Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11#include <linux/pci.h>
12#include <linux/iommu.h>
13#include <linux/iopoll.h>
14#include <linux/irq.h>
15#include <linux/log2.h>
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/slab.h>
19#include <linux/dmi.h>
20#include <linux/dma-mapping.h>
21
22#include "xhci.h"
23#include "xhci-trace.h"
24#include "xhci-debugfs.h"
25#include "xhci-dbgcap.h"
26
27#define DRIVER_AUTHOR "Sarah Sharp"
28#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30#define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33static int link_quirk;
34module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37static unsigned long long quirks;
38module_param(quirks, ullong, S_IRUGO);
39MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42{
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54}
55
56/*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
69int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
70{
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, timeout_us);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82}
83
84/*
85 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
86 * exit_state parameter, and bails out with an error immediately when xhc_state
87 * has exit_state flag set.
88 */
89int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
90 u32 mask, u32 done, int usec, unsigned int exit_state)
91{
92 u32 result;
93 int ret;
94
95 ret = readl_poll_timeout_atomic(ptr, result,
96 (result & mask) == done ||
97 result == U32_MAX ||
98 xhci->xhc_state & exit_state,
99 1, usec);
100
101 if (result == U32_MAX || xhci->xhc_state & exit_state)
102 return -ENODEV;
103
104 return ret;
105}
106
107/*
108 * Disable interrupts and begin the xHCI halting process.
109 */
110void xhci_quiesce(struct xhci_hcd *xhci)
111{
112 u32 halted;
113 u32 cmd;
114 u32 mask;
115
116 mask = ~(XHCI_IRQS);
117 halted = readl(&xhci->op_regs->status) & STS_HALT;
118 if (!halted)
119 mask &= ~CMD_RUN;
120
121 cmd = readl(&xhci->op_regs->command);
122 cmd &= mask;
123 writel(cmd, &xhci->op_regs->command);
124}
125
126/*
127 * Force HC into halt state.
128 *
129 * Disable any IRQs and clear the run/stop bit.
130 * HC will complete any current and actively pipelined transactions, and
131 * should halt within 16 ms of the run/stop bit being cleared.
132 * Read HC Halted bit in the status register to see when the HC is finished.
133 */
134int xhci_halt(struct xhci_hcd *xhci)
135{
136 int ret;
137
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
139 xhci_quiesce(xhci);
140
141 ret = xhci_handshake(&xhci->op_regs->status,
142 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
143 if (ret) {
144 xhci_warn(xhci, "Host halt failed, %d\n", ret);
145 return ret;
146 }
147
148 xhci->xhc_state |= XHCI_STATE_HALTED;
149 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
150
151 return ret;
152}
153
154/*
155 * Set the run bit and wait for the host to be running.
156 */
157int xhci_start(struct xhci_hcd *xhci)
158{
159 u32 temp;
160 int ret;
161
162 temp = readl(&xhci->op_regs->command);
163 temp |= (CMD_RUN);
164 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
165 temp);
166 writel(temp, &xhci->op_regs->command);
167
168 /*
169 * Wait for the HCHalted Status bit to be 0 to indicate the host is
170 * running.
171 */
172 ret = xhci_handshake(&xhci->op_regs->status,
173 STS_HALT, 0, XHCI_MAX_HALT_USEC);
174 if (ret == -ETIMEDOUT)
175 xhci_err(xhci, "Host took too long to start, "
176 "waited %u microseconds.\n",
177 XHCI_MAX_HALT_USEC);
178 if (!ret) {
179 /* clear state flags. Including dying, halted or removing */
180 xhci->xhc_state = 0;
181 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
182 }
183
184 return ret;
185}
186
187/*
188 * Reset a halted HC.
189 *
190 * This resets pipelines, timers, counters, state machines, etc.
191 * Transactions will be terminated immediately, and operational registers
192 * will be set to their defaults.
193 */
194int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
195{
196 u32 command;
197 u32 state;
198 int ret;
199
200 state = readl(&xhci->op_regs->status);
201
202 if (state == ~(u32)0) {
203 xhci_warn(xhci, "Host not accessible, reset failed.\n");
204 return -ENODEV;
205 }
206
207 if ((state & STS_HALT) == 0) {
208 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
209 return 0;
210 }
211
212 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
213 command = readl(&xhci->op_regs->command);
214 command |= CMD_RESET;
215 writel(command, &xhci->op_regs->command);
216
217 /* Existing Intel xHCI controllers require a delay of 1 mS,
218 * after setting the CMD_RESET bit, and before accessing any
219 * HC registers. This allows the HC to complete the
220 * reset operation and be ready for HC register access.
221 * Without this delay, the subsequent HC register access,
222 * may result in a system hang very rarely.
223 */
224 if (xhci->quirks & XHCI_INTEL_HOST)
225 udelay(1000);
226
227 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
228 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
229 if (ret)
230 return ret;
231
232 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
233 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
234
235 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236 "Wait for controller to be ready for doorbell rings");
237 /*
238 * xHCI cannot write to any doorbells or operational registers other
239 * than status until the "Controller Not Ready" flag is cleared.
240 */
241 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
242
243 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
244 xhci->usb2_rhub.bus_state.suspended_ports = 0;
245 xhci->usb2_rhub.bus_state.resuming_ports = 0;
246 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
247 xhci->usb3_rhub.bus_state.suspended_ports = 0;
248 xhci->usb3_rhub.bus_state.resuming_ports = 0;
249
250 return ret;
251}
252
253static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
254{
255 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
256 struct iommu_domain *domain;
257 int err, i;
258 u64 val;
259 u32 intrs;
260
261 /*
262 * Some Renesas controllers get into a weird state if they are
263 * reset while programmed with 64bit addresses (they will preserve
264 * the top half of the address in internal, non visible
265 * registers). You end up with half the address coming from the
266 * kernel, and the other half coming from the firmware. Also,
267 * changing the programming leads to extra accesses even if the
268 * controller is supposed to be halted. The controller ends up with
269 * a fatal fault, and is then ripe for being properly reset.
270 *
271 * Special care is taken to only apply this if the device is behind
272 * an iommu. Doing anything when there is no iommu is definitely
273 * unsafe...
274 */
275 domain = iommu_get_domain_for_dev(dev);
276 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
277 domain->type == IOMMU_DOMAIN_IDENTITY)
278 return;
279
280 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
281
282 /* Clear HSEIE so that faults do not get signaled */
283 val = readl(&xhci->op_regs->command);
284 val &= ~CMD_HSEIE;
285 writel(val, &xhci->op_regs->command);
286
287 /* Clear HSE (aka FATAL) */
288 val = readl(&xhci->op_regs->status);
289 val |= STS_FATAL;
290 writel(val, &xhci->op_regs->status);
291
292 /* Now zero the registers, and brace for impact */
293 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
294 if (upper_32_bits(val))
295 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
296 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
297 if (upper_32_bits(val))
298 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
299
300 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
301 ARRAY_SIZE(xhci->run_regs->ir_set));
302
303 for (i = 0; i < intrs; i++) {
304 struct xhci_intr_reg __iomem *ir;
305
306 ir = &xhci->run_regs->ir_set[i];
307 val = xhci_read_64(xhci, &ir->erst_base);
308 if (upper_32_bits(val))
309 xhci_write_64(xhci, 0, &ir->erst_base);
310 val= xhci_read_64(xhci, &ir->erst_dequeue);
311 if (upper_32_bits(val))
312 xhci_write_64(xhci, 0, &ir->erst_dequeue);
313 }
314
315 /* Wait for the fault to appear. It will be cleared on reset */
316 err = xhci_handshake(&xhci->op_regs->status,
317 STS_FATAL, STS_FATAL,
318 XHCI_MAX_HALT_USEC);
319 if (!err)
320 xhci_info(xhci, "Fault detected\n");
321}
322
323static int xhci_enable_interrupter(struct xhci_interrupter *ir)
324{
325 u32 iman;
326
327 if (!ir || !ir->ir_set)
328 return -EINVAL;
329
330 iman = readl(&ir->ir_set->irq_pending);
331 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
332
333 return 0;
334}
335
336static int xhci_disable_interrupter(struct xhci_interrupter *ir)
337{
338 u32 iman;
339
340 if (!ir || !ir->ir_set)
341 return -EINVAL;
342
343 iman = readl(&ir->ir_set->irq_pending);
344 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
345
346 return 0;
347}
348
349static void compliance_mode_recovery(struct timer_list *t)
350{
351 struct xhci_hcd *xhci;
352 struct usb_hcd *hcd;
353 struct xhci_hub *rhub;
354 u32 temp;
355 int i;
356
357 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
358 rhub = &xhci->usb3_rhub;
359 hcd = rhub->hcd;
360
361 if (!hcd)
362 return;
363
364 for (i = 0; i < rhub->num_ports; i++) {
365 temp = readl(rhub->ports[i]->addr);
366 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
367 /*
368 * Compliance Mode Detected. Letting USB Core
369 * handle the Warm Reset
370 */
371 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
372 "Compliance mode detected->port %d",
373 i + 1);
374 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
375 "Attempting compliance mode recovery");
376
377 if (hcd->state == HC_STATE_SUSPENDED)
378 usb_hcd_resume_root_hub(hcd);
379
380 usb_hcd_poll_rh_status(hcd);
381 }
382 }
383
384 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
385 mod_timer(&xhci->comp_mode_recovery_timer,
386 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
387}
388
389/*
390 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
391 * that causes ports behind that hardware to enter compliance mode sometimes.
392 * The quirk creates a timer that polls every 2 seconds the link state of
393 * each host controller's port and recovers it by issuing a Warm reset
394 * if Compliance mode is detected, otherwise the port will become "dead" (no
395 * device connections or disconnections will be detected anymore). Becasue no
396 * status event is generated when entering compliance mode (per xhci spec),
397 * this quirk is needed on systems that have the failing hardware installed.
398 */
399static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
400{
401 xhci->port_status_u0 = 0;
402 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
403 0);
404 xhci->comp_mode_recovery_timer.expires = jiffies +
405 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
406
407 add_timer(&xhci->comp_mode_recovery_timer);
408 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
409 "Compliance mode recovery timer initialized");
410}
411
412/*
413 * This function identifies the systems that have installed the SN65LVPE502CP
414 * USB3.0 re-driver and that need the Compliance Mode Quirk.
415 * Systems:
416 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
417 */
418static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
419{
420 const char *dmi_product_name, *dmi_sys_vendor;
421
422 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
423 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
424 if (!dmi_product_name || !dmi_sys_vendor)
425 return false;
426
427 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
428 return false;
429
430 if (strstr(dmi_product_name, "Z420") ||
431 strstr(dmi_product_name, "Z620") ||
432 strstr(dmi_product_name, "Z820") ||
433 strstr(dmi_product_name, "Z1 Workstation"))
434 return true;
435
436 return false;
437}
438
439static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
440{
441 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
442}
443
444
445/*
446 * Initialize memory for HCD and xHC (one-time init).
447 *
448 * Program the PAGESIZE register, initialize the device context array, create
449 * device contexts (?), set up a command ring segment (or two?), create event
450 * ring (one for now).
451 */
452static int xhci_init(struct usb_hcd *hcd)
453{
454 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
455 int retval;
456
457 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
458 spin_lock_init(&xhci->lock);
459 if (xhci->hci_version == 0x95 && link_quirk) {
460 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
461 "QUIRK: Not clearing Link TRB chain bits.");
462 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
463 } else {
464 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
465 "xHCI doesn't need link TRB QUIRK");
466 }
467 retval = xhci_mem_init(xhci, GFP_KERNEL);
468 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
469
470 /* Initializing Compliance Mode Recovery Data If Needed */
471 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
472 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
473 compliance_mode_recovery_timer_init(xhci);
474 }
475
476 return retval;
477}
478
479/*-------------------------------------------------------------------------*/
480
481static int xhci_run_finished(struct xhci_hcd *xhci)
482{
483 struct xhci_interrupter *ir = xhci->interrupters[0];
484 unsigned long flags;
485 u32 temp;
486
487 /*
488 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
489 * Protect the short window before host is running with a lock
490 */
491 spin_lock_irqsave(&xhci->lock, flags);
492
493 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
494 temp = readl(&xhci->op_regs->command);
495 temp |= (CMD_EIE);
496 writel(temp, &xhci->op_regs->command);
497
498 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
499 xhci_enable_interrupter(ir);
500
501 if (xhci_start(xhci)) {
502 xhci_halt(xhci);
503 spin_unlock_irqrestore(&xhci->lock, flags);
504 return -ENODEV;
505 }
506
507 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
508
509 if (xhci->quirks & XHCI_NEC_HOST)
510 xhci_ring_cmd_db(xhci);
511
512 spin_unlock_irqrestore(&xhci->lock, flags);
513
514 return 0;
515}
516
517/*
518 * Start the HC after it was halted.
519 *
520 * This function is called by the USB core when the HC driver is added.
521 * Its opposite is xhci_stop().
522 *
523 * xhci_init() must be called once before this function can be called.
524 * Reset the HC, enable device slot contexts, program DCBAAP, and
525 * set command ring pointer and event ring pointer.
526 *
527 * Setup MSI-X vectors and enable interrupts.
528 */
529int xhci_run(struct usb_hcd *hcd)
530{
531 u32 temp;
532 u64 temp_64;
533 int ret;
534 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
535 struct xhci_interrupter *ir = xhci->interrupters[0];
536 /* Start the xHCI host controller running only after the USB 2.0 roothub
537 * is setup.
538 */
539
540 hcd->uses_new_polling = 1;
541 if (!usb_hcd_is_primary_hcd(hcd))
542 return xhci_run_finished(xhci);
543
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
545
546 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
547 temp_64 &= ERST_PTR_MASK;
548 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
549 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
550
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "// Set the interrupt modulation register");
553 temp = readl(&ir->ir_set->irq_control);
554 temp &= ~ER_IRQ_INTERVAL_MASK;
555 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
556 writel(temp, &ir->ir_set->irq_control);
557
558 if (xhci->quirks & XHCI_NEC_HOST) {
559 struct xhci_command *command;
560
561 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
562 if (!command)
563 return -ENOMEM;
564
565 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
566 TRB_TYPE(TRB_NEC_GET_FW));
567 if (ret)
568 xhci_free_command(xhci, command);
569 }
570 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 "Finished %s for main hcd", __func__);
572
573 xhci_create_dbc_dev(xhci);
574
575 xhci_debugfs_init(xhci);
576
577 if (xhci_has_one_roothub(xhci))
578 return xhci_run_finished(xhci);
579
580 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
581
582 return 0;
583}
584EXPORT_SYMBOL_GPL(xhci_run);
585
586/*
587 * Stop xHCI driver.
588 *
589 * This function is called by the USB core when the HC driver is removed.
590 * Its opposite is xhci_run().
591 *
592 * Disable device contexts, disable IRQs, and quiesce the HC.
593 * Reset the HC, finish any completed transactions, and cleanup memory.
594 */
595void xhci_stop(struct usb_hcd *hcd)
596{
597 u32 temp;
598 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
599 struct xhci_interrupter *ir = xhci->interrupters[0];
600
601 mutex_lock(&xhci->mutex);
602
603 /* Only halt host and free memory after both hcds are removed */
604 if (!usb_hcd_is_primary_hcd(hcd)) {
605 mutex_unlock(&xhci->mutex);
606 return;
607 }
608
609 xhci_remove_dbc_dev(xhci);
610
611 spin_lock_irq(&xhci->lock);
612 xhci->xhc_state |= XHCI_STATE_HALTED;
613 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
614 xhci_halt(xhci);
615 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
616 spin_unlock_irq(&xhci->lock);
617
618 /* Deleting Compliance Mode Recovery Timer */
619 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
620 (!(xhci_all_ports_seen_u0(xhci)))) {
621 del_timer_sync(&xhci->comp_mode_recovery_timer);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
623 "%s: compliance mode recovery timer deleted",
624 __func__);
625 }
626
627 if (xhci->quirks & XHCI_AMD_PLL_FIX)
628 usb_amd_dev_put();
629
630 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
631 "// Disabling event ring interrupts");
632 temp = readl(&xhci->op_regs->status);
633 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
634 xhci_disable_interrupter(ir);
635
636 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
637 xhci_mem_cleanup(xhci);
638 xhci_debugfs_exit(xhci);
639 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 "xhci_stop completed - status = %x",
641 readl(&xhci->op_regs->status));
642 mutex_unlock(&xhci->mutex);
643}
644EXPORT_SYMBOL_GPL(xhci_stop);
645
646/*
647 * Shutdown HC (not bus-specific)
648 *
649 * This is called when the machine is rebooting or halting. We assume that the
650 * machine will be powered off, and the HC's internal state will be reset.
651 * Don't bother to free memory.
652 *
653 * This will only ever be called with the main usb_hcd (the USB3 roothub).
654 */
655void xhci_shutdown(struct usb_hcd *hcd)
656{
657 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
658
659 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
660 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
661
662 /* Don't poll the roothubs after shutdown. */
663 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
664 __func__, hcd->self.busnum);
665 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
666 del_timer_sync(&hcd->rh_timer);
667
668 if (xhci->shared_hcd) {
669 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
670 del_timer_sync(&xhci->shared_hcd->rh_timer);
671 }
672
673 spin_lock_irq(&xhci->lock);
674 xhci_halt(xhci);
675
676 /*
677 * Workaround for spurious wakeps at shutdown with HSW, and for boot
678 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
679 */
680 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
681 xhci->quirks & XHCI_RESET_TO_DEFAULT)
682 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
683
684 spin_unlock_irq(&xhci->lock);
685
686 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
687 "xhci_shutdown completed - status = %x",
688 readl(&xhci->op_regs->status));
689}
690EXPORT_SYMBOL_GPL(xhci_shutdown);
691
692#ifdef CONFIG_PM
693static void xhci_save_registers(struct xhci_hcd *xhci)
694{
695 struct xhci_interrupter *ir;
696 unsigned int i;
697
698 xhci->s3.command = readl(&xhci->op_regs->command);
699 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
700 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
701 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
702
703 /* save both primary and all secondary interrupters */
704 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
705 for (i = 0; i < xhci->max_interrupters; i++) {
706 ir = xhci->interrupters[i];
707 if (!ir)
708 continue;
709
710 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
711 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
712 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
713 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
714 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
715 }
716}
717
718static void xhci_restore_registers(struct xhci_hcd *xhci)
719{
720 struct xhci_interrupter *ir;
721 unsigned int i;
722
723 writel(xhci->s3.command, &xhci->op_regs->command);
724 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
725 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
726 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
727
728 /* FIXME should we lock to protect against freeing of interrupters */
729 for (i = 0; i < xhci->max_interrupters; i++) {
730 ir = xhci->interrupters[i];
731 if (!ir)
732 continue;
733
734 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
735 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
736 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
737 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
738 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
739 }
740}
741
742static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
743{
744 u64 val_64;
745
746 /* step 2: initialize command ring buffer */
747 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
748 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
749 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
750 xhci->cmd_ring->dequeue) &
751 (u64) ~CMD_RING_RSVD_BITS) |
752 xhci->cmd_ring->cycle_state;
753 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
754 "// Setting command ring address to 0x%llx",
755 (long unsigned long) val_64);
756 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
757}
758
759/*
760 * The whole command ring must be cleared to zero when we suspend the host.
761 *
762 * The host doesn't save the command ring pointer in the suspend well, so we
763 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
764 * aligned, because of the reserved bits in the command ring dequeue pointer
765 * register. Therefore, we can't just set the dequeue pointer back in the
766 * middle of the ring (TRBs are 16-byte aligned).
767 */
768static void xhci_clear_command_ring(struct xhci_hcd *xhci)
769{
770 struct xhci_ring *ring;
771 struct xhci_segment *seg;
772
773 ring = xhci->cmd_ring;
774 seg = ring->deq_seg;
775 do {
776 memset(seg->trbs, 0,
777 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
778 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
779 cpu_to_le32(~TRB_CYCLE);
780 seg = seg->next;
781 } while (seg != ring->deq_seg);
782
783 /* Reset the software enqueue and dequeue pointers */
784 ring->deq_seg = ring->first_seg;
785 ring->dequeue = ring->first_seg->trbs;
786 ring->enq_seg = ring->deq_seg;
787 ring->enqueue = ring->dequeue;
788
789 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
790 /*
791 * Ring is now zeroed, so the HW should look for change of ownership
792 * when the cycle bit is set to 1.
793 */
794 ring->cycle_state = 1;
795
796 /*
797 * Reset the hardware dequeue pointer.
798 * Yes, this will need to be re-written after resume, but we're paranoid
799 * and want to make sure the hardware doesn't access bogus memory
800 * because, say, the BIOS or an SMI started the host without changing
801 * the command ring pointers.
802 */
803 xhci_set_cmd_ring_deq(xhci);
804}
805
806/*
807 * Disable port wake bits if do_wakeup is not set.
808 *
809 * Also clear a possible internal port wake state left hanging for ports that
810 * detected termination but never successfully enumerated (trained to 0U).
811 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
812 * at enumeration clears this wake, force one here as well for unconnected ports
813 */
814
815static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
816 struct xhci_hub *rhub,
817 bool do_wakeup)
818{
819 unsigned long flags;
820 u32 t1, t2, portsc;
821 int i;
822
823 spin_lock_irqsave(&xhci->lock, flags);
824
825 for (i = 0; i < rhub->num_ports; i++) {
826 portsc = readl(rhub->ports[i]->addr);
827 t1 = xhci_port_state_to_neutral(portsc);
828 t2 = t1;
829
830 /* clear wake bits if do_wake is not set */
831 if (!do_wakeup)
832 t2 &= ~PORT_WAKE_BITS;
833
834 /* Don't touch csc bit if connected or connect change is set */
835 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
836 t2 |= PORT_CSC;
837
838 if (t1 != t2) {
839 writel(t2, rhub->ports[i]->addr);
840 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
841 rhub->hcd->self.busnum, i + 1, portsc, t2);
842 }
843 }
844 spin_unlock_irqrestore(&xhci->lock, flags);
845}
846
847static bool xhci_pending_portevent(struct xhci_hcd *xhci)
848{
849 struct xhci_port **ports;
850 int port_index;
851 u32 status;
852 u32 portsc;
853
854 status = readl(&xhci->op_regs->status);
855 if (status & STS_EINT)
856 return true;
857 /*
858 * Checking STS_EINT is not enough as there is a lag between a change
859 * bit being set and the Port Status Change Event that it generated
860 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
861 */
862
863 port_index = xhci->usb2_rhub.num_ports;
864 ports = xhci->usb2_rhub.ports;
865 while (port_index--) {
866 portsc = readl(ports[port_index]->addr);
867 if (portsc & PORT_CHANGE_MASK ||
868 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
869 return true;
870 }
871 port_index = xhci->usb3_rhub.num_ports;
872 ports = xhci->usb3_rhub.ports;
873 while (port_index--) {
874 portsc = readl(ports[port_index]->addr);
875 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
876 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
877 return true;
878 }
879 return false;
880}
881
882/*
883 * Stop HC (not bus-specific)
884 *
885 * This is called when the machine transition into S3/S4 mode.
886 *
887 */
888int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
889{
890 int rc = 0;
891 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
892 struct usb_hcd *hcd = xhci_to_hcd(xhci);
893 u32 command;
894 u32 res;
895
896 if (!hcd->state)
897 return 0;
898
899 if (hcd->state != HC_STATE_SUSPENDED ||
900 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
901 return -EINVAL;
902
903 /* Clear root port wake on bits if wakeup not allowed. */
904 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
905 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
906
907 if (!HCD_HW_ACCESSIBLE(hcd))
908 return 0;
909
910 xhci_dbc_suspend(xhci);
911
912 /* Don't poll the roothubs on bus suspend. */
913 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
914 __func__, hcd->self.busnum);
915 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
916 del_timer_sync(&hcd->rh_timer);
917 if (xhci->shared_hcd) {
918 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
919 del_timer_sync(&xhci->shared_hcd->rh_timer);
920 }
921
922 if (xhci->quirks & XHCI_SUSPEND_DELAY)
923 usleep_range(1000, 1500);
924
925 spin_lock_irq(&xhci->lock);
926 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
927 if (xhci->shared_hcd)
928 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
929 /* step 1: stop endpoint */
930 /* skipped assuming that port suspend has done */
931
932 /* step 2: clear Run/Stop bit */
933 command = readl(&xhci->op_regs->command);
934 command &= ~CMD_RUN;
935 writel(command, &xhci->op_regs->command);
936
937 /* Some chips from Fresco Logic need an extraordinary delay */
938 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
939
940 if (xhci_handshake(&xhci->op_regs->status,
941 STS_HALT, STS_HALT, delay)) {
942 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
943 spin_unlock_irq(&xhci->lock);
944 return -ETIMEDOUT;
945 }
946 xhci_clear_command_ring(xhci);
947
948 /* step 3: save registers */
949 xhci_save_registers(xhci);
950
951 /* step 4: set CSS flag */
952 command = readl(&xhci->op_regs->command);
953 command |= CMD_CSS;
954 writel(command, &xhci->op_regs->command);
955 xhci->broken_suspend = 0;
956 if (xhci_handshake(&xhci->op_regs->status,
957 STS_SAVE, 0, 20 * 1000)) {
958 /*
959 * AMD SNPS xHC 3.0 occasionally does not clear the
960 * SSS bit of USBSTS and when driver tries to poll
961 * to see if the xHC clears BIT(8) which never happens
962 * and driver assumes that controller is not responding
963 * and times out. To workaround this, its good to check
964 * if SRE and HCE bits are not set (as per xhci
965 * Section 5.4.2) and bypass the timeout.
966 */
967 res = readl(&xhci->op_regs->status);
968 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
969 (((res & STS_SRE) == 0) &&
970 ((res & STS_HCE) == 0))) {
971 xhci->broken_suspend = 1;
972 } else {
973 xhci_warn(xhci, "WARN: xHC save state timeout\n");
974 spin_unlock_irq(&xhci->lock);
975 return -ETIMEDOUT;
976 }
977 }
978 spin_unlock_irq(&xhci->lock);
979
980 /*
981 * Deleting Compliance Mode Recovery Timer because the xHCI Host
982 * is about to be suspended.
983 */
984 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
985 (!(xhci_all_ports_seen_u0(xhci)))) {
986 del_timer_sync(&xhci->comp_mode_recovery_timer);
987 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
988 "%s: compliance mode recovery timer deleted",
989 __func__);
990 }
991
992 return rc;
993}
994EXPORT_SYMBOL_GPL(xhci_suspend);
995
996/*
997 * start xHC (not bus-specific)
998 *
999 * This is called when the machine transition from S3/S4 mode.
1000 *
1001 */
1002int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
1003{
1004 bool hibernated = (msg.event == PM_EVENT_RESTORE);
1005 u32 command, temp = 0;
1006 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1007 int retval = 0;
1008 bool comp_timer_running = false;
1009 bool pending_portevent = false;
1010 bool suspended_usb3_devs = false;
1011 bool reinit_xhc = false;
1012
1013 if (!hcd->state)
1014 return 0;
1015
1016 /* Wait a bit if either of the roothubs need to settle from the
1017 * transition into bus suspend.
1018 */
1019
1020 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1021 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1022 msleep(100);
1023
1024 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1025 if (xhci->shared_hcd)
1026 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1027
1028 spin_lock_irq(&xhci->lock);
1029
1030 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1031 reinit_xhc = true;
1032
1033 if (!reinit_xhc) {
1034 /*
1035 * Some controllers might lose power during suspend, so wait
1036 * for controller not ready bit to clear, just as in xHC init.
1037 */
1038 retval = xhci_handshake(&xhci->op_regs->status,
1039 STS_CNR, 0, 10 * 1000 * 1000);
1040 if (retval) {
1041 xhci_warn(xhci, "Controller not ready at resume %d\n",
1042 retval);
1043 spin_unlock_irq(&xhci->lock);
1044 return retval;
1045 }
1046 /* step 1: restore register */
1047 xhci_restore_registers(xhci);
1048 /* step 2: initialize command ring buffer */
1049 xhci_set_cmd_ring_deq(xhci);
1050 /* step 3: restore state and start state*/
1051 /* step 3: set CRS flag */
1052 command = readl(&xhci->op_regs->command);
1053 command |= CMD_CRS;
1054 writel(command, &xhci->op_regs->command);
1055 /*
1056 * Some controllers take up to 55+ ms to complete the controller
1057 * restore so setting the timeout to 100ms. Xhci specification
1058 * doesn't mention any timeout value.
1059 */
1060 if (xhci_handshake(&xhci->op_regs->status,
1061 STS_RESTORE, 0, 100 * 1000)) {
1062 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1063 spin_unlock_irq(&xhci->lock);
1064 return -ETIMEDOUT;
1065 }
1066 }
1067
1068 temp = readl(&xhci->op_regs->status);
1069
1070 /* re-initialize the HC on Restore Error, or Host Controller Error */
1071 if ((temp & (STS_SRE | STS_HCE)) &&
1072 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1073 reinit_xhc = true;
1074 if (!xhci->broken_suspend)
1075 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1076 }
1077
1078 if (reinit_xhc) {
1079 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1080 !(xhci_all_ports_seen_u0(xhci))) {
1081 del_timer_sync(&xhci->comp_mode_recovery_timer);
1082 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1083 "Compliance Mode Recovery Timer deleted!");
1084 }
1085
1086 /* Let the USB core know _both_ roothubs lost power. */
1087 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1088 if (xhci->shared_hcd)
1089 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1090
1091 xhci_dbg(xhci, "Stop HCD\n");
1092 xhci_halt(xhci);
1093 xhci_zero_64b_regs(xhci);
1094 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1095 spin_unlock_irq(&xhci->lock);
1096 if (retval)
1097 return retval;
1098
1099 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1100 temp = readl(&xhci->op_regs->status);
1101 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1102 xhci_disable_interrupter(xhci->interrupters[0]);
1103
1104 xhci_dbg(xhci, "cleaning up memory\n");
1105 xhci_mem_cleanup(xhci);
1106 xhci_debugfs_exit(xhci);
1107 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1108 readl(&xhci->op_regs->status));
1109
1110 /* USB core calls the PCI reinit and start functions twice:
1111 * first with the primary HCD, and then with the secondary HCD.
1112 * If we don't do the same, the host will never be started.
1113 */
1114 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1115 retval = xhci_init(hcd);
1116 if (retval)
1117 return retval;
1118 comp_timer_running = true;
1119
1120 xhci_dbg(xhci, "Start the primary HCD\n");
1121 retval = xhci_run(hcd);
1122 if (!retval && xhci->shared_hcd) {
1123 xhci_dbg(xhci, "Start the secondary HCD\n");
1124 retval = xhci_run(xhci->shared_hcd);
1125 }
1126
1127 hcd->state = HC_STATE_SUSPENDED;
1128 if (xhci->shared_hcd)
1129 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1130 goto done;
1131 }
1132
1133 /* step 4: set Run/Stop bit */
1134 command = readl(&xhci->op_regs->command);
1135 command |= CMD_RUN;
1136 writel(command, &xhci->op_regs->command);
1137 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1138 0, 250 * 1000);
1139
1140 /* step 5: walk topology and initialize portsc,
1141 * portpmsc and portli
1142 */
1143 /* this is done in bus_resume */
1144
1145 /* step 6: restart each of the previously
1146 * Running endpoints by ringing their doorbells
1147 */
1148
1149 spin_unlock_irq(&xhci->lock);
1150
1151 xhci_dbc_resume(xhci);
1152
1153 done:
1154 if (retval == 0) {
1155 /*
1156 * Resume roothubs only if there are pending events.
1157 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1158 * the first wake signalling failed, give it that chance if
1159 * there are suspended USB 3 devices.
1160 */
1161 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1162 xhci->usb3_rhub.bus_state.bus_suspended)
1163 suspended_usb3_devs = true;
1164
1165 pending_portevent = xhci_pending_portevent(xhci);
1166
1167 if (suspended_usb3_devs && !pending_portevent &&
1168 msg.event == PM_EVENT_AUTO_RESUME) {
1169 msleep(120);
1170 pending_portevent = xhci_pending_portevent(xhci);
1171 }
1172
1173 if (pending_portevent) {
1174 if (xhci->shared_hcd)
1175 usb_hcd_resume_root_hub(xhci->shared_hcd);
1176 usb_hcd_resume_root_hub(hcd);
1177 }
1178 }
1179 /*
1180 * If system is subject to the Quirk, Compliance Mode Timer needs to
1181 * be re-initialized Always after a system resume. Ports are subject
1182 * to suffer the Compliance Mode issue again. It doesn't matter if
1183 * ports have entered previously to U0 before system's suspension.
1184 */
1185 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1186 compliance_mode_recovery_timer_init(xhci);
1187
1188 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1189 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1190
1191 /* Re-enable port polling. */
1192 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1193 __func__, hcd->self.busnum);
1194 if (xhci->shared_hcd) {
1195 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1196 usb_hcd_poll_rh_status(xhci->shared_hcd);
1197 }
1198 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1199 usb_hcd_poll_rh_status(hcd);
1200
1201 return retval;
1202}
1203EXPORT_SYMBOL_GPL(xhci_resume);
1204#endif /* CONFIG_PM */
1205
1206/*-------------------------------------------------------------------------*/
1207
1208static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1209{
1210 void *temp;
1211 int ret = 0;
1212 unsigned int buf_len;
1213 enum dma_data_direction dir;
1214
1215 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1216 buf_len = urb->transfer_buffer_length;
1217
1218 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1219 dev_to_node(hcd->self.sysdev));
1220
1221 if (usb_urb_dir_out(urb))
1222 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1223 temp, buf_len, 0);
1224
1225 urb->transfer_buffer = temp;
1226 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1227 urb->transfer_buffer,
1228 urb->transfer_buffer_length,
1229 dir);
1230
1231 if (dma_mapping_error(hcd->self.sysdev,
1232 urb->transfer_dma)) {
1233 ret = -EAGAIN;
1234 kfree(temp);
1235 } else {
1236 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1237 }
1238
1239 return ret;
1240}
1241
1242static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1243 struct urb *urb)
1244{
1245 bool ret = false;
1246 unsigned int i;
1247 unsigned int len = 0;
1248 unsigned int trb_size;
1249 unsigned int max_pkt;
1250 struct scatterlist *sg;
1251 struct scatterlist *tail_sg;
1252
1253 tail_sg = urb->sg;
1254 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1255
1256 if (!urb->num_sgs)
1257 return ret;
1258
1259 if (urb->dev->speed >= USB_SPEED_SUPER)
1260 trb_size = TRB_CACHE_SIZE_SS;
1261 else
1262 trb_size = TRB_CACHE_SIZE_HS;
1263
1264 if (urb->transfer_buffer_length != 0 &&
1265 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1266 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1267 len = len + sg->length;
1268 if (i > trb_size - 2) {
1269 len = len - tail_sg->length;
1270 if (len < max_pkt) {
1271 ret = true;
1272 break;
1273 }
1274
1275 tail_sg = sg_next(tail_sg);
1276 }
1277 }
1278 }
1279 return ret;
1280}
1281
1282static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1283{
1284 unsigned int len;
1285 unsigned int buf_len;
1286 enum dma_data_direction dir;
1287
1288 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1289
1290 buf_len = urb->transfer_buffer_length;
1291
1292 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1293 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1294 dma_unmap_single(hcd->self.sysdev,
1295 urb->transfer_dma,
1296 urb->transfer_buffer_length,
1297 dir);
1298
1299 if (usb_urb_dir_in(urb)) {
1300 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1301 urb->transfer_buffer,
1302 buf_len,
1303 0);
1304 if (len != buf_len) {
1305 xhci_dbg(hcd_to_xhci(hcd),
1306 "Copy from tmp buf to urb sg list failed\n");
1307 urb->actual_length = len;
1308 }
1309 }
1310 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1311 kfree(urb->transfer_buffer);
1312 urb->transfer_buffer = NULL;
1313}
1314
1315/*
1316 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1317 * we'll copy the actual data into the TRB address register. This is limited to
1318 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1319 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1320 */
1321static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1322 gfp_t mem_flags)
1323{
1324 struct xhci_hcd *xhci;
1325
1326 xhci = hcd_to_xhci(hcd);
1327
1328 if (xhci_urb_suitable_for_idt(urb))
1329 return 0;
1330
1331 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1332 if (xhci_urb_temp_buffer_required(hcd, urb))
1333 return xhci_map_temp_buffer(hcd, urb);
1334 }
1335 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1336}
1337
1338static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1339{
1340 struct xhci_hcd *xhci;
1341 bool unmap_temp_buf = false;
1342
1343 xhci = hcd_to_xhci(hcd);
1344
1345 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1346 unmap_temp_buf = true;
1347
1348 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1349 xhci_unmap_temp_buf(hcd, urb);
1350 else
1351 usb_hcd_unmap_urb_for_dma(hcd, urb);
1352}
1353
1354/**
1355 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1356 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1357 * value to right shift 1 for the bitmask.
