();
 824		numa_crng_init();
 825		crng_init = 2;
 826		pr_notice("crng done (trusting CPU's manufacturer)\n");
 827	}
 828	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 829}
 830
 831#ifdef CONFIG_NUMA
 832static void do_numa_crng_init(struct work_struct *work)
 833{
 834	int i;
 835	struct crng_state *crng;
 836	struct crng_state **pool;
 837
 838	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 839	for_each_online_node(i) {
 840		crng = kmalloc_node(sizeof(struct crng_state),
 841				    GFP_KERNEL | __GFP_NOFAIL, i);
 842		spin_lock_init(&crng->lock);
 843		crng_initialize_secondary(crng);
 844		pool[i] = crng;
 845	}
 846	mb();
 847	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 848		for_each_node(i)
 849			kfree(pool[i]);
 850		kfree(pool);
 851	}
 
 
 
 852}
 853
 854static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 855
 856static void numa_crng_init(void)
 857{
 858	schedule_work(&numa_crng_init_work);
 859}
 860#else
 861static void numa_crng_init(void) {}
 862#endif
 863
 864/*
 865 * crng_fast_load() can be called by code in the interrupt service
 866 * path.  So we can't afford to dilly-dally.
 867 */
 868static int crng_fast_load(const char *cp, size_t len)
 869{
 
 
 870	unsigned long flags;
 871	char *p;
 872
 873	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 874		return 0;
 875	if (crng_init != 0) {
 876		spin_unlock_irqrestore(&primary_crng.lock, flags);
 877		return 0;
 878	}
 879	p = (unsigned char *) &primary_crng.state[4];
 880	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 881		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
 882		cp++; crng_init_cnt++; len--;
 883	}
 884	spin_unlock_irqrestore(&primary_crng.lock, flags);
 885	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 886		invalidate_batched_entropy();
 887		crng_init = 1;
 888		pr_notice("fast init done\n");
 889	}
 890	return 1;
 891}
 892
 893/*
 894 * crng_slow_load() is called by add_device_randomness, which has two
 895 * attributes.  (1) We can't trust the buffer passed to it is
 896 * guaranteed to be unpredictable (so it might not have any entropy at
 897 * all), and (2) it doesn't have the performance constraints of
 898 * crng_fast_load().
 899 *
 900 * So we do something more comprehensive which is guaranteed to touch
 901 * all of the primary_crng's state, and which uses a LFSR with a
 902 * period of 255 as part of the mixing algorithm.  Finally, we do
 903 * *not* advance crng_init_cnt since buffer we may get may be something
 904 * like a fixed DMI table (for example), which might very well be
 905 * unique to the machine, but is otherwise unvarying.
 906 */
 907static int crng_slow_load(const char *cp, size_t len)
 908{
 909	unsigned long		flags;
 910	static unsigned char	lfsr = 1;
 911	unsigned char		tmp;
 912	unsigned		i, max = CHACHA_KEY_SIZE;
 913	const char *		src_buf = cp;
 914	char *			dest_buf = (char *) &primary_crng.state[4];
 915
 916	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 917		return 0;
 918	if (crng_init != 0) {
 919		spin_unlock_irqrestore(&primary_crng.lock, flags);
 920		return 0;
 921	}
 922	if (len > max)
 923		max = len;
 924
 925	for (i = 0; i < max ; i++) {
 926		tmp = lfsr;
 927		lfsr >>= 1;
 928		if (tmp & 1)
 929			lfsr ^= 0xE1;
 930		tmp = dest_buf[i % CHACHA_KEY_SIZE];
 931		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 932		lfsr += (tmp << 3) | (tmp >> 5);
 933	}
 934	spin_unlock_irqrestore(&primary_crng.lock, flags);
 935	return 1;
 936}
 937
 938static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 939{
 940	unsigned long	flags;
 941	int		i, num;
 942	union {
 943		__u8	block[CHACHA_BLOCK_SIZE];
 944		__u32	key[8];
 945	} buf;
 946
 947	if (r) {
 948		num = extract_entropy(r, &buf, 32, 16, 0);
 949		if (num == 0)
 950			return;
 951	} else {
 952		_extract_crng(&primary_crng, buf.block);
 953		_crng_backtrack_protect(&primary_crng, buf.block,
 954					CHACHA_KEY_SIZE);
 955	}
 956	spin_lock_irqsave(&crng->lock, flags);
 957	for (i = 0; i < 8; i++) {
 958		unsigned long	rv;
 959		if (!arch_get_random_seed_long(&rv) &&
 960		    !arch_get_random_long(&rv))
 961			rv = random_get_entropy();
 962		crng->state[i+4] ^= buf.key[i] ^ rv;
 963	}
 964	memzero_explicit(&buf, sizeof(buf));
 965	crng->init_time = jiffies;
 966	spin_unlock_irqrestore(&crng->lock, flags);
 967	if (crng == &primary_crng && crng_init < 2) {
 968		invalidate_batched_entropy();
 969		numa_crng_init();
 970		crng_init = 2;
 971		process_random_ready_list();
 972		wake_up_interruptible(&crng_init_wait);
 973		kill_fasync(&fasync, SIGIO, POLL_IN);
 974		pr_notice("crng init done\n");
 975		if (unseeded_warning.missed) {
 976			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
 977				  unseeded_warning.missed);
 978			unseeded_warning.missed = 0;
 979		}
 980		if (urandom_warning.missed) {
 981			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 982				  urandom_warning.missed);
 983			urandom_warning.missed = 0;
 
 
 
 
 
