Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iommu.h>
  13#include <linux/iopoll.h>
  14#include <linux/irq.h>
  15#include <linux/log2.h>
  16#include <linux/module.h>
  17#include <linux/moduleparam.h>
  18#include <linux/slab.h>
  19#include <linux/dmi.h>
  20#include <linux/dma-mapping.h>
  21
  22#include "xhci.h"
  23#include "xhci-trace.h"
  24#include "xhci-debugfs.h"
  25#include "xhci-dbgcap.h"
  26
  27#define DRIVER_AUTHOR "Sarah Sharp"
  28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  29
  30#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  31
  32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  33static int link_quirk;
  34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  36
  37static unsigned long long quirks;
  38module_param(quirks, ullong, S_IRUGO);
  39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  40
  41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  42{
  43	struct xhci_segment *seg = ring->first_seg;
  44
  45	if (!td || !td->start_seg)
  46		return false;
  47	do {
  48		if (seg == td->start_seg)
  49			return true;
  50		seg = seg->next;
  51	} while (seg && seg != ring->first_seg);
  52
  53	return false;
  54}
  55
  56/*
  57 * xhci_handshake - spin reading hc until handshake completes or fails
  58 * @ptr: address of hc register to be read
  59 * @mask: bits to look at in result of read
  60 * @done: value of those bits when handshake succeeds
  61 * @usec: timeout in microseconds
  62 *
  63 * Returns negative errno, or zero on success
  64 *
  65 * Success happens when the "mask" bits have the specified value (hardware
  66 * handshake done).  There are two failure modes:  "usec" have passed (major
  67 * hardware flakeout), or the register reads as all-ones (hardware removed).
  68 */
  69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
  70{
  71	u32	result;
  72	int	ret;
  73
  74	ret = readl_poll_timeout_atomic(ptr, result,
  75					(result & mask) == done ||
  76					result == U32_MAX,
  77					1, timeout_us);
  78	if (result == U32_MAX)		/* card removed */
  79		return -ENODEV;
  80
  81	return ret;
  82}
  83
  84/*
  85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
  86 * exit_state parameter, and bails out with an error immediately when xhc_state
  87 * has exit_state flag set.
  88 */
  89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
  90		u32 mask, u32 done, int usec, unsigned int exit_state)
  91{
  92	u32	result;
  93	int	ret;
  94
  95	ret = readl_poll_timeout_atomic(ptr, result,
  96				(result & mask) == done ||
  97				result == U32_MAX ||
  98				xhci->xhc_state & exit_state,
  99				1, usec);
 100
 101	if (result == U32_MAX || xhci->xhc_state & exit_state)
 102		return -ENODEV;
 103
 104	return ret;
 
 
 
 
 
 
 
 
 
 
 105}
 106
 107/*
 108 * Disable interrupts and begin the xHCI halting process.
 109 */
 110void xhci_quiesce(struct xhci_hcd *xhci)
 111{
 112	u32 halted;
 113	u32 cmd;
 114	u32 mask;
 115
 116	mask = ~(XHCI_IRQS);
 117	halted = readl(&xhci->op_regs->status) & STS_HALT;
 118	if (!halted)
 119		mask &= ~CMD_RUN;
 120
 121	cmd = readl(&xhci->op_regs->command);
 122	cmd &= mask;
 123	writel(cmd, &xhci->op_regs->command);
 124}
 125
 126/*
 127 * Force HC into halt state.
 128 *
 129 * Disable any IRQs and clear the run/stop bit.
 130 * HC will complete any current and actively pipelined transactions, and
 131 * should halt within 16 ms of the run/stop bit being cleared.
 132 * Read HC Halted bit in the status register to see when the HC is finished.
 133 */
 134int xhci_halt(struct xhci_hcd *xhci)
 135{
 136	int ret;
 137
 138	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 139	xhci_quiesce(xhci);
 140
 141	ret = xhci_handshake(&xhci->op_regs->status,
 142			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 143	if (ret) {
 144		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 145		return ret;
 146	}
 147
 148	xhci->xhc_state |= XHCI_STATE_HALTED;
 149	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 150
 151	return ret;
 152}
 153
 154/*
 155 * Set the run bit and wait for the host to be running.
 156 */
 157int xhci_start(struct xhci_hcd *xhci)
 158{
 159	u32 temp;
 160	int ret;
 161
 162	temp = readl(&xhci->op_regs->command);
 163	temp |= (CMD_RUN);
 164	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 165			temp);
 166	writel(temp, &xhci->op_regs->command);
 167
 168	/*
 169	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 170	 * running.
 171	 */
 172	ret = xhci_handshake(&xhci->op_regs->status,
 173			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 174	if (ret == -ETIMEDOUT)
 175		xhci_err(xhci, "Host took too long to start, "
 176				"waited %u microseconds.\n",
 177				XHCI_MAX_HALT_USEC);
 178	if (!ret) {
 179		/* clear state flags. Including dying, halted or removing */
 180		xhci->xhc_state = 0;
 181		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 182	}
 183
 184	return ret;
 185}
 186
 187/*
 188 * Reset a halted HC.
 189 *
 190 * This resets pipelines, timers, counters, state machines, etc.
 191 * Transactions will be terminated immediately, and operational registers
 192 * will be set to their defaults.
 193 */
 194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 195{
 196	u32 command;
 197	u32 state;
 198	int ret;
 199
 200	state = readl(&xhci->op_regs->status);
 201
 202	if (state == ~(u32)0) {
 203		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 204		return -ENODEV;
 205	}
 206
 
 207	if ((state & STS_HALT) == 0) {
 208		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 209		return 0;
 210	}
 211
 212	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 213	command = readl(&xhci->op_regs->command);
 214	command |= CMD_RESET;
 215	writel(command, &xhci->op_regs->command);
 216
 217	/* Existing Intel xHCI controllers require a delay of 1 mS,
 218	 * after setting the CMD_RESET bit, and before accessing any
 219	 * HC registers. This allows the HC to complete the
 220	 * reset operation and be ready for HC register access.
 221	 * Without this delay, the subsequent HC register access,
 222	 * may result in a system hang very rarely.
 223	 */
 224	if (xhci->quirks & XHCI_INTEL_HOST)
 225		udelay(1000);
 226
 227	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
 228				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
 229	if (ret)
 230		return ret;
 231
 232	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 233		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 234
 235	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 236			 "Wait for controller to be ready for doorbell rings");
 237	/*
 238	 * xHCI cannot write to any doorbells or operational registers other
 239	 * than status until the "Controller Not Ready" flag is cleared.
 240	 */
 241	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 
 242
 243	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 244	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 245	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 246	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 247	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 248	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 249
 250	return ret;
 251}
 252
 253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 254{
 255	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 256	struct iommu_domain *domain;
 257	int err, i;
 258	u64 val;
 259	u32 intrs;
 260
 261	/*
 262	 * Some Renesas controllers get into a weird state if they are
 263	 * reset while programmed with 64bit addresses (they will preserve
 264	 * the top half of the address in internal, non visible
 265	 * registers). You end up with half the address coming from the
 266	 * kernel, and the other half coming from the firmware. Also,
 267	 * changing the programming leads to extra accesses even if the
 268	 * controller is supposed to be halted. The controller ends up with
 269	 * a fatal fault, and is then ripe for being properly reset.
 270	 *
 271	 * Special care is taken to only apply this if the device is behind
 272	 * an iommu. Doing anything when there is no iommu is definitely
 273	 * unsafe...
 274	 */
 275	domain = iommu_get_domain_for_dev(dev);
 276	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
 277	    domain->type == IOMMU_DOMAIN_IDENTITY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278		return;
 279
 280	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 
 
 
 
 281
 282	/* Clear HSEIE so that faults do not get signaled */
 283	val = readl(&xhci->op_regs->command);
 284	val &= ~CMD_HSEIE;
 285	writel(val, &xhci->op_regs->command);
 286
 287	/* Clear HSE (aka FATAL) */
 288	val = readl(&xhci->op_regs->status);
 289	val |= STS_FATAL;
 290	writel(val, &xhci->op_regs->status);
 291
 292	/* Now zero the registers, and brace for impact */
 293	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 294	if (upper_32_bits(val))
 295		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 296	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 297	if (upper_32_bits(val))
 298		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 299
 300	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 301		      ARRAY_SIZE(xhci->run_regs->ir_set));
 302
 303	for (i = 0; i < intrs; i++) {
 304		struct xhci_intr_reg __iomem *ir;
 305
 306		ir = &xhci->run_regs->ir_set[i];
 307		val = xhci_read_64(xhci, &ir->erst_base);
 308		if (upper_32_bits(val))
 309			xhci_write_64(xhci, 0, &ir->erst_base);
 310		val= xhci_read_64(xhci, &ir->erst_dequeue);
 311		if (upper_32_bits(val))
 312			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 313	}
 314
 315	/* Wait for the fault to appear. It will be cleared on reset */
 316	err = xhci_handshake(&xhci->op_regs->status,
 317			     STS_FATAL, STS_FATAL,
 318			     XHCI_MAX_HALT_USEC);
 319	if (!err)
 320		xhci_info(xhci, "Fault detected\n");
 321}
 322
 323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
 
 
 
 324{
 325	u32 iman;
 
 
 326
 327	if (!ir || !ir->ir_set)
 328		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329
 330	iman = readl(&ir->ir_set->irq_pending);
 331	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
 
 
 332
 333	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334}
 335
 336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
 337{
 338	u32 iman;
 339
 340	if (!ir || !ir->ir_set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341		return -EINVAL;
 
 342
 343	iman = readl(&ir->ir_set->irq_pending);
 344	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
 
 
 
 
 
 
 
 
 
 345
 
 
 
 
 346	return 0;
 347}
 348
 349static void compliance_mode_recovery(struct timer_list *t)
 
 
 
 
 
 
 
 
 
 
 350{
 351	struct xhci_hcd *xhci;
 352	struct usb_hcd *hcd;
 353	struct xhci_hub *rhub;
 354	u32 temp;
 355	int i;
 356
 357	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 358	rhub = &xhci->usb3_rhub;
 359	hcd = rhub->hcd;
 360
 361	if (!hcd)
 362		return;
 363
 364	for (i = 0; i < rhub->num_ports; i++) {
 365		temp = readl(rhub->ports[i]->addr);
 366		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 367			/*
 368			 * Compliance Mode Detected. Letting USB Core
 369			 * handle the Warm Reset
 370			 */
 371			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 372					"Compliance mode detected->port %d",
 373					i + 1);
 374			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 375					"Attempting compliance mode recovery");
 376
 377			if (hcd->state == HC_STATE_SUSPENDED)
 378				usb_hcd_resume_root_hub(hcd);
 379
 380			usb_hcd_poll_rh_status(hcd);
 381		}
 382	}
 383
 384	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 385		mod_timer(&xhci->comp_mode_recovery_timer,
 386			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 387}
 388
 389/*
 390 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 391 * that causes ports behind that hardware to enter compliance mode sometimes.
 392 * The quirk creates a timer that polls every 2 seconds the link state of
 393 * each host controller's port and recovers it by issuing a Warm reset
 394 * if Compliance mode is detected, otherwise the port will become "dead" (no
 395 * device connections or disconnections will be detected anymore). Becasue no
 396 * status event is generated when entering compliance mode (per xhci spec),
 397 * this quirk is needed on systems that have the failing hardware installed.
 398 */
 399static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 400{
 401	xhci->port_status_u0 = 0;
 402	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 403		    0);
 
 
 404	xhci->comp_mode_recovery_timer.expires = jiffies +
 405			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 406
 
 
 407	add_timer(&xhci->comp_mode_recovery_timer);
 408	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 409			"Compliance mode recovery timer initialized");
 410}
 411
 412/*
 413 * This function identifies the systems that have installed the SN65LVPE502CP
 414 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 415 * Systems:
 416 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 417 */
 418static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 419{
 420	const char *dmi_product_name, *dmi_sys_vendor;
 421
 422	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 423	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 424	if (!dmi_product_name || !dmi_sys_vendor)
 425		return false;
 426
 427	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 428		return false;
 429
 430	if (strstr(dmi_product_name, "Z420") ||
 431			strstr(dmi_product_name, "Z620") ||
 432			strstr(dmi_product_name, "Z820") ||
 433			strstr(dmi_product_name, "Z1 Workstation"))
 434		return true;
 435
 436	return false;
 437}
 438
 439static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 440{
 441	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 442}
 443
 444
 445/*
 446 * Initialize memory for HCD and xHC (one-time init).
 447 *
 448 * Program the PAGESIZE register, initialize the device context array, create
 449 * device contexts (?), set up a command ring segment (or two?), create event
 450 * ring (one for now).
 451 */
 452static int xhci_init(struct usb_hcd *hcd)
 453{
 454	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 455	int retval;
 456
 457	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 458	spin_lock_init(&xhci->lock);
 459	if (xhci->hci_version == 0x95 && link_quirk) {
 460		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 461				"QUIRK: Not clearing Link TRB chain bits.");
 462		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 463	} else {
 464		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 465				"xHCI doesn't need link TRB QUIRK");
 466	}
 467	retval = xhci_mem_init(xhci, GFP_KERNEL);
 468	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 469
 470	/* Initializing Compliance Mode Recovery Data If Needed */
 471	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 472		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 473		compliance_mode_recovery_timer_init(xhci);
 474	}
 475
 476	return retval;
 477}
 478
 479/*-------------------------------------------------------------------------*/
 480
 481static int xhci_run_finished(struct xhci_hcd *xhci)
 
 
 482{
 483	struct xhci_interrupter *ir = xhci->interrupters[0];
 484	unsigned long	flags;
 485	u32		temp;
 
 
 
 
 486
 487	/*
 488	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 489	 * Protect the short window before host is running with a lock
 490	 */
 491	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
 
 
 492
 493	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 494	temp = readl(&xhci->op_regs->command);
 495	temp |= (CMD_EIE);
 496	writel(temp, &xhci->op_regs->command);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 499	xhci_enable_interrupter(ir);
 
 
 
 
 500
 
 
 501	if (xhci_start(xhci)) {
 502		xhci_halt(xhci);
 503		spin_unlock_irqrestore(&xhci->lock, flags);
 504		return -ENODEV;
 505	}
 506
 507	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 508
 509	if (xhci->quirks & XHCI_NEC_HOST)
 510		xhci_ring_cmd_db(xhci);
 511
 512	spin_unlock_irqrestore(&xhci->lock, flags);
 513
 514	return 0;
 515}
 516
 517/*
 518 * Start the HC after it was halted.
 519 *
 520 * This function is called by the USB core when the HC driver is added.
 521 * Its opposite is xhci_stop().
 522 *
 523 * xhci_init() must be called once before this function can be called.
 524 * Reset the HC, enable device slot contexts, program DCBAAP, and
 525 * set command ring pointer and event ring pointer.
 526 *
 527 * Setup MSI-X vectors and enable interrupts.
 528 */
 529int xhci_run(struct usb_hcd *hcd)
 530{
 531	u32 temp;
 532	u64 temp_64;
 533	int ret;
 534	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 535	struct xhci_interrupter *ir = xhci->interrupters[0];
 536	/* Start the xHCI host controller running only after the USB 2.0 roothub
 537	 * is setup.
 538	 */
 539
 540	hcd->uses_new_polling = 1;
 541	if (!usb_hcd_is_primary_hcd(hcd))
 542		return xhci_run_finished(xhci);
 543
 544	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545
 546	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 547	temp_64 &= ERST_PTR_MASK;
 548	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 549			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 550
 551	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 552			"// Set the interrupt modulation register");
 553	temp = readl(&ir->ir_set->irq_control);
 554	temp &= ~ER_IRQ_INTERVAL_MASK;
 555	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 556	writel(temp, &ir->ir_set->irq_control);
 557
 558	if (xhci->quirks & XHCI_NEC_HOST) {
 559		struct xhci_command *command;
 
 
 
 
 560
 561		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 562		if (!command)
 563			return -ENOMEM;
 
 
 
 564
 565		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 566				TRB_TYPE(TRB_NEC_GET_FW));
 567		if (ret)
 568			xhci_free_command(xhci, command);
 569	}
 570	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 571			"Finished %s for main hcd", __func__);
 572
 573	xhci_create_dbc_dev(xhci);
 574
 575	xhci_debugfs_init(xhci);
 
 
 576
 577	if (xhci_has_one_roothub(xhci))
 578		return xhci_run_finished(xhci);
 
 579
 580	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 
 581
 582	return 0;
 
 
 
 
 
 583}
 584EXPORT_SYMBOL_GPL(xhci_run);
 585
 586/*
 587 * Stop xHCI driver.
 588 *
 589 * This function is called by the USB core when the HC driver is removed.
 590 * Its opposite is xhci_run().
 591 *
 592 * Disable device contexts, disable IRQs, and quiesce the HC.
 593 * Reset the HC, finish any completed transactions, and cleanup memory.
 594 */
 595void xhci_stop(struct usb_hcd *hcd)
 596{
 597	u32 temp;
 598	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 599	struct xhci_interrupter *ir = xhci->interrupters[0];
 600
 601	mutex_lock(&xhci->mutex);
 602
 603	/* Only halt host and free memory after both hcds are removed */
 604	if (!usb_hcd_is_primary_hcd(hcd)) {
 605		mutex_unlock(&xhci->mutex);
 606		return;
 607	}
 608
 609	xhci_remove_dbc_dev(xhci);
 610
 611	spin_lock_irq(&xhci->lock);
 612	xhci->xhc_state |= XHCI_STATE_HALTED;
 613	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 614	xhci_halt(xhci);
 615	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 616	spin_unlock_irq(&xhci->lock);
 617
 
 
 
 
 
 
 
 
 618	/* Deleting Compliance Mode Recovery Timer */
 619	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 620			(!(xhci_all_ports_seen_u0(xhci)))) {
 621		del_timer_sync(&xhci->comp_mode_recovery_timer);
 622		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 623				"%s: compliance mode recovery timer deleted",
 624				__func__);
 625	}
 626
 627	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 628		usb_amd_dev_put();
 629
 630	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 631			"// Disabling event ring interrupts");
 632	temp = readl(&xhci->op_regs->status);
 633	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 634	xhci_disable_interrupter(ir);
 
 
 635
 636	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 637	xhci_mem_cleanup(xhci);
 638	xhci_debugfs_exit(xhci);
 639	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 640			"xhci_stop completed - status = %x",
 641			readl(&xhci->op_regs->status));
 642	mutex_unlock(&xhci->mutex);
 643}
 644EXPORT_SYMBOL_GPL(xhci_stop);
 645
 646/*
 647 * Shutdown HC (not bus-specific)
 648 *
 649 * This is called when the machine is rebooting or halting.  We assume that the
 650 * machine will be powered off, and the HC's internal state will be reset.
 651 * Don't bother to free memory.
 652 *
 653 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 654 */
 655void xhci_shutdown(struct usb_hcd *hcd)
 656{
 657	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 658
 659	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 660		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 661
 662	/* Don't poll the roothubs after shutdown. */
 663	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 664			__func__, hcd->self.busnum);
 665	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 666	del_timer_sync(&hcd->rh_timer);
 667
 668	if (xhci->shared_hcd) {
 669		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 670		del_timer_sync(&xhci->shared_hcd->rh_timer);
 671	}
 672
 673	spin_lock_irq(&xhci->lock);
 674	xhci_halt(xhci);
 675
 676	/*
 677	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 678	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 679	 */
 680	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 681	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 682		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 683
 684	spin_unlock_irq(&xhci->lock);
 685
 686	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 687			"xhci_shutdown completed - status = %x",
 688			readl(&xhci->op_regs->status));
 
 689}
 690EXPORT_SYMBOL_GPL(xhci_shutdown);
 691
 692#ifdef CONFIG_PM
 693static void xhci_save_registers(struct xhci_hcd *xhci)
 694{
 695	struct xhci_interrupter *ir;
 696	unsigned int i;
 697
 698	xhci->s3.command = readl(&xhci->op_regs->command);
 699	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 700	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 701	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 702
 703	/* save both primary and all secondary interrupters */
 704	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
 705	for (i = 0; i < xhci->max_interrupters; i++) {
 706		ir = xhci->interrupters[i];
 707		if (!ir)
 708			continue;
 709
 710		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
 711		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
 712		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 713		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
 714		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
 715	}
 716}
 717
 718static void xhci_restore_registers(struct xhci_hcd *xhci)
 719{
 720	struct xhci_interrupter *ir;
 721	unsigned int i;
 722
 723	writel(xhci->s3.command, &xhci->op_regs->command);
 724	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 725	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 726	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 727
 728	/* FIXME should we lock to protect against freeing of interrupters */
 729	for (i = 0; i < xhci->max_interrupters; i++) {
 730		ir = xhci->interrupters[i];
 731		if (!ir)
 732			continue;
 733
 734		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
 735		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
 736		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
 737		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
 738		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
 739	}
 740}
 741
 742static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 743{
 744	u64	val_64;
 745
 746	/* step 2: initialize command ring buffer */
 747	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 748	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 749		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 750				      xhci->cmd_ring->dequeue) &
 751		 (u64) ~CMD_RING_RSVD_BITS) |
 752		xhci->cmd_ring->cycle_state;
 753	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 754			"// Setting command ring address to 0x%llx",
 755			(long unsigned long) val_64);
 756	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 757}
 758
 759/*
 760 * The whole command ring must be cleared to zero when we suspend the host.
 761 *
 762 * The host doesn't save the command ring pointer in the suspend well, so we
 763 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 764 * aligned, because of the reserved bits in the command ring dequeue pointer
 765 * register.  Therefore, we can't just set the dequeue pointer back in the
 766 * middle of the ring (TRBs are 16-byte aligned).
 767 */
 768static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 769{
 770	struct xhci_ring *ring;
 771	struct xhci_segment *seg;
 772
 773	ring = xhci->cmd_ring;
 774	seg = ring->deq_seg;
 775	do {
 776		memset(seg->trbs, 0,
 777			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 778		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 779			cpu_to_le32(~TRB_CYCLE);
 780		seg = seg->next;
 781	} while (seg != ring->deq_seg);
 782
 783	/* Reset the software enqueue and dequeue pointers */
 784	ring->deq_seg = ring->first_seg;
 785	ring->dequeue = ring->first_seg->trbs;
 786	ring->enq_seg = ring->deq_seg;
 787	ring->enqueue = ring->dequeue;
 788
 789	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 790	/*
 791	 * Ring is now zeroed, so the HW should look for change of ownership
 792	 * when the cycle bit is set to 1.
 793	 */
 794	ring->cycle_state = 1;
 795
 796	/*
 797	 * Reset the hardware dequeue pointer.
 798	 * Yes, this will need to be re-written after resume, but we're paranoid
 799	 * and want to make sure the hardware doesn't access bogus memory
 800	 * because, say, the BIOS or an SMI started the host without changing
 801	 * the command ring pointers.
 802	 */
 803	xhci_set_cmd_ring_deq(xhci);
 804}
 805
 806/*
 807 * Disable port wake bits if do_wakeup is not set.
 808 *
 809 * Also clear a possible internal port wake state left hanging for ports that
 810 * detected termination but never successfully enumerated (trained to 0U).
 811 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 812 * at enumeration clears this wake, force one here as well for unconnected ports
 813 */
 814
 815static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 816				       struct xhci_hub *rhub,
 817				       bool do_wakeup)
 818{
 819	unsigned long flags;
 820	u32 t1, t2, portsc;
 821	int i;
 822
 823	spin_lock_irqsave(&xhci->lock, flags);
 824
 825	for (i = 0; i < rhub->num_ports; i++) {
 826		portsc = readl(rhub->ports[i]->addr);
 827		t1 = xhci_port_state_to_neutral(portsc);
 828		t2 = t1;
 829
 830		/* clear wake bits if do_wake is not set */
 831		if (!do_wakeup)
 832			t2 &= ~PORT_WAKE_BITS;
 833
 834		/* Don't touch csc bit if connected or connect change is set */
 835		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 836			t2 |= PORT_CSC;
 837
 838		if (t1 != t2) {
 839			writel(t2, rhub->ports[i]->addr);
 840			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 841				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 842		}
 843	}
 844	spin_unlock_irqrestore(&xhci->lock, flags);
 845}
 846
 847static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 848{
 849	struct xhci_port	**ports;
 850	int			port_index;
 851	u32			status;
 852	u32			portsc;
 853
 854	status = readl(&xhci->op_regs->status);
 855	if (status & STS_EINT)
 856		return true;
 857	/*
 858	 * Checking STS_EINT is not enough as there is a lag between a change
 859	 * bit being set and the Port Status Change Event that it generated
 860	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 861	 */
 862
 863	port_index = xhci->usb2_rhub.num_ports;
 864	ports = xhci->usb2_rhub.ports;
 865	while (port_index--) {
 866		portsc = readl(ports[port_index]->addr);
 867		if (portsc & PORT_CHANGE_MASK ||
 868		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 869			return true;
 870	}
 871	port_index = xhci->usb3_rhub.num_ports;
 872	ports = xhci->usb3_rhub.ports;
 873	while (port_index--) {
 874		portsc = readl(ports[port_index]->addr);
 875		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
 876		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 877			return true;
 878	}
 879	return false;
 880}
 881
 882/*
 883 * Stop HC (not bus-specific)
 884 *
 885 * This is called when the machine transition into S3/S4 mode.
 886 *
 887 */
 888int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 889{
 890	int			rc = 0;
 891	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 892	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 893	u32			command;
 894	u32			res;
 895
 896	if (!hcd->state)
 897		return 0;
 898
 899	if (hcd->state != HC_STATE_SUSPENDED ||
 900	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
 901		return -EINVAL;
 902
 903	/* Clear root port wake on bits if wakeup not allowed. */
 904	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 905	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 906
 907	if (!HCD_HW_ACCESSIBLE(hcd))
 908		return 0;
 909
 910	xhci_dbc_suspend(xhci);
 911
 912	/* Don't poll the roothubs on bus suspend. */
 913	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 914		 __func__, hcd->self.busnum);
 915	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 916	del_timer_sync(&hcd->rh_timer);
 917	if (xhci->shared_hcd) {
 918		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 919		del_timer_sync(&xhci->shared_hcd->rh_timer);
 920	}
 921
 922	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 923		usleep_range(1000, 1500);
 924
 925	spin_lock_irq(&xhci->lock);
 926	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 927	if (xhci->shared_hcd)
 928		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 929	/* step 1: stop endpoint */
 930	/* skipped assuming that port suspend has done */
 931
 932	/* step 2: clear Run/Stop bit */
 933	command = readl(&xhci->op_regs->command);
 934	command &= ~CMD_RUN;
 935	writel(command, &xhci->op_regs->command);
 936
 937	/* Some chips from Fresco Logic need an extraordinary delay */
 938	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 939
 940	if (xhci_handshake(&xhci->op_regs->status,
 941		      STS_HALT, STS_HALT, delay)) {
 942		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 943		spin_unlock_irq(&xhci->lock);
 944		return -ETIMEDOUT;
 945	}
 946	xhci_clear_command_ring(xhci);
 947
 948	/* step 3: save registers */
 949	xhci_save_registers(xhci);
 950
 951	/* step 4: set CSS flag */
 952	command = readl(&xhci->op_regs->command);
 953	command |= CMD_CSS;
 954	writel(command, &xhci->op_regs->command);
 955	xhci->broken_suspend = 0;
 956	if (xhci_handshake(&xhci->op_regs->status,
 957				STS_SAVE, 0, 20 * 1000)) {
 958	/*
 959	 * AMD SNPS xHC 3.0 occasionally does not clear the
 960	 * SSS bit of USBSTS and when driver tries to poll
 961	 * to see if the xHC clears BIT(8) which never happens
 962	 * and driver assumes that controller is not responding
 963	 * and times out. To workaround this, its good to check
 964	 * if SRE and HCE bits are not set (as per xhci
 965	 * Section 5.4.2) and bypass the timeout.
 966	 */
 967		res = readl(&xhci->op_regs->status);
 968		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
 969		    (((res & STS_SRE) == 0) &&
 970				((res & STS_HCE) == 0))) {
 971			xhci->broken_suspend = 1;
 972		} else {
 973			xhci_warn(xhci, "WARN: xHC save state timeout\n");
 974			spin_unlock_irq(&xhci->lock);
 975			return -ETIMEDOUT;
 976		}
 977	}
 978	spin_unlock_irq(&xhci->lock);
 979
 980	/*
 981	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 982	 * is about to be suspended.
 983	 */
 984	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 985			(!(xhci_all_ports_seen_u0(xhci)))) {
 986		del_timer_sync(&xhci->comp_mode_recovery_timer);
 987		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 988				"%s: compliance mode recovery timer deleted",
 989				__func__);
 990	}
 991
 
 
 
 
 992	return rc;
 993}
 994EXPORT_SYMBOL_GPL(xhci_suspend);
 995
 996/*
 997 * start xHC (not bus-specific)
 998 *
 999 * This is called when the machine transition from S3/S4 mode.
1000 *
1001 */
1002int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1003{
1004	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1005	u32			command, temp = 0;
1006	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 
1007	int			retval = 0;
1008	bool			comp_timer_running = false;
1009	bool			pending_portevent = false;
1010	bool			suspended_usb3_devs = false;
1011	bool			reinit_xhc = false;
1012
1013	if (!hcd->state)
1014		return 0;
1015
1016	/* Wait a bit if either of the roothubs need to settle from the
1017	 * transition into bus suspend.
1018	 */
1019
1020	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1021	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1022		msleep(100);
1023
1024	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1025	if (xhci->shared_hcd)
1026		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1027
1028	spin_lock_irq(&xhci->lock);
 
 
1029
1030	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1031		reinit_xhc = true;
1032
1033	if (!reinit_xhc) {
1034		/*
1035		 * Some controllers might lose power during suspend, so wait
1036		 * for controller not ready bit to clear, just as in xHC init.
1037		 */
1038		retval = xhci_handshake(&xhci->op_regs->status,
1039					STS_CNR, 0, 10 * 1000 * 1000);
1040		if (retval) {
1041			xhci_warn(xhci, "Controller not ready at resume %d\n",
1042				  retval);
1043			spin_unlock_irq(&xhci->lock);
1044			return retval;
1045		}
1046		/* step 1: restore register */
1047		xhci_restore_registers(xhci);
1048		/* step 2: initialize command ring buffer */
1049		xhci_set_cmd_ring_deq(xhci);
1050		/* step 3: restore state and start state*/
1051		/* step 3: set CRS flag */
1052		command = readl(&xhci->op_regs->command);
1053		command |= CMD_CRS;
1054		writel(command, &xhci->op_regs->command);
1055		/*
1056		 * Some controllers take up to 55+ ms to complete the controller
1057		 * restore so setting the timeout to 100ms. Xhci specification
1058		 * doesn't mention any timeout value.
1059		 */
1060		if (xhci_handshake(&xhci->op_regs->status,
1061			      STS_RESTORE, 0, 100 * 1000)) {
1062			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1063			spin_unlock_irq(&xhci->lock);
1064			return -ETIMEDOUT;
1065		}
 
1066	}
1067
1068	temp = readl(&xhci->op_regs->status);
1069
1070	/* re-initialize the HC on Restore Error, or Host Controller Error */
1071	if ((temp & (STS_SRE | STS_HCE)) &&
1072	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1073		reinit_xhc = true;
1074		if (!xhci->broken_suspend)
1075			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1076	}
1077
1078	if (reinit_xhc) {
1079		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1080				!(xhci_all_ports_seen_u0(xhci))) {
1081			del_timer_sync(&xhci->comp_mode_recovery_timer);
1082			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1083				"Compliance Mode Recovery Timer deleted!");
1084		}
1085
1086		/* Let the USB core know _both_ roothubs lost power. */
1087		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1088		if (xhci->shared_hcd)
1089			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1090
1091		xhci_dbg(xhci, "Stop HCD\n");
1092		xhci_halt(xhci);
1093		xhci_zero_64b_regs(xhci);
1094		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1095		spin_unlock_irq(&xhci->lock);
1096		if (retval)
1097			return retval;
 
 
 
 
 
1098
1099		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1100		temp = readl(&xhci->op_regs->status);
1101		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1102		xhci_disable_interrupter(xhci->interrupters[0]);
 
 
 
1103
1104		xhci_dbg(xhci, "cleaning up memory\n");
1105		xhci_mem_cleanup(xhci);
1106		xhci_debugfs_exit(xhci);
1107		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1108			    readl(&xhci->op_regs->status));
1109
1110		/* USB core calls the PCI reinit and start functions twice:
1111		 * first with the primary HCD, and then with the secondary HCD.
1112		 * If we don't do the same, the host will never be started.
1113		 */
 
 
 
 
 
1114		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1115		retval = xhci_init(hcd);
1116		if (retval)
1117			return retval;
1118		comp_timer_running = true;
1119
1120		xhci_dbg(xhci, "Start the primary HCD\n");
1121		retval = xhci_run(hcd);
1122		if (!retval && xhci->shared_hcd) {
1123			xhci_dbg(xhci, "Start the secondary HCD\n");
1124			retval = xhci_run(xhci->shared_hcd);
1125		}
1126
1127		hcd->state = HC_STATE_SUSPENDED;
1128		if (xhci->shared_hcd)
1129			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1130		goto done;
1131	}
1132
1133	/* step 4: set Run/Stop bit */
1134	command = readl(&xhci->op_regs->command);
1135	command |= CMD_RUN;
1136	writel(command, &xhci->op_regs->command);
1137	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1138		  0, 250 * 1000);
1139
1140	/* step 5: walk topology and initialize portsc,
1141	 * portpmsc and portli
1142	 */
1143	/* this is done in bus_resume */
1144
1145	/* step 6: restart each of the previously
1146	 * Running endpoints by ringing their doorbells
1147	 */
1148
1149	spin_unlock_irq(&xhci->lock);
1150
1151	xhci_dbc_resume(xhci);
1152
1153 done:
1154	if (retval == 0) {
1155		/*
1156		 * Resume roothubs only if there are pending events.
1157		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1158		 * the first wake signalling failed, give it that chance if
1159		 * there are suspended USB 3 devices.
1160		 */
1161		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1162		    xhci->usb3_rhub.bus_state.bus_suspended)
1163			suspended_usb3_devs = true;
1164
1165		pending_portevent = xhci_pending_portevent(xhci);
1166
1167		if (suspended_usb3_devs && !pending_portevent &&
1168		    msg.event == PM_EVENT_AUTO_RESUME) {
1169			msleep(120);
1170			pending_portevent = xhci_pending_portevent(xhci);
1171		}
1172
1173		if (pending_portevent) {
1174			if (xhci->shared_hcd)
1175				usb_hcd_resume_root_hub(xhci->shared_hcd);
1176			usb_hcd_resume_root_hub(hcd);
1177		}
1178	}
 
1179	/*
1180	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1181	 * be re-initialized Always after a system resume. Ports are subject
1182	 * to suffer the Compliance Mode issue again. It doesn't matter if
1183	 * ports have entered previously to U0 before system's suspension.
1184	 */
1185	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1186		compliance_mode_recovery_timer_init(xhci);
1187
1188	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1189		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1190
1191	/* Re-enable port polling. */
1192	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1193		 __func__, hcd->self.busnum);
1194	if (xhci->shared_hcd) {
1195		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1196		usb_hcd_poll_rh_status(xhci->shared_hcd);
1197	}
1198	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1199	usb_hcd_poll_rh_status(hcd);
1200
1201	return retval;
1202}
1203EXPORT_SYMBOL_GPL(xhci_resume);
1204#endif	/* CONFIG_PM */
1205
1206/*-------------------------------------------------------------------------*/
1207
1208static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1209{
1210	void *temp;
1211	int ret = 0;
1212	unsigned int buf_len;
1213	enum dma_data_direction dir;
1214
1215	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1216	buf_len = urb->transfer_buffer_length;
1217
1218	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1219			    dev_to_node(hcd->self.sysdev));
1220
1221	if (usb_urb_dir_out(urb))
1222		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1223				   temp, buf_len, 0);
1224
1225	urb->transfer_buffer = temp;
1226	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1227					   urb->transfer_buffer,
1228					   urb->transfer_buffer_length,
1229					   dir);
1230
1231	if (dma_mapping_error(hcd->self.sysdev,
1232			      urb->transfer_dma)) {
1233		ret = -EAGAIN;
1234		kfree(temp);
1235	} else {
1236		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1237	}
1238
1239	return ret;
1240}
1241
1242static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1243					  struct urb *urb)
1244{
1245	bool ret = false;
1246	unsigned int i;
1247	unsigned int len = 0;
1248	unsigned int trb_size;
1249	unsigned int max_pkt;
1250	struct scatterlist *sg;
1251	struct scatterlist *tail_sg;
1252
1253	tail_sg = urb->sg;
1254	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1255
1256	if (!urb->num_sgs)
1257		return ret;
1258
1259	if (urb->dev->speed >= USB_SPEED_SUPER)
1260		trb_size = TRB_CACHE_SIZE_SS;
1261	else
1262		trb_size = TRB_CACHE_SIZE_HS;
1263
1264	if (urb->transfer_buffer_length != 0 &&
1265	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1266		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1267			len = len + sg->length;
1268			if (i > trb_size - 2) {
1269				len = len - tail_sg->length;
1270				if (len < max_pkt) {
1271					ret = true;
1272					break;
1273				}
1274
1275				tail_sg = sg_next(tail_sg);
1276			}
1277		}
1278	}
1279	return ret;
1280}
1281
1282static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1283{
1284	unsigned int len;
1285	unsigned int buf_len;
1286	enum dma_data_direction dir;
1287
1288	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1289
1290	buf_len = urb->transfer_buffer_length;
1291
1292	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1293	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1294		dma_unmap_single(hcd->self.sysdev,
1295				 urb->transfer_dma,
1296				 urb->transfer_buffer_length,
1297				 dir);
1298
1299	if (usb_urb_dir_in(urb)) {
1300		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1301					   urb->transfer_buffer,
1302					   buf_len,
1303					   0);
1304		if (len != buf_len) {
1305			xhci_dbg(hcd_to_xhci(hcd),
1306				 "Copy from tmp buf to urb sg list failed\n");
1307			urb->actual_length = len;
1308		}
1309	}
1310	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1311	kfree(urb->transfer_buffer);
1312	urb->transfer_buffer = NULL;
1313}
1314
1315/*
1316 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1317 * we'll copy the actual data into the TRB address register. This is limited to
1318 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1319 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1320 */
1321static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1322				gfp_t mem_flags)
1323{
1324	struct xhci_hcd *xhci;
1325
1326	xhci = hcd_to_xhci(hcd);
1327
1328	if (xhci_urb_suitable_for_idt(urb))
1329		return 0;
1330
1331	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1332		if (xhci_urb_temp_buffer_required(hcd, urb))
1333			return xhci_map_temp_buffer(hcd, urb);
1334	}
1335	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1336}
1337
1338static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1339{
1340	struct xhci_hcd *xhci;
1341	bool unmap_temp_buf = false;
1342
1343	xhci = hcd_to_xhci(hcd);
1344
1345	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1346		unmap_temp_buf = true;
1347
1348	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1349		xhci_unmap_temp_buf(hcd, urb);
1350	else
1351		usb_hcd_unmap_urb_for_dma(hcd, urb);
1352}
1353
1354/**
1355 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1356 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1357 * value to right shift 1 for the bitmask.
1358 *
1359 * Index  = (epnum * 2) + direction - 1,
1360 * where direction = 0 for OUT, 1 for IN.
1361 * For control endpoints, the IN index is used (OUT index is unused), so
1362 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1363 */
1364unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1365{
1366	unsigned int index;
1367	if (usb_endpoint_xfer_control(desc))
1368		index = (unsigned int) (usb_endpoint_num(desc)*2);
1369	else
1370		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1371			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1372	return index;
1373}
1374EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1375
1376/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1377 * address from the XHCI endpoint index.
 
