Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
6 *
7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
8 * Semiconductor. It reports up to two temperatures (its own plus up to
9 * one external one) with a 0.125 deg resolution (1 deg for local
10 * temperature) and a 3-4 deg accuracy.
11 *
12 * This driver also supports the LM89 and LM99, two other sensor chips
13 * made by National Semiconductor. Both have an increased remote
14 * temperature measurement accuracy (1 degree), and the LM99
15 * additionally shifts remote temperatures (measured and limits) by 16
16 * degrees, which allows for higher temperatures measurement.
17 * Note that there is no way to differentiate between both chips.
18 * When device is auto-detected, the driver will assume an LM99.
19 *
20 * This driver also supports the LM86, another sensor chip made by
21 * National Semiconductor. It is exactly similar to the LM90 except it
22 * has a higher accuracy.
23 *
24 * This driver also supports the ADM1032, a sensor chip made by Analog
25 * Devices. That chip is similar to the LM90, with a few differences
26 * that are not handled by this driver. Among others, it has a higher
27 * accuracy than the LM90, much like the LM86 does.
28 *
29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
30 * chips made by Maxim. These chips are similar to the LM86.
31 * Note that there is no easy way to differentiate between the three
32 * variants. We use the device address to detect MAX6659, which will result
33 * in a detection as max6657 if it is on address 0x4c. The extra address
34 * and features of the MAX6659 are only supported if the chip is configured
35 * explicitly as max6659, or if its address is not 0x4c.
36 * These chips lack the remote temperature offset feature.
37 *
38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be
39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
41 * limits. Extended range is available by setting the configuration register
42 * accordingly, and is done during initialization. Extended precision is only
43 * available at conversion rates of 1 Hz and slower. Note that extended
44 * precision is not enabled by default, as this driver initializes all chips
45 * to 2 Hz by design. The driver also supports MAX6690, which is practically
46 * identical to MAX6654.
47 *
48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
49 * MAX6692 chips made by Maxim. These are again similar to the LM86,
50 * but they use unsigned temperature values and can report temperatures
51 * from 0 to 145 degrees.
52 *
53 * This driver also supports the MAX6680 and MAX6681, two other sensor
54 * chips made by Maxim. These are quite similar to the other Maxim
55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
56 * be treated identically.
57 *
58 * This driver also supports the MAX6695 and MAX6696, two other sensor
59 * chips made by Maxim. These are also quite similar to other Maxim
60 * chips, but support three temperature sensors instead of two. MAX6695
61 * and MAX6696 only differ in the pinout so they can be treated identically.
62 *
63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
65 * and extended mode. They are mostly compatible with LM90 except for a data
66 * format difference for the temperature value registers.
67 *
68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external
70 * temperature sensors.
71 *
72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
73 * The chips are similar to ADT7461/ADT7461A but have full PEC support
74 * (undocumented).
75 *
76 * This driver also supports the SA56004 from Philips. This device is
77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
78 *
79 * This driver also supports the G781 from GMT. This device is compatible
80 * with the ADM1032.
81 *
82 * This driver also supports TMP451 and TMP461 from Texas Instruments.
83 * Those devices are supported in both compatibility and extended mode.
84 * They are mostly compatible with ADT7461 except for local temperature
85 * low byte register and max conversion rate.
86 *
87 * This driver also supports MAX1617 and various clones such as G767
88 * and NE1617. Such clones will be detected as MAX1617.
89 *
90 * This driver also supports NE1618 from Philips. It is similar to NE1617
91 * but supports 11 bit external temperature values.
92 *
93 * Since the LM90 was the first chipset supported by this driver, most
94 * comments will refer to this chipset, but are actually general and
95 * concern all supported chipsets, unless mentioned otherwise.
96 */
97
98#include <linux/bits.h>
99#include <linux/device.h>
100#include <linux/err.h>
101#include <linux/i2c.h>
102#include <linux/init.h>
103#include <linux/interrupt.h>
104#include <linux/jiffies.h>
105#include <linux/hwmon.h>
106#include <linux/kstrtox.h>
107#include <linux/module.h>
108#include <linux/mutex.h>
109#include <linux/of.h>
110#include <linux/regulator/consumer.h>
111#include <linux/slab.h>
112#include <linux/workqueue.h>
113
114/* The maximum number of channels currently supported */
115#define MAX_CHANNELS 3
116
117/*
118 * Addresses to scan
119 * Address is fully defined internally and cannot be changed except for
120 * MAX6659, MAX6680 and MAX6681.
121 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
122 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
123 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
124 * have address 0x4d.
125 * MAX6647 has address 0x4e.
126 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
127 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
128 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
129 * SA56004 can have address 0x48 through 0x4F.
130 */
131
132static const unsigned short normal_i2c[] = {
133 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
134 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
135
136enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
137 g781, lm84, lm90, lm99,
138 max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
139 nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
140};
141
142/*
143 * The LM90 registers
144 */
145
146#define LM90_REG_MAN_ID 0xFE
147#define LM90_REG_CHIP_ID 0xFF
148#define LM90_REG_CONFIG1 0x03
149#define LM90_REG_CONFIG2 0xBF
150#define LM90_REG_CONVRATE 0x04
151#define LM90_REG_STATUS 0x02
152#define LM90_REG_LOCAL_TEMP 0x00
153#define LM90_REG_LOCAL_HIGH 0x05
154#define LM90_REG_LOCAL_LOW 0x06
155#define LM90_REG_LOCAL_CRIT 0x20
156#define LM90_REG_REMOTE_TEMPH 0x01
157#define LM90_REG_REMOTE_TEMPL 0x10
158#define LM90_REG_REMOTE_OFFSH 0x11
159#define LM90_REG_REMOTE_OFFSL 0x12
160#define LM90_REG_REMOTE_HIGHH 0x07
161#define LM90_REG_REMOTE_HIGHL 0x13
162#define LM90_REG_REMOTE_LOWH 0x08
163#define LM90_REG_REMOTE_LOWL 0x14
164#define LM90_REG_REMOTE_CRIT 0x19
165#define LM90_REG_TCRIT_HYST 0x21
166
167/* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
168
169#define MAX6657_REG_LOCAL_TEMPL 0x11
170#define MAX6696_REG_STATUS2 0x12
171#define MAX6659_REG_REMOTE_EMERG 0x16
172#define MAX6659_REG_LOCAL_EMERG 0x17
173
174/* SA56004 registers */
175
176#define SA56004_REG_LOCAL_TEMPL 0x22
177
178#define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
179
180/* TMP451/TMP461 registers */
181#define TMP451_REG_LOCAL_TEMPL 0x15
182#define TMP451_REG_CONALERT 0x22
183
184#define TMP461_REG_CHEN 0x16
185#define TMP461_REG_DFC 0x24
186
187/* ADT7481 registers */
188#define ADT7481_REG_STATUS2 0x23
189#define ADT7481_REG_CONFIG2 0x24
190
191#define ADT7481_REG_MAN_ID 0x3e
192#define ADT7481_REG_CHIP_ID 0x3d
193
194/* Device features */
195#define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */
196#define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */
197#define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */
198#define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */
199#define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */
200#define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */
201#define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */
202#define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */
203#define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */
204#define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */
205#define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */
206#define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */
207#define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/
208#define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */
209#define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/
210#define LM90_HAVE_LOW BIT(15) /* low limits */
211#define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */
212#define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */
213#define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */
214
215/* LM90 status */
216#define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */
217#define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */
218#define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */
219#define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */
220#define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */
221#define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */
222#define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */
223#define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */
224
225/* MAX6695/6696 and ADT7481 2nd status register */
226#define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */
227#define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */
228#define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */
229#define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */
230#define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */
231#define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */
232#define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */
233
234/*
235 * Driver data (common to all clients)
236 */
237
238static const struct i2c_device_id lm90_id[] = {
239 { "adm1020", max1617 },
240 { "adm1021", max1617 },
241 { "adm1023", adm1023 },
242 { "adm1032", adm1032 },
243 { "adt7421", adt7461a },
244 { "adt7461", adt7461 },
245 { "adt7461a", adt7461a },
246 { "adt7481", adt7481 },
247 { "adt7482", adt7481 },
248 { "adt7483a", adt7481 },
249 { "g781", g781 },
250 { "gl523sm", max1617 },
251 { "lm84", lm84 },
252 { "lm86", lm90 },
253 { "lm89", lm90 },
254 { "lm90", lm90 },
255 { "lm99", lm99 },
256 { "max1617", max1617 },
257 { "max6642", max6642 },
258 { "max6646", max6646 },
259 { "max6647", max6646 },
260 { "max6648", max6648 },
261 { "max6649", max6646 },
262 { "max6654", max6654 },
263 { "max6657", max6657 },
264 { "max6658", max6657 },
265 { "max6659", max6659 },
266 { "max6680", max6680 },
267 { "max6681", max6680 },
268 { "max6690", max6654 },
269 { "max6692", max6648 },
270 { "max6695", max6696 },
271 { "max6696", max6696 },
272 { "mc1066", max1617 },
273 { "nct1008", adt7461a },
274 { "nct210", nct210 },
275 { "nct214", nct72 },
276 { "nct218", nct72 },
277 { "nct72", nct72 },
278 { "ne1618", ne1618 },
279 { "w83l771", w83l771 },
280 { "sa56004", sa56004 },
281 { "thmc10", max1617 },
282 { "tmp451", tmp451 },
283 { "tmp461", tmp461 },
284 { }
285};
286MODULE_DEVICE_TABLE(i2c, lm90_id);
287
288static const struct of_device_id __maybe_unused lm90_of_match[] = {
289 {
290 .compatible = "adi,adm1032",
291 .data = (void *)adm1032
292 },
293 {
294 .compatible = "adi,adt7461",
295 .data = (void *)adt7461
296 },
297 {
298 .compatible = "adi,adt7461a",
299 .data = (void *)adt7461a
300 },
301 {
302 .compatible = "adi,adt7481",
303 .data = (void *)adt7481
304 },
305 {
306 .compatible = "gmt,g781",
307 .data = (void *)g781
308 },
309 {
310 .compatible = "national,lm90",
311 .data = (void *)lm90
312 },
313 {
314 .compatible = "national,lm86",
315 .data = (void *)lm90
316 },
317 {
318 .compatible = "national,lm89",
319 .data = (void *)lm90
320 },
321 {
322 .compatible = "national,lm99",
323 .data = (void *)lm99
324 },
325 {
326 .compatible = "dallas,max6646",
327 .data = (void *)max6646
328 },
329 {
330 .compatible = "dallas,max6647",
331 .data = (void *)max6646
332 },
333 {
334 .compatible = "dallas,max6649",
335 .data = (void *)max6646
336 },
337 {
338 .compatible = "dallas,max6654",
339 .data = (void *)max6654
340 },
341 {
342 .compatible = "dallas,max6657",
343 .data = (void *)max6657
344 },
345 {
346 .compatible = "dallas,max6658",
347 .data = (void *)max6657
348 },
349 {
350 .compatible = "dallas,max6659",
351 .data = (void *)max6659
352 },
353 {
354 .compatible = "dallas,max6680",
355 .data = (void *)max6680
356 },
357 {
358 .compatible = "dallas,max6681",
359 .data = (void *)max6680
360 },
361 {
362 .compatible = "dallas,max6695",
363 .data = (void *)max6696
364 },
365 {
366 .compatible = "dallas,max6696",
367 .data = (void *)max6696
368 },
369 {
370 .compatible = "onnn,nct1008",
371 .data = (void *)adt7461a
372 },
373 {
374 .compatible = "onnn,nct214",
375 .data = (void *)nct72
376 },
377 {
378 .compatible = "onnn,nct218",
379 .data = (void *)nct72
380 },
381 {
382 .compatible = "onnn,nct72",
383 .data = (void *)nct72
384 },
385 {
386 .compatible = "winbond,w83l771",
387 .data = (void *)w83l771
388 },
389 {
390 .compatible = "nxp,sa56004",
391 .data = (void *)sa56004
392 },
393 {
394 .compatible = "ti,tmp451",
395 .data = (void *)tmp451
396 },
397 {
398 .compatible = "ti,tmp461",
399 .data = (void *)tmp461
400 },
401 { },
402};
403MODULE_DEVICE_TABLE(of, lm90_of_match);
404
405/*
406 * chip type specific parameters
407 */
408struct lm90_params {
409 u32 flags; /* Capabilities */
410 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
411 /* Upper 8 bits for max6695/96 */
412 u8 max_convrate; /* Maximum conversion rate register value */
413 u8 resolution; /* 16-bit resolution (default 11 bit) */
414 u8 reg_status2; /* 2nd status register (optional) */
415 u8 reg_local_ext; /* Extended local temp register (optional) */
416 u8 faultqueue_mask; /* fault queue bit mask */
417 u8 faultqueue_depth; /* fault queue depth if mask is used */
418};
419
420static const struct lm90_params lm90_params[] = {
421 [adm1023] = {
422 .flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
423 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
424 | LM90_HAVE_REMOTE_EXT,
425 .alert_alarms = 0x7c,
426 .resolution = 8,
427 .max_convrate = 7,
428 },
429 [adm1032] = {
430 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
431 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
432 | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
433 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
434 | LM90_HAVE_FAULTQUEUE,
435 .alert_alarms = 0x7c,
436 .max_convrate = 10,
437 },
438 [adt7461] = {
439 /*
440 * Standard temperature range is supposed to be unsigned,
441 * but that does not match reality. Negative temperatures
442 * are always reported.
443 */
444 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
445 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
446 | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
447 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
448 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
449 .alert_alarms = 0x7c,
450 .max_convrate = 10,
451 .resolution = 10,
452 },
453 [adt7461a] = {
454 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
455 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
456 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
457 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
458 | LM90_HAVE_FAULTQUEUE,
459 .alert_alarms = 0x7c,
460 .max_convrate = 10,
461 },
462 [adt7481] = {
463 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
464 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
465 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
466 | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
467 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
468 | LM90_HAVE_FAULTQUEUE,
469 .alert_alarms = 0x1c7c,
470 .max_convrate = 11,
471 .resolution = 10,
472 .reg_status2 = ADT7481_REG_STATUS2,
473 },
474 [g781] = {
475 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
476 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
477 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
478 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
479 .alert_alarms = 0x7c,
480 .max_convrate = 7,
481 },
482 [lm84] = {
483 .flags = LM90_HAVE_ALARMS,
484 .resolution = 8,
485 },
486 [lm90] = {
487 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
488 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
489 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
490 | LM90_HAVE_FAULTQUEUE,
491 .alert_alarms = 0x7b,
492 .max_convrate = 9,
493 .faultqueue_mask = BIT(0),
494 .faultqueue_depth = 3,
495 },
496 [lm99] = {
497 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
498 | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
499 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
500 | LM90_HAVE_FAULTQUEUE,
501 .alert_alarms = 0x7b,
502 .max_convrate = 9,
503 .faultqueue_mask = BIT(0),
504 .faultqueue_depth = 3,
505 },
506 [max1617] = {
507 .flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
508 LM90_HAVE_LOW | LM90_HAVE_ALARMS,
509 .alert_alarms = 0x78,
510 .resolution = 8,
511 .max_convrate = 7,
512 },
513 [max6642] = {
514 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
515 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
516 .alert_alarms = 0x50,
517 .resolution = 10,
518 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
519 .faultqueue_mask = BIT(4),
520 .faultqueue_depth = 2,
521 },
522 [max6646] = {
523 .flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
524 | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
525 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
526 .alert_alarms = 0x7c,
527 .max_convrate = 6,
528 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
529 },
530 [max6648] = {
531 .flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
532 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
533 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
534 .alert_alarms = 0x7c,
535 .max_convrate = 6,
536 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
537 },
538 [max6654] = {
539 .flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
540 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
541 .alert_alarms = 0x7c,
542 .max_convrate = 7,
543 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
544 },
545 [max6657] = {
546 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
547 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
548 | LM90_HAVE_REMOTE_EXT,
549 .alert_alarms = 0x7c,
550 .max_convrate = 8,
551 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
552 },
553 [max6659] = {
554 .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
555 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
556 | LM90_HAVE_REMOTE_EXT,
557 .alert_alarms = 0x7c,
558 .max_convrate = 8,
559 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
560 },
561 [max6680] = {
562 /*
563 * Apparent temperatures of 128 degrees C or higher are reported
564 * and treated as negative temperatures (meaning min_alarm will
565 * be set).