1358 *
1359 * Index = (epnum * 2) + direction - 1,
1360 * where direction = 0 for OUT, 1 for IN.
1361 * For control endpoints, the IN index is used (OUT index is unused), so
1362 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1363 */
1364unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1365{
1366 unsigned int index;
1367 if (usb_endpoint_xfer_control(desc))
1368 index = (unsigned int) (usb_endpoint_num(desc)*2);
1369 else
1370 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1371 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1372 return index;
1373}
1374EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1375
1376/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1377 * address from the XHCI endpoint index.
1378 */
1379static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1380{
1381 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1382 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1383 return direction | number;
1384}
1385
1386/* Find the flag for this endpoint (for use in the control context). Use the
1387 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1388 * bit 1, etc.
1389 */
1390static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1391{
1392 return 1 << (xhci_get_endpoint_index(desc) + 1);
1393}
1394
1395/* Compute the last valid endpoint context index. Basically, this is the
1396 * endpoint index plus one. For slot contexts with more than valid endpoint,
1397 * we find the most significant bit set in the added contexts flags.
1398 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1399 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1400 */
1401unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1402{
1403 return fls(added_ctxs) - 1;
1404}
1405
1406/* Returns 1 if the arguments are OK;
1407 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1408 */
1409static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1410 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1411 const char *func) {
1412 struct xhci_hcd *xhci;
1413 struct xhci_virt_device *virt_dev;
1414
1415 if (!hcd || (check_ep && !ep) || !udev) {
1416 pr_debug("xHCI %s called with invalid args\n", func);
1417 return -EINVAL;
1418 }
1419 if (!udev->parent) {
1420 pr_debug("xHCI %s called for root hub\n", func);
1421 return 0;
1422 }
1423
1424 xhci = hcd_to_xhci(hcd);
1425 if (check_virt_dev) {
1426 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1427 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1428 func);
1429 return -EINVAL;
1430 }
1431
1432 virt_dev = xhci->devs[udev->slot_id];
1433 if (virt_dev->udev != udev) {
1434 xhci_dbg(xhci, "xHCI %s called with udev and "
1435 "virt_dev does not match\n", func);
1436 return -EINVAL;
1437 }
1438 }
1439
1440 if (xhci->xhc_state & XHCI_STATE_HALTED)
1441 return -ENODEV;
1442
1443 return 1;
1444}
1445
1446static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1447 struct usb_device *udev, struct xhci_command *command,
1448 bool ctx_change, bool must_succeed);
1449
1450/*
1451 * Full speed devices may have a max packet size greater than 8 bytes, but the
1452 * USB core doesn't know that until it reads the first 8 bytes of the
1453 * descriptor. If the usb_device's max packet size changes after that point,
1454 * we need to issue an evaluate context command and wait on it.
1455 */
1456static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1457{
1458 struct xhci_input_control_ctx *ctrl_ctx;
1459 struct xhci_ep_ctx *ep_ctx;
1460 struct xhci_command *command;
1461 int max_packet_size;
1462 int hw_max_packet_size;
1463 int ret = 0;
1464
1465 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1466 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1467 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1468
1469 if (hw_max_packet_size == max_packet_size)
1470 return 0;
1471
1472 switch (max_packet_size) {
1473 case 8: case 16: case 32: case 64: case 9:
1474 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1475 "Max Packet Size for ep 0 changed.");
1476 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1477 "Max packet size in usb_device = %d",
1478 max_packet_size);
1479 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1480 "Max packet size in xHCI HW = %d",
1481 hw_max_packet_size);
1482 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1483 "Issuing evaluate context command.");
1484
1485 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1486 if (!command)
1487 return -ENOMEM;
1488
1489 command->in_ctx = vdev->in_ctx;
1490 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1491 if (!ctrl_ctx) {
1492 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1493 __func__);
1494 ret = -ENOMEM;
1495 break;
1496 }
1497 /* Set up the modified control endpoint 0 */
1498 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1499
1500 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1501 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1502 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1503 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1504
1505 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1506 ctrl_ctx->drop_flags = 0;
1507
1508 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1509 true, false);
1510 /* Clean up the input context for later use by bandwidth functions */
1511 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1512 break;
1513 default:
1514 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1515 max_packet_size);
1516 return -EINVAL;
1517 }
1518
1519 kfree(command->completion);
1520 kfree(command);
1521
1522 return ret;
1523}
1524
1525/*
1526 * non-error returns are a promise to giveback() the urb later
1527 * we drop ownership so next owner (or urb unlink) can get it
1528 */
1529static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1530{
1531 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1532 unsigned long flags;
1533 int ret = 0;
1534 unsigned int slot_id, ep_index;
1535 unsigned int *ep_state;
1536 struct urb_priv *urb_priv;
1537 int num_tds;
1538
1539 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1540
1541 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1542 num_tds = urb->number_of_packets;
1543 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1544 urb->transfer_buffer_length > 0 &&
1545 urb->transfer_flags & URB_ZERO_PACKET &&
1546 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1547 num_tds = 2;
1548 else
1549 num_tds = 1;
1550
1551 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1552 if (!urb_priv)
1553 return -ENOMEM;
1554
1555 urb_priv->num_tds = num_tds;
1556 urb_priv->num_tds_done = 0;
1557 urb->hcpriv = urb_priv;
1558
1559 trace_xhci_urb_enqueue(urb);
1560
1561 spin_lock_irqsave(&xhci->lock, flags);
1562
1563 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1564 true, true, __func__);
1565 if (ret <= 0) {
1566 ret = ret ? ret : -EINVAL;
1567 goto free_priv;
1568 }
1569
1570 slot_id = urb->dev->slot_id;
1571
1572 if (!HCD_HW_ACCESSIBLE(hcd)) {
1573 ret = -ESHUTDOWN;
1574 goto free_priv;
1575 }
1576
1577 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1578 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1579 ret = -ENODEV;
1580 goto free_priv;
1581 }
1582
1583 if (xhci->xhc_state & XHCI_STATE_DYING) {
1584 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1585 urb->ep->desc.bEndpointAddress, urb);
1586 ret = -ESHUTDOWN;
1587 goto free_priv;
1588 }
1589
1590 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1591
1592 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1593 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1594 *ep_state);
1595 ret = -EINVAL;
1596 goto free_priv;
1597 }
1598 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1599 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1600 ret = -EINVAL;
1601 goto free_priv;
1602 }
1603
1604 switch (usb_endpoint_type(&urb->ep->desc)) {
1605
1606 case USB_ENDPOINT_XFER_CONTROL:
1607 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1608 slot_id, ep_index);
1609 break;
1610 case USB_ENDPOINT_XFER_BULK:
1611 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1612 slot_id, ep_index);
1613 break;
1614 case USB_ENDPOINT_XFER_INT:
1615 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1616 slot_id, ep_index);
1617 break;
1618 case USB_ENDPOINT_XFER_ISOC:
1619 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1620 slot_id, ep_index);
1621 }
1622
1623 if (ret) {
1624free_priv:
1625 xhci_urb_free_priv(urb_priv);
1626 urb->hcpriv = NULL;
1627 }
1628 spin_unlock_irqrestore(&xhci->lock, flags);
1629 return ret;
1630}
1631
1632/*
1633 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1634 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1635 * should pick up where it left off in the TD, unless a Set Transfer Ring
1636 * Dequeue Pointer is issued.
1637 *
1638 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1639 * the ring. Since the ring is a contiguous structure, they can't be physically
1640 * removed. Instead, there are two options:
1641 *
1642 * 1) If the HC is in the middle of processing the URB to be canceled, we
1643 * simply move the ring's dequeue pointer past those TRBs using the Set
1644 * Transfer Ring Dequeue Pointer command. This will be the common case,
1645 * when drivers timeout on the last submitted URB and attempt to cancel.
1646 *
1647 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1648 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1649 * HC will need to invalidate the any TRBs it has cached after the stop
1650 * endpoint command, as noted in the xHCI 0.95 errata.
1651 *
1652 * 3) The TD may have completed by the time the Stop Endpoint Command
1653 * completes, so software needs to handle that case too.
1654 *
1655 * This function should protect against the TD enqueueing code ringing the
1656 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1657 * It also needs to account for multiple cancellations on happening at the same
1658 * time for the same endpoint.
1659 *
1660 * Note that this function can be called in any context, or so says
1661 * usb_hcd_unlink_urb()
1662 */
1663static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1664{
1665 unsigned long flags;
1666 int ret, i;
1667 u32 temp;
1668 struct xhci_hcd *xhci;
1669 struct urb_priv *urb_priv;
1670 struct xhci_td *td;
1671 unsigned int ep_index;
1672 struct xhci_ring *ep_ring;
1673 struct xhci_virt_ep *ep;
1674 struct xhci_command *command;
1675 struct xhci_virt_device *vdev;
1676
1677 xhci = hcd_to_xhci(hcd);
1678 spin_lock_irqsave(&xhci->lock, flags);
1679
1680 trace_xhci_urb_dequeue(urb);
1681
1682 /* Make sure the URB hasn't completed or been unlinked already */
1683 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1684 if (ret)
1685 goto done;
1686
1687 /* give back URB now if we can't queue it for cancel */
1688 vdev = xhci->devs[urb->dev->slot_id];
1689 urb_priv = urb->hcpriv;
1690 if (!vdev || !urb_priv)
1691 goto err_giveback;
1692
1693 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1694 ep = &vdev->eps[ep_index];
1695 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1696 if (!ep || !ep_ring)
1697 goto err_giveback;
1698
1699 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1700 temp = readl(&xhci->op_regs->status);
1701 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1702 xhci_hc_died(xhci);
1703 goto done;
1704 }
1705
1706 /*
1707 * check ring is not re-allocated since URB was enqueued. If it is, then
1708 * make sure none of the ring related pointers in this URB private data
1709 * are touched, such as td_list, otherwise we overwrite freed data
1710 */
1711 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1712 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1713 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1714 td = &urb_priv->td[i];
1715 if (!list_empty(&td->cancelled_td_list))
1716 list_del_init(&td->cancelled_td_list);
1717 }
1718 goto err_giveback;
1719 }
1720
1721 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1722 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1723 "HC halted, freeing TD manually.");
1724 for (i = urb_priv->num_tds_done;
1725 i < urb_priv->num_tds;
1726 i++) {
1727 td = &urb_priv->td[i];
1728 if (!list_empty(&td->td_list))
1729 list_del_init(&td->td_list);
1730 if (!list_empty(&td->cancelled_td_list))
1731 list_del_init(&td->cancelled_td_list);
1732 }
1733 goto err_giveback;
1734 }
1735
1736 i = urb_priv->num_tds_done;
1737 if (i < urb_priv->num_tds)
1738 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1739 "Cancel URB %p, dev %s, ep 0x%x, "
1740 "starting at offset 0x%llx",
1741 urb, urb->dev->devpath,
1742 urb->ep->desc.bEndpointAddress,
1743 (unsigned long long) xhci_trb_virt_to_dma(
1744 urb_priv->td[i].start_seg,
1745 urb_priv->td[i].first_trb));
1746
1747 for (; i < urb_priv->num_tds; i++) {
1748 td = &urb_priv->td[i];
1749 /* TD can already be on cancelled list if ep halted on it */
1750 if (list_empty(&td->cancelled_td_list)) {
1751 td->cancel_status = TD_DIRTY;
1752 list_add_tail(&td->cancelled_td_list,
1753 &ep->cancelled_td_list);
1754 }
1755 }
1756
1757 /* Queue a stop endpoint command, but only if this is
1758 * the first cancellation to be handled.
1759 */
1760 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1761 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1762 if (!command) {
1763 ret = -ENOMEM;
1764 goto done;
1765 }
1766 ep->ep_state |= EP_STOP_CMD_PENDING;
1767 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1768 ep_index, 0);
1769 xhci_ring_cmd_db(xhci);
1770 }
1771done:
1772 spin_unlock_irqrestore(&xhci->lock, flags);
1773 return ret;
1774
1775err_giveback:
1776 if (urb_priv)
1777 xhci_urb_free_priv(urb_priv);
1778 usb_hcd_unlink_urb_from_ep(hcd, urb);
1779 spin_unlock_irqrestore(&xhci->lock, flags);
1780 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1781 return ret;
1782}
1783
1784/* Drop an endpoint from a new bandwidth configuration for this device.
1785 * Only one call to this function is allowed per endpoint before
1786 * check_bandwidth() or reset_bandwidth() must be called.
1787 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1788 * add the endpoint to the schedule with possibly new parameters denoted by a
1789 * different endpoint descriptor in usb_host_endpoint.
1790 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1791 * not allowed.
1792 *
1793 * The USB core will not allow URBs to be queued to an endpoint that is being
1794 * disabled, so there's no need for mutual exclusion to protect
1795 * the xhci->devs[slot_id] structure.
1796 */
1797int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1798 struct usb_host_endpoint *ep)
1799{
1800 struct xhci_hcd *xhci;
1801 struct xhci_container_ctx *in_ctx, *out_ctx;
1802 struct xhci_input_control_ctx *ctrl_ctx;
1803 unsigned int ep_index;
1804 struct xhci_ep_ctx *ep_ctx;
1805 u32 drop_flag;
1806 u32 new_add_flags, new_drop_flags;
1807 int ret;
1808
1809 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1810 if (ret <= 0)
1811 return ret;
1812 xhci = hcd_to_xhci(hcd);
1813 if (xhci->xhc_state & XHCI_STATE_DYING)
1814 return -ENODEV;
1815
1816 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1817 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1818 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1819 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1820 __func__, drop_flag);
1821 return 0;
1822 }
1823
1824 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1825 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1826 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1827 if (!ctrl_ctx) {
1828 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1829 __func__);
1830 return 0;
1831 }
1832
1833 ep_index = xhci_get_endpoint_index(&ep->desc);
1834 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1835 /* If the HC already knows the endpoint is disabled,
1836 * or the HCD has noted it is disabled, ignore this request
1837 */
1838 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1839 le32_to_cpu(ctrl_ctx->drop_flags) &
1840 xhci_get_endpoint_flag(&ep->desc)) {
1841 /* Do not warn when called after a usb_device_reset */
1842 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1843 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1844 __func__, ep);
1845 return 0;
1846 }
1847
1848 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1849 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1850
1851 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1852 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1853
1854 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1855
1856 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1857
1858 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1859 (unsigned int) ep->desc.bEndpointAddress,
1860 udev->slot_id,
1861 (unsigned int) new_drop_flags,
1862 (unsigned int) new_add_flags);
1863 return 0;
1864}
1865EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1866
1867/* Add an endpoint to a new possible bandwidth configuration for this device.
1868 * Only one call to this function is allowed per endpoint before
1869 * check_bandwidth() or reset_bandwidth() must be called.
1870 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1871 * add the endpoint to the schedule with possibly new parameters denoted by a
1872 * different endpoint descriptor in usb_host_endpoint.
1873 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1874 * not allowed.
1875 *
1876 * The USB core will not allow URBs to be queued to an endpoint until the
1877 * configuration or alt setting is installed in the device, so there's no need
1878 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1879 */
1880int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1881 struct usb_host_endpoint *ep)
1882{
1883 struct xhci_hcd *xhci;
1884 struct xhci_container_ctx *in_ctx;
1885 unsigned int ep_index;
1886 struct xhci_input_control_ctx *ctrl_ctx;
1887 struct xhci_ep_ctx *ep_ctx;
1888 u32 added_ctxs;
1889 u32 new_add_flags, new_drop_flags;
1890 struct xhci_virt_device *virt_dev;
1891 int ret = 0;
1892
1893 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1894 if (ret <= 0) {
1895 /* So we won't queue a reset ep command for a root hub */
1896 ep->hcpriv = NULL;
1897 return ret;
1898 }
1899 xhci = hcd_to_xhci(hcd);
1900 if (xhci->xhc_state & XHCI_STATE_DYING)
1901 return -ENODEV;
1902
1903 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1904 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1905 /* FIXME when we have to issue an evaluate endpoint command to
1906 * deal with ep0 max packet size changing once we get the
1907 * descriptors
1908 */
1909 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1910 __func__, added_ctxs);
1911 return 0;
1912 }
1913
1914 virt_dev = xhci->devs[udev->slot_id];
1915 in_ctx = virt_dev->in_ctx;
1916 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1917 if (!ctrl_ctx) {
1918 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1919 __func__);
1920 return 0;
1921 }
1922
1923 ep_index = xhci_get_endpoint_index(&ep->desc);
1924 /* If this endpoint is already in use, and the upper layers are trying
1925 * to add it again without dropping it, reject the addition.
1926 */
1927 if (virt_dev->eps[ep_index].ring &&
1928 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1929 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1930 "without dropping it.\n",
1931 (unsigned int) ep->desc.bEndpointAddress);
1932 return -EINVAL;
1933 }
1934
1935 /* If the HCD has already noted the endpoint is enabled,
1936 * ignore this request.
1937 */
1938 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1939 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1940 __func__, ep);
1941 return 0;
1942 }
1943
1944 /*
1945 * Configuration and alternate setting changes must be done in
1946 * process context, not interrupt context (or so documenation
1947 * for usb_set_interface() and usb_set_configuration() claim).
1948 */
1949 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1950 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1951 __func__, ep->desc.bEndpointAddress);
1952 return -ENOMEM;
1953 }
1954
1955 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1956 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1957
1958 /* If xhci_endpoint_disable() was called for this endpoint, but the
1959 * xHC hasn't been notified yet through the check_bandwidth() call,
1960 * this re-adds a new state for the endpoint from the new endpoint
1961 * descriptors. We must drop and re-add this endpoint, so we leave the
1962 * drop flags alone.
1963 */
1964 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1965
1966 /* Store the usb_device pointer for later use */
1967 ep->hcpriv = udev;
1968
1969 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1970 trace_xhci_add_endpoint(ep_ctx);
1971
1972 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1973 (unsigned int) ep->desc.bEndpointAddress,
1974 udev->slot_id,
1975 (unsigned int) new_drop_flags,
1976 (unsigned int) new_add_flags);
1977 return 0;
1978}
1979EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1980
1981static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1982{
1983 struct xhci_input_control_ctx *ctrl_ctx;
1984 struct xhci_ep_ctx *ep_ctx;
1985 struct xhci_slot_ctx *slot_ctx;
1986 int i;
1987
1988 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1989 if (!ctrl_ctx) {
1990 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1991 __func__);
1992 return;
1993 }
1994
1995 /* When a device's add flag and drop flag are zero, any subsequent
1996 * configure endpoint command will leave that endpoint's state
1997 * untouched. Make sure we don't leave any old state in the input
1998 * endpoint contexts.
1999 */
2000 ctrl_ctx->drop_flags = 0;
2001 ctrl_ctx->add_flags = 0;
2002 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2003 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2004 /* Endpoint 0 is always valid */
2005 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2006 for (i = 1; i < 31; i++) {
2007 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2008 ep_ctx->ep_info = 0;
2009 ep_ctx->ep_info2 = 0;
2010 ep_ctx->deq = 0;
2011 ep_ctx->tx_info = 0;
2012 }
2013}
2014
2015static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2016 struct usb_device *udev, u32 *cmd_status)
2017{
2018 int ret;
2019
2020 switch (*cmd_status) {
2021 case COMP_COMMAND_ABORTED:
2022 case COMP_COMMAND_RING_STOPPED:
2023 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2024 ret = -ETIME;
2025 break;
2026 case COMP_RESOURCE_ERROR:
2027 dev_warn(&udev->dev,
2028 "Not enough host controller resources for new device state.\n");
2029 ret = -ENOMEM;
2030 /* FIXME: can we allocate more resources for the HC? */
2031 break;
2032 case COMP_BANDWIDTH_ERROR:
2033 case COMP_SECONDARY_BANDWIDTH_ERROR:
2034 dev_warn(&udev->dev,
2035 "Not enough bandwidth for new device state.\n");
2036 ret = -ENOSPC;
2037 /* FIXME: can we go back to the old state? */
2038 break;
2039 case COMP_TRB_ERROR:
2040 /* the HCD set up something wrong */
2041 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2042 "add flag = 1, "
2043 "and endpoint is not disabled.\n");
2044 ret = -EINVAL;
2045 break;
2046 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2047 dev_warn(&udev->dev,
2048 "ERROR: Incompatible device for endpoint configure command.\n");
2049 ret = -ENODEV;
2050 break;
2051 case COMP_SUCCESS:
2052 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2053 "Successful Endpoint Configure command");
2054 ret = 0;
2055 break;
2056 default:
2057 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2058 *cmd_status);
2059 ret = -EINVAL;
2060 break;
2061 }
2062 return ret;
2063}
2064
2065static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2066 struct usb_device *udev, u32 *cmd_status)
2067{
2068 int ret;
2069
2070 switch (*cmd_status) {
2071 case COMP_COMMAND_ABORTED:
2072 case COMP_COMMAND_RING_STOPPED:
2073 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2074 ret = -ETIME;
2075 break;
2076 case COMP_PARAMETER_ERROR:
2077 dev_warn(&udev->dev,
2078 "WARN: xHCI driver setup invalid evaluate context command.\n");
2079 ret = -EINVAL;
2080 break;
2081 case COMP_SLOT_NOT_ENABLED_ERROR:
2082 dev_warn(&udev->dev,
2083 "WARN: slot not enabled for evaluate context command.\n");
2084 ret = -EINVAL;
2085 break;
2086 case COMP_CONTEXT_STATE_ERROR:
2087 dev_warn(&udev->dev,
2088 "WARN: invalid context state for evaluate context command.\n");
2089 ret = -EINVAL;
2090 break;
2091 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2092 dev_warn(&udev->dev,
2093 "ERROR: Incompatible device for evaluate context command.\n");
2094 ret = -ENODEV;
2095 break;
2096 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2097 /* Max Exit Latency too large error */
2098 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2099 ret = -EINVAL;
2100 break;
2101 case COMP_SUCCESS:
2102 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2103 "Successful evaluate context command");
2104 ret = 0;
2105 break;
2106 default:
2107 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2108 *cmd_status);
2109 ret = -EINVAL;
2110 break;
2111 }
2112 return ret;
2113}
2114
2115static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2116 struct xhci_input_control_ctx *ctrl_ctx)
2117{
2118 u32 valid_add_flags;
2119 u32 valid_drop_flags;
2120
2121 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2122 * (bit 1). The default control endpoint is added during the Address
2123 * Device command and is never removed until the slot is disabled.
2124 */
2125 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2126 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2127
2128 /* Use hweight32 to count the number of ones in the add flags, or
2129 * number of endpoints added. Don't count endpoints that are changed
2130 * (both added and dropped).
2131 */
2132 return hweight32(valid_add_flags) -
2133 hweight32(valid_add_flags & valid_drop_flags);
2134}
2135
2136static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2137 struct xhci_input_control_ctx *ctrl_ctx)
2138{
2139 u32 valid_add_flags;
2140 u32 valid_drop_flags;
2141
2142 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2143 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2144
2145 return hweight32(valid_drop_flags) -
2146 hweight32(valid_add_flags & valid_drop_flags);
2147}
2148
2149/*
2150 * We need to reserve the new number of endpoints before the configure endpoint
2151 * command completes. We can't subtract the dropped endpoints from the number
2152 * of active endpoints until the command completes because we can oversubscribe
2153 * the host in this case:
2154 *
2155 * - the first configure endpoint command drops more endpoints than it adds
2156 * - a second configure endpoint command that adds more endpoints is queued
2157 * - the first configure endpoint command fails, so the config is unchanged
2158 * - the second command may succeed, even though there isn't enough resources
2159 *
2160 * Must be called with xhci->lock held.
2161 */
2162static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2163 struct xhci_input_control_ctx *ctrl_ctx)
2164{
2165 u32 added_eps;
2166
2167 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2168 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170 "Not enough ep ctxs: "
2171 "%u active, need to add %u, limit is %u.",
2172 xhci->num_active_eps, added_eps,
2173 xhci->limit_active_eps);
2174 return -ENOMEM;
2175 }
2176 xhci->num_active_eps += added_eps;
2177 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2178 "Adding %u ep ctxs, %u now active.", added_eps,
2179 xhci->num_active_eps);
2180 return 0;
2181}
2182
2183/*
2184 * The configure endpoint was failed by the xHC for some other reason, so we
2185 * need to revert the resources that failed configuration would have used.
2186 *
2187 * Must be called with xhci->lock held.
2188 */
2189static void xhci_free_host_resources(struct xhci_hcd *xhci,
2190 struct xhci_input_control_ctx *ctrl_ctx)
2191{
2192 u32 num_failed_eps;
2193
2194 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2195 xhci->num_active_eps -= num_failed_eps;
2196 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197 "Removing %u failed ep ctxs, %u now active.",
2198 num_failed_eps,
2199 xhci->num_active_eps);
2200}
2201
2202/*
2203 * Now that the command has completed, clean up the active endpoint count by
2204 * subtracting out the endpoints that were dropped (but not changed).
2205 *
2206 * Must be called with xhci->lock held.
2207 */
2208static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2209 struct xhci_input_control_ctx *ctrl_ctx)
2210{
2211 u32 num_dropped_eps;
2212
2213 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2214 xhci->num_active_eps -= num_dropped_eps;
2215 if (num_dropped_eps)
2216 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2217 "Removing %u dropped ep ctxs, %u now active.",
2218 num_dropped_eps,
2219 xhci->num_active_eps);
2220}
2221
2222static unsigned int xhci_get_block_size(struct usb_device *udev)
2223{
2224 switch (udev->speed) {
2225 case USB_SPEED_LOW:
2226 case USB_SPEED_FULL:
2227 return FS_BLOCK;
2228 case USB_SPEED_HIGH:
2229 return HS_BLOCK;
2230 case USB_SPEED_SUPER:
2231 case USB_SPEED_SUPER_PLUS:
2232 return SS_BLOCK;
2233 case USB_SPEED_UNKNOWN:
2234 default:
2235 /* Should never happen */
2236 return 1;
2237 }
2238}
2239
2240static unsigned int
2241xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2242{
2243 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2244 return LS_OVERHEAD;
2245 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2246 return FS_OVERHEAD;
2247 return HS_OVERHEAD;
2248}
2249
2250/* If we are changing a LS/FS device under a HS hub,
2251 * make sure (if we are activating a new TT) that the HS bus has enough
2252 * bandwidth for this new TT.
2253 */
2254static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2255 struct xhci_virt_device *virt_dev,
2256 int old_active_eps)
2257{
2258 struct xhci_interval_bw_table *bw_table;
2259 struct xhci_tt_bw_info *tt_info;
2260
2261 /* Find the bandwidth table for the root port this TT is attached to. */
2262 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2263 tt_info = virt_dev->tt_info;
2264 /* If this TT already had active endpoints, the bandwidth for this TT
2265 * has already been added. Removing all periodic endpoints (and thus
2266 * making the TT enactive) will only decrease the bandwidth used.
2267 */
2268 if (old_active_eps)
2269 return 0;
2270 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2271 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2272 return -ENOMEM;
2273 return 0;
2274 }
2275 /* Not sure why we would have no new active endpoints...
2276 *
2277 * Maybe because of an Evaluate Context change for a hub update or a
2278 * control endpoint 0 max packet size change?
2279 * FIXME: skip the bandwidth calculation in that case.
2280 */
2281 return 0;
2282}
2283
2284static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2285 struct xhci_virt_device *virt_dev)
2286{
2287 unsigned int bw_reserved;
2288
2289 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2290 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2291 return -ENOMEM;
2292
2293 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2294 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2295 return -ENOMEM;
2296
2297 return 0;
2298}
2299
2300/*
2301 * This algorithm is a very conservative estimate of the worst-case scheduling
2302 * scenario for any one interval. The hardware dynamically schedules the
2303 * packets, so we can't tell which microframe could be the limiting factor in
2304 * the bandwidth scheduling. This only takes into account periodic endpoints.
2305 *
2306 * Obviously, we can't solve an NP complete problem to find the minimum worst
2307 * case scenario. Instead, we come up with an estimate that is no less than
2308 * the worst case bandwidth used for any one microframe, but may be an
2309 * over-estimate.
2310 *
2311 * We walk the requirements for each endpoint by interval, starting with the
2312 * smallest interval, and place packets in the schedule where there is only one
2313 * possible way to schedule packets for that interval. In order to simplify
2314 * this algorithm, we record the largest max packet size for each interval, and
2315 * assume all packets will be that size.
2316 *
2317 * For interval 0, we obviously must schedule all packets for each interval.
2318 * The bandwidth for interval 0 is just the amount of data to be transmitted
2319 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2320 * the number of packets).
2321 *
2322 * For interval 1, we have two possible microframes to schedule those packets
2323 * in. For this algorithm, if we can schedule the same number of packets for
2324 * each possible scheduling opportunity (each microframe), we will do so. The
2325 * remaining number of packets will be saved to be transmitted in the gaps in
2326 * the next interval's scheduling sequence.
2327 *
2328 * As we move those remaining packets to be scheduled with interval 2 packets,
2329 * we have to double the number of remaining packets to transmit. This is
2330 * because the intervals are actually powers of 2, and we would be transmitting
2331 * the previous interval's packets twice in this interval. We also have to be
2332 * sure that when we look at the largest max packet size for this interval, we
2333 * also look at the largest max packet size for the remaining packets and take
2334 * the greater of the two.
2335 *
2336 * The algorithm continues to evenly distribute packets in each scheduling
2337 * opportunity, and push the remaining packets out, until we get to the last
2338 * interval. Then those packets and their associated overhead are just added
2339 * to the bandwidth used.
2340 */
2341static int xhci_check_bw_table(struct xhci_hcd *xhci,
2342 struct xhci_virt_device *virt_dev,
2343 int old_active_eps)
2344{
2345 unsigned int bw_reserved;
2346 unsigned int max_bandwidth;
2347 unsigned int bw_used;
2348 unsigned int block_size;
2349 struct xhci_interval_bw_table *bw_table;
2350 unsigned int packet_size = 0;
2351 unsigned int overhead = 0;
2352 unsigned int packets_transmitted = 0;
2353 unsigned int packets_remaining = 0;
2354 unsigned int i;
2355
2356 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2357 return xhci_check_ss_bw(xhci, virt_dev);
2358
2359 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2360 max_bandwidth = HS_BW_LIMIT;
2361 /* Convert percent of bus BW reserved to blocks reserved */
2362 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2363 } else {
2364 max_bandwidth = FS_BW_LIMIT;
2365 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2366 }
2367
2368 bw_table = virt_dev->bw_table;
2369 /* We need to translate the max packet size and max ESIT payloads into
2370 * the units the hardware uses.
2371 */
2372 block_size = xhci_get_block_size(virt_dev->udev);
2373
2374 /* If we are manipulating a LS/FS device under a HS hub, double check
2375 * that the HS bus has enough bandwidth if we are activing a new TT.
2376 */
2377 if (virt_dev->tt_info) {
2378 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2379 "Recalculating BW for rootport %u",
2380 virt_dev->real_port);
2381 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2382 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2383 "newly activated TT.\n");
2384 return -ENOMEM;
2385 }
2386 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2387 "Recalculating BW for TT slot %u port %u",
2388 virt_dev->tt_info->slot_id,
2389 virt_dev->tt_info->ttport);
2390 } else {
2391 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2392 "Recalculating BW for rootport %u",
2393 virt_dev->real_port);
2394 }
2395
2396 /* Add in how much bandwidth will be used for interval zero, or the
2397 * rounded max ESIT payload + number of packets * largest overhead.
2398 */
2399 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2400 bw_table->interval_bw[0].num_packets *
2401 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2402
2403 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2404 unsigned int bw_added;
2405 unsigned int largest_mps;
2406 unsigned int interval_overhead;
2407
2408 /*
2409 * How many packets could we transmit in this interval?
2410 * If packets didn't fit in the previous interval, we will need
2411 * to transmit that many packets twice within this interval.
2412 */
2413 packets_remaining = 2 * packets_remaining +
2414 bw_table->interval_bw[i].num_packets;
2415
2416 /* Find the largest max packet size of this or the previous
2417 * interval.
2418 */
2419 if (list_empty(&bw_table->interval_bw[i].endpoints))
2420 largest_mps = 0;
2421 else {
2422 struct xhci_virt_ep *virt_ep;
2423 struct list_head *ep_entry;
2424
2425 ep_entry = bw_table->interval_bw[i].endpoints.next;
2426 virt_ep = list_entry(ep_entry,
2427 struct xhci_virt_ep, bw_endpoint_list);
2428 /* Convert to blocks, rounding up */
2429 largest_mps = DIV_ROUND_UP(
2430 virt_ep->bw_info.max_packet_size,
2431 block_size);
2432 }
2433 if (largest_mps > packet_size)
2434 packet_size = largest_mps;
2435
2436 /* Use the larger overhead of this or the previous interval. */
2437 interval_overhead = xhci_get_largest_overhead(
2438 &bw_table->interval_bw[i]);
2439 if (interval_overhead > overhead)
2440 overhead = interval_overhead;
2441
2442 /* How many packets can we evenly distribute across
2443 * (1 << (i + 1)) possible scheduling opportunities?
2444 */
2445 packets_transmitted = packets_remaining >> (i + 1);
2446
2447 /* Add in the bandwidth used for those scheduled packets */
2448 bw_added = packets_transmitted * (overhead + packet_size);
2449
2450 /* How many packets do we have remaining to transmit? */
2451 packets_remaining = packets_remaining % (1 << (i + 1));
2452
2453 /* What largest max packet size should those packets have? */
2454 /* If we've transmitted all packets, don't carry over the
2455 * largest packet size.
2456 */
2457 if (packets_remaining == 0) {
2458 packet_size = 0;
2459 overhead = 0;
2460 } else if (packets_transmitted > 0) {
2461 /* Otherwise if we do have remaining packets, and we've
2462 * scheduled some packets in this interval, take the
2463 * largest max packet size from endpoints with this
2464 * interval.
2465 */
2466 packet_size = largest_mps;
2467 overhead = interval_overhead;
2468 }
2469 /* Otherwise carry over packet_size and overhead from the last
2470 * time we had a remainder.
2471 */
2472 bw_used += bw_added;
2473 if (bw_used > max_bandwidth) {
2474 xhci_warn(xhci, "Not enough bandwidth. "
2475 "Proposed: %u, Max: %u\n",
2476 bw_used, max_bandwidth);
2477 return -ENOMEM;
2478 }
2479 }
2480 /*
2481 * Ok, we know we have some packets left over after even-handedly
2482 * scheduling interval 15. We don't know which microframes they will
2483 * fit into, so we over-schedule and say they will be scheduled every
2484 * microframe.
2485 */
2486 if (packets_remaining > 0)
2487 bw_used += overhead + packet_size;
2488
2489 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2490 unsigned int port_index = virt_dev->real_port - 1;
2491
2492 /* OK, we're manipulating a HS device attached to a
2493 * root port bandwidth domain. Include the number of active TTs
2494 * in the bandwidth used.
2495 */
2496 bw_used += TT_HS_OVERHEAD *
2497 xhci->rh_bw[port_index].num_active_tts;
2498 }
2499
2500 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2501 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2502 "Available: %u " "percent",
2503 bw_used, max_bandwidth, bw_reserved,
2504 (max_bandwidth - bw_used - bw_reserved) * 100 /
2505 max_bandwidth);
2506
2507 bw_used += bw_reserved;
2508 if (bw_used > max_bandwidth) {
2509 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2510 bw_used, max_bandwidth);
2511 return -ENOMEM;
2512 }
2513
2514 bw_table->bw_used = bw_used;
2515 return 0;
2516}
2517
2518static bool xhci_is_async_ep(unsigned int ep_type)
2519{
2520 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2521 ep_type != ISOC_IN_EP &&
2522 ep_type != INT_IN_EP);
2523}
2524
2525static bool xhci_is_sync_in_ep(unsigned int ep_type)
2526{
2527 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2528}
2529
2530static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2531{
2532 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2533
2534 if (ep_bw->ep_interval == 0)
2535 return SS_OVERHEAD_BURST +
2536 (ep_bw->mult * ep_bw->num_packets *
2537 (SS_OVERHEAD + mps));
2538 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2539 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2540 1 << ep_bw->ep_interval);
2541
2542}
2543
2544static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2545 struct xhci_bw_info *ep_bw,
2546 struct xhci_interval_bw_table *bw_table,
2547 struct usb_device *udev,
2548 struct xhci_virt_ep *virt_ep,
2549 struct xhci_tt_bw_info *tt_info)
2550{
2551 struct xhci_interval_bw *interval_bw;
2552 int normalized_interval;
2553
2554 if (xhci_is_async_ep(ep_bw->type))
2555 return;
2556
2557 if (udev->speed >= USB_SPEED_SUPER) {
2558 if (xhci_is_sync_in_ep(ep_bw->type))
2559 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2560 xhci_get_ss_bw_consumed(ep_bw);
2561 else
2562 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2563 xhci_get_ss_bw_consumed(ep_bw);
2564 return;
2565 }
2566
2567 /* SuperSpeed endpoints never get added to intervals in the table, so
2568 * this check is only valid for HS/FS/LS devices.