1378 */
1379static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1380{
1381	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1382	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1383	return direction | number;
1384}
1385
1386/* Find the flag for this endpoint (for use in the control context).  Use the
1387 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1388 * bit 1, etc.
1389 */
1390static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1391{
1392	return 1 << (xhci_get_endpoint_index(desc) + 1);
1393}
1394
1395/* Compute the last valid endpoint context index.  Basically, this is the
1396 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1397 * we find the most significant bit set in the added contexts flags.
1398 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1399 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1400 */
1401unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1402{
1403	return fls(added_ctxs) - 1;
1404}
1405
1406/* Returns 1 if the arguments are OK;
1407 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1408 */
1409static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1410		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1411		const char *func) {
1412	struct xhci_hcd	*xhci;
1413	struct xhci_virt_device	*virt_dev;
1414
1415	if (!hcd || (check_ep && !ep) || !udev) {
1416		pr_debug("xHCI %s called with invalid args\n", func);
 
1417		return -EINVAL;
1418	}
1419	if (!udev->parent) {
1420		pr_debug("xHCI %s called for root hub\n", func);
 
1421		return 0;
1422	}
1423
1424	xhci = hcd_to_xhci(hcd);
 
 
 
1425	if (check_virt_dev) {
1426		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1427			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1428					func);
1429			return -EINVAL;
1430		}
1431
1432		virt_dev = xhci->devs[udev->slot_id];
1433		if (virt_dev->udev != udev) {
1434			xhci_dbg(xhci, "xHCI %s called with udev and "
1435					  "virt_dev does not match\n", func);
1436			return -EINVAL;
1437		}
1438	}
1439
1440	if (xhci->xhc_state & XHCI_STATE_HALTED)
1441		return -ENODEV;
1442
1443	return 1;
1444}
1445
1446static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1447		struct usb_device *udev, struct xhci_command *command,
1448		bool ctx_change, bool must_succeed);
1449
1450/*
1451 * Full speed devices may have a max packet size greater than 8 bytes, but the
1452 * USB core doesn't know that until it reads the first 8 bytes of the
1453 * descriptor.  If the usb_device's max packet size changes after that point,
1454 * we need to issue an evaluate context command and wait on it.
1455 */
1456static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
 
1457{
 
 
1458	struct xhci_input_control_ctx *ctrl_ctx;
1459	struct xhci_ep_ctx *ep_ctx;
1460	struct xhci_command *command;
1461	int max_packet_size;
1462	int hw_max_packet_size;
1463	int ret = 0;
1464
1465	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
 
1466	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1467	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1468
1469	if (hw_max_packet_size == max_packet_size)
1470		return 0;
1471
1472	switch (max_packet_size) {
1473	case 8: case 16: case 32: case 64: case 9:
1474		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1475				"Max Packet Size for ep 0 changed.");
1476		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1477				"Max packet size in usb_device = %d",
1478				max_packet_size);
1479		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1480				"Max packet size in xHCI HW = %d",
1481				hw_max_packet_size);
1482		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1483				"Issuing evaluate context command.");
1484
1485		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1486		if (!command)
1487			return -ENOMEM;
1488
1489		command->in_ctx = vdev->in_ctx;
1490		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1491		if (!ctrl_ctx) {
1492			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1493					__func__);
1494			ret = -ENOMEM;
1495			break;
1496		}
1497		/* Set up the modified control endpoint 0 */
1498		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1499
1500		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1501		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1502		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1503		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1504
 
 
 
 
 
1505		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1506		ctrl_ctx->drop_flags = 0;
1507
1508		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1509					      true, false);
1510		/* Clean up the input context for later use by bandwidth functions */
1511		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1512		break;
1513	default:
1514		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1515			max_packet_size);
1516		return -EINVAL;
1517	}
1518
1519	kfree(command->completion);
1520	kfree(command);
1521
 
 
 
 
 
1522	return ret;
1523}
1524
1525/*
1526 * non-error returns are a promise to giveback() the urb later
1527 * we drop ownership so next owner (or urb unlink) can get it
1528 */
1529static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1530{
1531	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1532	unsigned long flags;
1533	int ret = 0;
1534	unsigned int slot_id, ep_index;
1535	unsigned int *ep_state;
1536	struct urb_priv	*urb_priv;
1537	int num_tds;
1538
 
 
 
 
 
1539	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1540
 
 
 
 
 
 
 
1541	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1542		num_tds = urb->number_of_packets;
1543	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1544	    urb->transfer_buffer_length > 0 &&
1545	    urb->transfer_flags & URB_ZERO_PACKET &&
1546	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1547		num_tds = 2;
1548	else
1549		num_tds = 1;
1550
1551	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1552	if (!urb_priv)
1553		return -ENOMEM;
1554
1555	urb_priv->num_tds = num_tds;
1556	urb_priv->num_tds_done = 0;
1557	urb->hcpriv = urb_priv;
1558
1559	trace_xhci_urb_enqueue(urb);
1560
1561	spin_lock_irqsave(&xhci->lock, flags);
1562
1563	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1564			      true, true, __func__);
1565	if (ret <= 0) {
1566		ret = ret ? ret : -EINVAL;
1567		goto free_priv;
1568	}
1569
1570	slot_id = urb->dev->slot_id;
1571
1572	if (!HCD_HW_ACCESSIBLE(hcd)) {
1573		ret = -ESHUTDOWN;
1574		goto free_priv;
1575	}
1576
1577	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1578		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1579		ret = -ENODEV;
1580		goto free_priv;
1581	}
1582
1583	if (xhci->xhc_state & XHCI_STATE_DYING) {
1584		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1585			 urb->ep->desc.bEndpointAddress, urb);
1586		ret = -ESHUTDOWN;
1587		goto free_priv;
1588	}
1589
1590	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1591
1592	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1593		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1594			  *ep_state);
1595		ret = -EINVAL;
1596		goto free_priv;
1597	}
1598	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1599		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1600		ret = -EINVAL;
1601		goto free_priv;
1602	}
1603
1604	switch (usb_endpoint_type(&urb->ep->desc)) {
 
 
 
 
 
 
 
 
 
 
 
 
1605
1606	case USB_ENDPOINT_XFER_CONTROL:
 
 
 
 
 
1607		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1608					 slot_id, ep_index);
1609		break;
1610	case USB_ENDPOINT_XFER_BULK:
1611		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1612					 slot_id, ep_index);
1613		break;
1614	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1616				slot_id, ep_index);
1617		break;
1618	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1619		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1620				slot_id, ep_index);
 
 
 
1621	}
1622
1623	if (ret) {
 
 
 
 
 
1624free_priv:
1625		xhci_urb_free_priv(urb_priv);
1626		urb->hcpriv = NULL;
1627	}
1628	spin_unlock_irqrestore(&xhci->lock, flags);
1629	return ret;
1630}
1631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632/*
1633 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1634 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1635 * should pick up where it left off in the TD, unless a Set Transfer Ring
1636 * Dequeue Pointer is issued.
1637 *
1638 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1639 * the ring.  Since the ring is a contiguous structure, they can't be physically
1640 * removed.  Instead, there are two options:
1641 *
1642 *  1) If the HC is in the middle of processing the URB to be canceled, we
1643 *     simply move the ring's dequeue pointer past those TRBs using the Set
1644 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1645 *     when drivers timeout on the last submitted URB and attempt to cancel.
1646 *
1647 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1648 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1649 *     HC will need to invalidate the any TRBs it has cached after the stop
1650 *     endpoint command, as noted in the xHCI 0.95 errata.
1651 *
1652 *  3) The TD may have completed by the time the Stop Endpoint Command
1653 *     completes, so software needs to handle that case too.
1654 *
1655 * This function should protect against the TD enqueueing code ringing the
1656 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1657 * It also needs to account for multiple cancellations on happening at the same
1658 * time for the same endpoint.
1659 *
1660 * Note that this function can be called in any context, or so says
1661 * usb_hcd_unlink_urb()
1662 */
1663static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1664{
1665	unsigned long flags;
1666	int ret, i;
1667	u32 temp;
1668	struct xhci_hcd *xhci;
1669	struct urb_priv	*urb_priv;
1670	struct xhci_td *td;
1671	unsigned int ep_index;
1672	struct xhci_ring *ep_ring;
1673	struct xhci_virt_ep *ep;
1674	struct xhci_command *command;
1675	struct xhci_virt_device *vdev;
1676
1677	xhci = hcd_to_xhci(hcd);
1678	spin_lock_irqsave(&xhci->lock, flags);
1679
1680	trace_xhci_urb_dequeue(urb);
1681
1682	/* Make sure the URB hasn't completed or been unlinked already */
1683	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1684	if (ret)
1685		goto done;
1686
1687	/* give back URB now if we can't queue it for cancel */
1688	vdev = xhci->devs[urb->dev->slot_id];
1689	urb_priv = urb->hcpriv;
1690	if (!vdev || !urb_priv)
1691		goto err_giveback;
1692
1693	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1694	ep = &vdev->eps[ep_index];
1695	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1696	if (!ep || !ep_ring)
1697		goto err_giveback;
1698
1699	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1700	temp = readl(&xhci->op_regs->status);
1701	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1702		xhci_hc_died(xhci);
1703		goto done;
1704	}
1705
1706	/*
1707	 * check ring is not re-allocated since URB was enqueued. If it is, then
1708	 * make sure none of the ring related pointers in this URB private data
1709	 * are touched, such as td_list, otherwise we overwrite freed data
1710	 */
1711	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1712		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1713		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1714			td = &urb_priv->td[i];
1715			if (!list_empty(&td->cancelled_td_list))
1716				list_del_init(&td->cancelled_td_list);
1717		}
1718		goto err_giveback;
1719	}
1720
1721	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1722		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1723				"HC halted, freeing TD manually.");
1724		for (i = urb_priv->num_tds_done;
1725		     i < urb_priv->num_tds;
1726		     i++) {
1727			td = &urb_priv->td[i];
1728			if (!list_empty(&td->td_list))
1729				list_del_init(&td->td_list);
1730			if (!list_empty(&td->cancelled_td_list))
1731				list_del_init(&td->cancelled_td_list);
1732		}
1733		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734	}
1735
1736	i = urb_priv->num_tds_done;
1737	if (i < urb_priv->num_tds)
1738		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1739				"Cancel URB %p, dev %s, ep 0x%x, "
1740				"starting at offset 0x%llx",
 
 
 
 
 
 
 
 
1741				urb, urb->dev->devpath,
1742				urb->ep->desc.bEndpointAddress,
1743				(unsigned long long) xhci_trb_virt_to_dma(
1744					urb_priv->td[i].start_seg,
1745					urb_priv->td[i].first_trb));
1746
1747	for (; i < urb_priv->num_tds; i++) {
1748		td = &urb_priv->td[i];
1749		/* TD can already be on cancelled list if ep halted on it */
1750		if (list_empty(&td->cancelled_td_list)) {
1751			td->cancel_status = TD_DIRTY;
1752			list_add_tail(&td->cancelled_td_list,
1753				      &ep->cancelled_td_list);
1754		}
1755	}
1756
1757	/* Queue a stop endpoint command, but only if this is
1758	 * the first cancellation to be handled.
1759	 */
1760	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1761		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1762		if (!command) {
1763			ret = -ENOMEM;
1764			goto done;
1765		}
1766		ep->ep_state |= EP_STOP_CMD_PENDING;
1767		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1768					 ep_index, 0);
1769		xhci_ring_cmd_db(xhci);
1770	}
1771done:
1772	spin_unlock_irqrestore(&xhci->lock, flags);
1773	return ret;
1774
1775err_giveback:
1776	if (urb_priv)
1777		xhci_urb_free_priv(urb_priv);
1778	usb_hcd_unlink_urb_from_ep(hcd, urb);
1779	spin_unlock_irqrestore(&xhci->lock, flags);
1780	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1781	return ret;
1782}
1783
1784/* Drop an endpoint from a new bandwidth configuration for this device.
1785 * Only one call to this function is allowed per endpoint before
1786 * check_bandwidth() or reset_bandwidth() must be called.
1787 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1788 * add the endpoint to the schedule with possibly new parameters denoted by a
1789 * different endpoint descriptor in usb_host_endpoint.
1790 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1791 * not allowed.
1792 *
1793 * The USB core will not allow URBs to be queued to an endpoint that is being
1794 * disabled, so there's no need for mutual exclusion to protect
1795 * the xhci->devs[slot_id] structure.
1796 */
1797int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1798		       struct usb_host_endpoint *ep)
1799{
1800	struct xhci_hcd *xhci;
1801	struct xhci_container_ctx *in_ctx, *out_ctx;
1802	struct xhci_input_control_ctx *ctrl_ctx;
 
 
1803	unsigned int ep_index;
1804	struct xhci_ep_ctx *ep_ctx;
1805	u32 drop_flag;
1806	u32 new_add_flags, new_drop_flags;
1807	int ret;
1808
1809	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1810	if (ret <= 0)
1811		return ret;
1812	xhci = hcd_to_xhci(hcd);
1813	if (xhci->xhc_state & XHCI_STATE_DYING)
1814		return -ENODEV;
1815
1816	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1817	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1818	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1819		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1820				__func__, drop_flag);
1821		return 0;
1822	}
1823
1824	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1825	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1826	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1827	if (!ctrl_ctx) {
1828		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1829				__func__);
1830		return 0;
1831	}
1832
1833	ep_index = xhci_get_endpoint_index(&ep->desc);
1834	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1835	/* If the HC already knows the endpoint is disabled,
1836	 * or the HCD has noted it is disabled, ignore this request
1837	 */
1838	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1839	    le32_to_cpu(ctrl_ctx->drop_flags) &
1840	    xhci_get_endpoint_flag(&ep->desc)) {
1841		/* Do not warn when called after a usb_device_reset */
1842		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1843			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1844				  __func__, ep);
1845		return 0;
1846	}
1847
1848	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1849	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1850
1851	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1852	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1853
1854	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
 
 
 
 
 
 
 
 
1855
1856	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1857
1858	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1859			(unsigned int) ep->desc.bEndpointAddress,
1860			udev->slot_id,
1861			(unsigned int) new_drop_flags,
1862			(unsigned int) new_add_flags);
 
1863	return 0;
1864}
1865EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1866
1867/* Add an endpoint to a new possible bandwidth configuration for this device.
1868 * Only one call to this function is allowed per endpoint before
1869 * check_bandwidth() or reset_bandwidth() must be called.
1870 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1871 * add the endpoint to the schedule with possibly new parameters denoted by a
1872 * different endpoint descriptor in usb_host_endpoint.
1873 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1874 * not allowed.
1875 *
1876 * The USB core will not allow URBs to be queued to an endpoint until the
1877 * configuration or alt setting is installed in the device, so there's no need
1878 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1879 */
1880int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1881		      struct usb_host_endpoint *ep)
1882{
1883	struct xhci_hcd *xhci;
1884	struct xhci_container_ctx *in_ctx;
1885	unsigned int ep_index;
1886	struct xhci_input_control_ctx *ctrl_ctx;
1887	struct xhci_ep_ctx *ep_ctx;
 
 
1888	u32 added_ctxs;
1889	u32 new_add_flags, new_drop_flags;
 
1890	struct xhci_virt_device *virt_dev;
1891	int ret = 0;
1892
1893	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1894	if (ret <= 0) {
1895		/* So we won't queue a reset ep command for a root hub */
1896		ep->hcpriv = NULL;
1897		return ret;
1898	}
1899	xhci = hcd_to_xhci(hcd);
1900	if (xhci->xhc_state & XHCI_STATE_DYING)
1901		return -ENODEV;
1902
1903	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
 
1904	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1905		/* FIXME when we have to issue an evaluate endpoint command to
1906		 * deal with ep0 max packet size changing once we get the
1907		 * descriptors
1908		 */
1909		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1910				__func__, added_ctxs);
1911		return 0;
1912	}
1913
1914	virt_dev = xhci->devs[udev->slot_id];
1915	in_ctx = virt_dev->in_ctx;
1916	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1917	if (!ctrl_ctx) {
1918		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1919				__func__);
1920		return 0;
1921	}
1922
1923	ep_index = xhci_get_endpoint_index(&ep->desc);
 
 
1924	/* If this endpoint is already in use, and the upper layers are trying
1925	 * to add it again without dropping it, reject the addition.
1926	 */
1927	if (virt_dev->eps[ep_index].ring &&
1928			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
 
1929		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1930				"without dropping it.\n",
1931				(unsigned int) ep->desc.bEndpointAddress);
1932		return -EINVAL;
1933	}
1934
1935	/* If the HCD has already noted the endpoint is enabled,
1936	 * ignore this request.
1937	 */
1938	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
 
1939		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1940				__func__, ep);
1941		return 0;
1942	}
1943
1944	/*
1945	 * Configuration and alternate setting changes must be done in
1946	 * process context, not interrupt context (or so documenation
1947	 * for usb_set_interface() and usb_set_configuration() claim).
1948	 */
1949	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1950		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1951				__func__, ep->desc.bEndpointAddress);
1952		return -ENOMEM;
1953	}
1954
1955	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1956	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1957
1958	/* If xhci_endpoint_disable() was called for this endpoint, but the
1959	 * xHC hasn't been notified yet through the check_bandwidth() call,
1960	 * this re-adds a new state for the endpoint from the new endpoint
1961	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1962	 * drop flags alone.
1963	 */
1964	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1965
 
 
 
 
 
 
 
 
 
1966	/* Store the usb_device pointer for later use */
1967	ep->hcpriv = udev;
1968
1969	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1970	trace_xhci_add_endpoint(ep_ctx);
1971
1972	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1973			(unsigned int) ep->desc.bEndpointAddress,
1974			udev->slot_id,
1975			(unsigned int) new_drop_flags,
1976			(unsigned int) new_add_flags);
 
1977	return 0;
1978}
1979EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1980
1981static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1982{
1983	struct xhci_input_control_ctx *ctrl_ctx;
1984	struct xhci_ep_ctx *ep_ctx;
1985	struct xhci_slot_ctx *slot_ctx;
1986	int i;
1987
1988	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1989	if (!ctrl_ctx) {
1990		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1991				__func__);
1992		return;
1993	}
1994
1995	/* When a device's add flag and drop flag are zero, any subsequent
1996	 * configure endpoint command will leave that endpoint's state
1997	 * untouched.  Make sure we don't leave any old state in the input
1998	 * endpoint contexts.
1999	 */
 
2000	ctrl_ctx->drop_flags = 0;
2001	ctrl_ctx->add_flags = 0;
2002	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2003	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2004	/* Endpoint 0 is always valid */
2005	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2006	for (i = 1; i < 31; i++) {
2007		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2008		ep_ctx->ep_info = 0;
2009		ep_ctx->ep_info2 = 0;
2010		ep_ctx->deq = 0;
2011		ep_ctx->tx_info = 0;
2012	}
2013}
2014
2015static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2016		struct usb_device *udev, u32 *cmd_status)
2017{
2018	int ret;
2019
2020	switch (*cmd_status) {
2021	case COMP_COMMAND_ABORTED:
2022	case COMP_COMMAND_RING_STOPPED:
2023		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2024		ret = -ETIME;
2025		break;
2026	case COMP_RESOURCE_ERROR:
2027		dev_warn(&udev->dev,
2028			 "Not enough host controller resources for new device state.\n");
2029		ret = -ENOMEM;
2030		/* FIXME: can we allocate more resources for the HC? */
2031		break;
2032	case COMP_BANDWIDTH_ERROR:
2033	case COMP_SECONDARY_BANDWIDTH_ERROR:
2034		dev_warn(&udev->dev,
2035			 "Not enough bandwidth for new device state.\n");
2036		ret = -ENOSPC;
2037		/* FIXME: can we go back to the old state? */
2038		break;
2039	case COMP_TRB_ERROR:
2040		/* the HCD set up something wrong */
2041		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2042				"add flag = 1, "
2043				"and endpoint is not disabled.\n");
2044		ret = -EINVAL;
2045		break;
2046	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2047		dev_warn(&udev->dev,
2048			 "ERROR: Incompatible device for endpoint configure command.\n");
2049		ret = -ENODEV;
2050		break;
2051	case COMP_SUCCESS:
2052		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2053				"Successful Endpoint Configure command");
2054		ret = 0;
2055		break;
2056	default:
2057		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2058				*cmd_status);
2059		ret = -EINVAL;
2060		break;
2061	}
2062	return ret;
2063}
2064
2065static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2066		struct usb_device *udev, u32 *cmd_status)
2067{
2068	int ret;
 
2069
2070	switch (*cmd_status) {
2071	case COMP_COMMAND_ABORTED:
2072	case COMP_COMMAND_RING_STOPPED:
2073		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2074		ret = -ETIME;
2075		break;
2076	case COMP_PARAMETER_ERROR:
2077		dev_warn(&udev->dev,
2078			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2079		ret = -EINVAL;
2080		break;
2081	case COMP_SLOT_NOT_ENABLED_ERROR:
2082		dev_warn(&udev->dev,
2083			"WARN: slot not enabled for evaluate context command.\n");
2084		ret = -EINVAL;
2085		break;
2086	case COMP_CONTEXT_STATE_ERROR:
2087		dev_warn(&udev->dev,
2088			"WARN: invalid context state for evaluate context command.\n");
 
 
 
 
2089		ret = -EINVAL;
2090		break;
2091	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2092		dev_warn(&udev->dev,
2093			"ERROR: Incompatible device for evaluate context command.\n");
2094		ret = -ENODEV;
2095		break;
2096	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2097		/* Max Exit Latency too large error */
2098		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2099		ret = -EINVAL;
2100		break;
2101	case COMP_SUCCESS:
2102		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2103				"Successful evaluate context command");
2104		ret = 0;
2105		break;
2106	default:
2107		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2108			*cmd_status);
2109		ret = -EINVAL;
2110		break;
2111	}
2112	return ret;
2113}
2114
2115static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2116		struct xhci_input_control_ctx *ctrl_ctx)
2117{
 
2118	u32 valid_add_flags;
2119	u32 valid_drop_flags;
2120
 
2121	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2122	 * (bit 1).  The default control endpoint is added during the Address
2123	 * Device command and is never removed until the slot is disabled.
2124	 */
2125	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2126	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2127
2128	/* Use hweight32 to count the number of ones in the add flags, or
2129	 * number of endpoints added.  Don't count endpoints that are changed
2130	 * (both added and dropped).
2131	 */
2132	return hweight32(valid_add_flags) -
2133		hweight32(valid_add_flags & valid_drop_flags);
2134}
2135
2136static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2137		struct xhci_input_control_ctx *ctrl_ctx)
2138{
 
2139	u32 valid_add_flags;
2140	u32 valid_drop_flags;
2141
2142	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2143	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
 
2144
2145	return hweight32(valid_drop_flags) -
2146		hweight32(valid_add_flags & valid_drop_flags);
2147}
2148
2149/*
2150 * We need to reserve the new number of endpoints before the configure endpoint
2151 * command completes.  We can't subtract the dropped endpoints from the number
2152 * of active endpoints until the command completes because we can oversubscribe
2153 * the host in this case:
2154 *
2155 *  - the first configure endpoint command drops more endpoints than it adds
2156 *  - a second configure endpoint command that adds more endpoints is queued
2157 *  - the first configure endpoint command fails, so the config is unchanged
2158 *  - the second command may succeed, even though there isn't enough resources
2159 *
2160 * Must be called with xhci->lock held.
2161 */
2162static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2163		struct xhci_input_control_ctx *ctrl_ctx)
2164{
2165	u32 added_eps;
2166
2167	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2168	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2169		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170				"Not enough ep ctxs: "
2171				"%u active, need to add %u, limit is %u.",
2172				xhci->num_active_eps, added_eps,
2173				xhci->limit_active_eps);
2174		return -ENOMEM;
2175	}
2176	xhci->num_active_eps += added_eps;
2177	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2178			"Adding %u ep ctxs, %u now active.", added_eps,
2179			xhci->num_active_eps);
2180	return 0;
2181}
2182
2183/*
2184 * The configure endpoint was failed by the xHC for some other reason, so we
2185 * need to revert the resources that failed configuration would have used.
2186 *
2187 * Must be called with xhci->lock held.
2188 */
2189static void xhci_free_host_resources(struct xhci_hcd *xhci,
2190		struct xhci_input_control_ctx *ctrl_ctx)
2191{
2192	u32 num_failed_eps;
2193
2194	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2195	xhci->num_active_eps -= num_failed_eps;
2196	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197			"Removing %u failed ep ctxs, %u now active.",
2198			num_failed_eps,
2199			xhci->num_active_eps);
2200}
2201
2202/*
2203 * Now that the command has completed, clean up the active endpoint count by
2204 * subtracting out the endpoints that were dropped (but not changed).
2205 *
2206 * Must be called with xhci->lock held.
2207 */
2208static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2209		struct xhci_input_control_ctx *ctrl_ctx)
2210{
2211	u32 num_dropped_eps;
2212
2213	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2214	xhci->num_active_eps -= num_dropped_eps;
2215	if (num_dropped_eps)
2216		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2217				"Removing %u dropped ep ctxs, %u now active.",
2218				num_dropped_eps,
2219				xhci->num_active_eps);
2220}
2221
2222static unsigned int xhci_get_block_size(struct usb_device *udev)
2223{
2224	switch (udev->speed) {
2225	case USB_SPEED_LOW:
2226	case USB_SPEED_FULL:
2227		return FS_BLOCK;
2228	case USB_SPEED_HIGH:
2229		return HS_BLOCK;
2230	case USB_SPEED_SUPER:
2231	case USB_SPEED_SUPER_PLUS:
2232		return SS_BLOCK;
2233	case USB_SPEED_UNKNOWN:
 
2234	default:
2235		/* Should never happen */
2236		return 1;
2237	}
2238}
2239
2240static unsigned int
2241xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2242{
2243	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2244		return LS_OVERHEAD;
2245	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2246		return FS_OVERHEAD;
2247	return HS_OVERHEAD;
2248}
2249
2250/* If we are changing a LS/FS device under a HS hub,
2251 * make sure (if we are activating a new TT) that the HS bus has enough
2252 * bandwidth for this new TT.
2253 */
2254static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2255		struct xhci_virt_device *virt_dev,
2256		int old_active_eps)
2257{
2258	struct xhci_interval_bw_table *bw_table;
2259	struct xhci_tt_bw_info *tt_info;
2260
2261	/* Find the bandwidth table for the root port this TT is attached to. */
2262	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2263	tt_info = virt_dev->tt_info;
2264	/* If this TT already had active endpoints, the bandwidth for this TT
2265	 * has already been added.  Removing all periodic endpoints (and thus
2266	 * making the TT enactive) will only decrease the bandwidth used.
2267	 */
2268	if (old_active_eps)
2269		return 0;
2270	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2271		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2272			return -ENOMEM;
2273		return 0;
2274	}
2275	/* Not sure why we would have no new active endpoints...
2276	 *
2277	 * Maybe because of an Evaluate Context change for a hub update or a
2278	 * control endpoint 0 max packet size change?
2279	 * FIXME: skip the bandwidth calculation in that case.
2280	 */
2281	return 0;
2282}
2283
2284static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2285		struct xhci_virt_device *virt_dev)
2286{
2287	unsigned int bw_reserved;
2288
2289	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2290	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2291		return -ENOMEM;
2292
2293	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2294	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2295		return -ENOMEM;
2296
2297	return 0;
2298}
2299
2300/*
2301 * This algorithm is a very conservative estimate of the worst-case scheduling
2302 * scenario for any one interval.  The hardware dynamically schedules the
2303 * packets, so we can't tell which microframe could be the limiting factor in
2304 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2305 *
2306 * Obviously, we can't solve an NP complete problem to find the minimum worst
2307 * case scenario.  Instead, we come up with an estimate that is no less than
2308 * the worst case bandwidth used for any one microframe, but may be an
2309 * over-estimate.
2310 *
2311 * We walk the requirements for each endpoint by interval, starting with the
2312 * smallest interval, and place packets in the schedule where there is only one
2313 * possible way to schedule packets for that interval.  In order to simplify
2314 * this algorithm, we record the largest max packet size for each interval, and
2315 * assume all packets will be that size.
2316 *
2317 * For interval 0, we obviously must schedule all packets for each interval.
2318 * The bandwidth for interval 0 is just the amount of data to be transmitted
2319 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2320 * the number of packets).
2321 *
2322 * For interval 1, we have two possible microframes to schedule those packets
2323 * in.  For this algorithm, if we can schedule the same number of packets for
2324 * each possible scheduling opportunity (each microframe), we will do so.  The
2325 * remaining number of packets will be saved to be transmitted in the gaps in
2326 * the next interval's scheduling sequence.
2327 *
2328 * As we move those remaining packets to be scheduled with interval 2 packets,
2329 * we have to double the number of remaining packets to transmit.  This is
2330 * because the intervals are actually powers of 2, and we would be transmitting
2331 * the previous interval's packets twice in this interval.  We also have to be
2332 * sure that when we look at the largest max packet size for this interval, we
2333 * also look at the largest max packet size for the remaining packets and take
2334 * the greater of the two.
2335 *
2336 * The algorithm continues to evenly distribute packets in each scheduling
2337 * opportunity, and push the remaining packets out, until we get to the last
2338 * interval.  Then those packets and their associated overhead are just added
2339 * to the bandwidth used.
2340 */
2341static int xhci_check_bw_table(struct xhci_hcd *xhci,
2342		struct xhci_virt_device *virt_dev,
2343		int old_active_eps)
2344{
2345	unsigned int bw_reserved;
2346	unsigned int max_bandwidth;
2347	unsigned int bw_used;
2348	unsigned int block_size;
2349	struct xhci_interval_bw_table *bw_table;
2350	unsigned int packet_size = 0;
2351	unsigned int overhead = 0;
2352	unsigned int packets_transmitted = 0;
2353	unsigned int packets_remaining = 0;
2354	unsigned int i;
2355
2356	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2357		return xhci_check_ss_bw(xhci, virt_dev);
2358
2359	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2360		max_bandwidth = HS_BW_LIMIT;
2361		/* Convert percent of bus BW reserved to blocks reserved */
2362		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2363	} else {
2364		max_bandwidth = FS_BW_LIMIT;
2365		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2366	}
2367
2368	bw_table = virt_dev->bw_table;
2369	/* We need to translate the max packet size and max ESIT payloads into
2370	 * the units the hardware uses.
2371	 */
2372	block_size = xhci_get_block_size(virt_dev->udev);
2373
2374	/* If we are manipulating a LS/FS device under a HS hub, double check
2375	 * that the HS bus has enough bandwidth if we are activing a new TT.
2376	 */
2377	if (virt_dev->tt_info) {
2378		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2379				"Recalculating BW for rootport %u",
2380				virt_dev->real_port);
2381		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2382			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2383					"newly activated TT.\n");
2384			return -ENOMEM;
2385		}
2386		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2387				"Recalculating BW for TT slot %u port %u",
2388				virt_dev->tt_info->slot_id,
2389				virt_dev->tt_info->ttport);
2390	} else {
2391		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2392				"Recalculating BW for rootport %u",
2393				virt_dev->real_port);
2394	}
2395
2396	/* Add in how much bandwidth will be used for interval zero, or the
2397	 * rounded max ESIT payload + number of packets * largest overhead.
2398	 */
2399	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2400		bw_table->interval_bw[0].num_packets *
2401		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2402
2403	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2404		unsigned int bw_added;
2405		unsigned int largest_mps;
2406		unsigned int interval_overhead;
2407
2408		/*
2409		 * How many packets could we transmit in this interval?
2410		 * If packets didn't fit in the previous interval, we will need
2411		 * to transmit that many packets twice within this interval.
2412		 */
2413		packets_remaining = 2 * packets_remaining +
2414			bw_table->interval_bw[i].num_packets;
2415
2416		/* Find the largest max packet size of this or the previous
2417		 * interval.
2418		 */
2419		if (list_empty(&bw_table->interval_bw[i].endpoints))
2420			largest_mps = 0;
2421		else {
2422			struct xhci_virt_ep *virt_ep;
2423			struct list_head *ep_entry;
2424
2425			ep_entry = bw_table->interval_bw[i].endpoints.next;
2426			virt_ep = list_entry(ep_entry,
2427					struct xhci_virt_ep, bw_endpoint_list);
2428			/* Convert to blocks, rounding up */
2429			largest_mps = DIV_ROUND_UP(
2430					virt_ep->bw_info.max_packet_size,
2431					block_size);
2432		}
2433		if (largest_mps > packet_size)
2434			packet_size = largest_mps;
2435
2436		/* Use the larger overhead of this or the previous interval. */
2437		interval_overhead = xhci_get_largest_overhead(
2438				&bw_table->interval_bw[i]);
2439		if (interval_overhead > overhead)
2440			overhead = interval_overhead;
2441
2442		/* How many packets can we evenly distribute across
2443		 * (1 << (i + 1)) possible scheduling opportunities?
2444		 */
2445		packets_transmitted = packets_remaining >> (i + 1);
2446
2447		/* Add in the bandwidth used for those scheduled packets */
2448		bw_added = packets_transmitted * (overhead + packet_size);
2449
2450		/* How many packets do we have remaining to transmit? */
2451		packets_remaining = packets_remaining % (1 << (i + 1));
2452
2453		/* What largest max packet size should those packets have? */
2454		/* If we've transmitted all packets, don't carry over the
2455		 * largest packet size.
2456		 */
2457		if (packets_remaining == 0) {
2458			packet_size = 0;
2459			overhead = 0;
2460		} else if (packets_transmitted > 0) {
2461			/* Otherwise if we do have remaining packets, and we've
2462			 * scheduled some packets in this interval, take the
2463			 * largest max packet size from endpoints with this
2464			 * interval.
2465			 */
2466			packet_size = largest_mps;
2467			overhead = interval_overhead;
2468		}
2469		/* Otherwise carry over packet_size and overhead from the last
2470		 * time we had a remainder.
2471		 */
2472		bw_used += bw_added;
2473		if (bw_used > max_bandwidth) {
2474			xhci_warn(xhci, "Not enough bandwidth. "
2475					"Proposed: %u, Max: %u\n",
2476				bw_used, max_bandwidth);
2477			return -ENOMEM;
2478		}
2479	}
2480	/*
2481	 * Ok, we know we have some packets left over after even-handedly
2482	 * scheduling interval 15.  We don't know which microframes they will
2483	 * fit into, so we over-schedule and say they will be scheduled every
2484	 * microframe.
2485	 */
2486	if (packets_remaining > 0)
2487		bw_used += overhead + packet_size;
2488
2489	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2490		unsigned int port_index = virt_dev->real_port - 1;
2491
2492		/* OK, we're manipulating a HS device attached to a
2493		 * root port bandwidth domain.  Include the number of active TTs
2494		 * in the bandwidth used.
2495		 */
2496		bw_used += TT_HS_OVERHEAD *
2497			xhci->rh_bw[port_index].num_active_tts;
2498	}
2499
2500	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2501		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2502		"Available: %u " "percent",
2503		bw_used, max_bandwidth, bw_reserved,
2504		(max_bandwidth - bw_used - bw_reserved) * 100 /
2505		max_bandwidth);
2506
2507	bw_used += bw_reserved;
2508	if (bw_used > max_bandwidth) {
2509		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2510				bw_used, max_bandwidth);
2511		return -ENOMEM;
2512	}
2513
2514	bw_table->bw_used = bw_used;
2515	return 0;
2516}
2517
2518static bool xhci_is_async_ep(unsigned int ep_type)
2519{
2520	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2521					ep_type != ISOC_IN_EP &&
2522					ep_type != INT_IN_EP);
2523}
2524
2525static bool xhci_is_sync_in_ep(unsigned int ep_type)
2526{
2527	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2528}
2529
2530static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2531{
2532	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2533
2534	if (ep_bw->ep_interval == 0)
2535		return SS_OVERHEAD_BURST +
2536			(ep_bw->mult * ep_bw->num_packets *
2537					(SS_OVERHEAD + mps));
2538	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2539				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2540				1 << ep_bw->ep_interval);
2541
2542}
2543
2544static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2545		struct xhci_bw_info *ep_bw,
2546		struct xhci_interval_bw_table *bw_table,
2547		struct usb_device *udev,
2548		struct xhci_virt_ep *virt_ep,
2549		struct xhci_tt_bw_info *tt_info)
2550{
2551	struct xhci_interval_bw	*interval_bw;
2552	int normalized_interval;
2553
2554	if (xhci_is_async_ep(ep_bw->type))
2555		return;
2556
2557	if (udev->speed >= USB_SPEED_SUPER) {
2558		if (xhci_is_sync_in_ep(ep_bw->type))
2559			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2560				xhci_get_ss_bw_consumed(ep_bw);
2561		else
2562			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2563				xhci_get_ss_bw_consumed(ep_bw);
2564		return;
2565	}
2566
2567	/* SuperSpeed endpoints never get added to intervals in the table, so
2568	 * this check is only valid for HS/FS/LS devices.
2569	 */
2570	if (list_empty(&virt_ep->bw_endpoint_list))
2571		return;
2572	/* For LS/FS devices, we need to translate the interval expressed in
2573	 * microframes to frames.
2574	 */
2575	if (udev->speed == USB_SPEED_HIGH)
2576		normalized_interval = ep_bw->ep_interval;
2577	else
2578		normalized_interval = ep_bw->ep_interval - 3;
2579
2580	if (normalized_interval == 0)
2581		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2582	interval_bw = &bw_table->interval_bw[normalized_interval];
2583	interval_bw->num_packets -= ep_bw->num_packets;
2584	switch (udev->speed) {
2585	case USB_SPEED_LOW:
2586		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2587		break;
2588	case USB_SPEED_FULL:
2589		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2590		break;
2591	case USB_SPEED_HIGH:
2592		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2593		break;
2594	default:
 