566 */
567 .flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
568 | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
569 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
570 | LM90_HAVE_REMOTE_EXT,
571 .alert_alarms = 0x7c,
572 .max_convrate = 7,
573 },
574 [max6696] = {
575 .flags = LM90_HAVE_EMERGENCY
576 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
577 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
578 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
579 .alert_alarms = 0x1c7c,
580 .max_convrate = 6,
581 .reg_status2 = MAX6696_REG_STATUS2,
582 .reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
583 .faultqueue_mask = BIT(5),
584 .faultqueue_depth = 4,
585 },
586 [nct72] = {
587 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
588 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
589 | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
590 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
591 | LM90_HAVE_FAULTQUEUE,
592 .alert_alarms = 0x7c,
593 .max_convrate = 10,
594 .resolution = 10,
595 },
596 [nct210] = {
597 .flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
598 | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
599 | LM90_HAVE_REMOTE_EXT,
600 .alert_alarms = 0x7c,
601 .resolution = 11,
602 .max_convrate = 7,
603 },
604 [ne1618] = {
605 .flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
606 | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
607 .alert_alarms = 0x7c,
608 .resolution = 11,
609 .max_convrate = 7,
610 },
611 [w83l771] = {
612 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
613 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
614 | LM90_HAVE_REMOTE_EXT,
615 .alert_alarms = 0x7c,
616 .max_convrate = 8,
617 },
618 [sa56004] = {
619 /*
620 * Apparent temperatures of 128 degrees C or higher are reported
621 * and treated as negative temperatures (meaning min_alarm will
622 * be set).
623 */
624 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
625 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
626 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
627 .alert_alarms = 0x7b,
628 .max_convrate = 9,
629 .reg_local_ext = SA56004_REG_LOCAL_TEMPL,
630 .faultqueue_mask = BIT(0),
631 .faultqueue_depth = 3,
632 },
633 [tmp451] = {
634 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
635 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
636 | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
637 | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
638 .alert_alarms = 0x7c,
639 .max_convrate = 9,
640 .resolution = 12,
641 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
642 },
643 [tmp461] = {
644 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
645 | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
646 | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
647 | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
648 .alert_alarms = 0x7c,
649 .max_convrate = 9,
650 .resolution = 12,
651 .reg_local_ext = TMP451_REG_LOCAL_TEMPL,
652 },
653};
654
655/*
656 * temperature register index
657 */
658enum lm90_temp_reg_index {
659 LOCAL_LOW = 0,
660 LOCAL_HIGH,
661 LOCAL_CRIT,
662 REMOTE_CRIT,
663 LOCAL_EMERG, /* max6659 and max6695/96 */
664 REMOTE_EMERG, /* max6659 and max6695/96 */
665 REMOTE2_CRIT, /* max6695/96 only */
666 REMOTE2_EMERG, /* max6695/96 only */
667
668 REMOTE_TEMP,
669 REMOTE_LOW,
670 REMOTE_HIGH,
671 REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
672 LOCAL_TEMP,
673 REMOTE2_TEMP, /* max6695/96 only */
674 REMOTE2_LOW, /* max6695/96 only */
675 REMOTE2_HIGH, /* max6695/96 only */
676 REMOTE2_OFFSET,
677
678 TEMP_REG_NUM
679};
680
681/*
682 * Client data (each client gets its own)
683 */
684
685struct lm90_data {
686 struct i2c_client *client;
687 struct device *hwmon_dev;
688 u32 chip_config[2];
689 u32 channel_config[MAX_CHANNELS + 1];
690 const char *channel_label[MAX_CHANNELS];
691 struct hwmon_channel_info chip_info;
692 struct hwmon_channel_info temp_info;
693 const struct hwmon_channel_info *info[3];
694 struct hwmon_chip_info chip;
695 struct mutex update_lock;
696 struct delayed_work alert_work;
697 struct work_struct report_work;
698 bool valid; /* true if register values are valid */
699 bool alarms_valid; /* true if status register values are valid */
700 unsigned long last_updated; /* in jiffies */
701 unsigned long alarms_updated; /* in jiffies */
702 int kind;
703 u32 flags;
704
705 unsigned int update_interval; /* in milliseconds */
706
707 u8 config; /* Current configuration register value */
708 u8 config_orig; /* Original configuration register value */
709 u8 convrate_orig; /* Original conversion rate register value */
710 u8 resolution; /* temperature resolution in bit */
711 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
712 /* Upper 8 bits for max6695/96 */
713 u8 max_convrate; /* Maximum conversion rate */
714 u8 reg_status2; /* 2nd status register (optional) */
715 u8 reg_local_ext; /* local extension register offset */
716 u8 reg_remote_ext; /* remote temperature low byte */
717 u8 faultqueue_mask; /* fault queue mask */
718 u8 faultqueue_depth; /* fault queue mask */
719
720 /* registers values */
721 u16 temp[TEMP_REG_NUM];
722 u8 temp_hyst;
723 u8 conalert;
724 u16 reported_alarms; /* alarms reported as sysfs/udev events */
725 u16 current_alarms; /* current alarms, reported by chip */
726 u16 alarms; /* alarms not yet reported to user */
727};
728
729/*
730 * Support functions
731 */
732
733/*
734 * If the chip supports PEC but not on write byte transactions, we need
735 * to explicitly ask for a transaction without PEC.
736 */
737static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
738{
739 return i2c_smbus_xfer(client->adapter, client->addr,
740 client->flags & ~I2C_CLIENT_PEC,
741 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
742}
743
744/*
745 * It is assumed that client->update_lock is held (unless we are in
746 * detection or initialization steps). This matters when PEC is enabled
747 * for chips with partial PEC support, because we don't want the address
748 * pointer to change between the write byte and the read byte transactions.
749 */
750static int lm90_read_reg(struct i2c_client *client, u8 reg)
751{
752 struct lm90_data *data = i2c_get_clientdata(client);
753 bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
754 (data->flags & LM90_HAVE_PARTIAL_PEC);
755 int err;
756
757 if (partial_pec) {
758 err = lm90_write_no_pec(client, reg);
759 if (err)
760 return err;
761 return i2c_smbus_read_byte(client);
762 }
763 return i2c_smbus_read_byte_data(client, reg);
764}
765
766/*
767 * Return register write address
768 *
769 * The write address for registers 0x03 .. 0x08 is the read address plus 6.
770 * For other registers the write address matches the read address.
771 */
772static u8 lm90_write_reg_addr(u8 reg)
773{
774 if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
775 return reg + 6;
776 return reg;
777}
778
779/*
780 * Write into LM90 register.
781 * Convert register address to write address if needed, then execute the
782 * operation.
783 */
784static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
785{
786 return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
787}
788
789/*
790 * Write into 16-bit LM90 register.
791 * Convert register addresses to write address if needed, then execute the
792 * operation.
793 */
794static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
795{
796 int ret;
797
798 ret = lm90_write_reg(client, regh, val >> 8);
799 if (ret < 0 || !regl)
800 return ret;
801 return lm90_write_reg(client, regl, val & 0xff);
802}
803
804static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
805 bool is_volatile)
806{
807 int oldh, newh, l;
808
809 oldh = lm90_read_reg(client, regh);
810 if (oldh < 0)
811 return oldh;
812
813 if (!regl)
814 return oldh << 8;
815
816 l = lm90_read_reg(client, regl);
817 if (l < 0)
818 return l;
819
820 if (!is_volatile)
821 return (oldh << 8) | l;
822
823 /*
824 * For volatile registers we have to use a trick.
825 * We have to read two registers to have the sensor temperature,
826 * but we have to beware a conversion could occur between the
827 * readings. The datasheet says we should either use
828 * the one-shot conversion register, which we don't want to do
829 * (disables hardware monitoring) or monitor the busy bit, which is
830 * impossible (we can't read the values and monitor that bit at the
831 * exact same time). So the solution used here is to read the high
832 * the high byte again. If the new high byte matches the old one,
833 * then we have a valid reading. Otherwise we have to read the low
834 * byte again, and now we believe we have a correct reading.
835 */
836 newh = lm90_read_reg(client, regh);
837 if (newh < 0)
838 return newh;
839 if (oldh != newh) {
840 l = lm90_read_reg(client, regl);
841 if (l < 0)
842 return l;
843 }
844 return (newh << 8) | l;
845}
846
847static int lm90_update_confreg(struct lm90_data *data, u8 config)
848{
849 if (data->config != config) {
850 int err;
851
852 err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
853 if (err)
854 return err;
855 data->config = config;
856 }
857 return 0;
858}
859
860/*
861 * client->update_lock must be held when calling this function (unless we are
862 * in detection or initialization steps), and while a remote channel other
863 * than channel 0 is selected. Also, calling code must make sure to re-select
864 * external channel 0 before releasing the lock. This is necessary because
865 * various registers have different meanings as a result of selecting a
866 * non-default remote channel.
867 */
868static int lm90_select_remote_channel(struct lm90_data *data, bool second)
869{
870 u8 config = data->config & ~0x08;
871
872 if (second)
873 config |= 0x08;
874
875 return lm90_update_confreg(data, config);
876}
877
878static int lm90_write_convrate(struct lm90_data *data, int val)
879{
880 u8 config = data->config;
881 int err;
882
883 /* Save config and pause conversion */
884 if (data->flags & LM90_PAUSE_FOR_CONFIG) {
885 err = lm90_update_confreg(data, config | 0x40);
886 if (err < 0)
887 return err;
888 }
889
890 /* Set conv rate */
891 err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
892
893 /* Revert change to config */
894 lm90_update_confreg(data, config);
895
896 return err;
897}
898
899/*
900 * Set conversion rate.
901 * client->update_lock must be held when calling this function (unless we are
902 * in detection or initialization steps).
903 */
904static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
905 unsigned int interval)
906{
907 unsigned int update_interval;
908 int i, err;
909
910 /* Shift calculations to avoid rounding errors */
911 interval <<= 6;
912
913 /* find the nearest update rate */
914 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
915 i < data->max_convrate; i++, update_interval >>= 1)
916 if (interval >= update_interval * 3 / 4)
917 break;
918
919 err = lm90_write_convrate(data, i);
920 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
921 return err;
922}
923
924static int lm90_set_faultqueue(struct i2c_client *client,
925 struct lm90_data *data, int val)
926{
927 int err;
928
929 if (data->faultqueue_mask) {
930 err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
931 data->config & ~data->faultqueue_mask :
932 data->config | data->faultqueue_mask);
933 } else {
934 static const u8 values[4] = {0, 2, 6, 0x0e};
935
936 data->conalert = (data->conalert & 0xf1) | values[val - 1];
937 err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
938 data->conalert);
939 }
940
941 return err;
942}
943
944static int lm90_update_limits(struct device *dev)
945{
946 struct lm90_data *data = dev_get_drvdata(dev);
947 struct i2c_client *client = data->client;
948 int val;
949
950 if (data->flags & LM90_HAVE_CRIT) {
951 val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
952 if (val < 0)
953 return val;
954 data->temp[LOCAL_CRIT] = val << 8;
955
956 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
957 if (val < 0)
958 return val;
959 data->temp[REMOTE_CRIT] = val << 8;
960
961 val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
962 if (val < 0)
963 return val;
964 data->temp_hyst = val;
965 }
966 if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
967 val = lm90_read_reg(client, TMP451_REG_CONALERT);
968 if (val < 0)
969 return val;
970 data->conalert = val;
971 }
972
973 val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
974 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
975 false);
976 if (val < 0)
977 return val;
978 data->temp[REMOTE_LOW] = val;
979
980 val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
981 (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
982 false);
983 if (val < 0)
984 return val;
985 data->temp[REMOTE_HIGH] = val;
986
987 if (data->flags & LM90_HAVE_OFFSET) {
988 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
989 LM90_REG_REMOTE_OFFSL, false);
990 if (val < 0)
991 return val;
992 data->temp[REMOTE_OFFSET] = val;
993 }
994
995 if (data->flags & LM90_HAVE_EMERGENCY) {
996 val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
997 if (val < 0)
998 return val;
999 data->temp[LOCAL_EMERG] = val << 8;
1000
1001 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1002 if (val < 0)
1003 return val;
1004 data->temp[REMOTE_EMERG] = val << 8;
1005 }
1006
1007 if (data->flags & LM90_HAVE_TEMP3) {
1008 val = lm90_select_remote_channel(data, true);
1009 if (val < 0)
1010 return val;
1011
1012 val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1013 if (val < 0)
1014 return val;
1015 data->temp[REMOTE2_CRIT] = val << 8;
1016
1017 if (data->flags & LM90_HAVE_EMERGENCY) {
1018 val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1019 if (val < 0)
1020 return val;
1021 data->temp[REMOTE2_EMERG] = val << 8;
1022 }
1023
1024 val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1025 if (val < 0)
1026 return val;
1027 data->temp[REMOTE2_LOW] = val << 8;
1028
1029 val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1030 if (val < 0)
1031 return val;
1032 data->temp[REMOTE2_HIGH] = val << 8;
1033
1034 if (data->flags & LM90_HAVE_OFFSET) {
1035 val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1036 LM90_REG_REMOTE_OFFSL, false);
1037 if (val < 0)
1038 return val;
1039 data->temp[REMOTE2_OFFSET] = val;
1040 }
1041
1042 lm90_select_remote_channel(data, false);
1043 }
1044
1045 return 0;
1046}
1047
1048static void lm90_report_alarms(struct work_struct *work)
1049{
1050 struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1051 u16 cleared_alarms, new_alarms, current_alarms;
1052 struct device *hwmon_dev = data->hwmon_dev;
1053 struct device *dev = &data->client->dev;
1054 int st, st2;
1055
1056 current_alarms = data->current_alarms;
1057 cleared_alarms = data->reported_alarms & ~current_alarms;
1058 new_alarms = current_alarms & ~data->reported_alarms;
1059
1060 if (!cleared_alarms && !new_alarms)
1061 return;
1062
1063 st = new_alarms & 0xff;
1064 st2 = new_alarms >> 8;
1065
1066 if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1067 (st2 & MAX6696_STATUS2_LOT2))
1068 dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1069 if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1070 (st2 & MAX6696_STATUS2_ROT2))
1071 dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1072 if (st & LM90_STATUS_ROPEN)
1073 dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1074 if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1075 MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1076 dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1077 if (st2 & MAX6696_STATUS2_R2OPEN)
1078 dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079
1080 st |= cleared_alarms & 0xff;
1081 st2 |= cleared_alarms >> 8;
1082
1083 if (st & LM90_STATUS_LLOW)
1084 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1085 if (st & LM90_STATUS_RLOW)
1086 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1087 if (st2 & MAX6696_STATUS2_R2LOW)
1088 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089
1090 if (st & LM90_STATUS_LHIGH)
1091 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1092 if (st & LM90_STATUS_RHIGH)
1093 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1094 if (st2 & MAX6696_STATUS2_R2HIGH)
1095 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096
1097 if (st & LM90_STATUS_LTHRM)
1098 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1099 if (st & LM90_STATUS_RTHRM)
1100 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1101 if (st2 & MAX6696_STATUS2_R2THRM)
1102 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103
1104 if (st2 & MAX6696_STATUS2_LOT2)
1105 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1106 if (st2 & MAX6696_STATUS2_ROT2)
1107 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1108 if (st2 & MAX6696_STATUS2_R2OT2)
1109 hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110
1111 data->reported_alarms = current_alarms;
1112}
1113
1114static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115{
1116 if (force || !data->alarms_valid ||
1117 time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1118 struct i2c_client *client = data->client;
1119 bool check_enable;
1120 u16 alarms;
1121 int val;
1122
1123 data->alarms_valid = false;
1124
1125 val = lm90_read_reg(client, LM90_REG_STATUS);
1126 if (val < 0)
1127 return val;
1128 alarms = val & ~LM90_STATUS_BUSY;
1129
1130 if (data->reg_status2) {
1131 val = lm90_read_reg(client, data->reg_status2);
1132 if (val < 0)
1133 return val;
1134 alarms |= val << 8;
1135 }
1136 /*
1137 * If the update is forced (called from interrupt or alert
1138 * handler) and alarm data is valid, the alarms may have been
1139 * updated after the last update interval, and the status
1140 * register may still be cleared. Only add additional alarms
1141 * in this case. Alarms will be cleared later if appropriate.
