Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
 
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		struct vm_area_struct *next, unsigned long start,
  82		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83
  84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
  85{
  86	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 
 
  87}
 
  88
  89/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  90void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  91{
  92	unsigned long vm_flags = vma->vm_flags;
  93	pgprot_t vm_page_prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  96	if (vma_wants_writenotify(vma, vm_page_prot)) {
  97		vm_flags &= ~VM_SHARED;
  98		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
 
 
 
 
 
  99	}
 100	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 101	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102}
 103
 104/*
 105 * Requires inode->i_mapping->i_mmap_rwsem
 106 */
 107static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 108		struct file *file, struct address_space *mapping)
 109{
 110	if (vma_is_shared_maywrite(vma))
 111		mapping_unmap_writable(mapping);
 
 
 112
 113	flush_dcache_mmap_lock(mapping);
 114	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 115	flush_dcache_mmap_unlock(mapping);
 116}
 117
 118/*
 119 * Unlink a file-based vm structure from its interval tree, to hide
 120 * vma from rmap and vmtruncate before freeing its page tables.
 121 */
 122void unlink_file_vma(struct vm_area_struct *vma)
 123{
 124	struct file *file = vma->vm_file;
 125
 126	if (file) {
 127		struct address_space *mapping = file->f_mapping;
 128		i_mmap_lock_write(mapping);
 129		__remove_shared_vm_struct(vma, file, mapping);
 130		i_mmap_unlock_write(mapping);
 131	}
 132}
 133
 134/*
 135 * Close a vm structure and free it.
 136 */
 137static void remove_vma(struct vm_area_struct *vma, bool unreachable)
 138{
 
 
 139	might_sleep();
 140	if (vma->vm_ops && vma->vm_ops->close)
 141		vma->vm_ops->close(vma);
 142	if (vma->vm_file)
 143		fput(vma->vm_file);
 144	mpol_put(vma_policy(vma));
 145	if (unreachable)
 146		__vm_area_free(vma);
 147	else
 148		vm_area_free(vma);
 149}
 150
 151static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
 152						    unsigned long min)
 153{
 154	return mas_prev(&vmi->mas, min);
 155}
 156
 157/*
 158 * check_brk_limits() - Use platform specific check of range & verify mlock
 159 * limits.
 160 * @addr: The address to check
 161 * @len: The size of increase.
 162 *
 163 * Return: 0 on success.
 164 */
 165static int check_brk_limits(unsigned long addr, unsigned long len)
 166{
 167	unsigned long mapped_addr;
 168
 169	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 170	if (IS_ERR_VALUE(mapped_addr))
 171		return mapped_addr;
 172
 173	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 174		? 0 : -EAGAIN;
 175}
 176static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 177		unsigned long addr, unsigned long request, unsigned long flags);
 178SYSCALL_DEFINE1(brk, unsigned long, brk)
 179{
 180	unsigned long newbrk, oldbrk, origbrk;
 
 181	struct mm_struct *mm = current->mm;
 182	struct vm_area_struct *brkvma, *next = NULL;
 183	unsigned long min_brk;
 184	bool populate = false;
 185	LIST_HEAD(uf);
 186	struct vma_iterator vmi;
 187
 188	if (mmap_write_lock_killable(mm))
 189		return -EINTR;
 190
 191	origbrk = mm->brk;
 192
 193#ifdef CONFIG_COMPAT_BRK
 194	/*
 195	 * CONFIG_COMPAT_BRK can still be overridden by setting
 196	 * randomize_va_space to 2, which will still cause mm->start_brk
 197	 * to be arbitrarily shifted
 198	 */
 199	if (current->brk_randomized)
 200		min_brk = mm->start_brk;
 201	else
 202		min_brk = mm->end_data;
 203#else
 204	min_brk = mm->start_brk;
 205#endif
 206	if (brk < min_brk)
 207		goto out;
 208
 209	/*
 210	 * Check against rlimit here. If this check is done later after the test
 211	 * of oldbrk with newbrk then it can escape the test and let the data
 212	 * segment grow beyond its set limit the in case where the limit is
 213	 * not page aligned -Ram Gupta
 214	 */
 215	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 216			      mm->end_data, mm->start_data))
 
 217		goto out;
 218
 219	newbrk = PAGE_ALIGN(brk);
 220	oldbrk = PAGE_ALIGN(mm->brk);
 221	if (oldbrk == newbrk) {
 222		mm->brk = brk;
 223		goto success;
 224	}
 225
 226	/* Always allow shrinking brk. */
 227	if (brk <= mm->brk) {
 228		/* Search one past newbrk */
 229		vma_iter_init(&vmi, mm, newbrk);
 230		brkvma = vma_find(&vmi, oldbrk);
 231		if (!brkvma || brkvma->vm_start >= oldbrk)
 232			goto out; /* mapping intersects with an existing non-brk vma. */
 233		/*
 234		 * mm->brk must be protected by write mmap_lock.
 235		 * do_vma_munmap() will drop the lock on success,  so update it
 236		 * before calling do_vma_munmap().
 237		 */
 238		mm->brk = brk;
 239		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
 240			goto out;
 241
 242		goto success_unlocked;
 243	}
 244
 245	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 246		goto out;
 
 247
 248	/*
 249	 * Only check if the next VMA is within the stack_guard_gap of the
 250	 * expansion area
 251	 */
 252	vma_iter_init(&vmi, mm, oldbrk);
 253	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 254	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 255		goto out;
 256
 257	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 258	/* Ok, looks good - let it rip. */
 259	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 260		goto out;
 261
 
 262	mm->brk = brk;
 263	if (mm->def_flags & VM_LOCKED)
 264		populate = true;
 265
 266success:
 267	mmap_write_unlock(mm);
 268success_unlocked:
 269	userfaultfd_unmap_complete(mm, &uf);
 270	if (populate)
 271		mm_populate(oldbrk, newbrk - oldbrk);
 272	return brk;
 273
 274out:
 275	mm->brk = origbrk;
 276	mmap_write_unlock(mm);
 277	return origbrk;
 278}
 279
 280#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
 281static void validate_mm(struct mm_struct *mm)
 282{
 283	int bug = 0;
 284	int i = 0;
 285	struct vm_area_struct *vma;
 286	VMA_ITERATOR(vmi, mm, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287
 288	mt_validate(&mm->mm_mt);
 289	for_each_vma(vmi, vma) {
 290#ifdef CONFIG_DEBUG_VM_RB
 291		struct anon_vma *anon_vma = vma->anon_vma;
 292		struct anon_vma_chain *avc;
 293#endif
 294		unsigned long vmi_start, vmi_end;
 295		bool warn = 0;
 296
 297		vmi_start = vma_iter_addr(&vmi);
 298		vmi_end = vma_iter_end(&vmi);
 299		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
 300			warn = 1;
 301
 302		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
 303			warn = 1;
 304
 305		if (warn) {
 306			pr_emerg("issue in %s\n", current->comm);
 307			dump_stack();
 308			dump_vma(vma);
 309			pr_emerg("tree range: %px start %lx end %lx\n", vma,
 310				 vmi_start, vmi_end - 1);
 311			vma_iter_dump_tree(&vmi);
 
 
 
 
 
 
 312		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315		if (anon_vma) {
 316			anon_vma_lock_read(anon_vma);
 317			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 318				anon_vma_interval_tree_verify(avc);
 319			anon_vma_unlock_read(anon_vma);
 320		}
 321#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322		i++;
 323	}
 324	if (i != mm->map_count) {
 325		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
 
 
 
 
 
 
 
 
 
 
 326		bug = 1;
 327	}
 328	VM_BUG_ON_MM(bug, mm);
 329}
 330
 331#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
 332#define validate_mm(mm) do { } while (0)
 333#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335/*
 336 * vma has some anon_vma assigned, and is already inserted on that
 337 * anon_vma's interval trees.
 338 *
 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 340 * vma must be removed from the anon_vma's interval trees using
 341 * anon_vma_interval_tree_pre_update_vma().
 342 *
 343 * After the update, the vma will be reinserted using
 344 * anon_vma_interval_tree_post_update_vma().
 345 *
 346 * The entire update must be protected by exclusive mmap_lock and by
 347 * the root anon_vma's mutex.
 348 */
 349static inline void
 350anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 351{
 352	struct anon_vma_chain *avc;
 353
 354	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 355		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 356}
 357
 358static inline void
 359anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 360{
 361	struct anon_vma_chain *avc;
 362
 363	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 364		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367static unsigned long count_vma_pages_range(struct mm_struct *mm,
 368		unsigned long addr, unsigned long end)
 369{
 370	VMA_ITERATOR(vmi, mm, addr);
 371	struct vm_area_struct *vma;
 372	unsigned long nr_pages = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374	for_each_vma_range(vmi, vma, end) {
 375		unsigned long vm_start = max(addr, vma->vm_start);
 376		unsigned long vm_end = min(end, vma->vm_end);
 377
 378		nr_pages += PHYS_PFN(vm_end - vm_start);
 
 379	}
 380
 381	return nr_pages;
 382}
 383
 384static void __vma_link_file(struct vm_area_struct *vma,
 385			    struct address_space *mapping)
 386{
 387	if (vma_is_shared_maywrite(vma))
 388		mapping_allow_writable(mapping);
 
 
 
 389
 390	flush_dcache_mmap_lock(mapping);
 391	vma_interval_tree_insert(vma, &mapping->i_mmap);
 392	flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
 396{
 397	VMA_ITERATOR(vmi, mm, 0);
 398	struct address_space *mapping = NULL;
 399
 400	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
 401	if (vma_iter_prealloc(&vmi, vma))
 402		return -ENOMEM;
 403
 404	vma_start_write(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 405
 406	vma_iter_store(&vmi, vma);
 
 
 
 
 
 
 
 407
 408	if (vma->vm_file) {
 
 
 
 
 
 
 409		mapping = vma->vm_file->f_mapping;
 410		i_mmap_lock_write(mapping);
 411		__vma_link_file(vma, mapping);
 412		i_mmap_unlock_write(mapping);
 413	}
 
 
 
 
 
 414
 415	mm->map_count++;
 416	validate_mm(mm);
 417	return 0;
 418}
 419
 420/*
 421 * init_multi_vma_prep() - Initializer for struct vma_prepare
 422 * @vp: The vma_prepare struct
 423 * @vma: The vma that will be altered once locked
 424 * @next: The next vma if it is to be adjusted
 425 * @remove: The first vma to be removed
 426 * @remove2: The second vma to be removed
 427 */
 428static inline void init_multi_vma_prep(struct vma_prepare *vp,
 429		struct vm_area_struct *vma, struct vm_area_struct *next,
 430		struct vm_area_struct *remove, struct vm_area_struct *remove2)
 431{
 432	memset(vp, 0, sizeof(struct vma_prepare));
 433	vp->vma = vma;
 434	vp->anon_vma = vma->anon_vma;
 435	vp->remove = remove;
 436	vp->remove2 = remove2;
 437	vp->adj_next = next;
 438	if (!vp->anon_vma && next)
 439		vp->anon_vma = next->anon_vma;
 440
 441	vp->file = vma->vm_file;
 442	if (vp->file)
 443		vp->mapping = vma->vm_file->f_mapping;
 444
 
 
 
 
 
 445}
 446
 447/*
 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct
 449 * @vp: The vma_prepare struct
 450 * @vma: The vma that will be altered once locked
 451 */
 452static inline void init_vma_prep(struct vma_prepare *vp,
 453				 struct vm_area_struct *vma)
 454{
 455	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
 456}
 
 
 
 
 457
 
 
 
 458
 459/*
 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering
 461 * @vp: The initialized vma_prepare struct
 
 
 
 462 */
 463static inline void vma_prepare(struct vma_prepare *vp)
 
 464{
 465	if (vp->file) {
 466		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
 
 
 
 
 
 
 
 
 467
 468		if (vp->adj_next)
 469			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
 470				      vp->adj_next->vm_end);
 471
 472		i_mmap_lock_write(vp->mapping);
 473		if (vp->insert && vp->insert->vm_file) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474			/*
 475			 * Put into interval tree now, so instantiated pages
 476			 * are visible to arm/parisc __flush_dcache_page
 477			 * throughout; but we cannot insert into address
 478			 * space until vma start or end is updated.
 479			 */
 480			__vma_link_file(vp->insert,
 481					vp->insert->vm_file->f_mapping);
 482		}
 483	}
 484
 485	if (vp->anon_vma) {
 486		anon_vma_lock_write(vp->anon_vma);
 487		anon_vma_interval_tree_pre_update_vma(vp->vma);
 488		if (vp->adj_next)
 489			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
 
 
 
 
 
 
 
 490	}
 491
 492	if (vp->file) {
 493		flush_dcache_mmap_lock(vp->mapping);
 494		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
 495		if (vp->adj_next)
 496			vma_interval_tree_remove(vp->adj_next,
 497						 &vp->mapping->i_mmap);
 498	}
 499
 500}
 
 
 
 
 
 
 
 
 
 
 
 
 501
 502/*
 503 * vma_complete- Helper function for handling the unlocking after altering VMAs,
 504 * or for inserting a VMA.
 505 *
 506 * @vp: The vma_prepare struct
 507 * @vmi: The vma iterator
 508 * @mm: The mm_struct
 509 */
 510static inline void vma_complete(struct vma_prepare *vp,
 511				struct vma_iterator *vmi, struct mm_struct *mm)
 512{
 513	if (vp->file) {
 514		if (vp->adj_next)
 515			vma_interval_tree_insert(vp->adj_next,
 516						 &vp->mapping->i_mmap);
 517		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
 518		flush_dcache_mmap_unlock(vp->mapping);
 519	}
 520
 521	if (vp->remove && vp->file) {
 522		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
 523		if (vp->remove2)
 524			__remove_shared_vm_struct(vp->remove2, vp->file,
 525						  vp->mapping);
 526	} else if (vp->insert) {
 
 
 
 527		/*
 528		 * split_vma has split insert from vma, and needs
 529		 * us to insert it before dropping the locks
 530		 * (it may either follow vma or precede it).
 531		 */
 532		vma_iter_store(vmi, vp->insert);
 533		mm->map_count++;
 
 
 
 
 
 
 
 
 534	}
 535
 536	if (vp->anon_vma) {
 537		anon_vma_interval_tree_post_update_vma(vp->vma);
 538		if (vp->adj_next)
 539			anon_vma_interval_tree_post_update_vma(vp->adj_next);
 540		anon_vma_unlock_write(vp->anon_vma);
 541	}
 
 
 542
 543	if (vp->file) {
 544		i_mmap_unlock_write(vp->mapping);
 545		uprobe_mmap(vp->vma);
 546
 547		if (vp->adj_next)
 548			uprobe_mmap(vp->adj_next);
 549	}
 550
 551	if (vp->remove) {
 552again:
 553		vma_mark_detached(vp->remove, true);
 554		if (vp->file) {
 555			uprobe_munmap(vp->remove, vp->remove->vm_start,
 556				      vp->remove->vm_end);
 557			fput(vp->file);
 558		}
 559		if (vp->remove->anon_vma)
 560			anon_vma_merge(vp->vma, vp->remove);
 561		mm->map_count--;
 562		mpol_put(vma_policy(vp->remove));
 563		if (!vp->remove2)
 564			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
 565		vm_area_free(vp->remove);
 566
 567		/*
 568		 * In mprotect's case 6 (see comments on vma_merge),
 569		 * we are removing both mid and next vmas
 
 570		 */
 571		if (vp->remove2) {
 572			vp->remove = vp->remove2;
 573			vp->remove2 = NULL;
 574			goto again;
 575		}
 576	}
 577	if (vp->insert && vp->file)
 578		uprobe_mmap(vp->insert);
 579	validate_mm(mm);
 580}
 581
 582/*
 583 * dup_anon_vma() - Helper function to duplicate anon_vma
 584 * @dst: The destination VMA
 585 * @src: The source VMA
 586 * @dup: Pointer to the destination VMA when successful.
 587 *
 588 * Returns: 0 on success.
 589 */
 590static inline int dup_anon_vma(struct vm_area_struct *dst,
 591		struct vm_area_struct *src, struct vm_area_struct **dup)
 592{
 593	/*
 594	 * Easily overlooked: when mprotect shifts the boundary, make sure the
 595	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
 596	 * anon pages imported.
 597	 */
 598	if (src->anon_vma && !dst->anon_vma) {
 599		int ret;
 600
 601		vma_assert_write_locked(dst);
 602		dst->anon_vma = src->anon_vma;
 603		ret = anon_vma_clone(dst, src);
 604		if (ret)
 605			return ret;
 606
 607		*dup = dst;
 608	}
 