2569 */
2570 if (list_empty(&virt_ep->bw_endpoint_list))
2571 return;
2572 /* For LS/FS devices, we need to translate the interval expressed in
2573 * microframes to frames.
2574 */
2575 if (udev->speed == USB_SPEED_HIGH)
2576 normalized_interval = ep_bw->ep_interval;
2577 else
2578 normalized_interval = ep_bw->ep_interval - 3;
2579
2580 if (normalized_interval == 0)
2581 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2582 interval_bw = &bw_table->interval_bw[normalized_interval];
2583 interval_bw->num_packets -= ep_bw->num_packets;
2584 switch (udev->speed) {
2585 case USB_SPEED_LOW:
2586 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2587 break;
2588 case USB_SPEED_FULL:
2589 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2590 break;
2591 case USB_SPEED_HIGH:
2592 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2593 break;
2594 default:
2595 /* Should never happen because only LS/FS/HS endpoints will get
2596 * added to the endpoint list.
2597 */
2598 return;
2599 }
2600 if (tt_info)
2601 tt_info->active_eps -= 1;
2602 list_del_init(&virt_ep->bw_endpoint_list);
2603}
2604
2605static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2606 struct xhci_bw_info *ep_bw,
2607 struct xhci_interval_bw_table *bw_table,
2608 struct usb_device *udev,
2609 struct xhci_virt_ep *virt_ep,
2610 struct xhci_tt_bw_info *tt_info)
2611{
2612 struct xhci_interval_bw *interval_bw;
2613 struct xhci_virt_ep *smaller_ep;
2614 int normalized_interval;
2615
2616 if (xhci_is_async_ep(ep_bw->type))
2617 return;
2618
2619 if (udev->speed == USB_SPEED_SUPER) {
2620 if (xhci_is_sync_in_ep(ep_bw->type))
2621 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2622 xhci_get_ss_bw_consumed(ep_bw);
2623 else
2624 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2625 xhci_get_ss_bw_consumed(ep_bw);
2626 return;
2627 }
2628
2629 /* For LS/FS devices, we need to translate the interval expressed in
2630 * microframes to frames.
2631 */
2632 if (udev->speed == USB_SPEED_HIGH)
2633 normalized_interval = ep_bw->ep_interval;
2634 else
2635 normalized_interval = ep_bw->ep_interval - 3;
2636
2637 if (normalized_interval == 0)
2638 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2639 interval_bw = &bw_table->interval_bw[normalized_interval];
2640 interval_bw->num_packets += ep_bw->num_packets;
2641 switch (udev->speed) {
2642 case USB_SPEED_LOW:
2643 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2644 break;
2645 case USB_SPEED_FULL:
2646 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2647 break;
2648 case USB_SPEED_HIGH:
2649 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2650 break;
2651 default:
2652 /* Should never happen because only LS/FS/HS endpoints will get
2653 * added to the endpoint list.
2654 */
2655 return;
2656 }
2657
2658 if (tt_info)
2659 tt_info->active_eps += 1;
2660 /* Insert the endpoint into the list, largest max packet size first. */
2661 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2662 bw_endpoint_list) {
2663 if (ep_bw->max_packet_size >=
2664 smaller_ep->bw_info.max_packet_size) {
2665 /* Add the new ep before the smaller endpoint */
2666 list_add_tail(&virt_ep->bw_endpoint_list,
2667 &smaller_ep->bw_endpoint_list);
2668 return;
2669 }
2670 }
2671 /* Add the new endpoint at the end of the list. */
2672 list_add_tail(&virt_ep->bw_endpoint_list,
2673 &interval_bw->endpoints);
2674}
2675
2676void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2677 struct xhci_virt_device *virt_dev,
2678 int old_active_eps)
2679{
2680 struct xhci_root_port_bw_info *rh_bw_info;
2681 if (!virt_dev->tt_info)
2682 return;
2683
2684 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2685 if (old_active_eps == 0 &&
2686 virt_dev->tt_info->active_eps != 0) {
2687 rh_bw_info->num_active_tts += 1;
2688 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2689 } else if (old_active_eps != 0 &&
2690 virt_dev->tt_info->active_eps == 0) {
2691 rh_bw_info->num_active_tts -= 1;
2692 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2693 }
2694}
2695
2696static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2697 struct xhci_virt_device *virt_dev,
2698 struct xhci_container_ctx *in_ctx)
2699{
2700 struct xhci_bw_info ep_bw_info[31];
2701 int i;
2702 struct xhci_input_control_ctx *ctrl_ctx;
2703 int old_active_eps = 0;
2704
2705 if (virt_dev->tt_info)
2706 old_active_eps = virt_dev->tt_info->active_eps;
2707
2708 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2709 if (!ctrl_ctx) {
2710 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2711 __func__);
2712 return -ENOMEM;
2713 }
2714
2715 for (i = 0; i < 31; i++) {
2716 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2717 continue;
2718
2719 /* Make a copy of the BW info in case we need to revert this */
2720 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2721 sizeof(ep_bw_info[i]));
2722 /* Drop the endpoint from the interval table if the endpoint is
2723 * being dropped or changed.
2724 */
2725 if (EP_IS_DROPPED(ctrl_ctx, i))
2726 xhci_drop_ep_from_interval_table(xhci,
2727 &virt_dev->eps[i].bw_info,
2728 virt_dev->bw_table,
2729 virt_dev->udev,
2730 &virt_dev->eps[i],
2731 virt_dev->tt_info);
2732 }
2733 /* Overwrite the information stored in the endpoints' bw_info */
2734 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2735 for (i = 0; i < 31; i++) {
2736 /* Add any changed or added endpoints to the interval table */
2737 if (EP_IS_ADDED(ctrl_ctx, i))
2738 xhci_add_ep_to_interval_table(xhci,
2739 &virt_dev->eps[i].bw_info,
2740 virt_dev->bw_table,
2741 virt_dev->udev,
2742 &virt_dev->eps[i],
2743 virt_dev->tt_info);
2744 }
2745
2746 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2747 /* Ok, this fits in the bandwidth we have.
2748 * Update the number of active TTs.
2749 */
2750 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2751 return 0;
2752 }
2753
2754 /* We don't have enough bandwidth for this, revert the stored info. */
2755 for (i = 0; i < 31; i++) {
2756 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2757 continue;
2758
2759 /* Drop the new copies of any added or changed endpoints from
2760 * the interval table.
2761 */
2762 if (EP_IS_ADDED(ctrl_ctx, i)) {
2763 xhci_drop_ep_from_interval_table(xhci,
2764 &virt_dev->eps[i].bw_info,
2765 virt_dev->bw_table,
2766 virt_dev->udev,
2767 &virt_dev->eps[i],
2768 virt_dev->tt_info);
2769 }
2770 /* Revert the endpoint back to its old information */
2771 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2772 sizeof(ep_bw_info[i]));
2773 /* Add any changed or dropped endpoints back into the table */
2774 if (EP_IS_DROPPED(ctrl_ctx, i))
2775 xhci_add_ep_to_interval_table(xhci,
2776 &virt_dev->eps[i].bw_info,
2777 virt_dev->bw_table,
2778 virt_dev->udev,
2779 &virt_dev->eps[i],
2780 virt_dev->tt_info);
2781 }
2782 return -ENOMEM;
2783}
2784
2785
2786/* Issue a configure endpoint command or evaluate context command
2787 * and wait for it to finish.
2788 */
2789static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2790 struct usb_device *udev,
2791 struct xhci_command *command,
2792 bool ctx_change, bool must_succeed)
2793{
2794 int ret;
2795 unsigned long flags;
2796 struct xhci_input_control_ctx *ctrl_ctx;
2797 struct xhci_virt_device *virt_dev;
2798 struct xhci_slot_ctx *slot_ctx;
2799
2800 if (!command)
2801 return -EINVAL;
2802
2803 spin_lock_irqsave(&xhci->lock, flags);
2804
2805 if (xhci->xhc_state & XHCI_STATE_DYING) {
2806 spin_unlock_irqrestore(&xhci->lock, flags);
2807 return -ESHUTDOWN;
2808 }
2809
2810 virt_dev = xhci->devs[udev->slot_id];
2811
2812 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2813 if (!ctrl_ctx) {
2814 spin_unlock_irqrestore(&xhci->lock, flags);
2815 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816 __func__);
2817 return -ENOMEM;
2818 }
2819
2820 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2821 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2822 spin_unlock_irqrestore(&xhci->lock, flags);
2823 xhci_warn(xhci, "Not enough host resources, "
2824 "active endpoint contexts = %u\n",
2825 xhci->num_active_eps);
2826 return -ENOMEM;
2827 }
2828 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2829 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2830 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2831 xhci_free_host_resources(xhci, ctrl_ctx);
2832 spin_unlock_irqrestore(&xhci->lock, flags);
2833 xhci_warn(xhci, "Not enough bandwidth\n");
2834 return -ENOMEM;
2835 }
2836
2837 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2838
2839 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2840 trace_xhci_configure_endpoint(slot_ctx);
2841
2842 if (!ctx_change)
2843 ret = xhci_queue_configure_endpoint(xhci, command,
2844 command->in_ctx->dma,
2845 udev->slot_id, must_succeed);
2846 else
2847 ret = xhci_queue_evaluate_context(xhci, command,
2848 command->in_ctx->dma,
2849 udev->slot_id, must_succeed);
2850 if (ret < 0) {
2851 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2852 xhci_free_host_resources(xhci, ctrl_ctx);
2853 spin_unlock_irqrestore(&xhci->lock, flags);
2854 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2855 "FIXME allocate a new ring segment");
2856 return -ENOMEM;
2857 }
2858 xhci_ring_cmd_db(xhci);
2859 spin_unlock_irqrestore(&xhci->lock, flags);
2860
2861 /* Wait for the configure endpoint command to complete */
2862 wait_for_completion(command->completion);
2863
2864 if (!ctx_change)
2865 ret = xhci_configure_endpoint_result(xhci, udev,
2866 &command->status);
2867 else
2868 ret = xhci_evaluate_context_result(xhci, udev,
2869 &command->status);
2870
2871 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2872 spin_lock_irqsave(&xhci->lock, flags);
2873 /* If the command failed, remove the reserved resources.
2874 * Otherwise, clean up the estimate to include dropped eps.
2875 */
2876 if (ret)
2877 xhci_free_host_resources(xhci, ctrl_ctx);
2878 else
2879 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2880 spin_unlock_irqrestore(&xhci->lock, flags);
2881 }
2882 return ret;
2883}
2884
2885static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2886 struct xhci_virt_device *vdev, int i)
2887{
2888 struct xhci_virt_ep *ep = &vdev->eps[i];
2889
2890 if (ep->ep_state & EP_HAS_STREAMS) {
2891 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2892 xhci_get_endpoint_address(i));
2893 xhci_free_stream_info(xhci, ep->stream_info);
2894 ep->stream_info = NULL;
2895 ep->ep_state &= ~EP_HAS_STREAMS;
2896 }
2897}
2898
2899/* Called after one or more calls to xhci_add_endpoint() or
2900 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2901 * to call xhci_reset_bandwidth().
2902 *
2903 * Since we are in the middle of changing either configuration or
2904 * installing a new alt setting, the USB core won't allow URBs to be
2905 * enqueued for any endpoint on the old config or interface. Nothing
2906 * else should be touching the xhci->devs[slot_id] structure, so we
2907 * don't need to take the xhci->lock for manipulating that.
2908 */
2909int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2910{
2911 int i;
2912 int ret = 0;
2913 struct xhci_hcd *xhci;
2914 struct xhci_virt_device *virt_dev;
2915 struct xhci_input_control_ctx *ctrl_ctx;
2916 struct xhci_slot_ctx *slot_ctx;
2917 struct xhci_command *command;
2918
2919 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2920 if (ret <= 0)
2921 return ret;
2922 xhci = hcd_to_xhci(hcd);
2923 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2924 (xhci->xhc_state & XHCI_STATE_REMOVING))
2925 return -ENODEV;
2926
2927 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2928 virt_dev = xhci->devs[udev->slot_id];
2929
2930 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2931 if (!command)
2932 return -ENOMEM;
2933
2934 command->in_ctx = virt_dev->in_ctx;
2935
2936 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2937 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2938 if (!ctrl_ctx) {
2939 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2940 __func__);
2941 ret = -ENOMEM;
2942 goto command_cleanup;
2943 }
2944 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2945 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2946 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2947
2948 /* Don't issue the command if there's no endpoints to update. */
2949 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2950 ctrl_ctx->drop_flags == 0) {
2951 ret = 0;
2952 goto command_cleanup;
2953 }
2954 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2955 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2956 for (i = 31; i >= 1; i--) {
2957 __le32 le32 = cpu_to_le32(BIT(i));
2958
2959 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2960 || (ctrl_ctx->add_flags & le32) || i == 1) {
2961 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2962 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2963 break;
2964 }
2965 }
2966
2967 ret = xhci_configure_endpoint(xhci, udev, command,
2968 false, false);
2969 if (ret)
2970 /* Callee should call reset_bandwidth() */
2971 goto command_cleanup;
2972
2973 /* Free any rings that were dropped, but not changed. */
2974 for (i = 1; i < 31; i++) {
2975 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2976 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2977 xhci_free_endpoint_ring(xhci, virt_dev, i);
2978 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2979 }
2980 }
2981 xhci_zero_in_ctx(xhci, virt_dev);
2982 /*
2983 * Install any rings for completely new endpoints or changed endpoints,
2984 * and free any old rings from changed endpoints.
2985 */
2986 for (i = 1; i < 31; i++) {
2987 if (!virt_dev->eps[i].new_ring)
2988 continue;
2989 /* Only free the old ring if it exists.
2990 * It may not if this is the first add of an endpoint.
2991 */
2992 if (virt_dev->eps[i].ring) {
2993 xhci_free_endpoint_ring(xhci, virt_dev, i);
2994 }
2995 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2996 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2997 virt_dev->eps[i].new_ring = NULL;
2998 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2999 }
3000command_cleanup:
3001 kfree(command->completion);
3002 kfree(command);
3003
3004 return ret;
3005}
3006EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3007
3008void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3009{
3010 struct xhci_hcd *xhci;
3011 struct xhci_virt_device *virt_dev;
3012 int i, ret;
3013
3014 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3015 if (ret <= 0)
3016 return;
3017 xhci = hcd_to_xhci(hcd);
3018
3019 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3020 virt_dev = xhci->devs[udev->slot_id];
3021 /* Free any rings allocated for added endpoints */
3022 for (i = 0; i < 31; i++) {
3023 if (virt_dev->eps[i].new_ring) {
3024 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3025 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3026 virt_dev->eps[i].new_ring = NULL;
3027 }
3028 }
3029 xhci_zero_in_ctx(xhci, virt_dev);
3030}
3031EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3032
3033static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3034 struct xhci_container_ctx *in_ctx,
3035 struct xhci_container_ctx *out_ctx,
3036 struct xhci_input_control_ctx *ctrl_ctx,
3037 u32 add_flags, u32 drop_flags)
3038{
3039 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3040 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3041 xhci_slot_copy(xhci, in_ctx, out_ctx);
3042 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3043}
3044
3045static void xhci_endpoint_disable(struct usb_hcd *hcd,
3046 struct usb_host_endpoint *host_ep)
3047{
3048 struct xhci_hcd *xhci;
3049 struct xhci_virt_device *vdev;
3050 struct xhci_virt_ep *ep;
3051 struct usb_device *udev;
3052 unsigned long flags;
3053 unsigned int ep_index;
3054
3055 xhci = hcd_to_xhci(hcd);
3056rescan:
3057 spin_lock_irqsave(&xhci->lock, flags);
3058
3059 udev = (struct usb_device *)host_ep->hcpriv;
3060 if (!udev || !udev->slot_id)
3061 goto done;
3062
3063 vdev = xhci->devs[udev->slot_id];
3064 if (!vdev)
3065 goto done;
3066
3067 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3068 ep = &vdev->eps[ep_index];
3069
3070 /* wait for hub_tt_work to finish clearing hub TT */
3071 if (ep->ep_state & EP_CLEARING_TT) {
3072 spin_unlock_irqrestore(&xhci->lock, flags);
3073 schedule_timeout_uninterruptible(1);
3074 goto rescan;
3075 }
3076
3077 if (ep->ep_state)
3078 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3079 ep->ep_state);
3080done:
3081 host_ep->hcpriv = NULL;
3082 spin_unlock_irqrestore(&xhci->lock, flags);
3083}
3084
3085/*
3086 * Called after usb core issues a clear halt control message.
3087 * The host side of the halt should already be cleared by a reset endpoint
3088 * command issued when the STALL event was received.
3089 *
3090 * The reset endpoint command may only be issued to endpoints in the halted
3091 * state. For software that wishes to reset the data toggle or sequence number
3092 * of an endpoint that isn't in the halted state this function will issue a
3093 * configure endpoint command with the Drop and Add bits set for the target
3094 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3095 *
3096 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3097 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3098 */
3099
3100static void xhci_endpoint_reset(struct usb_hcd *hcd,
3101 struct usb_host_endpoint *host_ep)
3102{
3103 struct xhci_hcd *xhci;
3104 struct usb_device *udev;
3105 struct xhci_virt_device *vdev;
3106 struct xhci_virt_ep *ep;
3107 struct xhci_input_control_ctx *ctrl_ctx;
3108 struct xhci_command *stop_cmd, *cfg_cmd;
3109 unsigned int ep_index;
3110 unsigned long flags;
3111 u32 ep_flag;
3112 int err;
3113
3114 xhci = hcd_to_xhci(hcd);
3115 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3116
3117 /*
3118 * Usb core assumes a max packet value for ep0 on FS devices until the
3119 * real value is read from the descriptor. Core resets Ep0 if values
3120 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3121 */
3122 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3123
3124 udev = container_of(host_ep, struct usb_device, ep0);
3125 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3126 return;
3127
3128 vdev = xhci->devs[udev->slot_id];
3129 if (!vdev || vdev->udev != udev)
3130 return;
3131
3132 xhci_check_ep0_maxpacket(xhci, vdev);
3133
3134 /* Nothing else should be done here for ep0 during ep reset */
3135 return;
3136 }
3137
3138 if (!host_ep->hcpriv)
3139 return;
3140 udev = (struct usb_device *) host_ep->hcpriv;
3141 vdev = xhci->devs[udev->slot_id];
3142
3143 if (!udev->slot_id || !vdev)
3144 return;
3145
3146 ep = &vdev->eps[ep_index];
3147
3148 /* Bail out if toggle is already being cleared by a endpoint reset */
3149 spin_lock_irqsave(&xhci->lock, flags);
3150 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3151 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3152 spin_unlock_irqrestore(&xhci->lock, flags);
3153 return;
3154 }
3155 spin_unlock_irqrestore(&xhci->lock, flags);
3156 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3157 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3158 usb_endpoint_xfer_isoc(&host_ep->desc))
3159 return;
3160
3161 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3162
3163 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3164 return;
3165
3166 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3167 if (!stop_cmd)
3168 return;
3169
3170 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3171 if (!cfg_cmd)
3172 goto cleanup;
3173
3174 spin_lock_irqsave(&xhci->lock, flags);
3175
3176 /* block queuing new trbs and ringing ep doorbell */
3177 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3178
3179 /*
3180 * Make sure endpoint ring is empty before resetting the toggle/seq.
3181 * Driver is required to synchronously cancel all transfer request.
3182 * Stop the endpoint to force xHC to update the output context
3183 */
3184
3185 if (!list_empty(&ep->ring->td_list)) {
3186 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3187 spin_unlock_irqrestore(&xhci->lock, flags);
3188 xhci_free_command(xhci, cfg_cmd);
3189 goto cleanup;
3190 }
3191
3192 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3193 ep_index, 0);
3194 if (err < 0) {
3195 spin_unlock_irqrestore(&xhci->lock, flags);
3196 xhci_free_command(xhci, cfg_cmd);
3197 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3198 __func__, err);
3199 goto cleanup;
3200 }
3201
3202 xhci_ring_cmd_db(xhci);
3203 spin_unlock_irqrestore(&xhci->lock, flags);
3204
3205 wait_for_completion(stop_cmd->completion);
3206
3207 spin_lock_irqsave(&xhci->lock, flags);
3208
3209 /* config ep command clears toggle if add and drop ep flags are set */
3210 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3211 if (!ctrl_ctx) {
3212 spin_unlock_irqrestore(&xhci->lock, flags);
3213 xhci_free_command(xhci, cfg_cmd);
3214 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3215 __func__);
3216 goto cleanup;
3217 }
3218
3219 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3220 ctrl_ctx, ep_flag, ep_flag);
3221 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3222
3223 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3224 udev->slot_id, false);
3225 if (err < 0) {
3226 spin_unlock_irqrestore(&xhci->lock, flags);
3227 xhci_free_command(xhci, cfg_cmd);
3228 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3229 __func__, err);
3230 goto cleanup;
3231 }
3232
3233 xhci_ring_cmd_db(xhci);
3234 spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236 wait_for_completion(cfg_cmd->completion);
3237
3238 xhci_free_command(xhci, cfg_cmd);
3239cleanup:
3240 xhci_free_command(xhci, stop_cmd);
3241 spin_lock_irqsave(&xhci->lock, flags);
3242 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3243 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3244 spin_unlock_irqrestore(&xhci->lock, flags);
3245}
3246
3247static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3248 struct usb_device *udev, struct usb_host_endpoint *ep,
3249 unsigned int slot_id)
3250{
3251 int ret;
3252 unsigned int ep_index;
3253 unsigned int ep_state;
3254
3255 if (!ep)
3256 return -EINVAL;
3257 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3258 if (ret <= 0)
3259 return ret ? ret : -EINVAL;
3260 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3261 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3262 " descriptor for ep 0x%x does not support streams\n",
3263 ep->desc.bEndpointAddress);
3264 return -EINVAL;
3265 }
3266
3267 ep_index = xhci_get_endpoint_index(&ep->desc);
3268 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3269 if (ep_state & EP_HAS_STREAMS ||
3270 ep_state & EP_GETTING_STREAMS) {
3271 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3272 "already has streams set up.\n",
3273 ep->desc.bEndpointAddress);
3274 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3275 "dynamic stream context array reallocation.\n");
3276 return -EINVAL;
3277 }
3278 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3279 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3280 "endpoint 0x%x; URBs are pending.\n",
3281 ep->desc.bEndpointAddress);
3282 return -EINVAL;
3283 }
3284 return 0;
3285}
3286
3287static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3288 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3289{
3290 unsigned int max_streams;
3291
3292 /* The stream context array size must be a power of two */
3293 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3294 /*
3295 * Find out how many primary stream array entries the host controller
3296 * supports. Later we may use secondary stream arrays (similar to 2nd
3297 * level page entries), but that's an optional feature for xHCI host
3298 * controllers. xHCs must support at least 4 stream IDs.
3299 */
3300 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3301 if (*num_stream_ctxs > max_streams) {
3302 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3303 max_streams);
3304 *num_stream_ctxs = max_streams;
3305 *num_streams = max_streams;
3306 }
3307}
3308
3309/* Returns an error code if one of the endpoint already has streams.
3310 * This does not change any data structures, it only checks and gathers
3311 * information.
3312 */
3313static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3314 struct usb_device *udev,
3315 struct usb_host_endpoint **eps, unsigned int num_eps,
3316 unsigned int *num_streams, u32 *changed_ep_bitmask)
3317{
3318 unsigned int max_streams;
3319 unsigned int endpoint_flag;
3320 int i;
3321 int ret;
3322
3323 for (i = 0; i < num_eps; i++) {
3324 ret = xhci_check_streams_endpoint(xhci, udev,
3325 eps[i], udev->slot_id);
3326 if (ret < 0)
3327 return ret;
3328
3329 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3330 if (max_streams < (*num_streams - 1)) {
3331 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3332 eps[i]->desc.bEndpointAddress,
3333 max_streams);
3334 *num_streams = max_streams+1;
3335 }
3336
3337 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3338 if (*changed_ep_bitmask & endpoint_flag)
3339 return -EINVAL;
3340 *changed_ep_bitmask |= endpoint_flag;
3341 }
3342 return 0;
3343}
3344
3345static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3346 struct usb_device *udev,
3347 struct usb_host_endpoint **eps, unsigned int num_eps)
3348{
3349 u32 changed_ep_bitmask = 0;
3350 unsigned int slot_id;
3351 unsigned int ep_index;
3352 unsigned int ep_state;
3353 int i;
3354
3355 slot_id = udev->slot_id;
3356 if (!xhci->devs[slot_id])
3357 return 0;
3358
3359 for (i = 0; i < num_eps; i++) {
3360 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3361 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3362 /* Are streams already being freed for the endpoint? */
3363 if (ep_state & EP_GETTING_NO_STREAMS) {
3364 xhci_warn(xhci, "WARN Can't disable streams for "
3365 "endpoint 0x%x, "
3366 "streams are being disabled already\n",
3367 eps[i]->desc.bEndpointAddress);
3368 return 0;
3369 }
3370 /* Are there actually any streams to free? */
3371 if (!(ep_state & EP_HAS_STREAMS) &&
3372 !(ep_state & EP_GETTING_STREAMS)) {
3373 xhci_warn(xhci, "WARN Can't disable streams for "
3374 "endpoint 0x%x, "
3375 "streams are already disabled!\n",
3376 eps[i]->desc.bEndpointAddress);
3377 xhci_warn(xhci, "WARN xhci_free_streams() called "
3378 "with non-streams endpoint\n");
3379 return 0;
3380 }
3381 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3382 }
3383 return changed_ep_bitmask;
3384}
3385
3386/*
3387 * The USB device drivers use this function (through the HCD interface in USB
3388 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3389 * coordinate mass storage command queueing across multiple endpoints (basically
3390 * a stream ID == a task ID).
3391 *
3392 * Setting up streams involves allocating the same size stream context array
3393 * for each endpoint and issuing a configure endpoint command for all endpoints.
3394 *
3395 * Don't allow the call to succeed if one endpoint only supports one stream
3396 * (which means it doesn't support streams at all).
3397 *
3398 * Drivers may get less stream IDs than they asked for, if the host controller
3399 * hardware or endpoints claim they can't support the number of requested
3400 * stream IDs.
3401 */
3402static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3403 struct usb_host_endpoint **eps, unsigned int num_eps,
3404 unsigned int num_streams, gfp_t mem_flags)
3405{
3406 int i, ret;
3407 struct xhci_hcd *xhci;
3408 struct xhci_virt_device *vdev;
3409 struct xhci_command *config_cmd;
3410 struct xhci_input_control_ctx *ctrl_ctx;
3411 unsigned int ep_index;
3412 unsigned int num_stream_ctxs;
3413 unsigned int max_packet;
3414 unsigned long flags;
3415 u32 changed_ep_bitmask = 0;
3416
3417 if (!eps)
3418 return -EINVAL;
3419
3420 /* Add one to the number of streams requested to account for
3421 * stream 0 that is reserved for xHCI usage.
3422 */
3423 num_streams += 1;
3424 xhci = hcd_to_xhci(hcd);
3425 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3426 num_streams);
3427
3428 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3429 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3430 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3431 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3432 return -ENOSYS;
3433 }
3434
3435 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3436 if (!config_cmd)
3437 return -ENOMEM;
3438
3439 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3440 if (!ctrl_ctx) {
3441 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3442 __func__);
3443 xhci_free_command(xhci, config_cmd);
3444 return -ENOMEM;
3445 }
3446
3447 /* Check to make sure all endpoints are not already configured for
3448 * streams. While we're at it, find the maximum number of streams that
3449 * all the endpoints will support and check for duplicate endpoints.
3450 */
3451 spin_lock_irqsave(&xhci->lock, flags);
3452 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3453 num_eps, &num_streams, &changed_ep_bitmask);
3454 if (ret < 0) {
3455 xhci_free_command(xhci, config_cmd);
3456 spin_unlock_irqrestore(&xhci->lock, flags);
3457 return ret;
3458 }
3459 if (num_streams <= 1) {
3460 xhci_warn(xhci, "WARN: endpoints can't handle "
3461 "more than one stream.\n");
3462 xhci_free_command(xhci, config_cmd);
3463 spin_unlock_irqrestore(&xhci->lock, flags);
3464 return -EINVAL;
3465 }
3466 vdev = xhci->devs[udev->slot_id];
3467 /* Mark each endpoint as being in transition, so
3468 * xhci_urb_enqueue() will reject all URBs.
3469 */
3470 for (i = 0; i < num_eps; i++) {
3471 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3472 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3473 }
3474 spin_unlock_irqrestore(&xhci->lock, flags);
3475
3476 /* Setup internal data structures and allocate HW data structures for
3477 * streams (but don't install the HW structures in the input context
3478 * until we're sure all memory allocation succeeded).
3479 */
3480 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3481 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3482 num_stream_ctxs, num_streams);
3483
3484 for (i = 0; i < num_eps; i++) {
3485 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3486 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3487 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3488 num_stream_ctxs,
3489 num_streams,
3490 max_packet, mem_flags);
3491 if (!vdev->eps[ep_index].stream_info)
3492 goto cleanup;
3493 /* Set maxPstreams in endpoint context and update deq ptr to
3494 * point to stream context array. FIXME
3495 */
3496 }
3497
3498 /* Set up the input context for a configure endpoint command. */
3499 for (i = 0; i < num_eps; i++) {
3500 struct xhci_ep_ctx *ep_ctx;
3501
3502 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3503 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3504
3505 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3506 vdev->out_ctx, ep_index);
3507 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3508 vdev->eps[ep_index].stream_info);
3509 }
3510 /* Tell the HW to drop its old copy of the endpoint context info
3511 * and add the updated copy from the input context.
3512 */
3513 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3514 vdev->out_ctx, ctrl_ctx,
3515 changed_ep_bitmask, changed_ep_bitmask);
3516
3517 /* Issue and wait for the configure endpoint command */
3518 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3519 false, false);
3520
3521 /* xHC rejected the configure endpoint command for some reason, so we
3522 * leave the old ring intact and free our internal streams data
3523 * structure.
3524 */
3525 if (ret < 0)
3526 goto cleanup;
3527
3528 spin_lock_irqsave(&xhci->lock, flags);
3529 for (i = 0; i < num_eps; i++) {
3530 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3531 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3532 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3533 udev->slot_id, ep_index);
3534 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3535 }
3536 xhci_free_command(xhci, config_cmd);
3537 spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539 for (i = 0; i < num_eps; i++) {
3540 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3542 }
3543 /* Subtract 1 for stream 0, which drivers can't use */
3544 return num_streams - 1;
3545
3546cleanup:
3547 /* If it didn't work, free the streams! */
3548 for (i = 0; i < num_eps; i++) {
3549 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3550 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3551 vdev->eps[ep_index].stream_info = NULL;
3552 /* FIXME Unset maxPstreams in endpoint context and
3553 * update deq ptr to point to normal string ring.
3554 */
3555 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3556 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3557 xhci_endpoint_zero(xhci, vdev, eps[i]);
3558 }
3559 xhci_free_command(xhci, config_cmd);
3560 return -ENOMEM;
3561}
3562
3563/* Transition the endpoint from using streams to being a "normal" endpoint
3564 * without streams.
3565 *
3566 * Modify the endpoint context state, submit a configure endpoint command,
3567 * and free all endpoint rings for streams if that completes successfully.
3568 */
3569static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3570 struct usb_host_endpoint **eps, unsigned int num_eps,
3571 gfp_t mem_flags)
3572{
3573 int i, ret;
3574 struct xhci_hcd *xhci;
3575 struct xhci_virt_device *vdev;
3576 struct xhci_command *command;
3577 struct xhci_input_control_ctx *ctrl_ctx;
3578 unsigned int ep_index;
3579 unsigned long flags;
3580 u32 changed_ep_bitmask;
3581
3582 xhci = hcd_to_xhci(hcd);
3583 vdev = xhci->devs[udev->slot_id];
3584
3585 /* Set up a configure endpoint command to remove the streams rings */
3586 spin_lock_irqsave(&xhci->lock, flags);
3587 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3588 udev, eps, num_eps);
3589 if (changed_ep_bitmask == 0) {
3590 spin_unlock_irqrestore(&xhci->lock, flags);
3591 return -EINVAL;
3592 }
3593
3594 /* Use the xhci_command structure from the first endpoint. We may have
3595 * allocated too many, but the driver may call xhci_free_streams() for
3596 * each endpoint it grouped into one call to xhci_alloc_streams().
3597 */
3598 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3599 command = vdev->eps[ep_index].stream_info->free_streams_command;
3600 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3601 if (!ctrl_ctx) {
3602 spin_unlock_irqrestore(&xhci->lock, flags);
3603 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3604 __func__);
3605 return -EINVAL;
3606 }
3607
3608 for (i = 0; i < num_eps; i++) {
3609 struct xhci_ep_ctx *ep_ctx;
3610
3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3613 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3614 EP_GETTING_NO_STREAMS;
3615
3616 xhci_endpoint_copy(xhci, command->in_ctx,
3617 vdev->out_ctx, ep_index);
3618 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3619 &vdev->eps[ep_index]);
3620 }
3621 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3622 vdev->out_ctx, ctrl_ctx,
3623 changed_ep_bitmask, changed_ep_bitmask);
3624 spin_unlock_irqrestore(&xhci->lock, flags);
3625
3626 /* Issue and wait for the configure endpoint command,
3627 * which must succeed.
3628 */
3629 ret = xhci_configure_endpoint(xhci, udev, command,
3630 false, true);
3631
3632 /* xHC rejected the configure endpoint command for some reason, so we
3633 * leave the streams rings intact.
3634 */
3635 if (ret < 0)
3636 return ret;
3637
3638 spin_lock_irqsave(&xhci->lock, flags);
3639 for (i = 0; i < num_eps; i++) {
3640 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3641 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3642 vdev->eps[ep_index].stream_info = NULL;
3643 /* FIXME Unset maxPstreams in endpoint context and
3644 * update deq ptr to point to normal string ring.
3645 */
3646 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3647 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3648 }
3649 spin_unlock_irqrestore(&xhci->lock, flags);
3650
3651 return 0;
3652}
3653
3654/*
3655 * Deletes endpoint resources for endpoints that were active before a Reset
3656 * Device command, or a Disable Slot command. The Reset Device command leaves
3657 * the control endpoint intact, whereas the Disable Slot command deletes it.
3658 *
3659 * Must be called with xhci->lock held.
3660 */
3661void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3662 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3663{
3664 int i;
3665 unsigned int num_dropped_eps = 0;
3666 unsigned int drop_flags = 0;
3667
3668 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3669 if (virt_dev->eps[i].ring) {
3670 drop_flags |= 1 << i;
3671 num_dropped_eps++;
3672 }
3673 }
3674 xhci->num_active_eps -= num_dropped_eps;
3675 if (num_dropped_eps)
3676 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3677 "Dropped %u ep ctxs, flags = 0x%x, "
3678 "%u now active.",
3679 num_dropped_eps, drop_flags,
3680 xhci->num_active_eps);
3681}
3682
3683/*
3684 * This submits a Reset Device Command, which will set the device state to 0,
3685 * set the device address to 0, and disable all the endpoints except the default
3686 * control endpoint. The USB core should come back and call
3687 * xhci_address_device(), and then re-set up the configuration. If this is
3688 * called because of a usb_reset_and_verify_device(), then the old alternate
3689 * settings will be re-installed through the normal bandwidth allocation
3690 * functions.
3691 *
3692 * Wait for the Reset Device command to finish. Remove all structures
3693 * associated with the endpoints that were disabled. Clear the input device
3694 * structure? Reset the control endpoint 0 max packet size?
3695 *
3696 * If the virt_dev to be reset does not exist or does not match the udev,
3697 * it means the device is lost, possibly due to the xHC restore error and
3698 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3699 * re-allocate the device.
3700 */
3701static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3702 struct usb_device *udev)
3703{
3704 int ret, i;
3705 unsigned long flags;
3706 struct xhci_hcd *xhci;
3707 unsigned int slot_id;
3708 struct xhci_virt_device *virt_dev;
3709 struct xhci_command *reset_device_cmd;
3710 struct xhci_slot_ctx *slot_ctx;
3711 int old_active_eps = 0;
3712
3713 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3714 if (ret <= 0)
3715 return ret;
3716 xhci = hcd_to_xhci(hcd);
3717 slot_id = udev->slot_id;
3718 virt_dev = xhci->devs[slot_id];
3719 if (!virt_dev) {
3720 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3721 "not exist. Re-allocate the device\n", slot_id);
3722 ret = xhci_alloc_dev(hcd, udev);
3723 if (ret == 1)
3724 return 0;
3725 else
3726 return -EINVAL;
3727 }
3728
3729 if (virt_dev->tt_info)
3730 old_active_eps = virt_dev->tt_info->active_eps;
3731
3732 if (virt_dev->udev != udev) {
3733 /* If the virt_dev and the udev does not match, this virt_dev
3734 * may belong to another udev.
3735 * Re-allocate the device.