 
2595		/* Should never happen because only LS/FS/HS endpoints will get
2596		 * added to the endpoint list.
2597		 */
2598		return;
2599	}
2600	if (tt_info)
2601		tt_info->active_eps -= 1;
2602	list_del_init(&virt_ep->bw_endpoint_list);
2603}
2604
2605static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2606		struct xhci_bw_info *ep_bw,
2607		struct xhci_interval_bw_table *bw_table,
2608		struct usb_device *udev,
2609		struct xhci_virt_ep *virt_ep,
2610		struct xhci_tt_bw_info *tt_info)
2611{
2612	struct xhci_interval_bw	*interval_bw;
2613	struct xhci_virt_ep *smaller_ep;
2614	int normalized_interval;
2615
2616	if (xhci_is_async_ep(ep_bw->type))
2617		return;
2618
2619	if (udev->speed == USB_SPEED_SUPER) {
2620		if (xhci_is_sync_in_ep(ep_bw->type))
2621			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2622				xhci_get_ss_bw_consumed(ep_bw);
2623		else
2624			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2625				xhci_get_ss_bw_consumed(ep_bw);
2626		return;
2627	}
2628
2629	/* For LS/FS devices, we need to translate the interval expressed in
2630	 * microframes to frames.
2631	 */
2632	if (udev->speed == USB_SPEED_HIGH)
2633		normalized_interval = ep_bw->ep_interval;
2634	else
2635		normalized_interval = ep_bw->ep_interval - 3;
2636
2637	if (normalized_interval == 0)
2638		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2639	interval_bw = &bw_table->interval_bw[normalized_interval];
2640	interval_bw->num_packets += ep_bw->num_packets;
2641	switch (udev->speed) {
2642	case USB_SPEED_LOW:
2643		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2644		break;
2645	case USB_SPEED_FULL:
2646		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2647		break;
2648	case USB_SPEED_HIGH:
2649		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2650		break;
2651	default:
 
 
2652		/* Should never happen because only LS/FS/HS endpoints will get
2653		 * added to the endpoint list.
2654		 */
2655		return;
2656	}
2657
2658	if (tt_info)
2659		tt_info->active_eps += 1;
2660	/* Insert the endpoint into the list, largest max packet size first. */
2661	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2662			bw_endpoint_list) {
2663		if (ep_bw->max_packet_size >=
2664				smaller_ep->bw_info.max_packet_size) {
2665			/* Add the new ep before the smaller endpoint */
2666			list_add_tail(&virt_ep->bw_endpoint_list,
2667					&smaller_ep->bw_endpoint_list);
2668			return;
2669		}
2670	}
2671	/* Add the new endpoint at the end of the list. */
2672	list_add_tail(&virt_ep->bw_endpoint_list,
2673			&interval_bw->endpoints);
2674}
2675
2676void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2677		struct xhci_virt_device *virt_dev,
2678		int old_active_eps)
2679{
2680	struct xhci_root_port_bw_info *rh_bw_info;
2681	if (!virt_dev->tt_info)
2682		return;
2683
2684	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2685	if (old_active_eps == 0 &&
2686				virt_dev->tt_info->active_eps != 0) {
2687		rh_bw_info->num_active_tts += 1;
2688		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2689	} else if (old_active_eps != 0 &&
2690				virt_dev->tt_info->active_eps == 0) {
2691		rh_bw_info->num_active_tts -= 1;
2692		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2693	}
2694}
2695
2696static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2697		struct xhci_virt_device *virt_dev,
2698		struct xhci_container_ctx *in_ctx)
2699{
2700	struct xhci_bw_info ep_bw_info[31];
2701	int i;
2702	struct xhci_input_control_ctx *ctrl_ctx;
2703	int old_active_eps = 0;
2704
2705	if (virt_dev->tt_info)
2706		old_active_eps = virt_dev->tt_info->active_eps;
2707
2708	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2709	if (!ctrl_ctx) {
2710		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2711				__func__);
2712		return -ENOMEM;
2713	}
2714
2715	for (i = 0; i < 31; i++) {
2716		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2717			continue;
2718
2719		/* Make a copy of the BW info in case we need to revert this */
2720		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2721				sizeof(ep_bw_info[i]));
2722		/* Drop the endpoint from the interval table if the endpoint is
2723		 * being dropped or changed.
2724		 */
2725		if (EP_IS_DROPPED(ctrl_ctx, i))
2726			xhci_drop_ep_from_interval_table(xhci,
2727					&virt_dev->eps[i].bw_info,
2728					virt_dev->bw_table,
2729					virt_dev->udev,
2730					&virt_dev->eps[i],
2731					virt_dev->tt_info);
2732	}
2733	/* Overwrite the information stored in the endpoints' bw_info */
2734	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2735	for (i = 0; i < 31; i++) {
2736		/* Add any changed or added endpoints to the interval table */
2737		if (EP_IS_ADDED(ctrl_ctx, i))
2738			xhci_add_ep_to_interval_table(xhci,
2739					&virt_dev->eps[i].bw_info,
2740					virt_dev->bw_table,
2741					virt_dev->udev,
2742					&virt_dev->eps[i],
2743					virt_dev->tt_info);
2744	}
2745
2746	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2747		/* Ok, this fits in the bandwidth we have.
2748		 * Update the number of active TTs.
2749		 */
2750		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2751		return 0;
2752	}
2753
2754	/* We don't have enough bandwidth for this, revert the stored info. */
2755	for (i = 0; i < 31; i++) {
2756		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2757			continue;
2758
2759		/* Drop the new copies of any added or changed endpoints from
2760		 * the interval table.
2761		 */
2762		if (EP_IS_ADDED(ctrl_ctx, i)) {
2763			xhci_drop_ep_from_interval_table(xhci,
2764					&virt_dev->eps[i].bw_info,
2765					virt_dev->bw_table,
2766					virt_dev->udev,
2767					&virt_dev->eps[i],
2768					virt_dev->tt_info);
2769		}
2770		/* Revert the endpoint back to its old information */
2771		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2772				sizeof(ep_bw_info[i]));
2773		/* Add any changed or dropped endpoints back into the table */
2774		if (EP_IS_DROPPED(ctrl_ctx, i))
2775			xhci_add_ep_to_interval_table(xhci,
2776					&virt_dev->eps[i].bw_info,
2777					virt_dev->bw_table,
2778					virt_dev->udev,
2779					&virt_dev->eps[i],
2780					virt_dev->tt_info);
2781	}
2782	return -ENOMEM;
2783}
2784
2785
2786/* Issue a configure endpoint command or evaluate context command
2787 * and wait for it to finish.
2788 */
2789static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2790		struct usb_device *udev,
2791		struct xhci_command *command,
2792		bool ctx_change, bool must_succeed)
2793{
2794	int ret;
 
2795	unsigned long flags;
2796	struct xhci_input_control_ctx *ctrl_ctx;
 
 
2797	struct xhci_virt_device *virt_dev;
2798	struct xhci_slot_ctx *slot_ctx;
2799
2800	if (!command)
2801		return -EINVAL;
2802
2803	spin_lock_irqsave(&xhci->lock, flags);
2804
2805	if (xhci->xhc_state & XHCI_STATE_DYING) {
2806		spin_unlock_irqrestore(&xhci->lock, flags);
2807		return -ESHUTDOWN;
2808	}
2809
2810	virt_dev = xhci->devs[udev->slot_id];
2811
2812	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2813	if (!ctrl_ctx) {
2814		spin_unlock_irqrestore(&xhci->lock, flags);
2815		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816				__func__);
2817		return -ENOMEM;
2818	}
2819
2820	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2821			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2822		spin_unlock_irqrestore(&xhci->lock, flags);
2823		xhci_warn(xhci, "Not enough host resources, "
2824				"active endpoint contexts = %u\n",
2825				xhci->num_active_eps);
2826		return -ENOMEM;
2827	}
2828	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2829	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2830		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2831			xhci_free_host_resources(xhci, ctrl_ctx);
2832		spin_unlock_irqrestore(&xhci->lock, flags);
2833		xhci_warn(xhci, "Not enough bandwidth\n");
2834		return -ENOMEM;
2835	}
2836
2837	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
 
 
 
2838
2839	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2840	trace_xhci_configure_endpoint(slot_ctx);
 
 
 
 
2841
 
 
 
 
 
 
 
 
2842	if (!ctx_change)
2843		ret = xhci_queue_configure_endpoint(xhci, command,
2844				command->in_ctx->dma,
2845				udev->slot_id, must_succeed);
2846	else
2847		ret = xhci_queue_evaluate_context(xhci, command,
2848				command->in_ctx->dma,
2849				udev->slot_id, must_succeed);
2850	if (ret < 0) {
 
 
2851		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2852			xhci_free_host_resources(xhci, ctrl_ctx);
2853		spin_unlock_irqrestore(&xhci->lock, flags);
2854		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2855				"FIXME allocate a new ring segment");
2856		return -ENOMEM;
2857	}
2858	xhci_ring_cmd_db(xhci);
2859	spin_unlock_irqrestore(&xhci->lock, flags);
2860
2861	/* Wait for the configure endpoint command to complete */
2862	wait_for_completion(command->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863
2864	if (!ctx_change)
2865		ret = xhci_configure_endpoint_result(xhci, udev,
2866						     &command->status);
2867	else
2868		ret = xhci_evaluate_context_result(xhci, udev,
2869						   &command->status);
2870
2871	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2872		spin_lock_irqsave(&xhci->lock, flags);
2873		/* If the command failed, remove the reserved resources.
2874		 * Otherwise, clean up the estimate to include dropped eps.
2875		 */
2876		if (ret)
2877			xhci_free_host_resources(xhci, ctrl_ctx);
2878		else
2879			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2880		spin_unlock_irqrestore(&xhci->lock, flags);
2881	}
2882	return ret;
2883}
2884
2885static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2886	struct xhci_virt_device *vdev, int i)
2887{
2888	struct xhci_virt_ep *ep = &vdev->eps[i];
2889
2890	if (ep->ep_state & EP_HAS_STREAMS) {
2891		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2892				xhci_get_endpoint_address(i));
2893		xhci_free_stream_info(xhci, ep->stream_info);
2894		ep->stream_info = NULL;
2895		ep->ep_state &= ~EP_HAS_STREAMS;
2896	}
2897}
2898
2899/* Called after one or more calls to xhci_add_endpoint() or
2900 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2901 * to call xhci_reset_bandwidth().
2902 *
2903 * Since we are in the middle of changing either configuration or
2904 * installing a new alt setting, the USB core won't allow URBs to be
2905 * enqueued for any endpoint on the old config or interface.  Nothing
2906 * else should be touching the xhci->devs[slot_id] structure, so we
2907 * don't need to take the xhci->lock for manipulating that.
2908 */
2909int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2910{
2911	int i;
2912	int ret = 0;
2913	struct xhci_hcd *xhci;
2914	struct xhci_virt_device	*virt_dev;
2915	struct xhci_input_control_ctx *ctrl_ctx;
2916	struct xhci_slot_ctx *slot_ctx;
2917	struct xhci_command *command;
2918
2919	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2920	if (ret <= 0)
2921		return ret;
2922	xhci = hcd_to_xhci(hcd);
2923	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2924		(xhci->xhc_state & XHCI_STATE_REMOVING))
2925		return -ENODEV;
2926
2927	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2928	virt_dev = xhci->devs[udev->slot_id];
2929
2930	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2931	if (!command)
2932		return -ENOMEM;
2933
2934	command->in_ctx = virt_dev->in_ctx;
2935
2936	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2937	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2938	if (!ctrl_ctx) {
2939		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2940				__func__);
2941		ret = -ENOMEM;
2942		goto command_cleanup;
2943	}
2944	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2945	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2946	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2947
2948	/* Don't issue the command if there's no endpoints to update. */
2949	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2950	    ctrl_ctx->drop_flags == 0) {
2951		ret = 0;
2952		goto command_cleanup;
2953	}
2954	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2955	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2956	for (i = 31; i >= 1; i--) {
2957		__le32 le32 = cpu_to_le32(BIT(i));
2958
2959		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2960		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2961			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2962			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2963			break;
2964		}
2965	}
2966
2967	ret = xhci_configure_endpoint(xhci, udev, command,
2968			false, false);
2969	if (ret)
2970		/* Callee should call reset_bandwidth() */
2971		goto command_cleanup;
 
 
 
 
 
2972
2973	/* Free any rings that were dropped, but not changed. */
2974	for (i = 1; i < 31; i++) {
2975		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2976		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2977			xhci_free_endpoint_ring(xhci, virt_dev, i);
2978			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2979		}
2980	}
2981	xhci_zero_in_ctx(xhci, virt_dev);
2982	/*
2983	 * Install any rings for completely new endpoints or changed endpoints,
2984	 * and free any old rings from changed endpoints.
2985	 */
2986	for (i = 1; i < 31; i++) {
2987		if (!virt_dev->eps[i].new_ring)
2988			continue;
2989		/* Only free the old ring if it exists.
2990		 * It may not if this is the first add of an endpoint.
2991		 */
2992		if (virt_dev->eps[i].ring) {
2993			xhci_free_endpoint_ring(xhci, virt_dev, i);
2994		}
2995		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2996		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2997		virt_dev->eps[i].new_ring = NULL;
2998		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2999	}
3000command_cleanup:
3001	kfree(command->completion);
3002	kfree(command);
3003
3004	return ret;
3005}
3006EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3007
3008void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3009{
3010	struct xhci_hcd *xhci;
3011	struct xhci_virt_device	*virt_dev;
3012	int i, ret;
3013
3014	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3015	if (ret <= 0)
3016		return;
3017	xhci = hcd_to_xhci(hcd);
3018
3019	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3020	virt_dev = xhci->devs[udev->slot_id];
3021	/* Free any rings allocated for added endpoints */
3022	for (i = 0; i < 31; i++) {
3023		if (virt_dev->eps[i].new_ring) {
3024			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3025			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3026			virt_dev->eps[i].new_ring = NULL;
3027		}
3028	}
3029	xhci_zero_in_ctx(xhci, virt_dev);
3030}
3031EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3032
3033static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3034		struct xhci_container_ctx *in_ctx,
3035		struct xhci_container_ctx *out_ctx,
3036		struct xhci_input_control_ctx *ctrl_ctx,
3037		u32 add_flags, u32 drop_flags)
3038{
 
 
3039	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3040	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3041	xhci_slot_copy(xhci, in_ctx, out_ctx);
3042	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
3043}
3044
3045static void xhci_endpoint_disable(struct usb_hcd *hcd,
3046				  struct usb_host_endpoint *host_ep)
 
3047{
3048	struct xhci_hcd		*xhci;
3049	struct xhci_virt_device	*vdev;
3050	struct xhci_virt_ep	*ep;
3051	struct usb_device	*udev;
3052	unsigned long		flags;
3053	unsigned int		ep_index;
3054
3055	xhci = hcd_to_xhci(hcd);
3056rescan:
3057	spin_lock_irqsave(&xhci->lock, flags);
3058
3059	udev = (struct usb_device *)host_ep->hcpriv;
3060	if (!udev || !udev->slot_id)
3061		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
3062
3063	vdev = xhci->devs[udev->slot_id];
3064	if (!vdev)
3065		goto done;
 
3066
3067	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3068	ep = &vdev->eps[ep_index];
 
 
 
3069
3070	/* wait for hub_tt_work to finish clearing hub TT */
3071	if (ep->ep_state & EP_CLEARING_TT) {
3072		spin_unlock_irqrestore(&xhci->lock, flags);
3073		schedule_timeout_uninterruptible(1);
3074		goto rescan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3075	}
3076
3077	if (ep->ep_state)
3078		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3079			 ep->ep_state);
3080done:
3081	host_ep->hcpriv = NULL;
3082	spin_unlock_irqrestore(&xhci->lock, flags);
3083}
3084
3085/*
3086 * Called after usb core issues a clear halt control message.
3087 * The host side of the halt should already be cleared by a reset endpoint
3088 * command issued when the STALL event was received.
3089 *
3090 * The reset endpoint command may only be issued to endpoints in the halted
3091 * state. For software that wishes to reset the data toggle or sequence number
3092 * of an endpoint that isn't in the halted state this function will issue a
3093 * configure endpoint command with the Drop and Add bits set for the target
3094 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3095 *
3096 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3097 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3098 */
3099
3100static void xhci_endpoint_reset(struct usb_hcd *hcd,
3101		struct usb_host_endpoint *host_ep)
3102{
3103	struct xhci_hcd *xhci;
3104	struct usb_device *udev;
3105	struct xhci_virt_device *vdev;
3106	struct xhci_virt_ep *ep;
3107	struct xhci_input_control_ctx *ctrl_ctx;
3108	struct xhci_command *stop_cmd, *cfg_cmd;
3109	unsigned int ep_index;
3110	unsigned long flags;
3111	u32 ep_flag;
3112	int err;
3113
3114	xhci = hcd_to_xhci(hcd);
3115	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3116
3117	/*
3118	 * Usb core assumes a max packet value for ep0 on FS devices until the
3119	 * real value is read from the descriptor. Core resets Ep0 if values
3120	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3121	 */
3122	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3123
3124		udev = container_of(host_ep, struct usb_device, ep0);
3125		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3126			return;
3127
3128		vdev = xhci->devs[udev->slot_id];
3129		if (!vdev || vdev->udev != udev)
3130			return;
3131
3132		xhci_check_ep0_maxpacket(xhci, vdev);
3133
3134		/* Nothing else should be done here for ep0 during ep reset */
3135		return;
3136	}
3137
3138	if (!host_ep->hcpriv)
3139		return;
3140	udev = (struct usb_device *) host_ep->hcpriv;
3141	vdev = xhci->devs[udev->slot_id];
3142
3143	if (!udev->slot_id || !vdev)
3144		return;
3145
3146	ep = &vdev->eps[ep_index];
3147
3148	/* Bail out if toggle is already being cleared by a endpoint reset */
3149	spin_lock_irqsave(&xhci->lock, flags);
3150	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3151		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3152		spin_unlock_irqrestore(&xhci->lock, flags);
3153		return;
3154	}
3155	spin_unlock_irqrestore(&xhci->lock, flags);
3156	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3157	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3158	    usb_endpoint_xfer_isoc(&host_ep->desc))
3159		return;
 
3160
3161	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3162
3163	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3164		return;
3165
3166	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3167	if (!stop_cmd)
3168		return;
3169
3170	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3171	if (!cfg_cmd)
3172		goto cleanup;
3173
3174	spin_lock_irqsave(&xhci->lock, flags);
3175
3176	/* block queuing new trbs and ringing ep doorbell */
3177	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3178
3179	/*
3180	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3181	 * Driver is required to synchronously cancel all transfer request.
3182	 * Stop the endpoint to force xHC to update the output context
3183	 */
3184
3185	if (!list_empty(&ep->ring->td_list)) {
3186		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3187		spin_unlock_irqrestore(&xhci->lock, flags);
3188		xhci_free_command(xhci, cfg_cmd);
3189		goto cleanup;
3190	}
3191
3192	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3193					ep_index, 0);
3194	if (err < 0) {
3195		spin_unlock_irqrestore(&xhci->lock, flags);
3196		xhci_free_command(xhci, cfg_cmd);
3197		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3198				__func__, err);
3199		goto cleanup;
3200	}
3201
3202	xhci_ring_cmd_db(xhci);
3203	spin_unlock_irqrestore(&xhci->lock, flags);
3204
3205	wait_for_completion(stop_cmd->completion);
3206
3207	spin_lock_irqsave(&xhci->lock, flags);
3208
3209	/* config ep command clears toggle if add and drop ep flags are set */
3210	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3211	if (!ctrl_ctx) {
3212		spin_unlock_irqrestore(&xhci->lock, flags);
3213		xhci_free_command(xhci, cfg_cmd);
3214		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3215				__func__);
3216		goto cleanup;
3217	}
3218
3219	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3220					   ctrl_ctx, ep_flag, ep_flag);
3221	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3222
3223	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3224				      udev->slot_id, false);
3225	if (err < 0) {
3226		spin_unlock_irqrestore(&xhci->lock, flags);
3227		xhci_free_command(xhci, cfg_cmd);
3228		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3229				__func__, err);
3230		goto cleanup;
3231	}
3232
3233	xhci_ring_cmd_db(xhci);
 
3234	spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236	wait_for_completion(cfg_cmd->completion);
3237
3238	xhci_free_command(xhci, cfg_cmd);
3239cleanup:
3240	xhci_free_command(xhci, stop_cmd);
3241	spin_lock_irqsave(&xhci->lock, flags);
3242	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3243		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3244	spin_unlock_irqrestore(&xhci->lock, flags);
3245}
3246
3247static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3248		struct usb_device *udev, struct usb_host_endpoint *ep,
3249		unsigned int slot_id)
3250{
3251	int ret;
3252	unsigned int ep_index;
3253	unsigned int ep_state;
3254
3255	if (!ep)
3256		return -EINVAL;
3257	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3258	if (ret <= 0)
3259		return ret ? ret : -EINVAL;
3260	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3261		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3262				" descriptor for ep 0x%x does not support streams\n",
3263				ep->desc.bEndpointAddress);
3264		return -EINVAL;
3265	}
3266
3267	ep_index = xhci_get_endpoint_index(&ep->desc);
3268	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3269	if (ep_state & EP_HAS_STREAMS ||
3270			ep_state & EP_GETTING_STREAMS) {
3271		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3272				"already has streams set up.\n",
3273				ep->desc.bEndpointAddress);
3274		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3275				"dynamic stream context array reallocation.\n");
3276		return -EINVAL;
3277	}
3278	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3279		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3280				"endpoint 0x%x; URBs are pending.\n",
3281				ep->desc.bEndpointAddress);
3282		return -EINVAL;
3283	}
3284	return 0;
3285}
3286
3287static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3288		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3289{
3290	unsigned int max_streams;
3291
3292	/* The stream context array size must be a power of two */
3293	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3294	/*
3295	 * Find out how many primary stream array entries the host controller
3296	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3297	 * level page entries), but that's an optional feature for xHCI host
3298	 * controllers. xHCs must support at least 4 stream IDs.
3299	 */
3300	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3301	if (*num_stream_ctxs > max_streams) {
3302		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3303				max_streams);
3304		*num_stream_ctxs = max_streams;
3305		*num_streams = max_streams;
3306	}
3307}
3308
3309/* Returns an error code if one of the endpoint already has streams.
3310 * This does not change any data structures, it only checks and gathers
3311 * information.
3312 */
3313static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3314		struct usb_device *udev,
3315		struct usb_host_endpoint **eps, unsigned int num_eps,
3316		unsigned int *num_streams, u32 *changed_ep_bitmask)
3317{
3318	unsigned int max_streams;
3319	unsigned int endpoint_flag;
3320	int i;
3321	int ret;
3322
3323	for (i = 0; i < num_eps; i++) {
3324		ret = xhci_check_streams_endpoint(xhci, udev,
3325				eps[i], udev->slot_id);
3326		if (ret < 0)
3327			return ret;
3328
3329		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3330		if (max_streams < (*num_streams - 1)) {
3331			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3332					eps[i]->desc.bEndpointAddress,
3333					max_streams);
3334			*num_streams = max_streams+1;
3335		}
3336
3337		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3338		if (*changed_ep_bitmask & endpoint_flag)
3339			return -EINVAL;
3340		*changed_ep_bitmask |= endpoint_flag;
3341	}
3342	return 0;
3343}
3344
3345static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3346		struct usb_device *udev,
3347		struct usb_host_endpoint **eps, unsigned int num_eps)
3348{
3349	u32 changed_ep_bitmask = 0;
3350	unsigned int slot_id;
3351	unsigned int ep_index;
3352	unsigned int ep_state;
3353	int i;
3354
3355	slot_id = udev->slot_id;
3356	if (!xhci->devs[slot_id])
3357		return 0;
3358
3359	for (i = 0; i < num_eps; i++) {
3360		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3362		/* Are streams already being freed for the endpoint? */
3363		if (ep_state & EP_GETTING_NO_STREAMS) {
3364			xhci_warn(xhci, "WARN Can't disable streams for "
3365					"endpoint 0x%x, "
3366					"streams are being disabled already\n",
3367					eps[i]->desc.bEndpointAddress);
3368			return 0;
3369		}
3370		/* Are there actually any streams to free? */
3371		if (!(ep_state & EP_HAS_STREAMS) &&
3372				!(ep_state & EP_GETTING_STREAMS)) {
3373			xhci_warn(xhci, "WARN Can't disable streams for "
3374					"endpoint 0x%x, "
3375					"streams are already disabled!\n",
3376					eps[i]->desc.bEndpointAddress);
3377			xhci_warn(xhci, "WARN xhci_free_streams() called "
3378					"with non-streams endpoint\n");
3379			return 0;
3380		}
3381		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3382	}
3383	return changed_ep_bitmask;
3384}
3385
3386/*
3387 * The USB device drivers use this function (through the HCD interface in USB
3388 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3389 * coordinate mass storage command queueing across multiple endpoints (basically
3390 * a stream ID == a task ID).
3391 *
3392 * Setting up streams involves allocating the same size stream context array
3393 * for each endpoint and issuing a configure endpoint command for all endpoints.
3394 *
3395 * Don't allow the call to succeed if one endpoint only supports one stream
3396 * (which means it doesn't support streams at all).
3397 *
3398 * Drivers may get less stream IDs than they asked for, if the host controller
3399 * hardware or endpoints claim they can't support the number of requested
3400 * stream IDs.
3401 */
3402static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3403		struct usb_host_endpoint **eps, unsigned int num_eps,
3404		unsigned int num_streams, gfp_t mem_flags)
3405{
3406	int i, ret;
3407	struct xhci_hcd *xhci;
3408	struct xhci_virt_device *vdev;
3409	struct xhci_command *config_cmd;
3410	struct xhci_input_control_ctx *ctrl_ctx;
3411	unsigned int ep_index;
3412	unsigned int num_stream_ctxs;
3413	unsigned int max_packet;
3414	unsigned long flags;
3415	u32 changed_ep_bitmask = 0;
3416
3417	if (!eps)
3418		return -EINVAL;
3419
3420	/* Add one to the number of streams requested to account for
3421	 * stream 0 that is reserved for xHCI usage.
3422	 */
3423	num_streams += 1;
3424	xhci = hcd_to_xhci(hcd);
3425	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3426			num_streams);
3427
3428	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3429	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3430			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3431		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3432		return -ENOSYS;
3433	}
3434
3435	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3436	if (!config_cmd)
3437		return -ENOMEM;
3438
3439	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3440	if (!ctrl_ctx) {
3441		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3442				__func__);
3443		xhci_free_command(xhci, config_cmd);
3444		return -ENOMEM;
3445	}
3446
3447	/* Check to make sure all endpoints are not already configured for
3448	 * streams.  While we're at it, find the maximum number of streams that
3449	 * all the endpoints will support and check for duplicate endpoints.
3450	 */
3451	spin_lock_irqsave(&xhci->lock, flags);
3452	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3453			num_eps, &num_streams, &changed_ep_bitmask);
3454	if (ret < 0) {
3455		xhci_free_command(xhci, config_cmd);
3456		spin_unlock_irqrestore(&xhci->lock, flags);
3457		return ret;
3458	}
3459	if (num_streams <= 1) {
3460		xhci_warn(xhci, "WARN: endpoints can't handle "
3461				"more than one stream.\n");
3462		xhci_free_command(xhci, config_cmd);
3463		spin_unlock_irqrestore(&xhci->lock, flags);
3464		return -EINVAL;
3465	}
3466	vdev = xhci->devs[udev->slot_id];
3467	/* Mark each endpoint as being in transition, so
3468	 * xhci_urb_enqueue() will reject all URBs.
3469	 */
3470	for (i = 0; i < num_eps; i++) {
3471		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3472		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3473	}
3474	spin_unlock_irqrestore(&xhci->lock, flags);
3475
3476	/* Setup internal data structures and allocate HW data structures for
3477	 * streams (but don't install the HW structures in the input context
3478	 * until we're sure all memory allocation succeeded).
3479	 */
3480	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3481	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3482			num_stream_ctxs, num_streams);
3483
3484	for (i = 0; i < num_eps; i++) {
3485		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3486		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3487		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3488				num_stream_ctxs,
3489				num_streams,
3490				max_packet, mem_flags);
3491		if (!vdev->eps[ep_index].stream_info)
3492			goto cleanup;
3493		/* Set maxPstreams in endpoint context and update deq ptr to
3494		 * point to stream context array. FIXME
3495		 */
3496	}
3497
3498	/* Set up the input context for a configure endpoint command. */
3499	for (i = 0; i < num_eps; i++) {
3500		struct xhci_ep_ctx *ep_ctx;
3501
3502		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3503		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3504
3505		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3506				vdev->out_ctx, ep_index);
3507		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3508				vdev->eps[ep_index].stream_info);
3509	}
3510	/* Tell the HW to drop its old copy of the endpoint context info
3511	 * and add the updated copy from the input context.
3512	 */
3513	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3514			vdev->out_ctx, ctrl_ctx,
3515			changed_ep_bitmask, changed_ep_bitmask);
3516
3517	/* Issue and wait for the configure endpoint command */
3518	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3519			false, false);
3520
3521	/* xHC rejected the configure endpoint command for some reason, so we
3522	 * leave the old ring intact and free our internal streams data
3523	 * structure.
3524	 */
3525	if (ret < 0)
3526		goto cleanup;
3527
3528	spin_lock_irqsave(&xhci->lock, flags);
3529	for (i = 0; i < num_eps; i++) {
3530		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3531		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3532		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3533			 udev->slot_id, ep_index);
3534		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3535	}
3536	xhci_free_command(xhci, config_cmd);
3537	spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539	for (i = 0; i < num_eps; i++) {
3540		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3542	}
3543	/* Subtract 1 for stream 0, which drivers can't use */
3544	return num_streams - 1;
3545
3546cleanup:
3547	/* If it didn't work, free the streams! */
3548	for (i = 0; i < num_eps; i++) {
3549		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3550		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3551		vdev->eps[ep_index].stream_info = NULL;
3552		/* FIXME Unset maxPstreams in endpoint context and
3553		 * update deq ptr to point to normal string ring.
3554		 */
3555		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3556		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3557		xhci_endpoint_zero(xhci, vdev, eps[i]);
3558	}
3559	xhci_free_command(xhci, config_cmd);
3560	return -ENOMEM;
3561}
3562
3563/* Transition the endpoint from using streams to being a "normal" endpoint
3564 * without streams.
3565 *
3566 * Modify the endpoint context state, submit a configure endpoint command,
3567 * and free all endpoint rings for streams if that completes successfully.
3568 */
3569static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3570		struct usb_host_endpoint **eps, unsigned int num_eps,
3571		gfp_t mem_flags)
3572{
3573	int i, ret;
3574	struct xhci_hcd *xhci;
3575	struct xhci_virt_device *vdev;
3576	struct xhci_command *command;
3577	struct xhci_input_control_ctx *ctrl_ctx;
3578	unsigned int ep_index;
3579	unsigned long flags;
3580	u32 changed_ep_bitmask;
3581
3582	xhci = hcd_to_xhci(hcd);
3583	vdev = xhci->devs[udev->slot_id];
3584
3585	/* Set up a configure endpoint command to remove the streams rings */
3586	spin_lock_irqsave(&xhci->lock, flags);
3587	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3588			udev, eps, num_eps);
3589	if (changed_ep_bitmask == 0) {
3590		spin_unlock_irqrestore(&xhci->lock, flags);
3591		return -EINVAL;
3592	}
3593
3594	/* Use the xhci_command structure from the first endpoint.  We may have
3595	 * allocated too many, but the driver may call xhci_free_streams() for
3596	 * each endpoint it grouped into one call to xhci_alloc_streams().
3597	 */
3598	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3599	command = vdev->eps[ep_index].stream_info->free_streams_command;
3600	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3601	if (!ctrl_ctx) {
3602		spin_unlock_irqrestore(&xhci->lock, flags);
3603		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3604				__func__);
3605		return -EINVAL;
3606	}
3607
3608	for (i = 0; i < num_eps; i++) {
3609		struct xhci_ep_ctx *ep_ctx;
3610
3611		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3613		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3614			EP_GETTING_NO_STREAMS;
3615
3616		xhci_endpoint_copy(xhci, command->in_ctx,
3617				vdev->out_ctx, ep_index);
3618		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3619				&vdev->eps[ep_index]);
3620	}
3621	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3622			vdev->out_ctx, ctrl_ctx,
3623			changed_ep_bitmask, changed_ep_bitmask);
3624	spin_unlock_irqrestore(&xhci->lock, flags);
3625
3626	/* Issue and wait for the configure endpoint command,
3627	 * which must succeed.
3628	 */
3629	ret = xhci_configure_endpoint(xhci, udev, command,
3630			false, true);
3631
3632	/* xHC rejected the configure endpoint command for some reason, so we
3633	 * leave the streams rings intact.
3634	 */
3635	if (ret < 0)
3636		return ret;
3637
3638	spin_lock_irqsave(&xhci->lock, flags);
3639	for (i = 0; i < num_eps; i++) {
3640		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3641		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3642		vdev->eps[ep_index].stream_info = NULL;
3643		/* FIXME Unset maxPstreams in endpoint context and
3644		 * update deq ptr to point to normal string ring.
3645		 */
3646		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3647		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3648	}
3649	spin_unlock_irqrestore(&xhci->lock, flags);
3650
3651	return 0;
3652}
3653
3654/*
3655 * Deletes endpoint resources for endpoints that were active before a Reset
3656 * Device command, or a Disable Slot command.  The Reset Device command leaves
3657 * the control endpoint intact, whereas the Disable Slot command deletes it.
3658 *
3659 * Must be called with xhci->lock held.
3660 */
3661void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3662	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3663{
3664	int i;
3665	unsigned int num_dropped_eps = 0;
3666	unsigned int drop_flags = 0;
3667
3668	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3669		if (virt_dev->eps[i].ring) {
3670			drop_flags |= 1 << i;
3671			num_dropped_eps++;
3672		}
3673	}
3674	xhci->num_active_eps -= num_dropped_eps;
3675	if (num_dropped_eps)
3676		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677				"Dropped %u ep ctxs, flags = 0x%x, "
3678				"%u now active.",
3679				num_dropped_eps, drop_flags,
3680				xhci->num_active_eps);
3681}
3682
3683/*
3684 * This submits a Reset Device Command, which will set the device state to 0,
3685 * set the device address to 0, and disable all the endpoints except the default
3686 * control endpoint.  The USB core should come back and call
3687 * xhci_address_device(), and then re-set up the configuration.  If this is
3688 * called because of a usb_reset_and_verify_device(), then the old alternate
3689 * settings will be re-installed through the normal bandwidth allocation
3690 * functions.
3691 *
3692 * Wait for the Reset Device command to finish.  Remove all structures
3693 * associated with the endpoints that were disabled.  Clear the input device
3694 * structure? Reset the control endpoint 0 max packet size?
3695 *
3696 * If the virt_dev to be reset does not exist or does not match the udev,
3697 * it means the device is lost, possibly due to the xHC restore error and
3698 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3699 * re-allocate the device.
3700 */
3701static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3702		struct usb_device *udev)
3703{
3704	int ret, i;
3705	unsigned long flags;
3706	struct xhci_hcd *xhci;
3707	unsigned int slot_id;
3708	struct xhci_virt_device *virt_dev;
3709	struct xhci_command *reset_device_cmd;
 
 
3710	struct xhci_slot_ctx *slot_ctx;
3711	int old_active_eps = 0;
3712
3713	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3714	if (ret <= 0)
3715		return ret;
3716	xhci = hcd_to_xhci(hcd);
3717	slot_id = udev->slot_id;
3718	virt_dev = xhci->devs[slot_id];
3719	if (!virt_dev) {
3720		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3721				"not exist. Re-allocate the device\n", slot_id);
3722		ret = xhci_alloc_dev(hcd, udev);
3723		if (ret == 1)
3724			return 0;
3725		else
3726			return -EINVAL;
3727	}
3728
3729	if (virt_dev->tt_info)
3730		old_active_eps = virt_dev->tt_info->active_eps;
3731
3732	if (virt_dev->udev != udev) {
3733		/* If the virt_dev and the udev does not match, this virt_dev
3734		 * may belong to another udev.
3735		 * Re-allocate the device.
3736		 */
3737		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3738				"not match the udev. Re-allocate the device\n",
3739				slot_id);
3740		ret = xhci_alloc_dev(hcd, udev);
3741		if (ret == 1)
3742			return 0;
3743		else
3744			return -EINVAL;
3745	}
3746
3747	/* If device is not setup, there is no point in resetting it */
3748	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3749	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3750						SLOT_STATE_DISABLED)
3751		return 0;
3752
3753	trace_xhci_discover_or_reset_device(slot_ctx);
3754
3755	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3756	/* Allocate the command structure that holds the struct completion.
3757	 * Assume we're in process context, since the normal device reset
3758	 * process has to wait for the device anyway.  Storage devices are
3759	 * reset as part of error handling, so use GFP_NOIO instead of
3760	 * GFP_KERNEL.
3761	 */
3762	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3763	if (!reset_device_cmd) {
3764		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3765		return -ENOMEM;
3766	}
3767
3768	/* Attempt to submit the Reset Device command to the command ring */
3769	spin_lock_irqsave(&xhci->lock, flags);
 
3770
3771	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
 
 
 
 
 
 
 