 
 609
 610	return 0;
 611}
 612
 613/*
 614 * vma_expand - Expand an existing VMA
 615 *
 616 * @vmi: The vma iterator
 617 * @vma: The vma to expand
 618 * @start: The start of the vma
 619 * @end: The exclusive end of the vma
 620 * @pgoff: The page offset of vma
 621 * @next: The current of next vma.
 622 *
 623 * Expand @vma to @start and @end.  Can expand off the start and end.  Will
 624 * expand over @next if it's different from @vma and @end == @next->vm_end.
 625 * Checking if the @vma can expand and merge with @next needs to be handled by
 626 * the caller.
 627 *
 628 * Returns: 0 on success
 629 */
 630int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
 631	       unsigned long start, unsigned long end, pgoff_t pgoff,
 632	       struct vm_area_struct *next)
 633{
 634	struct vm_area_struct *anon_dup = NULL;
 635	bool remove_next = false;
 636	struct vma_prepare vp;
 637
 638	vma_start_write(vma);
 639	if (next && (vma != next) && (end == next->vm_end)) {
 640		int ret;
 641
 642		remove_next = true;
 643		vma_start_write(next);
 644		ret = dup_anon_vma(vma, next, &anon_dup);
 645		if (ret)
 646			return ret;
 647	}
 648
 649	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
 650	/* Not merging but overwriting any part of next is not handled. */
 651	VM_WARN_ON(next && !vp.remove &&
 652		  next != vma && end > next->vm_start);
 653	/* Only handles expanding */
 654	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
 655
 656	/* Note: vma iterator must be pointing to 'start' */
 657	vma_iter_config(vmi, start, end);
 658	if (vma_iter_prealloc(vmi, vma))
 659		goto nomem;
 660
 661	vma_prepare(&vp);
 662	vma_adjust_trans_huge(vma, start, end, 0);
 663	vma->vm_start = start;
 664	vma->vm_end = end;
 665	vma->vm_pgoff = pgoff;
 666	vma_iter_store(vmi, vma);
 667
 668	vma_complete(&vp, vmi, vma->vm_mm);
 669	return 0;
 670
 671nomem:
 672	if (anon_dup)
 673		unlink_anon_vmas(anon_dup);
 674	return -ENOMEM;
 675}
 676
 677/*
 678 * vma_shrink() - Reduce an existing VMAs memory area
 679 * @vmi: The vma iterator
 680 * @vma: The VMA to modify
 681 * @start: The new start
 682 * @end: The new end
 683 *
 684 * Returns: 0 on success, -ENOMEM otherwise
 685 */
 686int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
 687	       unsigned long start, unsigned long end, pgoff_t pgoff)
 688{
 689	struct vma_prepare vp;
 690
 691	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
 692
 693	if (vma->vm_start < start)
 694		vma_iter_config(vmi, vma->vm_start, start);
 695	else
 696		vma_iter_config(vmi, end, vma->vm_end);
 697
 698	if (vma_iter_prealloc(vmi, NULL))
 699		return -ENOMEM;
 700
 701	vma_start_write(vma);
 702
 703	init_vma_prep(&vp, vma);
 704	vma_prepare(&vp);
 705	vma_adjust_trans_huge(vma, start, end, 0);
 706
 707	vma_iter_clear(vmi);
 708	vma->vm_start = start;
 709	vma->vm_end = end;
 710	vma->vm_pgoff = pgoff;
 711	vma_complete(&vp, vmi, vma->vm_mm);
 712	return 0;
 713}
 714
 715/*
 716 * If the vma has a ->close operation then the driver probably needs to release
 717 * per-vma resources, so we don't attempt to merge those if the caller indicates
 718 * the current vma may be removed as part of the merge.
 719 */
 720static inline bool is_mergeable_vma(struct vm_area_struct *vma,
 721		struct file *file, unsigned long vm_flags,
 722		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 723		struct anon_vma_name *anon_name, bool may_remove_vma)
 724{
 725	/*
 726	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 727	 * match the flags but dirty bit -- the caller should mark
 728	 * merged VMA as dirty. If dirty bit won't be excluded from
 729	 * comparison, we increase pressure on the memory system forcing
 730	 * the kernel to generate new VMAs when old one could be
 731	 * extended instead.
 732	 */
 733	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 734		return false;
 735	if (vma->vm_file != file)
 736		return false;
 737	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
 738		return false;
 739	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 740		return false;
 741	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
 742		return false;
 743	return true;
 744}
 745
 746static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 747		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
 
 748{
 749	/*
 750	 * The list_is_singular() test is to avoid merging VMA cloned from
 751	 * parents. This can improve scalability caused by anon_vma lock.
 752	 */
 753	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 754		list_is_singular(&vma->anon_vma_chain)))
 755		return true;
 756	return anon_vma1 == anon_vma2;
 757}
 758
 759/*
 760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 761 * in front of (at a lower virtual address and file offset than) the vma.
 762 *
 763 * We cannot merge two vmas if they have differently assigned (non-NULL)
 764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 765 *
 766 * We don't check here for the merged mmap wrapping around the end of pagecache
 767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
 768 * wrap, nor mmaps which cover the final page at index -1UL.
 769 *
 770 * We assume the vma may be removed as part of the merge.
 771 */
 772static bool
 773can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 774		struct anon_vma *anon_vma, struct file *file,
 775		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 776		struct anon_vma_name *anon_name)
 777{
 778	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
 779	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 780		if (vma->vm_pgoff == vm_pgoff)
 781			return true;
 782	}
 783	return false;
 784}
 785
 786/*
 787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 788 * beyond (at a higher virtual address and file offset than) the vma.
 789 *
 790 * We cannot merge two vmas if they have differently assigned (non-NULL)
 791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 792 *
 793 * We assume that vma is not removed as part of the merge.
 794 */
 795static bool
 796can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 797		struct anon_vma *anon_vma, struct file *file,
 798		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 799		struct anon_vma_name *anon_name)
 800{
 801	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
 802	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 803		pgoff_t vm_pglen;
 804		vm_pglen = vma_pages(vma);
 805		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 806			return true;
 807	}
 808	return false;
 809}
 810
 811/*
 812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
 813 * figure out whether that can be merged with its predecessor or its
 814 * successor.  Or both (it neatly fills a hole).
 815 *
 816 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 817 * certain not to be mapped by the time vma_merge is called; but when
 818 * called for mprotect, it is certain to be already mapped (either at
 819 * an offset within prev, or at the start of next), and the flags of
 820 * this area are about to be changed to vm_flags - and the no-change
 821 * case has already been eliminated.
 822 *
 823 * The following mprotect cases have to be considered, where **** is
 824 * the area passed down from mprotect_fixup, never extending beyond one
 825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
 826 * at the same address as **** and is of the same or larger span, and
 827 * NNNN the next vma after ****:
 828 *
 829 *     ****             ****                   ****
 830 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
 831 *    cannot merge    might become       might become
 832 *                    PPNNNNNNNNNN       PPPPPPPPPPCC
 833 *    mmap, brk or    case 4 below       case 5 below
 834 *    mremap move:
 835 *                        ****               ****
 836 *                    PPPP    NNNN       PPPPCCCCNNNN
 837 *                    might become       might become
 838 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
 839 *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
 840 *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
 841 *
 842 * It is important for case 8 that the vma CCCC overlapping the
 843 * region **** is never going to extended over NNNN. Instead NNNN must
 844 * be extended in region **** and CCCC must be removed. This way in
 845 * all cases where vma_merge succeeds, the moment vma_merge drops the
 846 * rmap_locks, the properties of the merged vma will be already
 847 * correct for the whole merged range. Some of those properties like
 848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
 849 * be correct for the whole merged range immediately after the
 850 * rmap_locks are released. Otherwise if NNNN would be removed and
 851 * CCCC would be extended over the NNNN range, remove_migration_ptes
 852 * or other rmap walkers (if working on addresses beyond the "end"
 853 * parameter) may establish ptes with the wrong permissions of CCCC
 854 * instead of the right permissions of NNNN.
 855 *
 856 * In the code below:
 857 * PPPP is represented by *prev
 858 * CCCC is represented by *curr or not represented at all (NULL)
 859 * NNNN is represented by *next or not represented at all (NULL)
 860 * **** is not represented - it will be merged and the vma containing the
 861 *      area is returned, or the function will return NULL
 862 */
 863static struct vm_area_struct
 864*vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
 865	   struct vm_area_struct *prev, unsigned long addr, unsigned long end,
 866	   unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
 867	   pgoff_t pgoff, struct mempolicy *policy,
 868	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 869	   struct anon_vma_name *anon_name)
 870{
 871	struct vm_area_struct *curr, *next, *res;
 872	struct vm_area_struct *vma, *adjust, *remove, *remove2;
 873	struct vm_area_struct *anon_dup = NULL;
 874	struct vma_prepare vp;
 875	pgoff_t vma_pgoff;
 876	int err = 0;
 877	bool merge_prev = false;
 878	bool merge_next = false;
 879	bool vma_expanded = false;
 880	unsigned long vma_start = addr;
 881	unsigned long vma_end = end;
 882	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 883	long adj_start = 0;
 
 884
 885	/*
 886	 * We later require that vma->vm_flags == vm_flags,
 887	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 888	 */
 889	if (vm_flags & VM_SPECIAL)
 890		return NULL;
 891
 892	/* Does the input range span an existing VMA? (cases 5 - 8) */
 893	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
 894
 895	if (!curr ||			/* cases 1 - 4 */
 896	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
 897		next = vma_lookup(mm, end);
 898	else
 899		next = NULL;		/* case 5 */
 900
 901	if (prev) {
 902		vma_start = prev->vm_start;
 903		vma_pgoff = prev->vm_pgoff;
 904
 905		/* Can we merge the predecessor? */
 906		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
 907		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
 908					   pgoff, vm_userfaultfd_ctx, anon_name)) {
 909			merge_prev = true;
 910			vma_prev(vmi);
 911		}
 912	}
 913
 914	/* Can we merge the successor? */
 915	if (next && mpol_equal(policy, vma_policy(next)) &&
 916	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
 917				 vm_userfaultfd_ctx, anon_name)) {
 918		merge_next = true;
 919	}
 920
 921	/* Verify some invariant that must be enforced by the caller. */
 922	VM_WARN_ON(prev && addr <= prev->vm_start);
 923	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
 924	VM_WARN_ON(addr >= end);
 925
 926	if (!merge_prev && !merge_next)
 927		return NULL; /* Not mergeable. */
 928
 929	if (merge_prev)
 930		vma_start_write(prev);
 931
 932	res = vma = prev;
 933	remove = remove2 = adjust = NULL;
 934
 935	/* Can we merge both the predecessor and the successor? */
 936	if (merge_prev && merge_next &&
 937	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
 938		vma_start_write(next);
 939		remove = next;				/* case 1 */
 940		vma_end = next->vm_end;
 941		err = dup_anon_vma(prev, next, &anon_dup);
 942		if (curr) {				/* case 6 */
 943			vma_start_write(curr);
 944			remove = curr;
 945			remove2 = next;
 946			/*
 947			 * Note that the dup_anon_vma below cannot overwrite err
 948			 * since the first caller would do nothing unless next
 949			 * has an anon_vma.
 950			 */
 951			if (!next->anon_vma)
 952				err = dup_anon_vma(prev, curr, &anon_dup);
 953		}
 954	} else if (merge_prev) {			/* case 2 */
 955		if (curr) {
 956			vma_start_write(curr);
 957			if (end == curr->vm_end) {	/* case 7 */
 958				/*
 959				 * can_vma_merge_after() assumed we would not be
 960				 * removing prev vma, so it skipped the check
 961				 * for vm_ops->close, but we are removing curr
 962				 */
 963				if (curr->vm_ops && curr->vm_ops->close)
 964					err = -EINVAL;
 965				remove = curr;
 966			} else {			/* case 5 */
 967				adjust = curr;
 968				adj_start = (end - curr->vm_start);
 969			}
 970			if (!err)
 971				err = dup_anon_vma(prev, curr, &anon_dup);
 972		}
 973	} else { /* merge_next */
 974		vma_start_write(next);
 975		res = next;
 976		if (prev && addr < prev->vm_end) {	/* case 4 */
 977			vma_start_write(prev);
 978			vma_end = addr;
 979			adjust = next;
 980			adj_start = -(prev->vm_end - addr);
 981			err = dup_anon_vma(next, prev, &anon_dup);
 982		} else {
 983			/*
 984			 * Note that cases 3 and 8 are the ONLY ones where prev
 985			 * is permitted to be (but is not necessarily) NULL.
 986			 */
 987			vma = next;			/* case 3 */
 988			vma_start = addr;
 989			vma_end = next->vm_end;
 990			vma_pgoff = next->vm_pgoff - pglen;
 991			if (curr) {			/* case 8 */
 992				vma_pgoff = curr->vm_pgoff;
 993				vma_start_write(curr);
 994				remove = curr;
 995				err = dup_anon_vma(next, curr, &anon_dup);
 996			}
 997		}
 998	}
 999
1000	/* Error in anon_vma clone. */
1001	if (err)
1002		goto anon_vma_fail;
1003
1004	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1005		vma_expanded = true;
1006
1007	if (vma_expanded) {
1008		vma_iter_config(vmi, vma_start, vma_end);
1009	} else {
1010		vma_iter_config(vmi, adjust->vm_start + adj_start,
1011				adjust->vm_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012	}
1013
1014	if (vma_iter_prealloc(vmi, vma))
1015		goto prealloc_fail;
1016
1017	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1018	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1019		   vp.anon_vma != adjust->anon_vma);
1020
1021	vma_prepare(&vp);
1022	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1023
1024	vma->vm_start = vma_start;
1025	vma->vm_end = vma_end;
1026	vma->vm_pgoff = vma_pgoff;
1027
1028	if (vma_expanded)
1029		vma_iter_store(vmi, vma);
1030
1031	if (adj_start) {
1032		adjust->vm_start += adj_start;
1033		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1034		if (adj_start < 0) {
1035			WARN_ON(vma_expanded);
1036			vma_iter_store(vmi, next);
1037		}
1038	}
1039
1040	vma_complete(&vp, vmi, mm);
1041	khugepaged_enter_vma(res, vm_flags);
1042	return res;
1043
1044prealloc_fail:
1045	if (anon_dup)
1046		unlink_anon_vmas(anon_dup);
1047
1048anon_vma_fail:
1049	vma_iter_set(vmi, addr);
1050	vma_iter_load(vmi);
1051	return NULL;
1052}
1053
1054/*
1055 * Rough compatibility check to quickly see if it's even worth looking
1056 * at sharing an anon_vma.
1057 *
1058 * They need to have the same vm_file, and the flags can only differ
1059 * in things that mprotect may change.
1060 *
1061 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1062 * we can merge the two vma's. For example, we refuse to merge a vma if
1063 * there is a vm_ops->close() function, because that indicates that the
1064 * driver is doing some kind of reference counting. But that doesn't
1065 * really matter for the anon_vma sharing case.
1066 */
1067static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1068{
1069	return a->vm_end == b->vm_start &&
1070		mpol_equal(vma_policy(a), vma_policy(b)) &&
1071		a->vm_file == b->vm_file &&
1072		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1073		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1074}
1075
1076/*
1077 * Do some basic sanity checking to see if we can re-use the anon_vma
1078 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1079 * the same as 'old', the other will be the new one that is trying
1080 * to share the anon_vma.
1081 *
1082 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1083 * the anon_vma of 'old' is concurrently in the process of being set up
1084 * by another page fault trying to merge _that_. But that's ok: if it
1085 * is being set up, that automatically means that it will be a singleton
1086 * acceptable for merging, so we can do all of this optimistically. But
1087 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1088 *
1089 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1090 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1091 * is to return an anon_vma that is "complex" due to having gone through
1092 * a fork).
1093 *
1094 * We also make sure that the two vma's are compatible (adjacent,
1095 * and with the same memory policies). That's all stable, even with just
1096 * a read lock on the mmap_lock.
1097 */
1098static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1099{
1100	if (anon_vma_compatible(a, b)) {
1101		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1102
1103		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1104			return anon_vma;
1105	}
1106	return NULL;
1107}
1108
1109/*
1110 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1111 * neighbouring vmas for a suitable anon_vma, before it goes off
1112 * to allocate a new anon_vma.  It checks because a repetitive
1113 * sequence of mprotects and faults may otherwise lead to distinct
1114 * anon_vmas being allocated, preventing vma merge in subsequent
1115 * mprotect.
1116 */
1117struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1118{
1119	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1120	struct anon_vma *anon_vma = NULL;
1121	struct vm_area_struct *prev, *next;
1122
1123	/* Try next first. */
1124	next = mas_walk(&mas);
1125	if (next) {
1126		anon_vma = reusable_anon_vma(next, vma, next);
1127		if (anon_vma)
1128			return anon_vma;
1129	}
1130
1131	prev = mas_prev(&mas, 0);
1132	VM_BUG_ON_VMA(prev != vma, vma);
1133	prev = mas_prev(&mas, 0);
1134	/* Try prev next. */
1135	if (prev)
1136		anon_vma = reusable_anon_vma(prev, prev, vma);
1137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138	/*
1139	 * We might reach here with anon_vma == NULL if we can't find
1140	 * any reusable anon_vma.
1141	 * There's no absolute need to look only at touching neighbours:
1142	 * we could search further afield for "compatible" anon_vmas.
1143	 * But it would probably just be a waste of time searching,
1144	 * or lead to too many vmas hanging off the same anon_vma.
1145	 * We're trying to allow mprotect remerging later on,
1146	 * not trying to minimize memory used for anon_vmas.
1147	 */
1148	return anon_vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149}
 