3736 */
3737 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3738 "not match the udev. Re-allocate the device\n",
3739 slot_id);
3740 ret = xhci_alloc_dev(hcd, udev);
3741 if (ret == 1)
3742 return 0;
3743 else
3744 return -EINVAL;
3745 }
3746
3747 /* If device is not setup, there is no point in resetting it */
3748 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3749 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3750 SLOT_STATE_DISABLED)
3751 return 0;
3752
3753 trace_xhci_discover_or_reset_device(slot_ctx);
3754
3755 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3756 /* Allocate the command structure that holds the struct completion.
3757 * Assume we're in process context, since the normal device reset
3758 * process has to wait for the device anyway. Storage devices are
3759 * reset as part of error handling, so use GFP_NOIO instead of
3760 * GFP_KERNEL.
3761 */
3762 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3763 if (!reset_device_cmd) {
3764 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3765 return -ENOMEM;
3766 }
3767
3768 /* Attempt to submit the Reset Device command to the command ring */
3769 spin_lock_irqsave(&xhci->lock, flags);
3770
3771 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3772 if (ret) {
3773 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3774 spin_unlock_irqrestore(&xhci->lock, flags);
3775 goto command_cleanup;
3776 }
3777 xhci_ring_cmd_db(xhci);
3778 spin_unlock_irqrestore(&xhci->lock, flags);
3779
3780 /* Wait for the Reset Device command to finish */
3781 wait_for_completion(reset_device_cmd->completion);
3782
3783 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3784 * unless we tried to reset a slot ID that wasn't enabled,
3785 * or the device wasn't in the addressed or configured state.
3786 */
3787 ret = reset_device_cmd->status;
3788 switch (ret) {
3789 case COMP_COMMAND_ABORTED:
3790 case COMP_COMMAND_RING_STOPPED:
3791 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3792 ret = -ETIME;
3793 goto command_cleanup;
3794 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3795 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3796 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3797 slot_id,
3798 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3799 xhci_dbg(xhci, "Not freeing device rings.\n");
3800 /* Don't treat this as an error. May change my mind later. */
3801 ret = 0;
3802 goto command_cleanup;
3803 case COMP_SUCCESS:
3804 xhci_dbg(xhci, "Successful reset device command.\n");
3805 break;
3806 default:
3807 if (xhci_is_vendor_info_code(xhci, ret))
3808 break;
3809 xhci_warn(xhci, "Unknown completion code %u for "
3810 "reset device command.\n", ret);
3811 ret = -EINVAL;
3812 goto command_cleanup;
3813 }
3814
3815 /* Free up host controller endpoint resources */
3816 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3817 spin_lock_irqsave(&xhci->lock, flags);
3818 /* Don't delete the default control endpoint resources */
3819 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3820 spin_unlock_irqrestore(&xhci->lock, flags);
3821 }
3822
3823 /* Everything but endpoint 0 is disabled, so free the rings. */
3824 for (i = 1; i < 31; i++) {
3825 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3826
3827 if (ep->ep_state & EP_HAS_STREAMS) {
3828 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3829 xhci_get_endpoint_address(i));
3830 xhci_free_stream_info(xhci, ep->stream_info);
3831 ep->stream_info = NULL;
3832 ep->ep_state &= ~EP_HAS_STREAMS;
3833 }
3834
3835 if (ep->ring) {
3836 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3837 xhci_free_endpoint_ring(xhci, virt_dev, i);
3838 }
3839 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3840 xhci_drop_ep_from_interval_table(xhci,
3841 &virt_dev->eps[i].bw_info,
3842 virt_dev->bw_table,
3843 udev,
3844 &virt_dev->eps[i],
3845 virt_dev->tt_info);
3846 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3847 }
3848 /* If necessary, update the number of active TTs on this root port */
3849 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3850 virt_dev->flags = 0;
3851 ret = 0;
3852
3853command_cleanup:
3854 xhci_free_command(xhci, reset_device_cmd);
3855 return ret;
3856}
3857
3858/*
3859 * At this point, the struct usb_device is about to go away, the device has
3860 * disconnected, and all traffic has been stopped and the endpoints have been
3861 * disabled. Free any HC data structures associated with that device.
3862 */
3863static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3864{
3865 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3866 struct xhci_virt_device *virt_dev;
3867 struct xhci_slot_ctx *slot_ctx;
3868 unsigned long flags;
3869 int i, ret;
3870
3871 /*
3872 * We called pm_runtime_get_noresume when the device was attached.
3873 * Decrement the counter here to allow controller to runtime suspend
3874 * if no devices remain.
3875 */
3876 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3877 pm_runtime_put_noidle(hcd->self.controller);
3878
3879 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3880 /* If the host is halted due to driver unload, we still need to free the
3881 * device.
3882 */
3883 if (ret <= 0 && ret != -ENODEV)
3884 return;
3885
3886 virt_dev = xhci->devs[udev->slot_id];
3887 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3888 trace_xhci_free_dev(slot_ctx);
3889
3890 /* Stop any wayward timer functions (which may grab the lock) */
3891 for (i = 0; i < 31; i++)
3892 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3893 virt_dev->udev = NULL;
3894 xhci_disable_slot(xhci, udev->slot_id);
3895
3896 spin_lock_irqsave(&xhci->lock, flags);
3897 xhci_free_virt_device(xhci, udev->slot_id);
3898 spin_unlock_irqrestore(&xhci->lock, flags);
3899
3900}
3901
3902int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3903{
3904 struct xhci_command *command;
3905 unsigned long flags;
3906 u32 state;
3907 int ret;
3908
3909 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3910 if (!command)
3911 return -ENOMEM;
3912
3913 xhci_debugfs_remove_slot(xhci, slot_id);
3914
3915 spin_lock_irqsave(&xhci->lock, flags);
3916 /* Don't disable the slot if the host controller is dead. */
3917 state = readl(&xhci->op_regs->status);
3918 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3919 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3920 spin_unlock_irqrestore(&xhci->lock, flags);
3921 kfree(command);
3922 return -ENODEV;
3923 }
3924
3925 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3926 slot_id);
3927 if (ret) {
3928 spin_unlock_irqrestore(&xhci->lock, flags);
3929 kfree(command);
3930 return ret;
3931 }
3932 xhci_ring_cmd_db(xhci);
3933 spin_unlock_irqrestore(&xhci->lock, flags);
3934
3935 wait_for_completion(command->completion);
3936
3937 if (command->status != COMP_SUCCESS)
3938 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3939 slot_id, command->status);
3940
3941 xhci_free_command(xhci, command);
3942
3943 return 0;
3944}
3945
3946/*
3947 * Checks if we have enough host controller resources for the default control
3948 * endpoint.
3949 *
3950 * Must be called with xhci->lock held.
3951 */
3952static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3953{
3954 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3956 "Not enough ep ctxs: "
3957 "%u active, need to add 1, limit is %u.",
3958 xhci->num_active_eps, xhci->limit_active_eps);
3959 return -ENOMEM;
3960 }
3961 xhci->num_active_eps += 1;
3962 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3963 "Adding 1 ep ctx, %u now active.",
3964 xhci->num_active_eps);
3965 return 0;
3966}
3967
3968
3969/*
3970 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3971 * timed out, or allocating memory failed. Returns 1 on success.
3972 */
3973int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3974{
3975 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3976 struct xhci_virt_device *vdev;
3977 struct xhci_slot_ctx *slot_ctx;
3978 unsigned long flags;
3979 int ret, slot_id;
3980 struct xhci_command *command;
3981
3982 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3983 if (!command)
3984 return 0;
3985
3986 spin_lock_irqsave(&xhci->lock, flags);
3987 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3988 if (ret) {
3989 spin_unlock_irqrestore(&xhci->lock, flags);
3990 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3991 xhci_free_command(xhci, command);
3992 return 0;
3993 }
3994 xhci_ring_cmd_db(xhci);
3995 spin_unlock_irqrestore(&xhci->lock, flags);
3996
3997 wait_for_completion(command->completion);
3998 slot_id = command->slot_id;
3999
4000 if (!slot_id || command->status != COMP_SUCCESS) {
4001 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4002 xhci_trb_comp_code_string(command->status));
4003 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4004 HCS_MAX_SLOTS(
4005 readl(&xhci->cap_regs->hcs_params1)));
4006 xhci_free_command(xhci, command);
4007 return 0;
4008 }
4009
4010 xhci_free_command(xhci, command);
4011
4012 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4013 spin_lock_irqsave(&xhci->lock, flags);
4014 ret = xhci_reserve_host_control_ep_resources(xhci);
4015 if (ret) {
4016 spin_unlock_irqrestore(&xhci->lock, flags);
4017 xhci_warn(xhci, "Not enough host resources, "
4018 "active endpoint contexts = %u\n",
4019 xhci->num_active_eps);
4020 goto disable_slot;
4021 }
4022 spin_unlock_irqrestore(&xhci->lock, flags);
4023 }
4024 /* Use GFP_NOIO, since this function can be called from
4025 * xhci_discover_or_reset_device(), which may be called as part of
4026 * mass storage driver error handling.
4027 */
4028 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4029 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4030 goto disable_slot;
4031 }
4032 vdev = xhci->devs[slot_id];
4033 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4034 trace_xhci_alloc_dev(slot_ctx);
4035
4036 udev->slot_id = slot_id;
4037
4038 xhci_debugfs_create_slot(xhci, slot_id);
4039
4040 /*
4041 * If resetting upon resume, we can't put the controller into runtime
4042 * suspend if there is a device attached.
4043 */
4044 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4045 pm_runtime_get_noresume(hcd->self.controller);
4046
4047 /* Is this a LS or FS device under a HS hub? */
4048 /* Hub or peripherial? */
4049 return 1;
4050
4051disable_slot:
4052 xhci_disable_slot(xhci, udev->slot_id);
4053 xhci_free_virt_device(xhci, udev->slot_id);
4054
4055 return 0;
4056}
4057
4058/**
4059 * xhci_setup_device - issues an Address Device command to assign a unique
4060 * USB bus address.
4061 * @hcd: USB host controller data structure.
4062 * @udev: USB dev structure representing the connected device.
4063 * @setup: Enum specifying setup mode: address only or with context.
4064 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4065 *
4066 * Return: 0 if successful; otherwise, negative error code.
4067 */
4068static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4069 enum xhci_setup_dev setup, unsigned int timeout_ms)
4070{
4071 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4072 unsigned long flags;
4073 struct xhci_virt_device *virt_dev;
4074 int ret = 0;
4075 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4076 struct xhci_slot_ctx *slot_ctx;
4077 struct xhci_input_control_ctx *ctrl_ctx;
4078 u64 temp_64;
4079 struct xhci_command *command = NULL;
4080
4081 mutex_lock(&xhci->mutex);
4082
4083 if (xhci->xhc_state) { /* dying, removing or halted */
4084 ret = -ESHUTDOWN;
4085 goto out;
4086 }
4087
4088 if (!udev->slot_id) {
4089 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4090 "Bad Slot ID %d", udev->slot_id);
4091 ret = -EINVAL;
4092 goto out;
4093 }
4094
4095 virt_dev = xhci->devs[udev->slot_id];
4096
4097 if (WARN_ON(!virt_dev)) {
4098 /*
4099 * In plug/unplug torture test with an NEC controller,
4100 * a zero-dereference was observed once due to virt_dev = 0.
4101 * Print useful debug rather than crash if it is observed again!
4102 */
4103 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4104 udev->slot_id);
4105 ret = -EINVAL;
4106 goto out;
4107 }
4108 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4109 trace_xhci_setup_device_slot(slot_ctx);
4110
4111 if (setup == SETUP_CONTEXT_ONLY) {
4112 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4113 SLOT_STATE_DEFAULT) {
4114 xhci_dbg(xhci, "Slot already in default state\n");
4115 goto out;
4116 }
4117 }
4118
4119 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4120 if (!command) {
4121 ret = -ENOMEM;
4122 goto out;
4123 }
4124
4125 command->in_ctx = virt_dev->in_ctx;
4126 command->timeout_ms = timeout_ms;
4127
4128 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4129 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4130 if (!ctrl_ctx) {
4131 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4132 __func__);
4133 ret = -EINVAL;
4134 goto out;
4135 }
4136 /*
4137 * If this is the first Set Address since device plug-in or
4138 * virt_device realloaction after a resume with an xHCI power loss,
4139 * then set up the slot context.
4140 */
4141 if (!slot_ctx->dev_info)
4142 xhci_setup_addressable_virt_dev(xhci, udev);
4143 /* Otherwise, update the control endpoint ring enqueue pointer. */
4144 else
4145 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4146 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4147 ctrl_ctx->drop_flags = 0;
4148
4149 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4150 le32_to_cpu(slot_ctx->dev_info) >> 27);
4151
4152 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4153 spin_lock_irqsave(&xhci->lock, flags);
4154 trace_xhci_setup_device(virt_dev);
4155 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4156 udev->slot_id, setup);
4157 if (ret) {
4158 spin_unlock_irqrestore(&xhci->lock, flags);
4159 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4160 "FIXME: allocate a command ring segment");
4161 goto out;
4162 }
4163 xhci_ring_cmd_db(xhci);
4164 spin_unlock_irqrestore(&xhci->lock, flags);
4165
4166 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4167 wait_for_completion(command->completion);
4168
4169 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4170 * the SetAddress() "recovery interval" required by USB and aborting the
4171 * command on a timeout.
4172 */
4173 switch (command->status) {
4174 case COMP_COMMAND_ABORTED:
4175 case COMP_COMMAND_RING_STOPPED:
4176 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4177 ret = -ETIME;
4178 break;
4179 case COMP_CONTEXT_STATE_ERROR:
4180 case COMP_SLOT_NOT_ENABLED_ERROR:
4181 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4182 act, udev->slot_id);
4183 ret = -EINVAL;
4184 break;
4185 case COMP_USB_TRANSACTION_ERROR:
4186 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4187
4188 mutex_unlock(&xhci->mutex);
4189 ret = xhci_disable_slot(xhci, udev->slot_id);
4190 xhci_free_virt_device(xhci, udev->slot_id);
4191 if (!ret)
4192 xhci_alloc_dev(hcd, udev);
4193 kfree(command->completion);
4194 kfree(command);
4195 return -EPROTO;
4196 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4197 dev_warn(&udev->dev,
4198 "ERROR: Incompatible device for setup %s command\n", act);
4199 ret = -ENODEV;
4200 break;
4201 case COMP_SUCCESS:
4202 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203 "Successful setup %s command", act);
4204 break;
4205 default:
4206 xhci_err(xhci,
4207 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4208 act, command->status);
4209 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4210 ret = -EINVAL;
4211 break;
4212 }
4213 if (ret)
4214 goto out;
4215 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4216 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4217 "Op regs DCBAA ptr = %#016llx", temp_64);
4218 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4219 "Slot ID %d dcbaa entry @%p = %#016llx",
4220 udev->slot_id,
4221 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4222 (unsigned long long)
4223 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4224 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4225 "Output Context DMA address = %#08llx",
4226 (unsigned long long)virt_dev->out_ctx->dma);
4227 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4228 le32_to_cpu(slot_ctx->dev_info) >> 27);
4229 /*
4230 * USB core uses address 1 for the roothubs, so we add one to the
4231 * address given back to us by the HC.
4232 */
4233 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4234 le32_to_cpu(slot_ctx->dev_info) >> 27);
4235 /* Zero the input context control for later use */
4236 ctrl_ctx->add_flags = 0;
4237 ctrl_ctx->drop_flags = 0;
4238 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4239 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4240
4241 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4242 "Internal device address = %d",
4243 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4244out:
4245 mutex_unlock(&xhci->mutex);
4246 if (command) {
4247 kfree(command->completion);
4248 kfree(command);
4249 }
4250 return ret;
4251}
4252
4253static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4254 unsigned int timeout_ms)
4255{
4256 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4257}
4258
4259static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4260{
4261 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4262 XHCI_CMD_DEFAULT_TIMEOUT);
4263}
4264
4265/*
4266 * Transfer the port index into real index in the HW port status
4267 * registers. Caculate offset between the port's PORTSC register
4268 * and port status base. Divide the number of per port register
4269 * to get the real index. The raw port number bases 1.
4270 */
4271int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4272{
4273 struct xhci_hub *rhub;
4274
4275 rhub = xhci_get_rhub(hcd);
4276 return rhub->ports[port1 - 1]->hw_portnum + 1;
4277}
4278
4279/*
4280 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4281 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4282 */
4283static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4284 struct usb_device *udev, u16 max_exit_latency)
4285{
4286 struct xhci_virt_device *virt_dev;
4287 struct xhci_command *command;
4288 struct xhci_input_control_ctx *ctrl_ctx;
4289 struct xhci_slot_ctx *slot_ctx;
4290 unsigned long flags;
4291 int ret;
4292
4293 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4294 if (!command)
4295 return -ENOMEM;
4296
4297 spin_lock_irqsave(&xhci->lock, flags);
4298
4299 virt_dev = xhci->devs[udev->slot_id];
4300
4301 /*
4302 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4303 * xHC was re-initialized. Exit latency will be set later after
4304 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4305 */
4306
4307 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4308 spin_unlock_irqrestore(&xhci->lock, flags);
4309 xhci_free_command(xhci, command);
4310 return 0;
4311 }
4312
4313 /* Attempt to issue an Evaluate Context command to change the MEL. */
4314 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4315 if (!ctrl_ctx) {
4316 spin_unlock_irqrestore(&xhci->lock, flags);
4317 xhci_free_command(xhci, command);
4318 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4319 __func__);
4320 return -ENOMEM;
4321 }
4322
4323 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4324 spin_unlock_irqrestore(&xhci->lock, flags);
4325
4326 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4327 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4328 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4329 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4330 slot_ctx->dev_state = 0;
4331
4332 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4333 "Set up evaluate context for LPM MEL change.");
4334
4335 /* Issue and wait for the evaluate context command. */
4336 ret = xhci_configure_endpoint(xhci, udev, command,
4337 true, true);
4338
4339 if (!ret) {
4340 spin_lock_irqsave(&xhci->lock, flags);
4341 virt_dev->current_mel = max_exit_latency;
4342 spin_unlock_irqrestore(&xhci->lock, flags);
4343 }
4344
4345 xhci_free_command(xhci, command);
4346
4347 return ret;
4348}
4349
4350#ifdef CONFIG_PM
4351
4352/* BESL to HIRD Encoding array for USB2 LPM */
4353static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4354 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4355
4356/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4357static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4358 struct usb_device *udev)
4359{
4360 int u2del, besl, besl_host;
4361 int besl_device = 0;
4362 u32 field;
4363
4364 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4365 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4366
4367 if (field & USB_BESL_SUPPORT) {
4368 for (besl_host = 0; besl_host < 16; besl_host++) {
4369 if (xhci_besl_encoding[besl_host] >= u2del)
4370 break;
4371 }
4372 /* Use baseline BESL value as default */
4373 if (field & USB_BESL_BASELINE_VALID)
4374 besl_device = USB_GET_BESL_BASELINE(field);
4375 else if (field & USB_BESL_DEEP_VALID)
4376 besl_device = USB_GET_BESL_DEEP(field);
4377 } else {
4378 if (u2del <= 50)
4379 besl_host = 0;
4380 else
4381 besl_host = (u2del - 51) / 75 + 1;
4382 }
4383
4384 besl = besl_host + besl_device;
4385 if (besl > 15)
4386 besl = 15;
4387
4388 return besl;
4389}
4390
4391/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4392static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4393{
4394 u32 field;
4395 int l1;
4396 int besld = 0;
4397 int hirdm = 0;
4398
4399 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4400
4401 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4402 l1 = udev->l1_params.timeout / 256;
4403
4404 /* device has preferred BESLD */
4405 if (field & USB_BESL_DEEP_VALID) {
4406 besld = USB_GET_BESL_DEEP(field);
4407 hirdm = 1;
4408 }
4409
4410 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4411}
4412
4413static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4414 struct usb_device *udev, int enable)
4415{
4416 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4417 struct xhci_port **ports;
4418 __le32 __iomem *pm_addr, *hlpm_addr;
4419 u32 pm_val, hlpm_val, field;
4420 unsigned int port_num;
4421 unsigned long flags;
4422 int hird, exit_latency;
4423 int ret;
4424
4425 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4426 return -EPERM;
4427
4428 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4429 !udev->lpm_capable)
4430 return -EPERM;
4431
4432 if (!udev->parent || udev->parent->parent ||
4433 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4434 return -EPERM;
4435
4436 if (udev->usb2_hw_lpm_capable != 1)
4437 return -EPERM;
4438
4439 spin_lock_irqsave(&xhci->lock, flags);
4440
4441 ports = xhci->usb2_rhub.ports;
4442 port_num = udev->portnum - 1;
4443 pm_addr = ports[port_num]->addr + PORTPMSC;
4444 pm_val = readl(pm_addr);
4445 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4446
4447 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4448 enable ? "enable" : "disable", port_num + 1);
4449
4450 if (enable) {
4451 /* Host supports BESL timeout instead of HIRD */
4452 if (udev->usb2_hw_lpm_besl_capable) {
4453 /* if device doesn't have a preferred BESL value use a
4454 * default one which works with mixed HIRD and BESL
4455 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4456 */
4457 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4458 if ((field & USB_BESL_SUPPORT) &&
4459 (field & USB_BESL_BASELINE_VALID))
4460 hird = USB_GET_BESL_BASELINE(field);
4461 else
4462 hird = udev->l1_params.besl;
4463
4464 exit_latency = xhci_besl_encoding[hird];
4465 spin_unlock_irqrestore(&xhci->lock, flags);
4466
4467 ret = xhci_change_max_exit_latency(xhci, udev,
4468 exit_latency);
4469 if (ret < 0)
4470 return ret;
4471 spin_lock_irqsave(&xhci->lock, flags);
4472
4473 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4474 writel(hlpm_val, hlpm_addr);
4475 /* flush write */
4476 readl(hlpm_addr);
4477 } else {
4478 hird = xhci_calculate_hird_besl(xhci, udev);
4479 }
4480
4481 pm_val &= ~PORT_HIRD_MASK;
4482 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4483 writel(pm_val, pm_addr);
4484 pm_val = readl(pm_addr);
4485 pm_val |= PORT_HLE;
4486 writel(pm_val, pm_addr);
4487 /* flush write */
4488 readl(pm_addr);
4489 } else {
4490 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4491 writel(pm_val, pm_addr);
4492 /* flush write */
4493 readl(pm_addr);
4494 if (udev->usb2_hw_lpm_besl_capable) {
4495 spin_unlock_irqrestore(&xhci->lock, flags);
4496 xhci_change_max_exit_latency(xhci, udev, 0);
4497 readl_poll_timeout(ports[port_num]->addr, pm_val,
4498 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4499 100, 10000);
4500 return 0;
4501 }
4502 }
4503
4504 spin_unlock_irqrestore(&xhci->lock, flags);
4505 return 0;
4506}
4507
4508/* check if a usb2 port supports a given extened capability protocol
4509 * only USB2 ports extended protocol capability values are cached.
4510 * Return 1 if capability is supported
4511 */
4512static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4513 unsigned capability)
4514{
4515 u32 port_offset, port_count;
4516 int i;
4517
4518 for (i = 0; i < xhci->num_ext_caps; i++) {
4519 if (xhci->ext_caps[i] & capability) {
4520 /* port offsets starts at 1 */
4521 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4522 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4523 if (port >= port_offset &&
4524 port < port_offset + port_count)
4525 return 1;
4526 }
4527 }
4528 return 0;
4529}
4530
4531static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4532{
4533 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4534 int portnum = udev->portnum - 1;
4535
4536 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4537 return 0;
4538
4539 /* we only support lpm for non-hub device connected to root hub yet */
4540 if (!udev->parent || udev->parent->parent ||
4541 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4542 return 0;
4543
4544 if (xhci->hw_lpm_support == 1 &&
4545 xhci_check_usb2_port_capability(
4546 xhci, portnum, XHCI_HLC)) {
4547 udev->usb2_hw_lpm_capable = 1;
4548 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4549 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4550 if (xhci_check_usb2_port_capability(xhci, portnum,
4551 XHCI_BLC))
4552 udev->usb2_hw_lpm_besl_capable = 1;
4553 }
4554
4555 return 0;
4556}
4557
4558/*---------------------- USB 3.0 Link PM functions ------------------------*/
4559
4560/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4561static unsigned long long xhci_service_interval_to_ns(
4562 struct usb_endpoint_descriptor *desc)
4563{
4564 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4565}
4566
4567static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4568 enum usb3_link_state state)
4569{
4570 unsigned long long sel;
4571 unsigned long long pel;
4572 unsigned int max_sel_pel;
4573 char *state_name;
4574
4575 switch (state) {
4576 case USB3_LPM_U1:
4577 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4578 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4579 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4580 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4581 state_name = "U1";
4582 break;
4583 case USB3_LPM_U2:
4584 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4585 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4586 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4587 state_name = "U2";
4588 break;
4589 default:
4590 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4591 __func__);
4592 return USB3_LPM_DISABLED;
4593 }
4594
4595 if (sel <= max_sel_pel && pel <= max_sel_pel)
4596 return USB3_LPM_DEVICE_INITIATED;
4597
4598 if (sel > max_sel_pel)
4599 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4600 "due to long SEL %llu ms\n",
4601 state_name, sel);
4602 else
4603 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4604 "due to long PEL %llu ms\n",
4605 state_name, pel);
4606 return USB3_LPM_DISABLED;
4607}
4608
4609/* The U1 timeout should be the maximum of the following values:
4610 * - For control endpoints, U1 system exit latency (SEL) * 3
4611 * - For bulk endpoints, U1 SEL * 5
4612 * - For interrupt endpoints:
4613 * - Notification EPs, U1 SEL * 3
4614 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4615 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4616 */
4617static unsigned long long xhci_calculate_intel_u1_timeout(
4618 struct usb_device *udev,
4619 struct usb_endpoint_descriptor *desc)
4620{
4621 unsigned long long timeout_ns;
4622 int ep_type;
4623 int intr_type;
4624
4625 ep_type = usb_endpoint_type(desc);
4626 switch (ep_type) {
4627 case USB_ENDPOINT_XFER_CONTROL:
4628 timeout_ns = udev->u1_params.sel * 3;
4629 break;
4630 case USB_ENDPOINT_XFER_BULK:
4631 timeout_ns = udev->u1_params.sel * 5;
4632 break;
4633 case USB_ENDPOINT_XFER_INT:
4634 intr_type = usb_endpoint_interrupt_type(desc);
4635 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4636 timeout_ns = udev->u1_params.sel * 3;
4637 break;
4638 }
4639 /* Otherwise the calculation is the same as isoc eps */
4640 fallthrough;
4641 case USB_ENDPOINT_XFER_ISOC:
4642 timeout_ns = xhci_service_interval_to_ns(desc);
4643 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4644 if (timeout_ns < udev->u1_params.sel * 2)
4645 timeout_ns = udev->u1_params.sel * 2;
4646 break;
4647 default:
4648 return 0;
4649 }
4650
4651 return timeout_ns;
4652}
4653
4654/* Returns the hub-encoded U1 timeout value. */
4655static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4656 struct usb_device *udev,
4657 struct usb_endpoint_descriptor *desc)
4658{
4659 unsigned long long timeout_ns;
4660
4661 /* Prevent U1 if service interval is shorter than U1 exit latency */
4662 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4663 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4664 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4665 return USB3_LPM_DISABLED;
4666 }
4667 }
4668
4669 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4670 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4671 else
4672 timeout_ns = udev->u1_params.sel;
4673
4674 /* The U1 timeout is encoded in 1us intervals.
4675 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4676 */
4677 if (timeout_ns == USB3_LPM_DISABLED)
4678 timeout_ns = 1;
4679 else
4680 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4681
4682 /* If the necessary timeout value is bigger than what we can set in the
4683 * USB 3.0 hub, we have to disable hub-initiated U1.
4684 */
4685 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4686 return timeout_ns;
4687 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4688 "due to long timeout %llu ms\n", timeout_ns);
4689 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4690}
4691
4692/* The U2 timeout should be the maximum of:
4693 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4694 * - largest bInterval of any active periodic endpoint (to avoid going
4695 * into lower power link states between intervals).
4696 * - the U2 Exit Latency of the device
4697 */
4698static unsigned long long xhci_calculate_intel_u2_timeout(
4699 struct usb_device *udev,
4700 struct usb_endpoint_descriptor *desc)
4701{
4702 unsigned long long timeout_ns;
4703 unsigned long long u2_del_ns;
4704
4705 timeout_ns = 10 * 1000 * 1000;
4706
4707 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4708 (xhci_service_interval_to_ns(desc) > timeout_ns))
4709 timeout_ns = xhci_service_interval_to_ns(desc);
4710
4711 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4712 if (u2_del_ns > timeout_ns)
4713 timeout_ns = u2_del_ns;
4714
4715 return timeout_ns;
4716}
4717
4718/* Returns the hub-encoded U2 timeout value. */
4719static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4720 struct usb_device *udev,
4721 struct usb_endpoint_descriptor *desc)
4722{
4723 unsigned long long timeout_ns;
4724
4725 /* Prevent U2 if service interval is shorter than U2 exit latency */
4726 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4727 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4728 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4729 return USB3_LPM_DISABLED;
4730 }
4731 }
4732
4733 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4734 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4735 else
4736 timeout_ns = udev->u2_params.sel;
4737
4738 /* The U2 timeout is encoded in 256us intervals */
4739 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4740 /* If the necessary timeout value is bigger than what we can set in the
4741 * USB 3.0 hub, we have to disable hub-initiated U2.
4742 */
4743 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4744 return timeout_ns;
4745 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4746 "due to long timeout %llu ms\n", timeout_ns);
4747 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4748}
4749
4750static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4751 struct usb_device *udev,
4752 struct usb_endpoint_descriptor *desc,
4753 enum usb3_link_state state,
4754 u16 *timeout)
4755{
4756 if (state == USB3_LPM_U1)
4757 return xhci_calculate_u1_timeout(xhci, udev, desc);
4758 else if (state == USB3_LPM_U2)
4759 return xhci_calculate_u2_timeout(xhci, udev, desc);
4760
4761 return USB3_LPM_DISABLED;
4762}
4763
4764static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4765 struct usb_device *udev,
4766 struct usb_endpoint_descriptor *desc,
4767 enum usb3_link_state state,
4768 u16 *timeout)
4769{
4770 u16 alt_timeout;
4771
4772 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4773 desc, state, timeout);
4774
4775 /* If we found we can't enable hub-initiated LPM, and
4776 * the U1 or U2 exit latency was too high to allow
4777 * device-initiated LPM as well, then we will disable LPM
4778 * for this device, so stop searching any further.
4779 */
4780 if (alt_timeout == USB3_LPM_DISABLED) {
4781 *timeout = alt_timeout;
4782 return -E2BIG;
4783 }
4784 if (alt_timeout > *timeout)
4785 *timeout = alt_timeout;
4786 return 0;
4787}
4788
4789static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4790 struct usb_device *udev,
4791 struct usb_host_interface *alt,
4792 enum usb3_link_state state,
4793 u16 *timeout)
4794{
4795 int j;
4796
4797 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4798 if (xhci_update_timeout_for_endpoint(xhci, udev,
4799 &alt->endpoint[j].desc, state, timeout))
4800 return -E2BIG;
4801 }
4802 return 0;
4803}
4804
4805static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806 struct usb_device *udev,
4807 enum usb3_link_state state)
4808{
4809 struct usb_device *parent = udev->parent;
4810 int tier = 1; /* roothub is tier1 */
4811
4812 while (parent) {
4813 parent = parent->parent;
4814 tier++;
4815 }
4816
4817 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4818 goto fail;
4819 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4820 goto fail;
4821
4822 return 0;
4823fail:
4824 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4825 tier);
4826 return -E2BIG;
4827}
4828
4829/* Returns the U1 or U2 timeout that should be enabled.
4830 * If the tier check or timeout setting functions return with a non-zero exit
4831 * code, that means the timeout value has been finalized and we shouldn't look
4832 * at any more endpoints.
4833 */
4834static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4835 struct usb_device *udev, enum usb3_link_state state)
4836{
4837 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4838 struct usb_host_config *config;
4839 char *state_name;
4840 int i;
4841 u16 timeout = USB3_LPM_DISABLED;
4842
4843 if (state == USB3_LPM_U1)
4844 state_name = "U1";
4845 else if (state == USB3_LPM_U2)
4846 state_name = "U2";
4847 else {
4848 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4849 state);
4850 return timeout;
4851 }
4852
4853 /* Gather some information about the currently installed configuration
4854 * and alternate interface settings.
4855 */
4856 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4857 state, &timeout))
4858 return timeout;
4859
4860 config = udev->actconfig;
4861 if (!config)
4862 return timeout;
4863
4864 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4865 struct usb_driver *driver;
4866 struct usb_interface *intf = config->interface[i];
4867
4868 if (!intf)
4869 continue;
4870
4871 /* Check if any currently bound drivers want hub-initiated LPM
4872 * disabled.
4873 */
4874 if (intf->dev.driver) {
4875 driver = to_usb_driver(intf->dev.driver);
4876 if (driver && driver->disable_hub_initiated_lpm) {
4877 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4878 state_name, driver->name);
4879 timeout = xhci_get_timeout_no_hub_lpm(udev,
4880 state);
4881 if (timeout == USB3_LPM_DISABLED)
4882 return timeout;
4883 }
4884 }
4885
4886 /* Not sure how this could happen... */
4887 if (!intf->cur_altsetting)
4888 continue;
4889
4890 if (xhci_update_timeout_for_interface(xhci, udev,
4891 intf->cur_altsetting,
4892 state, &timeout))
4893 return timeout;
4894 }
4895 return timeout;
4896}
4897
4898static int calculate_max_exit_latency(struct usb_device *udev,
4899 enum usb3_link_state state_changed,
4900 u16 hub_encoded_timeout)
4901{
4902 unsigned long long u1_mel_us = 0;
4903 unsigned long long u2_mel_us = 0;
4904 unsigned long long mel_us = 0;
4905 bool disabling_u1;
4906 bool disabling_u2;
4907 bool enabling_u1;
4908 bool enabling_u2;
4909
4910 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4911 hub_encoded_timeout == USB3_LPM_DISABLED);
4912 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4913 hub_encoded_timeout == USB3_LPM_DISABLED);
4914
4915 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4916 hub_encoded_timeout != USB3_LPM_DISABLED);
4917 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4918 hub_encoded_timeout != USB3_LPM_DISABLED);
4919
4920 /* If U1 was already enabled and we're not disabling it,
4921 * or we're going to enable U1, account for the U1 max exit latency.
4922 */
4923 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4924 enabling_u1)
4925 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4926 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4927 enabling_u2)
4928 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4929
4930 mel_us = max(u1_mel_us, u2_mel_us);
4931
4932 /* xHCI host controller max exit latency field is only 16 bits wide. */
4933 if (mel_us > MAX_EXIT) {
4934 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4935 "is too big.\n", mel_us);
4936 return -E2BIG;
4937 }
4938 return mel_us;
4939}
4940
4941/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4942static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4943 struct usb_device *udev, enum usb3_link_state state)
4944{
4945 struct xhci_hcd *xhci;
4946 struct xhci_port *port;
4947 u16 hub_encoded_timeout;
4948 int mel;
4949 int ret;
4950
4951 xhci = hcd_to_xhci(hcd);
4952 /* The LPM timeout values are pretty host-controller specific, so don't
4953 * enable hub-initiated timeouts unless the vendor has provided
4954 * information about their timeout algorithm.
4955 */
4956 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4957 !xhci->devs[udev->slot_id])
4958 return USB3_LPM_DISABLED;
4959
4960 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4961 return USB3_LPM_DISABLED;
4962
4963 /* If connected to root port then check port can handle lpm */
4964 if (udev->parent && !udev->parent->parent) {
4965 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4966 if (port->lpm_incapable)
4967 return USB3_LPM_DISABLED;
4968 }
4969
4970 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4971 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4972 if (mel < 0) {
4973 /* Max Exit Latency is too big, disable LPM. */
4974 hub_encoded_timeout = USB3_LPM_DISABLED;
4975 mel = 0;
4976 }
4977
4978 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4979 if (ret)
4980 return ret;
4981 return hub_encoded_timeout;
4982}
4983
4984static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4985 struct usb_device *udev, enum usb3_link_state state)
4986{
4987 struct xhci_hcd *xhci;
4988 u16 mel;
4989
4990 xhci = hcd_to_xhci(hcd);
4991 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4992 !xhci->devs[udev->slot_id])
4993 return 0;
4994
4995 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4996 return xhci_change_max_exit_latency(xhci, udev, mel);
4997}
4998#else /* CONFIG_PM */
4999
5000static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5001 struct usb_device *udev, int enable)
5002{
5003 return 0;
5004}
5005
5006static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5007{
5008 return 0;
5009}
5010
5011static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5012 struct usb_device *udev, enum usb3_link_state state)
5013{
5014 return USB3_LPM_DISABLED;
5015}
5016
5017static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5018 struct usb_device *udev, enum usb3_link_state state)
5019{
5020 return 0;
5021}
5022#endif /* CONFIG_PM */
5023
5024/*-------------------------------------------------------------------------*/
5025
5026/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5027 * internal data structures for the device.