 984		}
 
 985	}
 986}
 987
 988static void _extract_crng(struct crng_state *crng,
 989			  __u8 out[CHACHA_BLOCK_SIZE])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 990{
 991	unsigned long v, flags;
 992
 993	if (crng_ready() &&
 994	    (time_after(crng_global_init_time, crng->init_time) ||
 995	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
 996		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
 997	spin_lock_irqsave(&crng->lock, flags);
 998	if (arch_get_random_long(&v))
 999		crng->state[14] ^= v;
1000	chacha20_block(&crng->state[0], out);
1001	if (crng->state[12] == 0)
1002		crng->state[13]++;
1003	spin_unlock_irqrestore(&crng->lock, flags);
1004}
1005
1006static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1007{
1008	struct crng_state *crng = NULL;
1009
1010#ifdef CONFIG_NUMA
1011	if (crng_node_pool)
1012		crng = crng_node_pool[numa_node_id()];
1013	if (crng == NULL)
1014#endif
1015		crng = &primary_crng;
1016	_extract_crng(crng, out);
1017}
 
 
1018
1019/*
1020 * Use the leftover bytes from the CRNG block output (if there is
1021 * enough) to mutate the CRNG key to provide backtracking protection.
1022 */
1023static void _crng_backtrack_protect(struct crng_state *crng,
1024				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1025{
1026	unsigned long	flags;
1027	__u32		*s, *d;
1028	int		i;
 
 
 
 
 
 
 
 
 
 
1029
1030	used = round_up(used, sizeof(__u32));
1031	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1032		extract_crng(tmp);
1033		used = 0;
 
1034	}
1035	spin_lock_irqsave(&crng->lock, flags);
1036	s = (__u32 *) &tmp[used];
1037	d = &crng->state[4];
1038	for (i=0; i < 8; i++)
1039		*d++ ^= *s++;
1040	spin_unlock_irqrestore(&crng->lock, flags);
1041}
1042
1043static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
 
 
 
 
 
 
1044{
1045	struct crng_state *crng = NULL;
 
1046
1047#ifdef CONFIG_NUMA
1048	if (crng_node_pool)
1049		crng = crng_node_pool[numa_node_id()];
1050	if (crng == NULL)
1051#endif
1052		crng = &primary_crng;
1053	_crng_backtrack_protect(crng, tmp, used);
1054}
1055
1056static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1057{
1058	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1059	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1060	int large_request = (nbytes > 256);
1061
1062	while (nbytes) {
1063		if (large_request && need_resched()) {
1064			if (signal_pending(current)) {
1065				if (ret == 0)
1066					ret = -ERESTARTSYS;
1067				break;
1068			}
1069			schedule();
1070		}
1071
1072		extract_crng(tmp);
1073		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1074		if (copy_to_user(buf, tmp, i)) {
1075			ret = -EFAULT;
1076			break;
1077		}
1078
1079		nbytes -= i;
1080		buf += i;
1081		ret += i;
1082	}
1083	crng_backtrack_protect(tmp, i);
1084
1085	/* Wipe data just written to memory */
1086	memzero_explicit(tmp, sizeof(tmp));
1087
1088	return ret;
 
 
 
 
1089}
1090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091
1092/*********************************************************************
1093 *
1094 * Entropy input management
1095 *
1096 *********************************************************************/
1097
1098/* There is one of these per entropy source */
1099struct timer_rand_state {
1100	cycles_t last_time;
1101	long last_delta, last_delta2;
1102};
1103
1104#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 
 
1105
1106/*
1107 * Add device- or boot-specific data to the input pool to help
1108 * initialize it.
1109 *
1110 * None of this adds any entropy; it is meant to avoid the problem of
1111 * the entropy pool having similar initial state across largely
1112 * identical devices.
1113 */
1114void add_device_randomness(const void *buf, unsigned int size)
1115{
1116	unsigned long time = random_get_entropy() ^ jiffies;
1117	unsigned long flags;
1118
1119	if (!crng_ready() && size)
1120		crng_slow_load(buf, size);
1121
1122	trace_add_device_randomness(size, _RET_IP_);
1123	spin_lock_irqsave(&input_pool.lock, flags);
1124	_mix_pool_bytes(&input_pool, buf, size);
1125	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1126	spin_unlock_irqrestore(&input_pool.lock, flags);
1127}
1128EXPORT_SYMBOL(add_device_randomness);
1129
1130static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1131
1132/*
1133 * This function adds entropy to the entropy "pool" by using timing
1134 * delays.  It uses the timer_rand_state structure to make an estimate
1135 * of how many bits of entropy this call has added to the pool.
1136 *
1137 * The number "num" is also added to the pool - it should somehow describe
1138 * the type of event which just happened.  This is currently 0-255 for
1139 * keyboard scan codes, and 256 upwards for interrupts.
1140 *
1141 */
1142static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1143{
1144	struct entropy_store	*r;
1145	struct {
1146		long jiffies;
1147		unsigned cycles;
1148		unsigned num;
1149	} sample;
1150	long delta, delta2, delta3;
1151
1152	sample.jiffies = jiffies;
1153	sample.cycles = random_get_entropy();
1154	sample.num = num;
1155	r = &input_pool;
1156	mix_pool_bytes(r, &sample, sizeof(sample));
1157
1158	/*
1159	 * Calculate number of bits of randomness we probably added.
1160	 * We take into account the first, second and third-order deltas
1161	 * in order to make our estimate.
1162	 */
1163	delta = sample.jiffies - READ_ONCE(state->last_time);
1164	WRITE_ONCE(state->last_time, sample.jiffies);
1165
1166	delta2 = delta - READ_ONCE(state->last_delta);
1167	WRITE_ONCE(state->last_delta, delta);
1168
1169	delta3 = delta2 - READ_ONCE(state->last_delta2);
1170	WRITE_ONCE(state->last_delta2, delta2);
1171
1172	if (delta < 0)
1173		delta = -delta;
1174	if (delta2 < 0)
1175		delta2 = -delta2;
1176	if (delta3 < 0)
1177		delta3 = -delta3;
1178	if (delta > delta2)
1179		delta = delta2;
1180	if (delta > delta3)
1181		delta = delta3;
1182
1183	/*
1184	 * delta is now minimum absolute delta.
1185	 * Round down by 1 bit on general principles,
1186	 * and limit entropy estimate to 12 bits.
1187	 */
1188	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1189}
 