1142 */
1143 if (force && data->alarms_valid)
1144 data->current_alarms |= alarms;
1145 else
1146 data->current_alarms = alarms;
1147 data->alarms |= alarms;
1148
1149 check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1150 (data->config & 0x80);
1151
1152 if (force || check_enable)
1153 schedule_work(&data->report_work);
1154
1155 /*
1156 * Re-enable ALERT# output if it was originally enabled, relevant
1157 * alarms are all clear, and alerts are currently disabled.
1158 * Otherwise (re)schedule worker if needed.
1159 */
1160 if (check_enable) {
1161 if (!(data->current_alarms & data->alert_alarms)) {
1162 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1163 lm90_update_confreg(data, data->config & ~0x80);
1164 /*
1165 * We may have been called from the update handler.
1166 * If so, the worker, if scheduled, is no longer
1167 * needed. Cancel it. Don't synchronize because
1168 * it may already be running.
1169 */
1170 cancel_delayed_work(&data->alert_work);
1171 } else {
1172 schedule_delayed_work(&data->alert_work,
1173 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1174 }
1175 }
1176 data->alarms_updated = jiffies;
1177 data->alarms_valid = true;
1178 }
1179 return 0;
1180}
1181
1182static int lm90_update_alarms(struct lm90_data *data, bool force)
1183{
1184 int err;
1185
1186 mutex_lock(&data->update_lock);
1187 err = lm90_update_alarms_locked(data, force);
1188 mutex_unlock(&data->update_lock);
1189
1190 return err;
1191}
1192
1193static void lm90_alert_work(struct work_struct *__work)
1194{
1195 struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1196 struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197
1198 /* Nothing to do if alerts are enabled */
1199 if (!(data->config & 0x80))
1200 return;
1201
1202 lm90_update_alarms(data, true);
1203}
1204
1205static int lm90_update_device(struct device *dev)
1206{
1207 struct lm90_data *data = dev_get_drvdata(dev);
1208 struct i2c_client *client = data->client;
1209 unsigned long next_update;
1210 int val;
1211
1212 if (!data->valid) {
1213 val = lm90_update_limits(dev);
1214 if (val < 0)
1215 return val;
1216 }
1217
1218 next_update = data->last_updated +
1219 msecs_to_jiffies(data->update_interval);
1220 if (time_after(jiffies, next_update) || !data->valid) {
1221 dev_dbg(&client->dev, "Updating lm90 data.\n");
1222
1223 data->valid = false;
1224
1225 val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1226 if (val < 0)
1227 return val;
1228 data->temp[LOCAL_LOW] = val << 8;
1229
1230 val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1231 if (val < 0)
1232 return val;
1233 data->temp[LOCAL_HIGH] = val << 8;
1234
1235 val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1236 data->reg_local_ext, true);
1237 if (val < 0)
1238 return val;
1239 data->temp[LOCAL_TEMP] = val;
1240 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1241 data->reg_remote_ext, true);
1242 if (val < 0)
1243 return val;
1244 data->temp[REMOTE_TEMP] = val;
1245
1246 if (data->flags & LM90_HAVE_TEMP3) {
1247 val = lm90_select_remote_channel(data, true);
1248 if (val < 0)
1249 return val;
1250
1251 val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1252 data->reg_remote_ext, true);
1253 if (val < 0) {
1254 lm90_select_remote_channel(data, false);
1255 return val;
1256 }
1257 data->temp[REMOTE2_TEMP] = val;
1258
1259 lm90_select_remote_channel(data, false);
1260 }
1261
1262 val = lm90_update_alarms_locked(data, false);
1263 if (val < 0)
1264 return val;
1265
1266 data->last_updated = jiffies;
1267 data->valid = true;
1268 }
1269
1270 return 0;
1271}
1272
1273/* pec used for devices with PEC support */
1274static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1275 char *buf)
1276{
1277 struct i2c_client *client = to_i2c_client(dev);
1278
1279 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1280}
1281
1282static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1283 const char *buf, size_t count)
1284{
1285 struct i2c_client *client = to_i2c_client(dev);
1286 long val;
1287 int err;
1288
1289 err = kstrtol(buf, 10, &val);
1290 if (err < 0)
1291 return err;
1292
1293 switch (val) {
1294 case 0:
1295 client->flags &= ~I2C_CLIENT_PEC;
1296 break;
1297 case 1:
1298 client->flags |= I2C_CLIENT_PEC;
1299 break;
1300 default:
1301 return -EINVAL;
1302 }
1303
1304 return count;
1305}
1306
1307static DEVICE_ATTR_RW(pec);
1308
1309static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1310{
1311 switch (index) {
1312 case REMOTE_TEMP:
1313 if (data->reg_remote_ext)
1314 return data->resolution;
1315 return 8;
1316 case REMOTE_OFFSET:
1317 case REMOTE2_OFFSET:
1318 case REMOTE2_TEMP:
1319 return data->resolution;
1320 case LOCAL_TEMP:
1321 if (data->reg_local_ext)
1322 return data->resolution;
1323 return 8;
1324 case REMOTE_LOW:
1325 case REMOTE_HIGH:
1326 case REMOTE2_LOW:
1327 case REMOTE2_HIGH:
1328 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1329 return data->resolution;
1330 return 8;
1331 default:
1332 return 8;
1333 }
1334}
1335
1336static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1337{
1338 int val;
1339
1340 if (flags & LM90_HAVE_EXTENDED_TEMP)
1341 val = regval - 0x4000;
1342 else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1343 val = regval;
1344 else
1345 val = (s16)regval;
1346
1347 return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1348}
1349
1350static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1351{
1352 int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1353 lm90_temp_get_resolution(data, index));
1354
1355 /* +16 degrees offset for remote temperature on LM99 */
1356 if (data->kind == lm99 && channel)
1357 temp += 16000;
1358
1359 return temp;
1360}
1361
1362static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1363{
1364 int fraction = resolution > 8 ?
1365 1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1366
1367 if (flags & LM90_HAVE_EXTENDED_TEMP) {
1368 val = clamp_val(val, -64000, 191000 + fraction);
1369 val += 64000;
1370 } else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1371 val = clamp_val(val, 0, 255000 + fraction);
1372 } else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1373 val = clamp_val(val, 0, 127000 + fraction);
1374 } else {
1375 val = clamp_val(val, -128000, 127000 + fraction);
1376 }
1377
1378 return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1379}
1380
1381static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1382{
1383 static const u8 regs[] = {
1384 [LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1385 [LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1386 [LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1387 [REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1388 [LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1389 [REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1390 [REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1391 [REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1392 [REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1393 [REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1394 [REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1395 [REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1396 };
1397 struct i2c_client *client = data->client;
1398 u8 regh = regs[index];
1399 u8 regl = 0;
1400 int err;
1401
1402 if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1403 if (index == REMOTE_LOW || index == REMOTE2_LOW)
1404 regl = LM90_REG_REMOTE_LOWL;
1405 else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1406 regl = LM90_REG_REMOTE_HIGHL;
1407 }
1408
1409 /* +16 degrees offset for remote temperature on LM99 */
1410 if (data->kind == lm99 && channel) {
1411 /* prevent integer underflow */
1412 val = max(val, -128000l);
1413 val -= 16000;
1414 }
1415
1416 data->temp[index] = lm90_temp_to_reg(data->flags, val,
1417 lm90_temp_get_resolution(data, index));
1418
1419 if (channel > 1)
1420 lm90_select_remote_channel(data, true);
1421
1422 err = lm90_write16(client, regh, regl, data->temp[index]);
1423
1424 if (channel > 1)
1425 lm90_select_remote_channel(data, false);
1426
1427 return err;
1428}
1429
1430static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1431{
1432 int temp = lm90_get_temp(data, index, channel);
1433
1434 return temp - data->temp_hyst * 1000;
1435}
1436
1437static int lm90_set_temphyst(struct lm90_data *data, long val)
1438{
1439 int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1440
1441 /* prevent integer overflow/underflow */
1442 val = clamp_val(val, -128000l, 255000l);
1443 data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1444
1445 return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1446}
1447
1448static int lm90_get_temp_offset(struct lm90_data *data, int index)
1449{
1450 int res = lm90_temp_get_resolution(data, index);
1451
1452 return lm90_temp_from_reg(0, data->temp[index], res);
1453}
1454
1455static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1456{
1457 int err;
1458
1459 val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1460
1461 /* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1462 if (channel > 1)
1463 lm90_select_remote_channel(data, true);
1464
1465 err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1466
1467 if (channel > 1)
1468 lm90_select_remote_channel(data, false);
1469
1470 if (err)
1471 return err;
1472
1473 data->temp[index] = val;
1474
1475 return 0;
1476}
1477
1478static const u8 lm90_temp_index[MAX_CHANNELS] = {
1479 LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1480};
1481
1482static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1483 LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1484};
1485
1486static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1487 LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1488};
1489
1490static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1491 LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1492};
1493
1494static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1495 LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1496};
1497
1498static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1499 -1, REMOTE_OFFSET, REMOTE2_OFFSET
1500};
1501
1502static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1503static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1504static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1505static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1506static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1507static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1508
1509static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1510{
1511 struct lm90_data *data = dev_get_drvdata(dev);
1512 int err;
1513 u16 bit;
1514
1515 mutex_lock(&data->update_lock);
1516 err = lm90_update_device(dev);
1517 mutex_unlock(&data->update_lock);
1518 if (err)
1519 return err;
1520
1521 switch (attr) {
1522 case hwmon_temp_input:
1523 *val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1524 break;
1525 case hwmon_temp_min_alarm:
1526 case hwmon_temp_max_alarm:
1527 case hwmon_temp_crit_alarm:
1528 case hwmon_temp_emergency_alarm:
1529 case hwmon_temp_fault:
1530 switch (attr) {
1531 case hwmon_temp_min_alarm:
1532 bit = lm90_min_alarm_bits[channel];
1533 break;
1534 case hwmon_temp_max_alarm:
1535 bit = lm90_max_alarm_bits[channel];
1536 break;
1537 case hwmon_temp_crit_alarm:
1538 if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1539 bit = lm90_crit_alarm_bits_swapped[channel];
1540 else
1541 bit = lm90_crit_alarm_bits[channel];
1542 break;
1543 case hwmon_temp_emergency_alarm:
1544 bit = lm90_emergency_alarm_bits[channel];
1545 break;
1546 case hwmon_temp_fault:
1547 bit = lm90_fault_bits[channel];
1548 break;
1549 }
1550 *val = !!(data->alarms & bit);
1551 data->alarms &= ~bit;
1552 data->alarms |= data->current_alarms;
1553 break;
1554 case hwmon_temp_min:
1555 *val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1556 break;
1557 case hwmon_temp_max:
1558 *val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1559 break;
1560 case hwmon_temp_crit:
1561 *val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1562 break;
1563 case hwmon_temp_crit_hyst:
1564 *val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1565 break;
1566 case hwmon_temp_emergency:
1567 *val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1568 break;
1569 case hwmon_temp_emergency_hyst:
1570 *val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1571 break;
1572 case hwmon_temp_offset:
1573 *val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1574 break;
1575 default:
1576 return -EOPNOTSUPP;
1577 }
1578 return 0;
1579}
1580
1581static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1582{
1583 struct lm90_data *data = dev_get_drvdata(dev);
1584 int err;
1585
1586 mutex_lock(&data->update_lock);
1587
1588 err = lm90_update_device(dev);
1589 if (err)
1590 goto error;
1591
1592 switch (attr) {
1593 case hwmon_temp_min:
1594 err = lm90_set_temp(data, lm90_temp_min_index[channel],
1595 channel, val);
1596 break;
1597 case hwmon_temp_max:
1598 err = lm90_set_temp(data, lm90_temp_max_index[channel],
1599 channel, val);
1600 break;
1601 case hwmon_temp_crit:
1602 err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1603 channel, val);
1604 break;
1605 case hwmon_temp_crit_hyst:
1606 err = lm90_set_temphyst(data, val);
1607 break;
1608 case hwmon_temp_emergency:
1609 err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1610 channel, val);
1611 break;
1612 case hwmon_temp_offset:
1613 err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1614 channel, val);
1615 break;
1616 default:
1617 err = -EOPNOTSUPP;
1618 break;
1619 }
1620error:
1621 mutex_unlock(&data->update_lock);
1622
1623 return err;
1624}
1625
1626static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1627{
1628 switch (attr) {
1629 case hwmon_temp_input:
1630 case hwmon_temp_min_alarm:
1631 case hwmon_temp_max_alarm:
1632 case hwmon_temp_crit_alarm:
1633 case hwmon_temp_emergency_alarm:
1634 case hwmon_temp_emergency_hyst:
1635 case hwmon_temp_fault:
1636 case hwmon_temp_label:
1637 return 0444;
1638 case hwmon_temp_min:
1639 case hwmon_temp_max:
1640 case hwmon_temp_crit:
1641 case hwmon_temp_emergency:
1642 case hwmon_temp_offset:
1643 return 0644;
1644 case hwmon_temp_crit_hyst:
1645 if (channel == 0)
1646 return 0644;
1647 return 0444;
1648 default:
1649 return 0;
1650 }
1651}
1652
1653static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1654{
1655 struct lm90_data *data = dev_get_drvdata(dev);
1656 int err;
1657
1658 mutex_lock(&data->update_lock);
1659 err = lm90_update_device(dev);
1660 mutex_unlock(&data->update_lock);
1661 if (err)
1662 return err;
1663
1664 switch (attr) {
1665 case hwmon_chip_update_interval:
1666 *val = data->update_interval;
1667 break;
1668 case hwmon_chip_alarms:
1669 *val = data->alarms;
1670 break;
1671 case hwmon_chip_temp_samples:
1672 if (data->faultqueue_mask) {
1673 *val = (data->config & data->faultqueue_mask) ?
1674 data->faultqueue_depth : 1;
1675 } else {
1676 switch (data->conalert & 0x0e) {
1677 case 0x0:
1678 default:
1679 *val = 1;
1680 break;
1681 case 0x2:
1682 *val = 2;
1683 break;
1684 case 0x6:
1685 *val = 3;
1686 break;
1687 case 0xe:
1688 *val = 4;
1689 break;
1690 }
1691 }
1692 break;
1693 default:
1694 return -EOPNOTSUPP;
1695 }
1696
1697 return 0;
1698}
1699
1700static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1701{
1702 struct lm90_data *data = dev_get_drvdata(dev);
1703 struct i2c_client *client = data->client;
1704 int err;
1705
1706 mutex_lock(&data->update_lock);
1707
1708 err = lm90_update_device(dev);
1709 if (err)
1710 goto error;
1711
1712 switch (attr) {
1713 case hwmon_chip_update_interval:
1714 err = lm90_set_convrate(client, data,
1715 clamp_val(val, 0, 100000));
1716 break;
1717 case hwmon_chip_temp_samples:
1718 err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1719 break;
1720 default:
1721 err = -EOPNOTSUPP;
1722 break;
1723 }
1724error:
1725 mutex_unlock(&data->update_lock);
1726
1727 return err;
1728}
1729
1730static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1731{
1732 switch (attr) {
1733 case hwmon_chip_update_interval:
1734 case hwmon_chip_temp_samples:
1735 return 0644;
1736 case hwmon_chip_alarms:
1737 return 0444;
1738 default:
1739 return 0;
1740 }
1741}
1742
1743static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1744 u32 attr, int channel, long *val)
1745{
1746 switch (type) {
1747 case hwmon_chip:
1748 return lm90_chip_read(dev, attr, channel, val);
1749 case hwmon_temp:
1750 return lm90_temp_read(dev, attr, channel, val);
1751 default:
1752 return -EOPNOTSUPP;
1753 }
1754}
1755
1756static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1757 u32 attr, int channel, const char **str)
1758{
1759 struct lm90_data *data = dev_get_drvdata(dev);
1760
1761 *str = data->channel_label[channel];
1762
1763 return 0;
1764}
1765
1766static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1767 u32 attr, int channel, long val)
1768{
1769 switch (type) {
1770 case hwmon_chip:
1771 return lm90_chip_write(dev, attr, channel, val);
1772 case hwmon_temp:
1773 return lm90_temp_write(dev, attr, channel, val);
1774 default:
1775 return -EOPNOTSUPP;
1776 }
1777}
1778
1779static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1780 u32 attr, int channel)
1781{
1782 switch (type) {
1783 case hwmon_chip:
1784 return lm90_chip_is_visible(data, attr, channel);
1785 case hwmon_temp:
1786 return lm90_temp_is_visible(data, attr, channel);
1787 default:
1788 return 0;
1789 }
1790}
1791
1792static const char *lm90_detect_lm84(struct i2c_client *client)
1793{
1794 static const u8 regs[] = {
1795 LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1796 LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1797 };
1798 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1799 int reg1, reg2, reg3, reg4;
1800 bool nonzero = false;
1801 u8 ff = 0xff;
1802 int i;
1803
1804 if (status < 0 || (status & 0xab))
1805 return NULL;
1806
1807 /*
1808 * For LM84, undefined registers return the most recent value.