1150
1151/*
1152 * If a hint addr is less than mmap_min_addr change hint to be as
1153 * low as possible but still greater than mmap_min_addr
1154 */
1155static inline unsigned long round_hint_to_min(unsigned long hint)
1156{
1157	hint &= PAGE_MASK;
1158	if (((void *)hint != NULL) &&
1159	    (hint < mmap_min_addr))
1160		return PAGE_ALIGN(mmap_min_addr);
1161	return hint;
1162}
1163
1164bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1165			unsigned long bytes)
1166{
1167	unsigned long locked_pages, limit_pages;
1168
1169	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170		return true;
1171
1172	locked_pages = bytes >> PAGE_SHIFT;
1173	locked_pages += mm->locked_vm;
1174
1175	limit_pages = rlimit(RLIMIT_MEMLOCK);
1176	limit_pages >>= PAGE_SHIFT;
1177
1178	return locked_pages <= limit_pages;
1179}
1180
1181static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1182{
1183	if (S_ISREG(inode->i_mode))
1184		return MAX_LFS_FILESIZE;
1185
1186	if (S_ISBLK(inode->i_mode))
1187		return MAX_LFS_FILESIZE;
1188
1189	if (S_ISSOCK(inode->i_mode))
1190		return MAX_LFS_FILESIZE;
1191
1192	/* Special "we do even unsigned file positions" case */
1193	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194		return 0;
1195
1196	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1197	return ULONG_MAX;
1198}
1199
1200static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1201				unsigned long pgoff, unsigned long len)
1202{
1203	u64 maxsize = file_mmap_size_max(file, inode);
1204
1205	if (maxsize && len > maxsize)
1206		return false;
1207	maxsize -= len;
1208	if (pgoff > maxsize >> PAGE_SHIFT)
1209		return false;
1210	return true;
1211}
1212
1213/*
1214 * The caller must write-lock current->mm->mmap_lock.
1215 */
1216unsigned long do_mmap(struct file *file, unsigned long addr,
 
1217			unsigned long len, unsigned long prot,
1218			unsigned long flags, vm_flags_t vm_flags,
1219			unsigned long pgoff, unsigned long *populate,
1220			struct list_head *uf)
1221{
1222	struct mm_struct *mm = current->mm;
1223	int pkey = 0;
1224
1225	*populate = 0;
1226
1227	if (!len)
1228		return -EINVAL;
1229
1230	/*
1231	 * Does the application expect PROT_READ to imply PROT_EXEC?
1232	 *
1233	 * (the exception is when the underlying filesystem is noexec
1234	 *  mounted, in which case we don't add PROT_EXEC.)
1235	 */
1236	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237		if (!(file && path_noexec(&file->f_path)))
1238			prot |= PROT_EXEC;
1239
1240	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1241	if (flags & MAP_FIXED_NOREPLACE)
1242		flags |= MAP_FIXED;
1243
1244	if (!(flags & MAP_FIXED))
1245		addr = round_hint_to_min(addr);
1246
1247	/* Careful about overflows.. */
1248	len = PAGE_ALIGN(len);
1249	if (!len)
1250		return -ENOMEM;
1251
1252	/* offset overflow? */
1253	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254		return -EOVERFLOW;
1255
1256	/* Too many mappings? */
1257	if (mm->map_count > sysctl_max_map_count)
1258		return -ENOMEM;
1259
1260	/* Obtain the address to map to. we verify (or select) it and ensure
1261	 * that it represents a valid section of the address space.
1262	 */
1263	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1264	if (IS_ERR_VALUE(addr))
1265		return addr;
1266
1267	if (flags & MAP_FIXED_NOREPLACE) {
1268		if (find_vma_intersection(mm, addr, addr + len))
1269			return -EEXIST;
1270	}
1271
1272	if (prot == PROT_EXEC) {
1273		pkey = execute_only_pkey(mm);
1274		if (pkey < 0)
1275			pkey = 0;
1276	}
1277
1278	/* Do simple checking here so the lower-level routines won't have
1279	 * to. we assume access permissions have been handled by the open
1280	 * of the memory object, so we don't do any here.
1281	 */
1282	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1283			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284
1285	if (flags & MAP_LOCKED)
1286		if (!can_do_mlock())
1287			return -EPERM;
1288
1289	if (!mlock_future_ok(mm, vm_flags, len))
1290		return -EAGAIN;
1291
1292	if (file) {
1293		struct inode *inode = file_inode(file);
1294		unsigned long flags_mask;
1295
1296		if (!file_mmap_ok(file, inode, pgoff, len))
1297			return -EOVERFLOW;
1298
1299		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1300
1301		switch (flags & MAP_TYPE) {
1302		case MAP_SHARED:
1303			/*
1304			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305			 * flags. E.g. MAP_SYNC is dangerous to use with
1306			 * MAP_SHARED as you don't know which consistency model
1307			 * you will get. We silently ignore unsupported flags
1308			 * with MAP_SHARED to preserve backward compatibility.
1309			 */
1310			flags &= LEGACY_MAP_MASK;
1311			fallthrough;
1312		case MAP_SHARED_VALIDATE:
1313			if (flags & ~flags_mask)
1314				return -EOPNOTSUPP;
1315			if (prot & PROT_WRITE) {
1316				if (!(file->f_mode & FMODE_WRITE))
1317					return -EACCES;
1318				if (IS_SWAPFILE(file->f_mapping->host))
1319					return -ETXTBSY;
1320			}
1321
1322			/*
1323			 * Make sure we don't allow writing to an append-only
1324			 * file..
1325			 */
1326			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327				return -EACCES;
1328
 
 
 
 
 
 
1329			vm_flags |= VM_SHARED | VM_MAYSHARE;
1330			if (!(file->f_mode & FMODE_WRITE))
1331				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332			fallthrough;
 
1333		case MAP_PRIVATE:
1334			if (!(file->f_mode & FMODE_READ))
1335				return -EACCES;
1336			if (path_noexec(&file->f_path)) {
1337				if (vm_flags & VM_EXEC)
1338					return -EPERM;
1339				vm_flags &= ~VM_MAYEXEC;
1340			}
1341
1342			if (!file->f_op->mmap)
1343				return -ENODEV;
1344			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345				return -EINVAL;
1346			break;
1347
1348		default:
1349			return -EINVAL;
1350		}
1351	} else {
1352		switch (flags & MAP_TYPE) {
1353		case MAP_SHARED:
1354			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355				return -EINVAL;
1356			/*
1357			 * Ignore pgoff.
1358			 */
1359			pgoff = 0;
1360			vm_flags |= VM_SHARED | VM_MAYSHARE;
1361			break;
1362		case MAP_PRIVATE:
1363			/*
1364			 * Set pgoff according to addr for anon_vma.
1365			 */
1366			pgoff = addr >> PAGE_SHIFT;
1367			break;
1368		default:
1369			return -EINVAL;
1370		}
1371	}
1372
1373	/*
1374	 * Set 'VM_NORESERVE' if we should not account for the
1375	 * memory use of this mapping.
1376	 */
1377	if (flags & MAP_NORESERVE) {
1378		/* We honor MAP_NORESERVE if allowed to overcommit */
1379		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380			vm_flags |= VM_NORESERVE;
1381
1382		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383		if (file && is_file_hugepages(file))
1384			vm_flags |= VM_NORESERVE;
1385	}
1386
1387	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388	if (!IS_ERR_VALUE(addr) &&
1389	    ((vm_flags & VM_LOCKED) ||
1390	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391		*populate = len;
1392	return addr;
1393}
1394
1395unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396			      unsigned long prot, unsigned long flags,
1397			      unsigned long fd, unsigned long pgoff)
1398{
1399	struct file *file = NULL;
1400	unsigned long retval;
1401
1402	if (!(flags & MAP_ANONYMOUS)) {
1403		audit_mmap_fd(fd, flags);
1404		file = fget(fd);
1405		if (!file)
1406			return -EBADF;
1407		if (is_file_hugepages(file)) {
1408			len = ALIGN(len, huge_page_size(hstate_file(file)));
1409		} else if (unlikely(flags & MAP_HUGETLB)) {
1410			retval = -EINVAL;
1411			goto out_fput;
1412		}
1413	} else if (flags & MAP_HUGETLB) {
 
1414		struct hstate *hs;
1415
1416		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417		if (!hs)
1418			return -EINVAL;
1419
1420		len = ALIGN(len, huge_page_size(hs));
1421		/*
1422		 * VM_NORESERVE is used because the reservations will be
1423		 * taken when vm_ops->mmap() is called
 
 
1424		 */
1425		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426				VM_NORESERVE,
1427				HUGETLB_ANONHUGE_INODE,
1428				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429		if (IS_ERR(file))
1430			return PTR_ERR(file);
1431	}
1432
 
 
1433	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434out_fput:
1435	if (file)
1436		fput(file);
 
1437	return retval;
1438}
1439
1440SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441		unsigned long, prot, unsigned long, flags,
1442		unsigned long, fd, unsigned long, pgoff)
1443{
1444	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445}
1446
1447#ifdef __ARCH_WANT_SYS_OLD_MMAP
1448struct mmap_arg_struct {
1449	unsigned long addr;
1450	unsigned long len;
1451	unsigned long prot;
1452	unsigned long flags;
1453	unsigned long fd;
1454	unsigned long offset;
1455};
1456
1457SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458{
1459	struct mmap_arg_struct a;
1460
1461	if (copy_from_user(&a, arg, sizeof(a)))
1462		return -EFAULT;
1463	if (offset_in_page(a.offset))
1464		return -EINVAL;
1465
1466	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467			       a.offset >> PAGE_SHIFT);
1468}
1469#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470
1471static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472{
1473	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474}
1475
1476static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477{
1478	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479		(VM_WRITE | VM_SHARED);
1480}
1481
1482static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483{
1484	/* No managed pages to writeback. */
1485	if (vma->vm_flags & VM_PFNMAP)
1486		return false;
1487
1488	return vma->vm_file && vma->vm_file->f_mapping &&
1489		mapping_can_writeback(vma->vm_file->f_mapping);
1490}
1491
1492/*
1493 * Does this VMA require the underlying folios to have their dirty state
1494 * tracked?
1495 */
1496bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497{
1498	/* Only shared, writable VMAs require dirty tracking. */
1499	if (!vma_is_shared_writable(vma))
1500		return false;
1501
1502	/* Does the filesystem need to be notified? */
1503	if (vm_ops_needs_writenotify(vma->vm_ops))
1504		return true;
1505
1506	/*
1507	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1508	 * can writeback, dirty tracking is still required.
1509	 */
1510	return vma_fs_can_writeback(vma);
1511}
1512
1513/*
1514 * Some shared mappings will want the pages marked read-only
1515 * to track write events. If so, we'll downgrade vm_page_prot
1516 * to the private version (using protection_map[] without the
1517 * VM_SHARED bit).
1518 */
1519int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520{
 
 
1521	/* If it was private or non-writable, the write bit is already clear */
1522	if (!vma_is_shared_writable(vma))
1523		return 0;
1524
1525	/* The backer wishes to know when pages are first written to? */
1526	if (vm_ops_needs_writenotify(vma->vm_ops))
1527		return 1;
1528
1529	/* The open routine did something to the protections that pgprot_modify
1530	 * won't preserve? */
1531	if (pgprot_val(vm_page_prot) !=
1532	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533		return 0;
1534
1535	/*
1536	 * Do we need to track softdirty? hugetlb does not support softdirty
1537	 * tracking yet.
1538	 */
1539	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540		return 1;
1541
1542	/* Do we need write faults for uffd-wp tracking? */
1543	if (userfaultfd_wp(vma))
1544		return 1;
1545
1546	/* Can the mapping track the dirty pages? */
1547	return vma_fs_can_writeback(vma);
 
1548}
1549
1550/*
1551 * We account for memory if it's a private writeable mapping,
1552 * not hugepages and VM_NORESERVE wasn't set.
1553 */
1554static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555{
1556	/*
1557	 * hugetlb has its own accounting separate from the core VM
1558	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559	 */
1560	if (file && is_file_hugepages(file))
1561		return 0;
1562
1563	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564}
1565
1566/**
1567 * unmapped_area() - Find an area between the low_limit and the high_limit with
1568 * the correct alignment and offset, all from @info. Note: current->mm is used
1569 * for the search.
1570 *
1571 * @info: The unmapped area information including the range [low_limit -
1572 * high_limit), the alignment offset and mask.
1573 *
1574 * Return: A memory address or -ENOMEM.
1575 */
1576static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577{
1578	unsigned long length, gap;
1579	unsigned long low_limit, high_limit;
1580	struct vm_area_struct *tmp;
 
 
 
 
1581
1582	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
 
 
1583
1584	/* Adjust search length to account for worst case alignment overhead */
1585	length = info->length + info->align_mask;
1586	if (length < info->length)
1587		return -ENOMEM;
1588
1589	low_limit = info->low_limit;
1590	if (low_limit < mmap_min_addr)
1591		low_limit = mmap_min_addr;
1592	high_limit = info->high_limit;
1593retry:
1594	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1595		return -ENOMEM;
1596
1597	gap = mas.index;
1598	gap += (info->align_offset - gap) & info->align_mask;
1599	tmp = mas_next(&mas, ULONG_MAX);
1600	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1601		if (vm_start_gap(tmp) < gap + length - 1) {
1602			low_limit = tmp->vm_end;
1603			mas_reset(&mas);
1604			goto retry;
 
 
 
 
 
 
 
 
 
 
 