1190
1191void add_input_randomness(unsigned int type, unsigned int code,
1192				 unsigned int value)
 
 
 
1193{
1194	static unsigned char last_value;
1195
1196	/* ignore autorepeat and the like */
1197	if (value == last_value)
1198		return;
1199
1200	last_value = value;
1201	add_timer_randomness(&input_timer_state,
1202			     (type << 4) ^ code ^ (code >> 4) ^ value);
1203	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1204}
1205EXPORT_SYMBOL_GPL(add_input_randomness);
1206
1207static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 
1208
1209#ifdef ADD_INTERRUPT_BENCH
1210static unsigned long avg_cycles, avg_deviation;
1211
1212#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1213#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1214
1215static void add_interrupt_bench(cycles_t start)
1216{
1217        long delta = random_get_entropy() - start;
1218
1219        /* Use a weighted moving average */
1220        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1221        avg_cycles += delta;
1222        /* And average deviation */
1223        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1224        avg_deviation += delta;
1225}
1226#else
1227#define add_interrupt_bench(x)
1228#endif
1229
1230static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1231{
1232	__u32 *ptr = (__u32 *) regs;
1233	unsigned int idx;
1234
1235	if (regs == NULL)
1236		return 0;
1237	idx = READ_ONCE(f->reg_idx);
1238	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1239		idx = 0;
1240	ptr += idx++;
1241	WRITE_ONCE(f->reg_idx, idx);
1242	return *ptr;
1243}
1244
1245void add_interrupt_randomness(int irq, int irq_flags)
1246{
1247	struct entropy_store	*r;
1248	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1249	struct pt_regs		*regs = get_irq_regs();
1250	unsigned long		now = jiffies;
1251	cycles_t		cycles = random_get_entropy();
1252	__u32			c_high, j_high;
1253	__u64			ip;
1254
1255	if (cycles == 0)
1256		cycles = get_reg(fast_pool, regs);
1257	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1258	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1259	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1260	fast_pool->pool[1] ^= now ^ c_high;
1261	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1262	fast_pool->pool[2] ^= ip;
1263	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1264		get_reg(fast_pool, regs);
1265
1266	fast_mix(fast_pool);
1267	add_interrupt_bench(cycles);
1268
1269	if (unlikely(crng_init == 0)) {
1270		if ((fast_pool->count >= 64) &&
1271		    crng_fast_load((char *) fast_pool->pool,
1272				   sizeof(fast_pool->pool))) {
1273			fast_pool->count = 0;
1274			fast_pool->last = now;
1275		}
1276		return;
1277	}
1278
1279	if ((fast_pool->count < 64) &&
1280	    !time_after(now, fast_pool->last + HZ))
1281		return;
1282
1283	r = &input_pool;
1284	if (!spin_trylock(&r->lock))
1285		return;
1286
1287	fast_pool->last = now;
1288	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1289	spin_unlock(&r->lock);
1290
1291	fast_pool->count = 0;
1292
1293	/* award one bit for the contents of the fast pool */
1294	credit_entropy_bits(r, 1);
1295}
1296EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1297
1298#ifdef CONFIG_BLOCK
1299void add_disk_randomness(struct gendisk *disk)
1300{
1301	if (!disk || !disk->random)
1302		return;
1303	/* first major is 1, so we get >= 0x200 here */
1304	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1305	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1306}
1307EXPORT_SYMBOL_GPL(add_disk_randomness);
1308#endif
1309
1310/*********************************************************************
1311 *
1312 * Entropy extraction routines
1313 *
1314 *********************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315
1316/*
1317 * This function decides how many bytes to actually take from the
1318 * given pool, and also debits the entropy count accordingly.
 
 
1319 */
1320static size_t account(struct entropy_store *r, size_t nbytes, int min,
1321		      int reserved)
1322{
1323	int entropy_count, orig, have_bytes;
1324	size_t ibytes, nfrac;
1325
1326	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1327
1328	/* Can we pull enough? */
1329retry:
1330	entropy_count = orig = READ_ONCE(r->entropy_count);
1331	ibytes = nbytes;
1332	/* never pull more than available */
1333	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1334
1335	if ((have_bytes -= reserved) < 0)
1336		have_bytes = 0;
1337	ibytes = min_t(size_t, ibytes, have_bytes);
1338	if (ibytes < min)
1339		ibytes = 0;
1340
1341	if (WARN_ON(entropy_count < 0)) {
1342		pr_warn("negative entropy count: pool %s count %d\n",
1343			r->name, entropy_count);
1344		entropy_count = 0;
1345	}
1346	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1347	if ((size_t) entropy_count > nfrac)
1348		entropy_count -= nfrac;
1349	else
1350		entropy_count = 0;
1351
1352	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1353		goto retry;
1354
1355	trace_debit_entropy(r->name, 8 * ibytes);
1356	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1357		wake_up_interruptible(&random_write_wait);
1358		kill_fasync(&fasync, SIGIO, POLL_OUT);
1359	}
1360
1361	return ibytes;
1362}
1363
 
1364/*
1365 * This function does the actual extraction for extract_entropy.
1366 *
1367 * Note: we assume that .poolwords is a multiple of 16 words.
1368 */
1369static void extract_buf(struct entropy_store *r, __u8 *out)
1370{
1371	int i;
1372	union {
1373		__u32 w[5];
1374		unsigned long l[LONGS(20)];
1375	} hash;
1376	__u32 workspace[SHA1_WORKSPACE_WORDS];
1377	unsigned long flags;
1378
1379	/*
1380	 * If we have an architectural hardware random number
1381	 * generator, use it for SHA's initial vector
 
 
 
 
 
 
 