1809 * Repeat several times, each time checking against a different
1810 * (presumably) existing register.
1811 */
1812 for (i = 0; i < ARRAY_SIZE(regs); i++) {
1813 reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1814 reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1815 reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1816 reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1817
1818 if (reg1 < 0)
1819 return NULL;
1820
1821 /* If any register has a different value, this is not an LM84 */
1822 if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1823 return NULL;
1824
1825 nonzero |= reg1 || reg2 || reg3 || reg4;
1826 ff &= reg1;
1827 }
1828 /*
1829 * If all registers always returned 0 or 0xff, all bets are off,
1830 * and we can not make any predictions about the chip type.
1831 */
1832 return nonzero && ff != 0xff ? "lm84" : NULL;
1833}
1834
1835static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1836{
1837 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1838 int llo, rlo, lhi, rhi;
1839
1840 if (status < 0 || (status & 0x03))
1841 return NULL;
1842
1843 if (config1 & 0x3f)
1844 return NULL;
1845
1846 /*
1847 * Fail if unsupported registers return anything but 0xff.
1848 * The calling code already checked man_id and chip_id.
1849 * A byte read operation repeats the most recent read operation
1850 * and should also return 0xff.
1851 */
1852 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1853 i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1854 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1855 i2c_smbus_read_byte(client) != 0xff)
1856 return NULL;
1857
1858 llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1859 rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1860
1861 lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1862 rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1863
1864 if (llo < 0 || rlo < 0)
1865 return NULL;
1866
1867 /*
1868 * A byte read operation repeats the most recent read and should
1869 * return the same value.
1870 */
1871 if (i2c_smbus_read_byte(client) != rhi)
1872 return NULL;
1873
1874 /*
1875 * The following two checks are marginal since the checked values
1876 * are strictly speaking valid.
1877 */
1878
1879 /* fail for negative high limits; this also catches read errors */
1880 if ((s8)lhi < 0 || (s8)rhi < 0)
1881 return NULL;
1882
1883 /* fail if low limits are larger than or equal to high limits */
1884 if ((s8)llo >= lhi || (s8)rlo >= rhi)
1885 return NULL;
1886
1887 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1888 /*
1889 * Word read operations return 0xff in second byte
1890 */
1891 if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1892 0xffff)
1893 return NULL;
1894 if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1895 (config1 | 0xff00))
1896 return NULL;
1897 if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1898 (lhi | 0xff00))
1899 return NULL;
1900 }
1901
1902 return "max1617";
1903}
1904
1905static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1906 int config1, int convrate)
1907{
1908 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1909 int address = client->addr;
1910 const char *name = NULL;
1911
1912 if (config2 < 0)
1913 return NULL;
1914
1915 if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1916 return NULL;
1917
1918 if (address != 0x4c && address != 0x4d)
1919 return NULL;
1920
1921 switch (chip_id & 0xf0) {
1922 case 0x10: /* LM86 */
1923 if (address == 0x4c)
1924 name = "lm86";
1925 break;
1926 case 0x20: /* LM90 */
1927 if (address == 0x4c)
1928 name = "lm90";
1929 break;
1930 case 0x30: /* LM89/LM99 */
1931 name = "lm99"; /* detect LM89 as LM99 */
1932 break;
1933 default:
1934 break;
1935 }
1936
1937 return name;
1938}
1939
1940static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1941 int convrate)
1942{
1943 int address = client->addr;
1944 const char *name = NULL;
1945
1946 switch (chip_id) {
1947 case 0xca: /* NCT218 */
1948 if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1949 convrate <= 0x0a)
1950 name = "nct218";
1951 break;
1952 default:
1953 break;
1954 }
1955 return name;
1956}
1957
1958static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1959 int chip_id, int config1, int convrate)
1960{
1961 int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1962 int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1963 int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1964 int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1965 int address = client->addr;
1966 const char *name = NULL;
1967
1968 if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1969 return NULL;
1970
1971 /*
1972 * The following chips should be detected by this function. Known
1973 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1974 * for most of the chips, yet appear to return a well defined value.
1975 * Register 0xff is undocumented for some of the chips. Register 0x3f
1976 * is undocumented for all chips, but also returns a well defined value.
1977 * Values are as reported from real chips unless mentioned otherwise.
1978 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1979 * but not for register 0x3f.
1980 *
1981 * Chip Register
1982 * 3d 3e 3f fe ff Notes
1983 * ----------------------------------------------------------
1984 * adm1020 00 00 00 41 39
1985 * adm1021 00 00 00 41 03
1986 * adm1021a 00 00 00 41 3c
1987 * adm1023 00 00 00 41 3c same as adm1021a
1988 * adm1032 00 00 00 41 42
1989 *
1990 * adt7421 21 41 04 41 04
1991 * adt7461 00 00 00 41 51
1992 * adt7461a 61 41 05 41 57
1993 * adt7481 81 41 02 41 62
1994 * adt7482 - - - 41 65 datasheet
1995 * 82 41 05 41 75 real chip
1996 * adt7483 83 41 04 41 94
1997 *
1998 * nct72 61 41 07 41 55
1999 * nct210 00 00 00 41 3f
2000 * nct214 61 41 08 41 5a
2001 * nct1008 - - - 41 57 datasheet rev. 3
2002 * 61 41 06 41 54 real chip
2003 *
2004 * nvt210 - - - 41 - datasheet
2005 * nvt211 - - - 41 - datasheet
2006 */
2007 switch (chip_id) {
2008 case 0x00 ... 0x03: /* ADM1021 */
2009 case 0x05 ... 0x0f:
2010 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2011 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2012 name = "adm1021";
2013 break;
2014 case 0x04: /* ADT7421 (undocumented) */
2015 if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2016 (address == 0x4c || address == 0x4d) &&
2017 (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2018 name = "adt7421";
2019 break;
2020 case 0x30 ... 0x38: /* ADM1021A, ADM1023 */
2021 case 0x3a ... 0x3e:
2022 /*
2023 * ADM1021A and compatible chips will be mis-detected as
2024 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2025 * found to have a Chip ID of 0x3c.
2026 * ADM1021A does not officially support low byte registers
2027 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2028 * Official support for the temperature offset high byte
2029 * register (0x11) was added to revision F of the ADM1021A
2030 * datasheet.
2031 * It is currently unknown if there is a means to distinguish
2032 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2033 * which differ in functionality from ADM1023.
2034 */
2035 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2036 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2037 name = "adm1023";
2038 break;
2039 case 0x39: /* ADM1020 (undocumented) */
2040 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2041 (address == 0x4c || address == 0x4d || address == 0x4e) &&
2042 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2043 name = "adm1020";
2044 break;
2045 case 0x3f: /* NCT210 */
2046 if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2047 !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2048 name = "nct210";
2049 break;
2050 case 0x40 ... 0x4f: /* ADM1032 */
2051 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2052 (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2053 convrate <= 0x0a)
2054 name = "adm1032";
2055 break;
2056 case 0x51: /* ADT7461 */
2057 if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2058 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2059 convrate <= 0x0a)
2060 name = "adt7461";
2061 break;
2062 case 0x54: /* NCT1008 */
2063 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2064 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2065 convrate <= 0x0a)
2066 name = "nct1008";
2067 break;
2068 case 0x55: /* NCT72 */
2069 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2070 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2071 convrate <= 0x0a)
2072 name = "nct72";
2073 break;
2074 case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */
2075 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2076 (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2077 convrate <= 0x0a)
2078 name = "adt7461a";
2079 break;
2080 case 0x5a: /* NCT214 */
2081 if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2082 common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2083 name = "nct214";
2084 break;
2085 case 0x62: /* ADT7481, undocumented */
2086 if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2087 (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2088 !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2089 name = "adt7481";
2090 }
2091 break;
2092 case 0x65: /* ADT7482, datasheet */
2093 case 0x75: /* ADT7482, real chip */
2094 if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2095 address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2096 convrate <= 0x0a)
2097 name = "adt7482";
2098 break;
2099 case 0x94: /* ADT7483 */
2100 if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2101 common_address &&
2102 ((address >= 0x18 && address <= 0x1a) ||
2103 (address >= 0x29 && address <= 0x2b) ||
2104 (address >= 0x4c && address <= 0x4e)) &&
2105 !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2106 name = "adt7483a";
2107 break;
2108 default:
2109 break;
2110 }
2111
2112 return name;
2113}
2114
2115static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2116 int chip_id, int config1, int convrate)
2117{
2118 int man_id, emerg, emerg2, status2;
2119 int address = client->addr;
2120 const char *name = NULL;
2121
2122 switch (chip_id) {
2123 case 0x01:
2124 if (!common_address)
2125 break;
2126
2127 /*
2128 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2129 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2130 * exists, both readings will reflect the same value. Otherwise,
2131 * the readings will be different.
2132 */
2133 emerg = i2c_smbus_read_byte_data(client,
2134 MAX6659_REG_REMOTE_EMERG);
2135 man_id = i2c_smbus_read_byte_data(client,
2136 LM90_REG_MAN_ID);
2137 emerg2 = i2c_smbus_read_byte_data(client,
2138 MAX6659_REG_REMOTE_EMERG);
2139 status2 = i2c_smbus_read_byte_data(client,
2140 MAX6696_REG_STATUS2);
2141 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2142 return NULL;
2143
2144 /*
2145 * Even though MAX6695 and MAX6696 do not have a chip ID
2146 * register, reading it returns 0x01. Bit 4 of the config1
2147 * register is unused and should return zero when read. Bit 0 of
2148 * the status2 register is unused and should return zero when
2149 * read.
2150 *
2151 * MAX6695 and MAX6696 have an additional set of temperature
2152 * limit registers. We can detect those chips by checking if
2153 * one of those registers exists.
2154 */
2155 if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2156 convrate <= 0x07)
2157 name = "max6696";
2158 /*
2159 * The chip_id register of the MAX6680 and MAX6681 holds the
2160 * revision of the chip. The lowest bit of the config1 register
2161 * is unused and should return zero when read, so should the
2162 * second to last bit of config1 (software reset). Register
2163 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2164 * should differ from emerg2, and emerg2 should match man_id
2165 * since it does not exist.
2166 */
2167 else if (!(config1 & 0x03) && convrate <= 0x07 &&
2168 emerg2 == man_id && emerg2 != status2)
2169 name = "max6680";
2170 /*
2171 * MAX1617A does not have any extended registers (register
2172 * address 0x10 or higher) except for manufacturer and
2173 * device ID registers. Unlike other chips of this series,
2174 * unsupported registers were observed to return a fixed value
2175 * of 0x01.
2176 * Note: Multiple chips with different markings labeled as
2177 * "MAX1617" (no "A") were observed to report manufacturer ID
2178 * 0x4d and device ID 0x01. It is unknown if other variants of
2179 * MAX1617/MAX617A with different behavior exist. The detection
2180 * code below works for those chips.
2181 */
2182 else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2183 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2184 name = "max1617";
2185 break;
2186 case 0x08:
2187 /*
2188 * The chip_id of the MAX6654 holds the revision of the chip.
2189 * The lowest 3 bits of the config1 register are unused and
2190 * should return zero when read.
2191 */
2192 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2193 name = "max6654";
2194 break;
2195 case 0x09:
2196 /*
2197 * The chip_id of the MAX6690 holds the revision of the chip.
2198 * The lowest 3 bits of the config1 register are unused and
2199 * should return zero when read.
2200 * Note that MAX6654 and MAX6690 are practically the same chips.
2201 * The only diference is the rated accuracy. Rev. 1 of the
2202 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2203 * MAX6654 was observed to have a chip ID of 0x09.
2204 */
2205 if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2206 name = "max6690";
2207 break;
2208 case 0x4d:
2209 /*
2210 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2211 * register. Reading from that address will return the last
2212 * read value, which in our case is those of the man_id
2213 * register, or 0x4d.
2214 * MAX6642 does not have a conversion rate register, nor low
2215 * limit registers. Reading from those registers returns the
2216 * last read value.
2217 *
2218 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2219 * a low nibble, so the value will be those of the previous
2220 * read, so in our case again those of the man_id register.
2221 * MAX6659 has a third set of upper temperature limit registers.
2222 * Those registers also return values on MAX6657 and MAX6658,
2223 * thus the only way to detect MAX6659 is by its address.
2224 * For this reason it will be mis-detected as MAX6657 if its
2225 * address is 0x4c.
2226 */
2227 if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2228 !(config1 & 0x0f)) {
2229 int regval;
2230
2231 /*
2232 * We know that this is not a MAX6657/58/59 because its
2233 * configuration register has the wrong value and it does
2234 * not appear to have a conversion rate register.
2235 */
2236
2237 /* re-read manufacturer ID to have a good baseline */
2238 if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2239 break;
2240
2241 /* check various non-existing registers */
2242 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2243 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2244 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2245 break;
2246
2247 /* check for unused status register bits */
2248 regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2249 if (regval < 0 || (regval & 0x2b))
2250 break;
2251
2252 /* re-check unsupported registers */
2253 if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2254 i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2255 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2256 break;
2257
2258 name = "max6642";
2259 } else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2260 (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2261 if (address == 0x4c)
2262 name = "max6657";
2263 else
2264 name = "max6659";
2265 }
2266 break;
2267 case 0x59:
2268 /*
2269 * The chip_id register of the MAX6646/6647/6649 holds the
2270 * revision of the chip. The lowest 6 bits of the config1
2271 * register are unused and should return zero when read.
2272 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2273 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2274 * and MAX6649 is at address 0x4c. A slight difference between
2275 * the two sets of chips is that the remote temperature register
2276 * reports different values if the DXP pin is open or shorted.
2277 * We can use that information to help distinguish between the
2278 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2279 * diode is connected, but there isn't really anything we can
2280 * do about that.
2281 */
2282 if (!(config1 & 0x3f) && convrate <= 0x07) {
2283 int temp;
2284
2285 switch (address) {
2286 case 0x4c:
2287 /*
2288 * MAX6649 reports an external temperature
2289 * value of 0xff if DXP is open or shorted.
2290 * MAX6648 reports 0x80 in that case.
2291 */
2292 temp = i2c_smbus_read_byte_data(client,
2293 LM90_REG_REMOTE_TEMPH);
2294 if (temp == 0x80)
2295 name = "max6648";
2296 else
2297 name = "max6649";
2298 break;
2299 case 0x4d:
2300 name = "max6646";
2301 break;
2302 case 0x4e:
2303 name = "max6647";
2304 break;
2305 default:
2306 break;
2307 }
2308 }
2309 break;
2310 default:
2311 break;
2312 }
2313
2314 return name;
2315}
2316
2317static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2318 int config1, int convrate)
2319{
2320 int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2321 int address = client->addr;
2322 const char *name = NULL;
2323
2324 if (config2 < 0)
2325 return NULL;
2326
2327 if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2328 if (chip_id == 0x01 && convrate <= 0x09) {
2329 /* W83L771W/G */
2330 name = "w83l771";
2331 } else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2332 /* W83L771AWG/ASG */
2333 name = "w83l771";
2334 }
2335 }
2336 return name;
2337}
2338
2339static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2340 int chip_id, int config1, int convrate)
2341{
2342 int address = client->addr;
2343 const char *name = NULL;
2344 int config2;
2345
2346 switch (chip_id) {
2347 case 0x00:
2348 config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2349 if (config2 < 0)
2350 return NULL;
2351 if (address >= 0x48 && address <= 0x4f &&
2352 !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2353 name = "sa56004";
2354 break;
2355 case 0x80:
2356 if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2357 name = "ne1618";
2358 break;
2359 default:
2360 break;
2361 }
2362 return name;
2363}
2364
2365static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2366 int config1, int convrate)
2367{
2368 int address = client->addr;
2369
2370 /*
2371 * According to the datasheet, G781 is supposed to be at I2C Address
2372 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2373 * address 0x4d and have a chip ID of 0x03. However, when support
2374 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2375 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2376 * chip ID 0x03.