1605		}
1606	} else {
1607		tmp = mas_prev(&mas, 0);
1608		if (tmp && vm_end_gap(tmp) > gap) {
1609			low_limit = vm_end_gap(tmp);
1610			mas_reset(&mas);
1611			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612		}
1613	}
1614
1615	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616}
1617
1618/**
1619 * unmapped_area_topdown() - Find an area between the low_limit and the
1620 * high_limit with the correct alignment and offset at the highest available
1621 * address, all from @info. Note: current->mm is used for the search.
1622 *
1623 * @info: The unmapped area information including the range [low_limit -
1624 * high_limit), the alignment offset and mask.
1625 *
1626 * Return: A memory address or -ENOMEM.
1627 */
1628static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1629{
1630	unsigned long length, gap, gap_end;
1631	unsigned long low_limit, high_limit;
1632	struct vm_area_struct *tmp;
1633
1634	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1635	/* Adjust search length to account for worst case alignment overhead */
1636	length = info->length + info->align_mask;
1637	if (length < info->length)
1638		return -ENOMEM;
1639
1640	low_limit = info->low_limit;
1641	if (low_limit < mmap_min_addr)
1642		low_limit = mmap_min_addr;
1643	high_limit = info->high_limit;
1644retry:
1645	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1646		return -ENOMEM;
1647
1648	gap = mas.last + 1 - info->length;
1649	gap -= (gap - info->align_offset) & info->align_mask;
1650	gap_end = mas.last;
1651	tmp = mas_next(&mas, ULONG_MAX);
1652	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1653		if (vm_start_gap(tmp) <= gap_end) {
1654			high_limit = vm_start_gap(tmp);
1655			mas_reset(&mas);
1656			goto retry;
1657		}
1658	} else {
1659		tmp = mas_prev(&mas, 0);
1660		if (tmp && vm_end_gap(tmp) > gap) {
1661			high_limit = tmp->vm_start;
1662			mas_reset(&mas);
1663			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
1664		}
1665	}
1666
1667	return gap;
1668}
 
 
 
 
 
1669
1670/*
1671 * Search for an unmapped address range.
1672 *
1673 * We are looking for a range that:
1674 * - does not intersect with any VMA;
1675 * - is contained within the [low_limit, high_limit) interval;
1676 * - is at least the desired size.
1677 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1678 */
1679unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680{
1681	unsigned long addr;
1682
1683	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1684		addr = unmapped_area_topdown(info);
1685	else
1686		addr = unmapped_area(info);
 
 
 
 
 
 
 
 
 
 
1687
1688	trace_vm_unmapped_area(addr, info);
1689	return addr;
 
 
 
 
 
 
 
 
 
 
 
1690}
1691
1692/* Get an address range which is currently unmapped.
1693 * For shmat() with addr=0.
1694 *
1695 * Ugly calling convention alert:
1696 * Return value with the low bits set means error value,
1697 * ie
1698 *	if (ret & ~PAGE_MASK)
1699 *		error = ret;
1700 *
1701 * This function "knows" that -ENOMEM has the bits set.
1702 */
 
1703unsigned long
1704generic_get_unmapped_area(struct file *filp, unsigned long addr,
1705			  unsigned long len, unsigned long pgoff,
1706			  unsigned long flags)
1707{
1708	struct mm_struct *mm = current->mm;
1709	struct vm_area_struct *vma, *prev;
1710	struct vm_unmapped_area_info info;
1711	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1712
1713	if (len > mmap_end - mmap_min_addr)
1714		return -ENOMEM;
1715
1716	if (flags & MAP_FIXED)
1717		return addr;
1718
1719	if (addr) {
1720		addr = PAGE_ALIGN(addr);
1721		vma = find_vma_prev(mm, addr, &prev);
1722		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1723		    (!vma || addr + len <= vm_start_gap(vma)) &&
1724		    (!prev || addr >= vm_end_gap(prev)))
1725			return addr;
1726	}
1727
1728	info.flags = 0;
1729	info.length = len;
1730	info.low_limit = mm->mmap_base;
1731	info.high_limit = mmap_end;
1732	info.align_mask = 0;
1733	info.align_offset = 0;
1734	return vm_unmapped_area(&info);
1735}
1736
1737#ifndef HAVE_ARCH_UNMAPPED_AREA
1738unsigned long
1739arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740		       unsigned long len, unsigned long pgoff,
1741		       unsigned long flags)
1742{
1743	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744}
1745#endif
1746
1747/*
1748 * This mmap-allocator allocates new areas top-down from below the
1749 * stack's low limit (the base):
1750 */
 
1751unsigned long
1752generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753				  unsigned long len, unsigned long pgoff,
1754				  unsigned long flags)
1755{
1756	struct vm_area_struct *vma, *prev;
1757	struct mm_struct *mm = current->mm;
 
1758	struct vm_unmapped_area_info info;
1759	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760
1761	/* requested length too big for entire address space */
1762	if (len > mmap_end - mmap_min_addr)
1763		return -ENOMEM;
1764
1765	if (flags & MAP_FIXED)
1766		return addr;
1767
1768	/* requesting a specific address */
1769	if (addr) {
1770		addr = PAGE_ALIGN(addr);
1771		vma = find_vma_prev(mm, addr, &prev);
1772		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773				(!vma || addr + len <= vm_start_gap(vma)) &&
1774				(!prev || addr >= vm_end_gap(prev)))
1775			return addr;
1776	}
1777
1778	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779	info.length = len;
1780	info.low_limit = PAGE_SIZE;
1781	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782	info.align_mask = 0;
1783	info.align_offset = 0;
1784	addr = vm_unmapped_area(&info);
1785
1786	/*
1787	 * A failed mmap() very likely causes application failure,
1788	 * so fall back to the bottom-up function here. This scenario
1789	 * can happen with large stack limits and large mmap()
1790	 * allocations.
1791	 */
1792	if (offset_in_page(addr)) {
1793		VM_BUG_ON(addr != -ENOMEM);
1794		info.flags = 0;
1795		info.low_limit = TASK_UNMAPPED_BASE;
1796		info.high_limit = mmap_end;
1797		addr = vm_unmapped_area(&info);
1798	}
1799
1800	return addr;
1801}
1802
1803#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804unsigned long
1805arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806			       unsigned long len, unsigned long pgoff,
1807			       unsigned long flags)
1808{
1809	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810}
1811#endif
1812
1813unsigned long
1814get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1815		unsigned long pgoff, unsigned long flags)
1816{
1817	unsigned long (*get_area)(struct file *, unsigned long,
1818				  unsigned long, unsigned long, unsigned long);
1819
1820	unsigned long error = arch_mmap_check(addr, len, flags);
1821	if (error)
1822		return error;
1823
1824	/* Careful about overflows.. */
1825	if (len > TASK_SIZE)
1826		return -ENOMEM;
1827
1828	get_area = current->mm->get_unmapped_area;
1829	if (file) {
1830		if (file->f_op->get_unmapped_area)
1831			get_area = file->f_op->get_unmapped_area;
1832	} else if (flags & MAP_SHARED) {
1833		/*
1834		 * mmap_region() will call shmem_zero_setup() to create a file,
1835		 * so use shmem's get_unmapped_area in case it can be huge.
1836		 */
1837		get_area = shmem_get_unmapped_area;
1838	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1839		/* Ensures that larger anonymous mappings are THP aligned. */
1840		get_area = thp_get_unmapped_area;
1841	}
1842
1843	/* Always treat pgoff as zero for anonymous memory. */
1844	if (!file)
1845		pgoff = 0;
1846
1847	addr = get_area(file, addr, len, pgoff, flags);
1848	if (IS_ERR_VALUE(addr))
1849		return addr;
1850
1851	if (addr > TASK_SIZE - len)
1852		return -ENOMEM;
1853	if (offset_in_page(addr))
1854		return -EINVAL;
1855
 
1856	error = security_mmap_addr(addr);
1857	return error ? error : addr;
1858}
1859
1860EXPORT_SYMBOL(get_unmapped_area);
1861
1862/**
1863 * find_vma_intersection() - Look up the first VMA which intersects the interval
1864 * @mm: The process address space.
1865 * @start_addr: The inclusive start user address.
1866 * @end_addr: The exclusive end user address.
1867 *
1868 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1869 * start_addr < end_addr.
1870 */
1871struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1872					     unsigned long start_addr,
1873					     unsigned long end_addr)
1874{
1875	unsigned long index = start_addr;
 
1876
1877	mmap_assert_locked(mm);
1878	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1879}
1880EXPORT_SYMBOL(find_vma_intersection);
1881
1882/**
1883 * find_vma() - Find the VMA for a given address, or the next VMA.
1884 * @mm: The mm_struct to check
1885 * @addr: The address
1886 *
1887 * Returns: The VMA associated with addr, or the next VMA.
1888 * May return %NULL in the case of no VMA at addr or above.
1889 */
1890struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1891{
1892	unsigned long index = addr;
1893
1894	mmap_assert_locked(mm);
1895	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
1896}
 
1897EXPORT_SYMBOL(find_vma);
1898
1899/**
1900 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1901 * set %pprev to the previous VMA, if any.
1902 * @mm: The mm_struct to check
1903 * @addr: The address
1904 * @pprev: The pointer to set to the previous VMA
1905 *
1906 * Note that RCU lock is missing here since the external mmap_lock() is used
1907 * instead.
1908 *
1909 * Returns: The VMA associated with @addr, or the next vma.
1910 * May return %NULL in the case of no vma at addr or above.
1911 */
1912struct vm_area_struct *
1913find_vma_prev(struct mm_struct *mm, unsigned long addr,
1914			struct vm_area_struct **pprev)
1915{
1916	struct vm_area_struct *vma;
1917	MA_STATE(mas, &mm->mm_mt, addr, addr);
1918
1919	vma = mas_walk(&mas);
1920	*pprev = mas_prev(&mas, 0);
1921	if (!vma)
1922		vma = mas_next(&mas, ULONG_MAX);
 
 
 
 
 
 
 
1923	return vma;
1924}
1925
1926/*
1927 * Verify that the stack growth is acceptable and
1928 * update accounting. This is shared with both the
1929 * grow-up and grow-down cases.
1930 */
1931static int acct_stack_growth(struct vm_area_struct *vma,
1932			     unsigned long size, unsigned long grow)
1933{
1934	struct mm_struct *mm = vma->vm_mm;
 
1935	unsigned long new_start;
1936
1937	/* address space limit tests */
1938	if (!may_expand_vm(mm, vma->vm_flags, grow))
1939		return -ENOMEM;
1940
1941	/* Stack limit test */
1942	if (size > rlimit(RLIMIT_STACK))
1943		return -ENOMEM;
1944
1945	/* mlock limit tests */
1946	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1947		return -ENOMEM;
 
 
 
 
 
 
 
1948
1949	/* Check to ensure the stack will not grow into a hugetlb-only region */
1950	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1951			vma->vm_end - size;
1952	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1953		return -EFAULT;
1954
1955	/*
1956	 * Overcommit..  This must be the final test, as it will
1957	 * update security statistics.
1958	 */
1959	if (security_vm_enough_memory_mm(mm, grow))
1960		return -ENOMEM;
1961
 
 
 
 
1962	return 0;
1963}
1964
1965#if defined(CONFIG_STACK_GROWSUP)
1966/*
1967 * PA-RISC uses this for its stack.
1968 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1969 */
1970static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1971{
1972	struct mm_struct *mm = vma->vm_mm;
1973	struct vm_area_struct *next;
1974	unsigned long gap_addr;
1975	int error = 0;
1976	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1977
1978	if (!(vma->vm_flags & VM_GROWSUP))
1979		return -EFAULT;
1980
1981	/* Guard against exceeding limits of the address space. */
1982	address &= PAGE_MASK;
1983	if (address >= (TASK_SIZE & PAGE_MASK))
1984		return -ENOMEM;
1985	address += PAGE_SIZE;
1986
1987	/* Enforce stack_guard_gap */
1988	gap_addr = address + stack_guard_gap;
1989
1990	/* Guard against overflow */
1991	if (gap_addr < address || gap_addr > TASK_SIZE)
1992		gap_addr = TASK_SIZE;
1993
1994	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1995	if (next && vma_is_accessible(next)) {
1996		if (!(next->vm_flags & VM_GROWSUP))
1997			return -ENOMEM;
1998		/* Check that both stack segments have the same anon_vma? */
1999	}
2000
2001	if (next)
2002		mas_prev_range(&mas, address);
2003
2004	__mas_set_range(&mas, vma->vm_start, address - 1);
2005	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2006		return -ENOMEM;
 
2007
2008	/* We must make sure the anon_vma is allocated. */
2009	if (unlikely(anon_vma_prepare(vma))) {
2010		mas_destroy(&mas);
2011		return -ENOMEM;
2012	}
2013
2014	/* Lock the VMA before expanding to prevent concurrent page faults */
2015	vma_start_write(vma);
2016	/*
2017	 * vma->vm_start/vm_end cannot change under us because the caller
2018	 * is required to hold the mmap_lock in read mode.  We need the
2019	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2020	 */
2021	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2022
2023	/* Somebody else might have raced and expanded it already */
2024	if (address > vma->vm_end) {
2025		unsigned long size, grow;
2026
2027		size = address - vma->vm_start;
2028		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2029
2030		error = -ENOMEM;
2031		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2032			error = acct_stack_growth(vma, size, grow);
2033			if (!error) {
2034				/*
2035				 * We only hold a shared mmap_lock lock here, so
2036				 * we need to protect against concurrent vma
2037				 * expansions.  anon_vma_lock_write() doesn't
2038				 * help here, as we don't guarantee that all
2039				 * growable vmas in a mm share the same root
2040				 * anon vma.  So, we reuse mm->page_table_lock
2041				 * to guard against concurrent vma expansions.
 
 
2042				 */
2043				spin_lock(&mm->page_table_lock);
2044				if (vma->vm_flags & VM_LOCKED)
2045					mm->locked_vm += grow;
2046				vm_stat_account(mm, vma->vm_flags, grow);
2047				anon_vma_interval_tree_pre_update_vma(vma);
2048				vma->vm_end = address;
2049				/* Overwrite old entry in mtree. */
2050				mas_store_prealloc(&mas, vma);
2051				anon_vma_interval_tree_post_update_vma(vma);
2052				spin_unlock(&mm->page_table_lock);
 
 
 
 
2053
2054				perf_event_mmap(vma);
2055			}
2056		}
2057	}
2058	anon_vma_unlock_write(vma->anon_vma);
2059	khugepaged_enter_vma(vma, vma->vm_flags);
2060	mas_destroy(&mas);
2061	validate_mm(mm);
2062	return error;
2063}
2064#endif /* CONFIG_STACK_GROWSUP */
2065
2066/*
2067 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2068 * mmap_lock held for writing.
2069 */
2070int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
2071{
2072	struct mm_struct *mm = vma->vm_mm;
2073	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2074	struct vm_area_struct *prev;
2075	int error = 0;
2076
2077	if (!(vma->vm_flags & VM_GROWSDOWN))
2078		return -EFAULT;
 
 
 
 
2079
2080	address &= PAGE_MASK;
2081	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2082		return -EPERM;
2083
2084	/* Enforce stack_guard_gap */
2085	prev = mas_prev(&mas, 0);
2086	/* Check that both stack segments have the same anon_vma? */
2087	if (prev) {
2088		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2089		    vma_is_accessible(prev) &&
2090		    (address - prev->vm_end < stack_guard_gap))
2091			return -ENOMEM;
2092	}
2093
2094	if (prev)
2095		mas_next_range(&mas, vma->vm_start);
2096
2097	__mas_set_range(&mas, address, vma->vm_end - 1);
2098	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2099		return -ENOMEM;
2100
2101	/* We must make sure the anon_vma is allocated. */
2102	if (unlikely(anon_vma_prepare(vma))) {
2103		mas_destroy(&mas);
2104		return -ENOMEM;
2105	}
2106
2107	/* Lock the VMA before expanding to prevent concurrent page faults */
2108	vma_start_write(vma);
2109	/*
2110	 * vma->vm_start/vm_end cannot change under us because the caller
2111	 * is required to hold the mmap_lock in read mode.  We need the
2112	 * anon_vma lock to serialize against concurrent expand_stacks.
2113	 */
2114	anon_vma_lock_write(vma->anon_vma);
2115
2116	/* Somebody else might have raced and expanded it already */
2117	if (address < vma->vm_start) {
2118		unsigned long size, grow;
2119
2120		size = vma->vm_end - address;
2121		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2122
2123		error = -ENOMEM;
2124		if (grow <= vma->vm_pgoff) {
2125			error = acct_stack_growth(vma, size, grow);
2126			if (!error) {
2127				/*
2128				 * We only hold a shared mmap_lock lock here, so
2129				 * we need to protect against concurrent vma
2130				 * expansions.  anon_vma_lock_write() doesn't
2131				 * help here, as we don't guarantee that all
2132				 * growable vmas in a mm share the same root
2133				 * anon vma.  So, we reuse mm->page_table_lock
2134				 * to guard against concurrent vma expansions.
 