1382	 */
1383	sha1_init(hash.w);
1384	for (i = 0; i < LONGS(20); i++) {
1385		unsigned long v;
1386		if (!arch_get_random_long(&v))
1387			break;
1388		hash.l[i] = v;
1389	}
1390
1391	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1392	spin_lock_irqsave(&r->lock, flags);
1393	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1394		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1395
 
 
 
1396	/*
1397	 * We mix the hash back into the pool to prevent backtracking
1398	 * attacks (where the attacker knows the state of the pool
1399	 * plus the current outputs, and attempts to find previous
1400	 * ouputs), unless the hash function can be inverted. By
1401	 * mixing at least a SHA1 worth of hash data back, we make
1402	 * brute-forcing the feedback as hard as brute-forcing the
1403	 * hash.
1404	 */
1405	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1406	spin_unlock_irqrestore(&r->lock, flags);
1407
1408	memzero_explicit(workspace, sizeof(workspace));
 
 
 
 
 
1409
1410	/*
1411	 * In case the hash function has some recognizable output
1412	 * pattern, we fold it in half. Thus, we always feed back
1413	 * twice as much data as we output.
1414	 */
1415	hash.w[0] ^= hash.w[3];
1416	hash.w[1] ^= hash.w[4];
1417	hash.w[2] ^= rol32(hash.w[2], 16);
 
 
 
 
 
1418
1419	memcpy(out, &hash, EXTRACT_SIZE);
1420	memzero_explicit(&hash, sizeof(hash));
1421}
1422
1423static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1424				size_t nbytes, int fips)
1425{
1426	ssize_t ret = 0, i;
1427	__u8 tmp[EXTRACT_SIZE];
1428	unsigned long flags;
 
 
1429
1430	while (nbytes) {
1431		extract_buf(r, tmp);
 
1432
1433		if (fips) {
1434			spin_lock_irqsave(&r->lock, flags);
1435			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1436				panic("Hardware RNG duplicated output!\n");
1437			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1438			spin_unlock_irqrestore(&r->lock, flags);
1439		}
1440		i = min_t(int, nbytes, EXTRACT_SIZE);
1441		memcpy(buf, tmp, i);
1442		nbytes -= i;
1443		buf += i;
1444		ret += i;
1445	}
1446
1447	/* Wipe data just returned from memory */
1448	memzero_explicit(tmp, sizeof(tmp));
1449
1450	return ret;
 
 
 
 
1451}
 
 
 
 
 
 
 
1452
1453/*
1454 * This function extracts randomness from the "entropy pool", and
1455 * returns it in a buffer.
1456 *
1457 * The min parameter specifies the minimum amount we can pull before
1458 * failing to avoid races that defeat catastrophic reseeding while the
1459 * reserved parameter indicates how much entropy we must leave in the
1460 * pool after each pull to avoid starving other readers.
1461 */
1462static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1463				 size_t nbytes, int min, int reserved)
1464{
1465	__u8 tmp[EXTRACT_SIZE];
1466	unsigned long flags;
 
1467
1468	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1469	if (fips_enabled) {
1470		spin_lock_irqsave(&r->lock, flags);
1471		if (!r->last_data_init) {
1472			r->last_data_init = 1;
1473			spin_unlock_irqrestore(&r->lock, flags);
1474			trace_extract_entropy(r->name, EXTRACT_SIZE,
1475					      ENTROPY_BITS(r), _RET_IP_);
1476			extract_buf(r, tmp);
1477			spin_lock_irqsave(&r->lock, flags);
1478			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1479		}
1480		spin_unlock_irqrestore(&r->lock, flags);
1481	}
1482
1483	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1484	nbytes = account(r, nbytes, min, reserved);
1485
1486	return _extract_entropy(r, buf, nbytes, fips_enabled);
1487}
 
 
 
 
 
1488
1489#define warn_unseeded_randomness(previous) \
1490	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1491
1492static void _warn_unseeded_randomness(const char *func_name, void *caller,
1493				      void **previous)
1494{
1495#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1496	const bool print_once = false;
1497#else
1498	static bool print_once __read_mostly;
1499#endif
1500
1501	if (print_once ||
1502	    crng_ready() ||
1503	    (previous && (caller == READ_ONCE(*previous))))
1504		return;
1505	WRITE_ONCE(*previous, caller);
1506#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1507	print_once = true;
1508#endif
1509	if (__ratelimit(&unseeded_warning))
1510		printk_deferred(KERN_NOTICE "random: %s called from %pS "
1511				"with crng_init=%d\n", func_name, caller,
1512				crng_init);
1513}
1514
1515/*
1516 * This function is the exported kernel interface.  It returns some
1517 * number of good random numbers, suitable for key generation, seeding
1518 * TCP sequence numbers, etc.  It does not rely on the hardware random
1519 * number generator.  For random bytes direct from the hardware RNG
1520 * (when available), use get_random_bytes_arch(). In order to ensure
1521 * that the randomness provided by this function is okay, the function
1522 * wait_for_random_bytes() should be called and return 0 at least once
1523 * at any point prior.
1524 */
1525static void _get_random_bytes(void *buf, int nbytes)
1526{
1527	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1528
1529	trace_get_random_bytes(nbytes, _RET_IP_);
1530
1531	while (nbytes >= CHACHA_BLOCK_SIZE) {
1532		extract_crng(buf);
1533		buf += CHACHA_BLOCK_SIZE;
1534		nbytes -= CHACHA_BLOCK_SIZE;
1535	}
1536
1537	if (nbytes > 0) {
1538		extract_crng(tmp);
1539		memcpy(buf, tmp, nbytes);
1540		crng_backtrack_protect(tmp, nbytes);
1541	} else
1542		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1543	memzero_explicit(tmp, sizeof(tmp));
1544}
1545
1546void get_random_bytes(void *buf, int nbytes)
1547{
1548	static void *previous;
 