5028 */
5029int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5030 struct usb_tt *tt, gfp_t mem_flags)
5031{
5032 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5033 struct xhci_virt_device *vdev;
5034 struct xhci_command *config_cmd;
5035 struct xhci_input_control_ctx *ctrl_ctx;
5036 struct xhci_slot_ctx *slot_ctx;
5037 unsigned long flags;
5038 unsigned think_time;
5039 int ret;
5040
5041 /* Ignore root hubs */
5042 if (!hdev->parent)
5043 return 0;
5044
5045 vdev = xhci->devs[hdev->slot_id];
5046 if (!vdev) {
5047 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5048 return -EINVAL;
5049 }
5050
5051 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5052 if (!config_cmd)
5053 return -ENOMEM;
5054
5055 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5056 if (!ctrl_ctx) {
5057 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5058 __func__);
5059 xhci_free_command(xhci, config_cmd);
5060 return -ENOMEM;
5061 }
5062
5063 spin_lock_irqsave(&xhci->lock, flags);
5064 if (hdev->speed == USB_SPEED_HIGH &&
5065 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5066 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5067 xhci_free_command(xhci, config_cmd);
5068 spin_unlock_irqrestore(&xhci->lock, flags);
5069 return -ENOMEM;
5070 }
5071
5072 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5073 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5074 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5075 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5076 /*
5077 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5078 * but it may be already set to 1 when setup an xHCI virtual
5079 * device, so clear it anyway.
5080 */
5081 if (tt->multi)
5082 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5083 else if (hdev->speed == USB_SPEED_FULL)
5084 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5085
5086 if (xhci->hci_version > 0x95) {
5087 xhci_dbg(xhci, "xHCI version %x needs hub "
5088 "TT think time and number of ports\n",
5089 (unsigned int) xhci->hci_version);
5090 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5091 /* Set TT think time - convert from ns to FS bit times.
5092 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5093 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5094 *
5095 * xHCI 1.0: this field shall be 0 if the device is not a
5096 * High-spped hub.
5097 */
5098 think_time = tt->think_time;
5099 if (think_time != 0)
5100 think_time = (think_time / 666) - 1;
5101 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5102 slot_ctx->tt_info |=
5103 cpu_to_le32(TT_THINK_TIME(think_time));
5104 } else {
5105 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5106 "TT think time or number of ports\n",
5107 (unsigned int) xhci->hci_version);
5108 }
5109 slot_ctx->dev_state = 0;
5110 spin_unlock_irqrestore(&xhci->lock, flags);
5111
5112 xhci_dbg(xhci, "Set up %s for hub device.\n",
5113 (xhci->hci_version > 0x95) ?
5114 "configure endpoint" : "evaluate context");
5115
5116 /* Issue and wait for the configure endpoint or
5117 * evaluate context command.
5118 */
5119 if (xhci->hci_version > 0x95)
5120 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5121 false, false);
5122 else
5123 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5124 true, false);
5125
5126 xhci_free_command(xhci, config_cmd);
5127 return ret;
5128}
5129EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5130
5131static int xhci_get_frame(struct usb_hcd *hcd)
5132{
5133 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5134 /* EHCI mods by the periodic size. Why? */
5135 return readl(&xhci->run_regs->microframe_index) >> 3;
5136}
5137
5138static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5139{
5140 xhci->usb2_rhub.hcd = hcd;
5141 hcd->speed = HCD_USB2;
5142 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5143 /*
5144 * USB 2.0 roothub under xHCI has an integrated TT,
5145 * (rate matching hub) as opposed to having an OHCI/UHCI
5146 * companion controller.
5147 */
5148 hcd->has_tt = 1;
5149}
5150
5151static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5152{
5153 unsigned int minor_rev;
5154
5155 /*
5156 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5157 * should return 0x31 for sbrn, or that the minor revision
5158 * is a two digit BCD containig minor and sub-minor numbers.
5159 * This was later clarified in xHCI 1.2.
5160 *
5161 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5162 * minor revision set to 0x1 instead of 0x10.
5163 */
5164 if (xhci->usb3_rhub.min_rev == 0x1)
5165 minor_rev = 1;
5166 else
5167 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5168
5169 switch (minor_rev) {
5170 case 2:
5171 hcd->speed = HCD_USB32;
5172 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5173 hcd->self.root_hub->rx_lanes = 2;
5174 hcd->self.root_hub->tx_lanes = 2;
5175 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5176 break;
5177 case 1:
5178 hcd->speed = HCD_USB31;
5179 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5180 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5181 break;
5182 }
5183 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5184 minor_rev, minor_rev ? "Enhanced " : "");
5185
5186 xhci->usb3_rhub.hcd = hcd;
5187}
5188
5189int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5190{
5191 struct xhci_hcd *xhci;
5192 /*
5193 * TODO: Check with DWC3 clients for sysdev according to
5194 * quirks
5195 */
5196 struct device *dev = hcd->self.sysdev;
5197 int retval;
5198
5199 /* Accept arbitrarily long scatter-gather lists */
5200 hcd->self.sg_tablesize = ~0;
5201
5202 /* support to build packet from discontinuous buffers */
5203 hcd->self.no_sg_constraint = 1;
5204
5205 /* XHCI controllers don't stop the ep queue on short packets :| */
5206 hcd->self.no_stop_on_short = 1;
5207
5208 xhci = hcd_to_xhci(hcd);
5209
5210 if (!usb_hcd_is_primary_hcd(hcd)) {
5211 xhci_hcd_init_usb3_data(xhci, hcd);
5212 return 0;
5213 }
5214
5215 mutex_init(&xhci->mutex);
5216 xhci->main_hcd = hcd;
5217 xhci->cap_regs = hcd->regs;
5218 xhci->op_regs = hcd->regs +
5219 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5220 xhci->run_regs = hcd->regs +
5221 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5222 /* Cache read-only capability registers */
5223 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5224 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5225 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5226 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5227 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5228 if (xhci->hci_version > 0x100)
5229 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5230
5231 /* xhci-plat or xhci-pci might have set max_interrupters already */
5232 if ((!xhci->max_interrupters) ||
5233 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5234 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5235
5236 xhci->quirks |= quirks;
5237
5238 if (get_quirks)
5239 get_quirks(dev, xhci);
5240
5241 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5242 * success event after a short transfer. This quirk will ignore such
5243 * spurious event.
5244 */
5245 if (xhci->hci_version > 0x96)
5246 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5247
5248 /* Make sure the HC is halted. */
5249 retval = xhci_halt(xhci);
5250 if (retval)
5251 return retval;
5252
5253 xhci_zero_64b_regs(xhci);
5254
5255 xhci_dbg(xhci, "Resetting HCD\n");
5256 /* Reset the internal HC memory state and registers. */
5257 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5258 if (retval)
5259 return retval;
5260 xhci_dbg(xhci, "Reset complete\n");
5261
5262 /*
5263 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5264 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5265 * address memory pointers actually. So, this driver clears the AC64
5266 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5267 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5268 */
5269 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5270 xhci->hcc_params &= ~BIT(0);
5271
5272 /* Set dma_mask and coherent_dma_mask to 64-bits,
5273 * if xHC supports 64-bit addressing */
5274 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5275 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5276 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5277 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5278 } else {
5279 /*
5280 * This is to avoid error in cases where a 32-bit USB
5281 * controller is used on a 64-bit capable system.
5282 */
5283 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5284 if (retval)
5285 return retval;
5286 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5287 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5288 }
5289
5290 xhci_dbg(xhci, "Calling HCD init\n");
5291 /* Initialize HCD and host controller data structures. */
5292 retval = xhci_init(hcd);
5293 if (retval)
5294 return retval;
5295 xhci_dbg(xhci, "Called HCD init\n");
5296
5297 if (xhci_hcd_is_usb3(hcd))
5298 xhci_hcd_init_usb3_data(xhci, hcd);
5299 else
5300 xhci_hcd_init_usb2_data(xhci, hcd);
5301
5302 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5303 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5304
5305 return 0;
5306}
5307EXPORT_SYMBOL_GPL(xhci_gen_setup);
5308
5309static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5310 struct usb_host_endpoint *ep)
5311{
5312 struct xhci_hcd *xhci;
5313 struct usb_device *udev;
5314 unsigned int slot_id;
5315 unsigned int ep_index;
5316 unsigned long flags;
5317
5318 xhci = hcd_to_xhci(hcd);
5319
5320 spin_lock_irqsave(&xhci->lock, flags);
5321 udev = (struct usb_device *)ep->hcpriv;
5322 slot_id = udev->slot_id;
5323 ep_index = xhci_get_endpoint_index(&ep->desc);
5324
5325 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5326 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5327 spin_unlock_irqrestore(&xhci->lock, flags);
5328}
5329
5330static const struct hc_driver xhci_hc_driver = {
5331 .description = "xhci-hcd",
5332 .product_desc = "xHCI Host Controller",
5333 .hcd_priv_size = sizeof(struct xhci_hcd),
5334
5335 /*
5336 * generic hardware linkage
5337 */
5338 .irq = xhci_irq,
5339 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5340 HCD_BH,
5341
5342 /*
5343 * basic lifecycle operations
5344 */
5345 .reset = NULL, /* set in xhci_init_driver() */
5346 .start = xhci_run,
5347 .stop = xhci_stop,
5348 .shutdown = xhci_shutdown,
5349
5350 /*
5351 * managing i/o requests and associated device resources
5352 */
5353 .map_urb_for_dma = xhci_map_urb_for_dma,
5354 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5355 .urb_enqueue = xhci_urb_enqueue,
5356 .urb_dequeue = xhci_urb_dequeue,
5357 .alloc_dev = xhci_alloc_dev,
5358 .free_dev = xhci_free_dev,
5359 .alloc_streams = xhci_alloc_streams,
5360 .free_streams = xhci_free_streams,
5361 .add_endpoint = xhci_add_endpoint,
5362 .drop_endpoint = xhci_drop_endpoint,
5363 .endpoint_disable = xhci_endpoint_disable,
5364 .endpoint_reset = xhci_endpoint_reset,
5365 .check_bandwidth = xhci_check_bandwidth,
5366 .reset_bandwidth = xhci_reset_bandwidth,
5367 .address_device = xhci_address_device,
5368 .enable_device = xhci_enable_device,
5369 .update_hub_device = xhci_update_hub_device,
5370 .reset_device = xhci_discover_or_reset_device,
5371
5372 /*
5373 * scheduling support
5374 */
5375 .get_frame_number = xhci_get_frame,
5376
5377 /*
5378 * root hub support
5379 */
5380 .hub_control = xhci_hub_control,
5381 .hub_status_data = xhci_hub_status_data,
5382 .bus_suspend = xhci_bus_suspend,
5383 .bus_resume = xhci_bus_resume,
5384 .get_resuming_ports = xhci_get_resuming_ports,
5385
5386 /*
5387 * call back when device connected and addressed
5388 */
5389 .update_device = xhci_update_device,
5390 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5391 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5392 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5393 .find_raw_port_number = xhci_find_raw_port_number,
5394 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5395};
5396
5397void xhci_init_driver(struct hc_driver *drv,
5398 const struct xhci_driver_overrides *over)
5399{
5400 BUG_ON(!over);
5401
5402 /* Copy the generic table to drv then apply the overrides */
5403 *drv = xhci_hc_driver;
5404
5405 if (over) {
5406 drv->hcd_priv_size += over->extra_priv_size;
5407 if (over->reset)
5408 drv->reset = over->reset;
5409 if (over->start)
5410 drv->start = over->start;
5411 if (over->add_endpoint)
5412 drv->add_endpoint = over->add_endpoint;
5413 if (over->drop_endpoint)
5414 drv->drop_endpoint = over->drop_endpoint;
5415 if (over->check_bandwidth)
5416 drv->check_bandwidth = over->check_bandwidth;
5417 if (over->reset_bandwidth)
5418 drv->reset_bandwidth = over->reset_bandwidth;
5419 if (over->update_hub_device)
5420 drv->update_hub_device = over->update_hub_device;
5421 if (over->hub_control)
5422 drv->hub_control = over->hub_control;
5423 }
5424}
5425EXPORT_SYMBOL_GPL(xhci_init_driver);
5426
5427MODULE_DESCRIPTION(DRIVER_DESC);
5428MODULE_AUTHOR(DRIVER_AUTHOR);
5429MODULE_LICENSE("GPL");
5430
5431static int __init xhci_hcd_init(void)
5432{
5433 /*
5434 * Check the compiler generated sizes of structures that must be laid
5435 * out in specific ways for hardware access.
5436 */
5437 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5438 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5439 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5440 /* xhci_device_control has eight fields, and also
5441 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5442 */
5443 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5444 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5445 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5446 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5447 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5448 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5449 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5450
5451 if (usb_disabled())
5452 return -ENODEV;
5453
5454 xhci_debugfs_create_root();
5455 xhci_dbc_init();
5456
5457 return 0;
5458}
5459
5460/*
5461 * If an init function is provided, an exit function must also be provided
5462 * to allow module unload.
5463 */
5464static void __exit xhci_hcd_fini(void)
5465{
5466 xhci_debugfs_remove_root();
5467 xhci_dbc_exit();
5468}
5469
5470module_init(xhci_hcd_init);
5471module_exit(xhci_hcd_fini);
1/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23#include <linux/pci.h>
24#include <linux/irq.h>
25#include <linux/log2.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/slab.h>
29#include <linux/dmi.h>
30
31#include "xhci.h"
32
33#define DRIVER_AUTHOR "Sarah Sharp"
34#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37static int link_quirk;
38module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41/* TODO: copied from ehci-hcd.c - can this be refactored? */
42/*
43 * handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
55int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
57{
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71}
72
73/*
74 * Disable interrupts and begin the xHCI halting process.
75 */
76void xhci_quiesce(struct xhci_hcd *xhci)
77{
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90}
91
92/*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
99 */
100int xhci_halt(struct xhci_hcd *xhci)
101{
102 int ret;
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
105
106 ret = handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 if (!ret) {
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
114 return ret;
115}
116
117/*
118 * Set the run bit and wait for the host to be running.
119 */
120static int xhci_start(struct xhci_hcd *xhci)
121{
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 return ret;
144}
145
146/*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153int xhci_reset(struct xhci_hcd *xhci)
154{
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
169
170 ret = handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
180 ret = handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
190}
191
192#ifdef CONFIG_PCI
193static int xhci_free_msi(struct xhci_hcd *xhci)
194{
195 int i;
196
197 if (!xhci->msix_entries)
198 return -EINVAL;
199
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
205}
206
207/*
208 * Set up MSI
209 */
210static int xhci_setup_msi(struct xhci_hcd *xhci)
211{
212 int ret;
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229}
230
231/*
232 * Free IRQs
233 * free all IRQs request
234 */
235static void xhci_free_irq(struct xhci_hcd *xhci)
236{
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
247 if (pdev->irq > 0)
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251}
252
253/*
254 * Set up MSI-X
255 */
256static int xhci_setup_msix(struct xhci_hcd *xhci)
257{
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 GFP_KERNEL);
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 goto free_entries;
289 }
290
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 (irq_handler_t)xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
297 }
298
299 hcd->msix_enabled = 1;
300 return ret;
301
302disable_msix:
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 xhci_free_irq(xhci);
305 pci_disable_msix(pdev);
306free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310}
311
312/* Free any IRQs and disable MSI-X */
313static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314{
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318 xhci_free_irq(xhci);
319
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
324 } else {
325 pci_disable_msi(pdev);
326 }
327
328 hcd->msix_enabled = 0;
329 return;
330}
331
332static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333{
334 int i;
335
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
339 }
340}
341
342static int xhci_try_enable_msi(struct usb_hcd *hcd)
343{
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 int ret;
347
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 return 0;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret)
366 /* hcd->irq is 0, we have MSI */
367 return 0;
368
369 if (!pdev->irq) {
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 return -EINVAL;
372 }
373
374 /* fall back to legacy interrupt*/
375 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376 hcd->irq_descr, hcd);
377 if (ret) {
378 xhci_err(xhci, "request interrupt %d failed\n",
379 pdev->irq);
380 return ret;
381 }
382 hcd->irq = pdev->irq;
383 return 0;
384}
385
386#else
387
388static int xhci_try_enable_msi(struct usb_hcd *hcd)
389{
390 return 0;
391}
392
393static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394{
395}
396
397static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398{
399}
400
401#endif
402
403static void compliance_mode_recovery(unsigned long arg)
404{
405 struct xhci_hcd *xhci;
406 struct usb_hcd *hcd;
407 u32 temp;
408 int i;
409
410 xhci = (struct xhci_hcd *)arg;
411
412 for (i = 0; i < xhci->num_usb3_ports; i++) {
413 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415 /*
416 * Compliance Mode Detected. Letting USB Core
417 * handle the Warm Reset
418 */
419 xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420 i + 1);
421 xhci_dbg(xhci, "Attempting Recovery routine!\n");
422 hcd = xhci->shared_hcd;
423
424 if (hcd->state == HC_STATE_SUSPENDED)
425 usb_hcd_resume_root_hub(hcd);
426
427 usb_hcd_poll_rh_status(hcd);
428 }
429 }
430
431 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
432 mod_timer(&xhci->comp_mode_recovery_timer,
433 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
434}
435
436/*
437 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438 * that causes ports behind that hardware to enter compliance mode sometimes.
439 * The quirk creates a timer that polls every 2 seconds the link state of
440 * each host controller's port and recovers it by issuing a Warm reset
441 * if Compliance mode is detected, otherwise the port will become "dead" (no
442 * device connections or disconnections will be detected anymore). Becasue no
443 * status event is generated when entering compliance mode (per xhci spec),
444 * this quirk is needed on systems that have the failing hardware installed.
445 */
446static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447{
448 xhci->port_status_u0 = 0;
449 init_timer(&xhci->comp_mode_recovery_timer);
450
451 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453 xhci->comp_mode_recovery_timer.expires = jiffies +
454 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
455
456 set_timer_slack(&xhci->comp_mode_recovery_timer,
457 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
458 add_timer(&xhci->comp_mode_recovery_timer);
459 xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460}
461
462/*
463 * This function identifies the systems that have installed the SN65LVPE502CP
464 * USB3.0 re-driver and that need the Compliance Mode Quirk.
465 * Systems:
466 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467 */
468static bool compliance_mode_recovery_timer_quirk_check(void)
469{
470 const char *dmi_product_name, *dmi_sys_vendor;
471
472 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474 if (!dmi_product_name || !dmi_sys_vendor)
475 return false;
476
477 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478 return false;
479
480 if (strstr(dmi_product_name, "Z420") ||
481 strstr(dmi_product_name, "Z620") ||
482 strstr(dmi_product_name, "Z820"))
483 return true;
484
485 return false;
486}
487
488static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
489{
490 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
491}
492
493
494/*
495 * Initialize memory for HCD and xHC (one-time init).
496 *
497 * Program the PAGESIZE register, initialize the device context array, create
498 * device contexts (?), set up a command ring segment (or two?), create event
499 * ring (one for now).
500 */
501int xhci_init(struct usb_hcd *hcd)
502{
503 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
504 int retval = 0;
505
506 xhci_dbg(xhci, "xhci_init\n");
507 spin_lock_init(&xhci->lock);
508 if (xhci->hci_version == 0x95 && link_quirk) {
509 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
510 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
511 } else {
512 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
513 }
514 retval = xhci_mem_init(xhci, GFP_KERNEL);
515 xhci_dbg(xhci, "Finished xhci_init\n");
516
517 /* Initializing Compliance Mode Recovery Data If Needed */
518 if (compliance_mode_recovery_timer_quirk_check()) {
519 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
520 compliance_mode_recovery_timer_init(xhci);
521 }
522
523 return retval;
524}
525
526/*-------------------------------------------------------------------------*/
527
528
529#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
530static void xhci_event_ring_work(unsigned long arg)
531{
532 unsigned long flags;
533 int temp;
534 u64 temp_64;
535 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
536 int i, j;
537
538 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
539
540 spin_lock_irqsave(&xhci->lock, flags);
541 temp = xhci_readl(xhci, &xhci->op_regs->status);
542 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
543 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
544 (xhci->xhc_state & XHCI_STATE_HALTED)) {
545 xhci_dbg(xhci, "HW died, polling stopped.\n");
546 spin_unlock_irqrestore(&xhci->lock, flags);
547 return;
548 }
549
550 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
552 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
553 xhci->error_bitmask = 0;
554 xhci_dbg(xhci, "Event ring:\n");
555 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
556 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
557 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
558 temp_64 &= ~ERST_PTR_MASK;
559 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
560 xhci_dbg(xhci, "Command ring:\n");
561 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
562 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
563 xhci_dbg_cmd_ptrs(xhci);
564 for (i = 0; i < MAX_HC_SLOTS; ++i) {
565 if (!xhci->devs[i])
566 continue;
567 for (j = 0; j < 31; ++j) {
568 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
569 }
570 }
571 spin_unlock_irqrestore(&xhci->lock, flags);
572
573 if (!xhci->zombie)
574 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
575 else
576 xhci_dbg(xhci, "Quit polling the event ring.\n");
577}
578#endif
579
580static int xhci_run_finished(struct xhci_hcd *xhci)
581{
582 if (xhci_start(xhci)) {
583 xhci_halt(xhci);
584 return -ENODEV;
585 }
586 xhci->shared_hcd->state = HC_STATE_RUNNING;
587 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
588
589 if (xhci->quirks & XHCI_NEC_HOST)
590 xhci_ring_cmd_db(xhci);
591
592 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
593 return 0;
594}
595
596/*
597 * Start the HC after it was halted.
598 *
599 * This function is called by the USB core when the HC driver is added.
600 * Its opposite is xhci_stop().
601 *
602 * xhci_init() must be called once before this function can be called.
603 * Reset the HC, enable device slot contexts, program DCBAAP, and
604 * set command ring pointer and event ring pointer.
605 *
606 * Setup MSI-X vectors and enable interrupts.
607 */
608int xhci_run(struct usb_hcd *hcd)
609{
610 u32 temp;
611 u64 temp_64;
612 int ret;
613 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
614
615 /* Start the xHCI host controller running only after the USB 2.0 roothub
616 * is setup.
617 */
618
619 hcd->uses_new_polling = 1;
620 if (!usb_hcd_is_primary_hcd(hcd))
621 return xhci_run_finished(xhci);
622
623 xhci_dbg(xhci, "xhci_run\n");
624
625 ret = xhci_try_enable_msi(hcd);
626 if (ret)
627 return ret;
628
629#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
630 init_timer(&xhci->event_ring_timer);
631 xhci->event_ring_timer.data = (unsigned long) xhci;
632 xhci->event_ring_timer.function = xhci_event_ring_work;
633 /* Poll the event ring */
634 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
635 xhci->zombie = 0;
636 xhci_dbg(xhci, "Setting event ring polling timer\n");
637 add_timer(&xhci->event_ring_timer);
638#endif
639
640 xhci_dbg(xhci, "Command ring memory map follows:\n");
641 xhci_debug_ring(xhci, xhci->cmd_ring);
642 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
643 xhci_dbg_cmd_ptrs(xhci);
644
645 xhci_dbg(xhci, "ERST memory map follows:\n");
646 xhci_dbg_erst(xhci, &xhci->erst);
647 xhci_dbg(xhci, "Event ring:\n");
648 xhci_debug_ring(xhci, xhci->event_ring);
649 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
650 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
651 temp_64 &= ~ERST_PTR_MASK;
652 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
653
654 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
655 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
656 temp &= ~ER_IRQ_INTERVAL_MASK;
657 temp |= (u32) 160;
658 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
659
660 /* Set the HCD state before we enable the irqs */
661 temp = xhci_readl(xhci, &xhci->op_regs->command);
662 temp |= (CMD_EIE);
663 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
664 temp);
665 xhci_writel(xhci, temp, &xhci->op_regs->command);
666
667 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
668 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
669 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
670 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
671 &xhci->ir_set->irq_pending);
672 xhci_print_ir_set(xhci, 0);
673
674 if (xhci->quirks & XHCI_NEC_HOST)
675 xhci_queue_vendor_command(xhci, 0, 0, 0,
676 TRB_TYPE(TRB_NEC_GET_FW));
677
678 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
679 return 0;
680}
681
682static void xhci_only_stop_hcd(struct usb_hcd *hcd)
683{
684 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
685
686 spin_lock_irq(&xhci->lock);
687 xhci_halt(xhci);
688
689 /* The shared_hcd is going to be deallocated shortly (the USB core only
690 * calls this function when allocation fails in usb_add_hcd(), or
691 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
692 */
693 xhci->shared_hcd = NULL;
694 spin_unlock_irq(&xhci->lock);
695}
696
697/*
698 * Stop xHCI driver.
699 *
700 * This function is called by the USB core when the HC driver is removed.
701 * Its opposite is xhci_run().
702 *
703 * Disable device contexts, disable IRQs, and quiesce the HC.
704 * Reset the HC, finish any completed transactions, and cleanup memory.
705 */
706void xhci_stop(struct usb_hcd *hcd)
707{
708 u32 temp;
709 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
710
711 if (!usb_hcd_is_primary_hcd(hcd)) {
712 xhci_only_stop_hcd(xhci->shared_hcd);
713 return;
714 }
715
716 spin_lock_irq(&xhci->lock);
717 /* Make sure the xHC is halted for a USB3 roothub
718 * (xhci_stop() could be called as part of failed init).
719 */
720 xhci_halt(xhci);
721 xhci_reset(xhci);
722 spin_unlock_irq(&xhci->lock);
723
724 xhci_cleanup_msix(xhci);
725
726#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
727 /* Tell the event ring poll function not to reschedule */
728 xhci->zombie = 1;
729 del_timer_sync(&xhci->event_ring_timer);
730#endif
731
732 /* Deleting Compliance Mode Recovery Timer */
733 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
734 (!(xhci_all_ports_seen_u0(xhci))))
735 del_timer_sync(&xhci->comp_mode_recovery_timer);
736
737 if (xhci->quirks & XHCI_AMD_PLL_FIX)
738 usb_amd_dev_put();
739
740 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
741 temp = xhci_readl(xhci, &xhci->op_regs->status);
742 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
743 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
744 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
745 &xhci->ir_set->irq_pending);
746 xhci_print_ir_set(xhci, 0);
747
748 xhci_dbg(xhci, "cleaning up memory\n");
749 xhci_mem_cleanup(xhci);
750 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
751 xhci_readl(xhci, &xhci->op_regs->status));
752}
753
754/*
755 * Shutdown HC (not bus-specific)
756 *
757 * This is called when the machine is rebooting or halting. We assume that the
758 * machine will be powered off, and the HC's internal state will be reset.
759 * Don't bother to free memory.
760 *
761 * This will only ever be called with the main usb_hcd (the USB3 roothub).
762 */
763void xhci_shutdown(struct usb_hcd *hcd)
764{
765 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
766
767 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
768 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
769
770 spin_lock_irq(&xhci->lock);
771 xhci_halt(xhci);
772 spin_unlock_irq(&xhci->lock);
773
774 xhci_cleanup_msix(xhci);
775
776 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
777 xhci_readl(xhci, &xhci->op_regs->status));
778}
779
780#ifdef CONFIG_PM
781static void xhci_save_registers(struct xhci_hcd *xhci)
782{
783 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
784 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
785 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
786 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
787 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
788 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
789 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
790 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
791 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
792}
793
794static void xhci_restore_registers(struct xhci_hcd *xhci)
795{
796 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
797 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
798 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
799 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
800 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
801 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
802 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
803 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
804 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
805}
806
807static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
808{
809 u64 val_64;
810
811 /* step 2: initialize command ring buffer */
812 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
813 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
814 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
815 xhci->cmd_ring->dequeue) &
816 (u64) ~CMD_RING_RSVD_BITS) |
817 xhci->cmd_ring->cycle_state;
818 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
819 (long unsigned long) val_64);
820 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
821}
822
823/*
824 * The whole command ring must be cleared to zero when we suspend the host.
825 *
826 * The host doesn't save the command ring pointer in the suspend well, so we
827 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
828 * aligned, because of the reserved bits in the command ring dequeue pointer
829 * register. Therefore, we can't just set the dequeue pointer back in the
830 * middle of the ring (TRBs are 16-byte aligned).
831 */
832static void xhci_clear_command_ring(struct xhci_hcd *xhci)
833{
834 struct xhci_ring *ring;
835 struct xhci_segment *seg;
836
837 ring = xhci->cmd_ring;
838 seg = ring->deq_seg;
839 do {
840 memset(seg->trbs, 0,
841 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
842 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
843 cpu_to_le32(~TRB_CYCLE);
844 seg = seg->next;
845 } while (seg != ring->deq_seg);
846
847 /* Reset the software enqueue and dequeue pointers */
848 ring->deq_seg = ring->first_seg;
849 ring->dequeue = ring->first_seg->trbs;
850 ring->enq_seg = ring->deq_seg;
851 ring->enqueue = ring->dequeue;
852
853 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
854 /*
855 * Ring is now zeroed, so the HW should look for change of ownership
856 * when the cycle bit is set to 1.
857 */
858 ring->cycle_state = 1;
859
860 /*
861 * Reset the hardware dequeue pointer.
862 * Yes, this will need to be re-written after resume, but we're paranoid
863 * and want to make sure the hardware doesn't access bogus memory
864 * because, say, the BIOS or an SMI started the host without changing
865 * the command ring pointers.
866 */
867 xhci_set_cmd_ring_deq(xhci);
868}
869
870/*
871 * Stop HC (not bus-specific)
872 *
873 * This is called when the machine transition into S3/S4 mode.
874 *
875 */
876int xhci_suspend(struct xhci_hcd *xhci)
877{
878 int rc = 0;
879 struct usb_hcd *hcd = xhci_to_hcd(xhci);
880 u32 command;
881
882 spin_lock_irq(&xhci->lock);
883 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
884 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
885 /* step 1: stop endpoint */
886 /* skipped assuming that port suspend has done */
887
888 /* step 2: clear Run/Stop bit */
889 command = xhci_readl(xhci, &xhci->op_regs->command);
890 command &= ~CMD_RUN;
891 xhci_writel(xhci, command, &xhci->op_regs->command);
892 if (handshake(xhci, &xhci->op_regs->status,
893 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
894 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
895 spin_unlock_irq(&xhci->lock);
896 return -ETIMEDOUT;
897 }
898 xhci_clear_command_ring(xhci);
899
900 /* step 3: save registers */
901 xhci_save_registers(xhci);
902
903 /* step 4: set CSS flag */
904 command = xhci_readl(xhci, &xhci->op_regs->command);
905 command |= CMD_CSS;
906 xhci_writel(xhci, command, &xhci->op_regs->command);
907 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
908 xhci_warn(xhci, "WARN: xHC save state timeout\n");
909 spin_unlock_irq(&xhci->lock);
910 return -ETIMEDOUT;
911 }
912 spin_unlock_irq(&xhci->lock);
913
914 /*
915 * Deleting Compliance Mode Recovery Timer because the xHCI Host
916 * is about to be suspended.
917 */
918 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
919 (!(xhci_all_ports_seen_u0(xhci)))) {
920 del_timer_sync(&xhci->comp_mode_recovery_timer);
921 xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
922 }
923
924 /* step 5: remove core well power */
925 /* synchronize irq when using MSI-X */
926 xhci_msix_sync_irqs(xhci);
927
928 return rc;
929}
930
931/*
932 * start xHC (not bus-specific)
933 *
934 * This is called when the machine transition from S3/S4 mode.
935 *
936 */
937int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
938{
939 u32 command, temp = 0;
940 struct usb_hcd *hcd = xhci_to_hcd(xhci);
941 struct usb_hcd *secondary_hcd;
942 int retval = 0;
943
944 /* Wait a bit if either of the roothubs need to settle from the
945 * transition into bus suspend.
946 */
947 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
948 time_before(jiffies,
949 xhci->bus_state[1].next_statechange))
950 msleep(100);
951
952 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
953 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
954
955 spin_lock_irq(&xhci->lock);
956 if (xhci->quirks & XHCI_RESET_ON_RESUME)
957 hibernated = true;
958
959 if (!hibernated) {
960 /* step 1: restore register */
961 xhci_restore_registers(xhci);
962 /* step 2: initialize command ring buffer */
963 xhci_set_cmd_ring_deq(xhci);
964 /* step 3: restore state and start state*/
965 /* step 3: set CRS flag */
966 command = xhci_readl(xhci, &xhci->op_regs->command);
967 command |= CMD_CRS;
968 xhci_writel(xhci, command, &xhci->op_regs->command);
969 if (handshake(xhci, &xhci->op_regs->status,
970 STS_RESTORE, 0, 10 * 1000)) {
971 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
972 spin_unlock_irq(&xhci->lock);
973 return -ETIMEDOUT;
974 }
975 temp = xhci_readl(xhci, &xhci->op_regs->status);
976 }
977
978 /* If restore operation fails, re-initialize the HC during resume */
979 if ((temp & STS_SRE) || hibernated) {
980 /* Let the USB core know _both_ roothubs lost power. */
981 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
982 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
983
984 xhci_dbg(xhci, "Stop HCD\n");
985 xhci_halt(xhci);
986 xhci_reset(xhci);
987 spin_unlock_irq(&xhci->lock);
988 xhci_cleanup_msix(xhci);
989
990#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
991 /* Tell the event ring poll function not to reschedule */
992 xhci->zombie = 1;
993 del_timer_sync(&xhci->event_ring_timer);
994#endif
995
996 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
997 temp = xhci_readl(xhci, &xhci->op_regs->status);
998 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
999 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1000 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1001 &xhci->ir_set->irq_pending);
1002 xhci_print_ir_set(xhci, 0);
1003
1004 xhci_dbg(xhci, "cleaning up memory\n");
1005 xhci_mem_cleanup(xhci);
1006 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1007 xhci_readl(xhci, &xhci->op_regs->status));
1008
1009 /* USB core calls the PCI reinit and start functions twice:
1010 * first with the primary HCD, and then with the secondary HCD.
1011 * If we don't do the same, the host will never be started.
1012 */
1013 if (!usb_hcd_is_primary_hcd(hcd))
1014 secondary_hcd = hcd;
1015 else
1016 secondary_hcd = xhci->shared_hcd;
1017
1018 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1019 retval = xhci_init(hcd->primary_hcd);
1020 if (retval)
1021 return retval;
1022 xhci_dbg(xhci, "Start the primary HCD\n");
1023 retval = xhci_run(hcd->primary_hcd);
1024 if (!retval) {
1025 xhci_dbg(xhci, "Start the secondary HCD\n");
1026 retval = xhci_run(secondary_hcd);
1027 }
1028 hcd->state = HC_STATE_SUSPENDED;
1029 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030 goto done;
1031 }
1032
1033 /* step 4: set Run/Stop bit */
1034 command = xhci_readl(xhci, &xhci->op_regs->command);
1035 command |= CMD_RUN;
1036 xhci_writel(xhci, command, &xhci->op_regs->command);
1037 handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038 0, 250 * 1000);
1039
1040 /* step 5: walk topology and initialize portsc,
1041 * portpmsc and portli
1042 */
1043 /* this is done in bus_resume */
1044
1045 /* step 6: restart each of the previously
1046 * Running endpoints by ringing their doorbells
1047 */
1048
1049 spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052 if (retval == 0) {
1053 usb_hcd_resume_root_hub(hcd);
1054 usb_hcd_resume_root_hub(xhci->shared_hcd);
1055 }
1056
1057 /*
1058 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059 * be re-initialized Always after a system resume. Ports are subject
1060 * to suffer the Compliance Mode issue again. It doesn't matter if
1061 * ports have entered previously to U0 before system's suspension.
1062 */
1063 if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1064 compliance_mode_recovery_timer_init(xhci);
1065
1066 return retval;
1067}
1068#endif /* CONFIG_PM */
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1074 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1075 * value to right shift 1 for the bitmask.
1076 *
1077 * Index = (epnum * 2) + direction - 1,
1078 * where direction = 0 for OUT, 1 for IN.
1079 * For control endpoints, the IN index is used (OUT index is unused), so
1080 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1081 */
1082unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1083{
1084 unsigned int index;
1085 if (usb_endpoint_xfer_control(desc))
1086 index = (unsigned int) (usb_endpoint_num(desc)*2);
1087 else
1088 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1089 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1090 return index;
1091}
1092
1093/* Find the flag for this endpoint (for use in the control context). Use the
1094 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1095 * bit 1, etc.
1096 */
1097unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1098{
1099 return 1 << (xhci_get_endpoint_index(desc) + 1);
1100}
1101
1102/* Find the flag for this endpoint (for use in the control context). Use the
1103 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1104 * bit 1, etc.
1105 */
1106unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1107{
1108 return 1 << (ep_index + 1);
1109}
1110
1111/* Compute the last valid endpoint context index. Basically, this is the
1112 * endpoint index plus one. For slot contexts with more than valid endpoint,
1113 * we find the most significant bit set in the added contexts flags.