 
2135				 */
2136				spin_lock(&mm->page_table_lock);
2137				if (vma->vm_flags & VM_LOCKED)
2138					mm->locked_vm += grow;
2139				vm_stat_account(mm, vma->vm_flags, grow);
2140				anon_vma_interval_tree_pre_update_vma(vma);
2141				vma->vm_start = address;
2142				vma->vm_pgoff -= grow;
2143				/* Overwrite old entry in mtree. */
2144				mas_store_prealloc(&mas, vma);
2145				anon_vma_interval_tree_post_update_vma(vma);
2146				spin_unlock(&mm->page_table_lock);
 
2147
2148				perf_event_mmap(vma);
2149			}
2150		}
2151	}
2152	anon_vma_unlock_write(vma->anon_vma);
2153	khugepaged_enter_vma(vma, vma->vm_flags);
2154	mas_destroy(&mas);
2155	validate_mm(mm);
2156	return error;
2157}
2158
2159/* enforced gap between the expanding stack and other mappings. */
2160unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2161
2162static int __init cmdline_parse_stack_guard_gap(char *p)
2163{
2164	unsigned long val;
2165	char *endptr;
2166
2167	val = simple_strtoul(p, &endptr, 10);
2168	if (!*endptr)
2169		stack_guard_gap = val << PAGE_SHIFT;
2170
2171	return 1;
2172}
2173__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2174
2175#ifdef CONFIG_STACK_GROWSUP
2176int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2177{
 
 
 
 
 
 
 
 
2178	return expand_upwards(vma, address);
2179}
2180
2181struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2182{
2183	struct vm_area_struct *vma, *prev;
2184
2185	addr &= PAGE_MASK;
2186	vma = find_vma_prev(mm, addr, &prev);
2187	if (vma && (vma->vm_start <= addr))
2188		return vma;
2189	if (!prev)
2190		return NULL;
2191	if (expand_stack_locked(prev, addr))
2192		return NULL;
2193	if (prev->vm_flags & VM_LOCKED)
2194		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2195	return prev;
2196}
2197#else
2198int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2199{
 
 
 
 
 
 
 
 
2200	return expand_downwards(vma, address);
2201}
2202
2203struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2204{
2205	struct vm_area_struct *vma;
2206	unsigned long start;
2207
2208	addr &= PAGE_MASK;
2209	vma = find_vma(mm, addr);
2210	if (!vma)
2211		return NULL;
2212	if (vma->vm_start <= addr)
2213		return vma;
 
 
2214	start = vma->vm_start;
2215	if (expand_stack_locked(vma, addr))
2216		return NULL;
2217	if (vma->vm_flags & VM_LOCKED)
2218		populate_vma_page_range(vma, addr, start, NULL);
2219	return vma;
2220}
2221#endif
2222
2223#if defined(CONFIG_STACK_GROWSUP)
2224
2225#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226#define vma_expand_down(vma, addr) (-EFAULT)
2227
2228#else
2229
2230#define vma_expand_up(vma,addr) (-EFAULT)
2231#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232
2233#endif
2234
2235/*
2236 * expand_stack(): legacy interface for page faulting. Don't use unless
2237 * you have to.
2238 *
2239 * This is called with the mm locked for reading, drops the lock, takes
2240 * the lock for writing, tries to look up a vma again, expands it if
2241 * necessary, and downgrades the lock to reading again.
2242 *
2243 * If no vma is found or it can't be expanded, it returns NULL and has
2244 * dropped the lock.
2245 */
2246struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247{
2248	struct vm_area_struct *vma, *prev;
2249
2250	mmap_read_unlock(mm);
2251	if (mmap_write_lock_killable(mm))
2252		return NULL;
2253
2254	vma = find_vma_prev(mm, addr, &prev);
2255	if (vma && vma->vm_start <= addr)
2256		goto success;
2257
2258	if (prev && !vma_expand_up(prev, addr)) {
2259		vma = prev;
2260		goto success;
2261	}
2262
2263	if (vma && !vma_expand_down(vma, addr))
2264		goto success;
2265
2266	mmap_write_unlock(mm);
2267	return NULL;
2268
2269success:
2270	mmap_write_downgrade(mm);
2271	return vma;
2272}
2273
2274/*
2275 * Ok - we have the memory areas we should free on a maple tree so release them,
2276 * and do the vma updates.
2277 *
2278 * Called with the mm semaphore held.
2279 */
2280static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281{
2282	unsigned long nr_accounted = 0;
2283	struct vm_area_struct *vma;
2284
2285	/* Update high watermark before we lower total_vm */
2286	update_hiwater_vm(mm);
2287	mas_for_each(mas, vma, ULONG_MAX) {
2288		long nrpages = vma_pages(vma);
2289
2290		if (vma->vm_flags & VM_ACCOUNT)
2291			nr_accounted += nrpages;
2292		vm_stat_account(mm, vma->vm_flags, -nrpages);
2293		remove_vma(vma, false);
2294	}
2295	vm_unacct_memory(nr_accounted);
 
2296}
2297
2298/*
2299 * Get rid of page table information in the indicated region.
2300 *
2301 * Called with the mm semaphore held.
2302 */
2303static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2304		struct vm_area_struct *vma, struct vm_area_struct *prev,
2305		struct vm_area_struct *next, unsigned long start,
2306		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2307{
 
2308	struct mmu_gather tlb;
2309	unsigned long mt_start = mas->index;
2310
2311	lru_add_drain();
2312	tlb_gather_mmu(&tlb, mm);
2313	update_hiwater_rss(mm);
2314	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2315	mas_set(mas, mt_start);
2316	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2317				 next ? next->vm_start : USER_PGTABLES_CEILING,
2318				 mm_wr_locked);
2319	tlb_finish_mmu(&tlb);
2320}
2321
2322/*
2323 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2324 * has already been checked or doesn't make sense to fail.
2325 * VMA Iterator will point to the end VMA.
2326 */
2327static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2328		       unsigned long addr, int new_below)
 
2329{
2330	struct vma_prepare vp;
2331	struct vm_area_struct *new;
2332	int err;
2333
2334	WARN_ON(vma->vm_start >= addr);
2335	WARN_ON(vma->vm_end <= addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336
2337	if (vma->vm_ops && vma->vm_ops->may_split) {
2338		err = vma->vm_ops->may_split(vma, addr);
2339		if (err)
2340			return err;
2341	}
 
 
 
 
2342
2343	new = vm_area_dup(vma);
 
 
 
 
2344	if (!new)
2345		return -ENOMEM;
 
 
 
 
 
2346
2347	if (new_below) {
2348		new->vm_end = addr;
2349	} else {
2350		new->vm_start = addr;
2351		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352	}
2353
2354	err = -ENOMEM;
2355	vma_iter_config(vmi, new->vm_start, new->vm_end);
2356	if (vma_iter_prealloc(vmi, new))
2357		goto out_free_vma;
2358
2359	err = vma_dup_policy(vma, new);
2360	if (err)
2361		goto out_free_vmi;
2362
2363	err = anon_vma_clone(new, vma);
2364	if (err)
2365		goto out_free_mpol;
2366
2367	if (new->vm_file)
2368		get_file(new->vm_file);
2369
2370	if (new->vm_ops && new->vm_ops->open)
2371		new->vm_ops->open(new);
2372
2373	vma_start_write(vma);
2374	vma_start_write(new);
2375
2376	init_vma_prep(&vp, vma);
2377	vp.insert = new;
2378	vma_prepare(&vp);
2379	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2380
2381	if (new_below) {
2382		vma->vm_start = addr;
2383		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2384	} else {
2385		vma->vm_end = addr;
2386	}
2387
2388	/* vma_complete stores the new vma */
2389	vma_complete(&vp, vmi, vma->vm_mm);
2390
2391	/* Success. */
2392	if (new_below)
2393		vma_next(vmi);
2394	return 0;
2395
2396out_free_mpol:
 
 
 
 
 
 
2397	mpol_put(vma_policy(new));
2398out_free_vmi:
2399	vma_iter_free(vmi);
2400out_free_vma:
2401	vm_area_free(new);
2402	return err;
2403}
2404
2405/*
2406 * Split a vma into two pieces at address 'addr', a new vma is allocated
2407 * either for the first part or the tail.
2408 */
2409static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2410		     unsigned long addr, int new_below)
2411{
2412	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2413		return -ENOMEM;
2414
2415	return __split_vma(vmi, vma, addr, new_below);
2416}
2417
2418/*
2419 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2420 * context and anonymous VMA name within the range [start, end).
2421 *
2422 * As a result, we might be able to merge the newly modified VMA range with an
2423 * adjacent VMA with identical properties.
2424 *
2425 * If no merge is possible and the range does not span the entirety of the VMA,
2426 * we then need to split the VMA to accommodate the change.
2427 *
2428 * The function returns either the merged VMA, the original VMA if a split was
2429 * required instead, or an error if the split failed.
2430 */
2431struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2432				  struct vm_area_struct *prev,
2433				  struct vm_area_struct *vma,
2434				  unsigned long start, unsigned long end,
2435				  unsigned long vm_flags,
2436				  struct mempolicy *policy,
2437				  struct vm_userfaultfd_ctx uffd_ctx,
2438				  struct anon_vma_name *anon_name)
2439{
2440	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2441	struct vm_area_struct *merged;
2442
2443	merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2444			   vma->anon_vma, vma->vm_file, pgoff, policy,
2445			   uffd_ctx, anon_name);
2446	if (merged)
2447		return merged;
2448
2449	if (vma->vm_start < start) {
2450		int err = split_vma(vmi, vma, start, 1);
2451
2452		if (err)
2453			return ERR_PTR(err);
2454	}
2455
2456	if (vma->vm_end > end) {
2457		int err = split_vma(vmi, vma, end, 0);
2458
2459		if (err)
2460			return ERR_PTR(err);
2461	}
2462
2463	return vma;
2464}
2465
2466/*
2467 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2468 * must ensure that [start, end) does not overlap any existing VMA.
2469 */
2470static struct vm_area_struct
2471*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2472		   struct vm_area_struct *vma, unsigned long start,
2473		   unsigned long end, pgoff_t pgoff)
2474{
2475	return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2476			 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2477			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2478}
2479
2480/*
2481 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2482 * VMA with identical properties.
2483 */
2484struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2485					struct vm_area_struct *vma,
2486					unsigned long delta)
2487{
2488	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2489
2490	/* vma is specified as prev, so case 1 or 2 will apply. */
2491	return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2492			 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2493			 vma_policy(vma), vma->vm_userfaultfd_ctx,
2494			 anon_vma_name(vma));
2495}
2496
2497/*
2498 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2499 * @vmi: The vma iterator
2500 * @vma: The starting vm_area_struct
2501 * @mm: The mm_struct
2502 * @start: The aligned start address to munmap.
2503 * @end: The aligned end address to munmap.
2504 * @uf: The userfaultfd list_head
2505 * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2506 * success.
2507 *
2508 * Return: 0 on success and drops the lock if so directed, error and leaves the
2509 * lock held otherwise.
2510 */
2511static int
2512do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2513		    struct mm_struct *mm, unsigned long start,
2514		    unsigned long end, struct list_head *uf, bool unlock)
2515{
2516	struct vm_area_struct *prev, *next = NULL;
2517	struct maple_tree mt_detach;
2518	int count = 0;
2519	int error = -ENOMEM;
2520	unsigned long locked_vm = 0;
2521	MA_STATE(mas_detach, &mt_detach, 0, 0);
2522	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2523	mt_on_stack(mt_detach);
2524
2525	/*
2526	 * If we need to split any vma, do it now to save pain later.
2527	 *
2528	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2529	 * unmapped vm_area_struct will remain in use: so lower split_vma
2530	 * places tmp vma above, and higher split_vma places tmp vma below.
2531	 */
2532
2533	/* Does it split the first one? */
2534	if (start > vma->vm_start) {
 
2535
2536		/*
2537		 * Make sure that map_count on return from munmap() will
2538		 * not exceed its limit; but let map_count go just above
2539		 * its limit temporarily, to help free resources as expected.
2540		 */
2541		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2542			goto map_count_exceeded;
2543
2544		error = __split_vma(vmi, vma, start, 1);
2545		if (error)
2546			goto start_split_failed;
 