1549
1550	warn_unseeded_randomness(&previous);
1551	_get_random_bytes(buf, nbytes);
1552}
1553EXPORT_SYMBOL(get_random_bytes);
1554
1555
1556/*
1557 * Each time the timer fires, we expect that we got an unpredictable
1558 * jump in the cycle counter. Even if the timer is running on another
1559 * CPU, the timer activity will be touching the stack of the CPU that is
1560 * generating entropy..
1561 *
1562 * Note that we don't re-arm the timer in the timer itself - we are
1563 * happy to be scheduled away, since that just makes the load more
1564 * complex, but we do not want the timer to keep ticking unless the
1565 * entropy loop is running.
1566 *
1567 * So the re-arming always happens in the entropy loop itself.
1568 */
1569static void entropy_timer(struct timer_list *t)
1570{
1571	credit_entropy_bits(&input_pool, 1);
1572}
 
1573
1574/*
1575 * If we have an actual cycle counter, see if we can
1576 * generate enough entropy with timing noise
1577 */
1578static void try_to_generate_entropy(void)
1579{
1580	struct {
1581		unsigned long now;
1582		struct timer_list timer;
1583	} stack;
1584
1585	stack.now = random_get_entropy();
1586
1587	/* Slow counter - or none. Don't even bother */
1588	if (stack.now == random_get_entropy())
1589		return;
1590
1591	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1592	while (!crng_ready()) {
1593		if (!timer_pending(&stack.timer))
1594			mod_timer(&stack.timer, jiffies+1);
1595		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1596		schedule();
1597		stack.now = random_get_entropy();
1598	}
1599
1600	del_timer_sync(&stack.timer);
1601	destroy_timer_on_stack(&stack.timer);
1602	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1603}
 
1604
1605/*
1606 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1607 * cryptographically secure random numbers. This applies to: the /dev/urandom
1608 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1609 * family of functions. Using any of these functions without first calling
1610 * this function forfeits the guarantee of security.
1611 *
1612 * Returns: 0 if the urandom pool has been seeded.
1613 *          -ERESTARTSYS if the function was interrupted by a signal.
1614 */
1615int wait_for_random_bytes(void)
1616{
1617	if (likely(crng_ready()))
1618		return 0;
1619
1620	do {
1621		int ret;
1622		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1623		if (ret)
1624			return ret > 0 ? 0 : ret;
1625
1626		try_to_generate_entropy();
1627	} while (!crng_ready());
1628
1629	return 0;
1630}
1631EXPORT_SYMBOL(wait_for_random_bytes);
1632
1633/*
1634 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1635 * to supply cryptographically secure random numbers. This applies to: the
1636 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1637 * ,u64,int,long} family of functions.
1638 *
1639 * Returns: true if the urandom pool has been seeded.
1640 *          false if the urandom pool has not been seeded.
1641 */
1642bool rng_is_initialized(void)
1643{
1644	return crng_ready();
1645}
1646EXPORT_SYMBOL(rng_is_initialized);
1647
1648/*
1649 * Add a callback function that will be invoked when the nonblocking
1650 * pool is initialised.
 
 
 
 
 
1651 *
1652 * returns: 0 if callback is successfully added
1653 *	    -EALREADY if pool is already initialised (callback not called)
1654 *	    -ENOENT if module for callback is not alive
1655 */
1656int add_random_ready_callback(struct random_ready_callback *rdy)
1657{
1658	struct module *owner;
1659	unsigned long flags;
1660	int err = -EALREADY;
1661
1662	if (crng_ready())
1663		return err;
1664
1665	owner = rdy->owner;
1666	if (!try_module_get(owner))
1667		return -ENOENT;
1668
1669	spin_lock_irqsave(&random_ready_list_lock, flags);
1670	if (crng_ready())
1671		goto out;
1672
1673	owner = NULL;
1674
1675	list_add(&rdy->list, &random_ready_list);
1676	err = 0;
1677
1678out:
1679	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1680
1681	module_put(owner);
1682
1683	return err;
1684}
1685EXPORT_SYMBOL(add_random_ready_callback);
1686
1687/*
1688 * Delete a previously registered readiness callback function.
 
1689 */
1690void del_random_ready_callback(struct random_ready_callback *rdy)
1691{
1692	unsigned long flags;
1693	struct module *owner = NULL;
 
 
 
 
1694
1695	spin_lock_irqsave(&random_ready_list_lock, flags);
1696	if (!list_empty(&rdy->list)) {
1697		list_del_init(&rdy->list);
1698		owner = rdy->owner;
 
1699	}
1700	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 
 
1701
1702	module_put(owner);
1703}
1704EXPORT_SYMBOL(del_random_ready_callback);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705
1706/*
1707 * This function will use the architecture-specific hardware random
1708 * number generator if it is available.  The arch-specific hw RNG will
1709 * almost certainly be faster than what we can do in software, but it
1710 * is impossible to verify that it is implemented securely (as
1711 * opposed, to, say, the AES encryption of a sequence number using a
1712 * key known by the NSA).  So it's useful if we need the speed, but
1713 * only if we're willing to trust the hardware manufacturer not to
1714 * have put in a back door.
1715 *
1716 * Return number of bytes filled in.
1717 */
1718int __must_check get_random_bytes_arch(void *buf, int nbytes)
1719{
1720	int left = nbytes;
1721	char *p = buf;
1722
1723	trace_get_random_bytes_arch(left, _RET_IP_);
1724	while (left) {
1725		unsigned long v;
1726		int chunk = min_t(int, left, sizeof(unsigned long));
1727
1728		if (!arch_get_random_long(&v))
1729			break;
1730
1731		memcpy(p, &v, chunk);
1732		p += chunk;
1733		left -= chunk;
 
 
1734	}
 
1735
1736	return nbytes - left;
 
1737}
1738EXPORT_SYMBOL(get_random_bytes_arch);
1739
1740/*
1741 * init_std_data - initialize pool with system data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1742 *
1743 * @r: pool to initialize
 