1114 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1115 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1116 */
1117unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1118{
1119 return fls(added_ctxs) - 1;
1120}
1121
1122/* Returns 1 if the arguments are OK;
1123 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1124 */
1125static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1126 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1127 const char *func) {
1128 struct xhci_hcd *xhci;
1129 struct xhci_virt_device *virt_dev;
1130
1131 if (!hcd || (check_ep && !ep) || !udev) {
1132 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1133 func);
1134 return -EINVAL;
1135 }
1136 if (!udev->parent) {
1137 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1138 func);
1139 return 0;
1140 }
1141
1142 xhci = hcd_to_xhci(hcd);
1143 if (xhci->xhc_state & XHCI_STATE_HALTED)
1144 return -ENODEV;
1145
1146 if (check_virt_dev) {
1147 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1148 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1149 "device\n", func);
1150 return -EINVAL;
1151 }
1152
1153 virt_dev = xhci->devs[udev->slot_id];
1154 if (virt_dev->udev != udev) {
1155 printk(KERN_DEBUG "xHCI %s called with udev and "
1156 "virt_dev does not match\n", func);
1157 return -EINVAL;
1158 }
1159 }
1160
1161 return 1;
1162}
1163
1164static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1165 struct usb_device *udev, struct xhci_command *command,
1166 bool ctx_change, bool must_succeed);
1167
1168/*
1169 * Full speed devices may have a max packet size greater than 8 bytes, but the
1170 * USB core doesn't know that until it reads the first 8 bytes of the
1171 * descriptor. If the usb_device's max packet size changes after that point,
1172 * we need to issue an evaluate context command and wait on it.
1173 */
1174static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1175 unsigned int ep_index, struct urb *urb)
1176{
1177 struct xhci_container_ctx *in_ctx;
1178 struct xhci_container_ctx *out_ctx;
1179 struct xhci_input_control_ctx *ctrl_ctx;
1180 struct xhci_ep_ctx *ep_ctx;
1181 int max_packet_size;
1182 int hw_max_packet_size;
1183 int ret = 0;
1184
1185 out_ctx = xhci->devs[slot_id]->out_ctx;
1186 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1187 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1188 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1189 if (hw_max_packet_size != max_packet_size) {
1190 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1191 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1192 max_packet_size);
1193 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1194 hw_max_packet_size);
1195 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1196
1197 /* Set up the modified control endpoint 0 */
1198 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1199 xhci->devs[slot_id]->out_ctx, ep_index);
1200 in_ctx = xhci->devs[slot_id]->in_ctx;
1201 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1202 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1203 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1204
1205 /* Set up the input context flags for the command */
1206 /* FIXME: This won't work if a non-default control endpoint
1207 * changes max packet sizes.
1208 */
1209 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1210 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1211 ctrl_ctx->drop_flags = 0;
1212
1213 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1214 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1215 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1216 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1217
1218 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1219 true, false);
1220
1221 /* Clean up the input context for later use by bandwidth
1222 * functions.
1223 */
1224 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1225 }
1226 return ret;
1227}
1228
1229/*
1230 * non-error returns are a promise to giveback() the urb later
1231 * we drop ownership so next owner (or urb unlink) can get it
1232 */
1233int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1234{
1235 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1236 struct xhci_td *buffer;
1237 unsigned long flags;
1238 int ret = 0;
1239 unsigned int slot_id, ep_index;
1240 struct urb_priv *urb_priv;
1241 int size, i;
1242
1243 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1244 true, true, __func__) <= 0)
1245 return -EINVAL;
1246
1247 slot_id = urb->dev->slot_id;
1248 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1249
1250 if (!HCD_HW_ACCESSIBLE(hcd)) {
1251 if (!in_interrupt())
1252 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1253 ret = -ESHUTDOWN;
1254 goto exit;
1255 }
1256
1257 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1258 size = urb->number_of_packets;
1259 else
1260 size = 1;
1261
1262 urb_priv = kzalloc(sizeof(struct urb_priv) +
1263 size * sizeof(struct xhci_td *), mem_flags);
1264 if (!urb_priv)
1265 return -ENOMEM;
1266
1267 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1268 if (!buffer) {
1269 kfree(urb_priv);
1270 return -ENOMEM;
1271 }
1272
1273 for (i = 0; i < size; i++) {
1274 urb_priv->td[i] = buffer;
1275 buffer++;
1276 }
1277
1278 urb_priv->length = size;
1279 urb_priv->td_cnt = 0;
1280 urb->hcpriv = urb_priv;
1281
1282 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1283 /* Check to see if the max packet size for the default control
1284 * endpoint changed during FS device enumeration
1285 */
1286 if (urb->dev->speed == USB_SPEED_FULL) {
1287 ret = xhci_check_maxpacket(xhci, slot_id,
1288 ep_index, urb);
1289 if (ret < 0) {
1290 xhci_urb_free_priv(xhci, urb_priv);
1291 urb->hcpriv = NULL;
1292 return ret;
1293 }
1294 }
1295
1296 /* We have a spinlock and interrupts disabled, so we must pass
1297 * atomic context to this function, which may allocate memory.
1298 */
1299 spin_lock_irqsave(&xhci->lock, flags);
1300 if (xhci->xhc_state & XHCI_STATE_DYING)
1301 goto dying;
1302 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1303 slot_id, ep_index);
1304 if (ret)
1305 goto free_priv;
1306 spin_unlock_irqrestore(&xhci->lock, flags);
1307 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1308 spin_lock_irqsave(&xhci->lock, flags);
1309 if (xhci->xhc_state & XHCI_STATE_DYING)
1310 goto dying;
1311 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1312 EP_GETTING_STREAMS) {
1313 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1314 "is transitioning to using streams.\n");
1315 ret = -EINVAL;
1316 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1317 EP_GETTING_NO_STREAMS) {
1318 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1319 "is transitioning to "
1320 "not having streams.\n");
1321 ret = -EINVAL;
1322 } else {
1323 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1324 slot_id, ep_index);
1325 }
1326 if (ret)
1327 goto free_priv;
1328 spin_unlock_irqrestore(&xhci->lock, flags);
1329 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1330 spin_lock_irqsave(&xhci->lock, flags);
1331 if (xhci->xhc_state & XHCI_STATE_DYING)
1332 goto dying;
1333 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1334 slot_id, ep_index);
1335 if (ret)
1336 goto free_priv;
1337 spin_unlock_irqrestore(&xhci->lock, flags);
1338 } else {
1339 spin_lock_irqsave(&xhci->lock, flags);
1340 if (xhci->xhc_state & XHCI_STATE_DYING)
1341 goto dying;
1342 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1343 slot_id, ep_index);
1344 if (ret)
1345 goto free_priv;
1346 spin_unlock_irqrestore(&xhci->lock, flags);
1347 }
1348exit:
1349 return ret;
1350dying:
1351 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1352 "non-responsive xHCI host.\n",
1353 urb->ep->desc.bEndpointAddress, urb);
1354 ret = -ESHUTDOWN;
1355free_priv:
1356 xhci_urb_free_priv(xhci, urb_priv);
1357 urb->hcpriv = NULL;
1358 spin_unlock_irqrestore(&xhci->lock, flags);
1359 return ret;
1360}
1361
1362/* Get the right ring for the given URB.
1363 * If the endpoint supports streams, boundary check the URB's stream ID.
1364 * If the endpoint doesn't support streams, return the singular endpoint ring.
1365 */
1366static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1367 struct urb *urb)
1368{
1369 unsigned int slot_id;
1370 unsigned int ep_index;
1371 unsigned int stream_id;
1372 struct xhci_virt_ep *ep;
1373
1374 slot_id = urb->dev->slot_id;
1375 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1376 stream_id = urb->stream_id;
1377 ep = &xhci->devs[slot_id]->eps[ep_index];
1378 /* Common case: no streams */
1379 if (!(ep->ep_state & EP_HAS_STREAMS))
1380 return ep->ring;
1381
1382 if (stream_id == 0) {
1383 xhci_warn(xhci,
1384 "WARN: Slot ID %u, ep index %u has streams, "
1385 "but URB has no stream ID.\n",
1386 slot_id, ep_index);
1387 return NULL;
1388 }
1389
1390 if (stream_id < ep->stream_info->num_streams)
1391 return ep->stream_info->stream_rings[stream_id];
1392
1393 xhci_warn(xhci,
1394 "WARN: Slot ID %u, ep index %u has "
1395 "stream IDs 1 to %u allocated, "
1396 "but stream ID %u is requested.\n",
1397 slot_id, ep_index,
1398 ep->stream_info->num_streams - 1,
1399 stream_id);
1400 return NULL;
1401}
1402
1403/*
1404 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1405 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1406 * should pick up where it left off in the TD, unless a Set Transfer Ring
1407 * Dequeue Pointer is issued.
1408 *
1409 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1410 * the ring. Since the ring is a contiguous structure, they can't be physically
1411 * removed. Instead, there are two options:
1412 *
1413 * 1) If the HC is in the middle of processing the URB to be canceled, we
1414 * simply move the ring's dequeue pointer past those TRBs using the Set
1415 * Transfer Ring Dequeue Pointer command. This will be the common case,
1416 * when drivers timeout on the last submitted URB and attempt to cancel.
1417 *
1418 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1419 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1420 * HC will need to invalidate the any TRBs it has cached after the stop
1421 * endpoint command, as noted in the xHCI 0.95 errata.
1422 *
1423 * 3) The TD may have completed by the time the Stop Endpoint Command
1424 * completes, so software needs to handle that case too.
1425 *
1426 * This function should protect against the TD enqueueing code ringing the
1427 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1428 * It also needs to account for multiple cancellations on happening at the same
1429 * time for the same endpoint.
1430 *
1431 * Note that this function can be called in any context, or so says
1432 * usb_hcd_unlink_urb()
1433 */
1434int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1435{
1436 unsigned long flags;
1437 int ret, i;
1438 u32 temp;
1439 struct xhci_hcd *xhci;
1440 struct urb_priv *urb_priv;
1441 struct xhci_td *td;
1442 unsigned int ep_index;
1443 struct xhci_ring *ep_ring;
1444 struct xhci_virt_ep *ep;
1445
1446 xhci = hcd_to_xhci(hcd);
1447 spin_lock_irqsave(&xhci->lock, flags);
1448 /* Make sure the URB hasn't completed or been unlinked already */
1449 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1450 if (ret || !urb->hcpriv)
1451 goto done;
1452 temp = xhci_readl(xhci, &xhci->op_regs->status);
1453 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1454 xhci_dbg(xhci, "HW died, freeing TD.\n");
1455 urb_priv = urb->hcpriv;
1456 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1457 td = urb_priv->td[i];
1458 if (!list_empty(&td->td_list))
1459 list_del_init(&td->td_list);
1460 if (!list_empty(&td->cancelled_td_list))
1461 list_del_init(&td->cancelled_td_list);
1462 }
1463
1464 usb_hcd_unlink_urb_from_ep(hcd, urb);
1465 spin_unlock_irqrestore(&xhci->lock, flags);
1466 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1467 xhci_urb_free_priv(xhci, urb_priv);
1468 return ret;
1469 }
1470 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1471 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1472 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1473 "non-responsive xHCI host.\n",
1474 urb->ep->desc.bEndpointAddress, urb);
1475 /* Let the stop endpoint command watchdog timer (which set this
1476 * state) finish cleaning up the endpoint TD lists. We must
1477 * have caught it in the middle of dropping a lock and giving
1478 * back an URB.
1479 */
1480 goto done;
1481 }
1482
1483 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1484 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1485 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1486 if (!ep_ring) {
1487 ret = -EINVAL;
1488 goto done;
1489 }
1490
1491 urb_priv = urb->hcpriv;
1492 i = urb_priv->td_cnt;
1493 if (i < urb_priv->length)
1494 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1495 "starting at offset 0x%llx\n",
1496 urb, urb->dev->devpath,
1497 urb->ep->desc.bEndpointAddress,
1498 (unsigned long long) xhci_trb_virt_to_dma(
1499 urb_priv->td[i]->start_seg,
1500 urb_priv->td[i]->first_trb));
1501
1502 for (; i < urb_priv->length; i++) {
1503 td = urb_priv->td[i];
1504 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1505 }
1506
1507 /* Queue a stop endpoint command, but only if this is
1508 * the first cancellation to be handled.
1509 */
1510 if (!(ep->ep_state & EP_HALT_PENDING)) {
1511 ep->ep_state |= EP_HALT_PENDING;
1512 ep->stop_cmds_pending++;
1513 ep->stop_cmd_timer.expires = jiffies +
1514 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1515 add_timer(&ep->stop_cmd_timer);
1516 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1517 xhci_ring_cmd_db(xhci);
1518 }
1519done:
1520 spin_unlock_irqrestore(&xhci->lock, flags);
1521 return ret;
1522}
1523
1524/* Drop an endpoint from a new bandwidth configuration for this device.
1525 * Only one call to this function is allowed per endpoint before
1526 * check_bandwidth() or reset_bandwidth() must be called.
1527 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1528 * add the endpoint to the schedule with possibly new parameters denoted by a
1529 * different endpoint descriptor in usb_host_endpoint.
1530 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1531 * not allowed.
1532 *
1533 * The USB core will not allow URBs to be queued to an endpoint that is being
1534 * disabled, so there's no need for mutual exclusion to protect
1535 * the xhci->devs[slot_id] structure.
1536 */
1537int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1538 struct usb_host_endpoint *ep)
1539{
1540 struct xhci_hcd *xhci;
1541 struct xhci_container_ctx *in_ctx, *out_ctx;
1542 struct xhci_input_control_ctx *ctrl_ctx;
1543 struct xhci_slot_ctx *slot_ctx;
1544 unsigned int last_ctx;
1545 unsigned int ep_index;
1546 struct xhci_ep_ctx *ep_ctx;
1547 u32 drop_flag;
1548 u32 new_add_flags, new_drop_flags, new_slot_info;
1549 int ret;
1550
1551 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1552 if (ret <= 0)
1553 return ret;
1554 xhci = hcd_to_xhci(hcd);
1555 if (xhci->xhc_state & XHCI_STATE_DYING)
1556 return -ENODEV;
1557
1558 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1559 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1560 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1561 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1562 __func__, drop_flag);
1563 return 0;
1564 }
1565
1566 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1567 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1568 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1569 ep_index = xhci_get_endpoint_index(&ep->desc);
1570 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1571 /* If the HC already knows the endpoint is disabled,
1572 * or the HCD has noted it is disabled, ignore this request
1573 */
1574 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1575 cpu_to_le32(EP_STATE_DISABLED)) ||
1576 le32_to_cpu(ctrl_ctx->drop_flags) &
1577 xhci_get_endpoint_flag(&ep->desc)) {
1578 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1579 __func__, ep);
1580 return 0;
1581 }
1582
1583 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1584 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1587 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1588
1589 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1590 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1591 /* Update the last valid endpoint context, if we deleted the last one */
1592 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1593 LAST_CTX(last_ctx)) {
1594 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1595 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1596 }
1597 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1598
1599 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1600
1601 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1602 (unsigned int) ep->desc.bEndpointAddress,
1603 udev->slot_id,
1604 (unsigned int) new_drop_flags,
1605 (unsigned int) new_add_flags,
1606 (unsigned int) new_slot_info);
1607 return 0;
1608}
1609
1610/* Add an endpoint to a new possible bandwidth configuration for this device.
1611 * Only one call to this function is allowed per endpoint before
1612 * check_bandwidth() or reset_bandwidth() must be called.
1613 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1614 * add the endpoint to the schedule with possibly new parameters denoted by a
1615 * different endpoint descriptor in usb_host_endpoint.
1616 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1617 * not allowed.
1618 *
1619 * The USB core will not allow URBs to be queued to an endpoint until the
1620 * configuration or alt setting is installed in the device, so there's no need
1621 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1622 */
1623int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1624 struct usb_host_endpoint *ep)
1625{
1626 struct xhci_hcd *xhci;
1627 struct xhci_container_ctx *in_ctx, *out_ctx;
1628 unsigned int ep_index;
1629 struct xhci_ep_ctx *ep_ctx;
1630 struct xhci_slot_ctx *slot_ctx;
1631 struct xhci_input_control_ctx *ctrl_ctx;
1632 u32 added_ctxs;
1633 unsigned int last_ctx;
1634 u32 new_add_flags, new_drop_flags, new_slot_info;
1635 struct xhci_virt_device *virt_dev;
1636 int ret = 0;
1637
1638 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639 if (ret <= 0) {
1640 /* So we won't queue a reset ep command for a root hub */
1641 ep->hcpriv = NULL;
1642 return ret;
1643 }
1644 xhci = hcd_to_xhci(hcd);
1645 if (xhci->xhc_state & XHCI_STATE_DYING)
1646 return -ENODEV;
1647
1648 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651 /* FIXME when we have to issue an evaluate endpoint command to
1652 * deal with ep0 max packet size changing once we get the
1653 * descriptors
1654 */
1655 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656 __func__, added_ctxs);
1657 return 0;
1658 }
1659
1660 virt_dev = xhci->devs[udev->slot_id];
1661 in_ctx = virt_dev->in_ctx;
1662 out_ctx = virt_dev->out_ctx;
1663 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664 ep_index = xhci_get_endpoint_index(&ep->desc);
1665 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1666
1667 /* If this endpoint is already in use, and the upper layers are trying
1668 * to add it again without dropping it, reject the addition.
1669 */
1670 if (virt_dev->eps[ep_index].ring &&
1671 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1672 xhci_get_endpoint_flag(&ep->desc))) {
1673 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1674 "without dropping it.\n",
1675 (unsigned int) ep->desc.bEndpointAddress);
1676 return -EINVAL;
1677 }
1678
1679 /* If the HCD has already noted the endpoint is enabled,
1680 * ignore this request.
1681 */
1682 if (le32_to_cpu(ctrl_ctx->add_flags) &
1683 xhci_get_endpoint_flag(&ep->desc)) {
1684 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1685 __func__, ep);
1686 return 0;
1687 }
1688
1689 /*
1690 * Configuration and alternate setting changes must be done in
1691 * process context, not interrupt context (or so documenation
1692 * for usb_set_interface() and usb_set_configuration() claim).
1693 */
1694 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1695 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1696 __func__, ep->desc.bEndpointAddress);
1697 return -ENOMEM;
1698 }
1699
1700 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1701 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1702
1703 /* If xhci_endpoint_disable() was called for this endpoint, but the
1704 * xHC hasn't been notified yet through the check_bandwidth() call,
1705 * this re-adds a new state for the endpoint from the new endpoint
1706 * descriptors. We must drop and re-add this endpoint, so we leave the
1707 * drop flags alone.
1708 */
1709 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1710
1711 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1712 /* Update the last valid endpoint context, if we just added one past */
1713 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1714 LAST_CTX(last_ctx)) {
1715 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1716 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1717 }
1718 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1719
1720 /* Store the usb_device pointer for later use */
1721 ep->hcpriv = udev;
1722
1723 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1724 (unsigned int) ep->desc.bEndpointAddress,
1725 udev->slot_id,
1726 (unsigned int) new_drop_flags,
1727 (unsigned int) new_add_flags,
1728 (unsigned int) new_slot_info);
1729 return 0;
1730}
1731
1732static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1733{
1734 struct xhci_input_control_ctx *ctrl_ctx;
1735 struct xhci_ep_ctx *ep_ctx;
1736 struct xhci_slot_ctx *slot_ctx;
1737 int i;
1738
1739 /* When a device's add flag and drop flag are zero, any subsequent
1740 * configure endpoint command will leave that endpoint's state
1741 * untouched. Make sure we don't leave any old state in the input
1742 * endpoint contexts.
1743 */
1744 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1745 ctrl_ctx->drop_flags = 0;
1746 ctrl_ctx->add_flags = 0;
1747 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1748 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1749 /* Endpoint 0 is always valid */
1750 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1751 for (i = 1; i < 31; ++i) {
1752 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1753 ep_ctx->ep_info = 0;
1754 ep_ctx->ep_info2 = 0;
1755 ep_ctx->deq = 0;
1756 ep_ctx->tx_info = 0;
1757 }
1758}
1759
1760static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1761 struct usb_device *udev, u32 *cmd_status)
1762{
1763 int ret;
1764
1765 switch (*cmd_status) {
1766 case COMP_ENOMEM:
1767 dev_warn(&udev->dev, "Not enough host controller resources "
1768 "for new device state.\n");
1769 ret = -ENOMEM;
1770 /* FIXME: can we allocate more resources for the HC? */
1771 break;
1772 case COMP_BW_ERR:
1773 case COMP_2ND_BW_ERR:
1774 dev_warn(&udev->dev, "Not enough bandwidth "
1775 "for new device state.\n");
1776 ret = -ENOSPC;
1777 /* FIXME: can we go back to the old state? */
1778 break;
1779 case COMP_TRB_ERR:
1780 /* the HCD set up something wrong */
1781 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1782 "add flag = 1, "
1783 "and endpoint is not disabled.\n");
1784 ret = -EINVAL;
1785 break;
1786 case COMP_DEV_ERR:
1787 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1788 "configure command.\n");
1789 ret = -ENODEV;
1790 break;
1791 case COMP_SUCCESS:
1792 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1793 ret = 0;
1794 break;
1795 default:
1796 xhci_err(xhci, "ERROR: unexpected command completion "
1797 "code 0x%x.\n", *cmd_status);
1798 ret = -EINVAL;
1799 break;
1800 }
1801 return ret;
1802}
1803
1804static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1805 struct usb_device *udev, u32 *cmd_status)
1806{
1807 int ret;
1808 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1809
1810 switch (*cmd_status) {
1811 case COMP_EINVAL:
1812 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1813 "context command.\n");
1814 ret = -EINVAL;
1815 break;
1816 case COMP_EBADSLT:
1817 dev_warn(&udev->dev, "WARN: slot not enabled for"
1818 "evaluate context command.\n");
1819 case COMP_CTX_STATE:
1820 dev_warn(&udev->dev, "WARN: invalid context state for "
1821 "evaluate context command.\n");
1822 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1823 ret = -EINVAL;
1824 break;
1825 case COMP_DEV_ERR:
1826 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1827 "context command.\n");
1828 ret = -ENODEV;
1829 break;
1830 case COMP_MEL_ERR:
1831 /* Max Exit Latency too large error */
1832 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1833 ret = -EINVAL;
1834 break;
1835 case COMP_SUCCESS:
1836 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1837 ret = 0;
1838 break;
1839 default:
1840 xhci_err(xhci, "ERROR: unexpected command completion "
1841 "code 0x%x.\n", *cmd_status);
1842 ret = -EINVAL;
1843 break;
1844 }
1845 return ret;
1846}
1847
1848static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1849 struct xhci_container_ctx *in_ctx)
1850{
1851 struct xhci_input_control_ctx *ctrl_ctx;
1852 u32 valid_add_flags;
1853 u32 valid_drop_flags;
1854
1855 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1856 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1857 * (bit 1). The default control endpoint is added during the Address
1858 * Device command and is never removed until the slot is disabled.
1859 */
1860 valid_add_flags = ctrl_ctx->add_flags >> 2;
1861 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1862
1863 /* Use hweight32 to count the number of ones in the add flags, or
1864 * number of endpoints added. Don't count endpoints that are changed
1865 * (both added and dropped).
1866 */
1867 return hweight32(valid_add_flags) -
1868 hweight32(valid_add_flags & valid_drop_flags);
1869}
1870
1871static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1872 struct xhci_container_ctx *in_ctx)
1873{
1874 struct xhci_input_control_ctx *ctrl_ctx;
1875 u32 valid_add_flags;
1876 u32 valid_drop_flags;
1877
1878 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1879 valid_add_flags = ctrl_ctx->add_flags >> 2;
1880 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1881
1882 return hweight32(valid_drop_flags) -
1883 hweight32(valid_add_flags & valid_drop_flags);
1884}
1885
1886/*
1887 * We need to reserve the new number of endpoints before the configure endpoint
1888 * command completes. We can't subtract the dropped endpoints from the number
1889 * of active endpoints until the command completes because we can oversubscribe
1890 * the host in this case:
1891 *
1892 * - the first configure endpoint command drops more endpoints than it adds
1893 * - a second configure endpoint command that adds more endpoints is queued
1894 * - the first configure endpoint command fails, so the config is unchanged
1895 * - the second command may succeed, even though there isn't enough resources
1896 *
1897 * Must be called with xhci->lock held.
1898 */
1899static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1900 struct xhci_container_ctx *in_ctx)
1901{
1902 u32 added_eps;
1903
1904 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1905 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1906 xhci_dbg(xhci, "Not enough ep ctxs: "
1907 "%u active, need to add %u, limit is %u.\n",
1908 xhci->num_active_eps, added_eps,
1909 xhci->limit_active_eps);
1910 return -ENOMEM;
1911 }
1912 xhci->num_active_eps += added_eps;
1913 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1914 xhci->num_active_eps);
1915 return 0;
1916}
1917
1918/*
1919 * The configure endpoint was failed by the xHC for some other reason, so we
1920 * need to revert the resources that failed configuration would have used.
1921 *
1922 * Must be called with xhci->lock held.
1923 */
1924static void xhci_free_host_resources(struct xhci_hcd *xhci,
1925 struct xhci_container_ctx *in_ctx)
1926{
1927 u32 num_failed_eps;
1928
1929 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1930 xhci->num_active_eps -= num_failed_eps;
1931 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1932 num_failed_eps,
1933 xhci->num_active_eps);
1934}
1935
1936/*
1937 * Now that the command has completed, clean up the active endpoint count by
1938 * subtracting out the endpoints that were dropped (but not changed).
1939 *
1940 * Must be called with xhci->lock held.
1941 */
1942static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1943 struct xhci_container_ctx *in_ctx)
1944{
1945 u32 num_dropped_eps;
1946
1947 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1948 xhci->num_active_eps -= num_dropped_eps;
1949 if (num_dropped_eps)
1950 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1951 num_dropped_eps,
1952 xhci->num_active_eps);
1953}
1954
1955unsigned int xhci_get_block_size(struct usb_device *udev)
1956{
1957 switch (udev->speed) {
1958 case USB_SPEED_LOW:
1959 case USB_SPEED_FULL:
1960 return FS_BLOCK;
1961 case USB_SPEED_HIGH:
1962 return HS_BLOCK;
1963 case USB_SPEED_SUPER:
1964 return SS_BLOCK;
1965 case USB_SPEED_UNKNOWN:
1966 case USB_SPEED_WIRELESS:
1967 default:
1968 /* Should never happen */
1969 return 1;
1970 }
1971}
1972
1973unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1974{
1975 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1976 return LS_OVERHEAD;
1977 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1978 return FS_OVERHEAD;
1979 return HS_OVERHEAD;
1980}
1981
1982/* If we are changing a LS/FS device under a HS hub,
1983 * make sure (if we are activating a new TT) that the HS bus has enough
1984 * bandwidth for this new TT.
1985 */
1986static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1987 struct xhci_virt_device *virt_dev,
1988 int old_active_eps)
1989{
1990 struct xhci_interval_bw_table *bw_table;
1991 struct xhci_tt_bw_info *tt_info;
1992
1993 /* Find the bandwidth table for the root port this TT is attached to. */
1994 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1995 tt_info = virt_dev->tt_info;
1996 /* If this TT already had active endpoints, the bandwidth for this TT
1997 * has already been added. Removing all periodic endpoints (and thus
1998 * making the TT enactive) will only decrease the bandwidth used.
1999 */
2000 if (old_active_eps)
2001 return 0;
2002 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2003 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2004 return -ENOMEM;
2005 return 0;
2006 }
2007 /* Not sure why we would have no new active endpoints...
2008 *
2009 * Maybe because of an Evaluate Context change for a hub update or a
2010 * control endpoint 0 max packet size change?
2011 * FIXME: skip the bandwidth calculation in that case.
2012 */
2013 return 0;
2014}
2015
2016static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2017 struct xhci_virt_device *virt_dev)
2018{
2019 unsigned int bw_reserved;
2020
2021 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2022 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2023 return -ENOMEM;
2024
2025 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2026 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2027 return -ENOMEM;
2028
2029 return 0;
2030}
2031
2032/*
2033 * This algorithm is a very conservative estimate of the worst-case scheduling
2034 * scenario for any one interval. The hardware dynamically schedules the
2035 * packets, so we can't tell which microframe could be the limiting factor in
2036 * the bandwidth scheduling. This only takes into account periodic endpoints.
2037 *
2038 * Obviously, we can't solve an NP complete problem to find the minimum worst
2039 * case scenario. Instead, we come up with an estimate that is no less than
2040 * the worst case bandwidth used for any one microframe, but may be an
2041 * over-estimate.
2042 *
2043 * We walk the requirements for each endpoint by interval, starting with the
2044 * smallest interval, and place packets in the schedule where there is only one
2045 * possible way to schedule packets for that interval. In order to simplify
2046 * this algorithm, we record the largest max packet size for each interval, and
2047 * assume all packets will be that size.
2048 *
2049 * For interval 0, we obviously must schedule all packets for each interval.
2050 * The bandwidth for interval 0 is just the amount of data to be transmitted
2051 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2052 * the number of packets).
2053 *
2054 * For interval 1, we have two possible microframes to schedule those packets
2055 * in. For this algorithm, if we can schedule the same number of packets for
2056 * each possible scheduling opportunity (each microframe), we will do so. The
2057 * remaining number of packets will be saved to be transmitted in the gaps in
2058 * the next interval's scheduling sequence.
2059 *
2060 * As we move those remaining packets to be scheduled with interval 2 packets,
2061 * we have to double the number of remaining packets to transmit. This is
2062 * because the intervals are actually powers of 2, and we would be transmitting
2063 * the previous interval's packets twice in this interval. We also have to be
2064 * sure that when we look at the largest max packet size for this interval, we
2065 * also look at the largest max packet size for the remaining packets and take
2066 * the greater of the two.
2067 *
2068 * The algorithm continues to evenly distribute packets in each scheduling
2069 * opportunity, and push the remaining packets out, until we get to the last
2070 * interval. Then those packets and their associated overhead are just added
2071 * to the bandwidth used.
2072 */
2073static int xhci_check_bw_table(struct xhci_hcd *xhci,
2074 struct xhci_virt_device *virt_dev,
2075 int old_active_eps)
2076{
2077 unsigned int bw_reserved;
2078 unsigned int max_bandwidth;
2079 unsigned int bw_used;
2080 unsigned int block_size;
2081 struct xhci_interval_bw_table *bw_table;
2082 unsigned int packet_size = 0;
2083 unsigned int overhead = 0;
2084 unsigned int packets_transmitted = 0;
2085 unsigned int packets_remaining = 0;
2086 unsigned int i;
2087
2088 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2089 return xhci_check_ss_bw(xhci, virt_dev);
2090
2091 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2092 max_bandwidth = HS_BW_LIMIT;
2093 /* Convert percent of bus BW reserved to blocks reserved */
2094 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2095 } else {
2096 max_bandwidth = FS_BW_LIMIT;
2097 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2098 }
2099
2100 bw_table = virt_dev->bw_table;
2101 /* We need to translate the max packet size and max ESIT payloads into
2102 * the units the hardware uses.
2103 */
2104 block_size = xhci_get_block_size(virt_dev->udev);
2105
2106 /* If we are manipulating a LS/FS device under a HS hub, double check
2107 * that the HS bus has enough bandwidth if we are activing a new TT.
2108 */
2109 if (virt_dev->tt_info) {
2110 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2111 virt_dev->real_port);
2112 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2113 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2114 "newly activated TT.\n");
2115 return -ENOMEM;
2116 }
2117 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2118 virt_dev->tt_info->slot_id,
2119 virt_dev->tt_info->ttport);
2120 } else {
2121 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2122 virt_dev->real_port);
2123 }
2124
2125 /* Add in how much bandwidth will be used for interval zero, or the
2126 * rounded max ESIT payload + number of packets * largest overhead.
2127 */
2128 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2129 bw_table->interval_bw[0].num_packets *
2130 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2131
2132 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2133 unsigned int bw_added;
2134 unsigned int largest_mps;
2135 unsigned int interval_overhead;
2136
2137 /*
2138 * How many packets could we transmit in this interval?
2139 * If packets didn't fit in the previous interval, we will need
2140 * to transmit that many packets twice within this interval.
2141 */
2142 packets_remaining = 2 * packets_remaining +
2143 bw_table->interval_bw[i].num_packets;
2144
2145 /* Find the largest max packet size of this or the previous
2146 * interval.
2147 */
2148 if (list_empty(&bw_table->interval_bw[i].endpoints))
2149 largest_mps = 0;
2150 else {
2151 struct xhci_virt_ep *virt_ep;
2152 struct list_head *ep_entry;
2153
2154 ep_entry = bw_table->interval_bw[i].endpoints.next;
2155 virt_ep = list_entry(ep_entry,
2156 struct xhci_virt_ep, bw_endpoint_list);
2157 /* Convert to blocks, rounding up */
2158 largest_mps = DIV_ROUND_UP(
2159 virt_ep->bw_info.max_packet_size,
2160 block_size);
2161 }
2162 if (largest_mps > packet_size)
2163 packet_size = largest_mps;
2164
2165 /* Use the larger overhead of this or the previous interval. */
2166 interval_overhead = xhci_get_largest_overhead(
2167 &bw_table->interval_bw[i]);
2168 if (interval_overhead > overhead)
2169 overhead = interval_overhead;
2170
2171 /* How many packets can we evenly distribute across
2172 * (1 << (i + 1)) possible scheduling opportunities?
2173 */
2174 packets_transmitted = packets_remaining >> (i + 1);
2175
2176 /* Add in the bandwidth used for those scheduled packets */
2177 bw_added = packets_transmitted * (overhead + packet_size);
2178
2179 /* How many packets do we have remaining to transmit? */
2180 packets_remaining = packets_remaining % (1 << (i + 1));
2181
2182 /* What largest max packet size should those packets have? */
2183 /* If we've transmitted all packets, don't carry over the
2184 * largest packet size.
2185 */
2186 if (packets_remaining == 0) {
2187 packet_size = 0;
2188 overhead = 0;
2189 } else if (packets_transmitted > 0) {
2190 /* Otherwise if we do have remaining packets, and we've
2191 * scheduled some packets in this interval, take the
2192 * largest max packet size from endpoints with this
2193 * interval.
2194 */
2195 packet_size = largest_mps;
2196 overhead = interval_overhead;
2197 }
2198 /* Otherwise carry over packet_size and overhead from the last
2199 * time we had a remainder.
2200 */
2201 bw_used += bw_added;
2202 if (bw_used > max_bandwidth) {
2203 xhci_warn(xhci, "Not enough bandwidth. "
2204 "Proposed: %u, Max: %u\n",
2205 bw_used, max_bandwidth);
2206 return -ENOMEM;
2207 }
2208 }
2209 /*
2210 * Ok, we know we have some packets left over after even-handedly
2211 * scheduling interval 15. We don't know which microframes they will
2212 * fit into, so we over-schedule and say they will be scheduled every
2213 * microframe.
2214 */
2215 if (packets_remaining > 0)
2216 bw_used += overhead + packet_size;
2217
2218 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2219 unsigned int port_index = virt_dev->real_port - 1;
2220
2221 /* OK, we're manipulating a HS device attached to a
2222 * root port bandwidth domain. Include the number of active TTs
2223 * in the bandwidth used.
2224 */
2225 bw_used += TT_HS_OVERHEAD *
2226 xhci->rh_bw[port_index].num_active_tts;
2227 }
2228
2229 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2230 "Available: %u " "percent\n",
2231 bw_used, max_bandwidth, bw_reserved,
2232 (max_bandwidth - bw_used - bw_reserved) * 100 /
2233 max_bandwidth);
2234
2235 bw_used += bw_reserved;
2236 if (bw_used > max_bandwidth) {
2237 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2238 bw_used, max_bandwidth);
2239 return -ENOMEM;
2240 }
2241
2242 bw_table->bw_used = bw_used;
2243 return 0;
2244}
2245
2246static bool xhci_is_async_ep(unsigned int ep_type)
2247{
2248 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2249 ep_type != ISOC_IN_EP &&
2250 ep_type != INT_IN_EP);
2251}
2252
2253static bool xhci_is_sync_in_ep(unsigned int ep_type)
2254{
2255 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2256}
2257
2258static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2259{
2260 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2261
2262 if (ep_bw->ep_interval == 0)
2263 return SS_OVERHEAD_BURST +
2264 (ep_bw->mult * ep_bw->num_packets *
2265 (SS_OVERHEAD + mps));
2266 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2267 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2268 1 << ep_bw->ep_interval);
2269
2270}
2271
2272void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2273 struct xhci_bw_info *ep_bw,
2274 struct xhci_interval_bw_table *bw_table,
2275 struct usb_device *udev,
2276 struct xhci_virt_ep *virt_ep,
2277 struct xhci_tt_bw_info *tt_info)
2278{
2279 struct xhci_interval_bw *interval_bw;
2280 int normalized_interval;
2281
2282 if (xhci_is_async_ep(ep_bw->type))
2283 return;
2284
2285 if (udev->speed == USB_SPEED_SUPER) {
2286 if (xhci_is_sync_in_ep(ep_bw->type))
2287 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2288 xhci_get_ss_bw_consumed(ep_bw);
2289 else
2290 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2291 xhci_get_ss_bw_consumed(ep_bw);
2292 return;
2293 }
2294
2295 /* SuperSpeed endpoints never get added to intervals in the table, so
2296 * this check is only valid for HS/FS/LS devices.