2377 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2378 * addresses.
2379 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2380 * datasheet is not available. Extensive testing suggests that
2381 * the chip appears to be fully compatible with G781.
2382 * Available register dumps show that G751 also reports manufacturer
2383 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2384 * support those registers. This makes chip detection somewhat
2385 * vulnerable. To improve detection quality, read the offset low byte
2386 * and alert fault queue registers and verify that only expected bits
2387 * are set.
2388 */
2389 if ((chip_id == 0x01 || chip_id == 0x03) &&
2390 (address == 0x4c || address == 0x4d) &&
2391 !(config1 & 0x3f) && convrate <= 0x08) {
2392 int reg;
2393
2394 reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2395 if (reg < 0 || reg & 0x1f)
2396 return NULL;
2397 reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2398 if (reg < 0 || reg & 0xf1)
2399 return NULL;
2400
2401 return "g781";
2402 }
2403
2404 return NULL;
2405}
2406
2407static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2408 int chip_id, int config1, int convrate)
2409{
2410 if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2411 /* THMC10: Unsupported registers return 0xff */
2412 if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2413 i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2414 return "thmc10";
2415 }
2416 return NULL;
2417}
2418
2419static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2420 int config1, int convrate)
2421{
2422 int address = client->addr;
2423 const char *name = NULL;
2424
2425 if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2426 int local_ext, conalert, chen, dfc;
2427
2428 local_ext = i2c_smbus_read_byte_data(client,
2429 TMP451_REG_LOCAL_TEMPL);
2430 conalert = i2c_smbus_read_byte_data(client,
2431 TMP451_REG_CONALERT);
2432 chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2433 dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2434
2435 if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2436 (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2437 if (address == 0x4c && !(chen & 0x03))
2438 name = "tmp451";
2439 else if (address >= 0x48 && address <= 0x4f)
2440 name = "tmp461";
2441 }
2442 }
2443
2444 return name;
2445}
2446
2447/* Return 0 if detection is successful, -ENODEV otherwise */
2448static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2449{
2450 struct i2c_adapter *adapter = client->adapter;
2451 int man_id, chip_id, config1, convrate, lhigh;
2452 const char *name = NULL;
2453 int address = client->addr;
2454 bool common_address =
2455 (address >= 0x18 && address <= 0x1a) ||
2456 (address >= 0x29 && address <= 0x2b) ||
2457 (address >= 0x4c && address <= 0x4e);
2458
2459 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2460 return -ENODEV;
2461
2462 /*
2463 * Get well defined register value for chips with neither man_id nor
2464 * chip_id registers.
2465 */
2466 lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2467
2468 /* detection and identification */
2469 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2470 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2471 config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2472 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2473 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2474 return -ENODEV;
2475
2476 /* Bail out immediately if all register report the same value */
2477 if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2478 return -ENODEV;
2479
2480 /*
2481 * If reading man_id and chip_id both return the same value as lhigh,
2482 * the chip may not support those registers and return the most recent read
2483 * value. Check again with a different register and handle accordingly.
2484 */
2485 if (man_id == lhigh && chip_id == lhigh) {
2486 convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2487 man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2488 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2489 if (convrate < 0 || man_id < 0 || chip_id < 0)
2490 return -ENODEV;
2491 if (man_id == convrate && chip_id == convrate)
2492 man_id = -1;
2493 }
2494 switch (man_id) {
2495 case -1: /* Chip does not support man_id / chip_id */
2496 if (common_address && !convrate && !(config1 & 0x7f))
2497 name = lm90_detect_lm84(client);
2498 break;
2499 case 0x01: /* National Semiconductor */
2500 name = lm90_detect_national(client, chip_id, config1, convrate);
2501 break;
2502 case 0x1a: /* ON */
2503 name = lm90_detect_on(client, chip_id, config1, convrate);
2504 break;
2505 case 0x23: /* Genesys Logic */
2506 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2507 name = "gl523sm";
2508 break;
2509 case 0x41: /* Analog Devices */
2510 name = lm90_detect_analog(client, common_address, chip_id, config1,
2511 convrate);
2512 break;
2513 case 0x47: /* GMT */
2514 name = lm90_detect_gmt(client, chip_id, config1, convrate);
2515 break;
2516 case 0x49: /* TI */
2517 name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2518 break;
2519 case 0x4d: /* Maxim Integrated */
2520 name = lm90_detect_maxim(client, common_address, chip_id,
2521 config1, convrate);
2522 break;
2523 case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2524 if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2525 name = "mc1066";
2526 break;
2527 case 0x55: /* TI */
2528 name = lm90_detect_ti(client, chip_id, config1, convrate);
2529 break;
2530 case 0x5c: /* Winbond/Nuvoton */
2531 name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2532 break;
2533 case 0xa1: /* NXP Semiconductor/Philips */
2534 name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2535 break;
2536 case 0xff: /* MAX1617, G767, NE1617 */
2537 if (common_address && chip_id == 0xff && convrate < 8)
2538 name = lm90_detect_max1617(client, config1);
2539 break;
2540 default:
2541 break;
2542 }
2543
2544 if (!name) { /* identification failed */
2545 dev_dbg(&adapter->dev,
2546 "Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2547 client->addr, man_id, chip_id);
2548 return -ENODEV;
2549 }
2550
2551 strscpy(info->type, name, I2C_NAME_SIZE);
2552
2553 return 0;
2554}
2555
2556static void lm90_restore_conf(void *_data)
2557{
2558 struct lm90_data *data = _data;
2559 struct i2c_client *client = data->client;
2560
2561 cancel_delayed_work_sync(&data->alert_work);
2562 cancel_work_sync(&data->report_work);
2563
2564 /* Restore initial configuration */
2565 if (data->flags & LM90_HAVE_CONVRATE)
2566 lm90_write_convrate(data, data->convrate_orig);
2567 lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2568}
2569
2570static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2571{
2572 struct device_node *np = client->dev.of_node;
2573 int config, convrate;
2574
2575 if (data->flags & LM90_HAVE_CONVRATE) {
2576 convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2577 if (convrate < 0)
2578 return convrate;
2579 data->convrate_orig = convrate;
2580 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2581 } else {
2582 data->update_interval = 500;
2583 }
2584
2585 /*
2586 * Start the conversions.
2587 */
2588 config = lm90_read_reg(client, LM90_REG_CONFIG1);
2589 if (config < 0)
2590 return config;
2591 data->config_orig = config;
2592 data->config = config;
2593
2594 /* Check Temperature Range Select */
2595 if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2596 if (of_property_read_bool(np, "ti,extended-range-enable"))
2597 config |= 0x04;
2598 if (!(config & 0x04))
2599 data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2600 }
2601
2602 /*
2603 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2604 * 0.125 degree resolution) and range (0x08, extend range
2605 * to -64 degree) mode for the remote temperature sensor.
2606 * Note that expeciments with an actual chip do not show a difference
2607 * if bit 3 is set or not.
2608 */
2609 if (data->kind == max6680)
2610 config |= 0x18;
2611
2612 /*
2613 * Put MAX6654 into extended range (0x20, extend minimum range from
2614 * 0 degrees to -64 degrees). Note that extended resolution is not
2615 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2616 * slower, which is intentionally not done by default.
2617 */
2618 if (data->kind == max6654)
2619 config |= 0x20;
2620
2621 /*
2622 * Select external channel 0 for devices with three sensors
2623 */
2624 if (data->flags & LM90_HAVE_TEMP3)
2625 config &= ~0x08;
2626
2627 /*
2628 * Interrupt is enabled by default on reset, but it may be disabled
2629 * by bootloader, unmask it.
2630 */
2631 if (client->irq)
2632 config &= ~0x80;
2633
2634 config &= 0xBF; /* run */
2635 lm90_update_confreg(data, config);
2636
2637 return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2638}
2639
2640static bool lm90_is_tripped(struct i2c_client *client)
2641{
2642 struct lm90_data *data = i2c_get_clientdata(client);
2643 int ret;
2644
2645 ret = lm90_update_alarms(data, true);
2646 if (ret < 0)
2647 return false;
2648
2649 return !!data->current_alarms;
2650}
2651
2652static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2653{
2654 struct i2c_client *client = dev_id;
2655
2656 if (lm90_is_tripped(client))
2657 return IRQ_HANDLED;
2658 else
2659 return IRQ_NONE;
2660}
2661
2662static void lm90_remove_pec(void *dev)
2663{
2664 device_remove_file(dev, &dev_attr_pec);
2665}
2666
2667static int lm90_probe_channel_from_dt(struct i2c_client *client,
2668 struct device_node *child,
2669 struct lm90_data *data)
2670{
2671 u32 id;
2672 s32 val;
2673 int err;
2674 struct device *dev = &client->dev;
2675
2676 err = of_property_read_u32(child, "reg", &id);
2677 if (err) {
2678 dev_err(dev, "missing reg property of %pOFn\n", child);
2679 return err;
2680 }
2681
2682 if (id >= MAX_CHANNELS) {
2683 dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2684 return -EINVAL;
2685 }
2686
2687 err = of_property_read_string(child, "label", &data->channel_label[id]);
2688 if (err == -ENODATA || err == -EILSEQ) {
2689 dev_err(dev, "invalid label property in %pOFn\n", child);
2690 return err;
2691 }
2692
2693 if (data->channel_label[id])
2694 data->channel_config[id] |= HWMON_T_LABEL;
2695
2696 err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2697 if (!err) {
2698 if (id == 0) {
2699 dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2700 return -EINVAL;
2701 }
2702
2703 err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2704 if (err) {
2705 dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2706 val, id, err);
2707 return err;
2708 }
2709 }
2710
2711 return 0;
2712}
2713
2714static int lm90_parse_dt_channel_info(struct i2c_client *client,
2715 struct lm90_data *data)
2716{
2717 int err;
2718 struct device_node *child;
2719 struct device *dev = &client->dev;
2720 const struct device_node *np = dev->of_node;
2721
2722 for_each_child_of_node(np, child) {
2723 if (strcmp(child->name, "channel"))
2724 continue;
2725
2726 err = lm90_probe_channel_from_dt(client, child, data);
2727 if (err) {
2728 of_node_put(child);
2729 return err;
2730 }
2731 }
2732
2733 return 0;
2734}
2735
2736static const struct hwmon_ops lm90_ops = {
2737 .is_visible = lm90_is_visible,
2738 .read = lm90_read,
2739 .read_string = lm90_read_string,
2740 .write = lm90_write,
2741};
2742
2743static int lm90_probe(struct i2c_client *client)
2744{
2745 struct device *dev = &client->dev;
2746 struct i2c_adapter *adapter = client->adapter;
2747 struct hwmon_channel_info *info;
2748 struct device *hwmon_dev;
2749 struct lm90_data *data;
2750 int err;
2751
2752 err = devm_regulator_get_enable(dev, "vcc");
2753 if (err)
2754 return dev_err_probe(dev, err, "Failed to enable regulator\n");
2755
2756 data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2757 if (!data)
2758 return -ENOMEM;
2759
2760 data->client = client;
2761 i2c_set_clientdata(client, data);
2762 mutex_init(&data->update_lock);
2763 INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2764 INIT_WORK(&data->report_work, lm90_report_alarms);
2765
2766 /* Set the device type */
2767 if (client->dev.of_node)
2768 data->kind = (uintptr_t)of_device_get_match_data(&client->dev);
2769 else
2770 data->kind = i2c_match_id(lm90_id, client)->driver_data;
2771
2772 /*
2773 * Different devices have different alarm bits triggering the
2774 * ALERT# output
2775 */
2776 data->alert_alarms = lm90_params[data->kind].alert_alarms;
2777 data->resolution = lm90_params[data->kind].resolution ? : 11;
2778
2779 /* Set chip capabilities */
2780 data->flags = lm90_params[data->kind].flags;
2781
2782 if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2783 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2784 data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2785
2786 if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2787 !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2788 data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2789
2790 data->chip.ops = &lm90_ops;
2791 data->chip.info = data->info;
2792
2793 data->info[0] = &data->chip_info;
2794 info = &data->chip_info;
2795 info->type = hwmon_chip;
2796 info->config = data->chip_config;
2797
2798 data->chip_config[0] = HWMON_C_REGISTER_TZ;
2799 if (data->flags & LM90_HAVE_ALARMS)
2800 data->chip_config[0] |= HWMON_C_ALARMS;
2801 if (data->flags & LM90_HAVE_CONVRATE)
2802 data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2803 if (data->flags & LM90_HAVE_FAULTQUEUE)
2804 data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2805 data->info[1] = &data->temp_info;
2806
2807 info = &data->temp_info;
2808 info->type = hwmon_temp;
2809 info->config = data->channel_config;
2810
2811 data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2812 HWMON_T_MAX_ALARM;
2813 data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2814 HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2815
2816 if (data->flags & LM90_HAVE_LOW) {
2817 data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2818 data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2819 }
2820
2821 if (data->flags & LM90_HAVE_CRIT) {
2822 data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2823 data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2824 }
2825
2826 if (data->flags & LM90_HAVE_OFFSET)
2827 data->channel_config[1] |= HWMON_T_OFFSET;
2828
2829 if (data->flags & LM90_HAVE_EMERGENCY) {
2830 data->channel_config[0] |= HWMON_T_EMERGENCY |
2831 HWMON_T_EMERGENCY_HYST;
2832 data->channel_config[1] |= HWMON_T_EMERGENCY |
2833 HWMON_T_EMERGENCY_HYST;
2834 }
2835
2836 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2837 data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2838 data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2839 }
2840
2841 if (data->flags & LM90_HAVE_TEMP3) {
2842 data->channel_config[2] = HWMON_T_INPUT |
2843 HWMON_T_MIN | HWMON_T_MAX |
2844 HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2845 HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2846 HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2847 if (data->flags & LM90_HAVE_EMERGENCY) {
2848 data->channel_config[2] |= HWMON_T_EMERGENCY |
2849 HWMON_T_EMERGENCY_HYST;
2850 }
2851 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2852 data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2853 if (data->flags & LM90_HAVE_OFFSET)
2854 data->channel_config[2] |= HWMON_T_OFFSET;
2855 }
2856
2857 data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2858 data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2859 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2860 if (data->flags & LM90_HAVE_REMOTE_EXT)
2861 data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2862 data->reg_status2 = lm90_params[data->kind].reg_status2;
2863
2864 /* Set maximum conversion rate */
2865 data->max_convrate = lm90_params[data->kind].max_convrate;
2866
2867 /* Parse device-tree channel information */
2868 if (client->dev.of_node) {
2869 err = lm90_parse_dt_channel_info(client, data);
2870 if (err)
2871 return err;
2872 }
2873
2874 /* Initialize the LM90 chip */
2875 err = lm90_init_client(client, data);
2876 if (err < 0) {
2877 dev_err(dev, "Failed to initialize device\n");
2878 return err;
2879 }
2880
2881 /*
2882 * The 'pec' attribute is attached to the i2c device and thus created
2883 * separately.
2884 */
2885 if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2886 err = device_create_file(dev, &dev_attr_pec);
2887 if (err)
2888 return err;
2889 err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2890 if (err)
2891 return err;
2892 }
2893
2894 hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2895 data, &data->chip,
2896 NULL);
2897 if (IS_ERR(hwmon_dev))
2898 return PTR_ERR(hwmon_dev);
2899
2900 data->hwmon_dev = hwmon_dev;
2901
2902 if (client->irq) {
2903 dev_dbg(dev, "IRQ: %d\n", client->irq);
2904 err = devm_request_threaded_irq(dev, client->irq,
2905 NULL, lm90_irq_thread,
2906 IRQF_ONESHOT, "lm90", client);
2907 if (err < 0) {
2908 dev_err(dev, "cannot request IRQ %d\n", client->irq);
2909 return err;
2910 }
2911 }
2912
2913 return 0;
2914}
2915
2916static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2917 unsigned int flag)
2918{
2919 if (type != I2C_PROTOCOL_SMBUS_ALERT)
2920 return;
2921
2922 if (lm90_is_tripped(client)) {
2923 /*
2924 * Disable ALERT# output, because these chips don't implement
2925 * SMBus alert correctly; they should only hold the alert line
2926 * low briefly.