 
3772	if (ret) {
3773		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3774		spin_unlock_irqrestore(&xhci->lock, flags);
3775		goto command_cleanup;
3776	}
3777	xhci_ring_cmd_db(xhci);
3778	spin_unlock_irqrestore(&xhci->lock, flags);
3779
3780	/* Wait for the Reset Device command to finish */
3781	wait_for_completion(reset_device_cmd->completion);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3782
3783	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3784	 * unless we tried to reset a slot ID that wasn't enabled,
3785	 * or the device wasn't in the addressed or configured state.
3786	 */
3787	ret = reset_device_cmd->status;
3788	switch (ret) {
3789	case COMP_COMMAND_ABORTED:
3790	case COMP_COMMAND_RING_STOPPED:
3791		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3792		ret = -ETIME;
3793		goto command_cleanup;
3794	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3795	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3796		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3797				slot_id,
3798				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3799		xhci_dbg(xhci, "Not freeing device rings.\n");
3800		/* Don't treat this as an error.  May change my mind later. */
3801		ret = 0;
3802		goto command_cleanup;
3803	case COMP_SUCCESS:
3804		xhci_dbg(xhci, "Successful reset device command.\n");
3805		break;
3806	default:
3807		if (xhci_is_vendor_info_code(xhci, ret))
3808			break;
3809		xhci_warn(xhci, "Unknown completion code %u for "
3810				"reset device command.\n", ret);
3811		ret = -EINVAL;
3812		goto command_cleanup;
3813	}
3814
3815	/* Free up host controller endpoint resources */
3816	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3817		spin_lock_irqsave(&xhci->lock, flags);
3818		/* Don't delete the default control endpoint resources */
3819		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3820		spin_unlock_irqrestore(&xhci->lock, flags);
3821	}
3822
3823	/* Everything but endpoint 0 is disabled, so free the rings. */
3824	for (i = 1; i < 31; i++) {
 
3825		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3826
3827		if (ep->ep_state & EP_HAS_STREAMS) {
3828			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3829					xhci_get_endpoint_address(i));
3830			xhci_free_stream_info(xhci, ep->stream_info);
3831			ep->stream_info = NULL;
3832			ep->ep_state &= ~EP_HAS_STREAMS;
3833		}
3834
3835		if (ep->ring) {
3836			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3837			xhci_free_endpoint_ring(xhci, virt_dev, i);
3838		}
3839		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3840			xhci_drop_ep_from_interval_table(xhci,
3841					&virt_dev->eps[i].bw_info,
3842					virt_dev->bw_table,
3843					udev,
3844					&virt_dev->eps[i],
3845					virt_dev->tt_info);
3846		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3847	}
3848	/* If necessary, update the number of active TTs on this root port */
3849	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3850	virt_dev->flags = 0;
 
 
3851	ret = 0;
3852
3853command_cleanup:
3854	xhci_free_command(xhci, reset_device_cmd);
3855	return ret;
3856}
3857
3858/*
3859 * At this point, the struct usb_device is about to go away, the device has
3860 * disconnected, and all traffic has been stopped and the endpoints have been
3861 * disabled.  Free any HC data structures associated with that device.
3862 */
3863static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3864{
3865	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3866	struct xhci_virt_device *virt_dev;
3867	struct xhci_slot_ctx *slot_ctx;
3868	unsigned long flags;
 
3869	int i, ret;
3870
3871	/*
3872	 * We called pm_runtime_get_noresume when the device was attached.
3873	 * Decrement the counter here to allow controller to runtime suspend
3874	 * if no devices remain.
3875	 */
3876	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3877		pm_runtime_put_noidle(hcd->self.controller);
3878
3879	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3880	/* If the host is halted due to driver unload, we still need to free the
3881	 * device.
3882	 */
3883	if (ret <= 0 && ret != -ENODEV)
3884		return;
3885
3886	virt_dev = xhci->devs[udev->slot_id];
3887	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3888	trace_xhci_free_dev(slot_ctx);
3889
3890	/* Stop any wayward timer functions (which may grab the lock) */
3891	for (i = 0; i < 31; i++)
3892		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3893	virt_dev->udev = NULL;
3894	xhci_disable_slot(xhci, udev->slot_id);
3895
3896	spin_lock_irqsave(&xhci->lock, flags);
3897	xhci_free_virt_device(xhci, udev->slot_id);
3898	spin_unlock_irqrestore(&xhci->lock, flags);
3899
3900}
3901
3902int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3903{
3904	struct xhci_command *command;
3905	unsigned long flags;
3906	u32 state;
3907	int ret;
3908
3909	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3910	if (!command)
3911		return -ENOMEM;
3912
3913	xhci_debugfs_remove_slot(xhci, slot_id);
 
 
 
3914
3915	spin_lock_irqsave(&xhci->lock, flags);
3916	/* Don't disable the slot if the host controller is dead. */
3917	state = readl(&xhci->op_regs->status);
3918	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3919			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
3920		spin_unlock_irqrestore(&xhci->lock, flags);
3921		kfree(command);
3922		return -ENODEV;
3923	}
3924
3925	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3926				slot_id);
3927	if (ret) {
3928		spin_unlock_irqrestore(&xhci->lock, flags);
3929		kfree(command);
3930		return ret;
3931	}
3932	xhci_ring_cmd_db(xhci);
3933	spin_unlock_irqrestore(&xhci->lock, flags);
3934
3935	wait_for_completion(command->completion);
3936
3937	if (command->status != COMP_SUCCESS)
3938		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3939			  slot_id, command->status);
3940
3941	xhci_free_command(xhci, command);
3942
3943	return 0;
3944}
3945
3946/*
3947 * Checks if we have enough host controller resources for the default control
3948 * endpoint.
3949 *
3950 * Must be called with xhci->lock held.
3951 */
3952static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3953{
3954	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3955		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3956				"Not enough ep ctxs: "
3957				"%u active, need to add 1, limit is %u.",
3958				xhci->num_active_eps, xhci->limit_active_eps);
3959		return -ENOMEM;
3960	}
3961	xhci->num_active_eps += 1;
3962	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3963			"Adding 1 ep ctx, %u now active.",
3964			xhci->num_active_eps);
3965	return 0;
3966}
3967
3968
3969/*
3970 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3971 * timed out, or allocating memory failed.  Returns 1 on success.
3972 */
3973int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3974{
3975	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3976	struct xhci_virt_device *vdev;
3977	struct xhci_slot_ctx *slot_ctx;
3978	unsigned long flags;
3979	int ret, slot_id;
3980	struct xhci_command *command;
3981
3982	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3983	if (!command)
3984		return 0;
3985
3986	spin_lock_irqsave(&xhci->lock, flags);
3987	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
 
3988	if (ret) {
3989		spin_unlock_irqrestore(&xhci->lock, flags);
3990		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3991		xhci_free_command(xhci, command);
3992		return 0;
3993	}
3994	xhci_ring_cmd_db(xhci);
3995	spin_unlock_irqrestore(&xhci->lock, flags);
3996
3997	wait_for_completion(command->completion);
3998	slot_id = command->slot_id;
 
 
 
 
 
 
 
3999
4000	if (!slot_id || command->status != COMP_SUCCESS) {
4001		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4002			 xhci_trb_comp_code_string(command->status));
4003		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4004				HCS_MAX_SLOTS(
4005					readl(&xhci->cap_regs->hcs_params1)));
4006		xhci_free_command(xhci, command);
4007		return 0;
4008	}
4009
4010	xhci_free_command(xhci, command);
4011
4012	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4013		spin_lock_irqsave(&xhci->lock, flags);
4014		ret = xhci_reserve_host_control_ep_resources(xhci);
4015		if (ret) {
4016			spin_unlock_irqrestore(&xhci->lock, flags);
4017			xhci_warn(xhci, "Not enough host resources, "
4018					"active endpoint contexts = %u\n",
4019					xhci->num_active_eps);
4020			goto disable_slot;
4021		}
4022		spin_unlock_irqrestore(&xhci->lock, flags);
4023	}
4024	/* Use GFP_NOIO, since this function can be called from
4025	 * xhci_discover_or_reset_device(), which may be called as part of
4026	 * mass storage driver error handling.
4027	 */
4028	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4029		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4030		goto disable_slot;
4031	}
4032	vdev = xhci->devs[slot_id];
4033	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4034	trace_xhci_alloc_dev(slot_ctx);
4035
4036	udev->slot_id = slot_id;
4037
4038	xhci_debugfs_create_slot(xhci, slot_id);
4039
4040	/*
4041	 * If resetting upon resume, we can't put the controller into runtime
4042	 * suspend if there is a device attached.
4043	 */
4044	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4045		pm_runtime_get_noresume(hcd->self.controller);
4046
4047	/* Is this a LS or FS device under a HS hub? */
4048	/* Hub or peripherial? */
4049	return 1;
4050
4051disable_slot:
4052	xhci_disable_slot(xhci, udev->slot_id);
4053	xhci_free_virt_device(xhci, udev->slot_id);
4054
 
 
4055	return 0;
4056}
4057
4058/**
4059 * xhci_setup_device - issues an Address Device command to assign a unique
4060 *			USB bus address.
4061 * @hcd: USB host controller data structure.
4062 * @udev: USB dev structure representing the connected device.
4063 * @setup: Enum specifying setup mode: address only or with context.
4064 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4065 *
4066 * Return: 0 if successful; otherwise, negative error code.
 
4067 */
4068static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4069			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4070{
4071	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4072	unsigned long flags;
 
4073	struct xhci_virt_device *virt_dev;
4074	int ret = 0;
4075	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4076	struct xhci_slot_ctx *slot_ctx;
4077	struct xhci_input_control_ctx *ctrl_ctx;
4078	u64 temp_64;
4079	struct xhci_command *command = NULL;
4080
4081	mutex_lock(&xhci->mutex);
4082
4083	if (xhci->xhc_state) {	/* dying, removing or halted */
4084		ret = -ESHUTDOWN;
4085		goto out;
4086	}
4087
4088	if (!udev->slot_id) {
4089		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4090				"Bad Slot ID %d", udev->slot_id);
4091		ret = -EINVAL;
4092		goto out;
4093	}
4094
4095	virt_dev = xhci->devs[udev->slot_id];
4096
4097	if (WARN_ON(!virt_dev)) {
4098		/*
4099		 * In plug/unplug torture test with an NEC controller,
4100		 * a zero-dereference was observed once due to virt_dev = 0.
4101		 * Print useful debug rather than crash if it is observed again!
4102		 */
4103		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4104			udev->slot_id);
4105		ret = -EINVAL;
4106		goto out;
4107	}
4108	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4109	trace_xhci_setup_device_slot(slot_ctx);
4110
4111	if (setup == SETUP_CONTEXT_ONLY) {
4112		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4113		    SLOT_STATE_DEFAULT) {
4114			xhci_dbg(xhci, "Slot already in default state\n");
4115			goto out;
4116		}
4117	}
4118
4119	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4120	if (!command) {
4121		ret = -ENOMEM;
4122		goto out;
4123	}
4124
4125	command->in_ctx = virt_dev->in_ctx;
4126	command->timeout_ms = timeout_ms;
4127
4128	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4129	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4130	if (!ctrl_ctx) {
4131		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4132				__func__);
4133		ret = -EINVAL;
4134		goto out;
4135	}
4136	/*
4137	 * If this is the first Set Address since device plug-in or
4138	 * virt_device realloaction after a resume with an xHCI power loss,
4139	 * then set up the slot context.
4140	 */
4141	if (!slot_ctx->dev_info)
4142		xhci_setup_addressable_virt_dev(xhci, udev);
4143	/* Otherwise, update the control endpoint ring enqueue pointer. */
4144	else
4145		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
 
4146	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4147	ctrl_ctx->drop_flags = 0;
4148
4149	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4150				le32_to_cpu(slot_ctx->dev_info) >> 27);
4151
4152	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4153	spin_lock_irqsave(&xhci->lock, flags);
4154	trace_xhci_setup_device(virt_dev);
4155	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4156					udev->slot_id, setup);
4157	if (ret) {
4158		spin_unlock_irqrestore(&xhci->lock, flags);
4159		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160				"FIXME: allocate a command ring segment");
4161		goto out;
4162	}
4163	xhci_ring_cmd_db(xhci);
4164	spin_unlock_irqrestore(&xhci->lock, flags);
4165
4166	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4167	wait_for_completion(command->completion);
4168
4169	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4170	 * the SetAddress() "recovery interval" required by USB and aborting the
4171	 * command on a timeout.
4172	 */
4173	switch (command->status) {
4174	case COMP_COMMAND_ABORTED:
4175	case COMP_COMMAND_RING_STOPPED:
4176		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4177		ret = -ETIME;
4178		break;
4179	case COMP_CONTEXT_STATE_ERROR:
4180	case COMP_SLOT_NOT_ENABLED_ERROR:
4181		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4182			 act, udev->slot_id);
 
 
 
 
 
4183		ret = -EINVAL;
4184		break;
4185	case COMP_USB_TRANSACTION_ERROR:
4186		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4187
4188		mutex_unlock(&xhci->mutex);
4189		ret = xhci_disable_slot(xhci, udev->slot_id);
4190		xhci_free_virt_device(xhci, udev->slot_id);
4191		if (!ret)
4192			xhci_alloc_dev(hcd, udev);
4193		kfree(command->completion);
4194		kfree(command);
4195		return -EPROTO;
4196	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4197		dev_warn(&udev->dev,
4198			 "ERROR: Incompatible device for setup %s command\n", act);
4199		ret = -ENODEV;
4200		break;
4201	case COMP_SUCCESS:
4202		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203			       "Successful setup %s command", act);
4204		break;
4205	default:
4206		xhci_err(xhci,
4207			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4208			 act, command->status);
4209		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4210		ret = -EINVAL;
4211		break;
4212	}
4213	if (ret)
4214		goto out;
 
4215	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4216	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4217			"Op regs DCBAA ptr = %#016llx", temp_64);
4218	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219		"Slot ID %d dcbaa entry @%p = %#016llx",
4220		udev->slot_id,
4221		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4222		(unsigned long long)
4223		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4224	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4225			"Output Context DMA address = %#08llx",
4226			(unsigned long long)virt_dev->out_ctx->dma);
4227	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4228				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4229	/*
4230	 * USB core uses address 1 for the roothubs, so we add one to the
4231	 * address given back to us by the HC.
4232	 */
4233	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4234				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
 
4235	/* Zero the input context control for later use */
4236	ctrl_ctx->add_flags = 0;
4237	ctrl_ctx->drop_flags = 0;
4238	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4239	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4240
4241	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4242		       "Internal device address = %d",
4243		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4244out:
4245	mutex_unlock(&xhci->mutex);
4246	if (command) {
4247		kfree(command->completion);
4248		kfree(command);
4249	}
4250	return ret;
4251}
4252
4253static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4254			       unsigned int timeout_ms)
4255{
4256	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4257}
4258
4259static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4260{
4261	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4262				 XHCI_CMD_DEFAULT_TIMEOUT);
4263}
4264
4265/*
4266 * Transfer the port index into real index in the HW port status
4267 * registers. Caculate offset between the port's PORTSC register
4268 * and port status base. Divide the number of per port register
4269 * to get the real index. The raw port number bases 1.
4270 */
4271int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4272{
4273	struct xhci_hub *rhub;
4274
4275	rhub = xhci_get_rhub(hcd);
4276	return rhub->ports[port1 - 1]->hw_portnum + 1;
4277}
4278
4279/*
4280 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4281 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4282 */
4283static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4284			struct usb_device *udev, u16 max_exit_latency)
4285{
4286	struct xhci_virt_device *virt_dev;
4287	struct xhci_command *command;
4288	struct xhci_input_control_ctx *ctrl_ctx;
4289	struct xhci_slot_ctx *slot_ctx;
4290	unsigned long flags;
4291	int ret;
4292
4293	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4294	if (!command)
4295		return -ENOMEM;
4296
4297	spin_lock_irqsave(&xhci->lock, flags);
4298
4299	virt_dev = xhci->devs[udev->slot_id];
4300
4301	/*
4302	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4303	 * xHC was re-initialized. Exit latency will be set later after
4304	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4305	 */
4306
4307	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4308		spin_unlock_irqrestore(&xhci->lock, flags);
4309		xhci_free_command(xhci, command);
4310		return 0;
4311	}
4312
4313	/* Attempt to issue an Evaluate Context command to change the MEL. */
4314	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4315	if (!ctrl_ctx) {
4316		spin_unlock_irqrestore(&xhci->lock, flags);
4317		xhci_free_command(xhci, command);
4318		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4319				__func__);
4320		return -ENOMEM;
4321	}
4322
4323	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4324	spin_unlock_irqrestore(&xhci->lock, flags);
4325
4326	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4327	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4328	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4329	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4330	slot_ctx->dev_state = 0;
4331
4332	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4333			"Set up evaluate context for LPM MEL change.");
4334
4335	/* Issue and wait for the evaluate context command. */
4336	ret = xhci_configure_endpoint(xhci, udev, command,
4337			true, true);
4338
4339	if (!ret) {
4340		spin_lock_irqsave(&xhci->lock, flags);
4341		virt_dev->current_mel = max_exit_latency;
4342		spin_unlock_irqrestore(&xhci->lock, flags);
4343	}
4344
4345	xhci_free_command(xhci, command);
4346
4347	return ret;
4348}
4349
4350#ifdef CONFIG_PM
4351
4352/* BESL to HIRD Encoding array for USB2 LPM */
4353static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4354	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4355
4356/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4357static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4358					struct usb_device *udev)
4359{
4360	int u2del, besl, besl_host;
4361	int besl_device = 0;
4362	u32 field;
4363
4364	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4365	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4366
4367	if (field & USB_BESL_SUPPORT) {
4368		for (besl_host = 0; besl_host < 16; besl_host++) {
4369			if (xhci_besl_encoding[besl_host] >= u2del)
4370				break;
4371		}
4372		/* Use baseline BESL value as default */
4373		if (field & USB_BESL_BASELINE_VALID)
4374			besl_device = USB_GET_BESL_BASELINE(field);
4375		else if (field & USB_BESL_DEEP_VALID)
4376			besl_device = USB_GET_BESL_DEEP(field);
4377	} else {
4378		if (u2del <= 50)
4379			besl_host = 0;
4380		else
4381			besl_host = (u2del - 51) / 75 + 1;
4382	}
4383
4384	besl = besl_host + besl_device;
4385	if (besl > 15)
4386		besl = 15;
4387
4388	return besl;
4389}
4390
4391/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4392static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4393{
4394	u32 field;
4395	int l1;
4396	int besld = 0;
4397	int hirdm = 0;
 
 
 
 
 
4398
4399	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
 
 
4400
4401	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4402	l1 = udev->l1_params.timeout / 256;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4403
4404	/* device has preferred BESLD */
4405	if (field & USB_BESL_DEEP_VALID) {
4406		besld = USB_GET_BESL_DEEP(field);
4407		hirdm = 1;
 
 
 
 
 
 
 
 
 
4408	}
4409
4410	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4411}
4412
4413static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4414			struct usb_device *udev, int enable)
4415{
4416	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4417	struct xhci_port **ports;
4418	__le32 __iomem	*pm_addr, *hlpm_addr;
4419	u32		pm_val, hlpm_val, field;
4420	unsigned int	port_num;
4421	unsigned long	flags;
4422	int		hird, exit_latency;
4423	int		ret;
4424
4425	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4426		return -EPERM;
4427
4428	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4429			!udev->lpm_capable)
4430		return -EPERM;
4431
4432	if (!udev->parent || udev->parent->parent ||
4433			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4434		return -EPERM;
4435
4436	if (udev->usb2_hw_lpm_capable != 1)
4437		return -EPERM;
4438
4439	spin_lock_irqsave(&xhci->lock, flags);
4440
4441	ports = xhci->usb2_rhub.ports;
4442	port_num = udev->portnum - 1;
4443	pm_addr = ports[port_num]->addr + PORTPMSC;
4444	pm_val = readl(pm_addr);
4445	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4446
4447	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4448			enable ? "enable" : "disable", port_num + 1);
4449
4450	if (enable) {
4451		/* Host supports BESL timeout instead of HIRD */
4452		if (udev->usb2_hw_lpm_besl_capable) {
4453			/* if device doesn't have a preferred BESL value use a
4454			 * default one which works with mixed HIRD and BESL
4455			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4456			 */
4457			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4458			if ((field & USB_BESL_SUPPORT) &&
4459			    (field & USB_BESL_BASELINE_VALID))
4460				hird = USB_GET_BESL_BASELINE(field);
4461			else
4462				hird = udev->l1_params.besl;
4463
4464			exit_latency = xhci_besl_encoding[hird];
4465			spin_unlock_irqrestore(&xhci->lock, flags);
4466
4467			ret = xhci_change_max_exit_latency(xhci, udev,
4468							   exit_latency);
4469			if (ret < 0)
4470				return ret;
4471			spin_lock_irqsave(&xhci->lock, flags);
4472
4473			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4474			writel(hlpm_val, hlpm_addr);
4475			/* flush write */
4476			readl(hlpm_addr);
4477		} else {
4478			hird = xhci_calculate_hird_besl(xhci, udev);
4479		}
4480
4481		pm_val &= ~PORT_HIRD_MASK;
4482		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4483		writel(pm_val, pm_addr);
4484		pm_val = readl(pm_addr);
4485		pm_val |= PORT_HLE;
4486		writel(pm_val, pm_addr);
4487		/* flush write */
4488		readl(pm_addr);
4489	} else {
4490		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4491		writel(pm_val, pm_addr);
4492		/* flush write */
4493		readl(pm_addr);
4494		if (udev->usb2_hw_lpm_besl_capable) {
4495			spin_unlock_irqrestore(&xhci->lock, flags);
4496			xhci_change_max_exit_latency(xhci, udev, 0);
4497			readl_poll_timeout(ports[port_num]->addr, pm_val,
4498					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4499					   100, 10000);
4500			return 0;
4501		}
4502	}
4503
4504	spin_unlock_irqrestore(&xhci->lock, flags);
4505	return 0;
4506}
4507
4508/* check if a usb2 port supports a given extened capability protocol
4509 * only USB2 ports extended protocol capability values are cached.
4510 * Return 1 if capability is supported
4511 */
4512static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4513					   unsigned capability)
4514{
4515	u32 port_offset, port_count;
4516	int i;
4517
4518	for (i = 0; i < xhci->num_ext_caps; i++) {
4519		if (xhci->ext_caps[i] & capability) {
4520			/* port offsets starts at 1 */
4521			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4522			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4523			if (port >= port_offset &&
4524			    port < port_offset + port_count)
4525				return 1;
4526		}
4527	}
 
4528	return 0;
4529}
4530
4531static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4532{
4533	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4534	int		portnum = udev->portnum - 1;
4535
4536	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4537		return 0;
4538
4539	/* we only support lpm for non-hub device connected to root hub yet */
4540	if (!udev->parent || udev->parent->parent ||
4541			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4542		return 0;
4543
4544	if (xhci->hw_lpm_support == 1 &&
4545			xhci_check_usb2_port_capability(
4546				xhci, portnum, XHCI_HLC)) {
4547		udev->usb2_hw_lpm_capable = 1;
4548		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4549		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4550		if (xhci_check_usb2_port_capability(xhci, portnum,
4551					XHCI_BLC))
4552			udev->usb2_hw_lpm_besl_capable = 1;
4553	}
4554
 
 
4555	return 0;
4556}
4557
 
 
4558/*---------------------- USB 3.0 Link PM functions ------------------------*/
4559
 
4560/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4561static unsigned long long xhci_service_interval_to_ns(
4562		struct usb_endpoint_descriptor *desc)
4563{
4564	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4565}
4566
4567static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4568		enum usb3_link_state state)
4569{
4570	unsigned long long sel;
4571	unsigned long long pel;
4572	unsigned int max_sel_pel;
4573	char *state_name;
4574
4575	switch (state) {
4576	case USB3_LPM_U1:
4577		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4578		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4579		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4580		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4581		state_name = "U1";
4582		break;
4583	case USB3_LPM_U2:
4584		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4585		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4586		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4587		state_name = "U2";
4588		break;
4589	default:
4590		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4591				__func__);
4592		return USB3_LPM_DISABLED;
4593	}
4594
4595	if (sel <= max_sel_pel && pel <= max_sel_pel)
4596		return USB3_LPM_DEVICE_INITIATED;
4597
4598	if (sel > max_sel_pel)
4599		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4600				"due to long SEL %llu ms\n",
4601				state_name, sel);
4602	else
4603		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4604				"due to long PEL %llu ms\n",
4605				state_name, pel);
4606	return USB3_LPM_DISABLED;
4607}
4608
4609/* The U1 timeout should be the maximum of the following values:
 
4610 *  - For control endpoints, U1 system exit latency (SEL) * 3
4611 *  - For bulk endpoints, U1 SEL * 5
4612 *  - For interrupt endpoints:
4613 *    - Notification EPs, U1 SEL * 3
4614 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4615 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4616 */
4617static unsigned long long xhci_calculate_intel_u1_timeout(
4618		struct usb_device *udev,
4619		struct usb_endpoint_descriptor *desc)
4620{
4621	unsigned long long timeout_ns;
4622	int ep_type;
4623	int intr_type;
4624
4625	ep_type = usb_endpoint_type(desc);
4626	switch (ep_type) {
4627	case USB_ENDPOINT_XFER_CONTROL:
4628		timeout_ns = udev->u1_params.sel * 3;
4629		break;
4630	case USB_ENDPOINT_XFER_BULK:
4631		timeout_ns = udev->u1_params.sel * 5;
4632		break;
4633	case USB_ENDPOINT_XFER_INT:
4634		intr_type = usb_endpoint_interrupt_type(desc);
4635		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4636			timeout_ns = udev->u1_params.sel * 3;
4637			break;
4638		}
4639		/* Otherwise the calculation is the same as isoc eps */
4640		fallthrough;
4641	case USB_ENDPOINT_XFER_ISOC:
4642		timeout_ns = xhci_service_interval_to_ns(desc);
4643		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4644		if (timeout_ns < udev->u1_params.sel * 2)
4645			timeout_ns = udev->u1_params.sel * 2;
4646		break;
4647	default:
4648		return 0;
4649	}
4650
4651	return timeout_ns;
4652}
4653
4654/* Returns the hub-encoded U1 timeout value. */
4655static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4656		struct usb_device *udev,
4657		struct usb_endpoint_descriptor *desc)
4658{
4659	unsigned long long timeout_ns;
4660
4661	/* Prevent U1 if service interval is shorter than U1 exit latency */
4662	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4663		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4664			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4665			return USB3_LPM_DISABLED;
4666		}
4667	}
4668
4669	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4670		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4671	else
4672		timeout_ns = udev->u1_params.sel;
4673
4674	/* The U1 timeout is encoded in 1us intervals.
4675	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4676	 */
4677	if (timeout_ns == USB3_LPM_DISABLED)
4678		timeout_ns = 1;
4679	else
4680		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4681
4682	/* If the necessary timeout value is bigger than what we can set in the
4683	 * USB 3.0 hub, we have to disable hub-initiated U1.
4684	 */
4685	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4686		return timeout_ns;
4687	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4688			"due to long timeout %llu ms\n", timeout_ns);
4689	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4690}
4691
4692/* The U2 timeout should be the maximum of:
 
4693 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4694 *  - largest bInterval of any active periodic endpoint (to avoid going
4695 *    into lower power link states between intervals).
4696 *  - the U2 Exit Latency of the device
4697 */
4698static unsigned long long xhci_calculate_intel_u2_timeout(
4699		struct usb_device *udev,
4700		struct usb_endpoint_descriptor *desc)
4701{
4702	unsigned long long timeout_ns;
4703	unsigned long long u2_del_ns;
4704
4705	timeout_ns = 10 * 1000 * 1000;
4706
4707	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4708			(xhci_service_interval_to_ns(desc) > timeout_ns))
4709		timeout_ns = xhci_service_interval_to_ns(desc);
4710
4711	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4712	if (u2_del_ns > timeout_ns)
4713		timeout_ns = u2_del_ns;
4714
4715	return timeout_ns;
4716}
4717
4718/* Returns the hub-encoded U2 timeout value. */
4719static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4720		struct usb_device *udev,
4721		struct usb_endpoint_descriptor *desc)
4722{
4723	unsigned long long timeout_ns;
4724
4725	/* Prevent U2 if service interval is shorter than U2 exit latency */
4726	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4727		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4728			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4729			return USB3_LPM_DISABLED;
4730		}
4731	}
4732
4733	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4734		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4735	else
4736		timeout_ns = udev->u2_params.sel;
4737
4738	/* The U2 timeout is encoded in 256us intervals */
4739	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4740	/* If the necessary timeout value is bigger than what we can set in the
4741	 * USB 3.0 hub, we have to disable hub-initiated U2.
4742	 */
4743	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4744		return timeout_ns;
4745	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4746			"due to long timeout %llu ms\n", timeout_ns);
4747	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4748}
4749
4750static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4751		struct usb_device *udev,
4752		struct usb_endpoint_descriptor *desc,
4753		enum usb3_link_state state,
4754		u16 *timeout)
4755{
4756	if (state == USB3_LPM_U1)
4757		return xhci_calculate_u1_timeout(xhci, udev, desc);
4758	else if (state == USB3_LPM_U2)
4759		return xhci_calculate_u2_timeout(xhci, udev, desc);
 
 
 
4760
4761	return USB3_LPM_DISABLED;
4762}
4763
4764static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4765		struct usb_device *udev,
4766		struct usb_endpoint_descriptor *desc,
4767		enum usb3_link_state state,
4768		u16 *timeout)
4769{
4770	u16 alt_timeout;
4771
4772	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4773		desc, state, timeout);
4774
4775	/* If we found we can't enable hub-initiated LPM, and
4776	 * the U1 or U2 exit latency was too high to allow
4777	 * device-initiated LPM as well, then we will disable LPM
4778	 * for this device, so stop searching any further.
4779	 */
4780	if (alt_timeout == USB3_LPM_DISABLED) {
 
4781		*timeout = alt_timeout;
4782		return -E2BIG;
4783	}
4784	if (alt_timeout > *timeout)
4785		*timeout = alt_timeout;
4786	return 0;
4787}
4788
4789static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4790		struct usb_device *udev,
4791		struct usb_host_interface *alt,
4792		enum usb3_link_state state,
4793		u16 *timeout)
4794{
4795	int j;
4796
4797	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4798		if (xhci_update_timeout_for_endpoint(xhci, udev,
4799					&alt->endpoint[j].desc, state, timeout))
4800			return -E2BIG;
 
4801	}
4802	return 0;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806		struct usb_device *udev,
4807		enum usb3_link_state state)
4808{
4809	struct usb_device *parent = udev->parent;
4810	int tier = 1; /* roothub is tier1 */
4811
4812	while (parent) {
4813		parent = parent->parent;
4814		tier++;
4815	}
4816
4817	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4818		goto fail;
4819	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4820		goto fail;
4821
4822	return 0;
4823fail:
4824	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4825			tier);
 
 
 
4826	return -E2BIG;
4827}
4828
 
 
 
 
 
 
 
 
 
4829/* Returns the U1 or U2 timeout that should be enabled.
4830 * If the tier check or timeout setting functions return with a non-zero exit
4831 * code, that means the timeout value has been finalized and we shouldn't look
4832 * at any more endpoints.
4833 */
4834static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4835			struct usb_device *udev, enum usb3_link_state state)
4836{
4837	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4838	struct usb_host_config *config;
4839	char *state_name;
4840	int i;
4841	u16 timeout = USB3_LPM_DISABLED;
4842
4843	if (state == USB3_LPM_U1)
4844		state_name = "U1";
4845	else if (state == USB3_LPM_U2)
4846		state_name = "U2";
4847	else {
4848		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4849				state);
4850		return timeout;
4851	}
4852
 
 
 
4853	/* Gather some information about the currently installed configuration
4854	 * and alternate interface settings.
4855	 */
4856	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4857			state, &timeout))
4858		return timeout;
4859
4860	config = udev->actconfig;
4861	if (!config)
4862		return timeout;
4863
4864	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4865		struct usb_driver *driver;
4866		struct usb_interface *intf = config->interface[i];
4867
4868		if (!intf)
4869			continue;
4870
4871		/* Check if any currently bound drivers want hub-initiated LPM
4872		 * disabled.
4873		 */
4874		if (intf->dev.driver) {
4875			driver = to_usb_driver(intf->dev.driver);
4876			if (driver && driver->disable_hub_initiated_lpm) {
4877				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4878					state_name, driver->name);
4879				timeout = xhci_get_timeout_no_hub_lpm(udev,
4880								      state);
4881				if (timeout == USB3_LPM_DISABLED)
4882					return timeout;
4883			}
4884		}
4885
4886		/* Not sure how this could happen... */
4887		if (!intf->cur_altsetting)
4888			continue;
4889
4890		if (xhci_update_timeout_for_interface(xhci, udev,
4891					intf->cur_altsetting,
4892					state, &timeout))
4893			return timeout;
4894	}
4895	return timeout;
4896}
4897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4898static int calculate_max_exit_latency(struct usb_device *udev,
4899		enum usb3_link_state state_changed,
4900		u16 hub_encoded_timeout)
4901{
4902	unsigned long long u1_mel_us = 0;
4903	unsigned long long u2_mel_us = 0;
4904	unsigned long long mel_us = 0;
4905	bool disabling_u1;
4906	bool disabling_u2;
4907	bool enabling_u1;
4908	bool enabling_u2;
4909
4910	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4911			hub_encoded_timeout == USB3_LPM_DISABLED);
4912	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4913			hub_encoded_timeout == USB3_LPM_DISABLED);
4914
4915	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4916			hub_encoded_timeout != USB3_LPM_DISABLED);
4917	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4918			hub_encoded_timeout != USB3_LPM_DISABLED);
4919
4920	/* If U1 was already enabled and we're not disabling it,
4921	 * or we're going to enable U1, account for the U1 max exit latency.
4922	 */
4923	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4924			enabling_u1)
4925		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4926	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4927			enabling_u2)
4928		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4929
4930	mel_us = max(u1_mel_us, u2_mel_us);
4931
 
 
4932	/* xHCI host controller max exit latency field is only 16 bits wide. */
4933	if (mel_us > MAX_EXIT) {
4934		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4935				"is too big.\n", mel_us);
4936		return -E2BIG;
4937	}
4938	return mel_us;
4939}
4940
4941/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4942static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4943			struct usb_device *udev, enum usb3_link_state state)
4944{
4945	struct xhci_hcd	*xhci;
4946	struct xhci_port *port;
4947	u16 hub_encoded_timeout;
4948	int mel;
4949	int ret;
4950
4951	xhci = hcd_to_xhci(hcd);
4952	/* The LPM timeout values are pretty host-controller specific, so don't
4953	 * enable hub-initiated timeouts unless the vendor has provided
4954	 * information about their timeout algorithm.
4955	 */
4956	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957			!xhci->devs[udev->slot_id])
4958		return USB3_LPM_DISABLED;
4959
4960	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4961		return USB3_LPM_DISABLED;
4962
4963	/* If connected to root port then check port can handle lpm */
4964	if (udev->parent && !udev->parent->parent) {
4965		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4966		if (port->lpm_incapable)
4967			return USB3_LPM_DISABLED;
4968	}
4969
4970	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4971	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4972	if (mel < 0) {
4973		/* Max Exit Latency is too big, disable LPM. */
4974		hub_encoded_timeout = USB3_LPM_DISABLED;
4975		mel = 0;
4976	}
4977
4978	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4979	if (ret)
4980		return ret;
4981	return hub_encoded_timeout;
4982}
4983
4984static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4985			struct usb_device *udev, enum usb3_link_state state)
4986{
4987	struct xhci_hcd	*xhci;
4988	u16 mel;
 
4989
4990	xhci = hcd_to_xhci(hcd);
4991	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4992			!xhci->devs[udev->slot_id])
4993		return 0;
4994
4995	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4996	return xhci_change_max_exit_latency(xhci, udev, mel);
4997}
4998#else /* CONFIG_PM */
4999
5000static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5001				struct usb_device *udev, int enable)
5002{
5003	return 0;
5004}
5005
5006static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5007{
5008	return 0;
5009}
 
5010
5011static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5012			struct usb_device *udev, enum usb3_link_state state)
5013{
5014	return USB3_LPM_DISABLED;
5015}
5016
5017static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5018			struct usb_device *udev, enum usb3_link_state state)
5019{
5020	return 0;
5021}
5022#endif	/* CONFIG_PM */
5023
5024/*-------------------------------------------------------------------------*/
5025
5026/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5027 * internal data structures for the device.
5028 */
5029int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5030			struct usb_tt *tt, gfp_t mem_flags)
5031{
5032	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5033	struct xhci_virt_device *vdev;
5034	struct xhci_command *config_cmd;
5035	struct xhci_input_control_ctx *ctrl_ctx;
5036	struct xhci_slot_ctx *slot_ctx;
5037	unsigned long flags;
5038	unsigned think_time;
5039	int ret;
5040
5041	/* Ignore root hubs */
5042	if (!hdev->parent)
5043		return 0;
5044
5045	vdev = xhci->devs[hdev->slot_id];
5046	if (!vdev) {
5047		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5048		return -EINVAL;
5049	}
5050
5051	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5052	if (!config_cmd)
5053		return -ENOMEM;
5054
5055	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5056	if (!ctrl_ctx) {
5057		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5058				__func__);
5059		xhci_free_command(xhci, config_cmd);
5060		return -ENOMEM;
5061	}
5062
5063	spin_lock_irqsave(&xhci->lock, flags);
5064	if (hdev->speed == USB_SPEED_HIGH &&
5065			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5066		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5067		xhci_free_command(xhci, config_cmd);
5068		spin_unlock_irqrestore(&xhci->lock, flags);
5069		return -ENOMEM;
5070	}
5071
5072	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
 