2297 */
2298 if (list_empty(&virt_ep->bw_endpoint_list))
2299 return;
2300 /* For LS/FS devices, we need to translate the interval expressed in
2301 * microframes to frames.
2302 */
2303 if (udev->speed == USB_SPEED_HIGH)
2304 normalized_interval = ep_bw->ep_interval;
2305 else
2306 normalized_interval = ep_bw->ep_interval - 3;
2307
2308 if (normalized_interval == 0)
2309 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2310 interval_bw = &bw_table->interval_bw[normalized_interval];
2311 interval_bw->num_packets -= ep_bw->num_packets;
2312 switch (udev->speed) {
2313 case USB_SPEED_LOW:
2314 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2315 break;
2316 case USB_SPEED_FULL:
2317 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2318 break;
2319 case USB_SPEED_HIGH:
2320 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2321 break;
2322 case USB_SPEED_SUPER:
2323 case USB_SPEED_UNKNOWN:
2324 case USB_SPEED_WIRELESS:
2325 /* Should never happen because only LS/FS/HS endpoints will get
2326 * added to the endpoint list.
2327 */
2328 return;
2329 }
2330 if (tt_info)
2331 tt_info->active_eps -= 1;
2332 list_del_init(&virt_ep->bw_endpoint_list);
2333}
2334
2335static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2336 struct xhci_bw_info *ep_bw,
2337 struct xhci_interval_bw_table *bw_table,
2338 struct usb_device *udev,
2339 struct xhci_virt_ep *virt_ep,
2340 struct xhci_tt_bw_info *tt_info)
2341{
2342 struct xhci_interval_bw *interval_bw;
2343 struct xhci_virt_ep *smaller_ep;
2344 int normalized_interval;
2345
2346 if (xhci_is_async_ep(ep_bw->type))
2347 return;
2348
2349 if (udev->speed == USB_SPEED_SUPER) {
2350 if (xhci_is_sync_in_ep(ep_bw->type))
2351 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2352 xhci_get_ss_bw_consumed(ep_bw);
2353 else
2354 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2355 xhci_get_ss_bw_consumed(ep_bw);
2356 return;
2357 }
2358
2359 /* For LS/FS devices, we need to translate the interval expressed in
2360 * microframes to frames.
2361 */
2362 if (udev->speed == USB_SPEED_HIGH)
2363 normalized_interval = ep_bw->ep_interval;
2364 else
2365 normalized_interval = ep_bw->ep_interval - 3;
2366
2367 if (normalized_interval == 0)
2368 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2369 interval_bw = &bw_table->interval_bw[normalized_interval];
2370 interval_bw->num_packets += ep_bw->num_packets;
2371 switch (udev->speed) {
2372 case USB_SPEED_LOW:
2373 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2374 break;
2375 case USB_SPEED_FULL:
2376 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2377 break;
2378 case USB_SPEED_HIGH:
2379 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2380 break;
2381 case USB_SPEED_SUPER:
2382 case USB_SPEED_UNKNOWN:
2383 case USB_SPEED_WIRELESS:
2384 /* Should never happen because only LS/FS/HS endpoints will get
2385 * added to the endpoint list.
2386 */
2387 return;
2388 }
2389
2390 if (tt_info)
2391 tt_info->active_eps += 1;
2392 /* Insert the endpoint into the list, largest max packet size first. */
2393 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2394 bw_endpoint_list) {
2395 if (ep_bw->max_packet_size >=
2396 smaller_ep->bw_info.max_packet_size) {
2397 /* Add the new ep before the smaller endpoint */
2398 list_add_tail(&virt_ep->bw_endpoint_list,
2399 &smaller_ep->bw_endpoint_list);
2400 return;
2401 }
2402 }
2403 /* Add the new endpoint at the end of the list. */
2404 list_add_tail(&virt_ep->bw_endpoint_list,
2405 &interval_bw->endpoints);
2406}
2407
2408void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2409 struct xhci_virt_device *virt_dev,
2410 int old_active_eps)
2411{
2412 struct xhci_root_port_bw_info *rh_bw_info;
2413 if (!virt_dev->tt_info)
2414 return;
2415
2416 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2417 if (old_active_eps == 0 &&
2418 virt_dev->tt_info->active_eps != 0) {
2419 rh_bw_info->num_active_tts += 1;
2420 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2421 } else if (old_active_eps != 0 &&
2422 virt_dev->tt_info->active_eps == 0) {
2423 rh_bw_info->num_active_tts -= 1;
2424 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2425 }
2426}
2427
2428static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2429 struct xhci_virt_device *virt_dev,
2430 struct xhci_container_ctx *in_ctx)
2431{
2432 struct xhci_bw_info ep_bw_info[31];
2433 int i;
2434 struct xhci_input_control_ctx *ctrl_ctx;
2435 int old_active_eps = 0;
2436
2437 if (virt_dev->tt_info)
2438 old_active_eps = virt_dev->tt_info->active_eps;
2439
2440 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2441
2442 for (i = 0; i < 31; i++) {
2443 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2444 continue;
2445
2446 /* Make a copy of the BW info in case we need to revert this */
2447 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2448 sizeof(ep_bw_info[i]));
2449 /* Drop the endpoint from the interval table if the endpoint is
2450 * being dropped or changed.
2451 */
2452 if (EP_IS_DROPPED(ctrl_ctx, i))
2453 xhci_drop_ep_from_interval_table(xhci,
2454 &virt_dev->eps[i].bw_info,
2455 virt_dev->bw_table,
2456 virt_dev->udev,
2457 &virt_dev->eps[i],
2458 virt_dev->tt_info);
2459 }
2460 /* Overwrite the information stored in the endpoints' bw_info */
2461 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2462 for (i = 0; i < 31; i++) {
2463 /* Add any changed or added endpoints to the interval table */
2464 if (EP_IS_ADDED(ctrl_ctx, i))
2465 xhci_add_ep_to_interval_table(xhci,
2466 &virt_dev->eps[i].bw_info,
2467 virt_dev->bw_table,
2468 virt_dev->udev,
2469 &virt_dev->eps[i],
2470 virt_dev->tt_info);
2471 }
2472
2473 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2474 /* Ok, this fits in the bandwidth we have.
2475 * Update the number of active TTs.
2476 */
2477 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2478 return 0;
2479 }
2480
2481 /* We don't have enough bandwidth for this, revert the stored info. */
2482 for (i = 0; i < 31; i++) {
2483 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2484 continue;
2485
2486 /* Drop the new copies of any added or changed endpoints from
2487 * the interval table.
2488 */
2489 if (EP_IS_ADDED(ctrl_ctx, i)) {
2490 xhci_drop_ep_from_interval_table(xhci,
2491 &virt_dev->eps[i].bw_info,
2492 virt_dev->bw_table,
2493 virt_dev->udev,
2494 &virt_dev->eps[i],
2495 virt_dev->tt_info);
2496 }
2497 /* Revert the endpoint back to its old information */
2498 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2499 sizeof(ep_bw_info[i]));
2500 /* Add any changed or dropped endpoints back into the table */
2501 if (EP_IS_DROPPED(ctrl_ctx, i))
2502 xhci_add_ep_to_interval_table(xhci,
2503 &virt_dev->eps[i].bw_info,
2504 virt_dev->bw_table,
2505 virt_dev->udev,
2506 &virt_dev->eps[i],
2507 virt_dev->tt_info);
2508 }
2509 return -ENOMEM;
2510}
2511
2512
2513/* Issue a configure endpoint command or evaluate context command
2514 * and wait for it to finish.
2515 */
2516static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2517 struct usb_device *udev,
2518 struct xhci_command *command,
2519 bool ctx_change, bool must_succeed)
2520{
2521 int ret;
2522 int timeleft;
2523 unsigned long flags;
2524 struct xhci_container_ctx *in_ctx;
2525 struct completion *cmd_completion;
2526 u32 *cmd_status;
2527 struct xhci_virt_device *virt_dev;
2528 union xhci_trb *cmd_trb;
2529
2530 spin_lock_irqsave(&xhci->lock, flags);
2531 virt_dev = xhci->devs[udev->slot_id];
2532
2533 if (command)
2534 in_ctx = command->in_ctx;
2535 else
2536 in_ctx = virt_dev->in_ctx;
2537
2538 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2539 xhci_reserve_host_resources(xhci, in_ctx)) {
2540 spin_unlock_irqrestore(&xhci->lock, flags);
2541 xhci_warn(xhci, "Not enough host resources, "
2542 "active endpoint contexts = %u\n",
2543 xhci->num_active_eps);
2544 return -ENOMEM;
2545 }
2546 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2547 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2548 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2549 xhci_free_host_resources(xhci, in_ctx);
2550 spin_unlock_irqrestore(&xhci->lock, flags);
2551 xhci_warn(xhci, "Not enough bandwidth\n");
2552 return -ENOMEM;
2553 }
2554
2555 if (command) {
2556 cmd_completion = command->completion;
2557 cmd_status = &command->status;
2558 command->command_trb = xhci->cmd_ring->enqueue;
2559
2560 /* Enqueue pointer can be left pointing to the link TRB,
2561 * we must handle that
2562 */
2563 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2564 command->command_trb =
2565 xhci->cmd_ring->enq_seg->next->trbs;
2566
2567 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2568 } else {
2569 cmd_completion = &virt_dev->cmd_completion;
2570 cmd_status = &virt_dev->cmd_status;
2571 }
2572 init_completion(cmd_completion);
2573
2574 cmd_trb = xhci->cmd_ring->dequeue;
2575 if (!ctx_change)
2576 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2577 udev->slot_id, must_succeed);
2578 else
2579 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2580 udev->slot_id, must_succeed);
2581 if (ret < 0) {
2582 if (command)
2583 list_del(&command->cmd_list);
2584 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2585 xhci_free_host_resources(xhci, in_ctx);
2586 spin_unlock_irqrestore(&xhci->lock, flags);
2587 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2588 return -ENOMEM;
2589 }
2590 xhci_ring_cmd_db(xhci);
2591 spin_unlock_irqrestore(&xhci->lock, flags);
2592
2593 /* Wait for the configure endpoint command to complete */
2594 timeleft = wait_for_completion_interruptible_timeout(
2595 cmd_completion,
2596 XHCI_CMD_DEFAULT_TIMEOUT);
2597 if (timeleft <= 0) {
2598 xhci_warn(xhci, "%s while waiting for %s command\n",
2599 timeleft == 0 ? "Timeout" : "Signal",
2600 ctx_change == 0 ?
2601 "configure endpoint" :
2602 "evaluate context");
2603 /* cancel the configure endpoint command */
2604 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2605 if (ret < 0)
2606 return ret;
2607 return -ETIME;
2608 }
2609
2610 if (!ctx_change)
2611 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2612 else
2613 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2614
2615 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2616 spin_lock_irqsave(&xhci->lock, flags);
2617 /* If the command failed, remove the reserved resources.
2618 * Otherwise, clean up the estimate to include dropped eps.
2619 */
2620 if (ret)
2621 xhci_free_host_resources(xhci, in_ctx);
2622 else
2623 xhci_finish_resource_reservation(xhci, in_ctx);
2624 spin_unlock_irqrestore(&xhci->lock, flags);
2625 }
2626 return ret;
2627}
2628
2629/* Called after one or more calls to xhci_add_endpoint() or
2630 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2631 * to call xhci_reset_bandwidth().
2632 *
2633 * Since we are in the middle of changing either configuration or
2634 * installing a new alt setting, the USB core won't allow URBs to be
2635 * enqueued for any endpoint on the old config or interface. Nothing
2636 * else should be touching the xhci->devs[slot_id] structure, so we
2637 * don't need to take the xhci->lock for manipulating that.
2638 */
2639int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2640{
2641 int i;
2642 int ret = 0;
2643 struct xhci_hcd *xhci;
2644 struct xhci_virt_device *virt_dev;
2645 struct xhci_input_control_ctx *ctrl_ctx;
2646 struct xhci_slot_ctx *slot_ctx;
2647
2648 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2649 if (ret <= 0)
2650 return ret;
2651 xhci = hcd_to_xhci(hcd);
2652 if (xhci->xhc_state & XHCI_STATE_DYING)
2653 return -ENODEV;
2654
2655 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2656 virt_dev = xhci->devs[udev->slot_id];
2657
2658 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2659 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2660 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2661 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2662 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2663
2664 /* Don't issue the command if there's no endpoints to update. */
2665 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2666 ctrl_ctx->drop_flags == 0)
2667 return 0;
2668
2669 xhci_dbg(xhci, "New Input Control Context:\n");
2670 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2671 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2672 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2673
2674 ret = xhci_configure_endpoint(xhci, udev, NULL,
2675 false, false);
2676 if (ret) {
2677 /* Callee should call reset_bandwidth() */
2678 return ret;
2679 }
2680
2681 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2682 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2683 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2684
2685 /* Free any rings that were dropped, but not changed. */
2686 for (i = 1; i < 31; ++i) {
2687 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2688 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2689 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2690 }
2691 xhci_zero_in_ctx(xhci, virt_dev);
2692 /*
2693 * Install any rings for completely new endpoints or changed endpoints,
2694 * and free or cache any old rings from changed endpoints.
2695 */
2696 for (i = 1; i < 31; ++i) {
2697 if (!virt_dev->eps[i].new_ring)
2698 continue;
2699 /* Only cache or free the old ring if it exists.
2700 * It may not if this is the first add of an endpoint.
2701 */
2702 if (virt_dev->eps[i].ring) {
2703 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2704 }
2705 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2706 virt_dev->eps[i].new_ring = NULL;
2707 }
2708
2709 return ret;
2710}
2711
2712void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2713{
2714 struct xhci_hcd *xhci;
2715 struct xhci_virt_device *virt_dev;
2716 int i, ret;
2717
2718 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719 if (ret <= 0)
2720 return;
2721 xhci = hcd_to_xhci(hcd);
2722
2723 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2724 virt_dev = xhci->devs[udev->slot_id];
2725 /* Free any rings allocated for added endpoints */
2726 for (i = 0; i < 31; ++i) {
2727 if (virt_dev->eps[i].new_ring) {
2728 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2729 virt_dev->eps[i].new_ring = NULL;
2730 }
2731 }
2732 xhci_zero_in_ctx(xhci, virt_dev);
2733}
2734
2735static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2736 struct xhci_container_ctx *in_ctx,
2737 struct xhci_container_ctx *out_ctx,
2738 u32 add_flags, u32 drop_flags)
2739{
2740 struct xhci_input_control_ctx *ctrl_ctx;
2741 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2742 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2743 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2744 xhci_slot_copy(xhci, in_ctx, out_ctx);
2745 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2746
2747 xhci_dbg(xhci, "Input Context:\n");
2748 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2749}
2750
2751static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2752 unsigned int slot_id, unsigned int ep_index,
2753 struct xhci_dequeue_state *deq_state)
2754{
2755 struct xhci_container_ctx *in_ctx;
2756 struct xhci_ep_ctx *ep_ctx;
2757 u32 added_ctxs;
2758 dma_addr_t addr;
2759
2760 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2761 xhci->devs[slot_id]->out_ctx, ep_index);
2762 in_ctx = xhci->devs[slot_id]->in_ctx;
2763 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2764 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2765 deq_state->new_deq_ptr);
2766 if (addr == 0) {
2767 xhci_warn(xhci, "WARN Cannot submit config ep after "
2768 "reset ep command\n");
2769 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2770 deq_state->new_deq_seg,
2771 deq_state->new_deq_ptr);
2772 return;
2773 }
2774 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2775
2776 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2777 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2778 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2779}
2780
2781void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2782 struct usb_device *udev, unsigned int ep_index)
2783{
2784 struct xhci_dequeue_state deq_state;
2785 struct xhci_virt_ep *ep;
2786
2787 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2788 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2789 /* We need to move the HW's dequeue pointer past this TD,
2790 * or it will attempt to resend it on the next doorbell ring.
2791 */
2792 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2793 ep_index, ep->stopped_stream, ep->stopped_td,
2794 &deq_state);
2795
2796 /* HW with the reset endpoint quirk will use the saved dequeue state to
2797 * issue a configure endpoint command later.
2798 */
2799 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2800 xhci_dbg(xhci, "Queueing new dequeue state\n");
2801 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2802 ep_index, ep->stopped_stream, &deq_state);
2803 } else {
2804 /* Better hope no one uses the input context between now and the
2805 * reset endpoint completion!
2806 * XXX: No idea how this hardware will react when stream rings
2807 * are enabled.
2808 */
2809 xhci_dbg(xhci, "Setting up input context for "
2810 "configure endpoint command\n");
2811 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2812 ep_index, &deq_state);
2813 }
2814}
2815
2816/* Deal with stalled endpoints. The core should have sent the control message
2817 * to clear the halt condition. However, we need to make the xHCI hardware
2818 * reset its sequence number, since a device will expect a sequence number of
2819 * zero after the halt condition is cleared.
2820 * Context: in_interrupt
2821 */
2822void xhci_endpoint_reset(struct usb_hcd *hcd,
2823 struct usb_host_endpoint *ep)
2824{
2825 struct xhci_hcd *xhci;
2826 struct usb_device *udev;
2827 unsigned int ep_index;
2828 unsigned long flags;
2829 int ret;
2830 struct xhci_virt_ep *virt_ep;
2831
2832 xhci = hcd_to_xhci(hcd);
2833 udev = (struct usb_device *) ep->hcpriv;
2834 /* Called with a root hub endpoint (or an endpoint that wasn't added
2835 * with xhci_add_endpoint()
2836 */
2837 if (!ep->hcpriv)
2838 return;
2839 ep_index = xhci_get_endpoint_index(&ep->desc);
2840 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2841 if (!virt_ep->stopped_td) {
2842 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2843 ep->desc.bEndpointAddress);
2844 return;
2845 }
2846 if (usb_endpoint_xfer_control(&ep->desc)) {
2847 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2848 return;
2849 }
2850
2851 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2852 spin_lock_irqsave(&xhci->lock, flags);
2853 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2854 /*
2855 * Can't change the ring dequeue pointer until it's transitioned to the
2856 * stopped state, which is only upon a successful reset endpoint
2857 * command. Better hope that last command worked!
2858 */
2859 if (!ret) {
2860 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2861 kfree(virt_ep->stopped_td);
2862 xhci_ring_cmd_db(xhci);
2863 }
2864 virt_ep->stopped_td = NULL;
2865 virt_ep->stopped_trb = NULL;
2866 virt_ep->stopped_stream = 0;
2867 spin_unlock_irqrestore(&xhci->lock, flags);
2868
2869 if (ret)
2870 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2871}
2872
2873static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2874 struct usb_device *udev, struct usb_host_endpoint *ep,
2875 unsigned int slot_id)
2876{
2877 int ret;
2878 unsigned int ep_index;
2879 unsigned int ep_state;
2880
2881 if (!ep)
2882 return -EINVAL;
2883 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2884 if (ret <= 0)
2885 return -EINVAL;
2886 if (ep->ss_ep_comp.bmAttributes == 0) {
2887 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2888 " descriptor for ep 0x%x does not support streams\n",
2889 ep->desc.bEndpointAddress);
2890 return -EINVAL;
2891 }
2892
2893 ep_index = xhci_get_endpoint_index(&ep->desc);
2894 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2895 if (ep_state & EP_HAS_STREAMS ||
2896 ep_state & EP_GETTING_STREAMS) {
2897 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2898 "already has streams set up.\n",
2899 ep->desc.bEndpointAddress);
2900 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2901 "dynamic stream context array reallocation.\n");
2902 return -EINVAL;
2903 }
2904 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2905 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2906 "endpoint 0x%x; URBs are pending.\n",
2907 ep->desc.bEndpointAddress);
2908 return -EINVAL;
2909 }
2910 return 0;
2911}
2912
2913static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2914 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2915{
2916 unsigned int max_streams;
2917
2918 /* The stream context array size must be a power of two */
2919 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2920 /*
2921 * Find out how many primary stream array entries the host controller
2922 * supports. Later we may use secondary stream arrays (similar to 2nd
2923 * level page entries), but that's an optional feature for xHCI host
2924 * controllers. xHCs must support at least 4 stream IDs.
2925 */
2926 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2927 if (*num_stream_ctxs > max_streams) {
2928 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2929 max_streams);
2930 *num_stream_ctxs = max_streams;
2931 *num_streams = max_streams;
2932 }
2933}
2934
2935/* Returns an error code if one of the endpoint already has streams.
2936 * This does not change any data structures, it only checks and gathers
2937 * information.
2938 */
2939static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2940 struct usb_device *udev,
2941 struct usb_host_endpoint **eps, unsigned int num_eps,
2942 unsigned int *num_streams, u32 *changed_ep_bitmask)
2943{
2944 unsigned int max_streams;
2945 unsigned int endpoint_flag;
2946 int i;
2947 int ret;
2948
2949 for (i = 0; i < num_eps; i++) {
2950 ret = xhci_check_streams_endpoint(xhci, udev,
2951 eps[i], udev->slot_id);
2952 if (ret < 0)
2953 return ret;
2954
2955 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2956 if (max_streams < (*num_streams - 1)) {
2957 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2958 eps[i]->desc.bEndpointAddress,
2959 max_streams);
2960 *num_streams = max_streams+1;
2961 }
2962
2963 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2964 if (*changed_ep_bitmask & endpoint_flag)
2965 return -EINVAL;
2966 *changed_ep_bitmask |= endpoint_flag;
2967 }
2968 return 0;
2969}
2970
2971static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2972 struct usb_device *udev,
2973 struct usb_host_endpoint **eps, unsigned int num_eps)
2974{
2975 u32 changed_ep_bitmask = 0;
2976 unsigned int slot_id;
2977 unsigned int ep_index;
2978 unsigned int ep_state;
2979 int i;
2980
2981 slot_id = udev->slot_id;
2982 if (!xhci->devs[slot_id])
2983 return 0;
2984
2985 for (i = 0; i < num_eps; i++) {
2986 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2988 /* Are streams already being freed for the endpoint? */
2989 if (ep_state & EP_GETTING_NO_STREAMS) {
2990 xhci_warn(xhci, "WARN Can't disable streams for "
2991 "endpoint 0x%x\n, "
2992 "streams are being disabled already.",
2993 eps[i]->desc.bEndpointAddress);
2994 return 0;
2995 }
2996 /* Are there actually any streams to free? */
2997 if (!(ep_state & EP_HAS_STREAMS) &&
2998 !(ep_state & EP_GETTING_STREAMS)) {
2999 xhci_warn(xhci, "WARN Can't disable streams for "
3000 "endpoint 0x%x\n, "
3001 "streams are already disabled!",
3002 eps[i]->desc.bEndpointAddress);
3003 xhci_warn(xhci, "WARN xhci_free_streams() called "
3004 "with non-streams endpoint\n");
3005 return 0;
3006 }
3007 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3008 }
3009 return changed_ep_bitmask;
3010}
3011
3012/*
3013 * The USB device drivers use this function (though the HCD interface in USB
3014 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3015 * coordinate mass storage command queueing across multiple endpoints (basically
3016 * a stream ID == a task ID).
3017 *
3018 * Setting up streams involves allocating the same size stream context array
3019 * for each endpoint and issuing a configure endpoint command for all endpoints.
3020 *
3021 * Don't allow the call to succeed if one endpoint only supports one stream
3022 * (which means it doesn't support streams at all).
3023 *
3024 * Drivers may get less stream IDs than they asked for, if the host controller
3025 * hardware or endpoints claim they can't support the number of requested
3026 * stream IDs.
3027 */
3028int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3029 struct usb_host_endpoint **eps, unsigned int num_eps,
3030 unsigned int num_streams, gfp_t mem_flags)
3031{
3032 int i, ret;
3033 struct xhci_hcd *xhci;
3034 struct xhci_virt_device *vdev;
3035 struct xhci_command *config_cmd;
3036 unsigned int ep_index;
3037 unsigned int num_stream_ctxs;
3038 unsigned long flags;
3039 u32 changed_ep_bitmask = 0;
3040
3041 if (!eps)
3042 return -EINVAL;
3043
3044 /* Add one to the number of streams requested to account for
3045 * stream 0 that is reserved for xHCI usage.
3046 */
3047 num_streams += 1;
3048 xhci = hcd_to_xhci(hcd);
3049 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3050 num_streams);
3051
3052 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3053 if (!config_cmd) {
3054 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3055 return -ENOMEM;
3056 }
3057
3058 /* Check to make sure all endpoints are not already configured for
3059 * streams. While we're at it, find the maximum number of streams that
3060 * all the endpoints will support and check for duplicate endpoints.
3061 */
3062 spin_lock_irqsave(&xhci->lock, flags);
3063 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3064 num_eps, &num_streams, &changed_ep_bitmask);
3065 if (ret < 0) {
3066 xhci_free_command(xhci, config_cmd);
3067 spin_unlock_irqrestore(&xhci->lock, flags);
3068 return ret;
3069 }
3070 if (num_streams <= 1) {
3071 xhci_warn(xhci, "WARN: endpoints can't handle "
3072 "more than one stream.\n");
3073 xhci_free_command(xhci, config_cmd);
3074 spin_unlock_irqrestore(&xhci->lock, flags);
3075 return -EINVAL;
3076 }
3077 vdev = xhci->devs[udev->slot_id];
3078 /* Mark each endpoint as being in transition, so
3079 * xhci_urb_enqueue() will reject all URBs.
3080 */
3081 for (i = 0; i < num_eps; i++) {
3082 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3084 }
3085 spin_unlock_irqrestore(&xhci->lock, flags);
3086
3087 /* Setup internal data structures and allocate HW data structures for
3088 * streams (but don't install the HW structures in the input context
3089 * until we're sure all memory allocation succeeded).
3090 */
3091 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3092 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3093 num_stream_ctxs, num_streams);
3094
3095 for (i = 0; i < num_eps; i++) {
3096 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3097 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3098 num_stream_ctxs,
3099 num_streams, mem_flags);
3100 if (!vdev->eps[ep_index].stream_info)
3101 goto cleanup;
3102 /* Set maxPstreams in endpoint context and update deq ptr to
3103 * point to stream context array. FIXME
3104 */
3105 }
3106
3107 /* Set up the input context for a configure endpoint command. */
3108 for (i = 0; i < num_eps; i++) {
3109 struct xhci_ep_ctx *ep_ctx;
3110
3111 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3112 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3113
3114 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3115 vdev->out_ctx, ep_index);
3116 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3117 vdev->eps[ep_index].stream_info);
3118 }
3119 /* Tell the HW to drop its old copy of the endpoint context info
3120 * and add the updated copy from the input context.
3121 */
3122 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3123 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3124
3125 /* Issue and wait for the configure endpoint command */
3126 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3127 false, false);
3128
3129 /* xHC rejected the configure endpoint command for some reason, so we
3130 * leave the old ring intact and free our internal streams data
3131 * structure.
3132 */
3133 if (ret < 0)
3134 goto cleanup;
3135
3136 spin_lock_irqsave(&xhci->lock, flags);
3137 for (i = 0; i < num_eps; i++) {
3138 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3140 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3141 udev->slot_id, ep_index);
3142 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3143 }
3144 xhci_free_command(xhci, config_cmd);
3145 spin_unlock_irqrestore(&xhci->lock, flags);
3146
3147 /* Subtract 1 for stream 0, which drivers can't use */
3148 return num_streams - 1;
3149
3150cleanup:
3151 /* If it didn't work, free the streams! */
3152 for (i = 0; i < num_eps; i++) {
3153 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3154 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3155 vdev->eps[ep_index].stream_info = NULL;
3156 /* FIXME Unset maxPstreams in endpoint context and
3157 * update deq ptr to point to normal string ring.
3158 */
3159 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3161 xhci_endpoint_zero(xhci, vdev, eps[i]);
3162 }
3163 xhci_free_command(xhci, config_cmd);
3164 return -ENOMEM;
3165}
3166
3167/* Transition the endpoint from using streams to being a "normal" endpoint
3168 * without streams.
3169 *
3170 * Modify the endpoint context state, submit a configure endpoint command,
3171 * and free all endpoint rings for streams if that completes successfully.
3172 */
3173int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3174 struct usb_host_endpoint **eps, unsigned int num_eps,
3175 gfp_t mem_flags)
3176{
3177 int i, ret;
3178 struct xhci_hcd *xhci;
3179 struct xhci_virt_device *vdev;
3180 struct xhci_command *command;
3181 unsigned int ep_index;
3182 unsigned long flags;
3183 u32 changed_ep_bitmask;
3184
3185 xhci = hcd_to_xhci(hcd);
3186 vdev = xhci->devs[udev->slot_id];
3187
3188 /* Set up a configure endpoint command to remove the streams rings */
3189 spin_lock_irqsave(&xhci->lock, flags);
3190 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3191 udev, eps, num_eps);
3192 if (changed_ep_bitmask == 0) {
3193 spin_unlock_irqrestore(&xhci->lock, flags);
3194 return -EINVAL;
3195 }
3196
3197 /* Use the xhci_command structure from the first endpoint. We may have
3198 * allocated too many, but the driver may call xhci_free_streams() for
3199 * each endpoint it grouped into one call to xhci_alloc_streams().
3200 */
3201 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3202 command = vdev->eps[ep_index].stream_info->free_streams_command;
3203 for (i = 0; i < num_eps; i++) {
3204 struct xhci_ep_ctx *ep_ctx;
3205
3206 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3207 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3208 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3209 EP_GETTING_NO_STREAMS;
3210
3211 xhci_endpoint_copy(xhci, command->in_ctx,
3212 vdev->out_ctx, ep_index);
3213 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3214 &vdev->eps[ep_index]);
3215 }
3216 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3217 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3218 spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220 /* Issue and wait for the configure endpoint command,
3221 * which must succeed.
3222 */
3223 ret = xhci_configure_endpoint(xhci, udev, command,
3224 false, true);
3225
3226 /* xHC rejected the configure endpoint command for some reason, so we
3227 * leave the streams rings intact.
3228 */
3229 if (ret < 0)
3230 return ret;
3231
3232 spin_lock_irqsave(&xhci->lock, flags);
3233 for (i = 0; i < num_eps; i++) {
3234 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3236 vdev->eps[ep_index].stream_info = NULL;
3237 /* FIXME Unset maxPstreams in endpoint context and
3238 * update deq ptr to point to normal string ring.
3239 */
3240 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3241 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3242 }
3243 spin_unlock_irqrestore(&xhci->lock, flags);
3244
3245 return 0;
3246}
3247
3248/*
3249 * Deletes endpoint resources for endpoints that were active before a Reset
3250 * Device command, or a Disable Slot command. The Reset Device command leaves
3251 * the control endpoint intact, whereas the Disable Slot command deletes it.
3252 *
3253 * Must be called with xhci->lock held.
3254 */
3255void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3256 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3257{
3258 int i;
3259 unsigned int num_dropped_eps = 0;
3260 unsigned int drop_flags = 0;
3261
3262 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3263 if (virt_dev->eps[i].ring) {
3264 drop_flags |= 1 << i;
3265 num_dropped_eps++;
3266 }
3267 }
3268 xhci->num_active_eps -= num_dropped_eps;
3269 if (num_dropped_eps)
3270 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3271 "%u now active.\n",
3272 num_dropped_eps, drop_flags,
3273 xhci->num_active_eps);
3274}
3275
3276/*
3277 * This submits a Reset Device Command, which will set the device state to 0,
3278 * set the device address to 0, and disable all the endpoints except the default
3279 * control endpoint. The USB core should come back and call
3280 * xhci_address_device(), and then re-set up the configuration. If this is
3281 * called because of a usb_reset_and_verify_device(), then the old alternate
3282 * settings will be re-installed through the normal bandwidth allocation
3283 * functions.
3284 *
3285 * Wait for the Reset Device command to finish. Remove all structures
3286 * associated with the endpoints that were disabled. Clear the input device
3287 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3288 *
3289 * If the virt_dev to be reset does not exist or does not match the udev,
3290 * it means the device is lost, possibly due to the xHC restore error and
3291 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3292 * re-allocate the device.
3293 */
3294int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3295{
3296 int ret, i;
3297 unsigned long flags;
3298 struct xhci_hcd *xhci;
3299 unsigned int slot_id;
3300 struct xhci_virt_device *virt_dev;
3301 struct xhci_command *reset_device_cmd;
3302 int timeleft;
3303 int last_freed_endpoint;
3304 struct xhci_slot_ctx *slot_ctx;
3305 int old_active_eps = 0;
3306
3307 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3308 if (ret <= 0)
3309 return ret;
3310 xhci = hcd_to_xhci(hcd);
3311 slot_id = udev->slot_id;
3312 virt_dev = xhci->devs[slot_id];
3313 if (!virt_dev) {
3314 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3315 "not exist. Re-allocate the device\n", slot_id);
3316 ret = xhci_alloc_dev(hcd, udev);
3317 if (ret == 1)
3318 return 0;
3319 else
3320 return -EINVAL;
3321 }
3322
3323 if (virt_dev->udev != udev) {
3324 /* If the virt_dev and the udev does not match, this virt_dev
3325 * may belong to another udev.
3326 * Re-allocate the device.
3327 */
3328 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3329 "not match the udev. Re-allocate the device\n",
3330 slot_id);
3331 ret = xhci_alloc_dev(hcd, udev);
3332 if (ret == 1)
3333 return 0;
3334 else
3335 return -EINVAL;
3336 }
3337
3338 /* If device is not setup, there is no point in resetting it */
3339 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3340 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3341 SLOT_STATE_DISABLED)
3342 return 0;
3343
3344 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3345 /* Allocate the command structure that holds the struct completion.
3346 * Assume we're in process context, since the normal device reset
3347 * process has to wait for the device anyway. Storage devices are
3348 * reset as part of error handling, so use GFP_NOIO instead of
3349 * GFP_KERNEL.
3350 */
3351 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3352 if (!reset_device_cmd) {
3353 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3354 return -ENOMEM;
3355 }
3356
3357 /* Attempt to submit the Reset Device command to the command ring */
3358 spin_lock_irqsave(&xhci->lock, flags);
3359 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3360
3361 /* Enqueue pointer can be left pointing to the link TRB,
3362 * we must handle that
3363 */
3364 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3365 reset_device_cmd->command_trb =
3366 xhci->cmd_ring->enq_seg->next->trbs;
3367
3368 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3369 ret = xhci_queue_reset_device(xhci, slot_id);
3370 if (ret) {
3371 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3372 list_del(&reset_device_cmd->cmd_list);
3373 spin_unlock_irqrestore(&xhci->lock, flags);
3374 goto command_cleanup;
3375 }
3376 xhci_ring_cmd_db(xhci);
3377 spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379 /* Wait for the Reset Device command to finish */
3380 timeleft = wait_for_completion_interruptible_timeout(
3381 reset_device_cmd->completion,
3382 USB_CTRL_SET_TIMEOUT);
3383 if (timeleft <= 0) {
3384 xhci_warn(xhci, "%s while waiting for reset device command\n",
3385 timeleft == 0 ? "Timeout" : "Signal");
3386 spin_lock_irqsave(&xhci->lock, flags);
3387 /* The timeout might have raced with the event ring handler, so
3388 * only delete from the list if the item isn't poisoned.
3389 */
3390 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3391 list_del(&reset_device_cmd->cmd_list);
3392 spin_unlock_irqrestore(&xhci->lock, flags);
3393 ret = -ETIME;
3394 goto command_cleanup;
3395 }
3396
3397 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3398 * unless we tried to reset a slot ID that wasn't enabled,
3399 * or the device wasn't in the addressed or configured state.