2927 */
2928 struct lm90_data *data = i2c_get_clientdata(client);
2929
2930 if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2931 (data->current_alarms & data->alert_alarms)) {
2932 if (!(data->config & 0x80)) {
2933 dev_dbg(&client->dev, "Disabling ALERT#\n");
2934 lm90_update_confreg(data, data->config | 0x80);
2935 }
2936 schedule_delayed_work(&data->alert_work,
2937 max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2938 }
2939 } else {
2940 dev_dbg(&client->dev, "Everything OK\n");
2941 }
2942}
2943
2944static int lm90_suspend(struct device *dev)
2945{
2946 struct lm90_data *data = dev_get_drvdata(dev);
2947 struct i2c_client *client = data->client;
2948
2949 if (client->irq)
2950 disable_irq(client->irq);
2951
2952 return 0;
2953}
2954
2955static int lm90_resume(struct device *dev)
2956{
2957 struct lm90_data *data = dev_get_drvdata(dev);
2958 struct i2c_client *client = data->client;
2959
2960 if (client->irq)
2961 enable_irq(client->irq);
2962
2963 return 0;
2964}
2965
2966static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2967
2968static struct i2c_driver lm90_driver = {
2969 .class = I2C_CLASS_HWMON,
2970 .driver = {
2971 .name = "lm90",
2972 .of_match_table = of_match_ptr(lm90_of_match),
2973 .pm = pm_sleep_ptr(&lm90_pm_ops),
2974 },
2975 .probe = lm90_probe,
2976 .alert = lm90_alert,
2977 .id_table = lm90_id,
2978 .detect = lm90_detect,
2979 .address_list = normal_i2c,
2980};
2981
2982module_i2c_driver(lm90_driver);
2983
2984MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2985MODULE_DESCRIPTION("LM90/ADM1032 driver");
2986MODULE_LICENSE("GPL");
1/*
2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (C) 2003-2010 Jean Delvare <khali@linux-fr.org>
5 *
6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
7 * Semiconductor. It reports up to two temperatures (its own plus up to
8 * one external one) with a 0.125 deg resolution (1 deg for local
9 * temperature) and a 3-4 deg accuracy.
10 *
11 * This driver also supports the LM89 and LM99, two other sensor chips
12 * made by National Semiconductor. Both have an increased remote
13 * temperature measurement accuracy (1 degree), and the LM99
14 * additionally shifts remote temperatures (measured and limits) by 16
15 * degrees, which allows for higher temperatures measurement.
16 * Note that there is no way to differentiate between both chips.
17 * When device is auto-detected, the driver will assume an LM99.
18 *
19 * This driver also supports the LM86, another sensor chip made by
20 * National Semiconductor. It is exactly similar to the LM90 except it
21 * has a higher accuracy.
22 *
23 * This driver also supports the ADM1032, a sensor chip made by Analog
24 * Devices. That chip is similar to the LM90, with a few differences
25 * that are not handled by this driver. Among others, it has a higher
26 * accuracy than the LM90, much like the LM86 does.
27 *
28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
29 * chips made by Maxim. These chips are similar to the LM86.
30 * Note that there is no easy way to differentiate between the three
31 * variants. We use the device address to detect MAX6659, which will result
32 * in a detection as max6657 if it is on address 0x4c. The extra address
33 * and features of the MAX6659 are only supported if the chip is configured
34 * explicitly as max6659, or if its address is not 0x4c.
35 * These chips lack the remote temperature offset feature.
36 *
37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
38 * MAX6692 chips made by Maxim. These are again similar to the LM86,
39 * but they use unsigned temperature values and can report temperatures
40 * from 0 to 145 degrees.
41 *
42 * This driver also supports the MAX6680 and MAX6681, two other sensor
43 * chips made by Maxim. These are quite similar to the other Maxim
44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
45 * be treated identically.
46 *
47 * This driver also supports the MAX6695 and MAX6696, two other sensor
48 * chips made by Maxim. These are also quite similar to other Maxim
49 * chips, but support three temperature sensors instead of two. MAX6695
50 * and MAX6696 only differ in the pinout so they can be treated identically.
51 *
52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
54 * and extended mode. They are mostly compatible with LM90 except for a data
55 * format difference for the temperature value registers.
56 *
57 * This driver also supports the SA56004 from Philips. This device is
58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
59 *
60 * This driver also supports the G781 from GMT. This device is compatible
61 * with the ADM1032.
62 *
63 * Since the LM90 was the first chipset supported by this driver, most
64 * comments will refer to this chipset, but are actually general and
65 * concern all supported chipsets, unless mentioned otherwise.
66 *
67 * This program is free software; you can redistribute it and/or modify
68 * it under the terms of the GNU General Public License as published by
69 * the Free Software Foundation; either version 2 of the License, or
70 * (at your option) any later version.
71 *
72 * This program is distributed in the hope that it will be useful,
73 * but WITHOUT ANY WARRANTY; without even the implied warranty of
74 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
75 * GNU General Public License for more details.
76 *
77 * You should have received a copy of the GNU General Public License
78 * along with this program; if not, write to the Free Software
79 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
80 */
81
82#include <linux/module.h>
83#include <linux/init.h>
84#include <linux/slab.h>
85#include <linux/jiffies.h>
86#include <linux/i2c.h>
87#include <linux/hwmon-sysfs.h>
88#include <linux/hwmon.h>
89#include <linux/err.h>
90#include <linux/mutex.h>
91#include <linux/sysfs.h>
92
93/*
94 * Addresses to scan
95 * Address is fully defined internally and cannot be changed except for
96 * MAX6659, MAX6680 and MAX6681.
97 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
98 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
99 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
100 * have address 0x4d.
101 * MAX6647 has address 0x4e.
102 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
103 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
104 * 0x4c, 0x4d or 0x4e.
105 * SA56004 can have address 0x48 through 0x4F.
106 */
107
108static const unsigned short normal_i2c[] = {
109 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
110 0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
111
112enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
113 max6646, w83l771, max6696, sa56004, g781 };
114
115/*
116 * The LM90 registers
117 */
118
119#define LM90_REG_R_MAN_ID 0xFE
120#define LM90_REG_R_CHIP_ID 0xFF
121#define LM90_REG_R_CONFIG1 0x03
122#define LM90_REG_W_CONFIG1 0x09
123#define LM90_REG_R_CONFIG2 0xBF
124#define LM90_REG_W_CONFIG2 0xBF
125#define LM90_REG_R_CONVRATE 0x04
126#define LM90_REG_W_CONVRATE 0x0A
127#define LM90_REG_R_STATUS 0x02
128#define LM90_REG_R_LOCAL_TEMP 0x00
129#define LM90_REG_R_LOCAL_HIGH 0x05
130#define LM90_REG_W_LOCAL_HIGH 0x0B
131#define LM90_REG_R_LOCAL_LOW 0x06
132#define LM90_REG_W_LOCAL_LOW 0x0C
133#define LM90_REG_R_LOCAL_CRIT 0x20
134#define LM90_REG_W_LOCAL_CRIT 0x20
135#define LM90_REG_R_REMOTE_TEMPH 0x01
136#define LM90_REG_R_REMOTE_TEMPL 0x10
137#define LM90_REG_R_REMOTE_OFFSH 0x11
138#define LM90_REG_W_REMOTE_OFFSH 0x11
139#define LM90_REG_R_REMOTE_OFFSL 0x12
140#define LM90_REG_W_REMOTE_OFFSL 0x12
141#define LM90_REG_R_REMOTE_HIGHH 0x07
142#define LM90_REG_W_REMOTE_HIGHH 0x0D
143#define LM90_REG_R_REMOTE_HIGHL 0x13
144#define LM90_REG_W_REMOTE_HIGHL 0x13
145#define LM90_REG_R_REMOTE_LOWH 0x08
146#define LM90_REG_W_REMOTE_LOWH 0x0E
147#define LM90_REG_R_REMOTE_LOWL 0x14
148#define LM90_REG_W_REMOTE_LOWL 0x14
149#define LM90_REG_R_REMOTE_CRIT 0x19
150#define LM90_REG_W_REMOTE_CRIT 0x19
151#define LM90_REG_R_TCRIT_HYST 0x21
152#define LM90_REG_W_TCRIT_HYST 0x21
153
154/* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
155
156#define MAX6657_REG_R_LOCAL_TEMPL 0x11
157#define MAX6696_REG_R_STATUS2 0x12
158#define MAX6659_REG_R_REMOTE_EMERG 0x16
159#define MAX6659_REG_W_REMOTE_EMERG 0x16
160#define MAX6659_REG_R_LOCAL_EMERG 0x17
161#define MAX6659_REG_W_LOCAL_EMERG 0x17
162
163/* SA56004 registers */
164
165#define SA56004_REG_R_LOCAL_TEMPL 0x22
166
167#define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */
168#define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
169
170/*
171 * Device flags
172 */
173#define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */
174/* Device features */
175#define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */
176#define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */
177#define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */
178#define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */
179#define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */
180#define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */
181
182/*
183 * Driver data (common to all clients)
184 */
185
186static const struct i2c_device_id lm90_id[] = {
187 { "adm1032", adm1032 },
188 { "adt7461", adt7461 },
189 { "adt7461a", adt7461 },
190 { "g781", g781 },
191 { "lm90", lm90 },
192 { "lm86", lm86 },
193 { "lm89", lm86 },
194 { "lm99", lm99 },
195 { "max6646", max6646 },
196 { "max6647", max6646 },
197 { "max6649", max6646 },
198 { "max6657", max6657 },
199 { "max6658", max6657 },
200 { "max6659", max6659 },
201 { "max6680", max6680 },
202 { "max6681", max6680 },
203 { "max6695", max6696 },
204 { "max6696", max6696 },
205 { "nct1008", adt7461 },
206 { "w83l771", w83l771 },
207 { "sa56004", sa56004 },
208 { }
209};
210MODULE_DEVICE_TABLE(i2c, lm90_id);
211
212/*
213 * chip type specific parameters
214 */
215struct lm90_params {
216 u32 flags; /* Capabilities */
217 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
218 /* Upper 8 bits for max6695/96 */
219 u8 max_convrate; /* Maximum conversion rate register value */
220 u8 reg_local_ext; /* Extended local temp register (optional) */
221};
222
223static const struct lm90_params lm90_params[] = {
224 [adm1032] = {
225 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
226 | LM90_HAVE_BROKEN_ALERT,
227 .alert_alarms = 0x7c,
228 .max_convrate = 10,
229 },
230 [adt7461] = {
231 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
232 | LM90_HAVE_BROKEN_ALERT,
233 .alert_alarms = 0x7c,
234 .max_convrate = 10,
235 },
236 [g781] = {
237 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
238 | LM90_HAVE_BROKEN_ALERT,
239 .alert_alarms = 0x7c,
240 .max_convrate = 8,
241 },
242 [lm86] = {
243 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
244 .alert_alarms = 0x7b,
245 .max_convrate = 9,
246 },
247 [lm90] = {
248 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
249 .alert_alarms = 0x7b,
250 .max_convrate = 9,
251 },
252 [lm99] = {
253 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
254 .alert_alarms = 0x7b,
255 .max_convrate = 9,
256 },
257 [max6646] = {
258 .alert_alarms = 0x7c,
259 .max_convrate = 6,
260 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
261 },
262 [max6657] = {
263 .alert_alarms = 0x7c,
264 .max_convrate = 8,
265 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
266 },
267 [max6659] = {
268 .flags = LM90_HAVE_EMERGENCY,
269 .alert_alarms = 0x7c,
270 .max_convrate = 8,
271 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
272 },
273 [max6680] = {
274 .flags = LM90_HAVE_OFFSET,
275 .alert_alarms = 0x7c,
276 .max_convrate = 7,
277 },
278 [max6696] = {
279 .flags = LM90_HAVE_EMERGENCY
280 | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
281 .alert_alarms = 0x187c,
282 .max_convrate = 6,
283 .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
284 },
285 [w83l771] = {
286 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
287 .alert_alarms = 0x7c,
288 .max_convrate = 8,
289 },
290 [sa56004] = {
291 .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
292 .alert_alarms = 0x7b,
293 .max_convrate = 9,
294 .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
295 },
296};
297
298/*
299 * Client data (each client gets its own)
300 */
301
302struct lm90_data {
303 struct device *hwmon_dev;
304 struct mutex update_lock;
305 char valid; /* zero until following fields are valid */
306 unsigned long last_updated; /* in jiffies */
307 int kind;
308 u32 flags;
309
310 int update_interval; /* in milliseconds */
311
312 u8 config_orig; /* Original configuration register value */
313 u8 convrate_orig; /* Original conversion rate register value */
314 u16 alert_alarms; /* Which alarm bits trigger ALERT# */
315 /* Upper 8 bits for max6695/96 */
316 u8 max_convrate; /* Maximum conversion rate */
317 u8 reg_local_ext; /* local extension register offset */
318
319 /* registers values */
320 s8 temp8[8]; /* 0: local low limit
321 * 1: local high limit
322 * 2: local critical limit
323 * 3: remote critical limit
324 * 4: local emergency limit (max6659 and max6695/96)
325 * 5: remote emergency limit (max6659 and max6695/96)
326 * 6: remote 2 critical limit (max6695/96 only)
327 * 7: remote 2 emergency limit (max6695/96 only)
328 */
329 s16 temp11[8]; /* 0: remote input
330 * 1: remote low limit
331 * 2: remote high limit
332 * 3: remote offset (except max6646, max6657/58/59,
333 * and max6695/96)
334 * 4: local input
335 * 5: remote 2 input (max6695/96 only)
336 * 6: remote 2 low limit (max6695/96 only)
337 * 7: remote 2 high limit (max6695/96 only)
338 */
339 u8 temp_hyst;
340 u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
341};
342
343/*
344 * Support functions
345 */
346
347/*
348 * The ADM1032 supports PEC but not on write byte transactions, so we need
349 * to explicitly ask for a transaction without PEC.
350 */
351static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
352{
353 return i2c_smbus_xfer(client->adapter, client->addr,
354 client->flags & ~I2C_CLIENT_PEC,
355 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
356}
357
358/*
359 * It is assumed that client->update_lock is held (unless we are in
360 * detection or initialization steps). This matters when PEC is enabled,
361 * because we don't want the address pointer to change between the write
362 * byte and the read byte transactions.
363 */
364static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
365{
366 int err;
367
368 if (client->flags & I2C_CLIENT_PEC) {
369 err = adm1032_write_byte(client, reg);
370 if (err >= 0)
371 err = i2c_smbus_read_byte(client);
372 } else
373 err = i2c_smbus_read_byte_data(client, reg);
374
375 if (err < 0) {
376 dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
377 reg, err);
378 return err;
379 }
380 *value = err;
381
382 return 0;
383}
384
385static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
386{
387 int err;
388 u8 oldh, newh, l;
389
390 /*
391 * There is a trick here. We have to read two registers to have the
392 * sensor temperature, but we have to beware a conversion could occur
393 * between the readings. The datasheet says we should either use
394 * the one-shot conversion register, which we don't want to do
395 * (disables hardware monitoring) or monitor the busy bit, which is
396 * impossible (we can't read the values and monitor that bit at the
397 * exact same time). So the solution used here is to read the high
398 * byte once, then the low byte, then the high byte again. If the new
399 * high byte matches the old one, then we have a valid reading. Else
400 * we have to read the low byte again, and now we believe we have a
401 * correct reading.
402 */
403 if ((err = lm90_read_reg(client, regh, &oldh))
404 || (err = lm90_read_reg(client, regl, &l))
405 || (err = lm90_read_reg(client, regh, &newh)))
406 return err;
407 if (oldh != newh) {
408 err = lm90_read_reg(client, regl, &l);
409 if (err)
410 return err;
411 }
412 *value = (newh << 8) | l;
413
414 return 0;
415}
416
417/*
418 * client->update_lock must be held when calling this function (unless we are
419 * in detection or initialization steps), and while a remote channel other
420 * than channel 0 is selected. Also, calling code must make sure to re-select
421 * external channel 0 before releasing the lock. This is necessary because
422 * various registers have different meanings as a result of selecting a
423 * non-default remote channel.