5073	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5074	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5075	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5076	/*
5077	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5078	 * but it may be already set to 1 when setup an xHCI virtual
5079	 * device, so clear it anyway.
5080	 */
5081	if (tt->multi)
5082		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5083	else if (hdev->speed == USB_SPEED_FULL)
5084		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5085
5086	if (xhci->hci_version > 0x95) {
5087		xhci_dbg(xhci, "xHCI version %x needs hub "
5088				"TT think time and number of ports\n",
5089				(unsigned int) xhci->hci_version);
5090		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5091		/* Set TT think time - convert from ns to FS bit times.
5092		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5093		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5094		 *
5095		 * xHCI 1.0: this field shall be 0 if the device is not a
5096		 * High-spped hub.
5097		 */
5098		think_time = tt->think_time;
5099		if (think_time != 0)
5100			think_time = (think_time / 666) - 1;
5101		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5102			slot_ctx->tt_info |=
5103				cpu_to_le32(TT_THINK_TIME(think_time));
5104	} else {
5105		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5106				"TT think time or number of ports\n",
5107				(unsigned int) xhci->hci_version);
5108	}
5109	slot_ctx->dev_state = 0;
5110	spin_unlock_irqrestore(&xhci->lock, flags);
5111
5112	xhci_dbg(xhci, "Set up %s for hub device.\n",
5113			(xhci->hci_version > 0x95) ?
5114			"configure endpoint" : "evaluate context");
 
 
5115
5116	/* Issue and wait for the configure endpoint or
5117	 * evaluate context command.
5118	 */
5119	if (xhci->hci_version > 0x95)
5120		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5121				false, false);
5122	else
5123		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5124				true, false);
5125
 
 
 
5126	xhci_free_command(xhci, config_cmd);
5127	return ret;
5128}
5129EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5130
5131static int xhci_get_frame(struct usb_hcd *hcd)
5132{
5133	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5134	/* EHCI mods by the periodic size.  Why? */
5135	return readl(&xhci->run_regs->microframe_index) >> 3;
5136}
5137
5138static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5139{
5140	xhci->usb2_rhub.hcd = hcd;
5141	hcd->speed = HCD_USB2;
5142	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5143	/*
5144	 * USB 2.0 roothub under xHCI has an integrated TT,
5145	 * (rate matching hub) as opposed to having an OHCI/UHCI
5146	 * companion controller.
5147	 */
5148	hcd->has_tt = 1;
5149}
5150
5151static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5152{
5153	unsigned int minor_rev;
5154
5155	/*
5156	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5157	 * should return 0x31 for sbrn, or that the minor revision
5158	 * is a two digit BCD containig minor and sub-minor numbers.
5159	 * This was later clarified in xHCI 1.2.
5160	 *
5161	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5162	 * minor revision set to 0x1 instead of 0x10.
5163	 */
5164	if (xhci->usb3_rhub.min_rev == 0x1)
5165		minor_rev = 1;
5166	else
5167		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5168
5169	switch (minor_rev) {
5170	case 2:
5171		hcd->speed = HCD_USB32;
5172		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5173		hcd->self.root_hub->rx_lanes = 2;
5174		hcd->self.root_hub->tx_lanes = 2;
5175		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5176		break;
5177	case 1:
5178		hcd->speed = HCD_USB31;
5179		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5180		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5181		break;
5182	}
5183	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5184		  minor_rev, minor_rev ? "Enhanced " : "");
5185
5186	xhci->usb3_rhub.hcd = hcd;
5187}
5188
5189int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5190{
5191	struct xhci_hcd		*xhci;
5192	/*
5193	 * TODO: Check with DWC3 clients for sysdev according to
5194	 * quirks
5195	 */
5196	struct device		*dev = hcd->self.sysdev;
5197	int			retval;
 
5198
5199	/* Accept arbitrarily long scatter-gather lists */
5200	hcd->self.sg_tablesize = ~0;
5201
5202	/* support to build packet from discontinuous buffers */
5203	hcd->self.no_sg_constraint = 1;
5204
5205	/* XHCI controllers don't stop the ep queue on short packets :| */
5206	hcd->self.no_stop_on_short = 1;
5207
5208	xhci = hcd_to_xhci(hcd);
5209
5210	if (!usb_hcd_is_primary_hcd(hcd)) {
5211		xhci_hcd_init_usb3_data(xhci, hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5212		return 0;
5213	}
5214
5215	mutex_init(&xhci->mutex);
5216	xhci->main_hcd = hcd;
5217	xhci->cap_regs = hcd->regs;
5218	xhci->op_regs = hcd->regs +
5219		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5220	xhci->run_regs = hcd->regs +
5221		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5222	/* Cache read-only capability registers */
5223	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5224	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5225	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5226	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5227	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5228	if (xhci->hci_version > 0x100)
5229		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5230
5231	/* xhci-plat or xhci-pci might have set max_interrupters already */
5232	if ((!xhci->max_interrupters) ||
5233	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5234		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5235
5236	xhci->quirks |= quirks;
5237
5238	if (get_quirks)
5239		get_quirks(dev, xhci);
5240
5241	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5242	 * success event after a short transfer. This quirk will ignore such
5243	 * spurious event.
5244	 */
5245	if (xhci->hci_version > 0x96)
5246		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5247
5248	/* Make sure the HC is halted. */
5249	retval = xhci_halt(xhci);
5250	if (retval)
5251		return retval;
5252
5253	xhci_zero_64b_regs(xhci);
5254
5255	xhci_dbg(xhci, "Resetting HCD\n");
5256	/* Reset the internal HC memory state and registers. */
5257	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5258	if (retval)
5259		return retval;
5260	xhci_dbg(xhci, "Reset complete\n");
5261
5262	/*
5263	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5264	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5265	 * address memory pointers actually. So, this driver clears the AC64
5266	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5267	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5268	 */
5269	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5270		xhci->hcc_params &= ~BIT(0);
5271
5272	/* Set dma_mask and coherent_dma_mask to 64-bits,
5273	 * if xHC supports 64-bit addressing */
5274	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5275			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5276		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5277		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5278	} else {
5279		/*
5280		 * This is to avoid error in cases where a 32-bit USB
5281		 * controller is used on a 64-bit capable system.
5282		 */
5283		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5284		if (retval)
5285			return retval;
5286		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5287		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5288	}
5289
5290	xhci_dbg(xhci, "Calling HCD init\n");
5291	/* Initialize HCD and host controller data structures. */
5292	retval = xhci_init(hcd);
5293	if (retval)
5294		return retval;
5295	xhci_dbg(xhci, "Called HCD init\n");
5296
5297	if (xhci_hcd_is_usb3(hcd))
5298		xhci_hcd_init_usb3_data(xhci, hcd);
5299	else
5300		xhci_hcd_init_usb2_data(xhci, hcd);
5301
5302	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5303		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5304
5305	return 0;
 
 
 
5306}
5307EXPORT_SYMBOL_GPL(xhci_gen_setup);
5308
5309static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5310		struct usb_host_endpoint *ep)
5311{
5312	struct xhci_hcd *xhci;
5313	struct usb_device *udev;
5314	unsigned int slot_id;
5315	unsigned int ep_index;
5316	unsigned long flags;
5317
5318	xhci = hcd_to_xhci(hcd);
5319
5320	spin_lock_irqsave(&xhci->lock, flags);
5321	udev = (struct usb_device *)ep->hcpriv;
5322	slot_id = udev->slot_id;
5323	ep_index = xhci_get_endpoint_index(&ep->desc);
5324
5325	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5326	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5327	spin_unlock_irqrestore(&xhci->lock, flags);
5328}
5329
5330static const struct hc_driver xhci_hc_driver = {
5331	.description =		"xhci-hcd",
5332	.product_desc =		"xHCI Host Controller",
5333	.hcd_priv_size =	sizeof(struct xhci_hcd),
5334
5335	/*
5336	 * generic hardware linkage
5337	 */
5338	.irq =			xhci_irq,
5339	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5340				HCD_BH,
5341
5342	/*
5343	 * basic lifecycle operations
5344	 */
5345	.reset =		NULL, /* set in xhci_init_driver() */
5346	.start =		xhci_run,
5347	.stop =			xhci_stop,
5348	.shutdown =		xhci_shutdown,
5349
5350	/*
5351	 * managing i/o requests and associated device resources
5352	 */
5353	.map_urb_for_dma =      xhci_map_urb_for_dma,
5354	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5355	.urb_enqueue =		xhci_urb_enqueue,
5356	.urb_dequeue =		xhci_urb_dequeue,
5357	.alloc_dev =		xhci_alloc_dev,
5358	.free_dev =		xhci_free_dev,
5359	.alloc_streams =	xhci_alloc_streams,
5360	.free_streams =		xhci_free_streams,
5361	.add_endpoint =		xhci_add_endpoint,
5362	.drop_endpoint =	xhci_drop_endpoint,
5363	.endpoint_disable =	xhci_endpoint_disable,
5364	.endpoint_reset =	xhci_endpoint_reset,
5365	.check_bandwidth =	xhci_check_bandwidth,
5366	.reset_bandwidth =	xhci_reset_bandwidth,
5367	.address_device =	xhci_address_device,
5368	.enable_device =	xhci_enable_device,
5369	.update_hub_device =	xhci_update_hub_device,
5370	.reset_device =		xhci_discover_or_reset_device,
5371
5372	/*
5373	 * scheduling support
5374	 */
5375	.get_frame_number =	xhci_get_frame,
5376
5377	/*
5378	 * root hub support
5379	 */
5380	.hub_control =		xhci_hub_control,
5381	.hub_status_data =	xhci_hub_status_data,
5382	.bus_suspend =		xhci_bus_suspend,
5383	.bus_resume =		xhci_bus_resume,
5384	.get_resuming_ports =	xhci_get_resuming_ports,
5385
5386	/*
5387	 * call back when device connected and addressed
5388	 */
5389	.update_device =        xhci_update_device,
5390	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5391	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5392	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5393	.find_raw_port_number =	xhci_find_raw_port_number,
5394	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5395};
5396
5397void xhci_init_driver(struct hc_driver *drv,
5398		      const struct xhci_driver_overrides *over)
5399{
5400	BUG_ON(!over);
5401
5402	/* Copy the generic table to drv then apply the overrides */
5403	*drv = xhci_hc_driver;
5404
5405	if (over) {
5406		drv->hcd_priv_size += over->extra_priv_size;
5407		if (over->reset)
5408			drv->reset = over->reset;
5409		if (over->start)
5410			drv->start = over->start;
5411		if (over->add_endpoint)
5412			drv->add_endpoint = over->add_endpoint;
5413		if (over->drop_endpoint)
5414			drv->drop_endpoint = over->drop_endpoint;
5415		if (over->check_bandwidth)
5416			drv->check_bandwidth = over->check_bandwidth;
5417		if (over->reset_bandwidth)
5418			drv->reset_bandwidth = over->reset_bandwidth;
5419		if (over->update_hub_device)
5420			drv->update_hub_device = over->update_hub_device;
5421		if (over->hub_control)
5422			drv->hub_control = over->hub_control;
5423	}
5424}
5425EXPORT_SYMBOL_GPL(xhci_init_driver);
5426
5427MODULE_DESCRIPTION(DRIVER_DESC);
5428MODULE_AUTHOR(DRIVER_AUTHOR);
5429MODULE_LICENSE("GPL");
5430
5431static int __init xhci_hcd_init(void)
5432{
 
 
 
 
 
 
 
 
 
 
 
 
5433	/*
5434	 * Check the compiler generated sizes of structures that must be laid
5435	 * out in specific ways for hardware access.
5436	 */
5437	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5438	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5439	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5440	/* xhci_device_control has eight fields, and also
5441	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5442	 */
5443	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5444	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5445	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5446	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5447	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5448	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5449	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5450
5451	if (usb_disabled())
5452		return -ENODEV;
5453
5454	xhci_debugfs_create_root();
5455	xhci_dbc_init();
5456
5457	return 0;
 
 
 
5458}
 
5459
5460/*
5461 * If an init function is provided, an exit function must also be provided
5462 * to allow module unload.
5463 */
5464static void __exit xhci_hcd_fini(void)
5465{
5466	xhci_debugfs_remove_root();
5467	xhci_dbc_exit();
5468}
5469
5470module_init(xhci_hcd_init);
5471module_exit(xhci_hcd_fini);
v3.5.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
 
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
 
  30
  31#include "xhci.h"
 
 
 
  32
  33#define DRIVER_AUTHOR "Sarah Sharp"
  34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  35
 
 
  36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  37static int link_quirk;
  38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  40
  41/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42/*
  43 * handshake - spin reading hc until handshake completes or fails
  44 * @ptr: address of hc register to be read
  45 * @mask: bits to look at in result of read
  46 * @done: value of those bits when handshake succeeds
  47 * @usec: timeout in microseconds
  48 *
  49 * Returns negative errno, or zero on success
  50 *
  51 * Success happens when the "mask" bits have the specified value (hardware
  52 * handshake done).  There are two failure modes:  "usec" have passed (major
  53 * hardware flakeout), or the register reads as all-ones (hardware removed).
  54 */
  55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
  56		      u32 mask, u32 done, int usec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57{
  58	u32	result;
 
 
 
 
 
 
 
 
 
 
  59
  60	do {
  61		result = xhci_readl(xhci, ptr);
  62		if (result == ~(u32)0)		/* card removed */
  63			return -ENODEV;
  64		result &= mask;
  65		if (result == done)
  66			return 0;
  67		udelay(1);
  68		usec--;
  69	} while (usec > 0);
  70	return -ETIMEDOUT;
  71}
  72
  73/*
  74 * Disable interrupts and begin the xHCI halting process.
  75 */
  76void xhci_quiesce(struct xhci_hcd *xhci)
  77{
  78	u32 halted;
  79	u32 cmd;
  80	u32 mask;
  81
  82	mask = ~(XHCI_IRQS);
  83	halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
  84	if (!halted)
  85		mask &= ~CMD_RUN;
  86
  87	cmd = xhci_readl(xhci, &xhci->op_regs->command);
  88	cmd &= mask;
  89	xhci_writel(xhci, cmd, &xhci->op_regs->command);
  90}
  91
  92/*
  93 * Force HC into halt state.
  94 *
  95 * Disable any IRQs and clear the run/stop bit.
  96 * HC will complete any current and actively pipelined transactions, and
  97 * should halt within 16 ms of the run/stop bit being cleared.
  98 * Read HC Halted bit in the status register to see when the HC is finished.
  99 */
 100int xhci_halt(struct xhci_hcd *xhci)
 101{
 102	int ret;
 103	xhci_dbg(xhci, "// Halt the HC\n");
 
 104	xhci_quiesce(xhci);
 105
 106	ret = handshake(xhci, &xhci->op_regs->status,
 107			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 108	if (!ret) {
 109		xhci->xhc_state |= XHCI_STATE_HALTED;
 110		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 111	} else
 112		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 113				XHCI_MAX_HALT_USEC);
 
 
 114	return ret;
 115}
 116
 117/*
 118 * Set the run bit and wait for the host to be running.
 119 */
 120static int xhci_start(struct xhci_hcd *xhci)
 121{
 122	u32 temp;
 123	int ret;
 124
 125	temp = xhci_readl(xhci, &xhci->op_regs->command);
 126	temp |= (CMD_RUN);
 127	xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
 128			temp);
 129	xhci_writel(xhci, temp, &xhci->op_regs->command);
 130
 131	/*
 132	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 133	 * running.
 134	 */
 135	ret = handshake(xhci, &xhci->op_regs->status,
 136			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 137	if (ret == -ETIMEDOUT)
 138		xhci_err(xhci, "Host took too long to start, "
 139				"waited %u microseconds.\n",
 140				XHCI_MAX_HALT_USEC);
 141	if (!ret)
 142		xhci->xhc_state &= ~XHCI_STATE_HALTED;
 
 
 
 
 143	return ret;
 144}
 145
 146/*
 147 * Reset a halted HC.
 148 *
 149 * This resets pipelines, timers, counters, state machines, etc.
 150 * Transactions will be terminated immediately, and operational registers
 151 * will be set to their defaults.
 152 */
 153int xhci_reset(struct xhci_hcd *xhci)
 154{
 155	u32 command;
 156	u32 state;
 157	int ret, i;
 
 
 
 
 
 
 
 158
 159	state = xhci_readl(xhci, &xhci->op_regs->status);
 160	if ((state & STS_HALT) == 0) {
 161		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 162		return 0;
 163	}
 164
 165	xhci_dbg(xhci, "// Reset the HC\n");
 166	command = xhci_readl(xhci, &xhci->op_regs->command);
 167	command |= CMD_RESET;
 168	xhci_writel(xhci, command, &xhci->op_regs->command);
 
 
 
 
 
 
 
 
 
 
 169
 170	ret = handshake(xhci, &xhci->op_regs->command,
 171			CMD_RESET, 0, 10 * 1000 * 1000);
 172	if (ret)
 173		return ret;
 174
 175	xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
 
 
 
 
 176	/*
 177	 * xHCI cannot write to any doorbells or operational registers other
 178	 * than status until the "Controller Not Ready" flag is cleared.
 179	 */
 180	ret = handshake(xhci, &xhci->op_regs->status,
 181			STS_CNR, 0, 10 * 1000 * 1000);
 182
 183	for (i = 0; i < 2; ++i) {
 184		xhci->bus_state[i].port_c_suspend = 0;
 185		xhci->bus_state[i].suspended_ports = 0;
 186		xhci->bus_state[i].resuming_ports = 0;
 187	}
 
 188
 189	return ret;
 190}
 191
 192#ifdef CONFIG_PCI
 193static int xhci_free_msi(struct xhci_hcd *xhci)
 194{
 195	int i;
 
 
 
 
 196
 197	if (!xhci->msix_entries)
 198		return -EINVAL;
 199
 200	for (i = 0; i < xhci->msix_count; i++)
 201		if (xhci->msix_entries[i].vector)
 202			free_irq(xhci->msix_entries[i].vector,
 203					xhci_to_hcd(xhci));
 204	return 0;
 205}
 206
 207/*
 208 * Set up MSI
 209 */
 210static int xhci_setup_msi(struct xhci_hcd *xhci)
 211{
 212	int ret;
 213	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 214
 215	ret = pci_enable_msi(pdev);
 216	if (ret) {
 217		xhci_dbg(xhci, "failed to allocate MSI entry\n");
 218		return ret;
 219	}
 220
 221	ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
 222				0, "xhci_hcd", xhci_to_hcd(xhci));
 223	if (ret) {
 224		xhci_dbg(xhci, "disable MSI interrupt\n");
 225		pci_disable_msi(pdev);
 226	}
 227
 228	return ret;
 229}
 230
 231/*
 232 * Free IRQs
 233 * free all IRQs request
 234 */
 235static void xhci_free_irq(struct xhci_hcd *xhci)
 236{
 237	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 238	int ret;
 239
 240	/* return if using legacy interrupt */
 241	if (xhci_to_hcd(xhci)->irq > 0)
 242		return;
 243
 244	ret = xhci_free_msi(xhci);
 245	if (!ret)
 246		return;
 247	if (pdev->irq > 0)
 248		free_irq(pdev->irq, xhci_to_hcd(xhci));
 249
 250	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251}
 252
 253/*
 254 * Set up MSI-X
 255 */
 256static int xhci_setup_msix(struct xhci_hcd *xhci)
 257{
 258	int i, ret = 0;
 259	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 260	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 261
 262	/*
 263	 * calculate number of msi-x vectors supported.
 264	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 265	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 266	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 267	 *   Add additional 1 vector to ensure always available interrupt.
 268	 */
 269	xhci->msix_count = min(num_online_cpus() + 1,
 270				HCS_MAX_INTRS(xhci->hcs_params1));
 271
 272	xhci->msix_entries =
 273		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 274				GFP_KERNEL);
 275	if (!xhci->msix_entries) {
 276		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 277		return -ENOMEM;
 278	}
 279
 280	for (i = 0; i < xhci->msix_count; i++) {
 281		xhci->msix_entries[i].entry = i;
 282		xhci->msix_entries[i].vector = 0;
 283	}
 284
 285	ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
 286	if (ret) {
 287		xhci_dbg(xhci, "Failed to enable MSI-X\n");
 288		goto free_entries;
 289	}
 290
 291	for (i = 0; i < xhci->msix_count; i++) {
 292		ret = request_irq(xhci->msix_entries[i].vector,
 293				(irq_handler_t)xhci_msi_irq,
 294				0, "xhci_hcd", xhci_to_hcd(xhci));
 295		if (ret)
 296			goto disable_msix;
 297	}
 298
 299	hcd->msix_enabled = 1;
 300	return ret;
 301
 302disable_msix:
 303	xhci_dbg(xhci, "disable MSI-X interrupt\n");
 304	xhci_free_irq(xhci);
 305	pci_disable_msix(pdev);
 306free_entries:
 307	kfree(xhci->msix_entries);
 308	xhci->msix_entries = NULL;
 309	return ret;
 310}
 311
 312/* Free any IRQs and disable MSI-X */
 313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 314{
 315	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 316	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 317
 318	xhci_free_irq(xhci);
 319
 320	if (xhci->msix_entries) {
 321		pci_disable_msix(pdev);
 322		kfree(xhci->msix_entries);
 323		xhci->msix_entries = NULL;
 324	} else {
 325		pci_disable_msi(pdev);
 326	}
 327
 328	hcd->msix_enabled = 0;
 329	return;
 330}
 331
 332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 333{
 334	int i;
 335
 336	if (xhci->msix_entries) {
 337		for (i = 0; i < xhci->msix_count; i++)
 338			synchronize_irq(xhci->msix_entries[i].vector);
 339	}
 340}
 341
 342static int xhci_try_enable_msi(struct usb_hcd *hcd)
 343{
 344	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 345	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 346	int ret;
 347
 348	/*
 349	 * Some Fresco Logic host controllers advertise MSI, but fail to
 350	 * generate interrupts.  Don't even try to enable MSI.
 351	 */
 352	if (xhci->quirks & XHCI_BROKEN_MSI)
 353		return 0;
 354
 355	/* unregister the legacy interrupt */
 356	if (hcd->irq)
 357		free_irq(hcd->irq, hcd);
 358	hcd->irq = 0;
 359
 360	ret = xhci_setup_msix(xhci);
 361	if (ret)
 362		/* fall back to msi*/
 363		ret = xhci_setup_msi(xhci);
 364
 365	if (!ret)
 366		/* hcd->irq is 0, we have MSI */
 367		return 0;
 368
 369	if (!pdev->irq) {
 370		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 371		return -EINVAL;
 372	}
 373
 374	/* fall back to legacy interrupt*/
 375	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 376			hcd->irq_descr, hcd);
 377	if (ret) {
 378		xhci_err(xhci, "request interrupt %d failed\n",
 379				pdev->irq);
 380		return ret;
 381	}
 382	hcd->irq = pdev->irq;
 383	return 0;
 384}
 385
 386#else
 387
 388static int xhci_try_enable_msi(struct usb_hcd *hcd)
 389{
 390	return 0;
 391}
 392
 393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 394{
 395}
 396
 397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 398{
 399}
 400
 401#endif
 402
 403static void compliance_mode_recovery(unsigned long arg)
 404{
 405	struct xhci_hcd *xhci;
 406	struct usb_hcd *hcd;
 
 407	u32 temp;
 408	int i;
 409
 410	xhci = (struct xhci_hcd *)arg;
 
 
 
 
 
 411
 412	for (i = 0; i < xhci->num_usb3_ports; i++) {
 413		temp = xhci_readl(xhci, xhci->usb3_ports[i]);
 414		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 415			/*
 416			 * Compliance Mode Detected. Letting USB Core
 417			 * handle the Warm Reset
 418			 */
 419			xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
 
 420					i + 1);
 421			xhci_dbg(xhci, "Attempting Recovery routine!\n");
 422			hcd = xhci->shared_hcd;
 423
 424			if (hcd->state == HC_STATE_SUSPENDED)
 425				usb_hcd_resume_root_hub(hcd);
 426
 427			usb_hcd_poll_rh_status(hcd);
 428		}
 429	}
 430
 431	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 432		mod_timer(&xhci->comp_mode_recovery_timer,
 433			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 434}
 435
 436/*
 437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 438 * that causes ports behind that hardware to enter compliance mode sometimes.
 439 * The quirk creates a timer that polls every 2 seconds the link state of
 440 * each host controller's port and recovers it by issuing a Warm reset
 441 * if Compliance mode is detected, otherwise the port will become "dead" (no
 442 * device connections or disconnections will be detected anymore). Becasue no
 443 * status event is generated when entering compliance mode (per xhci spec),
 444 * this quirk is needed on systems that have the failing hardware installed.
 445 */
 446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 447{
 448	xhci->port_status_u0 = 0;
 449	init_timer(&xhci->comp_mode_recovery_timer);
 450
 451	xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
 452	xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
 453	xhci->comp_mode_recovery_timer.expires = jiffies +
 454			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 455
 456	set_timer_slack(&xhci->comp_mode_recovery_timer,
 457			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 458	add_timer(&xhci->comp_mode_recovery_timer);
 459	xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
 
 460}
 461
 462/*
 463 * This function identifies the systems that have installed the SN65LVPE502CP
 464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 465 * Systems:
 466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 467 */
 468static bool compliance_mode_recovery_timer_quirk_check(void)
 469{
 470	const char *dmi_product_name, *dmi_sys_vendor;
 471
 472	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 473	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 474	if (!dmi_product_name || !dmi_sys_vendor)
 475		return false;
 476
 477	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 478		return false;
 479
 480	if (strstr(dmi_product_name, "Z420") ||
 481			strstr(dmi_product_name, "Z620") ||
 482			strstr(dmi_product_name, "Z820"))
 
 483		return true;
 484
 485	return false;
 486}
 487
 488static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 489{
 490	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 491}
 492
 493
 494/*
 495 * Initialize memory for HCD and xHC (one-time init).
 496 *
 497 * Program the PAGESIZE register, initialize the device context array, create
 498 * device contexts (?), set up a command ring segment (or two?), create event
 499 * ring (one for now).
 500 */
 501int xhci_init(struct usb_hcd *hcd)
 502{
 503	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 504	int retval = 0;
 505
 506	xhci_dbg(xhci, "xhci_init\n");
 507	spin_lock_init(&xhci->lock);
 508	if (xhci->hci_version == 0x95 && link_quirk) {
 509		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
 
 510		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 511	} else {
 512		xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
 
 513	}
 514	retval = xhci_mem_init(xhci, GFP_KERNEL);
 515	xhci_dbg(xhci, "Finished xhci_init\n");
 516
 517	/* Initializing Compliance Mode Recovery Data If Needed */
 518	if (compliance_mode_recovery_timer_quirk_check()) {
 519		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 520		compliance_mode_recovery_timer_init(xhci);
 521	}
 522
 523	return retval;
 524}
 525
 526/*-------------------------------------------------------------------------*/
 527
 528
 529#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 530static void xhci_event_ring_work(unsigned long arg)
 531{
 532	unsigned long flags;
 533	int temp;
 534	u64 temp_64;
 535	struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
 536	int i, j;
 537
 538	xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
 539
 
 
 
 
 540	spin_lock_irqsave(&xhci->lock, flags);
 541	temp = xhci_readl(xhci, &xhci->op_regs->status);
 542	xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
 543	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
 544			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 545		xhci_dbg(xhci, "HW died, polling stopped.\n");
 546		spin_unlock_irqrestore(&xhci->lock, flags);
 547		return;
 548	}
 549
 550	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 551	xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
 552	xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
 553	xhci->error_bitmask = 0;
 554	xhci_dbg(xhci, "Event ring:\n");
 555	xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
 556	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 557	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 558	temp_64 &= ~ERST_PTR_MASK;
 559	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 560	xhci_dbg(xhci, "Command ring:\n");
 561	xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
 562	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 563	xhci_dbg_cmd_ptrs(xhci);
 564	for (i = 0; i < MAX_HC_SLOTS; ++i) {
 565		if (!xhci->devs[i])
 566			continue;
 567		for (j = 0; j < 31; ++j) {
 568			xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
 569		}
 570	}
 571	spin_unlock_irqrestore(&xhci->lock, flags);
 572
 573	if (!xhci->zombie)
 574		mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
 575	else
 576		xhci_dbg(xhci, "Quit polling the event ring.\n");
 577}
 578#endif
 579
 580static int xhci_run_finished(struct xhci_hcd *xhci)
 581{
 582	if (xhci_start(xhci)) {
 583		xhci_halt(xhci);
 
 584		return -ENODEV;
 585	}
 586	xhci->shared_hcd->state = HC_STATE_RUNNING;
 587	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 588
 589	if (xhci->quirks & XHCI_NEC_HOST)
 590		xhci_ring_cmd_db(xhci);
 591
 592	xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
 
 593	return 0;
 594}
 595
 596/*
 597 * Start the HC after it was halted.
 598 *
 599 * This function is called by the USB core when the HC driver is added.
 600 * Its opposite is xhci_stop().
 601 *
 602 * xhci_init() must be called once before this function can be called.
 603 * Reset the HC, enable device slot contexts, program DCBAAP, and
 604 * set command ring pointer and event ring pointer.
 605 *
 606 * Setup MSI-X vectors and enable interrupts.
 607 */
 608int xhci_run(struct usb_hcd *hcd)
 609{
 610	u32 temp;
 611	u64 temp_64;
 612	int ret;
 613	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 614
 615	/* Start the xHCI host controller running only after the USB 2.0 roothub
 616	 * is setup.
 617	 */
 618
 619	hcd->uses_new_polling = 1;
 620	if (!usb_hcd_is_primary_hcd(hcd))
 621		return xhci_run_finished(xhci);
 622
 623	xhci_dbg(xhci, "xhci_run\n");
 624
 625	ret = xhci_try_enable_msi(hcd);
 626	if (ret)
 627		return ret;
 628
 629#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 630	init_timer(&xhci->event_ring_timer);
 631	xhci->event_ring_timer.data = (unsigned long) xhci;
 632	xhci->event_ring_timer.function = xhci_event_ring_work;
 633	/* Poll the event ring */
 634	xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
 635	xhci->zombie = 0;
 636	xhci_dbg(xhci, "Setting event ring polling timer\n");
 637	add_timer(&xhci->event_ring_timer);
 638#endif
 639
 640	xhci_dbg(xhci, "Command ring memory map follows:\n");
 641	xhci_debug_ring(xhci, xhci->cmd_ring);
 642	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 643	xhci_dbg_cmd_ptrs(xhci);
 644
 645	xhci_dbg(xhci, "ERST memory map follows:\n");
 646	xhci_dbg_erst(xhci, &xhci->erst);
 647	xhci_dbg(xhci, "Event ring:\n");
 648	xhci_debug_ring(xhci, xhci->event_ring);
 649	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 650	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 651	temp_64 &= ~ERST_PTR_MASK;
 652	xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
 653
 654	xhci_dbg(xhci, "// Set the interrupt modulation register\n");
 655	temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 656	temp &= ~ER_IRQ_INTERVAL_MASK;
 657	temp |= (u32) 160;
 658	xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
 659
 660	/* Set the HCD state before we enable the irqs */
 661	temp = xhci_readl(xhci, &xhci->op_regs->command);
 662	temp |= (CMD_EIE);
 663	xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
 664			temp);
 665	xhci_writel(xhci, temp, &xhci->op_regs->command);
 666
 667	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 668	xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
 669			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 670	xhci_writel(xhci, ER_IRQ_ENABLE(temp),
 671			&xhci->ir_set->irq_pending);
 672	xhci_print_ir_set(xhci, 0);
 673
 674	if (xhci->quirks & XHCI_NEC_HOST)
 675		xhci_queue_vendor_command(xhci, 0, 0, 0,
 676				TRB_TYPE(TRB_NEC_GET_FW));
 
 
 
 
 
 
 
 677
 678	xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
 679	return 0;
 680}
 681
 682static void xhci_only_stop_hcd(struct usb_hcd *hcd)
 683{
 684	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 685
 686	spin_lock_irq(&xhci->lock);
 687	xhci_halt(xhci);
 688
 689	/* The shared_hcd is going to be deallocated shortly (the USB core only
 690	 * calls this function when allocation fails in usb_add_hcd(), or
 691	 * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
 692	 */
 693	xhci->shared_hcd = NULL;
 694	spin_unlock_irq(&xhci->lock);
 695}
 
 696
 697/*
 698 * Stop xHCI driver.
 699 *
 700 * This function is called by the USB core when the HC driver is removed.
 701 * Its opposite is xhci_run().
 702 *
 703 * Disable device contexts, disable IRQs, and quiesce the HC.
 704 * Reset the HC, finish any completed transactions, and cleanup memory.
 705 */
 706void xhci_stop(struct usb_hcd *hcd)
 707{
 708	u32 temp;
 709	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
 
 710
 
 711	if (!usb_hcd_is_primary_hcd(hcd)) {
 712		xhci_only_stop_hcd(xhci->shared_hcd);
 713		return;
 714	}
 715
 
 
 716	spin_lock_irq(&xhci->lock);
 717	/* Make sure the xHC is halted for a USB3 roothub
 718	 * (xhci_stop() could be called as part of failed init).
 719	 */
 720	xhci_halt(xhci);
 721	xhci_reset(xhci);
 722	spin_unlock_irq(&xhci->lock);
 723
 724	xhci_cleanup_msix(xhci);
 725
 726#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 727	/* Tell the event ring poll function not to reschedule */
 728	xhci->zombie = 1;
 729	del_timer_sync(&xhci->event_ring_timer);
 730#endif
 731
 732	/* Deleting Compliance Mode Recovery Timer */
 733	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 734			(!(xhci_all_ports_seen_u0(xhci))))
 735		del_timer_sync(&xhci->comp_mode_recovery_timer);
 
 
 
 
 736
 737	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 738		usb_amd_dev_put();
 739
 740	xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 741	temp = xhci_readl(xhci, &xhci->op_regs->status);
 742	xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 743	temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 744	xhci_writel(xhci, ER_IRQ_DISABLE(temp),
 745			&xhci->ir_set->irq_pending);
 746	xhci_print_ir_set(xhci, 0);
 747
 748	xhci_dbg(xhci, "cleaning up memory\n");
 749	xhci_mem_cleanup(xhci);
 750	xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
 751		    xhci_readl(xhci, &xhci->op_regs->status));
 
 
 
 752}
 
 753
 754/*
 755 * Shutdown HC (not bus-specific)
 756 *
 757 * This is called when the machine is rebooting or halting.  We assume that the
 758 * machine will be powered off, and the HC's internal state will be reset.
 759 * Don't bother to free memory.
 760 *
 761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 762 */
 763void xhci_shutdown(struct usb_hcd *hcd)
 764{
 765	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 766
 767	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 768		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 
 
 
 
 
 
 
 
 
 
 
 769
 770	spin_lock_irq(&xhci->lock);
 771	xhci_halt(xhci);
 
 
 
 
 
 
 
 
 
 772	spin_unlock_irq(&xhci->lock);
 773
 774	xhci_cleanup_msix(xhci);
 775
 776	xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
 777		    xhci_readl(xhci, &xhci->op_regs->status));
 778}
 
 779
 780#ifdef CONFIG_PM
 781static void xhci_save_registers(struct xhci_hcd *xhci)
 782{
 783	xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
 784	xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
 
 
 
 785	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 786	xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
 787	xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
 788	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 789	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 790	xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
 791	xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 792}
 793
 794static void xhci_restore_registers(struct xhci_hcd *xhci)
 795{
 796	xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
 797	xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 
 
 
 798	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 799	xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
 800	xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
 801	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 802	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 803	xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 804	xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 805}
 806
 807static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 808{
 809	u64	val_64;
 810
 811	/* step 2: initialize command ring buffer */
 812	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 813	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 814		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 815				      xhci->cmd_ring->dequeue) &
 816		 (u64) ~CMD_RING_RSVD_BITS) |
 817		xhci->cmd_ring->cycle_state;
 818	xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
 
 819			(long unsigned long) val_64);
 820	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 821}
 822
 823/*
 824 * The whole command ring must be cleared to zero when we suspend the host.
 825 *
 826 * The host doesn't save the command ring pointer in the suspend well, so we
 827 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 828 * aligned, because of the reserved bits in the command ring dequeue pointer
 829 * register.  Therefore, we can't just set the dequeue pointer back in the
 830 * middle of the ring (TRBs are 16-byte aligned).
 831 */
 832static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 833{
 834	struct xhci_ring *ring;
 835	struct xhci_segment *seg;
 836
 837	ring = xhci->cmd_ring;
 838	seg = ring->deq_seg;
 839	do {
 840		memset(seg->trbs, 0,
 841			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 842		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 843			cpu_to_le32(~TRB_CYCLE);
 844		seg = seg->next;
 845	} while (seg != ring->deq_seg);
 846
 847	/* Reset the software enqueue and dequeue pointers */
 848	ring->deq_seg = ring->first_seg;
 849	ring->dequeue = ring->first_seg->trbs;
 850	ring->enq_seg = ring->deq_seg;
 851	ring->enqueue = ring->dequeue;
 852
 853	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 854	/*
 855	 * Ring is now zeroed, so the HW should look for change of ownership
 856	 * when the cycle bit is set to 1.
 857	 */
 858	ring->cycle_state = 1;
 859
 860	/*
 861	 * Reset the hardware dequeue pointer.
 862	 * Yes, this will need to be re-written after resume, but we're paranoid
 863	 * and want to make sure the hardware doesn't access bogus memory
 864	 * because, say, the BIOS or an SMI started the host without changing
 865	 * the command ring pointers.
 866	 */
 867	xhci_set_cmd_ring_deq(xhci);
 868}
 869
 870/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871 * Stop HC (not bus-specific)
 872 *
 873 * This is called when the machine transition into S3/S4 mode.
 874 *
 875 */
 876int xhci_suspend(struct xhci_hcd *xhci)
 877{
 878	int			rc = 0;
 
 879	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 880	u32			command;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881
 882	spin_lock_irq(&xhci->lock);
 883	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 884	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 885	/* step 1: stop endpoint */
 886	/* skipped assuming that port suspend has done */
 887
 888	/* step 2: clear Run/Stop bit */
 889	command = xhci_readl(xhci, &xhci->op_regs->command);
 890	command &= ~CMD_RUN;
 891	xhci_writel(xhci, command, &xhci->op_regs->command);
 892	if (handshake(xhci, &xhci->op_regs->status,
 893		      STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
 
 
 
 
 894		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 895		spin_unlock_irq(&xhci->lock);
 896		return -ETIMEDOUT;
 897	}
 898	xhci_clear_command_ring(xhci);
 899
 900	/* step 3: save registers */
 901	xhci_save_registers(xhci);
 902
 903	/* step 4: set CSS flag */
 904	command = xhci_readl(xhci, &xhci->op_regs->command);
 905	command |= CMD_CSS;
 906	xhci_writel(xhci, command, &xhci->op_regs->command);
 907	if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
 908		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 909		spin_unlock_irq(&xhci->lock);
 910		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911	}
 912	spin_unlock_irq(&xhci->lock);
 913
 914	/*
 915	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 916	 * is about to be suspended.
 917	 */
 918	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 919			(!(xhci_all_ports_seen_u0(xhci)))) {
 920		del_timer_sync(&xhci->comp_mode_recovery_timer);
 921		xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
 