2547	}
2548
2549	/*
2550	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2551	 * it is always overwritten.
2552	 */
2553	next = vma;
2554	do {
2555		/* Does it split the end? */
2556		if (next->vm_end > end) {
2557			error = __split_vma(vmi, next, end, 0);
2558			if (error)
2559				goto end_split_failed;
2560		}
2561		vma_start_write(next);
2562		mas_set(&mas_detach, count);
2563		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2564		if (error)
2565			goto munmap_gather_failed;
2566		vma_mark_detached(next, true);
2567		if (next->vm_flags & VM_LOCKED)
2568			locked_vm += vma_pages(next);
2569
2570		count++;
2571		if (unlikely(uf)) {
2572			/*
2573			 * If userfaultfd_unmap_prep returns an error the vmas
2574			 * will remain split, but userland will get a
2575			 * highly unexpected error anyway. This is no
2576			 * different than the case where the first of the two
2577			 * __split_vma fails, but we don't undo the first
2578			 * split, despite we could. This is unlikely enough
2579			 * failure that it's not worth optimizing it for.
2580			 */
2581			error = userfaultfd_unmap_prep(next, start, end, uf);
2582
2583			if (error)
2584				goto userfaultfd_error;
2585		}
2586#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2587		BUG_ON(next->vm_start < start);
2588		BUG_ON(next->vm_start > end);
2589#endif
2590	} for_each_vma_range(*vmi, next, end);
2591
2592#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2593	/* Make sure no VMAs are about to be lost. */
2594	{
2595		MA_STATE(test, &mt_detach, 0, 0);
2596		struct vm_area_struct *vma_mas, *vma_test;
2597		int test_count = 0;
2598
2599		vma_iter_set(vmi, start);
2600		rcu_read_lock();
2601		vma_test = mas_find(&test, count - 1);
2602		for_each_vma_range(*vmi, vma_mas, end) {
2603			BUG_ON(vma_mas != vma_test);
2604			test_count++;
2605			vma_test = mas_next(&test, count - 1);
2606		}
2607		rcu_read_unlock();
2608		BUG_ON(count != test_count);
2609	}
2610#endif
2611
2612	while (vma_iter_addr(vmi) > start)
2613		vma_iter_prev_range(vmi);
2614
2615	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2616	if (error)
2617		goto clear_tree_failed;
2618
2619	/* Point of no return */
2620	mm->locked_vm -= locked_vm;
2621	mm->map_count -= count;
2622	if (unlock)
2623		mmap_write_downgrade(mm);
2624
2625	prev = vma_iter_prev_range(vmi);
2626	next = vma_next(vmi);
2627	if (next)
2628		vma_iter_prev_range(vmi);
2629
2630	/*
2631	 * We can free page tables without write-locking mmap_lock because VMAs
2632	 * were isolated before we downgraded mmap_lock.
2633	 */
2634	mas_set(&mas_detach, 1);
2635	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2636		     !unlock);
2637	/* Statistics and freeing VMAs */
2638	mas_set(&mas_detach, 0);
2639	remove_mt(mm, &mas_detach);
2640	validate_mm(mm);
2641	if (unlock)
2642		mmap_read_unlock(mm);
2643
2644	__mt_destroy(&mt_detach);
2645	return 0;
2646
2647clear_tree_failed:
2648userfaultfd_error:
2649munmap_gather_failed:
2650end_split_failed:
2651	mas_set(&mas_detach, 0);
2652	mas_for_each(&mas_detach, next, end)
2653		vma_mark_detached(next, false);
2654
2655	__mt_destroy(&mt_detach);
2656start_split_failed:
2657map_count_exceeded:
2658	validate_mm(mm);
2659	return error;
2660}
2661
2662/*
2663 * do_vmi_munmap() - munmap a given range.
2664 * @vmi: The vma iterator
2665 * @mm: The mm_struct
2666 * @start: The start address to munmap
2667 * @len: The length of the range to munmap
2668 * @uf: The userfaultfd list_head
2669 * @unlock: set to true if the user wants to drop the mmap_lock on success
2670 *
2671 * This function takes a @mas that is either pointing to the previous VMA or set
2672 * to MA_START and sets it up to remove the mapping(s).  The @len will be
2673 * aligned and any arch_unmap work will be preformed.
2674 *
2675 * Return: 0 on success and drops the lock if so directed, error and leaves the
2676 * lock held otherwise.
2677 */
2678int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2679		  unsigned long start, size_t len, struct list_head *uf,
2680		  bool unlock)
2681{
2682	unsigned long end;
2683	struct vm_area_struct *vma;
2684
2685	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2686		return -EINVAL;
2687
2688	end = start + PAGE_ALIGN(len);
2689	if (end == start)
2690		return -EINVAL;
2691
2692	 /* arch_unmap() might do unmaps itself.  */
2693	arch_unmap(mm, start, end);
2694
2695	/* Find the first overlapping VMA */
2696	vma = vma_find(vmi, end);
2697	if (!vma) {
2698		if (unlock)
2699			mmap_write_unlock(mm);
2700		return 0;
2701	}
2702
2703	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2704}
2705
2706/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2707 * @mm: The mm_struct
2708 * @start: The start address to munmap
2709 * @len: The length to be munmapped.
2710 * @uf: The userfaultfd list_head
2711 *
2712 * Return: 0 on success, error otherwise.
2713 */
2714int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2715	      struct list_head *uf)
2716{
2717	VMA_ITERATOR(vmi, mm, start);
2718
2719	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2720}
2721
2722unsigned long mmap_region(struct file *file, unsigned long addr,
2723		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2724		struct list_head *uf)
2725{
2726	struct mm_struct *mm = current->mm;
2727	struct vm_area_struct *vma = NULL;
2728	struct vm_area_struct *next, *prev, *merge;
2729	pgoff_t pglen = len >> PAGE_SHIFT;
2730	unsigned long charged = 0;
2731	unsigned long end = addr + len;
2732	unsigned long merge_start = addr, merge_end = end;
2733	bool writable_file_mapping = false;
2734	pgoff_t vm_pgoff;
2735	int error;
2736	VMA_ITERATOR(vmi, mm, addr);
2737
2738	/* Check against address space limit. */
2739	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2740		unsigned long nr_pages;
2741
2742		/*
2743		 * MAP_FIXED may remove pages of mappings that intersects with
2744		 * requested mapping. Account for the pages it would unmap.
2745		 */
2746		nr_pages = count_vma_pages_range(mm, addr, end);
2747
2748		if (!may_expand_vm(mm, vm_flags,
2749					(len >> PAGE_SHIFT) - nr_pages))
2750			return -ENOMEM;
2751	}
2752
2753	/* Unmap any existing mapping in the area */
2754	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2755		return -ENOMEM;
2756
2757	/*
2758	 * Private writable mapping: check memory availability
2759	 */
2760	if (accountable_mapping(file, vm_flags)) {
2761		charged = len >> PAGE_SHIFT;
2762		if (security_vm_enough_memory_mm(mm, charged))
2763			return -ENOMEM;
2764		vm_flags |= VM_ACCOUNT;
2765	}
2766
2767	next = vma_next(&vmi);
2768	prev = vma_prev(&vmi);
2769	if (vm_flags & VM_SPECIAL) {
2770		if (prev)
2771			vma_iter_next_range(&vmi);
2772		goto cannot_expand;
2773	}
2774
2775	/* Attempt to expand an old mapping */
2776	/* Check next */
2777	if (next && next->vm_start == end && !vma_policy(next) &&
2778	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2779				 NULL_VM_UFFD_CTX, NULL)) {
2780		merge_end = next->vm_end;
2781		vma = next;
2782		vm_pgoff = next->vm_pgoff - pglen;
2783	}
2784
2785	/* Check prev */
2786	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2787	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2788				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2789		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2790				       NULL_VM_UFFD_CTX, NULL))) {
2791		merge_start = prev->vm_start;
2792		vma = prev;
2793		vm_pgoff = prev->vm_pgoff;
2794	} else if (prev) {
2795		vma_iter_next_range(&vmi);
2796	}
2797
2798	/* Actually expand, if possible */
2799	if (vma &&
2800	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2801		khugepaged_enter_vma(vma, vm_flags);
2802		goto expanded;
2803	}
2804
2805	if (vma == prev)
2806		vma_iter_set(&vmi, addr);
2807cannot_expand:
2808
2809	/*
2810	 * Determine the object being mapped and call the appropriate
2811	 * specific mapper. the address has already been validated, but
2812	 * not unmapped, but the maps are removed from the list.
2813	 */
2814	vma = vm_area_alloc(mm);
2815	if (!vma) {
2816		error = -ENOMEM;
2817		goto unacct_error;
2818	}
2819
2820	vma_iter_config(&vmi, addr, end);
2821	vma->vm_start = addr;
2822	vma->vm_end = end;
2823	vm_flags_init(vma, vm_flags);
2824	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2825	vma->vm_pgoff = pgoff;
2826
2827	if (file) {
2828		vma->vm_file = get_file(file);
2829		error = call_mmap(file, vma);
2830		if (error)
2831			goto unmap_and_free_vma;
2832
2833		if (vma_is_shared_maywrite(vma)) {
2834			error = mapping_map_writable(file->f_mapping);
2835			if (error)
2836				goto close_and_free_vma;
2837
2838			writable_file_mapping = true;
2839		}
2840
2841		/*
2842		 * Expansion is handled above, merging is handled below.
2843		 * Drivers should not alter the address of the VMA.
2844		 */
2845		error = -EINVAL;
2846		if (WARN_ON((addr != vma->vm_start)))
2847			goto close_and_free_vma;
2848
2849		vma_iter_config(&vmi, addr, end);
2850		/*
2851		 * If vm_flags changed after call_mmap(), we should try merge
2852		 * vma again as we may succeed this time.
2853		 */
2854		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2855			merge = vma_merge_new_vma(&vmi, prev, vma,
2856						  vma->vm_start, vma->vm_end,
2857						  vma->vm_pgoff);
2858			if (merge) {
2859				/*
2860				 * ->mmap() can change vma->vm_file and fput
2861				 * the original file. So fput the vma->vm_file
2862				 * here or we would add an extra fput for file
2863				 * and cause general protection fault
2864				 * ultimately.
2865				 */
2866				fput(vma->vm_file);
2867				vm_area_free(vma);
2868				vma = merge;
2869				/* Update vm_flags to pick up the change. */
2870				vm_flags = vma->vm_flags;
2871				goto unmap_writable;
2872			}
 
2873		}
2874
2875		vm_flags = vma->vm_flags;
2876	} else if (vm_flags & VM_SHARED) {
2877		error = shmem_zero_setup(vma);
2878		if (error)
2879			goto free_vma;
2880	} else {
2881		vma_set_anonymous(vma);
2882	}
2883
2884	if (map_deny_write_exec(vma, vma->vm_flags)) {
2885		error = -EACCES;
2886		goto close_and_free_vma;
2887	}
2888
2889	/* Allow architectures to sanity-check the vm_flags */
2890	error = -EINVAL;
2891	if (!arch_validate_flags(vma->vm_flags))
2892		goto close_and_free_vma;
2893
2894	error = -ENOMEM;
2895	if (vma_iter_prealloc(&vmi, vma))
2896		goto close_and_free_vma;
2897
2898	/* Lock the VMA since it is modified after insertion into VMA tree */
2899	vma_start_write(vma);
2900	vma_iter_store(&vmi, vma);
2901	mm->map_count++;
2902	if (vma->vm_file) {
2903		i_mmap_lock_write(vma->vm_file->f_mapping);
2904		if (vma_is_shared_maywrite(vma))
2905			mapping_allow_writable(vma->vm_file->f_mapping);
2906
2907		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2908		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2909		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2910		i_mmap_unlock_write(vma->vm_file->f_mapping);
2911	}
2912
2913	/*
2914	 * vma_merge() calls khugepaged_enter_vma() either, the below
2915	 * call covers the non-merge case.
2916	 */
2917	khugepaged_enter_vma(vma, vma->vm_flags);
2918
2919	/* Once vma denies write, undo our temporary denial count */
2920unmap_writable:
2921	if (writable_file_mapping)
2922		mapping_unmap_writable(file->f_mapping);
2923	file = vma->vm_file;
2924	ksm_add_vma(vma);
2925expanded:
2926	perf_event_mmap(vma);
2927
2928	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2929	if (vm_flags & VM_LOCKED) {
2930		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2931					is_vm_hugetlb_page(vma) ||
2932					vma == get_gate_vma(current->mm))
2933			vm_flags_clear(vma, VM_LOCKED_MASK);
2934		else
2935			mm->locked_vm += (len >> PAGE_SHIFT);
2936	}
2937
2938	if (file)
2939		uprobe_mmap(vma);
2940
2941	/*
2942	 * New (or expanded) vma always get soft dirty status.
2943	 * Otherwise user-space soft-dirty page tracker won't
2944	 * be able to distinguish situation when vma area unmapped,
2945	 * then new mapped in-place (which must be aimed as
2946	 * a completely new data area).
2947	 */
2948	vm_flags_set(vma, VM_SOFTDIRTY);
2949
2950	vma_set_page_prot(vma);
2951
2952	validate_mm(mm);
2953	return addr;
2954
2955close_and_free_vma:
2956	if (file && vma->vm_ops && vma->vm_ops->close)
2957		vma->vm_ops->close(vma);
2958
2959	if (file || vma->vm_file) {
2960unmap_and_free_vma:
2961		fput(vma->vm_file);
2962		vma->vm_file = NULL;
2963
2964		vma_iter_set(&vmi, vma->vm_end);
2965		/* Undo any partial mapping done by a device driver. */
2966		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2967			     vma->vm_end, vma->vm_end, true);
2968	}
2969	if (writable_file_mapping)
2970		mapping_unmap_writable(file->f_mapping);
2971free_vma:
2972	vm_area_free(vma);
2973unacct_error:
2974	if (charged)
2975		vm_unacct_memory(charged);
2976	validate_mm(mm);
2977	return error;
2978}
2979
2980static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2981{
2982	int ret;
2983	struct mm_struct *mm = current->mm;
2984	LIST_HEAD(uf);
2985	VMA_ITERATOR(vmi, mm, start);
2986
2987	if (mmap_write_lock_killable(mm))
2988		return -EINTR;
2989
2990	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2991	if (ret || !unlock)
2992		mmap_write_unlock(mm);
2993
2994	userfaultfd_unmap_complete(mm, &uf);
 
 
2995	return ret;
2996}
2997
2998int vm_munmap(unsigned long start, size_t len)
2999{
3000	return __vm_munmap(start, len, false);
3001}
3002EXPORT_SYMBOL(vm_munmap);
3003
3004SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3005{
3006	addr = untagged_addr(addr);
3007	return __vm_munmap(addr, len, true);
3008}
3009
 
 
 
 
 
 
 
 
 
3010
3011/*
3012 * Emulation of deprecated remap_file_pages() syscall.
 
 
3013 */
3014SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3015		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3016{
 
 
 
 
 
 
3017
3018	struct mm_struct *mm = current->mm;
3019	struct vm_area_struct *vma;
3020	unsigned long populate = 0;
3021	unsigned long ret = -EINVAL;
3022	struct file *file;
3023
3024	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3025		     current->comm, current->pid);
3026
3027	if (prot)
3028		return ret;
3029	start = start & PAGE_MASK;
3030	size = size & PAGE_MASK;
3031
3032	if (start + size <= start)
3033		return ret;
3034
3035	/* Does pgoff wrap? */
3036	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3037		return ret;
3038
3039	if (mmap_write_lock_killable(mm))
3040		return -EINTR;
3041
3042	vma = vma_lookup(mm, start);
3043
3044	if (!vma || !(vma->vm_flags & VM_SHARED))
3045		goto out;
3046
3047	if (start + size > vma->vm_end) {
3048		VMA_ITERATOR(vmi, mm, vma->vm_end);
3049		struct vm_area_struct *next, *prev = vma;
3050
3051		for_each_vma_range(vmi, next, start + size) {
3052			/* hole between vmas ? */
3053			if (next->vm_start != prev->vm_end)
3054				goto out;
3055
3056			if (next->vm_file != vma->vm_file)
3057				goto out;
3058
3059			if (next->vm_flags != vma->vm_flags)
3060				goto out;
3061
3062			if (start + size <= next->vm_end)
3063				break;
3064
3065			prev = next;
3066		}
3067
3068		if (!next)
3069			goto out;
3070	}
3071
3072	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3073	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3074	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3075
3076	flags &= MAP_NONBLOCK;
3077	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3078	if (vma->vm_flags & VM_LOCKED)
3079		flags |= MAP_LOCKED;
3080
3081	file = get_file(vma->vm_file);
3082	ret = do_mmap(vma->vm_file, start, size,
3083			prot, flags, 0, pgoff, &populate, NULL);
3084	fput(file);
3085out:
3086	mmap_write_unlock(mm);
3087	if (populate)
3088		mm_populate(ret, populate);
3089	if (!IS_ERR_VALUE(ret))
3090		ret = 0;
3091	return ret;
3092}
3093
3094/*
3095 * do_vma_munmap() - Unmap a full or partial vma.
3096 * @vmi: The vma iterator pointing at the vma
3097 * @vma: The first vma to be munmapped
3098 * @start: the start of the address to unmap
3099 * @end: The end of the address to unmap
3100 * @uf: The userfaultfd list_head
3101 * @unlock: Drop the lock on success
3102 *
3103 * unmaps a VMA mapping when the vma iterator is already in position.
3104 * Does not handle alignment.
3105 *
3106 * Return: 0 on success drops the lock of so directed, error on failure and will
3107 * still hold the lock.
3108 */
3109int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3110		unsigned long start, unsigned long end, struct list_head *uf,
3111		bool unlock)
3112{
3113	struct mm_struct *mm = vma->vm_mm;
3114
3115	arch_unmap(mm, start, end);
3116	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3117}
3118
3119/*
3120 * do_brk_flags() - Increase the brk vma if the flags match.
3121 * @vmi: The vma iterator
3122 * @addr: The start address
3123 * @len: The length of the increase
3124 * @vma: The vma,
3125 * @flags: The VMA Flags
3126 *
3127 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3128 * do not match then create a new anonymous VMA.  Eventually we may be able to
3129 * do some brk-specific accounting here.
3130 */
3131static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132		unsigned long addr, unsigned long len, unsigned long flags)
3133{
3134	struct mm_struct *mm = current->mm;
3135	struct vma_prepare vp;
3136
3137	/*
3138	 * Check against address space limits by the changed size
3139	 * Note: This happens *after* clearing old mappings in some code paths.
3140	 */
3141	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3142	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
 
 
 
 
 
 
 
3143		return -ENOMEM;
3144
3145	if (mm->map_count > sysctl_max_map_count)
3146		return -ENOMEM;
3147
3148	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3149		return -ENOMEM;
3150
 
 
 
 
 