424 */
425static inline void lm90_select_remote_channel(struct i2c_client *client,
426 struct lm90_data *data,
427 int channel)
428{
429 u8 config;
430
431 if (data->kind == max6696) {
432 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
433 config &= ~0x08;
434 if (channel)
435 config |= 0x08;
436 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
437 config);
438 }
439}
440
441/*
442 * Set conversion rate.
443 * client->update_lock must be held when calling this function (unless we are
444 * in detection or initialization steps).
445 */
446static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
447 unsigned int interval)
448{
449 int i;
450 unsigned int update_interval;
451
452 /* Shift calculations to avoid rounding errors */
453 interval <<= 6;
454
455 /* find the nearest update rate */
456 for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
457 i < data->max_convrate; i++, update_interval >>= 1)
458 if (interval >= update_interval * 3 / 4)
459 break;
460
461 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
462 data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
463}
464
465static struct lm90_data *lm90_update_device(struct device *dev)
466{
467 struct i2c_client *client = to_i2c_client(dev);
468 struct lm90_data *data = i2c_get_clientdata(client);
469 unsigned long next_update;
470
471 mutex_lock(&data->update_lock);
472
473 next_update = data->last_updated
474 + msecs_to_jiffies(data->update_interval) + 1;
475 if (time_after(jiffies, next_update) || !data->valid) {
476 u8 h, l;
477 u8 alarms;
478
479 dev_dbg(&client->dev, "Updating lm90 data.\n");
480 lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[0]);
481 lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[1]);
482 lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[2]);
483 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[3]);
484 lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
485
486 if (data->reg_local_ext) {
487 lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
488 data->reg_local_ext,
489 &data->temp11[4]);
490 } else {
491 if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
492 &h) == 0)
493 data->temp11[4] = h << 8;
494 }
495 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
496 LM90_REG_R_REMOTE_TEMPL, &data->temp11[0]);
497
498 if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
499 data->temp11[1] = h << 8;
500 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
501 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
502 &l) == 0)
503 data->temp11[1] |= l;
504 }
505 if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
506 data->temp11[2] = h << 8;
507 if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
508 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
509 &l) == 0)
510 data->temp11[2] |= l;
511 }
512
513 if (data->flags & LM90_HAVE_OFFSET) {
514 if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
515 &h) == 0
516 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
517 &l) == 0)
518 data->temp11[3] = (h << 8) | l;
519 }
520 if (data->flags & LM90_HAVE_EMERGENCY) {
521 lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
522 &data->temp8[4]);
523 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
524 &data->temp8[5]);
525 }
526 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
527 data->alarms = alarms; /* save as 16 bit value */
528
529 if (data->kind == max6696) {
530 lm90_select_remote_channel(client, data, 1);
531 lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
532 &data->temp8[6]);
533 lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
534 &data->temp8[7]);
535 lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
536 LM90_REG_R_REMOTE_TEMPL, &data->temp11[5]);
537 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
538 data->temp11[6] = h << 8;
539 if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
540 data->temp11[7] = h << 8;
541 lm90_select_remote_channel(client, data, 0);
542
543 if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
544 &alarms))
545 data->alarms |= alarms << 8;
546 }
547
548 /*
549 * Re-enable ALERT# output if it was originally enabled and
550 * relevant alarms are all clear
551 */
552 if ((data->config_orig & 0x80) == 0
553 && (data->alarms & data->alert_alarms) == 0) {
554 u8 config;
555
556 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
557 if (config & 0x80) {
558 dev_dbg(&client->dev, "Re-enabling ALERT#\n");
559 i2c_smbus_write_byte_data(client,
560 LM90_REG_W_CONFIG1,
561 config & ~0x80);
562 }
563 }
564
565 data->last_updated = jiffies;
566 data->valid = 1;
567 }
568
569 mutex_unlock(&data->update_lock);
570
571 return data;
572}
573
574/*
575 * Conversions
576 * For local temperatures and limits, critical limits and the hysteresis
577 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
578 * For remote temperatures and limits, it uses signed 11-bit values with
579 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some
580 * Maxim chips use unsigned values.
581 */
582
583static inline int temp_from_s8(s8 val)
584{
585 return val * 1000;
586}
587
588static inline int temp_from_u8(u8 val)
589{
590 return val * 1000;
591}
592
593static inline int temp_from_s16(s16 val)
594{
595 return val / 32 * 125;
596}
597
598static inline int temp_from_u16(u16 val)
599{
600 return val / 32 * 125;
601}
602
603static s8 temp_to_s8(long val)
604{
605 if (val <= -128000)
606 return -128;
607 if (val >= 127000)
608 return 127;
609 if (val < 0)
610 return (val - 500) / 1000;
611 return (val + 500) / 1000;
612}
613
614static u8 temp_to_u8(long val)
615{
616 if (val <= 0)
617 return 0;
618 if (val >= 255000)
619 return 255;
620 return (val + 500) / 1000;
621}
622
623static s16 temp_to_s16(long val)
624{
625 if (val <= -128000)
626 return 0x8000;
627 if (val >= 127875)
628 return 0x7FE0;
629 if (val < 0)
630 return (val - 62) / 125 * 32;
631 return (val + 62) / 125 * 32;
632}
633
634static u8 hyst_to_reg(long val)
635{
636 if (val <= 0)
637 return 0;
638 if (val >= 30500)
639 return 31;
640 return (val + 500) / 1000;
641}
642
643/*
644 * ADT7461 in compatibility mode is almost identical to LM90 except that
645 * attempts to write values that are outside the range 0 < temp < 127 are
646 * treated as the boundary value.
647 *
648 * ADT7461 in "extended mode" operation uses unsigned integers offset by
649 * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC.
650 */
651static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
652{
653 if (data->flags & LM90_FLAG_ADT7461_EXT)
654 return (val - 64) * 1000;
655 else
656 return temp_from_s8(val);
657}
658
659static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
660{
661 if (data->flags & LM90_FLAG_ADT7461_EXT)
662 return (val - 0x4000) / 64 * 250;
663 else
664 return temp_from_s16(val);
665}
666
667static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
668{
669 if (data->flags & LM90_FLAG_ADT7461_EXT) {
670 if (val <= -64000)
671 return 0;
672 if (val >= 191000)
673 return 0xFF;
674 return (val + 500 + 64000) / 1000;
675 } else {
676 if (val <= 0)
677 return 0;
678 if (val >= 127000)
679 return 127;
680 return (val + 500) / 1000;
681 }
682}
683
684static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
685{
686 if (data->flags & LM90_FLAG_ADT7461_EXT) {
687 if (val <= -64000)
688 return 0;
689 if (val >= 191750)
690 return 0xFFC0;
691 return (val + 64000 + 125) / 250 * 64;
692 } else {
693 if (val <= 0)
694 return 0;
695 if (val >= 127750)
696 return 0x7FC0;
697 return (val + 125) / 250 * 64;
698 }
699}
700
701/*
702 * Sysfs stuff
703 */
704
705static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
706 char *buf)
707{
708 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
709 struct lm90_data *data = lm90_update_device(dev);
710 int temp;
711
712 if (data->kind == adt7461)
713 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
714 else if (data->kind == max6646)
715 temp = temp_from_u8(data->temp8[attr->index]);
716 else
717 temp = temp_from_s8(data->temp8[attr->index]);
718
719 /* +16 degrees offset for temp2 for the LM99 */
720 if (data->kind == lm99 && attr->index == 3)
721 temp += 16000;
722
723 return sprintf(buf, "%d\n", temp);
724}
725
726static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
727 const char *buf, size_t count)
728{
729 static const u8 reg[8] = {
730 LM90_REG_W_LOCAL_LOW,
731 LM90_REG_W_LOCAL_HIGH,
732 LM90_REG_W_LOCAL_CRIT,
733 LM90_REG_W_REMOTE_CRIT,
734 MAX6659_REG_W_LOCAL_EMERG,
735 MAX6659_REG_W_REMOTE_EMERG,
736 LM90_REG_W_REMOTE_CRIT,
737 MAX6659_REG_W_REMOTE_EMERG,
738 };
739
740 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
741 struct i2c_client *client = to_i2c_client(dev);
742 struct lm90_data *data = i2c_get_clientdata(client);
743 int nr = attr->index;
744 long val;
745 int err;
746
747 err = kstrtol(buf, 10, &val);
748 if (err < 0)
749 return err;
750
751 /* +16 degrees offset for temp2 for the LM99 */
752 if (data->kind == lm99 && attr->index == 3)
753 val -= 16000;
754
755 mutex_lock(&data->update_lock);
756 if (data->kind == adt7461)
757 data->temp8[nr] = temp_to_u8_adt7461(data, val);
758 else if (data->kind == max6646)
759 data->temp8[nr] = temp_to_u8(val);
760 else
761 data->temp8[nr] = temp_to_s8(val);
762
763 lm90_select_remote_channel(client, data, nr >= 6);
764 i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
765 lm90_select_remote_channel(client, data, 0);
766
767 mutex_unlock(&data->update_lock);
768 return count;
769}
770
771static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
772 char *buf)
773{
774 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
775 struct lm90_data *data = lm90_update_device(dev);
776 int temp;
777
778 if (data->kind == adt7461)
779 temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
780 else if (data->kind == max6646)
781 temp = temp_from_u16(data->temp11[attr->index]);
782 else
783 temp = temp_from_s16(data->temp11[attr->index]);
784
785 /* +16 degrees offset for temp2 for the LM99 */
786 if (data->kind == lm99 && attr->index <= 2)
787 temp += 16000;
788
789 return sprintf(buf, "%d\n", temp);
790}
791
792static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
793 const char *buf, size_t count)
794{
795 struct {
796 u8 high;
797 u8 low;
798 int channel;
799 } reg[5] = {
800 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
801 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
802 { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
803 { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
804 { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
805 };
806
807 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
808 struct i2c_client *client = to_i2c_client(dev);
809 struct lm90_data *data = i2c_get_clientdata(client);
810 int nr = attr->nr;
811 int index = attr->index;
812 long val;
813 int err;
814
815 err = kstrtol(buf, 10, &val);
816 if (err < 0)
817 return err;
818
819 /* +16 degrees offset for temp2 for the LM99 */
820 if (data->kind == lm99 && index <= 2)
821 val -= 16000;
822
823 mutex_lock(&data->update_lock);
824 if (data->kind == adt7461)
825 data->temp11[index] = temp_to_u16_adt7461(data, val);
826 else if (data->kind == max6646)
827 data->temp11[index] = temp_to_u8(val) << 8;
828 else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
829 data->temp11[index] = temp_to_s16(val);
830 else
831 data->temp11[index] = temp_to_s8(val) << 8;
832
833 lm90_select_remote_channel(client, data, reg[nr].channel);
834 i2c_smbus_write_byte_data(client, reg[nr].high,
835 data->temp11[index] >> 8);
836 if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
837 i2c_smbus_write_byte_data(client, reg[nr].low,
838 data->temp11[index] & 0xff);
839 lm90_select_remote_channel(client, data, 0);
840
841 mutex_unlock(&data->update_lock);
842 return count;
843}
844
845static ssize_t show_temphyst(struct device *dev,
846 struct device_attribute *devattr,
847 char *buf)
848{
849 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
850 struct lm90_data *data = lm90_update_device(dev);
851 int temp;
852
853 if (data->kind == adt7461)
854 temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
855 else if (data->kind == max6646)
856 temp = temp_from_u8(data->temp8[attr->index]);
857 else
858 temp = temp_from_s8(data->temp8[attr->index]);
859
860 /* +16 degrees offset for temp2 for the LM99 */
861 if (data->kind == lm99 && attr->index == 3)
862 temp += 16000;
863
864 return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
865}
866
867static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
868 const char *buf, size_t count)
869{
870 struct i2c_client *client = to_i2c_client(dev);
871 struct lm90_data *data = i2c_get_clientdata(client);
872 long val;
873 int err;
874 int temp;
875
876 err = kstrtol(buf, 10, &val);
877 if (err < 0)
878 return err;
879
880 mutex_lock(&data->update_lock);
881 if (data->kind == adt7461)
882 temp = temp_from_u8_adt7461(data, data->temp8[2]);
883 else if (data->kind == max6646)
884 temp = temp_from_u8(data->temp8[2]);
885 else
886 temp = temp_from_s8(data->temp8[2]);
887
888 data->temp_hyst = hyst_to_reg(temp - val);
889 i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
890 data->temp_hyst);
891 mutex_unlock(&data->update_lock);
892 return count;
893}
894
895static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
896 char *buf)
897{
898 struct lm90_data *data = lm90_update_device(dev);
899 return sprintf(buf, "%d\n", data->alarms);
900}
901
902static ssize_t show_alarm(struct device *dev, struct device_attribute
903 *devattr, char *buf)
904{
905 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
906 struct lm90_data *data = lm90_update_device(dev);
907 int bitnr = attr->index;
908
909 return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
910}
911
912static ssize_t show_update_interval(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct lm90_data *data = dev_get_drvdata(dev);
916
917 return sprintf(buf, "%u\n", data->update_interval);
918}
919
920static ssize_t set_update_interval(struct device *dev,
921 struct device_attribute *attr,
922 const char *buf, size_t count)
923{
924 struct i2c_client *client = to_i2c_client(dev);
925 struct lm90_data *data = i2c_get_clientdata(client);
926 unsigned long val;
927 int err;
928
929 err = kstrtoul(buf, 10, &val);
930 if (err)
931 return err;
932
933 mutex_lock(&data->update_lock);
934 lm90_set_convrate(client, data, SENSORS_LIMIT(val, 0, 100000));
935 mutex_unlock(&data->update_lock);
936
937 return count;
938}
939
940static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL, 0, 4);
941static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL, 0, 0);
942static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
943 set_temp8, 0);
944static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
945 set_temp11, 0, 1);
946static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
947 set_temp8, 1);
948static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
949 set_temp11, 1, 2);
950static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
951 set_temp8, 2);
952static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
953 set_temp8, 3);
954static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
955 set_temphyst, 2);
956static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 3);
957static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
958 set_temp11, 2, 3);
959
960/* Individual alarm files */
961static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
962static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
963static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
964static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
965static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
966static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
967static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
968/* Raw alarm file for compatibility */
969static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
970
971static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
972 set_update_interval);
973
974static struct attribute *lm90_attributes[] = {
975 &sensor_dev_attr_temp1_input.dev_attr.attr,
976 &sensor_dev_attr_temp2_input.dev_attr.attr,
977 &sensor_dev_attr_temp1_min.dev_attr.attr,
978 &sensor_dev_attr_temp2_min.dev_attr.attr,
979 &sensor_dev_attr_temp1_max.dev_attr.attr,
980 &sensor_dev_attr_temp2_max.dev_attr.attr,
981 &sensor_dev_attr_temp1_crit.dev_attr.attr,
982 &sensor_dev_attr_temp2_crit.dev_attr.attr,
983 &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
984 &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
985
986 &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
987 &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
988 &sensor_dev_attr_temp2_fault.dev_attr.attr,
989 &sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
990 &sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
991 &sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
992 &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
993 &dev_attr_alarms.attr,
994 &dev_attr_update_interval.attr,
995 NULL
996};
997
998static const struct attribute_group lm90_group = {
999 .attrs = lm90_attributes,
1000};
1001
1002/*
1003 * Additional attributes for devices with emergency sensors
1004 */
1005static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1006 set_temp8, 4);
1007static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1008 set_temp8, 5);
1009static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1010 NULL, 4);
1011static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1012 NULL, 5);
1013
1014static struct attribute *lm90_emergency_attributes[] = {
1015 &sensor_dev_attr_temp1_emergency.dev_attr.attr,
1016 &sensor_dev_attr_temp2_emergency.dev_attr.attr,
1017 &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1018 &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1019 NULL
1020};
1021
1022static const struct attribute_group lm90_emergency_group = {
1023 .attrs = lm90_emergency_attributes,
1024};
1025
1026static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1027static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1028
1029static struct attribute *lm90_emergency_alarm_attributes[] = {
1030 &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1031 &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1032 NULL
1033};
1034
1035static const struct attribute_group lm90_emergency_alarm_group = {
1036 .attrs = lm90_emergency_alarm_attributes,
1037};
1038
1039/*
1040 * Additional attributes for devices with 3 temperature sensors
1041 */
1042static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL, 0, 5);
1043static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1044 set_temp11, 3, 6);
1045static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1046 set_temp11, 4, 7);
1047static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1048 set_temp8, 6);
1049static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL, 6);
1050static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1051 set_temp8, 7);
1052static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1053 NULL, 7);
1054
1055static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1056static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1057static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1058static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1059static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1060
1061static struct attribute *lm90_temp3_attributes[] = {
1062 &sensor_dev_attr_temp3_input.dev_attr.attr,
1063 &sensor_dev_attr_temp3_min.dev_attr.attr,
1064 &sensor_dev_attr_temp3_max.dev_attr.attr,
1065 &sensor_dev_attr_temp3_crit.dev_attr.attr,
1066 &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1067 &sensor_dev_attr_temp3_emergency.dev_attr.attr,
1068 &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1069
1070 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1071 &sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1072 &sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1073 &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1074 &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1075 NULL
1076};
1077
1078static const struct attribute_group lm90_temp3_group = {
1079 .attrs = lm90_temp3_attributes,
1080};
1081
1082/* pec used for ADM1032 only */
1083static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1084 char *buf)
1085{
1086 struct i2c_client *client = to_i2c_client(dev);
1087 return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1088}
1089
1090static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1091 const char *buf, size_t count)
1092{
1093 struct i2c_client *client = to_i2c_client(dev);
1094 long val;
1095 int err;
1096
1097 err = kstrtol(buf, 10, &val);
1098 if (err < 0)
1099 return err;
1100
1101 switch (val) {
1102 case 0:
1103 client->flags &= ~I2C_CLIENT_PEC;
1104 break;
1105 case 1:
1106 client->flags |= I2C_CLIENT_PEC;
1107 break;
1108 default:
1109 return -EINVAL;
1110 }
1111
1112 return count;
1113}
1114
1115static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1116
1117/*
1118 * Real code
1119 */
1120
1121/* Return 0 if detection is successful, -ENODEV otherwise */
1122static int lm90_detect(struct i2c_client *client,
1123 struct i2c_board_info *info)
1124{
1125 struct i2c_adapter *adapter = client->adapter;
1126 int address = client->addr;
1127 const char *name = NULL;
1128 int man_id, chip_id, config1, config2, convrate;
1129
1130 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1131 return -ENODEV;
1132
1133 /* detection and identification */
1134 man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1135 chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1136 config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1137 convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1138 if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1139 return -ENODEV;
1140
1141 if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1142 config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1143 if (config2 < 0)
1144 return -ENODEV;
1145 } else
1146 config2 = 0; /* Make compiler happy */
1147
1148 if ((address == 0x4C || address == 0x4D)
1149 && man_id == 0x01) { /* National Semiconductor */
1150 if ((config1 & 0x2A) == 0x00
1151 && (config2 & 0xF8) == 0x00
1152 && convrate <= 0x09) {
1153 if (address == 0x4C
1154 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1155 name = "lm90";
1156 } else
1157 if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1158 name = "lm99";
1159 dev_info(&adapter->dev,
1160 "Assuming LM99 chip at 0x%02x\n",
1161 address);
1162 dev_info(&adapter->dev,
1163 "If it is an LM89, instantiate it "
1164 "with the new_device sysfs "
1165 "interface\n");
1166 } else
1167 if (address == 0x4C
1168 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1169 name = "lm86";
1170 }
1171 }
1172 } else
1173 if ((address == 0x4C || address == 0x4D)
1174 && man_id == 0x41) { /* Analog Devices */
1175 if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1176 && (config1 & 0x3F) == 0x00
1177 && convrate <= 0x0A) {
1178 name = "adm1032";
1179 /*
1180 * The ADM1032 supports PEC, but only if combined
1181 * transactions are not used.