 
 922	}
 923
 924	/* step 5: remove core well power */
 925	/* synchronize irq when using MSI-X */
 926	xhci_msix_sync_irqs(xhci);
 927
 928	return rc;
 929}
 
 930
 931/*
 932 * start xHC (not bus-specific)
 933 *
 934 * This is called when the machine transition from S3/S4 mode.
 935 *
 936 */
 937int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 938{
 
 939	u32			command, temp = 0;
 940	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 941	struct usb_hcd		*secondary_hcd;
 942	int			retval = 0;
 
 
 
 
 
 
 
 943
 944	/* Wait a bit if either of the roothubs need to settle from the
 945	 * transition into bus suspend.
 946	 */
 947	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
 948			time_before(jiffies,
 949				xhci->bus_state[1].next_statechange))
 950		msleep(100);
 951
 952	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 953	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 954
 955	spin_lock_irq(&xhci->lock);
 956	if (xhci->quirks & XHCI_RESET_ON_RESUME)
 957		hibernated = true;
 958
 959	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960		/* step 1: restore register */
 961		xhci_restore_registers(xhci);
 962		/* step 2: initialize command ring buffer */
 963		xhci_set_cmd_ring_deq(xhci);
 964		/* step 3: restore state and start state*/
 965		/* step 3: set CRS flag */
 966		command = xhci_readl(xhci, &xhci->op_regs->command);
 967		command |= CMD_CRS;
 968		xhci_writel(xhci, command, &xhci->op_regs->command);
 969		if (handshake(xhci, &xhci->op_regs->status,
 970			      STS_RESTORE, 0, 10 * 1000)) {
 
 
 
 
 
 971			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
 972			spin_unlock_irq(&xhci->lock);
 973			return -ETIMEDOUT;
 974		}
 975		temp = xhci_readl(xhci, &xhci->op_regs->status);
 976	}
 977
 978	/* If restore operation fails, re-initialize the HC during resume */
 979	if ((temp & STS_SRE) || hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980		/* Let the USB core know _both_ roothubs lost power. */
 981		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
 982		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 
 983
 984		xhci_dbg(xhci, "Stop HCD\n");
 985		xhci_halt(xhci);
 986		xhci_reset(xhci);
 
 987		spin_unlock_irq(&xhci->lock);
 988		xhci_cleanup_msix(xhci);
 989
 990#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
 991		/* Tell the event ring poll function not to reschedule */
 992		xhci->zombie = 1;
 993		del_timer_sync(&xhci->event_ring_timer);
 994#endif
 995
 996		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
 997		temp = xhci_readl(xhci, &xhci->op_regs->status);
 998		xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
 999		temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000		xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001				&xhci->ir_set->irq_pending);
1002		xhci_print_ir_set(xhci, 0);
1003
1004		xhci_dbg(xhci, "cleaning up memory\n");
1005		xhci_mem_cleanup(xhci);
 
1006		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007			    xhci_readl(xhci, &xhci->op_regs->status));
1008
1009		/* USB core calls the PCI reinit and start functions twice:
1010		 * first with the primary HCD, and then with the secondary HCD.
1011		 * If we don't do the same, the host will never be started.
1012		 */
1013		if (!usb_hcd_is_primary_hcd(hcd))
1014			secondary_hcd = hcd;
1015		else
1016			secondary_hcd = xhci->shared_hcd;
1017
1018		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019		retval = xhci_init(hcd->primary_hcd);
1020		if (retval)
1021			return retval;
 
 
1022		xhci_dbg(xhci, "Start the primary HCD\n");
1023		retval = xhci_run(hcd->primary_hcd);
1024		if (!retval) {
1025			xhci_dbg(xhci, "Start the secondary HCD\n");
1026			retval = xhci_run(secondary_hcd);
1027		}
 
1028		hcd->state = HC_STATE_SUSPENDED;
1029		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 
1030		goto done;
1031	}
1032
1033	/* step 4: set Run/Stop bit */
1034	command = xhci_readl(xhci, &xhci->op_regs->command);
1035	command |= CMD_RUN;
1036	xhci_writel(xhci, command, &xhci->op_regs->command);
1037	handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038		  0, 250 * 1000);
1039
1040	/* step 5: walk topology and initialize portsc,
1041	 * portpmsc and portli
1042	 */
1043	/* this is done in bus_resume */
1044
1045	/* step 6: restart each of the previously
1046	 * Running endpoints by ringing their doorbells
1047	 */
1048
1049	spin_unlock_irq(&xhci->lock);
1050
 
 
1051 done:
1052	if (retval == 0) {
1053		usb_hcd_resume_root_hub(hcd);
1054		usb_hcd_resume_root_hub(xhci->shared_hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055	}
1056
1057	/*
1058	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059	 * be re-initialized Always after a system resume. Ports are subject
1060	 * to suffer the Compliance Mode issue again. It doesn't matter if
1061	 * ports have entered previously to U0 before system's suspension.
1062	 */
1063	if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064		compliance_mode_recovery_timer_init(xhci);
1065
 
 
 
 
 
 
 
 
 
 
 
 
 
1066	return retval;
1067}
 
1068#endif	/* CONFIG_PM */
1069
1070/*-------------------------------------------------------------------------*/
1071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072/**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index  = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083{
1084	unsigned int index;
1085	if (usb_endpoint_xfer_control(desc))
1086		index = (unsigned int) (usb_endpoint_num(desc)*2);
1087	else
1088		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090	return index;
1091}
 
1092
1093/* Find the flag for this endpoint (for use in the control context).  Use the
1094 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098{
1099	return 1 << (xhci_get_endpoint_index(desc) + 1);
 
 
1100}
1101
1102/* Find the flag for this endpoint (for use in the control context).  Use the
1103 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107{
1108	return 1 << (ep_index + 1);
1109}
1110
1111/* Compute the last valid endpoint context index.  Basically, this is the
1112 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118{
1119	return fls(added_ctxs) - 1;
1120}
1121
1122/* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127		const char *func) {
1128	struct xhci_hcd	*xhci;
1129	struct xhci_virt_device	*virt_dev;
1130
1131	if (!hcd || (check_ep && !ep) || !udev) {
1132		printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133				func);
1134		return -EINVAL;
1135	}
1136	if (!udev->parent) {
1137		printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138				func);
1139		return 0;
1140	}
1141
1142	xhci = hcd_to_xhci(hcd);
1143	if (xhci->xhc_state & XHCI_STATE_HALTED)
1144		return -ENODEV;
1145
1146	if (check_virt_dev) {
1147		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148			printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149						"device\n", func);
1150			return -EINVAL;
1151		}
1152
1153		virt_dev = xhci->devs[udev->slot_id];
1154		if (virt_dev->udev != udev) {
1155			printk(KERN_DEBUG "xHCI %s called with udev and "
1156					  "virt_dev does not match\n", func);
1157			return -EINVAL;
1158		}
1159	}
1160
 
 
 
1161	return 1;
1162}
1163
1164static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165		struct usb_device *udev, struct xhci_command *command,
1166		bool ctx_change, bool must_succeed);
1167
1168/*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor.  If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175		unsigned int ep_index, struct urb *urb)
1176{
1177	struct xhci_container_ctx *in_ctx;
1178	struct xhci_container_ctx *out_ctx;
1179	struct xhci_input_control_ctx *ctrl_ctx;
1180	struct xhci_ep_ctx *ep_ctx;
 
1181	int max_packet_size;
1182	int hw_max_packet_size;
1183	int ret = 0;
1184
1185	out_ctx = xhci->devs[slot_id]->out_ctx;
1186	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189	if (hw_max_packet_size != max_packet_size) {
1190		xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191		xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
 
 
 
 
 
 
 
1192				max_packet_size);
1193		xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
 
1194				hw_max_packet_size);
1195		xhci_dbg(xhci, "Issuing evaluate context command.\n");
 
1196
 
 
 
 
 
 
 
 
 
 
 
 
1197		/* Set up the modified control endpoint 0 */
1198		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199				xhci->devs[slot_id]->out_ctx, ep_index);
1200		in_ctx = xhci->devs[slot_id]->in_ctx;
1201		ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205		/* Set up the input context flags for the command */
1206		/* FIXME: This won't work if a non-default control endpoint
1207		 * changes max packet sizes.
1208		 */
1209		ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211		ctrl_ctx->drop_flags = 0;
1212
1213		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214		xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216		xhci_dbg_ctx(xhci, out_ctx, ep_index);
 
 
 
 
 
 
1217
1218		ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219				true, false);
1220
1221		/* Clean up the input context for later use by bandwidth
1222		 * functions.
1223		 */
1224		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1225	}
1226	return ret;
1227}
1228
1229/*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234{
1235	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236	struct xhci_td *buffer;
1237	unsigned long flags;
1238	int ret = 0;
1239	unsigned int slot_id, ep_index;
 
1240	struct urb_priv	*urb_priv;
1241	int size, i;
1242
1243	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244					true, true, __func__) <= 0)
1245		return -EINVAL;
1246
1247	slot_id = urb->dev->slot_id;
1248	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249
1250	if (!HCD_HW_ACCESSIBLE(hcd)) {
1251		if (!in_interrupt())
1252			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253		ret = -ESHUTDOWN;
1254		goto exit;
1255	}
1256
1257	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258		size = urb->number_of_packets;
 
 
 
 
 
1259	else
1260		size = 1;
1261
1262	urb_priv = kzalloc(sizeof(struct urb_priv) +
1263				  size * sizeof(struct xhci_td *), mem_flags);
1264	if (!urb_priv)
1265		return -ENOMEM;
1266
1267	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268	if (!buffer) {
1269		kfree(urb_priv);
1270		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271	}
1272
1273	for (i = 0; i < size; i++) {
1274		urb_priv->td[i] = buffer;
1275		buffer++;
 
 
1276	}
1277
1278	urb_priv->length = size;
1279	urb_priv->td_cnt = 0;
1280	urb->hcpriv = urb_priv;
 
 
 
 
 
 
 
 
 
 
1281
1282	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283		/* Check to see if the max packet size for the default control
1284		 * endpoint changed during FS device enumeration
1285		 */
1286		if (urb->dev->speed == USB_SPEED_FULL) {
1287			ret = xhci_check_maxpacket(xhci, slot_id,
1288					ep_index, urb);
1289			if (ret < 0) {
1290				xhci_urb_free_priv(xhci, urb_priv);
1291				urb->hcpriv = NULL;
1292				return ret;
1293			}
1294		}
1295
1296		/* We have a spinlock and interrupts disabled, so we must pass
1297		 * atomic context to this function, which may allocate memory.
1298		 */
1299		spin_lock_irqsave(&xhci->lock, flags);
1300		if (xhci->xhc_state & XHCI_STATE_DYING)
1301			goto dying;
1302		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303				slot_id, ep_index);
1304		if (ret)
1305			goto free_priv;
1306		spin_unlock_irqrestore(&xhci->lock, flags);
1307	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308		spin_lock_irqsave(&xhci->lock, flags);
1309		if (xhci->xhc_state & XHCI_STATE_DYING)
1310			goto dying;
1311		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312				EP_GETTING_STREAMS) {
1313			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314					"is transitioning to using streams.\n");
1315			ret = -EINVAL;
1316		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317				EP_GETTING_NO_STREAMS) {
1318			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319					"is transitioning to "
1320					"not having streams.\n");
1321			ret = -EINVAL;
1322		} else {
1323			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324					slot_id, ep_index);
1325		}
1326		if (ret)
1327			goto free_priv;
1328		spin_unlock_irqrestore(&xhci->lock, flags);
1329	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330		spin_lock_irqsave(&xhci->lock, flags);
1331		if (xhci->xhc_state & XHCI_STATE_DYING)
1332			goto dying;
1333		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334				slot_id, ep_index);
1335		if (ret)
1336			goto free_priv;
1337		spin_unlock_irqrestore(&xhci->lock, flags);
1338	} else {
1339		spin_lock_irqsave(&xhci->lock, flags);
1340		if (xhci->xhc_state & XHCI_STATE_DYING)
1341			goto dying;
1342		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343				slot_id, ep_index);
1344		if (ret)
1345			goto free_priv;
1346		spin_unlock_irqrestore(&xhci->lock, flags);
1347	}
1348exit:
1349	return ret;
1350dying:
1351	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352			"non-responsive xHCI host.\n",
1353			urb->ep->desc.bEndpointAddress, urb);
1354	ret = -ESHUTDOWN;
1355free_priv:
1356	xhci_urb_free_priv(xhci, urb_priv);
1357	urb->hcpriv = NULL;
 
1358	spin_unlock_irqrestore(&xhci->lock, flags);
1359	return ret;
1360}
1361
1362/* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367		struct urb *urb)
1368{
1369	unsigned int slot_id;
1370	unsigned int ep_index;
1371	unsigned int stream_id;
1372	struct xhci_virt_ep *ep;
1373
1374	slot_id = urb->dev->slot_id;
1375	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376	stream_id = urb->stream_id;
1377	ep = &xhci->devs[slot_id]->eps[ep_index];
1378	/* Common case: no streams */
1379	if (!(ep->ep_state & EP_HAS_STREAMS))
1380		return ep->ring;
1381
1382	if (stream_id == 0) {
1383		xhci_warn(xhci,
1384				"WARN: Slot ID %u, ep index %u has streams, "
1385				"but URB has no stream ID.\n",
1386				slot_id, ep_index);
1387		return NULL;
1388	}
1389
1390	if (stream_id < ep->stream_info->num_streams)
1391		return ep->stream_info->stream_rings[stream_id];
1392
1393	xhci_warn(xhci,
1394			"WARN: Slot ID %u, ep index %u has "
1395			"stream IDs 1 to %u allocated, "
1396			"but stream ID %u is requested.\n",
1397			slot_id, ep_index,
1398			ep->stream_info->num_streams - 1,
1399			stream_id);
1400	return NULL;
1401}
1402
1403/*
1404 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring.  Since the ring is a contiguous structure, they can't be physically
1411 * removed.  Instead, there are two options:
1412 *
1413 *  1) If the HC is in the middle of processing the URB to be canceled, we
1414 *     simply move the ring's dequeue pointer past those TRBs using the Set
1415 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1416 *     when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1420 *     HC will need to invalidate the any TRBs it has cached after the stop
1421 *     endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 *  3) The TD may have completed by the time the Stop Endpoint Command
1424 *     completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435{
1436	unsigned long flags;
1437	int ret, i;
1438	u32 temp;
1439	struct xhci_hcd *xhci;
1440	struct urb_priv	*urb_priv;
1441	struct xhci_td *td;
1442	unsigned int ep_index;
1443	struct xhci_ring *ep_ring;
1444	struct xhci_virt_ep *ep;
 
 
1445
1446	xhci = hcd_to_xhci(hcd);
1447	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1448	/* Make sure the URB hasn't completed or been unlinked already */
1449	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450	if (ret || !urb->hcpriv)
1451		goto done;
1452	temp = xhci_readl(xhci, &xhci->op_regs->status);
1453	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454		xhci_dbg(xhci, "HW died, freeing TD.\n");
1455		urb_priv = urb->hcpriv;
1456		for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457			td = urb_priv->td[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458			if (!list_empty(&td->td_list))
1459				list_del_init(&td->td_list);
1460			if (!list_empty(&td->cancelled_td_list))
1461				list_del_init(&td->cancelled_td_list);
1462		}
1463
1464		usb_hcd_unlink_urb_from_ep(hcd, urb);
1465		spin_unlock_irqrestore(&xhci->lock, flags);
1466		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467		xhci_urb_free_priv(xhci, urb_priv);
1468		return ret;
1469	}
1470	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1472		xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473				"non-responsive xHCI host.\n",
1474				urb->ep->desc.bEndpointAddress, urb);
1475		/* Let the stop endpoint command watchdog timer (which set this
1476		 * state) finish cleaning up the endpoint TD lists.  We must
1477		 * have caught it in the middle of dropping a lock and giving
1478		 * back an URB.
1479		 */
1480		goto done;
1481	}
1482
1483	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486	if (!ep_ring) {
1487		ret = -EINVAL;
1488		goto done;
1489	}
1490
1491	urb_priv = urb->hcpriv;
1492	i = urb_priv->td_cnt;
1493	if (i < urb_priv->length)
1494		xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495				"starting at offset 0x%llx\n",
1496				urb, urb->dev->devpath,
1497				urb->ep->desc.bEndpointAddress,
1498				(unsigned long long) xhci_trb_virt_to_dma(
1499					urb_priv->td[i]->start_seg,
1500					urb_priv->td[i]->first_trb));
1501
1502	for (; i < urb_priv->length; i++) {
1503		td = urb_priv->td[i];
1504		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1505	}
1506
1507	/* Queue a stop endpoint command, but only if this is
1508	 * the first cancellation to be handled.
1509	 */
1510	if (!(ep->ep_state & EP_HALT_PENDING)) {
1511		ep->ep_state |= EP_HALT_PENDING;
1512		ep->stop_cmds_pending++;
1513		ep->stop_cmd_timer.expires = jiffies +
1514			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515		add_timer(&ep->stop_cmd_timer);
1516		xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
 
 
1517		xhci_ring_cmd_db(xhci);
1518	}
1519done:
1520	spin_unlock_irqrestore(&xhci->lock, flags);
1521	return ret;
 
 
 
 
 
 
 
 
1522}
1523
1524/* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538		struct usb_host_endpoint *ep)
1539{
1540	struct xhci_hcd *xhci;
1541	struct xhci_container_ctx *in_ctx, *out_ctx;
1542	struct xhci_input_control_ctx *ctrl_ctx;
1543	struct xhci_slot_ctx *slot_ctx;
1544	unsigned int last_ctx;
1545	unsigned int ep_index;
1546	struct xhci_ep_ctx *ep_ctx;
1547	u32 drop_flag;
1548	u32 new_add_flags, new_drop_flags, new_slot_info;
1549	int ret;
1550
1551	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552	if (ret <= 0)
1553		return ret;
1554	xhci = hcd_to_xhci(hcd);
1555	if (xhci->xhc_state & XHCI_STATE_DYING)
1556		return -ENODEV;
1557
1558	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562				__func__, drop_flag);
1563		return 0;
1564	}
1565
1566	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
 
1569	ep_index = xhci_get_endpoint_index(&ep->desc);
1570	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571	/* If the HC already knows the endpoint is disabled,
1572	 * or the HCD has noted it is disabled, ignore this request
1573	 */
1574	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575	     cpu_to_le32(EP_STATE_DISABLED)) ||
1576	    le32_to_cpu(ctrl_ctx->drop_flags) &
1577	    xhci_get_endpoint_flag(&ep->desc)) {
1578		xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579				__func__, ep);
 
 
1580		return 0;
1581	}
1582
1583	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589	last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591	/* Update the last valid endpoint context, if we deleted the last one */
1592	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593	    LAST_CTX(last_ctx)) {
1594		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596	}
1597	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602			(unsigned int) ep->desc.bEndpointAddress,
1603			udev->slot_id,
1604			(unsigned int) new_drop_flags,
1605			(unsigned int) new_add_flags,
1606			(unsigned int) new_slot_info);
1607	return 0;
1608}
 
1609
1610/* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624		struct usb_host_endpoint *ep)
1625{
1626	struct xhci_hcd *xhci;
1627	struct xhci_container_ctx *in_ctx, *out_ctx;
1628	unsigned int ep_index;
 
1629	struct xhci_ep_ctx *ep_ctx;
1630	struct xhci_slot_ctx *slot_ctx;
1631	struct xhci_input_control_ctx *ctrl_ctx;
1632	u32 added_ctxs;
1633	unsigned int last_ctx;
1634	u32 new_add_flags, new_drop_flags, new_slot_info;
1635	struct xhci_virt_device *virt_dev;
1636	int ret = 0;
1637
1638	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639	if (ret <= 0) {
1640		/* So we won't queue a reset ep command for a root hub */
1641		ep->hcpriv = NULL;
1642		return ret;
1643	}
1644	xhci = hcd_to_xhci(hcd);
1645	if (xhci->xhc_state & XHCI_STATE_DYING)
1646		return -ENODEV;
1647
1648	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649	last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651		/* FIXME when we have to issue an evaluate endpoint command to
1652		 * deal with ep0 max packet size changing once we get the
1653		 * descriptors
1654		 */
1655		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656				__func__, added_ctxs);
1657		return 0;
1658	}
1659
1660	virt_dev = xhci->devs[udev->slot_id];
1661	in_ctx = virt_dev->in_ctx;
1662	out_ctx = virt_dev->out_ctx;
1663	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
1664	ep_index = xhci_get_endpoint_index(&ep->desc);
1665	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667	/* If this endpoint is already in use, and the upper layers are trying
1668	 * to add it again without dropping it, reject the addition.
1669	 */
1670	if (virt_dev->eps[ep_index].ring &&
1671			!(le32_to_cpu(ctrl_ctx->drop_flags) &
1672				xhci_get_endpoint_flag(&ep->desc))) {
1673		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674				"without dropping it.\n",
1675				(unsigned int) ep->desc.bEndpointAddress);
1676		return -EINVAL;
1677	}
1678
1679	/* If the HCD has already noted the endpoint is enabled,
1680	 * ignore this request.
1681	 */
1682	if (le32_to_cpu(ctrl_ctx->add_flags) &
1683	    xhci_get_endpoint_flag(&ep->desc)) {
1684		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685				__func__, ep);
1686		return 0;
1687	}
1688
1689	/*
1690	 * Configuration and alternate setting changes must be done in
1691	 * process context, not interrupt context (or so documenation
1692	 * for usb_set_interface() and usb_set_configuration() claim).
1693	 */
1694	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696				__func__, ep->desc.bEndpointAddress);
1697		return -ENOMEM;
1698	}
1699
1700	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703	/* If xhci_endpoint_disable() was called for this endpoint, but the
1704	 * xHC hasn't been notified yet through the check_bandwidth() call,
1705	 * this re-adds a new state for the endpoint from the new endpoint
1706	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1707	 * drop flags alone.
1708	 */
1709	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711	slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712	/* Update the last valid endpoint context, if we just added one past */
1713	if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714	    LAST_CTX(last_ctx)) {
1715		slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716		slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717	}
1718	new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720	/* Store the usb_device pointer for later use */
1721	ep->hcpriv = udev;
1722
1723	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
 
 
 
1724			(unsigned int) ep->desc.bEndpointAddress,
1725			udev->slot_id,
1726			(unsigned int) new_drop_flags,
1727			(unsigned int) new_add_flags,
1728			(unsigned int) new_slot_info);
1729	return 0;
1730}
 
1731
1732static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733{
1734	struct xhci_input_control_ctx *ctrl_ctx;
1735	struct xhci_ep_ctx *ep_ctx;
1736	struct xhci_slot_ctx *slot_ctx;
1737	int i;
1738
 
 
 
 
 
 
 
1739	/* When a device's add flag and drop flag are zero, any subsequent
1740	 * configure endpoint command will leave that endpoint's state
1741	 * untouched.  Make sure we don't leave any old state in the input
1742	 * endpoint contexts.
1743	 */
1744	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745	ctrl_ctx->drop_flags = 0;
1746	ctrl_ctx->add_flags = 0;
1747	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749	/* Endpoint 0 is always valid */
1750	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751	for (i = 1; i < 31; ++i) {
1752		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753		ep_ctx->ep_info = 0;
1754		ep_ctx->ep_info2 = 0;
1755		ep_ctx->deq = 0;
1756		ep_ctx->tx_info = 0;
1757	}
1758}
1759
1760static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761		struct usb_device *udev, u32 *cmd_status)
1762{
1763	int ret;
1764
1765	switch (*cmd_status) {
1766	case COMP_ENOMEM:
1767		dev_warn(&udev->dev, "Not enough host controller resources "
1768				"for new device state.\n");
 
 
 
 
 
1769		ret = -ENOMEM;
1770		/* FIXME: can we allocate more resources for the HC? */
1771		break;
1772	case COMP_BW_ERR:
1773	case COMP_2ND_BW_ERR:
1774		dev_warn(&udev->dev, "Not enough bandwidth "
1775				"for new device state.\n");
1776		ret = -ENOSPC;
1777		/* FIXME: can we go back to the old state? */
1778		break;
1779	case COMP_TRB_ERR:
1780		/* the HCD set up something wrong */
1781		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782				"add flag = 1, "
1783				"and endpoint is not disabled.\n");
1784		ret = -EINVAL;
1785		break;
1786	case COMP_DEV_ERR:
1787		dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788				"configure command.\n");
1789		ret = -ENODEV;
1790		break;
1791	case COMP_SUCCESS:
1792		dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
 
1793		ret = 0;
1794		break;
1795	default:
1796		xhci_err(xhci, "ERROR: unexpected command completion "
1797				"code 0x%x.\n", *cmd_status);
1798		ret = -EINVAL;
1799		break;
1800	}
1801	return ret;
1802}
1803
1804static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805		struct usb_device *udev, u32 *cmd_status)
1806{
1807	int ret;
1808	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810	switch (*cmd_status) {
1811	case COMP_EINVAL:
1812		dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813				"context command.\n");
 
 
 
 
 
 
 
 
 
 
1814		ret = -EINVAL;
1815		break;
1816	case COMP_EBADSLT:
1817		dev_warn(&udev->dev, "WARN: slot not enabled for"
1818				"evaluate context command.\n");
1819	case COMP_CTX_STATE:
1820		dev_warn(&udev->dev, "WARN: invalid context state for "
1821				"evaluate context command.\n");
1822		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823		ret = -EINVAL;
1824		break;
1825	case COMP_DEV_ERR:
1826		dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827				"context command.\n");
1828		ret = -ENODEV;
1829		break;
1830	case COMP_MEL_ERR:
1831		/* Max Exit Latency too large error */
1832		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833		ret = -EINVAL;
1834		break;
1835	case COMP_SUCCESS:
1836		dev_dbg(&udev->dev, "Successful evaluate context command\n");
 
1837		ret = 0;
1838		break;
1839	default:
1840		xhci_err(xhci, "ERROR: unexpected command completion "
1841				"code 0x%x.\n", *cmd_status);
1842		ret = -EINVAL;
1843		break;
1844	}
1845	return ret;
1846}
1847
1848static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849		struct xhci_container_ctx *in_ctx)
1850{
1851	struct xhci_input_control_ctx *ctrl_ctx;
1852	u32 valid_add_flags;
1853	u32 valid_drop_flags;
1854
1855	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1857	 * (bit 1).  The default control endpoint is added during the Address
1858	 * Device command and is never removed until the slot is disabled.
1859	 */
1860	valid_add_flags = ctrl_ctx->add_flags >> 2;
1861	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863	/* Use hweight32 to count the number of ones in the add flags, or
1864	 * number of endpoints added.  Don't count endpoints that are changed
1865	 * (both added and dropped).
1866	 */
1867	return hweight32(valid_add_flags) -
1868		hweight32(valid_add_flags & valid_drop_flags);
1869}
1870
1871static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872		struct xhci_container_ctx *in_ctx)
1873{
1874	struct xhci_input_control_ctx *ctrl_ctx;
1875	u32 valid_add_flags;
1876	u32 valid_drop_flags;
1877
1878	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879	valid_add_flags = ctrl_ctx->add_flags >> 2;
1880	valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882	return hweight32(valid_drop_flags) -
1883		hweight32(valid_add_flags & valid_drop_flags);
1884}
1885
1886/*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes.  We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 *  - the first configure endpoint command drops more endpoints than it adds
1893 *  - a second configure endpoint command that adds more endpoints is queued
1894 *  - the first configure endpoint command fails, so the config is unchanged
1895 *  - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900		struct xhci_container_ctx *in_ctx)
1901{
1902	u32 added_eps;
1903
1904	added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906		xhci_dbg(xhci, "Not enough ep ctxs: "
1907				"%u active, need to add %u, limit is %u.\n",
 
1908				xhci->num_active_eps, added_eps,
1909				xhci->limit_active_eps);
1910		return -ENOMEM;
1911	}
1912	xhci->num_active_eps += added_eps;
1913	xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
 
1914			xhci->num_active_eps);
1915	return 0;
1916}
1917
1918/*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925		struct xhci_container_ctx *in_ctx)
1926{
1927	u32 num_failed_eps;
1928
1929	num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930	xhci->num_active_eps -= num_failed_eps;
1931	xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
 
1932			num_failed_eps,
1933			xhci->num_active_eps);
1934}
1935
1936/*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943		struct xhci_container_ctx *in_ctx)
1944{
1945	u32 num_dropped_eps;
1946
1947	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948	xhci->num_active_eps -= num_dropped_eps;
1949	if (num_dropped_eps)
1950		xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
 
1951				num_dropped_eps,
1952				xhci->num_active_eps);
1953}
1954
1955unsigned int xhci_get_block_size(struct usb_device *udev)
1956{
1957	switch (udev->speed) {
1958	case USB_SPEED_LOW:
1959	case USB_SPEED_FULL:
1960		return FS_BLOCK;
1961	case USB_SPEED_HIGH:
1962		return HS_BLOCK;
1963	case USB_SPEED_SUPER:
 
1964		return SS_BLOCK;
1965	case USB_SPEED_UNKNOWN:
1966	case USB_SPEED_WIRELESS:
1967	default:
1968		/* Should never happen */
1969		return 1;
1970	}
1971}
1972
1973unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
 
1974{
1975	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976		return LS_OVERHEAD;
1977	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978		return FS_OVERHEAD;
1979	return HS_OVERHEAD;
1980}
1981
1982/* If we are changing a LS/FS device under a HS hub,
1983 * make sure (if we are activating a new TT) that the HS bus has enough
1984 * bandwidth for this new TT.
1985 */
1986static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987		struct xhci_virt_device *virt_dev,
1988		int old_active_eps)
1989{
1990	struct xhci_interval_bw_table *bw_table;
1991	struct xhci_tt_bw_info *tt_info;
1992
1993	/* Find the bandwidth table for the root port this TT is attached to. */
1994	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995	tt_info = virt_dev->tt_info;
1996	/* If this TT already had active endpoints, the bandwidth for this TT
1997	 * has already been added.  Removing all periodic endpoints (and thus
1998	 * making the TT enactive) will only decrease the bandwidth used.
1999	 */
2000	if (old_active_eps)
2001		return 0;
2002	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004			return -ENOMEM;
2005		return 0;
2006	}
2007	/* Not sure why we would have no new active endpoints...
2008	 *
2009	 * Maybe because of an Evaluate Context change for a hub update or a
2010	 * control endpoint 0 max packet size change?
2011	 * FIXME: skip the bandwidth calculation in that case.
2012	 */
2013	return 0;
2014}
2015
2016static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017		struct xhci_virt_device *virt_dev)
2018{
2019	unsigned int bw_reserved;
2020
2021	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023		return -ENOMEM;
2024
2025	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027		return -ENOMEM;
2028
2029	return 0;
2030}
2031
2032/*
2033 * This algorithm is a very conservative estimate of the worst-case scheduling
2034 * scenario for any one interval.  The hardware dynamically schedules the
2035 * packets, so we can't tell which microframe could be the limiting factor in
2036 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2037 *
2038 * Obviously, we can't solve an NP complete problem to find the minimum worst
2039 * case scenario.  Instead, we come up with an estimate that is no less than
2040 * the worst case bandwidth used for any one microframe, but may be an
2041 * over-estimate.
2042 *
2043 * We walk the requirements for each endpoint by interval, starting with the
2044 * smallest interval, and place packets in the schedule where there is only one
2045 * possible way to schedule packets for that interval.  In order to simplify
2046 * this algorithm, we record the largest max packet size for each interval, and
2047 * assume all packets will be that size.
2048 *
2049 * For interval 0, we obviously must schedule all packets for each interval.
2050 * The bandwidth for interval 0 is just the amount of data to be transmitted
2051 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052 * the number of packets).
2053 *
2054 * For interval 1, we have two possible microframes to schedule those packets
2055 * in.  For this algorithm, if we can schedule the same number of packets for
2056 * each possible scheduling opportunity (each microframe), we will do so.  The
2057 * remaining number of packets will be saved to be transmitted in the gaps in
2058 * the next interval's scheduling sequence.
2059 *
2060 * As we move those remaining packets to be scheduled with interval 2 packets,
2061 * we have to double the number of remaining packets to transmit.  This is
2062 * because the intervals are actually powers of 2, and we would be transmitting
2063 * the previous interval's packets twice in this interval.  We also have to be
2064 * sure that when we look at the largest max packet size for this interval, we
2065 * also look at the largest max packet size for the remaining packets and take
2066 * the greater of the two.
2067 *
2068 * The algorithm continues to evenly distribute packets in each scheduling
2069 * opportunity, and push the remaining packets out, until we get to the last
2070 * interval.  Then those packets and their associated overhead are just added
2071 * to the bandwidth used.
2072 */
2073static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074		struct xhci_virt_device *virt_dev,
2075		int old_active_eps)
2076{
2077	unsigned int bw_reserved;
2078	unsigned int max_bandwidth;
2079	unsigned int bw_used;
2080	unsigned int block_size;
2081	struct xhci_interval_bw_table *bw_table;
2082	unsigned int packet_size = 0;
2083	unsigned int overhead = 0;
2084	unsigned int packets_transmitted = 0;
2085	unsigned int packets_remaining = 0;
2086	unsigned int i;
2087
2088	if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089		return xhci_check_ss_bw(xhci, virt_dev);
2090
2091	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092		max_bandwidth = HS_BW_LIMIT;
2093		/* Convert percent of bus BW reserved to blocks reserved */
2094		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095	} else {
2096		max_bandwidth = FS_BW_LIMIT;
2097		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098	}
2099
2100	bw_table = virt_dev->bw_table;
2101	/* We need to translate the max packet size and max ESIT payloads into
2102	 * the units the hardware uses.
2103	 */
2104	block_size = xhci_get_block_size(virt_dev->udev);
2105
2106	/* If we are manipulating a LS/FS device under a HS hub, double check
2107	 * that the HS bus has enough bandwidth if we are activing a new TT.
2108	 */
2109	if (virt_dev->tt_info) {
2110		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2111				virt_dev->real_port);
2112		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114					"newly activated TT.\n");
2115			return -ENOMEM;
2116		}
2117		xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
 
2118				virt_dev->tt_info->slot_id,
2119				virt_dev->tt_info->ttport);
2120	} else {
2121		xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
 
2122				virt_dev->real_port);
2123	}
2124
2125	/* Add in how much bandwidth will be used for interval zero, or the
2126	 * rounded max ESIT payload + number of packets * largest overhead.
2127	 */
2128	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129		bw_table->interval_bw[0].num_packets *
2130		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133		unsigned int bw_added;
2134		unsigned int largest_mps;
2135		unsigned int interval_overhead;
2136
2137		/*
2138		 * How many packets could we transmit in this interval?
2139		 * If packets didn't fit in the previous interval, we will need
2140		 * to transmit that many packets twice within this interval.
2141		 */
2142		packets_remaining = 2 * packets_remaining +
2143			bw_table->interval_bw[i].num_packets;
2144
2145		/* Find the largest max packet size of this or the previous
2146		 * interval.
2147		 */
2148		if (list_empty(&bw_table->interval_bw[i].endpoints))
2149			largest_mps = 0;
2150		else {
2151			struct xhci_virt_ep *virt_ep;
2152			struct list_head *ep_entry;
2153
2154			ep_entry = bw_table->interval_bw[i].endpoints.next;
2155			virt_ep = list_entry(ep_entry,
2156					struct xhci_virt_ep, bw_endpoint_list);
2157			/* Convert to blocks, rounding up */
2158			largest_mps = DIV_ROUND_UP(
2159					virt_ep->bw_info.max_packet_size,
2160					block_size);
2161		}
2162		if (largest_mps > packet_size)
2163			packet_size = largest_mps;
2164
2165		/* Use the larger overhead of this or the previous interval. */
2166		interval_overhead = xhci_get_largest_overhead(
2167				&bw_table->interval_bw[i]);
2168		if (interval_overhead > overhead)
2169			overhead = interval_overhead;
2170
2171		/* How many packets can we evenly distribute across
2172		 * (1 << (i + 1)) possible scheduling opportunities?
2173		 */
2174		packets_transmitted = packets_remaining >> (i + 1);
2175
2176		/* Add in the bandwidth used for those scheduled packets */
2177		bw_added = packets_transmitted * (overhead + packet_size);
2178
2179		/* How many packets do we have remaining to transmit? */
2180		packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182		/* What largest max packet size should those packets have? */
2183		/* If we've transmitted all packets, don't carry over the
2184		 * largest packet size.
2185		 */
2186		if (packets_remaining == 0) {
2187			packet_size = 0;
2188			overhead = 0;
2189		} else if (packets_transmitted > 0) {
2190			/* Otherwise if we do have remaining packets, and we've
2191			 * scheduled some packets in this interval, take the
2192			 * largest max packet size from endpoints with this
2193			 * interval.
2194			 */
2195			packet_size = largest_mps;
2196			overhead = interval_overhead;
2197		}
2198		/* Otherwise carry over packet_size and overhead from the last
2199		 * time we had a remainder.
2200		 */
2201		bw_used += bw_added;
2202		if (bw_used > max_bandwidth) {
2203			xhci_warn(xhci, "Not enough bandwidth. "
2204					"Proposed: %u, Max: %u\n",
2205				bw_used, max_bandwidth);
2206			return -ENOMEM;
2207		}
2208	}
2209	/*
2210	 * Ok, we know we have some packets left over after even-handedly
2211	 * scheduling interval 15.  We don't know which microframes they will
2212	 * fit into, so we over-schedule and say they will be scheduled every
2213	 * microframe.
2214	 */
2215	if (packets_remaining > 0)
2216		bw_used += overhead + packet_size;
2217
2218	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219		unsigned int port_index = virt_dev->real_port - 1;
2220
2221		/* OK, we're manipulating a HS device attached to a
2222		 * root port bandwidth domain.  Include the number of active TTs
2223		 * in the bandwidth used.
2224		 */
2225		bw_used += TT_HS_OVERHEAD *
2226			xhci->rh_bw[port_index].num_active_tts;
2227	}
2228
2229	xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230		"Available: %u " "percent\n",
 