 
1744 *
1745 * This function clears the pool's entropy count and mixes some system
1746 * data into the pool to prepare it for use. The pool is not cleared
1747 * as that can only decrease the entropy in the pool.
1748 */
1749static void __init init_std_data(struct entropy_store *r)
1750{
1751	int i;
1752	ktime_t now = ktime_get_real();
1753	unsigned long rv;
1754
1755	mix_pool_bytes(r, &now, sizeof(now));
1756	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1757		if (!arch_get_random_seed_long(&rv) &&
1758		    !arch_get_random_long(&rv))
1759			rv = random_get_entropy();
1760		mix_pool_bytes(r, &rv, sizeof(rv));
1761	}
1762	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1763}
1764
1765/*
1766 * Note that setup_arch() may call add_device_randomness()
1767 * long before we get here. This allows seeding of the pools
1768 * with some platform dependent data very early in the boot
1769 * process. But it limits our options here. We must use
1770 * statically allocated structures that already have all
1771 * initializations complete at compile time. We should also
1772 * take care not to overwrite the precious per platform data
1773 * we were given.
1774 */
1775int __init rand_initialize(void)
1776{
1777	init_std_data(&input_pool);
1778	crng_initialize_primary(&primary_crng);
1779	crng_global_init_time = jiffies;
1780	if (ratelimit_disable) {
1781		urandom_warning.interval = 0;
1782		unseeded_warning.interval = 0;
1783	}
1784	return 0;
1785}
1786
1787#ifdef CONFIG_BLOCK
1788void rand_initialize_disk(struct gendisk *disk)
1789{
1790	struct timer_rand_state *state;
1791
1792	/*
1793	 * If kzalloc returns null, we just won't use that entropy
1794	 * source.
1795	 */
1796	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1797	if (state) {
1798		state->last_time = INITIAL_JIFFIES;
1799		disk->random = state;
 
 
 
 
 
1800	}
 
 
 
 
 
1801}
1802#endif
1803
1804static ssize_t
1805urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1806		    loff_t *ppos)
1807{
1808	int ret;
1809
1810	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1811	ret = extract_crng_user(buf, nbytes);
1812	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1813	return ret;
1814}
1815
1816static ssize_t
1817urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1818{
1819	unsigned long flags;
1820	static int maxwarn = 10;
 
1821
1822	if (!crng_ready() && maxwarn > 0) {
1823		maxwarn--;
1824		if (__ratelimit(&urandom_warning))
1825			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1826				  current->comm, nbytes);
1827		spin_lock_irqsave(&primary_crng.lock, flags);
1828		crng_init_cnt = 0;
1829		spin_unlock_irqrestore(&primary_crng.lock, flags);
1830	}
1831
1832	return urandom_read_nowarn(file, buf, nbytes, ppos);
1833}
 
 
 
 
1834
1835static ssize_t
1836random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1837{
1838	int ret;
 
 
 
1839
1840	ret = wait_for_random_bytes();
1841	if (ret != 0)
1842		return ret;
1843	return urandom_read_nowarn(file, buf, nbytes, ppos);
1844}
1845
1846static __poll_t
1847random_poll(struct file *file, poll_table * wait)
1848{
1849	__poll_t mask;
1850
1851	poll_wait(file, &crng_init_wait, wait);
1852	poll_wait(file, &random_write_wait, wait);
1853	mask = 0;
1854	if (crng_ready())
1855		mask |= EPOLLIN | EPOLLRDNORM;
1856	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1857		mask |= EPOLLOUT | EPOLLWRNORM;
1858	return mask;
1859}
1860
1861static int
1862write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1863{
1864	size_t bytes;
1865	__u32 t, buf[16];
1866	const char __user *p = buffer;
1867
1868	while (count > 0) {
1869		int b, i = 0;
1870
1871		bytes = min(count, sizeof(buf));
1872		if (copy_from_user(&buf, p, bytes))
1873			return -EFAULT;
1874
1875		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1876			if (!arch_get_random_int(&t))
1877				break;
1878			buf[i] ^= t;
 
 
 
1879		}
1880
1881		count -= bytes;
1882		p += bytes;
1883
1884		mix_pool_bytes(r, buf, bytes);
1885		cond_resched();
1886	}
1887
1888	return 0;
1889}
1890
1891static ssize_t random_write(struct file *file, const char __user *buffer,
1892			    size_t count, loff_t *ppos)
1893{
1894	size_t ret;
1895
1896	ret = write_pool(&input_pool, buffer, count);
1897	if (ret)
 
 
 
 
 
1898		return ret;
1899
1900	return (ssize_t)count;
1901}
1902
1903static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1904{
1905	int size, ent_count;
1906	int __user *p = (int __user *)arg;
1907	int retval;
1908
1909	switch (cmd) {
1910	case RNDGETENTCNT:
1911		/* inherently racy, no point locking */
1912		ent_count = ENTROPY_BITS(&input_pool);
1913		if (put_user(ent_count, p))
1914			return -EFAULT;
1915		return 0;
1916	case RNDADDTOENTCNT:
1917		if (!capable(CAP_SYS_ADMIN))
1918			return -EPERM;
1919		if (get_user(ent_count, p))
1920			return -EFAULT;
1921		return credit_entropy_bits_safe(&input_pool, ent_count);
1922	case RNDADDENTROPY:
 
 
 
 
 
 
 
1923		if (!capable(CAP_SYS_ADMIN))
1924			return -EPERM;
1925		if (get_user(ent_count, p++))
1926			return -EFAULT;
1927		if (ent_count < 0)
1928			return -EINVAL;
1929		if (get_user(size, p++))
 
 
 
 
 
 
 
 
 