3400 */
3401 ret = reset_device_cmd->status;
3402 switch (ret) {
3403 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3404 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3405 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3406 slot_id,
3407 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3408 xhci_info(xhci, "Not freeing device rings.\n");
3409 /* Don't treat this as an error. May change my mind later. */
3410 ret = 0;
3411 goto command_cleanup;
3412 case COMP_SUCCESS:
3413 xhci_dbg(xhci, "Successful reset device command.\n");
3414 break;
3415 default:
3416 if (xhci_is_vendor_info_code(xhci, ret))
3417 break;
3418 xhci_warn(xhci, "Unknown completion code %u for "
3419 "reset device command.\n", ret);
3420 ret = -EINVAL;
3421 goto command_cleanup;
3422 }
3423
3424 /* Free up host controller endpoint resources */
3425 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3426 spin_lock_irqsave(&xhci->lock, flags);
3427 /* Don't delete the default control endpoint resources */
3428 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3429 spin_unlock_irqrestore(&xhci->lock, flags);
3430 }
3431
3432 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3433 last_freed_endpoint = 1;
3434 for (i = 1; i < 31; ++i) {
3435 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3436
3437 if (ep->ep_state & EP_HAS_STREAMS) {
3438 xhci_free_stream_info(xhci, ep->stream_info);
3439 ep->stream_info = NULL;
3440 ep->ep_state &= ~EP_HAS_STREAMS;
3441 }
3442
3443 if (ep->ring) {
3444 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3445 last_freed_endpoint = i;
3446 }
3447 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3448 xhci_drop_ep_from_interval_table(xhci,
3449 &virt_dev->eps[i].bw_info,
3450 virt_dev->bw_table,
3451 udev,
3452 &virt_dev->eps[i],
3453 virt_dev->tt_info);
3454 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3455 }
3456 /* If necessary, update the number of active TTs on this root port */
3457 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3458
3459 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3460 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3461 ret = 0;
3462
3463command_cleanup:
3464 xhci_free_command(xhci, reset_device_cmd);
3465 return ret;
3466}
3467
3468/*
3469 * At this point, the struct usb_device is about to go away, the device has
3470 * disconnected, and all traffic has been stopped and the endpoints have been
3471 * disabled. Free any HC data structures associated with that device.
3472 */
3473void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3474{
3475 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476 struct xhci_virt_device *virt_dev;
3477 unsigned long flags;
3478 u32 state;
3479 int i, ret;
3480
3481 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3482 /* If the host is halted due to driver unload, we still need to free the
3483 * device.
3484 */
3485 if (ret <= 0 && ret != -ENODEV)
3486 return;
3487
3488 virt_dev = xhci->devs[udev->slot_id];
3489
3490 /* Stop any wayward timer functions (which may grab the lock) */
3491 for (i = 0; i < 31; ++i) {
3492 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3493 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3494 }
3495
3496 if (udev->usb2_hw_lpm_enabled) {
3497 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3498 udev->usb2_hw_lpm_enabled = 0;
3499 }
3500
3501 spin_lock_irqsave(&xhci->lock, flags);
3502 /* Don't disable the slot if the host controller is dead. */
3503 state = xhci_readl(xhci, &xhci->op_regs->status);
3504 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3505 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3506 xhci_free_virt_device(xhci, udev->slot_id);
3507 spin_unlock_irqrestore(&xhci->lock, flags);
3508 return;
3509 }
3510
3511 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3512 spin_unlock_irqrestore(&xhci->lock, flags);
3513 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3514 return;
3515 }
3516 xhci_ring_cmd_db(xhci);
3517 spin_unlock_irqrestore(&xhci->lock, flags);
3518 /*
3519 * Event command completion handler will free any data structures
3520 * associated with the slot. XXX Can free sleep?
3521 */
3522}
3523
3524/*
3525 * Checks if we have enough host controller resources for the default control
3526 * endpoint.
3527 *
3528 * Must be called with xhci->lock held.
3529 */
3530static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3531{
3532 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3533 xhci_dbg(xhci, "Not enough ep ctxs: "
3534 "%u active, need to add 1, limit is %u.\n",
3535 xhci->num_active_eps, xhci->limit_active_eps);
3536 return -ENOMEM;
3537 }
3538 xhci->num_active_eps += 1;
3539 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3540 xhci->num_active_eps);
3541 return 0;
3542}
3543
3544
3545/*
3546 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3547 * timed out, or allocating memory failed. Returns 1 on success.
3548 */
3549int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3550{
3551 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3552 unsigned long flags;
3553 int timeleft;
3554 int ret;
3555 union xhci_trb *cmd_trb;
3556
3557 spin_lock_irqsave(&xhci->lock, flags);
3558 cmd_trb = xhci->cmd_ring->dequeue;
3559 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3560 if (ret) {
3561 spin_unlock_irqrestore(&xhci->lock, flags);
3562 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3563 return 0;
3564 }
3565 xhci_ring_cmd_db(xhci);
3566 spin_unlock_irqrestore(&xhci->lock, flags);
3567
3568 /* XXX: how much time for xHC slot assignment? */
3569 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3570 XHCI_CMD_DEFAULT_TIMEOUT);
3571 if (timeleft <= 0) {
3572 xhci_warn(xhci, "%s while waiting for a slot\n",
3573 timeleft == 0 ? "Timeout" : "Signal");
3574 /* cancel the enable slot request */
3575 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3576 }
3577
3578 if (!xhci->slot_id) {
3579 xhci_err(xhci, "Error while assigning device slot ID\n");
3580 return 0;
3581 }
3582
3583 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3584 spin_lock_irqsave(&xhci->lock, flags);
3585 ret = xhci_reserve_host_control_ep_resources(xhci);
3586 if (ret) {
3587 spin_unlock_irqrestore(&xhci->lock, flags);
3588 xhci_warn(xhci, "Not enough host resources, "
3589 "active endpoint contexts = %u\n",
3590 xhci->num_active_eps);
3591 goto disable_slot;
3592 }
3593 spin_unlock_irqrestore(&xhci->lock, flags);
3594 }
3595 /* Use GFP_NOIO, since this function can be called from
3596 * xhci_discover_or_reset_device(), which may be called as part of
3597 * mass storage driver error handling.
3598 */
3599 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3600 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3601 goto disable_slot;
3602 }
3603 udev->slot_id = xhci->slot_id;
3604 /* Is this a LS or FS device under a HS hub? */
3605 /* Hub or peripherial? */
3606 return 1;
3607
3608disable_slot:
3609 /* Disable slot, if we can do it without mem alloc */
3610 spin_lock_irqsave(&xhci->lock, flags);
3611 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3612 xhci_ring_cmd_db(xhci);
3613 spin_unlock_irqrestore(&xhci->lock, flags);
3614 return 0;
3615}
3616
3617/*
3618 * Issue an Address Device command (which will issue a SetAddress request to
3619 * the device).
3620 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3621 * we should only issue and wait on one address command at the same time.
3622 *
3623 * We add one to the device address issued by the hardware because the USB core
3624 * uses address 1 for the root hubs (even though they're not really devices).
3625 */
3626int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3627{
3628 unsigned long flags;
3629 int timeleft;
3630 struct xhci_virt_device *virt_dev;
3631 int ret = 0;
3632 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3633 struct xhci_slot_ctx *slot_ctx;
3634 struct xhci_input_control_ctx *ctrl_ctx;
3635 u64 temp_64;
3636 union xhci_trb *cmd_trb;
3637
3638 if (!udev->slot_id) {
3639 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3640 return -EINVAL;
3641 }
3642
3643 virt_dev = xhci->devs[udev->slot_id];
3644
3645 if (WARN_ON(!virt_dev)) {
3646 /*
3647 * In plug/unplug torture test with an NEC controller,
3648 * a zero-dereference was observed once due to virt_dev = 0.
3649 * Print useful debug rather than crash if it is observed again!
3650 */
3651 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3652 udev->slot_id);
3653 return -EINVAL;
3654 }
3655
3656 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3657 /*
3658 * If this is the first Set Address since device plug-in or
3659 * virt_device realloaction after a resume with an xHCI power loss,
3660 * then set up the slot context.
3661 */
3662 if (!slot_ctx->dev_info)
3663 xhci_setup_addressable_virt_dev(xhci, udev);
3664 /* Otherwise, update the control endpoint ring enqueue pointer. */
3665 else
3666 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3667 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3668 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3669 ctrl_ctx->drop_flags = 0;
3670
3671 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3672 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3673
3674 spin_lock_irqsave(&xhci->lock, flags);
3675 cmd_trb = xhci->cmd_ring->dequeue;
3676 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3677 udev->slot_id);
3678 if (ret) {
3679 spin_unlock_irqrestore(&xhci->lock, flags);
3680 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681 return ret;
3682 }
3683 xhci_ring_cmd_db(xhci);
3684 spin_unlock_irqrestore(&xhci->lock, flags);
3685
3686 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3687 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3688 XHCI_CMD_DEFAULT_TIMEOUT);
3689 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3690 * the SetAddress() "recovery interval" required by USB and aborting the
3691 * command on a timeout.
3692 */
3693 if (timeleft <= 0) {
3694 xhci_warn(xhci, "%s while waiting for address device command\n",
3695 timeleft == 0 ? "Timeout" : "Signal");
3696 /* cancel the address device command */
3697 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3698 if (ret < 0)
3699 return ret;
3700 return -ETIME;
3701 }
3702
3703 switch (virt_dev->cmd_status) {
3704 case COMP_CTX_STATE:
3705 case COMP_EBADSLT:
3706 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3707 udev->slot_id);
3708 ret = -EINVAL;
3709 break;
3710 case COMP_TX_ERR:
3711 dev_warn(&udev->dev, "Device not responding to set address.\n");
3712 ret = -EPROTO;
3713 break;
3714 case COMP_DEV_ERR:
3715 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3716 "device command.\n");
3717 ret = -ENODEV;
3718 break;
3719 case COMP_SUCCESS:
3720 xhci_dbg(xhci, "Successful Address Device command\n");
3721 break;
3722 default:
3723 xhci_err(xhci, "ERROR: unexpected command completion "
3724 "code 0x%x.\n", virt_dev->cmd_status);
3725 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3726 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3727 ret = -EINVAL;
3728 break;
3729 }
3730 if (ret) {
3731 return ret;
3732 }
3733 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3734 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3735 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3736 udev->slot_id,
3737 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3738 (unsigned long long)
3739 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3740 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3741 (unsigned long long)virt_dev->out_ctx->dma);
3742 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3743 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3744 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3745 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3746 /*
3747 * USB core uses address 1 for the roothubs, so we add one to the
3748 * address given back to us by the HC.
3749 */
3750 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751 /* Use kernel assigned address for devices; store xHC assigned
3752 * address locally. */
3753 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3754 + 1;
3755 /* Zero the input context control for later use */
3756 ctrl_ctx->add_flags = 0;
3757 ctrl_ctx->drop_flags = 0;
3758
3759 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3760
3761 return 0;
3762}
3763
3764#ifdef CONFIG_USB_SUSPEND
3765
3766/* BESL to HIRD Encoding array for USB2 LPM */
3767static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3768 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3769
3770/* Calculate HIRD/BESL for USB2 PORTPMSC*/
3771static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3772 struct usb_device *udev)
3773{
3774 int u2del, besl, besl_host;
3775 int besl_device = 0;
3776 u32 field;
3777
3778 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3779 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3780
3781 if (field & USB_BESL_SUPPORT) {
3782 for (besl_host = 0; besl_host < 16; besl_host++) {
3783 if (xhci_besl_encoding[besl_host] >= u2del)
3784 break;
3785 }
3786 /* Use baseline BESL value as default */
3787 if (field & USB_BESL_BASELINE_VALID)
3788 besl_device = USB_GET_BESL_BASELINE(field);
3789 else if (field & USB_BESL_DEEP_VALID)
3790 besl_device = USB_GET_BESL_DEEP(field);
3791 } else {
3792 if (u2del <= 50)
3793 besl_host = 0;
3794 else
3795 besl_host = (u2del - 51) / 75 + 1;
3796 }
3797
3798 besl = besl_host + besl_device;
3799 if (besl > 15)
3800 besl = 15;
3801
3802 return besl;
3803}
3804
3805static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3806 struct usb_device *udev)
3807{
3808 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3809 struct dev_info *dev_info;
3810 __le32 __iomem **port_array;
3811 __le32 __iomem *addr, *pm_addr;
3812 u32 temp, dev_id;
3813 unsigned int port_num;
3814 unsigned long flags;
3815 int hird;
3816 int ret;
3817
3818 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3819 !udev->lpm_capable)
3820 return -EINVAL;
3821
3822 /* we only support lpm for non-hub device connected to root hub yet */
3823 if (!udev->parent || udev->parent->parent ||
3824 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3825 return -EINVAL;
3826
3827 spin_lock_irqsave(&xhci->lock, flags);
3828
3829 /* Look for devices in lpm_failed_devs list */
3830 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3831 le16_to_cpu(udev->descriptor.idProduct);
3832 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3833 if (dev_info->dev_id == dev_id) {
3834 ret = -EINVAL;
3835 goto finish;
3836 }
3837 }
3838
3839 port_array = xhci->usb2_ports;
3840 port_num = udev->portnum - 1;
3841
3842 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3843 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3844 ret = -EINVAL;
3845 goto finish;
3846 }
3847
3848 /*
3849 * Test USB 2.0 software LPM.
3850 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3851 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3852 * in the June 2011 errata release.
3853 */
3854 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3855 /*
3856 * Set L1 Device Slot and HIRD/BESL.
3857 * Check device's USB 2.0 extension descriptor to determine whether
3858 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3859 */
3860 pm_addr = port_array[port_num] + 1;
3861 hird = xhci_calculate_hird_besl(xhci, udev);
3862 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3863 xhci_writel(xhci, temp, pm_addr);
3864
3865 /* Set port link state to U2(L1) */
3866 addr = port_array[port_num];
3867 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3868
3869 /* wait for ACK */
3870 spin_unlock_irqrestore(&xhci->lock, flags);
3871 msleep(10);
3872 spin_lock_irqsave(&xhci->lock, flags);
3873
3874 /* Check L1 Status */
3875 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3876 if (ret != -ETIMEDOUT) {
3877 /* enter L1 successfully */
3878 temp = xhci_readl(xhci, addr);
3879 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3880 port_num, temp);
3881 ret = 0;
3882 } else {
3883 temp = xhci_readl(xhci, pm_addr);
3884 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3885 port_num, temp & PORT_L1S_MASK);
3886 ret = -EINVAL;
3887 }
3888
3889 /* Resume the port */
3890 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3891
3892 spin_unlock_irqrestore(&xhci->lock, flags);
3893 msleep(10);
3894 spin_lock_irqsave(&xhci->lock, flags);
3895
3896 /* Clear PLC */
3897 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3898
3899 /* Check PORTSC to make sure the device is in the right state */
3900 if (!ret) {
3901 temp = xhci_readl(xhci, addr);
3902 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3903 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3904 (temp & PORT_PLS_MASK) != XDEV_U0) {
3905 xhci_dbg(xhci, "port L1 resume fail\n");
3906 ret = -EINVAL;
3907 }
3908 }
3909
3910 if (ret) {
3911 /* Insert dev to lpm_failed_devs list */
3912 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3913 "re-enumerate\n");
3914 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3915 if (!dev_info) {
3916 ret = -ENOMEM;
3917 goto finish;
3918 }
3919 dev_info->dev_id = dev_id;
3920 INIT_LIST_HEAD(&dev_info->list);
3921 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3922 } else {
3923 xhci_ring_device(xhci, udev->slot_id);
3924 }
3925
3926finish:
3927 spin_unlock_irqrestore(&xhci->lock, flags);
3928 return ret;
3929}
3930
3931int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3932 struct usb_device *udev, int enable)
3933{
3934 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3935 __le32 __iomem **port_array;
3936 __le32 __iomem *pm_addr;
3937 u32 temp;
3938 unsigned int port_num;
3939 unsigned long flags;
3940 int hird;
3941
3942 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3943 !udev->lpm_capable)
3944 return -EPERM;
3945
3946 if (!udev->parent || udev->parent->parent ||
3947 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3948 return -EPERM;
3949
3950 if (udev->usb2_hw_lpm_capable != 1)
3951 return -EPERM;
3952
3953 spin_lock_irqsave(&xhci->lock, flags);
3954
3955 port_array = xhci->usb2_ports;
3956 port_num = udev->portnum - 1;
3957 pm_addr = port_array[port_num] + 1;
3958 temp = xhci_readl(xhci, pm_addr);
3959
3960 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3961 enable ? "enable" : "disable", port_num);
3962
3963 hird = xhci_calculate_hird_besl(xhci, udev);
3964
3965 if (enable) {
3966 temp &= ~PORT_HIRD_MASK;
3967 temp |= PORT_HIRD(hird) | PORT_RWE;
3968 xhci_writel(xhci, temp, pm_addr);
3969 temp = xhci_readl(xhci, pm_addr);
3970 temp |= PORT_HLE;
3971 xhci_writel(xhci, temp, pm_addr);
3972 } else {
3973 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3974 xhci_writel(xhci, temp, pm_addr);
3975 }
3976
3977 spin_unlock_irqrestore(&xhci->lock, flags);
3978 return 0;
3979}
3980
3981int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3982{
3983 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3984 int ret;
3985
3986 ret = xhci_usb2_software_lpm_test(hcd, udev);
3987 if (!ret) {
3988 xhci_dbg(xhci, "software LPM test succeed\n");
3989 if (xhci->hw_lpm_support == 1) {
3990 udev->usb2_hw_lpm_capable = 1;
3991 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3992 if (!ret)
3993 udev->usb2_hw_lpm_enabled = 1;
3994 }
3995 }
3996
3997 return 0;
3998}
3999
4000#else
4001
4002int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4003 struct usb_device *udev, int enable)
4004{
4005 return 0;
4006}
4007
4008int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4009{
4010 return 0;
4011}
4012
4013#endif /* CONFIG_USB_SUSPEND */
4014
4015/*---------------------- USB 3.0 Link PM functions ------------------------*/
4016
4017#ifdef CONFIG_PM
4018/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4019static unsigned long long xhci_service_interval_to_ns(
4020 struct usb_endpoint_descriptor *desc)
4021{
4022 return (1 << (desc->bInterval - 1)) * 125 * 1000;
4023}
4024
4025static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4026 enum usb3_link_state state)
4027{
4028 unsigned long long sel;
4029 unsigned long long pel;
4030 unsigned int max_sel_pel;
4031 char *state_name;
4032
4033 switch (state) {
4034 case USB3_LPM_U1:
4035 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4036 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4037 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4038 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4039 state_name = "U1";
4040 break;
4041 case USB3_LPM_U2:
4042 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4043 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4044 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4045 state_name = "U2";
4046 break;
4047 default:
4048 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4049 __func__);
4050 return USB3_LPM_DISABLED;
4051 }
4052
4053 if (sel <= max_sel_pel && pel <= max_sel_pel)
4054 return USB3_LPM_DEVICE_INITIATED;
4055
4056 if (sel > max_sel_pel)
4057 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4058 "due to long SEL %llu ms\n",
4059 state_name, sel);
4060 else
4061 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4062 "due to long PEL %llu\n ms",
4063 state_name, pel);
4064 return USB3_LPM_DISABLED;
4065}
4066
4067/* Returns the hub-encoded U1 timeout value.
4068 * The U1 timeout should be the maximum of the following values:
4069 * - For control endpoints, U1 system exit latency (SEL) * 3
4070 * - For bulk endpoints, U1 SEL * 5
4071 * - For interrupt endpoints:
4072 * - Notification EPs, U1 SEL * 3
4073 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4074 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4075 */
4076static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4077 struct usb_endpoint_descriptor *desc)
4078{
4079 unsigned long long timeout_ns;
4080 int ep_type;
4081 int intr_type;
4082
4083 ep_type = usb_endpoint_type(desc);
4084 switch (ep_type) {
4085 case USB_ENDPOINT_XFER_CONTROL:
4086 timeout_ns = udev->u1_params.sel * 3;
4087 break;
4088 case USB_ENDPOINT_XFER_BULK:
4089 timeout_ns = udev->u1_params.sel * 5;
4090 break;
4091 case USB_ENDPOINT_XFER_INT:
4092 intr_type = usb_endpoint_interrupt_type(desc);
4093 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4094 timeout_ns = udev->u1_params.sel * 3;
4095 break;
4096 }
4097 /* Otherwise the calculation is the same as isoc eps */
4098 case USB_ENDPOINT_XFER_ISOC:
4099 timeout_ns = xhci_service_interval_to_ns(desc);
4100 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4101 if (timeout_ns < udev->u1_params.sel * 2)
4102 timeout_ns = udev->u1_params.sel * 2;
4103 break;
4104 default:
4105 return 0;
4106 }
4107
4108 /* The U1 timeout is encoded in 1us intervals. */
4109 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4110 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4111 if (timeout_ns == USB3_LPM_DISABLED)
4112 timeout_ns++;
4113
4114 /* If the necessary timeout value is bigger than what we can set in the
4115 * USB 3.0 hub, we have to disable hub-initiated U1.
4116 */
4117 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4118 return timeout_ns;
4119 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4120 "due to long timeout %llu ms\n", timeout_ns);
4121 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4122}
4123
4124/* Returns the hub-encoded U2 timeout value.
4125 * The U2 timeout should be the maximum of:
4126 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4127 * - largest bInterval of any active periodic endpoint (to avoid going
4128 * into lower power link states between intervals).
4129 * - the U2 Exit Latency of the device
4130 */
4131static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4132 struct usb_endpoint_descriptor *desc)
4133{
4134 unsigned long long timeout_ns;
4135 unsigned long long u2_del_ns;
4136
4137 timeout_ns = 10 * 1000 * 1000;
4138
4139 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4140 (xhci_service_interval_to_ns(desc) > timeout_ns))
4141 timeout_ns = xhci_service_interval_to_ns(desc);
4142
4143 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4144 if (u2_del_ns > timeout_ns)
4145 timeout_ns = u2_del_ns;
4146
4147 /* The U2 timeout is encoded in 256us intervals */
4148 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4149 /* If the necessary timeout value is bigger than what we can set in the
4150 * USB 3.0 hub, we have to disable hub-initiated U2.
4151 */
4152 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4153 return timeout_ns;
4154 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4155 "due to long timeout %llu ms\n", timeout_ns);
4156 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4157}
4158
4159static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4160 struct usb_device *udev,
4161 struct usb_endpoint_descriptor *desc,
4162 enum usb3_link_state state,
4163 u16 *timeout)
4164{
4165 if (state == USB3_LPM_U1) {
4166 if (xhci->quirks & XHCI_INTEL_HOST)
4167 return xhci_calculate_intel_u1_timeout(udev, desc);
4168 } else {
4169 if (xhci->quirks & XHCI_INTEL_HOST)
4170 return xhci_calculate_intel_u2_timeout(udev, desc);
4171 }
4172
4173 return USB3_LPM_DISABLED;
4174}
4175
4176static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4177 struct usb_device *udev,
4178 struct usb_endpoint_descriptor *desc,
4179 enum usb3_link_state state,
4180 u16 *timeout)
4181{
4182 u16 alt_timeout;
4183
4184 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4185 desc, state, timeout);
4186
4187 /* If we found we can't enable hub-initiated LPM, or
4188 * the U1 or U2 exit latency was too high to allow
4189 * device-initiated LPM as well, just stop searching.
4190 */
4191 if (alt_timeout == USB3_LPM_DISABLED ||
4192 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4193 *timeout = alt_timeout;
4194 return -E2BIG;
4195 }
4196 if (alt_timeout > *timeout)
4197 *timeout = alt_timeout;
4198 return 0;
4199}
4200
4201static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4202 struct usb_device *udev,
4203 struct usb_host_interface *alt,
4204 enum usb3_link_state state,
4205 u16 *timeout)
4206{
4207 int j;
4208
4209 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4210 if (xhci_update_timeout_for_endpoint(xhci, udev,
4211 &alt->endpoint[j].desc, state, timeout))
4212 return -E2BIG;
4213 continue;
4214 }
4215 return 0;
4216}
4217
4218static int xhci_check_intel_tier_policy(struct usb_device *udev,
4219 enum usb3_link_state state)
4220{
4221 struct usb_device *parent;
4222 unsigned int num_hubs;
4223
4224 if (state == USB3_LPM_U2)
4225 return 0;
4226
4227 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4228 for (parent = udev->parent, num_hubs = 0; parent->parent;
4229 parent = parent->parent)
4230 num_hubs++;
4231
4232 if (num_hubs < 2)
4233 return 0;
4234
4235 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4236 " below second-tier hub.\n");
4237 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4238 "to decrease power consumption.\n");
4239 return -E2BIG;
4240}
4241
4242static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4243 struct usb_device *udev,
4244 enum usb3_link_state state)
4245{
4246 if (xhci->quirks & XHCI_INTEL_HOST)
4247 return xhci_check_intel_tier_policy(udev, state);
4248 return -EINVAL;
4249}
4250
4251/* Returns the U1 or U2 timeout that should be enabled.
4252 * If the tier check or timeout setting functions return with a non-zero exit
4253 * code, that means the timeout value has been finalized and we shouldn't look
4254 * at any more endpoints.
4255 */
4256static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4257 struct usb_device *udev, enum usb3_link_state state)
4258{
4259 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4260 struct usb_host_config *config;
4261 char *state_name;
4262 int i;
4263 u16 timeout = USB3_LPM_DISABLED;
4264
4265 if (state == USB3_LPM_U1)
4266 state_name = "U1";
4267 else if (state == USB3_LPM_U2)
4268 state_name = "U2";
4269 else {
4270 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4271 state);
4272 return timeout;
4273 }
4274
4275 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4276 return timeout;
4277
4278 /* Gather some information about the currently installed configuration
4279 * and alternate interface settings.
4280 */
4281 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4282 state, &timeout))
4283 return timeout;
4284
4285 config = udev->actconfig;
4286 if (!config)
4287 return timeout;
4288
4289 for (i = 0; i < USB_MAXINTERFACES; i++) {
4290 struct usb_driver *driver;
4291 struct usb_interface *intf = config->interface[i];
4292
4293 if (!intf)
4294 continue;
4295
4296 /* Check if any currently bound drivers want hub-initiated LPM
4297 * disabled.
4298 */
4299 if (intf->dev.driver) {
4300 driver = to_usb_driver(intf->dev.driver);
4301 if (driver && driver->disable_hub_initiated_lpm) {
4302 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4303 "at request of driver %s\n",
4304 state_name, driver->name);
4305 return xhci_get_timeout_no_hub_lpm(udev, state);
4306 }
4307 }
4308
4309 /* Not sure how this could happen... */
4310 if (!intf->cur_altsetting)
4311 continue;
4312
4313 if (xhci_update_timeout_for_interface(xhci, udev,
4314 intf->cur_altsetting,
4315 state, &timeout))
4316 return timeout;
4317 }
4318 return timeout;
4319}
4320
4321/*
4322 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4323 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4324 */
4325static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4326 struct usb_device *udev, u16 max_exit_latency)
4327{
4328 struct xhci_virt_device *virt_dev;
4329 struct xhci_command *command;
4330 struct xhci_input_control_ctx *ctrl_ctx;
4331 struct xhci_slot_ctx *slot_ctx;
4332 unsigned long flags;
4333 int ret;
4334
4335 spin_lock_irqsave(&xhci->lock, flags);
4336 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4337 spin_unlock_irqrestore(&xhci->lock, flags);
4338 return 0;
4339 }
4340
4341 /* Attempt to issue an Evaluate Context command to change the MEL. */
4342 virt_dev = xhci->devs[udev->slot_id];
4343 command = xhci->lpm_command;
4344 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345 spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4348 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4349 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4350 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4351 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4352
4353 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4354 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4355 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4356
4357 /* Issue and wait for the evaluate context command. */
4358 ret = xhci_configure_endpoint(xhci, udev, command,
4359 true, true);
4360 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4361 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4362
4363 if (!ret) {
4364 spin_lock_irqsave(&xhci->lock, flags);
4365 virt_dev->current_mel = max_exit_latency;
4366 spin_unlock_irqrestore(&xhci->lock, flags);
4367 }
4368 return ret;
4369}
4370
4371static int calculate_max_exit_latency(struct usb_device *udev,
4372 enum usb3_link_state state_changed,
4373 u16 hub_encoded_timeout)
4374{
4375 unsigned long long u1_mel_us = 0;
4376 unsigned long long u2_mel_us = 0;
4377 unsigned long long mel_us = 0;
4378 bool disabling_u1;
4379 bool disabling_u2;
4380 bool enabling_u1;
4381 bool enabling_u2;
4382
4383 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4384 hub_encoded_timeout == USB3_LPM_DISABLED);
4385 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4386 hub_encoded_timeout == USB3_LPM_DISABLED);
4387
4388 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4389 hub_encoded_timeout != USB3_LPM_DISABLED);
4390 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4391 hub_encoded_timeout != USB3_LPM_DISABLED);
4392
4393 /* If U1 was already enabled and we're not disabling it,
4394 * or we're going to enable U1, account for the U1 max exit latency.
4395 */
4396 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4397 enabling_u1)
4398 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4399 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4400 enabling_u2)
4401 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4402
4403 if (u1_mel_us > u2_mel_us)
4404 mel_us = u1_mel_us;
4405 else
4406 mel_us = u2_mel_us;
4407 /* xHCI host controller max exit latency field is only 16 bits wide. */
4408 if (mel_us > MAX_EXIT) {
4409 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4410 "is too big.\n", mel_us);
4411 return -E2BIG;
4412 }
4413 return mel_us;
4414}
4415
4416/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4417int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4418 struct usb_device *udev, enum usb3_link_state state)
4419{
4420 struct xhci_hcd *xhci;
4421 u16 hub_encoded_timeout;
4422 int mel;
4423 int ret;
4424
4425 xhci = hcd_to_xhci(hcd);
4426 /* The LPM timeout values are pretty host-controller specific, so don't
4427 * enable hub-initiated timeouts unless the vendor has provided
4428 * information about their timeout algorithm.
4429 */
4430 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4431 !xhci->devs[udev->slot_id])
4432 return USB3_LPM_DISABLED;
4433
4434 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4435 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4436 if (mel < 0) {
4437 /* Max Exit Latency is too big, disable LPM. */
4438 hub_encoded_timeout = USB3_LPM_DISABLED;
4439 mel = 0;
4440 }
4441
4442 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4443 if (ret)
4444 return ret;
4445 return hub_encoded_timeout;
4446}
4447
4448int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4449 struct usb_device *udev, enum usb3_link_state state)
4450{
4451 struct xhci_hcd *xhci;
4452 u16 mel;
4453 int ret;
4454
4455 xhci = hcd_to_xhci(hcd);
4456 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4457 !xhci->devs[udev->slot_id])
4458 return 0;
4459
4460 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4461 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4462 if (ret)
4463 return ret;
4464 return 0;
4465}
4466#else /* CONFIG_PM */
4467
4468int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4469 struct usb_device *udev, enum usb3_link_state state)
4470{
4471 return USB3_LPM_DISABLED;
4472}
4473
4474int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4475 struct usb_device *udev, enum usb3_link_state state)
4476{
4477 return 0;
4478}
4479#endif /* CONFIG_PM */
4480
4481/*-------------------------------------------------------------------------*/
4482
4483/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4484 * internal data structures for the device.
4485 */
4486int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4487 struct usb_tt *tt, gfp_t mem_flags)
4488{
4489 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4490 struct xhci_virt_device *vdev;
4491 struct xhci_command *config_cmd;
4492 struct xhci_input_control_ctx *ctrl_ctx;
4493 struct xhci_slot_ctx *slot_ctx;
4494 unsigned long flags;
4495 unsigned think_time;
4496 int ret;
4497
4498 /* Ignore root hubs */
4499 if (!hdev->parent)
4500 return 0;
4501
4502 vdev = xhci->devs[hdev->slot_id];
4503 if (!vdev) {
4504 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4505 return -EINVAL;
4506 }
4507 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4508 if (!config_cmd) {
4509 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4510 return -ENOMEM;
4511 }
4512
4513 spin_lock_irqsave(&xhci->lock, flags);
4514 if (hdev->speed == USB_SPEED_HIGH &&
4515 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4516 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4517 xhci_free_command(xhci, config_cmd);
4518 spin_unlock_irqrestore(&xhci->lock, flags);
4519 return -ENOMEM;
4520 }
4521
4522 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4523 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4524 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4525 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4526 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4527 if (tt->multi)
4528 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4529 if (xhci->hci_version > 0x95) {
4530 xhci_dbg(xhci, "xHCI version %x needs hub "
4531 "TT think time and number of ports\n",
4532 (unsigned int) xhci->hci_version);
4533 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4534 /* Set TT think time - convert from ns to FS bit times.
4535 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4536 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4537 *
4538 * xHCI 1.0: this field shall be 0 if the device is not a
4539 * High-spped hub.
4540 */
4541 think_time = tt->think_time;
4542 if (think_time != 0)
4543 think_time = (think_time / 666) - 1;
4544 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4545 slot_ctx->tt_info |=
4546 cpu_to_le32(TT_THINK_TIME(think_time));
4547 } else {
4548 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4549 "TT think time or number of ports\n",
4550 (unsigned int) xhci->hci_version);
4551 }
4552 slot_ctx->dev_state = 0;
4553 spin_unlock_irqrestore(&xhci->lock, flags);
4554
4555 xhci_dbg(xhci, "Set up %s for hub device.\n",
4556 (xhci->hci_version > 0x95) ?
4557 "configure endpoint" : "evaluate context");
4558 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4559 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4560
4561 /* Issue and wait for the configure endpoint or
4562 * evaluate context command.
4563 */
4564 if (xhci->hci_version > 0x95)
4565 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4566 false, false);
4567 else
4568 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4569 true, false);
4570
4571 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4572 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4573
4574 xhci_free_command(xhci, config_cmd);
4575 return ret;
4576}
4577
4578int xhci_get_frame(struct usb_hcd *hcd)
4579{
4580 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4581 /* EHCI mods by the periodic size. Why? */
4582 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4583}
4584
4585int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4586{
4587 struct xhci_hcd *xhci;
4588 struct device *dev = hcd->self.controller;
4589 int retval;
4590 u32 temp;
4591
4592 /* Accept arbitrarily long scatter-gather lists */
4593 hcd->self.sg_tablesize = ~0;
4594
4595 if (usb_hcd_is_primary_hcd(hcd)) {
4596 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4597 if (!xhci)
4598 return -ENOMEM;
4599 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4600 xhci->main_hcd = hcd;
4601 /* Mark the first roothub as being USB 2.0.
4602 * The xHCI driver will register the USB 3.0 roothub.
4603 */
4604 hcd->speed = HCD_USB2;
4605 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4606 /*
4607 * USB 2.0 roothub under xHCI has an integrated TT,
4608 * (rate matching hub) as opposed to having an OHCI/UHCI
4609 * companion controller.
4610 */
4611 hcd->has_tt = 1;
4612 } else {
4613 /* xHCI private pointer was set in xhci_pci_probe for the second
4614 * registered roothub.
4615 */
4616 xhci = hcd_to_xhci(hcd);
4617 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4618 if (HCC_64BIT_ADDR(temp)) {
4619 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4620 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4621 } else {
4622 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4623 }
4624 return 0;
4625 }
4626
4627 xhci->cap_regs = hcd->regs;
4628 xhci->op_regs = hcd->regs +
4629 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4630 xhci->run_regs = hcd->regs +
4631 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4632 /* Cache read-only capability registers */
4633 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4634 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4635 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4636 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4637 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4638 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4639 xhci_print_registers(xhci);
4640
4641 get_quirks(dev, xhci);
4642
4643 /* Make sure the HC is halted. */
4644 retval = xhci_halt(xhci);
4645 if (retval)
4646 goto error;
4647
4648 xhci_dbg(xhci, "Resetting HCD\n");
4649 /* Reset the internal HC memory state and registers. */
4650 retval = xhci_reset(xhci);
4651 if (retval)
4652 goto error;
4653 xhci_dbg(xhci, "Reset complete\n");
4654
4655 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4656 if (HCC_64BIT_ADDR(temp)) {
4657 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4658 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4659 } else {
4660 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4661 }
4662
4663 xhci_dbg(xhci, "Calling HCD init\n");
4664 /* Initialize HCD and host controller data structures. */
4665 retval = xhci_init(hcd);
4666 if (retval)
4667 goto error;
4668 xhci_dbg(xhci, "Called HCD init\n");
4669 return 0;
4670error:
4671 kfree(xhci);
4672 return retval;
4673}
4674
4675MODULE_DESCRIPTION(DRIVER_DESC);
4676MODULE_AUTHOR(DRIVER_AUTHOR);
4677MODULE_LICENSE("GPL");
4678
4679static int __init xhci_hcd_init(void)
4680{
4681 int retval;
4682
4683 retval = xhci_register_pci();
4684 if (retval < 0) {
4685 printk(KERN_DEBUG "Problem registering PCI driver.");
4686 return retval;
4687 }
4688 retval = xhci_register_plat();
4689 if (retval < 0) {
4690 printk(KERN_DEBUG "Problem registering platform driver.");
4691 goto unreg_pci;
4692 }
4693 /*
4694 * Check the compiler generated sizes of structures that must be laid
4695 * out in specific ways for hardware access.
4696 */
4697 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4698 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4699 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4700 /* xhci_device_control has eight fields, and also
4701 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4702 */
4703 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4704 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4705 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4706 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4707 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4708 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4709 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4710 return 0;
4711unreg_pci:
4712 xhci_unregister_pci();
4713 return retval;
4714}
4715module_init(xhci_hcd_init);
4716
4717static void __exit xhci_hcd_cleanup(void)
4718{
4719 xhci_unregister_pci();
4720 xhci_unregister_plat();
4721}
4722module_exit(xhci_hcd_cleanup);