2231		bw_used, max_bandwidth, bw_reserved,
2232		(max_bandwidth - bw_used - bw_reserved) * 100 /
2233		max_bandwidth);
2234
2235	bw_used += bw_reserved;
2236	if (bw_used > max_bandwidth) {
2237		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238				bw_used, max_bandwidth);
2239		return -ENOMEM;
2240	}
2241
2242	bw_table->bw_used = bw_used;
2243	return 0;
2244}
2245
2246static bool xhci_is_async_ep(unsigned int ep_type)
2247{
2248	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249					ep_type != ISOC_IN_EP &&
2250					ep_type != INT_IN_EP);
2251}
2252
2253static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254{
2255	return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2256}
2257
2258static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259{
2260	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262	if (ep_bw->ep_interval == 0)
2263		return SS_OVERHEAD_BURST +
2264			(ep_bw->mult * ep_bw->num_packets *
2265					(SS_OVERHEAD + mps));
2266	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268				1 << ep_bw->ep_interval);
2269
2270}
2271
2272void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273		struct xhci_bw_info *ep_bw,
2274		struct xhci_interval_bw_table *bw_table,
2275		struct usb_device *udev,
2276		struct xhci_virt_ep *virt_ep,
2277		struct xhci_tt_bw_info *tt_info)
2278{
2279	struct xhci_interval_bw	*interval_bw;
2280	int normalized_interval;
2281
2282	if (xhci_is_async_ep(ep_bw->type))
2283		return;
2284
2285	if (udev->speed == USB_SPEED_SUPER) {
2286		if (xhci_is_sync_in_ep(ep_bw->type))
2287			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288				xhci_get_ss_bw_consumed(ep_bw);
2289		else
2290			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291				xhci_get_ss_bw_consumed(ep_bw);
2292		return;
2293	}
2294
2295	/* SuperSpeed endpoints never get added to intervals in the table, so
2296	 * this check is only valid for HS/FS/LS devices.
2297	 */
2298	if (list_empty(&virt_ep->bw_endpoint_list))
2299		return;
2300	/* For LS/FS devices, we need to translate the interval expressed in
2301	 * microframes to frames.
2302	 */
2303	if (udev->speed == USB_SPEED_HIGH)
2304		normalized_interval = ep_bw->ep_interval;
2305	else
2306		normalized_interval = ep_bw->ep_interval - 3;
2307
2308	if (normalized_interval == 0)
2309		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310	interval_bw = &bw_table->interval_bw[normalized_interval];
2311	interval_bw->num_packets -= ep_bw->num_packets;
2312	switch (udev->speed) {
2313	case USB_SPEED_LOW:
2314		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315		break;
2316	case USB_SPEED_FULL:
2317		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318		break;
2319	case USB_SPEED_HIGH:
2320		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321		break;
2322	case USB_SPEED_SUPER:
2323	case USB_SPEED_UNKNOWN:
2324	case USB_SPEED_WIRELESS:
2325		/* Should never happen because only LS/FS/HS endpoints will get
2326		 * added to the endpoint list.
2327		 */
2328		return;
2329	}
2330	if (tt_info)
2331		tt_info->active_eps -= 1;
2332	list_del_init(&virt_ep->bw_endpoint_list);
2333}
2334
2335static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336		struct xhci_bw_info *ep_bw,
2337		struct xhci_interval_bw_table *bw_table,
2338		struct usb_device *udev,
2339		struct xhci_virt_ep *virt_ep,
2340		struct xhci_tt_bw_info *tt_info)
2341{
2342	struct xhci_interval_bw	*interval_bw;
2343	struct xhci_virt_ep *smaller_ep;
2344	int normalized_interval;
2345
2346	if (xhci_is_async_ep(ep_bw->type))
2347		return;
2348
2349	if (udev->speed == USB_SPEED_SUPER) {
2350		if (xhci_is_sync_in_ep(ep_bw->type))
2351			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352				xhci_get_ss_bw_consumed(ep_bw);
2353		else
2354			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355				xhci_get_ss_bw_consumed(ep_bw);
2356		return;
2357	}
2358
2359	/* For LS/FS devices, we need to translate the interval expressed in
2360	 * microframes to frames.
2361	 */
2362	if (udev->speed == USB_SPEED_HIGH)
2363		normalized_interval = ep_bw->ep_interval;
2364	else
2365		normalized_interval = ep_bw->ep_interval - 3;
2366
2367	if (normalized_interval == 0)
2368		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369	interval_bw = &bw_table->interval_bw[normalized_interval];
2370	interval_bw->num_packets += ep_bw->num_packets;
2371	switch (udev->speed) {
2372	case USB_SPEED_LOW:
2373		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374		break;
2375	case USB_SPEED_FULL:
2376		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377		break;
2378	case USB_SPEED_HIGH:
2379		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380		break;
2381	case USB_SPEED_SUPER:
2382	case USB_SPEED_UNKNOWN:
2383	case USB_SPEED_WIRELESS:
2384		/* Should never happen because only LS/FS/HS endpoints will get
2385		 * added to the endpoint list.
2386		 */
2387		return;
2388	}
2389
2390	if (tt_info)
2391		tt_info->active_eps += 1;
2392	/* Insert the endpoint into the list, largest max packet size first. */
2393	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394			bw_endpoint_list) {
2395		if (ep_bw->max_packet_size >=
2396				smaller_ep->bw_info.max_packet_size) {
2397			/* Add the new ep before the smaller endpoint */
2398			list_add_tail(&virt_ep->bw_endpoint_list,
2399					&smaller_ep->bw_endpoint_list);
2400			return;
2401		}
2402	}
2403	/* Add the new endpoint at the end of the list. */
2404	list_add_tail(&virt_ep->bw_endpoint_list,
2405			&interval_bw->endpoints);
2406}
2407
2408void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409		struct xhci_virt_device *virt_dev,
2410		int old_active_eps)
2411{
2412	struct xhci_root_port_bw_info *rh_bw_info;
2413	if (!virt_dev->tt_info)
2414		return;
2415
2416	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417	if (old_active_eps == 0 &&
2418				virt_dev->tt_info->active_eps != 0) {
2419		rh_bw_info->num_active_tts += 1;
2420		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421	} else if (old_active_eps != 0 &&
2422				virt_dev->tt_info->active_eps == 0) {
2423		rh_bw_info->num_active_tts -= 1;
2424		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425	}
2426}
2427
2428static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429		struct xhci_virt_device *virt_dev,
2430		struct xhci_container_ctx *in_ctx)
2431{
2432	struct xhci_bw_info ep_bw_info[31];
2433	int i;
2434	struct xhci_input_control_ctx *ctrl_ctx;
2435	int old_active_eps = 0;
2436
2437	if (virt_dev->tt_info)
2438		old_active_eps = virt_dev->tt_info->active_eps;
2439
2440	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
 
 
 
 
 
2441
2442	for (i = 0; i < 31; i++) {
2443		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444			continue;
2445
2446		/* Make a copy of the BW info in case we need to revert this */
2447		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448				sizeof(ep_bw_info[i]));
2449		/* Drop the endpoint from the interval table if the endpoint is
2450		 * being dropped or changed.
2451		 */
2452		if (EP_IS_DROPPED(ctrl_ctx, i))
2453			xhci_drop_ep_from_interval_table(xhci,
2454					&virt_dev->eps[i].bw_info,
2455					virt_dev->bw_table,
2456					virt_dev->udev,
2457					&virt_dev->eps[i],
2458					virt_dev->tt_info);
2459	}
2460	/* Overwrite the information stored in the endpoints' bw_info */
2461	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462	for (i = 0; i < 31; i++) {
2463		/* Add any changed or added endpoints to the interval table */
2464		if (EP_IS_ADDED(ctrl_ctx, i))
2465			xhci_add_ep_to_interval_table(xhci,
2466					&virt_dev->eps[i].bw_info,
2467					virt_dev->bw_table,
2468					virt_dev->udev,
2469					&virt_dev->eps[i],
2470					virt_dev->tt_info);
2471	}
2472
2473	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474		/* Ok, this fits in the bandwidth we have.
2475		 * Update the number of active TTs.
2476		 */
2477		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478		return 0;
2479	}
2480
2481	/* We don't have enough bandwidth for this, revert the stored info. */
2482	for (i = 0; i < 31; i++) {
2483		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484			continue;
2485
2486		/* Drop the new copies of any added or changed endpoints from
2487		 * the interval table.
2488		 */
2489		if (EP_IS_ADDED(ctrl_ctx, i)) {
2490			xhci_drop_ep_from_interval_table(xhci,
2491					&virt_dev->eps[i].bw_info,
2492					virt_dev->bw_table,
2493					virt_dev->udev,
2494					&virt_dev->eps[i],
2495					virt_dev->tt_info);
2496		}
2497		/* Revert the endpoint back to its old information */
2498		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499				sizeof(ep_bw_info[i]));
2500		/* Add any changed or dropped endpoints back into the table */
2501		if (EP_IS_DROPPED(ctrl_ctx, i))
2502			xhci_add_ep_to_interval_table(xhci,
2503					&virt_dev->eps[i].bw_info,
2504					virt_dev->bw_table,
2505					virt_dev->udev,
2506					&virt_dev->eps[i],
2507					virt_dev->tt_info);
2508	}
2509	return -ENOMEM;
2510}
2511
2512
2513/* Issue a configure endpoint command or evaluate context command
2514 * and wait for it to finish.
2515 */
2516static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517		struct usb_device *udev,
2518		struct xhci_command *command,
2519		bool ctx_change, bool must_succeed)
2520{
2521	int ret;
2522	int timeleft;
2523	unsigned long flags;
2524	struct xhci_container_ctx *in_ctx;
2525	struct completion *cmd_completion;
2526	u32 *cmd_status;
2527	struct xhci_virt_device *virt_dev;
2528	union xhci_trb *cmd_trb;
 
 
 
2529
2530	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2531	virt_dev = xhci->devs[udev->slot_id];
2532
2533	if (command)
2534		in_ctx = command->in_ctx;
2535	else
2536		in_ctx = virt_dev->in_ctx;
 
 
 
2537
2538	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539			xhci_reserve_host_resources(xhci, in_ctx)) {
2540		spin_unlock_irqrestore(&xhci->lock, flags);
2541		xhci_warn(xhci, "Not enough host resources, "
2542				"active endpoint contexts = %u\n",
2543				xhci->num_active_eps);
2544		return -ENOMEM;
2545	}
2546	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547			xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549			xhci_free_host_resources(xhci, in_ctx);
2550		spin_unlock_irqrestore(&xhci->lock, flags);
2551		xhci_warn(xhci, "Not enough bandwidth\n");
2552		return -ENOMEM;
2553	}
2554
2555	if (command) {
2556		cmd_completion = command->completion;
2557		cmd_status = &command->status;
2558		command->command_trb = xhci->cmd_ring->enqueue;
2559
2560		/* Enqueue pointer can be left pointing to the link TRB,
2561		 * we must handle that
2562		 */
2563		if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564			command->command_trb =
2565				xhci->cmd_ring->enq_seg->next->trbs;
2566
2567		list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568	} else {
2569		cmd_completion = &virt_dev->cmd_completion;
2570		cmd_status = &virt_dev->cmd_status;
2571	}
2572	init_completion(cmd_completion);
2573
2574	cmd_trb = xhci->cmd_ring->dequeue;
2575	if (!ctx_change)
2576		ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
 
2577				udev->slot_id, must_succeed);
2578	else
2579		ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
 
2580				udev->slot_id, must_succeed);
2581	if (ret < 0) {
2582		if (command)
2583			list_del(&command->cmd_list);
2584		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585			xhci_free_host_resources(xhci, in_ctx);
2586		spin_unlock_irqrestore(&xhci->lock, flags);
2587		xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
 
2588		return -ENOMEM;
2589	}
2590	xhci_ring_cmd_db(xhci);
2591	spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593	/* Wait for the configure endpoint command to complete */
2594	timeleft = wait_for_completion_interruptible_timeout(
2595			cmd_completion,
2596			XHCI_CMD_DEFAULT_TIMEOUT);
2597	if (timeleft <= 0) {
2598		xhci_warn(xhci, "%s while waiting for %s command\n",
2599				timeleft == 0 ? "Timeout" : "Signal",
2600				ctx_change == 0 ?
2601					"configure endpoint" :
2602					"evaluate context");
2603		/* cancel the configure endpoint command */
2604		ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605		if (ret < 0)
2606			return ret;
2607		return -ETIME;
2608	}
2609
2610	if (!ctx_change)
2611		ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
 
2612	else
2613		ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
 
2614
2615	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616		spin_lock_irqsave(&xhci->lock, flags);
2617		/* If the command failed, remove the reserved resources.
2618		 * Otherwise, clean up the estimate to include dropped eps.
2619		 */
2620		if (ret)
2621			xhci_free_host_resources(xhci, in_ctx);
2622		else
2623			xhci_finish_resource_reservation(xhci, in_ctx);
2624		spin_unlock_irqrestore(&xhci->lock, flags);
2625	}
2626	return ret;
2627}
2628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629/* Called after one or more calls to xhci_add_endpoint() or
2630 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2631 * to call xhci_reset_bandwidth().
2632 *
2633 * Since we are in the middle of changing either configuration or
2634 * installing a new alt setting, the USB core won't allow URBs to be
2635 * enqueued for any endpoint on the old config or interface.  Nothing
2636 * else should be touching the xhci->devs[slot_id] structure, so we
2637 * don't need to take the xhci->lock for manipulating that.
2638 */
2639int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640{
2641	int i;
2642	int ret = 0;
2643	struct xhci_hcd *xhci;
2644	struct xhci_virt_device	*virt_dev;
2645	struct xhci_input_control_ctx *ctrl_ctx;
2646	struct xhci_slot_ctx *slot_ctx;
 
2647
2648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649	if (ret <= 0)
2650		return ret;
2651	xhci = hcd_to_xhci(hcd);
2652	if (xhci->xhc_state & XHCI_STATE_DYING)
 
2653		return -ENODEV;
2654
2655	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656	virt_dev = xhci->devs[udev->slot_id];
2657
 
 
 
 
 
 
2658	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
2660	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664	/* Don't issue the command if there's no endpoints to update. */
2665	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666			ctrl_ctx->drop_flags == 0)
2667		return 0;
 
 
 
 
 
 
2668
2669	xhci_dbg(xhci, "New Input Control Context:\n");
2670	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
 
 
 
2673
2674	ret = xhci_configure_endpoint(xhci, udev, NULL,
2675			false, false);
2676	if (ret) {
2677		/* Callee should call reset_bandwidth() */
2678		return ret;
2679	}
2680
2681	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685	/* Free any rings that were dropped, but not changed. */
2686	for (i = 1; i < 31; ++i) {
2687		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
 
 
2690	}
2691	xhci_zero_in_ctx(xhci, virt_dev);
2692	/*
2693	 * Install any rings for completely new endpoints or changed endpoints,
2694	 * and free or cache any old rings from changed endpoints.
2695	 */
2696	for (i = 1; i < 31; ++i) {
2697		if (!virt_dev->eps[i].new_ring)
2698			continue;
2699		/* Only cache or free the old ring if it exists.
2700		 * It may not if this is the first add of an endpoint.
2701		 */
2702		if (virt_dev->eps[i].ring) {
2703			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704		}
 
2705		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706		virt_dev->eps[i].new_ring = NULL;
 
2707	}
 
 
 
2708
2709	return ret;
2710}
 
2711
2712void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714	struct xhci_hcd *xhci;
2715	struct xhci_virt_device	*virt_dev;
2716	int i, ret;
2717
2718	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719	if (ret <= 0)
2720		return;
2721	xhci = hcd_to_xhci(hcd);
2722
2723	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724	virt_dev = xhci->devs[udev->slot_id];
2725	/* Free any rings allocated for added endpoints */
2726	for (i = 0; i < 31; ++i) {
2727		if (virt_dev->eps[i].new_ring) {
 
2728			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729			virt_dev->eps[i].new_ring = NULL;
2730		}
2731	}
2732	xhci_zero_in_ctx(xhci, virt_dev);
2733}
 
2734
2735static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736		struct xhci_container_ctx *in_ctx,
2737		struct xhci_container_ctx *out_ctx,
 
2738		u32 add_flags, u32 drop_flags)
2739{
2740	struct xhci_input_control_ctx *ctrl_ctx;
2741	ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744	xhci_slot_copy(xhci, in_ctx, out_ctx);
2745	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747	xhci_dbg(xhci, "Input Context:\n");
2748	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749}
2750
2751static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752		unsigned int slot_id, unsigned int ep_index,
2753		struct xhci_dequeue_state *deq_state)
2754{
2755	struct xhci_container_ctx *in_ctx;
2756	struct xhci_ep_ctx *ep_ctx;
2757	u32 added_ctxs;
2758	dma_addr_t addr;
 
 
 
 
 
 
2759
2760	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761			xhci->devs[slot_id]->out_ctx, ep_index);
2762	in_ctx = xhci->devs[slot_id]->in_ctx;
2763	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765			deq_state->new_deq_ptr);
2766	if (addr == 0) {
2767		xhci_warn(xhci, "WARN Cannot submit config ep after "
2768				"reset ep command\n");
2769		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770				deq_state->new_deq_seg,
2771				deq_state->new_deq_ptr);
2772		return;
2773	}
2774	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778			xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2779}
2780
2781void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782		struct usb_device *udev, unsigned int ep_index)
2783{
2784	struct xhci_dequeue_state deq_state;
2785	struct xhci_virt_ep *ep;
2786
2787	xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2788	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789	/* We need to move the HW's dequeue pointer past this TD,
2790	 * or it will attempt to resend it on the next doorbell ring.
2791	 */
2792	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793			ep_index, ep->stopped_stream, ep->stopped_td,
2794			&deq_state);
2795
2796	/* HW with the reset endpoint quirk will use the saved dequeue state to
2797	 * issue a configure endpoint command later.
2798	 */
2799	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800		xhci_dbg(xhci, "Queueing new dequeue state\n");
2801		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802				ep_index, ep->stopped_stream, &deq_state);
2803	} else {
2804		/* Better hope no one uses the input context between now and the
2805		 * reset endpoint completion!
2806		 * XXX: No idea how this hardware will react when stream rings
2807		 * are enabled.
2808		 */
2809		xhci_dbg(xhci, "Setting up input context for "
2810				"configure endpoint command\n");
2811		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812				ep_index, &deq_state);
2813	}
 
 
 
 
 
 
 
2814}
2815
2816/* Deal with stalled endpoints.  The core should have sent the control message
2817 * to clear the halt condition.  However, we need to make the xHCI hardware
2818 * reset its sequence number, since a device will expect a sequence number of
2819 * zero after the halt condition is cleared.
2820 * Context: in_interrupt
 
 
 
 
 
 
 
 
2821 */
2822void xhci_endpoint_reset(struct usb_hcd *hcd,
2823		struct usb_host_endpoint *ep)
 
2824{
2825	struct xhci_hcd *xhci;
2826	struct usb_device *udev;
 
 
 
 
2827	unsigned int ep_index;
2828	unsigned long flags;
2829	int ret;
2830	struct xhci_virt_ep *virt_ep;
2831
2832	xhci = hcd_to_xhci(hcd);
2833	udev = (struct usb_device *) ep->hcpriv;
2834	/* Called with a root hub endpoint (or an endpoint that wasn't added
2835	 * with xhci_add_endpoint()
 
 
 
2836	 */
2837	if (!ep->hcpriv)
 
 
 
 
 
 
 
 
 
 
 
 
2838		return;
2839	ep_index = xhci_get_endpoint_index(&ep->desc);
2840	virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841	if (!virt_ep->stopped_td) {
2842		xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843				ep->desc.bEndpointAddress);
 
 
 
 
 
 
 
 
 
 
 
 
2844		return;
2845	}
2846	if (usb_endpoint_xfer_control(&ep->desc)) {
2847		xhci_dbg(xhci, "Control endpoint stall already handled.\n");
 
 
2848		return;
2849	}
2850
2851	xhci_dbg(xhci, "Queueing reset endpoint command\n");
 
 
 
 
 
 
 
 
 
 
 
 
2852	spin_lock_irqsave(&xhci->lock, flags);
2853	ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
 
 
 
2854	/*
2855	 * Can't change the ring dequeue pointer until it's transitioned to the
2856	 * stopped state, which is only upon a successful reset endpoint
2857	 * command.  Better hope that last command worked!
2858	 */
2859	if (!ret) {
2860		xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861		kfree(virt_ep->stopped_td);
2862		xhci_ring_cmd_db(xhci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2863	}
2864	virt_ep->stopped_td = NULL;
2865	virt_ep->stopped_trb = NULL;
2866	virt_ep->stopped_stream = 0;
2867	spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869	if (ret)
2870		xhci_warn(xhci, "FIXME allocate a new ring segment\n");
 
 
 
 
 
 
 
2871}
2872
2873static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874		struct usb_device *udev, struct usb_host_endpoint *ep,
2875		unsigned int slot_id)
2876{
2877	int ret;
2878	unsigned int ep_index;
2879	unsigned int ep_state;
2880
2881	if (!ep)
2882		return -EINVAL;
2883	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884	if (ret <= 0)
2885		return -EINVAL;
2886	if (ep->ss_ep_comp.bmAttributes == 0) {
2887		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888				" descriptor for ep 0x%x does not support streams\n",
2889				ep->desc.bEndpointAddress);
2890		return -EINVAL;
2891	}
2892
2893	ep_index = xhci_get_endpoint_index(&ep->desc);
2894	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895	if (ep_state & EP_HAS_STREAMS ||
2896			ep_state & EP_GETTING_STREAMS) {
2897		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898				"already has streams set up.\n",
2899				ep->desc.bEndpointAddress);
2900		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901				"dynamic stream context array reallocation.\n");
2902		return -EINVAL;
2903	}
2904	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906				"endpoint 0x%x; URBs are pending.\n",
2907				ep->desc.bEndpointAddress);
2908		return -EINVAL;
2909	}
2910	return 0;
2911}
2912
2913static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914		unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915{
2916	unsigned int max_streams;
2917
2918	/* The stream context array size must be a power of two */
2919	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920	/*
2921	 * Find out how many primary stream array entries the host controller
2922	 * supports.  Later we may use secondary stream arrays (similar to 2nd
2923	 * level page entries), but that's an optional feature for xHCI host
2924	 * controllers. xHCs must support at least 4 stream IDs.
2925	 */
2926	max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927	if (*num_stream_ctxs > max_streams) {
2928		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929				max_streams);
2930		*num_stream_ctxs = max_streams;
2931		*num_streams = max_streams;
2932	}
2933}
2934
2935/* Returns an error code if one of the endpoint already has streams.
2936 * This does not change any data structures, it only checks and gathers
2937 * information.
2938 */
2939static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940		struct usb_device *udev,
2941		struct usb_host_endpoint **eps, unsigned int num_eps,
2942		unsigned int *num_streams, u32 *changed_ep_bitmask)
2943{
2944	unsigned int max_streams;
2945	unsigned int endpoint_flag;
2946	int i;
2947	int ret;
2948
2949	for (i = 0; i < num_eps; i++) {
2950		ret = xhci_check_streams_endpoint(xhci, udev,
2951				eps[i], udev->slot_id);
2952		if (ret < 0)
2953			return ret;
2954
2955		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2956		if (max_streams < (*num_streams - 1)) {
2957			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958					eps[i]->desc.bEndpointAddress,
2959					max_streams);
2960			*num_streams = max_streams+1;
2961		}
2962
2963		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964		if (*changed_ep_bitmask & endpoint_flag)
2965			return -EINVAL;
2966		*changed_ep_bitmask |= endpoint_flag;
2967	}
2968	return 0;
2969}
2970
2971static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972		struct usb_device *udev,
2973		struct usb_host_endpoint **eps, unsigned int num_eps)
2974{
2975	u32 changed_ep_bitmask = 0;
2976	unsigned int slot_id;
2977	unsigned int ep_index;
2978	unsigned int ep_state;
2979	int i;
2980
2981	slot_id = udev->slot_id;
2982	if (!xhci->devs[slot_id])
2983		return 0;
2984
2985	for (i = 0; i < num_eps; i++) {
2986		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988		/* Are streams already being freed for the endpoint? */
2989		if (ep_state & EP_GETTING_NO_STREAMS) {
2990			xhci_warn(xhci, "WARN Can't disable streams for "
2991					"endpoint 0x%x\n, "
2992					"streams are being disabled already.",
2993					eps[i]->desc.bEndpointAddress);
2994			return 0;
2995		}
2996		/* Are there actually any streams to free? */
2997		if (!(ep_state & EP_HAS_STREAMS) &&
2998				!(ep_state & EP_GETTING_STREAMS)) {
2999			xhci_warn(xhci, "WARN Can't disable streams for "
3000					"endpoint 0x%x\n, "
3001					"streams are already disabled!",
3002					eps[i]->desc.bEndpointAddress);
3003			xhci_warn(xhci, "WARN xhci_free_streams() called "
3004					"with non-streams endpoint\n");
3005			return 0;
3006		}
3007		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008	}
3009	return changed_ep_bitmask;
3010}
3011
3012/*
3013 * The USB device drivers use this function (though the HCD interface in USB
3014 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3015 * coordinate mass storage command queueing across multiple endpoints (basically
3016 * a stream ID == a task ID).
3017 *
3018 * Setting up streams involves allocating the same size stream context array
3019 * for each endpoint and issuing a configure endpoint command for all endpoints.
3020 *
3021 * Don't allow the call to succeed if one endpoint only supports one stream
3022 * (which means it doesn't support streams at all).
3023 *
3024 * Drivers may get less stream IDs than they asked for, if the host controller
3025 * hardware or endpoints claim they can't support the number of requested
3026 * stream IDs.
3027 */
3028int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029		struct usb_host_endpoint **eps, unsigned int num_eps,
3030		unsigned int num_streams, gfp_t mem_flags)
3031{
3032	int i, ret;
3033	struct xhci_hcd *xhci;
3034	struct xhci_virt_device *vdev;
3035	struct xhci_command *config_cmd;
 
3036	unsigned int ep_index;
3037	unsigned int num_stream_ctxs;
 
3038	unsigned long flags;
3039	u32 changed_ep_bitmask = 0;
3040
3041	if (!eps)
3042		return -EINVAL;
3043
3044	/* Add one to the number of streams requested to account for
3045	 * stream 0 that is reserved for xHCI usage.
3046	 */
3047	num_streams += 1;
3048	xhci = hcd_to_xhci(hcd);
3049	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050			num_streams);
3051
3052	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053	if (!config_cmd) {
3054		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
3055		return -ENOMEM;
3056	}
3057
3058	/* Check to make sure all endpoints are not already configured for
3059	 * streams.  While we're at it, find the maximum number of streams that
3060	 * all the endpoints will support and check for duplicate endpoints.
3061	 */
3062	spin_lock_irqsave(&xhci->lock, flags);
3063	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064			num_eps, &num_streams, &changed_ep_bitmask);
3065	if (ret < 0) {
3066		xhci_free_command(xhci, config_cmd);
3067		spin_unlock_irqrestore(&xhci->lock, flags);
3068		return ret;
3069	}
3070	if (num_streams <= 1) {
3071		xhci_warn(xhci, "WARN: endpoints can't handle "
3072				"more than one stream.\n");
3073		xhci_free_command(xhci, config_cmd);
3074		spin_unlock_irqrestore(&xhci->lock, flags);
3075		return -EINVAL;
3076	}
3077	vdev = xhci->devs[udev->slot_id];
3078	/* Mark each endpoint as being in transition, so
3079	 * xhci_urb_enqueue() will reject all URBs.
3080	 */
3081	for (i = 0; i < num_eps; i++) {
3082		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084	}
3085	spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087	/* Setup internal data structures and allocate HW data structures for
3088	 * streams (but don't install the HW structures in the input context
3089	 * until we're sure all memory allocation succeeded).
3090	 */
3091	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093			num_stream_ctxs, num_streams);
3094
3095	for (i = 0; i < num_eps; i++) {
3096		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3097		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098				num_stream_ctxs,
3099				num_streams, mem_flags);
 
3100		if (!vdev->eps[ep_index].stream_info)
3101			goto cleanup;
3102		/* Set maxPstreams in endpoint context and update deq ptr to
3103		 * point to stream context array. FIXME
3104		 */
3105	}
3106
3107	/* Set up the input context for a configure endpoint command. */
3108	for (i = 0; i < num_eps; i++) {
3109		struct xhci_ep_ctx *ep_ctx;
3110
3111		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115				vdev->out_ctx, ep_index);
3116		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117				vdev->eps[ep_index].stream_info);
3118	}
3119	/* Tell the HW to drop its old copy of the endpoint context info
3120	 * and add the updated copy from the input context.
3121	 */
3122	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3124
3125	/* Issue and wait for the configure endpoint command */
3126	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127			false, false);
3128
3129	/* xHC rejected the configure endpoint command for some reason, so we
3130	 * leave the old ring intact and free our internal streams data
3131	 * structure.
3132	 */
3133	if (ret < 0)
3134		goto cleanup;
3135
3136	spin_lock_irqsave(&xhci->lock, flags);
3137	for (i = 0; i < num_eps; i++) {
3138		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141			 udev->slot_id, ep_index);
3142		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143	}
3144	xhci_free_command(xhci, config_cmd);
3145	spin_unlock_irqrestore(&xhci->lock, flags);
3146
 
 
 
 
3147	/* Subtract 1 for stream 0, which drivers can't use */
3148	return num_streams - 1;
3149
3150cleanup:
3151	/* If it didn't work, free the streams! */
3152	for (i = 0; i < num_eps; i++) {
3153		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155		vdev->eps[ep_index].stream_info = NULL;
3156		/* FIXME Unset maxPstreams in endpoint context and
3157		 * update deq ptr to point to normal string ring.
3158		 */
3159		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161		xhci_endpoint_zero(xhci, vdev, eps[i]);
3162	}
3163	xhci_free_command(xhci, config_cmd);
3164	return -ENOMEM;
3165}
3166
3167/* Transition the endpoint from using streams to being a "normal" endpoint
3168 * without streams.
3169 *
3170 * Modify the endpoint context state, submit a configure endpoint command,
3171 * and free all endpoint rings for streams if that completes successfully.
3172 */
3173int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174		struct usb_host_endpoint **eps, unsigned int num_eps,
3175		gfp_t mem_flags)
3176{
3177	int i, ret;
3178	struct xhci_hcd *xhci;
3179	struct xhci_virt_device *vdev;
3180	struct xhci_command *command;
 
3181	unsigned int ep_index;
3182	unsigned long flags;
3183	u32 changed_ep_bitmask;
3184
3185	xhci = hcd_to_xhci(hcd);
3186	vdev = xhci->devs[udev->slot_id];
3187
3188	/* Set up a configure endpoint command to remove the streams rings */
3189	spin_lock_irqsave(&xhci->lock, flags);
3190	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191			udev, eps, num_eps);
3192	if (changed_ep_bitmask == 0) {
3193		spin_unlock_irqrestore(&xhci->lock, flags);
3194		return -EINVAL;
3195	}
3196
3197	/* Use the xhci_command structure from the first endpoint.  We may have
3198	 * allocated too many, but the driver may call xhci_free_streams() for
3199	 * each endpoint it grouped into one call to xhci_alloc_streams().
3200	 */
3201	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202	command = vdev->eps[ep_index].stream_info->free_streams_command;
 
 
 
 
 
 
 
 
3203	for (i = 0; i < num_eps; i++) {
3204		struct xhci_ep_ctx *ep_ctx;
3205
3206		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209			EP_GETTING_NO_STREAMS;
3210
3211		xhci_endpoint_copy(xhci, command->in_ctx,
3212				vdev->out_ctx, ep_index);
3213		xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214				&vdev->eps[ep_index]);
3215	}
3216	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217			vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
 
3218	spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220	/* Issue and wait for the configure endpoint command,
3221	 * which must succeed.
3222	 */
3223	ret = xhci_configure_endpoint(xhci, udev, command,
3224			false, true);
3225
3226	/* xHC rejected the configure endpoint command for some reason, so we
3227	 * leave the streams rings intact.
3228	 */
3229	if (ret < 0)
3230		return ret;
3231
3232	spin_lock_irqsave(&xhci->lock, flags);
3233	for (i = 0; i < num_eps; i++) {
3234		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236		vdev->eps[ep_index].stream_info = NULL;
3237		/* FIXME Unset maxPstreams in endpoint context and
3238		 * update deq ptr to point to normal string ring.
3239		 */
3240		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242	}
3243	spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245	return 0;
3246}
3247
3248/*
3249 * Deletes endpoint resources for endpoints that were active before a Reset
3250 * Device command, or a Disable Slot command.  The Reset Device command leaves
3251 * the control endpoint intact, whereas the Disable Slot command deletes it.
3252 *
3253 * Must be called with xhci->lock held.
3254 */
3255void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257{
3258	int i;
3259	unsigned int num_dropped_eps = 0;
3260	unsigned int drop_flags = 0;
3261
3262	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263		if (virt_dev->eps[i].ring) {
3264			drop_flags |= 1 << i;
3265			num_dropped_eps++;
3266		}
3267	}
3268	xhci->num_active_eps -= num_dropped_eps;
3269	if (num_dropped_eps)
3270		xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271				"%u now active.\n",
 
3272				num_dropped_eps, drop_flags,
3273				xhci->num_active_eps);
3274}
3275
3276/*
3277 * This submits a Reset Device Command, which will set the device state to 0,
3278 * set the device address to 0, and disable all the endpoints except the default
3279 * control endpoint.  The USB core should come back and call
3280 * xhci_address_device(), and then re-set up the configuration.  If this is
3281 * called because of a usb_reset_and_verify_device(), then the old alternate
3282 * settings will be re-installed through the normal bandwidth allocation
3283 * functions.
3284 *
3285 * Wait for the Reset Device command to finish.  Remove all structures
3286 * associated with the endpoints that were disabled.  Clear the input device
3287 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3288 *
3289 * If the virt_dev to be reset does not exist or does not match the udev,
3290 * it means the device is lost, possibly due to the xHC restore error and
3291 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292 * re-allocate the device.
3293 */
3294int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3295{
3296	int ret, i;
3297	unsigned long flags;
3298	struct xhci_hcd *xhci;
3299	unsigned int slot_id;
3300	struct xhci_virt_device *virt_dev;
3301	struct xhci_command *reset_device_cmd;
3302	int timeleft;
3303	int last_freed_endpoint;
3304	struct xhci_slot_ctx *slot_ctx;
3305	int old_active_eps = 0;
3306
3307	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308	if (ret <= 0)
3309		return ret;
3310	xhci = hcd_to_xhci(hcd);
3311	slot_id = udev->slot_id;
3312	virt_dev = xhci->devs[slot_id];
3313	if (!virt_dev) {
3314		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315				"not exist. Re-allocate the device\n", slot_id);
3316		ret = xhci_alloc_dev(hcd, udev);
3317		if (ret == 1)
3318			return 0;
3319		else
3320			return -EINVAL;
3321	}
3322
 
 
 
3323	if (virt_dev->udev != udev) {
3324		/* If the virt_dev and the udev does not match, this virt_dev
3325		 * may belong to another udev.
3326		 * Re-allocate the device.
3327		 */
3328		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329				"not match the udev. Re-allocate the device\n",
3330				slot_id);
3331		ret = xhci_alloc_dev(hcd, udev);
3332		if (ret == 1)
3333			return 0;
3334		else
3335			return -EINVAL;
3336	}
3337
3338	/* If device is not setup, there is no point in resetting it */
3339	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341						SLOT_STATE_DISABLED)
3342		return 0;
3343
 
 
3344	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345	/* Allocate the command structure that holds the struct completion.
3346	 * Assume we're in process context, since the normal device reset
3347	 * process has to wait for the device anyway.  Storage devices are
3348	 * reset as part of error handling, so use GFP_NOIO instead of
3349	 * GFP_KERNEL.
3350	 */
3351	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352	if (!reset_device_cmd) {
3353		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354		return -ENOMEM;
3355	}
3356
3357	/* Attempt to submit the Reset Device command to the command ring */
3358	spin_lock_irqsave(&xhci->lock, flags);
3359	reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361	/* Enqueue pointer can be left pointing to the link TRB,
3362	 * we must handle that
3363	 */
3364	if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365		reset_device_cmd->command_trb =
3366			xhci->cmd_ring->enq_seg->next->trbs;
3367
3368	list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369	ret = xhci_queue_reset_device(xhci, slot_id);
3370	if (ret) {
3371		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372		list_del(&reset_device_cmd->cmd_list);
3373		spin_unlock_irqrestore(&xhci->lock, flags);
3374		goto command_cleanup;
3375	}
3376	xhci_ring_cmd_db(xhci);
3377	spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379	/* Wait for the Reset Device command to finish */
3380	timeleft = wait_for_completion_interruptible_timeout(
3381			reset_device_cmd->completion,
3382			USB_CTRL_SET_TIMEOUT);
3383	if (timeleft <= 0) {
3384		xhci_warn(xhci, "%s while waiting for reset device command\n",
3385				timeleft == 0 ? "Timeout" : "Signal");
3386		spin_lock_irqsave(&xhci->lock, flags);
3387		/* The timeout might have raced with the event ring handler, so
3388		 * only delete from the list if the item isn't poisoned.
3389		 */
3390		if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391			list_del(&reset_device_cmd->cmd_list);
3392		spin_unlock_irqrestore(&xhci->lock, flags);
3393		ret = -ETIME;
3394		goto command_cleanup;
3395	}
3396
3397	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398	 * unless we tried to reset a slot ID that wasn't enabled,
3399	 * or the device wasn't in the addressed or configured state.
3400	 */
3401	ret = reset_device_cmd->status;
3402	switch (ret) {
3403	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405		xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
 
 
 
 
 