1182 */
1183 if (i2c_check_functionality(adapter,
1184 I2C_FUNC_SMBUS_BYTE))
1185 info->flags |= I2C_CLIENT_PEC;
1186 } else
1187 if (chip_id == 0x51 /* ADT7461 */
1188 && (config1 & 0x1B) == 0x00
1189 && convrate <= 0x0A) {
1190 name = "adt7461";
1191 } else
1192 if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1193 && (config1 & 0x1B) == 0x00
1194 && convrate <= 0x0A) {
1195 name = "adt7461a";
1196 }
1197 } else
1198 if (man_id == 0x4D) { /* Maxim */
1199 int emerg, emerg2, status2;
1200
1201 /*
1202 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1203 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1204 * exists, both readings will reflect the same value. Otherwise,
1205 * the readings will be different.
1206 */
1207 emerg = i2c_smbus_read_byte_data(client,
1208 MAX6659_REG_R_REMOTE_EMERG);
1209 man_id = i2c_smbus_read_byte_data(client,
1210 LM90_REG_R_MAN_ID);
1211 emerg2 = i2c_smbus_read_byte_data(client,
1212 MAX6659_REG_R_REMOTE_EMERG);
1213 status2 = i2c_smbus_read_byte_data(client,
1214 MAX6696_REG_R_STATUS2);
1215 if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1216 return -ENODEV;
1217
1218 /*
1219 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1220 * register. Reading from that address will return the last
1221 * read value, which in our case is those of the man_id
1222 * register. Likewise, the config1 register seems to lack a
1223 * low nibble, so the value will be those of the previous
1224 * read, so in our case those of the man_id register.
1225 * MAX6659 has a third set of upper temperature limit registers.
1226 * Those registers also return values on MAX6657 and MAX6658,
1227 * thus the only way to detect MAX6659 is by its address.
1228 * For this reason it will be mis-detected as MAX6657 if its
1229 * address is 0x4C.
1230 */
1231 if (chip_id == man_id
1232 && (address == 0x4C || address == 0x4D || address == 0x4E)
1233 && (config1 & 0x1F) == (man_id & 0x0F)
1234 && convrate <= 0x09) {
1235 if (address == 0x4C)
1236 name = "max6657";
1237 else
1238 name = "max6659";
1239 } else
1240 /*
1241 * Even though MAX6695 and MAX6696 do not have a chip ID
1242 * register, reading it returns 0x01. Bit 4 of the config1
1243 * register is unused and should return zero when read. Bit 0 of
1244 * the status2 register is unused and should return zero when
1245 * read.
1246 *
1247 * MAX6695 and MAX6696 have an additional set of temperature
1248 * limit registers. We can detect those chips by checking if
1249 * one of those registers exists.
1250 */
1251 if (chip_id == 0x01
1252 && (config1 & 0x10) == 0x00
1253 && (status2 & 0x01) == 0x00
1254 && emerg == emerg2
1255 && convrate <= 0x07) {
1256 name = "max6696";
1257 } else
1258 /*
1259 * The chip_id register of the MAX6680 and MAX6681 holds the
1260 * revision of the chip. The lowest bit of the config1 register
1261 * is unused and should return zero when read, so should the
1262 * second to last bit of config1 (software reset).
1263 */
1264 if (chip_id == 0x01
1265 && (config1 & 0x03) == 0x00
1266 && convrate <= 0x07) {
1267 name = "max6680";
1268 } else
1269 /*
1270 * The chip_id register of the MAX6646/6647/6649 holds the
1271 * revision of the chip. The lowest 6 bits of the config1
1272 * register are unused and should return zero when read.
1273 */
1274 if (chip_id == 0x59
1275 && (config1 & 0x3f) == 0x00
1276 && convrate <= 0x07) {
1277 name = "max6646";
1278 }
1279 } else
1280 if (address == 0x4C
1281 && man_id == 0x5C) { /* Winbond/Nuvoton */
1282 if ((config1 & 0x2A) == 0x00
1283 && (config2 & 0xF8) == 0x00) {
1284 if (chip_id == 0x01 /* W83L771W/G */
1285 && convrate <= 0x09) {
1286 name = "w83l771";
1287 } else
1288 if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1289 && convrate <= 0x08) {
1290 name = "w83l771";
1291 }
1292 }
1293 } else
1294 if (address >= 0x48 && address <= 0x4F
1295 && man_id == 0xA1) { /* NXP Semiconductor/Philips */
1296 if (chip_id == 0x00
1297 && (config1 & 0x2A) == 0x00
1298 && (config2 & 0xFE) == 0x00
1299 && convrate <= 0x09) {
1300 name = "sa56004";
1301 }
1302 } else
1303 if ((address == 0x4C || address == 0x4D)
1304 && man_id == 0x47) { /* GMT */
1305 if (chip_id == 0x01 /* G781 */
1306 && (config1 & 0x3F) == 0x00
1307 && convrate <= 0x08)
1308 name = "g781";
1309 }
1310
1311 if (!name) { /* identification failed */
1312 dev_dbg(&adapter->dev,
1313 "Unsupported chip at 0x%02x (man_id=0x%02X, "
1314 "chip_id=0x%02X)\n", address, man_id, chip_id);
1315 return -ENODEV;
1316 }
1317
1318 strlcpy(info->type, name, I2C_NAME_SIZE);
1319
1320 return 0;
1321}
1322
1323static void lm90_remove_files(struct i2c_client *client, struct lm90_data *data)
1324{
1325 struct device *dev = &client->dev;
1326
1327 if (data->flags & LM90_HAVE_TEMP3)
1328 sysfs_remove_group(&dev->kobj, &lm90_temp3_group);
1329 if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1330 sysfs_remove_group(&dev->kobj, &lm90_emergency_alarm_group);
1331 if (data->flags & LM90_HAVE_EMERGENCY)
1332 sysfs_remove_group(&dev->kobj, &lm90_emergency_group);
1333 if (data->flags & LM90_HAVE_OFFSET)
1334 device_remove_file(dev, &sensor_dev_attr_temp2_offset.dev_attr);
1335 device_remove_file(dev, &dev_attr_pec);
1336 sysfs_remove_group(&dev->kobj, &lm90_group);
1337}
1338
1339static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
1340{
1341 /* Restore initial configuration */
1342 i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1343 data->convrate_orig);
1344 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1345 data->config_orig);
1346}
1347
1348static void lm90_init_client(struct i2c_client *client)
1349{
1350 u8 config, convrate;
1351 struct lm90_data *data = i2c_get_clientdata(client);
1352
1353 if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1354 dev_warn(&client->dev, "Failed to read convrate register!\n");
1355 convrate = LM90_DEF_CONVRATE_RVAL;
1356 }
1357 data->convrate_orig = convrate;
1358
1359 /*
1360 * Start the conversions.
1361 */
1362 lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
1363 if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1364 dev_warn(&client->dev, "Initialization failed!\n");
1365 return;
1366 }
1367 data->config_orig = config;
1368
1369 /* Check Temperature Range Select */
1370 if (data->kind == adt7461) {
1371 if (config & 0x04)
1372 data->flags |= LM90_FLAG_ADT7461_EXT;
1373 }
1374
1375 /*
1376 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1377 * 0.125 degree resolution) and range (0x08, extend range
1378 * to -64 degree) mode for the remote temperature sensor.
1379 */
1380 if (data->kind == max6680)
1381 config |= 0x18;
1382
1383 /*
1384 * Select external channel 0 for max6695/96
1385 */
1386 if (data->kind == max6696)
1387 config &= ~0x08;
1388
1389 config &= 0xBF; /* run */
1390 if (config != data->config_orig) /* Only write if changed */
1391 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1392}
1393
1394static int lm90_probe(struct i2c_client *client,
1395 const struct i2c_device_id *id)
1396{
1397 struct device *dev = &client->dev;
1398 struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1399 struct lm90_data *data;
1400 int err;
1401
1402 data = kzalloc(sizeof(struct lm90_data), GFP_KERNEL);
1403 if (!data) {
1404 err = -ENOMEM;
1405 goto exit;
1406 }
1407 i2c_set_clientdata(client, data);
1408 mutex_init(&data->update_lock);
1409
1410 /* Set the device type */
1411 data->kind = id->driver_data;
1412 if (data->kind == adm1032) {
1413 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1414 client->flags &= ~I2C_CLIENT_PEC;
1415 }
1416
1417 /*
1418 * Different devices have different alarm bits triggering the
1419 * ALERT# output
1420 */
1421 data->alert_alarms = lm90_params[data->kind].alert_alarms;
1422
1423 /* Set chip capabilities */
1424 data->flags = lm90_params[data->kind].flags;
1425 data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1426
1427 /* Set maximum conversion rate */
1428 data->max_convrate = lm90_params[data->kind].max_convrate;
1429
1430 /* Initialize the LM90 chip */
1431 lm90_init_client(client);
1432
1433 /* Register sysfs hooks */
1434 err = sysfs_create_group(&dev->kobj, &lm90_group);
1435 if (err)
1436 goto exit_restore;
1437 if (client->flags & I2C_CLIENT_PEC) {
1438 err = device_create_file(dev, &dev_attr_pec);
1439 if (err)
1440 goto exit_remove_files;
1441 }
1442 if (data->flags & LM90_HAVE_OFFSET) {
1443 err = device_create_file(dev,
1444 &sensor_dev_attr_temp2_offset.dev_attr);
1445 if (err)
1446 goto exit_remove_files;
1447 }
1448 if (data->flags & LM90_HAVE_EMERGENCY) {
1449 err = sysfs_create_group(&dev->kobj, &lm90_emergency_group);
1450 if (err)
1451 goto exit_remove_files;
1452 }
1453 if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
1454 err = sysfs_create_group(&dev->kobj,
1455 &lm90_emergency_alarm_group);
1456 if (err)
1457 goto exit_remove_files;
1458 }
1459 if (data->flags & LM90_HAVE_TEMP3) {
1460 err = sysfs_create_group(&dev->kobj, &lm90_temp3_group);
1461 if (err)
1462 goto exit_remove_files;
1463 }
1464
1465 data->hwmon_dev = hwmon_device_register(dev);
1466 if (IS_ERR(data->hwmon_dev)) {
1467 err = PTR_ERR(data->hwmon_dev);
1468 goto exit_remove_files;
1469 }
1470
1471 return 0;
1472
1473exit_remove_files:
1474 lm90_remove_files(client, data);
1475exit_restore:
1476 lm90_restore_conf(client, data);
1477 kfree(data);
1478exit:
1479 return err;
1480}
1481
1482static int lm90_remove(struct i2c_client *client)
1483{
1484 struct lm90_data *data = i2c_get_clientdata(client);
1485
1486 hwmon_device_unregister(data->hwmon_dev);
1487 lm90_remove_files(client, data);
1488 lm90_restore_conf(client, data);
1489
1490 kfree(data);
1491 return 0;
1492}
1493
1494static void lm90_alert(struct i2c_client *client, unsigned int flag)
1495{
1496 struct lm90_data *data = i2c_get_clientdata(client);
1497 u8 config, alarms, alarms2 = 0;
1498
1499 lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
1500
1501 if (data->kind == max6696)
1502 lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms2);
1503
1504 if ((alarms & 0x7f) == 0 && (alarms2 & 0xfe) == 0) {
1505 dev_info(&client->dev, "Everything OK\n");
1506 } else {
1507 if (alarms & 0x61)
1508 dev_warn(&client->dev,
1509 "temp%d out of range, please check!\n", 1);
1510 if (alarms & 0x1a)
1511 dev_warn(&client->dev,
1512 "temp%d out of range, please check!\n", 2);
1513 if (alarms & 0x04)
1514 dev_warn(&client->dev,
1515 "temp%d diode open, please check!\n", 2);
1516
1517 if (alarms2 & 0x18)
1518 dev_warn(&client->dev,
1519 "temp%d out of range, please check!\n", 3);
1520
1521 /*
1522 * Disable ALERT# output, because these chips don't implement
1523 * SMBus alert correctly; they should only hold the alert line
1524 * low briefly.
1525 */
1526 if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1527 && (alarms & data->alert_alarms)) {
1528 dev_dbg(&client->dev, "Disabling ALERT#\n");
1529 lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1530 i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1531 config | 0x80);
1532 }
1533 }
1534}
1535
1536static struct i2c_driver lm90_driver = {
1537 .class = I2C_CLASS_HWMON,
1538 .driver = {
1539 .name = "lm90",
1540 },
1541 .probe = lm90_probe,
1542 .remove = lm90_remove,
1543 .alert = lm90_alert,
1544 .id_table = lm90_id,
1545 .detect = lm90_detect,
1546 .address_list = normal_i2c,
1547};
1548
1549module_i2c_driver(lm90_driver);
1550
1551MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
1552MODULE_DESCRIPTION("LM90/ADM1032 driver");
1553MODULE_LICENSE("GPL");