1930			return -EFAULT;
1931		retval = write_pool(&input_pool, (const char __user *)p,
1932				    size);
1933		if (retval < 0)
1934			return retval;
1935		return credit_entropy_bits_safe(&input_pool, ent_count);
1936	case RNDZAPENTCNT:
1937	case RNDCLEARPOOL:
1938		/*
1939		 * Clear the entropy pool counters. We no longer clear
1940		 * the entropy pool, as that's silly.
1941		 */
1942		if (!capable(CAP_SYS_ADMIN))
1943			return -EPERM;
1944		input_pool.entropy_count = 0;
1945		return 0;
1946	case RNDRESEEDCRNG:
1947		if (!capable(CAP_SYS_ADMIN))
1948			return -EPERM;
1949		if (crng_init < 2)
1950			return -ENODATA;
1951		crng_reseed(&primary_crng, &input_pool);
1952		crng_global_init_time = jiffies - 1;
1953		return 0;
1954	default:
1955		return -EINVAL;
1956	}
1957}
1958
1959static int random_fasync(int fd, struct file *filp, int on)
1960{
1961	return fasync_helper(fd, filp, on, &fasync);
1962}
1963
1964const struct file_operations random_fops = {
1965	.read  = random_read,
1966	.write = random_write,
1967	.poll  = random_poll,
1968	.unlocked_ioctl = random_ioctl,
1969	.compat_ioctl = compat_ptr_ioctl,
1970	.fasync = random_fasync,
1971	.llseek = noop_llseek,
 
 
1972};
1973
1974const struct file_operations urandom_fops = {
1975	.read  = urandom_read,
1976	.write = random_write,
1977	.unlocked_ioctl = random_ioctl,
1978	.compat_ioctl = compat_ptr_ioctl,
1979	.fasync = random_fasync,
1980	.llseek = noop_llseek,
 
 
1981};
1982
1983SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1984		unsigned int, flags)
1985{
1986	int ret;
1987
1988	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
1989		return -EINVAL;
1990
1991	/*
1992	 * Requesting insecure and blocking randomness at the same time makes
1993	 * no sense.
1994	 */
1995	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
1996		return -EINVAL;
1997
1998	if (count > INT_MAX)
1999		count = INT_MAX;
2000
2001	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2002		if (flags & GRND_NONBLOCK)
2003			return -EAGAIN;
2004		ret = wait_for_random_bytes();
2005		if (unlikely(ret))
2006			return ret;
2007	}
2008	return urandom_read_nowarn(NULL, buf, count, NULL);
2009}
2010
2011/********************************************************************
2012 *
2013 * Sysctl interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014 *
2015 ********************************************************************/
2016
2017#ifdef CONFIG_SYSCTL
2018
2019#include <linux/sysctl.h>
2020
2021static int min_write_thresh;
2022static int max_write_thresh = INPUT_POOL_WORDS * 32;
2023static int random_min_urandom_seed = 60;
2024static char sysctl_bootid[16];
2025
2026/*
2027 * This function is used to return both the bootid UUID, and random
2028 * UUID.  The difference is in whether table->data is NULL; if it is,
2029 * then a new UUID is generated and returned to the user.
2030 *
2031 * If the user accesses this via the proc interface, the UUID will be
2032 * returned as an ASCII string in the standard UUID format; if via the
2033 * sysctl system call, as 16 bytes of binary data.
2034 */
2035static int proc_do_uuid(struct ctl_table *table, int write,
2036			void *buffer, size_t *lenp, loff_t *ppos)
2037{
2038	struct ctl_table fake_table;
2039	unsigned char buf[64], tmp_uuid[16], *uuid;
 
 
 
 
 
 
 
2040
2041	uuid = table->data;
2042	if (!uuid) {
2043		uuid = tmp_uuid;
2044		generate_random_uuid(uuid);
2045	} else {
2046		static DEFINE_SPINLOCK(bootid_spinlock);
2047
2048		spin_lock(&bootid_spinlock);
2049		if (!uuid[8])
2050			generate_random_uuid(uuid);
2051		spin_unlock(&bootid_spinlock);
2052	}
2053
2054	sprintf(buf, "%pU", uuid);
2055
2056	fake_table.data = buf;
2057	fake_table.maxlen = sizeof(buf);
2058
2059	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2060}
2061
2062/*
2063 * Return entropy available scaled to integral bits
2064 */
2065static int proc_do_entropy(struct ctl_table *table, int write,
2066			   void *buffer, size_t *lenp, loff_t *ppos)
2067{
2068	struct ctl_table fake_table;
2069	int entropy_count;
2070
2071	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2072
2073	fake_table.data = &entropy_count;
2074	fake_table.maxlen = sizeof(entropy_count);
2075
2076	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2077}
2078
2079static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2080extern struct ctl_table random_table[];
2081struct ctl_table random_table[] = {
2082	{
2083		.procname	= "poolsize",
2084		.data		= &sysctl_poolsize,
2085		.maxlen		= sizeof(int),
2086		.mode		= 0444,
2087		.proc_handler	= proc_dointvec,
2088	},
2089	{
2090		.procname	= "entropy_avail",
 