3406				slot_id,
3407				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408		xhci_info(xhci, "Not freeing device rings.\n");
3409		/* Don't treat this as an error.  May change my mind later. */
3410		ret = 0;
3411		goto command_cleanup;
3412	case COMP_SUCCESS:
3413		xhci_dbg(xhci, "Successful reset device command.\n");
3414		break;
3415	default:
3416		if (xhci_is_vendor_info_code(xhci, ret))
3417			break;
3418		xhci_warn(xhci, "Unknown completion code %u for "
3419				"reset device command.\n", ret);
3420		ret = -EINVAL;
3421		goto command_cleanup;
3422	}
3423
3424	/* Free up host controller endpoint resources */
3425	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426		spin_lock_irqsave(&xhci->lock, flags);
3427		/* Don't delete the default control endpoint resources */
3428		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429		spin_unlock_irqrestore(&xhci->lock, flags);
3430	}
3431
3432	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433	last_freed_endpoint = 1;
3434	for (i = 1; i < 31; ++i) {
3435		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437		if (ep->ep_state & EP_HAS_STREAMS) {
 
 
3438			xhci_free_stream_info(xhci, ep->stream_info);
3439			ep->stream_info = NULL;
3440			ep->ep_state &= ~EP_HAS_STREAMS;
3441		}
3442
3443		if (ep->ring) {
3444			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445			last_freed_endpoint = i;
3446		}
3447		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448			xhci_drop_ep_from_interval_table(xhci,
3449					&virt_dev->eps[i].bw_info,
3450					virt_dev->bw_table,
3451					udev,
3452					&virt_dev->eps[i],
3453					virt_dev->tt_info);
3454		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455	}
3456	/* If necessary, update the number of active TTs on this root port */
3457	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461	ret = 0;
3462
3463command_cleanup:
3464	xhci_free_command(xhci, reset_device_cmd);
3465	return ret;
3466}
3467
3468/*
3469 * At this point, the struct usb_device is about to go away, the device has
3470 * disconnected, and all traffic has been stopped and the endpoints have been
3471 * disabled.  Free any HC data structures associated with that device.
3472 */
3473void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474{
3475	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476	struct xhci_virt_device *virt_dev;
 
3477	unsigned long flags;
3478	u32 state;
3479	int i, ret;
3480
 
 
 
 
 
 
 
 
3481	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482	/* If the host is halted due to driver unload, we still need to free the
3483	 * device.
3484	 */
3485	if (ret <= 0 && ret != -ENODEV)
3486		return;
3487
3488	virt_dev = xhci->devs[udev->slot_id];
 
 
3489
3490	/* Stop any wayward timer functions (which may grab the lock) */
3491	for (i = 0; i < 31; ++i) {
3492		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3495
3496	if (udev->usb2_hw_lpm_enabled) {
3497		xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498		udev->usb2_hw_lpm_enabled = 0;
3499	}
3500
3501	spin_lock_irqsave(&xhci->lock, flags);
3502	/* Don't disable the slot if the host controller is dead. */
3503	state = xhci_readl(xhci, &xhci->op_regs->status);
3504	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3506		xhci_free_virt_device(xhci, udev->slot_id);
3507		spin_unlock_irqrestore(&xhci->lock, flags);
3508		return;
 
3509	}
3510
3511	if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
 
 
3512		spin_unlock_irqrestore(&xhci->lock, flags);
3513		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514		return;
3515	}
3516	xhci_ring_cmd_db(xhci);
3517	spin_unlock_irqrestore(&xhci->lock, flags);
3518	/*
3519	 * Event command completion handler will free any data structures
3520	 * associated with the slot.  XXX Can free sleep?
3521	 */
 
 
 
 
 
 
3522}
3523
3524/*
3525 * Checks if we have enough host controller resources for the default control
3526 * endpoint.
3527 *
3528 * Must be called with xhci->lock held.
3529 */
3530static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531{
3532	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533		xhci_dbg(xhci, "Not enough ep ctxs: "
3534				"%u active, need to add 1, limit is %u.\n",
 
3535				xhci->num_active_eps, xhci->limit_active_eps);
3536		return -ENOMEM;
3537	}
3538	xhci->num_active_eps += 1;
3539	xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
 
3540			xhci->num_active_eps);
3541	return 0;
3542}
3543
3544
3545/*
3546 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547 * timed out, or allocating memory failed.  Returns 1 on success.
3548 */
3549int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550{
3551	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3552	unsigned long flags;
3553	int timeleft;
3554	int ret;
3555	union xhci_trb *cmd_trb;
 
 
 
3556
3557	spin_lock_irqsave(&xhci->lock, flags);
3558	cmd_trb = xhci->cmd_ring->dequeue;
3559	ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560	if (ret) {
3561		spin_unlock_irqrestore(&xhci->lock, flags);
3562		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
 
3563		return 0;
3564	}
3565	xhci_ring_cmd_db(xhci);
3566	spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568	/* XXX: how much time for xHC slot assignment? */
3569	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570			XHCI_CMD_DEFAULT_TIMEOUT);
3571	if (timeleft <= 0) {
3572		xhci_warn(xhci, "%s while waiting for a slot\n",
3573				timeleft == 0 ? "Timeout" : "Signal");
3574		/* cancel the enable slot request */
3575		return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576	}
3577
3578	if (!xhci->slot_id) {
3579		xhci_err(xhci, "Error while assigning device slot ID\n");
 
 
 
 
 
3580		return 0;
3581	}
3582
 
 
3583	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584		spin_lock_irqsave(&xhci->lock, flags);
3585		ret = xhci_reserve_host_control_ep_resources(xhci);
3586		if (ret) {
3587			spin_unlock_irqrestore(&xhci->lock, flags);
3588			xhci_warn(xhci, "Not enough host resources, "
3589					"active endpoint contexts = %u\n",
3590					xhci->num_active_eps);
3591			goto disable_slot;
3592		}
3593		spin_unlock_irqrestore(&xhci->lock, flags);
3594	}
3595	/* Use GFP_NOIO, since this function can be called from
3596	 * xhci_discover_or_reset_device(), which may be called as part of
3597	 * mass storage driver error handling.
3598	 */
3599	if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601		goto disable_slot;
3602	}
3603	udev->slot_id = xhci->slot_id;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3604	/* Is this a LS or FS device under a HS hub? */
3605	/* Hub or peripherial? */
3606	return 1;
3607
3608disable_slot:
3609	/* Disable slot, if we can do it without mem alloc */
3610	spin_lock_irqsave(&xhci->lock, flags);
3611	if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3612		xhci_ring_cmd_db(xhci);
3613	spin_unlock_irqrestore(&xhci->lock, flags);
3614	return 0;
3615}
3616
3617/*
3618 * Issue an Address Device command (which will issue a SetAddress request to
3619 * the device).
3620 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621 * we should only issue and wait on one address command at the same time.
 
 
3622 *
3623 * We add one to the device address issued by the hardware because the USB core
3624 * uses address 1 for the root hubs (even though they're not really devices).
3625 */
3626int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3627{
 
3628	unsigned long flags;
3629	int timeleft;
3630	struct xhci_virt_device *virt_dev;
3631	int ret = 0;
3632	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633	struct xhci_slot_ctx *slot_ctx;
3634	struct xhci_input_control_ctx *ctrl_ctx;
3635	u64 temp_64;
3636	union xhci_trb *cmd_trb;
 
 
 
 
 
 
 
3637
3638	if (!udev->slot_id) {
3639		xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3640		return -EINVAL;
 
 
3641	}
3642
3643	virt_dev = xhci->devs[udev->slot_id];
3644
3645	if (WARN_ON(!virt_dev)) {
3646		/*
3647		 * In plug/unplug torture test with an NEC controller,
3648		 * a zero-dereference was observed once due to virt_dev = 0.
3649		 * Print useful debug rather than crash if it is observed again!
3650		 */
3651		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652			udev->slot_id);
3653		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654	}
3655
 
 
 
3656	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
 
 
 
 
 
 
 
3657	/*
3658	 * If this is the first Set Address since device plug-in or
3659	 * virt_device realloaction after a resume with an xHCI power loss,
3660	 * then set up the slot context.
3661	 */
3662	if (!slot_ctx->dev_info)
3663		xhci_setup_addressable_virt_dev(xhci, udev);
3664	/* Otherwise, update the control endpoint ring enqueue pointer. */
3665	else
3666		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667	ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669	ctrl_ctx->drop_flags = 0;
3670
3671	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3673
 
3674	spin_lock_irqsave(&xhci->lock, flags);
3675	cmd_trb = xhci->cmd_ring->dequeue;
3676	ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677					udev->slot_id);
3678	if (ret) {
3679		spin_unlock_irqrestore(&xhci->lock, flags);
3680		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681		return ret;
 
3682	}
3683	xhci_ring_cmd_db(xhci);
3684	spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687	timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688			XHCI_CMD_DEFAULT_TIMEOUT);
3689	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690	 * the SetAddress() "recovery interval" required by USB and aborting the
3691	 * command on a timeout.
3692	 */
3693	if (timeleft <= 0) {
3694		xhci_warn(xhci, "%s while waiting for address device command\n",
3695				timeleft == 0 ? "Timeout" : "Signal");
3696		/* cancel the address device command */
3697		ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698		if (ret < 0)
3699			return ret;
3700		return -ETIME;
3701	}
3702
3703	switch (virt_dev->cmd_status) {
3704	case COMP_CTX_STATE:
3705	case COMP_EBADSLT:
3706		xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707				udev->slot_id);
3708		ret = -EINVAL;
3709		break;
3710	case COMP_TX_ERR:
3711		dev_warn(&udev->dev, "Device not responding to set address.\n");
3712		ret = -EPROTO;
3713		break;
3714	case COMP_DEV_ERR:
3715		dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716				"device command.\n");
 
 
 
 
 
 
 
3717		ret = -ENODEV;
3718		break;
3719	case COMP_SUCCESS:
3720		xhci_dbg(xhci, "Successful Address Device command\n");
 
3721		break;
3722	default:
3723		xhci_err(xhci, "ERROR: unexpected command completion "
3724				"code 0x%x.\n", virt_dev->cmd_status);
3725		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3727		ret = -EINVAL;
3728		break;
3729	}
3730	if (ret) {
3731		return ret;
3732	}
3733	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734	xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735	xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736		 udev->slot_id,
3737		 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738		 (unsigned long long)
3739		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740	xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
 
 
 
3741			(unsigned long long)virt_dev->out_ctx->dma);
3742	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3744	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746	/*
3747	 * USB core uses address 1 for the roothubs, so we add one to the
3748	 * address given back to us by the HC.
3749	 */
3750	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751	/* Use kernel assigned address for devices; store xHC assigned
3752	 * address locally. */
3753	virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754		+ 1;
3755	/* Zero the input context control for later use */
3756	ctrl_ctx->add_flags = 0;
3757	ctrl_ctx->drop_flags = 0;
 
 
3758
3759	xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
 
 
 
 
 
 
 
 
 
 
3760
3761	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3762}
3763
3764#ifdef CONFIG_USB_SUSPEND
3765
3766/* BESL to HIRD Encoding array for USB2 LPM */
3767static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3772					struct usb_device *udev)
3773{
3774	int u2del, besl, besl_host;
3775	int besl_device = 0;
3776	u32 field;
3777
3778	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3779	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3780
3781	if (field & USB_BESL_SUPPORT) {
3782		for (besl_host = 0; besl_host < 16; besl_host++) {
3783			if (xhci_besl_encoding[besl_host] >= u2del)
3784				break;
3785		}
3786		/* Use baseline BESL value as default */
3787		if (field & USB_BESL_BASELINE_VALID)
3788			besl_device = USB_GET_BESL_BASELINE(field);
3789		else if (field & USB_BESL_DEEP_VALID)
3790			besl_device = USB_GET_BESL_DEEP(field);
3791	} else {
3792		if (u2del <= 50)
3793			besl_host = 0;
3794		else
3795			besl_host = (u2del - 51) / 75 + 1;
3796	}
3797
3798	besl = besl_host + besl_device;
3799	if (besl > 15)
3800		besl = 15;
3801
3802	return besl;
3803}
3804
3805static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3806					struct usb_device *udev)
3807{
3808	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3809	struct dev_info	*dev_info;
3810	__le32 __iomem	**port_array;
3811	__le32 __iomem	*addr, *pm_addr;
3812	u32		temp, dev_id;
3813	unsigned int	port_num;
3814	unsigned long	flags;
3815	int		hird;
3816	int		ret;
3817
3818	if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3819			!udev->lpm_capable)
3820		return -EINVAL;
3821
3822	/* we only support lpm for non-hub device connected to root hub yet */
3823	if (!udev->parent || udev->parent->parent ||
3824			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825		return -EINVAL;
3826
3827	spin_lock_irqsave(&xhci->lock, flags);
3828
3829	/* Look for devices in lpm_failed_devs list */
3830	dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3831			le16_to_cpu(udev->descriptor.idProduct);
3832	list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3833		if (dev_info->dev_id == dev_id) {
3834			ret = -EINVAL;
3835			goto finish;
3836		}
3837	}
3838
3839	port_array = xhci->usb2_ports;
3840	port_num = udev->portnum - 1;
3841
3842	if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3843		xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3844		ret = -EINVAL;
3845		goto finish;
3846	}
3847
3848	/*
3849	 * Test USB 2.0 software LPM.
3850	 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3851	 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3852	 * in the June 2011 errata release.
3853	 */
3854	xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3855	/*
3856	 * Set L1 Device Slot and HIRD/BESL.
3857	 * Check device's USB 2.0 extension descriptor to determine whether
3858	 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3859	 */
3860	pm_addr = port_array[port_num] + 1;
3861	hird = xhci_calculate_hird_besl(xhci, udev);
3862	temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3863	xhci_writel(xhci, temp, pm_addr);
3864
3865	/* Set port link state to U2(L1) */
3866	addr = port_array[port_num];
3867	xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3868
3869	/* wait for ACK */
3870	spin_unlock_irqrestore(&xhci->lock, flags);
3871	msleep(10);
3872	spin_lock_irqsave(&xhci->lock, flags);
3873
3874	/* Check L1 Status */
3875	ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3876	if (ret != -ETIMEDOUT) {
3877		/* enter L1 successfully */
3878		temp = xhci_readl(xhci, addr);
3879		xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3880				port_num, temp);
3881		ret = 0;
3882	} else {
3883		temp = xhci_readl(xhci, pm_addr);
3884		xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3885				port_num, temp & PORT_L1S_MASK);
3886		ret = -EINVAL;
3887	}
3888
3889	/* Resume the port */
3890	xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3891
3892	spin_unlock_irqrestore(&xhci->lock, flags);
3893	msleep(10);
3894	spin_lock_irqsave(&xhci->lock, flags);
3895
3896	/* Clear PLC */
3897	xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3898
3899	/* Check PORTSC to make sure the device is in the right state */
3900	if (!ret) {
3901		temp = xhci_readl(xhci, addr);
3902		xhci_dbg(xhci, "resumed port %d status 0x%x\n",	port_num, temp);
3903		if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3904				(temp & PORT_PLS_MASK) != XDEV_U0) {
3905			xhci_dbg(xhci, "port L1 resume fail\n");
3906			ret = -EINVAL;
3907		}
3908	}
3909
3910	if (ret) {
3911		/* Insert dev to lpm_failed_devs list */
3912		xhci_warn(xhci, "device LPM test failed, may disconnect and "
3913				"re-enumerate\n");
3914		dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3915		if (!dev_info) {
3916			ret = -ENOMEM;
3917			goto finish;
3918		}
3919		dev_info->dev_id = dev_id;
3920		INIT_LIST_HEAD(&dev_info->list);
3921		list_add(&dev_info->list, &xhci->lpm_failed_devs);
3922	} else {
3923		xhci_ring_device(xhci, udev->slot_id);
3924	}
3925
3926finish:
3927	spin_unlock_irqrestore(&xhci->lock, flags);
3928	return ret;
3929}
3930
3931int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3932			struct usb_device *udev, int enable)
3933{
3934	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3935	__le32 __iomem	**port_array;
3936	__le32 __iomem	*pm_addr;
3937	u32		temp;
3938	unsigned int	port_num;
3939	unsigned long	flags;
3940	int		hird;
 
 
 
 
3941
3942	if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3943			!udev->lpm_capable)
3944		return -EPERM;
3945
3946	if (!udev->parent || udev->parent->parent ||
3947			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3948		return -EPERM;
3949
3950	if (udev->usb2_hw_lpm_capable != 1)
3951		return -EPERM;
3952
3953	spin_lock_irqsave(&xhci->lock, flags);
3954
3955	port_array = xhci->usb2_ports;
3956	port_num = udev->portnum - 1;
3957	pm_addr = port_array[port_num] + 1;
3958	temp = xhci_readl(xhci, pm_addr);
 
3959
3960	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3961			enable ? "enable" : "disable", port_num);
3962
3963	hird = xhci_calculate_hird_besl(xhci, udev);
 
 
 
 
 
 
 
 
 
 
 
 
3964
3965	if (enable) {
3966		temp &= ~PORT_HIRD_MASK;
3967		temp |= PORT_HIRD(hird) | PORT_RWE;
3968		xhci_writel(xhci, temp, pm_addr);
3969		temp = xhci_readl(xhci, pm_addr);
3970		temp |= PORT_HLE;
3971		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3972	} else {
3973		temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3974		xhci_writel(xhci, temp, pm_addr);
 
 
 
 
 
 
 
 
 
 
3975	}
3976
3977	spin_unlock_irqrestore(&xhci->lock, flags);
3978	return 0;
3979}
3980
3981int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
 
 
 
 
 
3982{
3983	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
3984	int		ret;
3985
3986	ret = xhci_usb2_software_lpm_test(hcd, udev);
3987	if (!ret) {
3988		xhci_dbg(xhci, "software LPM test succeed\n");
3989		if (xhci->hw_lpm_support == 1) {
3990			udev->usb2_hw_lpm_capable = 1;
3991			ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3992			if (!ret)
3993				udev->usb2_hw_lpm_enabled = 1;
3994		}
3995	}
3996
3997	return 0;
3998}
3999
4000#else
 
 
 
4001
4002int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4003				struct usb_device *udev, int enable)
4004{
4005	return 0;
4006}
 
 
 
 
 
 
 
 
 
 
 
 
 
4007
4008int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4009{
4010	return 0;
4011}
4012
4013#endif /* CONFIG_USB_SUSPEND */
4014
4015/*---------------------- USB 3.0 Link PM functions ------------------------*/
4016
4017#ifdef CONFIG_PM
4018/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4019static unsigned long long xhci_service_interval_to_ns(
4020		struct usb_endpoint_descriptor *desc)
4021{
4022	return (1 << (desc->bInterval - 1)) * 125 * 1000;
4023}
4024
4025static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4026		enum usb3_link_state state)
4027{
4028	unsigned long long sel;
4029	unsigned long long pel;
4030	unsigned int max_sel_pel;
4031	char *state_name;
4032
4033	switch (state) {
4034	case USB3_LPM_U1:
4035		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4036		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4037		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4038		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4039		state_name = "U1";
4040		break;
4041	case USB3_LPM_U2:
4042		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4043		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4044		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4045		state_name = "U2";
4046		break;
4047	default:
4048		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4049				__func__);
4050		return USB3_LPM_DISABLED;
4051	}
4052
4053	if (sel <= max_sel_pel && pel <= max_sel_pel)
4054		return USB3_LPM_DEVICE_INITIATED;
4055
4056	if (sel > max_sel_pel)
4057		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4058				"due to long SEL %llu ms\n",
4059				state_name, sel);
4060	else
4061		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4062				"due to long PEL %llu\n ms",
4063				state_name, pel);
4064	return USB3_LPM_DISABLED;
4065}
4066
4067/* Returns the hub-encoded U1 timeout value.
4068 * The U1 timeout should be the maximum of the following values:
4069 *  - For control endpoints, U1 system exit latency (SEL) * 3
4070 *  - For bulk endpoints, U1 SEL * 5
4071 *  - For interrupt endpoints:
4072 *    - Notification EPs, U1 SEL * 3
4073 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4074 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4075 */
4076static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
 
4077		struct usb_endpoint_descriptor *desc)
4078{
4079	unsigned long long timeout_ns;
4080	int ep_type;
4081	int intr_type;
4082
4083	ep_type = usb_endpoint_type(desc);
4084	switch (ep_type) {
4085	case USB_ENDPOINT_XFER_CONTROL:
4086		timeout_ns = udev->u1_params.sel * 3;
4087		break;
4088	case USB_ENDPOINT_XFER_BULK:
4089		timeout_ns = udev->u1_params.sel * 5;
4090		break;
4091	case USB_ENDPOINT_XFER_INT:
4092		intr_type = usb_endpoint_interrupt_type(desc);
4093		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4094			timeout_ns = udev->u1_params.sel * 3;
4095			break;
4096		}
4097		/* Otherwise the calculation is the same as isoc eps */
 
4098	case USB_ENDPOINT_XFER_ISOC:
4099		timeout_ns = xhci_service_interval_to_ns(desc);
4100		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4101		if (timeout_ns < udev->u1_params.sel * 2)
4102			timeout_ns = udev->u1_params.sel * 2;
4103		break;
4104	default:
4105		return 0;
4106	}
4107
4108	/* The U1 timeout is encoded in 1us intervals. */
4109	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4110	/* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4111	if (timeout_ns == USB3_LPM_DISABLED)
4112		timeout_ns++;
 
 
4113
4114	/* If the necessary timeout value is bigger than what we can set in the
4115	 * USB 3.0 hub, we have to disable hub-initiated U1.
4116	 */
4117	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4118		return timeout_ns;
4119	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4120			"due to long timeout %llu ms\n", timeout_ns);
4121	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4122}
4123
4124/* Returns the hub-encoded U2 timeout value.
4125 * The U2 timeout should be the maximum of:
4126 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4127 *  - largest bInterval of any active periodic endpoint (to avoid going
4128 *    into lower power link states between intervals).
4129 *  - the U2 Exit Latency of the device
4130 */
4131static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
 
4132		struct usb_endpoint_descriptor *desc)
4133{
4134	unsigned long long timeout_ns;
4135	unsigned long long u2_del_ns;
4136
4137	timeout_ns = 10 * 1000 * 1000;
4138
4139	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4140			(xhci_service_interval_to_ns(desc) > timeout_ns))
4141		timeout_ns = xhci_service_interval_to_ns(desc);
4142
4143	u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4144	if (u2_del_ns > timeout_ns)
4145		timeout_ns = u2_del_ns;
4146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4147	/* The U2 timeout is encoded in 256us intervals */
4148	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4149	/* If the necessary timeout value is bigger than what we can set in the
4150	 * USB 3.0 hub, we have to disable hub-initiated U2.
4151	 */
4152	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4153		return timeout_ns;
4154	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4155			"due to long timeout %llu ms\n", timeout_ns);
4156	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4157}
4158
4159static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4160		struct usb_device *udev,
4161		struct usb_endpoint_descriptor *desc,
4162		enum usb3_link_state state,
4163		u16 *timeout)
4164{
4165	if (state == USB3_LPM_U1) {
4166		if (xhci->quirks & XHCI_INTEL_HOST)
4167			return xhci_calculate_intel_u1_timeout(udev, desc);
4168	} else {
4169		if (xhci->quirks & XHCI_INTEL_HOST)
4170			return xhci_calculate_intel_u2_timeout(udev, desc);
4171	}
4172
4173	return USB3_LPM_DISABLED;
4174}
4175
4176static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4177		struct usb_device *udev,
4178		struct usb_endpoint_descriptor *desc,
4179		enum usb3_link_state state,
4180		u16 *timeout)
4181{
4182	u16 alt_timeout;
4183
4184	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4185		desc, state, timeout);
4186
4187	/* If we found we can't enable hub-initiated LPM, or
4188	 * the U1 or U2 exit latency was too high to allow
4189	 * device-initiated LPM as well, just stop searching.
 
4190	 */
4191	if (alt_timeout == USB3_LPM_DISABLED ||
4192			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4193		*timeout = alt_timeout;
4194		return -E2BIG;
4195	}
4196	if (alt_timeout > *timeout)
4197		*timeout = alt_timeout;
4198	return 0;
4199}
4200
4201static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4202		struct usb_device *udev,
4203		struct usb_host_interface *alt,
4204		enum usb3_link_state state,
4205		u16 *timeout)
4206{
4207	int j;
4208
4209	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4210		if (xhci_update_timeout_for_endpoint(xhci, udev,
4211					&alt->endpoint[j].desc, state, timeout))
4212			return -E2BIG;
4213		continue;
4214	}
4215	return 0;
4216}
4217
4218static int xhci_check_intel_tier_policy(struct usb_device *udev,
 
4219		enum usb3_link_state state)
4220{
4221	struct usb_device *parent;
4222	unsigned int num_hubs;
4223
4224	if (state == USB3_LPM_U2)
4225		return 0;
 
 
4226
4227	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4228	for (parent = udev->parent, num_hubs = 0; parent->parent;
4229			parent = parent->parent)
4230		num_hubs++;
4231
4232	if (num_hubs < 2)
4233		return 0;
4234
4235	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4236			" below second-tier hub.\n");
4237	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4238			"to decrease power consumption.\n");
4239	return -E2BIG;
4240}
4241
4242static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4243		struct usb_device *udev,
4244		enum usb3_link_state state)
4245{
4246	if (xhci->quirks & XHCI_INTEL_HOST)
4247		return xhci_check_intel_tier_policy(udev, state);
4248	return -EINVAL;
4249}
4250
4251/* Returns the U1 or U2 timeout that should be enabled.
4252 * If the tier check or timeout setting functions return with a non-zero exit
4253 * code, that means the timeout value has been finalized and we shouldn't look
4254 * at any more endpoints.
4255 */
4256static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4257			struct usb_device *udev, enum usb3_link_state state)
4258{
4259	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260	struct usb_host_config *config;
4261	char *state_name;
4262	int i;
4263	u16 timeout = USB3_LPM_DISABLED;
4264
4265	if (state == USB3_LPM_U1)
4266		state_name = "U1";
4267	else if (state == USB3_LPM_U2)
4268		state_name = "U2";
4269	else {
4270		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4271				state);
4272		return timeout;
4273	}
4274
4275	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4276		return timeout;
4277
4278	/* Gather some information about the currently installed configuration
4279	 * and alternate interface settings.
4280	 */
4281	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4282			state, &timeout))
4283		return timeout;
4284
4285	config = udev->actconfig;
4286	if (!config)
4287		return timeout;
4288
4289	for (i = 0; i < USB_MAXINTERFACES; i++) {
4290		struct usb_driver *driver;
4291		struct usb_interface *intf = config->interface[i];
4292
4293		if (!intf)
4294			continue;
4295
4296		/* Check if any currently bound drivers want hub-initiated LPM
4297		 * disabled.
4298		 */
4299		if (intf->dev.driver) {
4300			driver = to_usb_driver(intf->dev.driver);
4301			if (driver && driver->disable_hub_initiated_lpm) {
4302				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4303						"at request of driver %s\n",
4304						state_name, driver->name);
4305				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4306			}
4307		}
4308
4309		/* Not sure how this could happen... */
4310		if (!intf->cur_altsetting)
4311			continue;
4312
4313		if (xhci_update_timeout_for_interface(xhci, udev,
4314					intf->cur_altsetting,
4315					state, &timeout))
4316			return timeout;
4317	}
4318	return timeout;
4319}
4320
4321/*
4322 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4323 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4324 */
4325static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4326			struct usb_device *udev, u16 max_exit_latency)
4327{
4328	struct xhci_virt_device *virt_dev;
4329	struct xhci_command *command;
4330	struct xhci_input_control_ctx *ctrl_ctx;
4331	struct xhci_slot_ctx *slot_ctx;
4332	unsigned long flags;
4333	int ret;
4334
4335	spin_lock_irqsave(&xhci->lock, flags);
4336	if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4337		spin_unlock_irqrestore(&xhci->lock, flags);
4338		return 0;
4339	}
4340
4341	/* Attempt to issue an Evaluate Context command to change the MEL. */
4342	virt_dev = xhci->devs[udev->slot_id];
4343	command = xhci->lpm_command;
4344	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345	spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347	ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4348	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4349	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4350	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4351	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4352
4353	xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4354	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4355	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4356
4357	/* Issue and wait for the evaluate context command. */
4358	ret = xhci_configure_endpoint(xhci, udev, command,
4359			true, true);
4360	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4361	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4362
4363	if (!ret) {
4364		spin_lock_irqsave(&xhci->lock, flags);
4365		virt_dev->current_mel = max_exit_latency;
4366		spin_unlock_irqrestore(&xhci->lock, flags);
4367	}
4368	return ret;
4369}
4370
4371static int calculate_max_exit_latency(struct usb_device *udev,
4372		enum usb3_link_state state_changed,
4373		u16 hub_encoded_timeout)
4374{
4375	unsigned long long u1_mel_us = 0;
4376	unsigned long long u2_mel_us = 0;
4377	unsigned long long mel_us = 0;
4378	bool disabling_u1;
4379	bool disabling_u2;
4380	bool enabling_u1;
4381	bool enabling_u2;
4382
4383	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4384			hub_encoded_timeout == USB3_LPM_DISABLED);
4385	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4386			hub_encoded_timeout == USB3_LPM_DISABLED);
4387
4388	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4389			hub_encoded_timeout != USB3_LPM_DISABLED);
4390	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4391			hub_encoded_timeout != USB3_LPM_DISABLED);
4392
4393	/* If U1 was already enabled and we're not disabling it,
4394	 * or we're going to enable U1, account for the U1 max exit latency.
4395	 */
4396	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4397			enabling_u1)
4398		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4399	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4400			enabling_u2)
4401		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4402
4403	if (u1_mel_us > u2_mel_us)
4404		mel_us = u1_mel_us;
4405	else
4406		mel_us = u2_mel_us;
4407	/* xHCI host controller max exit latency field is only 16 bits wide. */
4408	if (mel_us > MAX_EXIT) {
4409		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4410				"is too big.\n", mel_us);
4411		return -E2BIG;
4412	}
4413	return mel_us;
4414}
4415
4416/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4417int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4418			struct usb_device *udev, enum usb3_link_state state)
4419{
4420	struct xhci_hcd	*xhci;
 
4421	u16 hub_encoded_timeout;
4422	int mel;
4423	int ret;
4424
4425	xhci = hcd_to_xhci(hcd);
4426	/* The LPM timeout values are pretty host-controller specific, so don't
4427	 * enable hub-initiated timeouts unless the vendor has provided
4428	 * information about their timeout algorithm.
4429	 */
4430	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4431			!xhci->devs[udev->slot_id])
4432		return USB3_LPM_DISABLED;
4433
 
 
 
 
 
 
 
 
 
 
4434	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4435	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4436	if (mel < 0) {
4437		/* Max Exit Latency is too big, disable LPM. */
4438		hub_encoded_timeout = USB3_LPM_DISABLED;
4439		mel = 0;
4440	}
4441
4442	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4443	if (ret)
4444		return ret;
4445	return hub_encoded_timeout;
4446}
4447
4448int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4449			struct usb_device *udev, enum usb3_link_state state)
4450{
4451	struct xhci_hcd	*xhci;
4452	u16 mel;
4453	int ret;
4454
4455	xhci = hcd_to_xhci(hcd);
4456	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4457			!xhci->devs[udev->slot_id])
4458		return 0;
4459
4460	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4461	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4462	if (ret)
4463		return ret;
 
 
 
 
 
 
 
 
 
4464	return 0;
4465}
4466#else /* CONFIG_PM */
4467
4468int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4469			struct usb_device *udev, enum usb3_link_state state)
4470{
4471	return USB3_LPM_DISABLED;
4472}
4473
4474int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4475			struct usb_device *udev, enum usb3_link_state state)
4476{
4477	return 0;
4478}
4479#endif	/* CONFIG_PM */
4480
4481/*-------------------------------------------------------------------------*/
4482
4483/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4484 * internal data structures for the device.
4485 */
4486int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4487			struct usb_tt *tt, gfp_t mem_flags)
4488{
4489	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4490	struct xhci_virt_device *vdev;
4491	struct xhci_command *config_cmd;
4492	struct xhci_input_control_ctx *ctrl_ctx;
4493	struct xhci_slot_ctx *slot_ctx;
4494	unsigned long flags;
4495	unsigned think_time;
4496	int ret;
4497
4498	/* Ignore root hubs */
4499	if (!hdev->parent)
4500		return 0;
4501
4502	vdev = xhci->devs[hdev->slot_id];
4503	if (!vdev) {
4504		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4505		return -EINVAL;
4506	}
4507	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4508	if (!config_cmd) {
4509		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
 
 
 
 
 
 
 
4510		return -ENOMEM;
4511	}
4512
4513	spin_lock_irqsave(&xhci->lock, flags);
4514	if (hdev->speed == USB_SPEED_HIGH &&
4515			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4516		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4517		xhci_free_command(xhci, config_cmd);
4518		spin_unlock_irqrestore(&xhci->lock, flags);
4519		return -ENOMEM;
4520	}
4521
4522	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4523	ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4524	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4526	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
 
 
 
 
 
4527	if (tt->multi)
4528		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
 
 
 
4529	if (xhci->hci_version > 0x95) {
4530		xhci_dbg(xhci, "xHCI version %x needs hub "
4531				"TT think time and number of ports\n",
4532				(unsigned int) xhci->hci_version);
4533		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4534		/* Set TT think time - convert from ns to FS bit times.
4535		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4536		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4537		 *
4538		 * xHCI 1.0: this field shall be 0 if the device is not a
4539		 * High-spped hub.
4540		 */
4541		think_time = tt->think_time;
4542		if (think_time != 0)
4543			think_time = (think_time / 666) - 1;
4544		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4545			slot_ctx->tt_info |=
4546				cpu_to_le32(TT_THINK_TIME(think_time));
4547	} else {
4548		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4549				"TT think time or number of ports\n",
4550				(unsigned int) xhci->hci_version);
4551	}
4552	slot_ctx->dev_state = 0;
4553	spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555	xhci_dbg(xhci, "Set up %s for hub device.\n",
4556			(xhci->hci_version > 0x95) ?
4557			"configure endpoint" : "evaluate context");
4558	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4559	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4560
4561	/* Issue and wait for the configure endpoint or
4562	 * evaluate context command.
4563	 */
4564	if (xhci->hci_version > 0x95)
4565		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4566				false, false);
4567	else
4568		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4569				true, false);
4570
4571	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4572	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4573
4574	xhci_free_command(xhci, config_cmd);
4575	return ret;
4576}
 
4577
4578int xhci_get_frame(struct usb_hcd *hcd)
4579{
4580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581	/* EHCI mods by the periodic size.  Why? */
4582	return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4583}
4584
4585int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4586{
4587	struct xhci_hcd		*xhci;
4588	struct device		*dev = hcd->self.controller;
 
 
 
 
4589	int			retval;
4590	u32			temp;
4591
4592	/* Accept arbitrarily long scatter-gather lists */
4593	hcd->self.sg_tablesize = ~0;
4594
4595	if (usb_hcd_is_primary_hcd(hcd)) {
4596		xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4597		if (!xhci)
4598			return -ENOMEM;
4599		*((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4600		xhci->main_hcd = hcd;
4601		/* Mark the first roothub as being USB 2.0.
4602		 * The xHCI driver will register the USB 3.0 roothub.
4603		 */
4604		hcd->speed = HCD_USB2;
4605		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4606		/*
4607		 * USB 2.0 roothub under xHCI has an integrated TT,
4608		 * (rate matching hub) as opposed to having an OHCI/UHCI
4609		 * companion controller.
4610		 */
4611		hcd->has_tt = 1;
4612	} else {
4613		/* xHCI private pointer was set in xhci_pci_probe for the second
4614		 * registered roothub.
4615		 */
4616		xhci = hcd_to_xhci(hcd);
4617		temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4618		if (HCC_64BIT_ADDR(temp)) {
4619			xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4620			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4621		} else {
4622			dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4623		}
4624		return 0;
4625	}
4626
 
 
4627	xhci->cap_regs = hcd->regs;
4628	xhci->op_regs = hcd->regs +
4629		HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4630	xhci->run_regs = hcd->regs +
4631		(xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4632	/* Cache read-only capability registers */
4633	xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4634	xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4635	xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4636	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4637	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4638	xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4639	xhci_print_registers(xhci);
4640
4641	get_quirks(dev, xhci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4642
4643	/* Make sure the HC is halted. */
4644	retval = xhci_halt(xhci);
4645	if (retval)
4646		goto error;
 
 
4647
4648	xhci_dbg(xhci, "Resetting HCD\n");
4649	/* Reset the internal HC memory state and registers. */
4650	retval = xhci_reset(xhci);
4651	if (retval)
4652		goto error;
4653	xhci_dbg(xhci, "Reset complete\n");
4654
4655	temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4656	if (HCC_64BIT_ADDR(temp)) {
 
 
 
 
 
 
 
 
 
 
 
 
4657		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4658		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4659	} else {
4660		dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
 
 
 
 
 
 
 
 
4661	}
4662
4663	xhci_dbg(xhci, "Calling HCD init\n");
4664	/* Initialize HCD and host controller data structures. */
4665	retval = xhci_init(hcd);
4666	if (retval)
4667		goto error;
4668	xhci_dbg(xhci, "Called HCD init\n");
 
 
 
 
 
 
 
 
 
4669	return 0;
4670error:
4671	kfree(xhci);
4672	return retval;
4673}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4674
4675MODULE_DESCRIPTION(DRIVER_DESC);
4676MODULE_AUTHOR(DRIVER_AUTHOR);
4677MODULE_LICENSE("GPL");
4678
4679static int __init xhci_hcd_init(void)
4680{
4681	int retval;
4682
4683	retval = xhci_register_pci();
4684	if (retval < 0) {
4685		printk(KERN_DEBUG "Problem registering PCI driver.");
4686		return retval;
4687	}
4688	retval = xhci_register_plat();
4689	if (retval < 0) {
4690		printk(KERN_DEBUG "Problem registering platform driver.");
4691		goto unreg_pci;
4692	}
4693	/*
4694	 * Check the compiler generated sizes of structures that must be laid
4695	 * out in specific ways for hardware access.
4696	 */
4697	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4698	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4699	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4700	/* xhci_device_control has eight fields, and also
4701	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4702	 */
4703	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4704	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4705	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4706	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4707	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4708	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4709	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
 
 
 
 
 
 
 
4710	return 0;
4711unreg_pci:
4712	xhci_unregister_pci();
4713	return retval;
4714}
4715module_init(xhci_hcd_init);
4716
4717static void __exit xhci_hcd_cleanup(void)
 
 
 
 
4718{
4719	xhci_unregister_pci();
4720	xhci_unregister_plat();
4721}
4722module_exit(xhci_hcd_cleanup);