 
3151	/*
3152	 * Expand the existing vma if possible; Note that singular lists do not
3153	 * occur after forking, so the expand will only happen on new VMAs.
3154	 */
3155	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3156	    can_vma_merge_after(vma, flags, NULL, NULL,
3157				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3158		vma_iter_config(vmi, vma->vm_start, addr + len);
3159		if (vma_iter_prealloc(vmi, vma))
3160			goto unacct_fail;
3161
3162		vma_start_write(vma);
3163
3164		init_vma_prep(&vp, vma);
3165		vma_prepare(&vp);
3166		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3167		vma->vm_end = addr + len;
3168		vm_flags_set(vma, VM_SOFTDIRTY);
3169		vma_iter_store(vmi, vma);
3170
3171		vma_complete(&vp, vmi, mm);
3172		khugepaged_enter_vma(vma, flags);
3173		goto out;
3174	}
3175
3176	if (vma)
3177		vma_iter_next_range(vmi);
3178	/* create a vma struct for an anonymous mapping */
3179	vma = vm_area_alloc(mm);
3180	if (!vma)
3181		goto unacct_fail;
3182
3183	vma_set_anonymous(vma);
3184	vma->vm_start = addr;
3185	vma->vm_end = addr + len;
3186	vma->vm_pgoff = addr >> PAGE_SHIFT;
3187	vm_flags_init(vma, flags);
3188	vma->vm_page_prot = vm_get_page_prot(flags);
3189	vma_start_write(vma);
3190	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3191		goto mas_store_fail;
3192
3193	mm->map_count++;
3194	validate_mm(mm);
3195	ksm_add_vma(vma);
3196out:
3197	perf_event_mmap(vma);
3198	mm->total_vm += len >> PAGE_SHIFT;
3199	mm->data_vm += len >> PAGE_SHIFT;
3200	if (flags & VM_LOCKED)
3201		mm->locked_vm += (len >> PAGE_SHIFT);
3202	vm_flags_set(vma, VM_SOFTDIRTY);
3203	return 0;
3204
3205mas_store_fail:
3206	vm_area_free(vma);
3207unacct_fail:
3208	vm_unacct_memory(len >> PAGE_SHIFT);
3209	return -ENOMEM;
3210}
3211
3212int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3213{
3214	struct mm_struct *mm = current->mm;
3215	struct vm_area_struct *vma = NULL;
3216	unsigned long len;
3217	int ret;
3218	bool populate;
3219	LIST_HEAD(uf);
3220	VMA_ITERATOR(vmi, mm, addr);
3221
3222	len = PAGE_ALIGN(request);
3223	if (len < request)
3224		return -ENOMEM;
3225	if (!len)
3226		return 0;
3227
3228	/* Until we need other flags, refuse anything except VM_EXEC. */
3229	if ((flags & (~VM_EXEC)) != 0)
3230		return -EINVAL;
3231
3232	if (mmap_write_lock_killable(mm))
3233		return -EINTR;
3234
3235	ret = check_brk_limits(addr, len);
3236	if (ret)
3237		goto limits_failed;
3238
3239	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3240	if (ret)
3241		goto munmap_failed;
3242
3243	vma = vma_prev(&vmi);
3244	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3245	populate = ((mm->def_flags & VM_LOCKED) != 0);
3246	mmap_write_unlock(mm);
3247	userfaultfd_unmap_complete(mm, &uf);
3248	if (populate && !ret)
3249		mm_populate(addr, len);
3250	return ret;
3251
3252munmap_failed:
3253limits_failed:
3254	mmap_write_unlock(mm);
3255	return ret;
3256}
3257EXPORT_SYMBOL(vm_brk_flags);
3258
3259/* Release all mmaps. */
3260void exit_mmap(struct mm_struct *mm)
3261{
3262	struct mmu_gather tlb;
3263	struct vm_area_struct *vma;
3264	unsigned long nr_accounted = 0;
3265	MA_STATE(mas, &mm->mm_mt, 0, 0);
3266	int count = 0;
3267
3268	/* mm's last user has gone, and its about to be pulled down */
3269	mmu_notifier_release(mm);
3270
3271	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
3272	arch_exit_mmap(mm);
3273
3274	vma = mas_find(&mas, ULONG_MAX);
3275	if (!vma || unlikely(xa_is_zero(vma))) {
3276		/* Can happen if dup_mmap() received an OOM */
3277		mmap_read_unlock(mm);
3278		mmap_write_lock(mm);
3279		goto destroy;
3280	}
3281
3282	lru_add_drain();
3283	flush_cache_mm(mm);
3284	tlb_gather_mmu_fullmm(&tlb, mm);
3285	/* update_hiwater_rss(mm) here? but nobody should be looking */
3286	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3287	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3288	mmap_read_unlock(mm);
3289
3290	/*
3291	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3292	 * because the memory has been already freed.
3293	 */
3294	set_bit(MMF_OOM_SKIP, &mm->flags);
3295	mmap_write_lock(mm);
3296	mt_clear_in_rcu(&mm->mm_mt);
3297	mas_set(&mas, vma->vm_end);
3298	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3299		      USER_PGTABLES_CEILING, true);
3300	tlb_finish_mmu(&tlb);
3301
3302	/*
3303	 * Walk the list again, actually closing and freeing it, with preemption
3304	 * enabled, without holding any MM locks besides the unreachable
3305	 * mmap_write_lock.
3306	 */
3307	mas_set(&mas, vma->vm_end);
3308	do {
3309		if (vma->vm_flags & VM_ACCOUNT)
3310			nr_accounted += vma_pages(vma);
3311		remove_vma(vma, true);
3312		count++;
3313		cond_resched();
3314		vma = mas_find(&mas, ULONG_MAX);
3315	} while (vma && likely(!xa_is_zero(vma)));
3316
3317	BUG_ON(count != mm->map_count);
3318
3319	trace_exit_mmap(mm);
3320destroy:
3321	__mt_destroy(&mm->mm_mt);
3322	mmap_write_unlock(mm);
3323	vm_unacct_memory(nr_accounted);
 
 
 
3324}
3325
3326/* Insert vm structure into process list sorted by address
3327 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3328 * then i_mmap_rwsem is taken here.
3329 */
3330int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3331{
3332	unsigned long charged = vma_pages(vma);
3333
3334
3335	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3336		return -ENOMEM;
3337
3338	if ((vma->vm_flags & VM_ACCOUNT) &&
3339	     security_vm_enough_memory_mm(mm, charged))
3340		return -ENOMEM;
3341
3342	/*
3343	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3344	 * until its first write fault, when page's anon_vma and index
3345	 * are set.  But now set the vm_pgoff it will almost certainly
3346	 * end up with (unless mremap moves it elsewhere before that
3347	 * first wfault), so /proc/pid/maps tells a consistent story.
3348	 *
3349	 * By setting it to reflect the virtual start address of the
3350	 * vma, merges and splits can happen in a seamless way, just
3351	 * using the existing file pgoff checks and manipulations.
3352	 * Similarly in do_mmap and in do_brk_flags.
3353	 */
3354	if (vma_is_anonymous(vma)) {
3355		BUG_ON(vma->anon_vma);
3356		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3357	}
3358
3359	if (vma_link(mm, vma)) {
3360		if (vma->vm_flags & VM_ACCOUNT)
3361			vm_unacct_memory(charged);
 
3362		return -ENOMEM;
3363	}
3364
 
3365	return 0;
3366}
3367
3368/*
3369 * Copy the vma structure to a new location in the same mm,
3370 * prior to moving page table entries, to effect an mremap move.
3371 */
3372struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3373	unsigned long addr, unsigned long len, pgoff_t pgoff,
3374	bool *need_rmap_locks)
3375{
3376	struct vm_area_struct *vma = *vmap;
3377	unsigned long vma_start = vma->vm_start;
3378	struct mm_struct *mm = vma->vm_mm;
3379	struct vm_area_struct *new_vma, *prev;
 
3380	bool faulted_in_anon_vma = true;
3381	VMA_ITERATOR(vmi, mm, addr);
3382
3383	/*
3384	 * If anonymous vma has not yet been faulted, update new pgoff
3385	 * to match new location, to increase its chance of merging.
3386	 */
3387	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3388		pgoff = addr >> PAGE_SHIFT;
3389		faulted_in_anon_vma = false;
3390	}
3391
3392	new_vma = find_vma_prev(mm, addr, &prev);
3393	if (new_vma && new_vma->vm_start < addr + len)
3394		return NULL;	/* should never get here */
3395
3396	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3397	if (new_vma) {
3398		/*
3399		 * Source vma may have been merged into new_vma
3400		 */
3401		if (unlikely(vma_start >= new_vma->vm_start &&
3402			     vma_start < new_vma->vm_end)) {
3403			/*
3404			 * The only way we can get a vma_merge with
3405			 * self during an mremap is if the vma hasn't
3406			 * been faulted in yet and we were allowed to
3407			 * reset the dst vma->vm_pgoff to the
3408			 * destination address of the mremap to allow
3409			 * the merge to happen. mremap must change the
3410			 * vm_pgoff linearity between src and dst vmas
3411			 * (in turn preventing a vma_merge) to be
3412			 * safe. It is only safe to keep the vm_pgoff
3413			 * linear if there are no pages mapped yet.
3414			 */
3415			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3416			*vmap = vma = new_vma;
3417		}
3418		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3419	} else {
3420		new_vma = vm_area_dup(vma);
3421		if (!new_vma)
3422			goto out;
3423		new_vma->vm_start = addr;
3424		new_vma->vm_end = addr + len;
3425		new_vma->vm_pgoff = pgoff;
3426		if (vma_dup_policy(vma, new_vma))
3427			goto out_free_vma;
3428		if (anon_vma_clone(new_vma, vma))
3429			goto out_free_mempol;
3430		if (new_vma->vm_file)
3431			get_file(new_vma->vm_file);
3432		if (new_vma->vm_ops && new_vma->vm_ops->open)
3433			new_vma->vm_ops->open(new_vma);
3434		if (vma_link(mm, new_vma))
3435			goto out_vma_link;
3436		*need_rmap_locks = false;
 
3437	}
3438	return new_vma;
3439
3440out_vma_link:
3441	if (new_vma->vm_ops && new_vma->vm_ops->close)
3442		new_vma->vm_ops->close(new_vma);
3443
3444	if (new_vma->vm_file)
3445		fput(new_vma->vm_file);
3446
3447	unlink_anon_vmas(new_vma);
3448out_free_mempol:
3449	mpol_put(vma_policy(new_vma));
3450out_free_vma:
3451	vm_area_free(new_vma);
3452out:
3453	return NULL;
3454}
3455
3456/*
3457 * Return true if the calling process may expand its vm space by the passed
3458 * number of pages
3459 */
3460bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3461{
3462	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3463		return false;
3464
3465	if (is_data_mapping(flags) &&
3466	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3467		/* Workaround for Valgrind */
3468		if (rlimit(RLIMIT_DATA) == 0 &&
3469		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3470			return true;
3471
3472		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3473			     current->comm, current->pid,
3474			     (mm->data_vm + npages) << PAGE_SHIFT,
3475			     rlimit(RLIMIT_DATA),
3476			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3477
3478		if (!ignore_rlimit_data)
3479			return false;
3480	}
3481
3482	return true;
3483}
3484
3485void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3486{
3487	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3488
3489	if (is_exec_mapping(flags))
3490		mm->exec_vm += npages;
3491	else if (is_stack_mapping(flags))
3492		mm->stack_vm += npages;
3493	else if (is_data_mapping(flags))
3494		mm->data_vm += npages;
3495}
3496
3497static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3498
3499/*
3500 * Having a close hook prevents vma merging regardless of flags.
3501 */
3502static void special_mapping_close(struct vm_area_struct *vma)
3503{
3504}
3505
3506static const char *special_mapping_name(struct vm_area_struct *vma)
3507{
3508	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3509}
3510
3511static int special_mapping_mremap(struct vm_area_struct *new_vma)
3512{
3513	struct vm_special_mapping *sm = new_vma->vm_private_data;
3514
3515	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3516		return -EFAULT;
3517
3518	if (sm->mremap)
3519		return sm->mremap(sm, new_vma);
3520
3521	return 0;
 
 
3522}
3523
3524static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3525{
3526	/*
3527	 * Forbid splitting special mappings - kernel has expectations over
3528	 * the number of pages in mapping. Together with VM_DONTEXPAND
3529	 * the size of vma should stay the same over the special mapping's
3530	 * lifetime.
3531	 */
3532	return -EINVAL;
3533}
3534
3535static const struct vm_operations_struct special_mapping_vmops = {
3536	.close = special_mapping_close,
3537	.fault = special_mapping_fault,
3538	.mremap = special_mapping_mremap,
3539	.name = special_mapping_name,
3540	/* vDSO code relies that VVAR can't be accessed remotely */
3541	.access = NULL,
3542	.may_split = special_mapping_split,
3543};
3544
3545static const struct vm_operations_struct legacy_special_mapping_vmops = {
3546	.close = special_mapping_close,
3547	.fault = special_mapping_fault,
3548};
3549
3550static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3551{
3552	struct vm_area_struct *vma = vmf->vma;
3553	pgoff_t pgoff;
3554	struct page **pages;
3555
3556	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3557		pages = vma->vm_private_data;
3558	} else {
3559		struct vm_special_mapping *sm = vma->vm_private_data;
3560
3561		if (sm->fault)
3562			return sm->fault(sm, vmf->vma, vmf);
3563
3564		pages = sm->pages;
3565	}
3566
3567	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3568		pgoff--;
3569
3570	if (*pages) {
3571		struct page *page = *pages;
3572		get_page(page);
3573		vmf->page = page;
3574		return 0;
3575	}
3576
3577	return VM_FAULT_SIGBUS;
3578}
3579
3580static struct vm_area_struct *__install_special_mapping(
3581	struct mm_struct *mm,
3582	unsigned long addr, unsigned long len,
3583	unsigned long vm_flags, void *priv,
3584	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585{
3586	int ret;
3587	struct vm_area_struct *vma;
3588
3589	vma = vm_area_alloc(mm);
3590	if (unlikely(vma == NULL))
3591		return ERR_PTR(-ENOMEM);
3592
 
 
3593	vma->vm_start = addr;
3594	vma->vm_end = addr + len;
3595
3596	vm_flags_init(vma, (vm_flags | mm->def_flags |
3597		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3598	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3599
3600	vma->vm_ops = ops;
3601	vma->vm_private_data = priv;
3602
3603	ret = insert_vm_struct(mm, vma);
3604	if (ret)
3605		goto out;
3606
3607	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3608
3609	perf_event_mmap(vma);
3610
3611	return vma;
3612
3613out:
3614	vm_area_free(vma);
3615	return ERR_PTR(ret);
3616}
3617
3618bool vma_is_special_mapping(const struct vm_area_struct *vma,
3619	const struct vm_special_mapping *sm)
3620{
3621	return vma->vm_private_data == sm &&
3622		(vma->vm_ops == &special_mapping_vmops ||
3623		 vma->vm_ops == &legacy_special_mapping_vmops);
3624}
3625
3626/*
3627 * Called with mm->mmap_lock held for writing.
3628 * Insert a new vma covering the given region, with the given flags.
3629 * Its pages are supplied by the given array of struct page *.
3630 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3631 * The region past the last page supplied will always produce SIGBUS.
3632 * The array pointer and the pages it points to are assumed to stay alive
3633 * for as long as this mapping might exist.
3634 */
3635struct vm_area_struct *_install_special_mapping(
3636	struct mm_struct *mm,
3637	unsigned long addr, unsigned long len,
3638	unsigned long vm_flags, const struct vm_special_mapping *spec)
3639{
3640	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3641					&special_mapping_vmops);
3642}
3643
3644int install_special_mapping(struct mm_struct *mm,
3645			    unsigned long addr, unsigned long len,
3646			    unsigned long vm_flags, struct page **pages)
3647{
3648	struct vm_area_struct *vma = __install_special_mapping(
3649		mm, addr, len, vm_flags, (void *)pages,
3650		&legacy_special_mapping_vmops);
3651
3652	return PTR_ERR_OR_ZERO(vma);
 