2091		.maxlen		= sizeof(int),
2092		.mode		= 0444,
2093		.proc_handler	= proc_do_entropy,
2094		.data		= &input_pool.entropy_count,
2095	},
2096	{
2097		.procname	= "write_wakeup_threshold",
2098		.data		= &random_write_wakeup_bits,
2099		.maxlen		= sizeof(int),
2100		.mode		= 0644,
2101		.proc_handler	= proc_dointvec_minmax,
2102		.extra1		= &min_write_thresh,
2103		.extra2		= &max_write_thresh,
2104	},
2105	{
2106		.procname	= "urandom_min_reseed_secs",
2107		.data		= &random_min_urandom_seed,
2108		.maxlen		= sizeof(int),
2109		.mode		= 0644,
2110		.proc_handler	= proc_dointvec,
2111	},
2112	{
2113		.procname	= "boot_id",
2114		.data		= &sysctl_bootid,
2115		.maxlen		= 16,
2116		.mode		= 0444,
2117		.proc_handler	= proc_do_uuid,
2118	},
2119	{
2120		.procname	= "uuid",
2121		.maxlen		= 16,
2122		.mode		= 0444,
2123		.proc_handler	= proc_do_uuid,
2124	},
2125#ifdef ADD_INTERRUPT_BENCH
2126	{
2127		.procname	= "add_interrupt_avg_cycles",
2128		.data		= &avg_cycles,
2129		.maxlen		= sizeof(avg_cycles),
2130		.mode		= 0444,
2131		.proc_handler	= proc_doulongvec_minmax,
2132	},
2133	{
2134		.procname	= "add_interrupt_avg_deviation",
2135		.data		= &avg_deviation,
2136		.maxlen		= sizeof(avg_deviation),
2137		.mode		= 0444,
2138		.proc_handler	= proc_doulongvec_minmax,
2139	},
2140#endif
2141	{ }
2142};
2143#endif 	/* CONFIG_SYSCTL */
2144
2145struct batched_entropy {
2146	union {
2147		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2148		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2149	};
2150	unsigned int position;
2151	spinlock_t batch_lock;
2152};
2153
2154/*
2155 * Get a random word for internal kernel use only. The quality of the random
2156 * number is good as /dev/urandom, but there is no backtrack protection, with
2157 * the goal of being quite fast and not depleting entropy. In order to ensure
2158 * that the randomness provided by this function is okay, the function
2159 * wait_for_random_bytes() should be called and return 0 at least once at any
2160 * point prior.
2161 */
2162static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2163	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2164};
2165
2166u64 get_random_u64(void)
2167{
2168	u64 ret;
2169	unsigned long flags;
2170	struct batched_entropy *batch;
2171	static void *previous;
2172
2173	warn_unseeded_randomness(&previous);
2174
2175	batch = raw_cpu_ptr(&batched_entropy_u64);
2176	spin_lock_irqsave(&batch->batch_lock, flags);
2177	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2178		extract_crng((u8 *)batch->entropy_u64);
2179		batch->position = 0;
2180	}
2181	ret = batch->entropy_u64[batch->position++];
2182	spin_unlock_irqrestore(&batch->batch_lock, flags);
2183	return ret;
2184}
2185EXPORT_SYMBOL(get_random_u64);
2186
2187static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2188	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2189};
2190u32 get_random_u32(void)
2191{
2192	u32 ret;
2193	unsigned long flags;
2194	struct batched_entropy *batch;
2195	static void *previous;
2196
2197	warn_unseeded_randomness(&previous);
2198
2199	batch = raw_cpu_ptr(&batched_entropy_u32);
2200	spin_lock_irqsave(&batch->batch_lock, flags);
2201	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2202		extract_crng((u8 *)batch->entropy_u32);
2203		batch->position = 0;
2204	}
2205	ret = batch->entropy_u32[batch->position++];
2206	spin_unlock_irqrestore(&batch->batch_lock, flags);
2207	return ret;
2208}
2209EXPORT_SYMBOL(get_random_u32);
2210
2211/* It's important to invalidate all potential batched entropy that might
2212 * be stored before the crng is initialized, which we can do lazily by
2213 * simply resetting the counter to zero so that it's re-extracted on the
2214 * next usage. */
2215static void invalidate_batched_entropy(void)
2216{
2217	int cpu;
2218	unsigned long flags;
2219
2220	for_each_possible_cpu (cpu) {
2221		struct batched_entropy *batched_entropy;
2222
2223		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2224		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2225		batched_entropy->position = 0;
2226		spin_unlock(&batched_entropy->batch_lock);
2227
2228		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2229		spin_lock(&batched_entropy->batch_lock);
2230		batched_entropy->position = 0;
2231		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2232	}
2233}
2234
2235/**
2236 * randomize_page - Generate a random, page aligned address
2237 * @start:	The smallest acceptable address the caller will take.
2238 * @range:	The size of the area, starting at @start, within which the
2239 *		random address must fall.
2240 *
2241 * If @start + @range would overflow, @range is capped.
2242 *
2243 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2244 * @start was already page aligned.  We now align it regardless.
2245 *
2246 * Return: A page aligned address within [start, start + range).  On error,
2247 * @start is returned.
2248 */
2249unsigned long
2250randomize_page(unsigned long start, unsigned long range)
2251{
2252	if (!PAGE_ALIGNED(start)) {
2253		range -= PAGE_ALIGN(start) - start;
2254		start = PAGE_ALIGN(start);
2255	}
2256
2257	if (start > ULONG_MAX - range)
2258		range = ULONG_MAX - start;
2259
2260	range >>= PAGE_SHIFT;
2261
2262	if (range == 0)
2263		return start;
2264
2265	return start + (get_random_long() % range << PAGE_SHIFT);
2266}
2267
2268/* Interface for in-kernel drivers of true hardware RNGs.
2269 * Those devices may produce endless random bits and will be throttled
2270 * when our pool is full.
2271 */
2272void add_hwgenerator_randomness(const char *buffer, size_t count,
2273				size_t entropy)
2274{
2275	struct entropy_store *poolp = &input_pool;
2276
2277	if (unlikely(crng_init == 0)) {
2278		crng_fast_load(buffer, count);
2279		return;
2280	}
2281
2282	/* Suspend writing if we're above the trickle threshold.
2283	 * We'll be woken up again once below random_write_wakeup_thresh,
2284	 * or when the calling thread is about to terminate.
2285	 */
2286	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2287			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2288	mix_pool_bytes(poolp, buffer, count);
2289	credit_entropy_bits(poolp, entropy);
2290}
2291EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2292
2293/* Handle random seed passed by bootloader.
2294 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2295 * it would be regarded as device data.
2296 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2297 */
2298void add_bootloader_randomness(const void *buf, unsigned int size)
2299{
2300	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2301		add_hwgenerator_randomness(buf, size, size * 8);
2302	else
2303		add_device_randomness(buf, size);
2304}
2305EXPORT_SYMBOL_GPL(add_bootloader_randomness);