 
3653}
3654
3655static DEFINE_MUTEX(mm_all_locks_mutex);
3656
3657static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3658{
3659	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3660		/*
3661		 * The LSB of head.next can't change from under us
3662		 * because we hold the mm_all_locks_mutex.
3663		 */
3664		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3665		/*
3666		 * We can safely modify head.next after taking the
3667		 * anon_vma->root->rwsem. If some other vma in this mm shares
3668		 * the same anon_vma we won't take it again.
3669		 *
3670		 * No need of atomic instructions here, head.next
3671		 * can't change from under us thanks to the
3672		 * anon_vma->root->rwsem.
3673		 */
3674		if (__test_and_set_bit(0, (unsigned long *)
3675				       &anon_vma->root->rb_root.rb_root.rb_node))
3676			BUG();
3677	}
3678}
3679
3680static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3681{
3682	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3683		/*
3684		 * AS_MM_ALL_LOCKS can't change from under us because
3685		 * we hold the mm_all_locks_mutex.
3686		 *
3687		 * Operations on ->flags have to be atomic because
3688		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3689		 * mm_all_locks_mutex, there may be other cpus
3690		 * changing other bitflags in parallel to us.
3691		 */
3692		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3693			BUG();
3694		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3695	}
3696}
3697
3698/*
3699 * This operation locks against the VM for all pte/vma/mm related
3700 * operations that could ever happen on a certain mm. This includes
3701 * vmtruncate, try_to_unmap, and all page faults.
3702 *
3703 * The caller must take the mmap_lock in write mode before calling
3704 * mm_take_all_locks(). The caller isn't allowed to release the
3705 * mmap_lock until mm_drop_all_locks() returns.
3706 *
3707 * mmap_lock in write mode is required in order to block all operations
3708 * that could modify pagetables and free pages without need of
3709 * altering the vma layout. It's also needed in write mode to avoid new
 
3710 * anon_vmas to be associated with existing vmas.
3711 *
3712 * A single task can't take more than one mm_take_all_locks() in a row
3713 * or it would deadlock.
3714 *
3715 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3716 * mapping->flags avoid to take the same lock twice, if more than one
3717 * vma in this mm is backed by the same anon_vma or address_space.
3718 *
3719 * We take locks in following order, accordingly to comment at beginning
3720 * of mm/rmap.c:
3721 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3722 *     hugetlb mapping);
3723 *   - all vmas marked locked
3724 *   - all i_mmap_rwsem locks;
3725 *   - all anon_vma->rwseml
3726 *
3727 * We can take all locks within these types randomly because the VM code
3728 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3729 * mm_all_locks_mutex.
3730 *
3731 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3732 * that may have to take thousand of locks.
3733 *
3734 * mm_take_all_locks() can fail if it's interrupted by signals.
3735 */
3736int mm_take_all_locks(struct mm_struct *mm)
3737{
3738	struct vm_area_struct *vma;
3739	struct anon_vma_chain *avc;
3740	MA_STATE(mas, &mm->mm_mt, 0, 0);
3741
3742	mmap_assert_write_locked(mm);
3743
3744	mutex_lock(&mm_all_locks_mutex);
3745
3746	/*
3747	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3748	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3749	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3750	 * is reached.
3751	 */
3752	mas_for_each(&mas, vma, ULONG_MAX) {
3753		if (signal_pending(current))
3754			goto out_unlock;
3755		vma_start_write(vma);
3756	}
3757
3758	mas_set(&mas, 0);
3759	mas_for_each(&mas, vma, ULONG_MAX) {
3760		if (signal_pending(current))
3761			goto out_unlock;
3762		if (vma->vm_file && vma->vm_file->f_mapping &&
3763				is_vm_hugetlb_page(vma))
3764			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3765	}
3766
3767	mas_set(&mas, 0);
3768	mas_for_each(&mas, vma, ULONG_MAX) {
3769		if (signal_pending(current))
3770			goto out_unlock;
3771		if (vma->vm_file && vma->vm_file->f_mapping &&
3772				!is_vm_hugetlb_page(vma))
3773			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3774	}
3775
3776	mas_set(&mas, 0);
3777	mas_for_each(&mas, vma, ULONG_MAX) {
3778		if (signal_pending(current))
3779			goto out_unlock;
3780		if (vma->anon_vma)
3781			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3782				vm_lock_anon_vma(mm, avc->anon_vma);
3783	}
3784
3785	return 0;
3786
3787out_unlock:
3788	mm_drop_all_locks(mm);
3789	return -EINTR;
3790}
3791
3792static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3793{
3794	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3795		/*
3796		 * The LSB of head.next can't change to 0 from under
3797		 * us because we hold the mm_all_locks_mutex.
3798		 *
3799		 * We must however clear the bitflag before unlocking
3800		 * the vma so the users using the anon_vma->rb_root will
3801		 * never see our bitflag.
3802		 *
3803		 * No need of atomic instructions here, head.next
3804		 * can't change from under us until we release the
3805		 * anon_vma->root->rwsem.
3806		 */
3807		if (!__test_and_clear_bit(0, (unsigned long *)
3808					  &anon_vma->root->rb_root.rb_root.rb_node))
3809			BUG();
3810		anon_vma_unlock_write(anon_vma);
3811	}
3812}
3813
3814static void vm_unlock_mapping(struct address_space *mapping)
3815{
3816	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3817		/*
3818		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3819		 * because we hold the mm_all_locks_mutex.
3820		 */
3821		i_mmap_unlock_write(mapping);
3822		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3823					&mapping->flags))
3824			BUG();
3825	}
3826}
3827
3828/*
3829 * The mmap_lock cannot be released by the caller until
3830 * mm_drop_all_locks() returns.
3831 */
3832void mm_drop_all_locks(struct mm_struct *mm)
3833{
3834	struct vm_area_struct *vma;
3835	struct anon_vma_chain *avc;
3836	MA_STATE(mas, &mm->mm_mt, 0, 0);
3837
3838	mmap_assert_write_locked(mm);
3839	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3840
3841	mas_for_each(&mas, vma, ULONG_MAX) {
3842		if (vma->anon_vma)
3843			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3844				vm_unlock_anon_vma(avc->anon_vma);
3845		if (vma->vm_file && vma->vm_file->f_mapping)
3846			vm_unlock_mapping(vma->vm_file->f_mapping);
3847	}
3848
3849	mutex_unlock(&mm_all_locks_mutex);
3850}
3851
3852/*
3853 * initialise the percpu counter for VM
3854 */
3855void __init mmap_init(void)
3856{
3857	int ret;
3858
3859	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3860	VM_BUG_ON(ret);
3861}
3862
3863/*
3864 * Initialise sysctl_user_reserve_kbytes.
3865 *
3866 * This is intended to prevent a user from starting a single memory hogging
3867 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3868 * mode.
3869 *
3870 * The default value is min(3% of free memory, 128MB)
3871 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3872 */
3873static int init_user_reserve(void)
3874{
3875	unsigned long free_kbytes;
3876
3877	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3878
3879	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3880	return 0;
3881}
3882subsys_initcall(init_user_reserve);
3883
3884/*
3885 * Initialise sysctl_admin_reserve_kbytes.
3886 *
3887 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3888 * to log in and kill a memory hogging process.
3889 *
3890 * Systems with more than 256MB will reserve 8MB, enough to recover
3891 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3892 * only reserve 3% of free pages by default.
3893 */
3894static int init_admin_reserve(void)
3895{
3896	unsigned long free_kbytes;
3897
3898	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899
3900	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3901	return 0;
3902}
3903subsys_initcall(init_admin_reserve);
3904
3905/*
3906 * Reinititalise user and admin reserves if memory is added or removed.
3907 *
3908 * The default user reserve max is 128MB, and the default max for the
3909 * admin reserve is 8MB. These are usually, but not always, enough to
3910 * enable recovery from a memory hogging process using login/sshd, a shell,
3911 * and tools like top. It may make sense to increase or even disable the
3912 * reserve depending on the existence of swap or variations in the recovery
3913 * tools. So, the admin may have changed them.
3914 *
3915 * If memory is added and the reserves have been eliminated or increased above
3916 * the default max, then we'll trust the admin.
3917 *
3918 * If memory is removed and there isn't enough free memory, then we
3919 * need to reset the reserves.
3920 *
3921 * Otherwise keep the reserve set by the admin.
3922 */
3923static int reserve_mem_notifier(struct notifier_block *nb,
3924			     unsigned long action, void *data)
3925{
3926	unsigned long tmp, free_kbytes;
3927
3928	switch (action) {
3929	case MEM_ONLINE:
3930		/* Default max is 128MB. Leave alone if modified by operator. */
3931		tmp = sysctl_user_reserve_kbytes;
3932		if (0 < tmp && tmp < (1UL << 17))
3933			init_user_reserve();
3934
3935		/* Default max is 8MB.  Leave alone if modified by operator. */
3936		tmp = sysctl_admin_reserve_kbytes;
3937		if (0 < tmp && tmp < (1UL << 13))
3938			init_admin_reserve();
3939
3940		break;
3941	case MEM_OFFLINE:
3942		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3943
3944		if (sysctl_user_reserve_kbytes > free_kbytes) {
3945			init_user_reserve();
3946			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3947				sysctl_user_reserve_kbytes);
3948		}
3949
3950		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3951			init_admin_reserve();
3952			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3953				sysctl_admin_reserve_kbytes);
3954		}
3955		break;
3956	default:
3957		break;
3958	}
3959	return NOTIFY_OK;
3960}
3961
 
 
 
 
3962static int __meminit init_reserve_notifier(void)
3963{
3964	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3965		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3966
3967	return 0;
3968}
3969subsys_initcall(init_reserve_notifier);
v3.15
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/backing-dev.h>
  12#include <linux/mm.h>
  13#include <linux/vmacache.h>
  14#include <linux/shm.h>
  15#include <linux/mman.h>
  16#include <linux/pagemap.h>
  17#include <linux/swap.h>
  18#include <linux/syscalls.h>
  19#include <linux/capability.h>
  20#include <linux/init.h>
  21#include <linux/file.h>
  22#include <linux/fs.h>
  23#include <linux/personality.h>
  24#include <linux/security.h>
  25#include <linux/hugetlb.h>
 
  26#include <linux/profile.h>
  27#include <linux/export.h>
  28#include <linux/mount.h>
  29#include <linux/mempolicy.h>
  30#include <linux/rmap.h>
  31#include <linux/mmu_notifier.h>
 
  32#include <linux/perf_event.h>
  33#include <linux/audit.h>
  34#include <linux/khugepaged.h>
  35#include <linux/uprobes.h>
  36#include <linux/rbtree_augmented.h>
  37#include <linux/sched/sysctl.h>
  38#include <linux/notifier.h>
  39#include <linux/memory.h>
 
 
 
 
 
 
 
  40
  41#include <asm/uaccess.h>
  42#include <asm/cacheflush.h>
  43#include <asm/tlb.h>
  44#include <asm/mmu_context.h>
  45
 
 
 
  46#include "internal.h"
  47
  48#ifndef arch_mmap_check
  49#define arch_mmap_check(addr, len, flags)	(0)
  50#endif
  51
  52#ifndef arch_rebalance_pgtables
  53#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
 
 
 
 
 
  54#endif
  55
  56static void unmap_region(struct mm_struct *mm,
 
 
 
  57		struct vm_area_struct *vma, struct vm_area_struct *prev,
  58		unsigned long start, unsigned long end);
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90unsigned long sysctl_overcommit_kbytes __read_mostly;
  91int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  92unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  93unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  94/*
  95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  96 * other variables. It can be updated by several CPUs frequently.
  97 */
  98struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  99
 100/*
 101 * The global memory commitment made in the system can be a metric
 102 * that can be used to drive ballooning decisions when Linux is hosted
 103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 104 * balancing memory across competing virtual machines that are hosted.
 105 * Several metrics drive this policy engine including the guest reported
 106 * memory commitment.
 107 */
 108unsigned long vm_memory_committed(void)
 109{
 110	return percpu_counter_read_positive(&vm_committed_as);
 111}
 112EXPORT_SYMBOL_GPL(vm_memory_committed);
 113
 114/*
 115 * Check that a process has enough memory to allocate a new virtual
 116 * mapping. 0 means there is enough memory for the allocation to
 117 * succeed and -ENOMEM implies there is not.
 118 *
 119 * We currently support three overcommit policies, which are set via the
 120 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 121 *
 122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 123 * Additional code 2002 Jul 20 by Robert Love.
 124 *
 125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 126 *
 127 * Note this is a helper function intended to be used by LSMs which
 128 * wish to use this logic.
 129 */
 130int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 131{
 132	unsigned long free, allowed, reserve;
 133
 134	vm_acct_memory(pages);
 135
 136	/*
 137	 * Sometimes we want to use more memory than we have
 138	 */
 139	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 140		return 0;
 141
 142	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 143		free = global_page_state(NR_FREE_PAGES);
 144		free += global_page_state(NR_FILE_PAGES);
 145
 146		/*
 147		 * shmem pages shouldn't be counted as free in this
 148		 * case, they can't be purged, only swapped out, and
 149		 * that won't affect the overall amount of available
 150		 * memory in the system.
 151		 */
 152		free -= global_page_state(NR_SHMEM);
 153
 154		free += get_nr_swap_pages();
 155
 156		/*
 157		 * Any slabs which are created with the
 158		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 159		 * which are reclaimable, under pressure.  The dentry
 160		 * cache and most inode caches should fall into this
 161		 */
 162		free += global_page_state(NR_SLAB_RECLAIMABLE);
 163
 164		/*
 165		 * Leave reserved pages. The pages are not for anonymous pages.
 166		 */
 167		if (free <= totalreserve_pages)
 168			goto error;
 169		else
 170			free -= totalreserve_pages;
 171
 172		/*
 173		 * Reserve some for root
 174		 */
 175		if (!cap_sys_admin)
 176			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 177
 178		if (free > pages)
 179			return 0;
 180
 181		goto error;
 182	}
 183
 184	allowed = vm_commit_limit();
 185	/*
 186	 * Reserve some for root
 187	 */
 188	if (!cap_sys_admin)
 189		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 190
 191	/*
 192	 * Don't let a single process grow so big a user can't recover
 193	 */
 194	if (mm) {
 195		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 196		allowed -= min(mm->total_vm / 32, reserve);
 197	}
 198
 199	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 200		return 0;
 201error:
 202	vm_unacct_memory(pages);
 203
 204	return -ENOMEM;
 205}
 206
 207/*
 208 * Requires inode->i_mapping->i_mmap_mutex
 209 */
 210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 211		struct file *file, struct address_space *mapping)
 212{
 213	if (vma->vm_flags & VM_DENYWRITE)
 214		atomic_inc(&file_inode(file)->i_writecount);
 215	if (vma->vm_flags & VM_SHARED)
 216		mapping->i_mmap_writable--;
 217
 218	flush_dcache_mmap_lock(mapping);
 219	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 220		list_del_init(&vma->shared.nonlinear);
 221	else
 222		vma_interval_tree_remove(vma, &mapping->i_mmap);
 223	flush_dcache_mmap_unlock(mapping);
 224}
 225
 226/*
 227 * Unlink a file-based vm structure from its interval tree, to hide
 228 * vma from rmap and vmtruncate before freeing its page tables.
 229 */
 230void unlink_file_vma(struct vm_area_struct *vma)
 231{
 232	struct file *file = vma->vm_file;
 233
 234	if (file) {
 235		struct address_space *mapping = file->f_mapping;
 236		mutex_lock(&mapping->i_mmap_mutex);
 237		__remove_shared_vm_struct(vma, file, mapping);
 238		mutex_unlock(&mapping->i_mmap_mutex);
 239	}
 240}
 241
 242/*
 243 * Close a vm structure and free it, returning the next.
 244 */
 245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 246{
 247	struct vm_area_struct *next = vma->vm_next;
 248
 249	might_sleep();
 250	if (vma->vm_ops && vma->vm_ops->close)
 251		vma->vm_ops->close(vma);
 252	if (vma->vm_file)
 253		fput(vma->vm_file);
 254	mpol_put(vma_policy(vma));
 255	kmem_cache_free(vm_area_cachep, vma);
 256	return next;
 
 
 257}
 258
 259static unsigned long do_brk(unsigned long addr, unsigned long len);
 
 
 
 
 260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261SYSCALL_DEFINE1(brk, unsigned long, brk)
 262{
 263	unsigned long rlim, retval;
 264	unsigned long newbrk, oldbrk;
 265	struct mm_struct *mm = current->mm;
 
 266	unsigned long min_brk;
 267	bool populate;
 
 
 
 
 
 268
 269	down_write(&mm->mmap_sem);
 270
 271#ifdef CONFIG_COMPAT_BRK
 272	/*
 273	 * CONFIG_COMPAT_BRK can still be overridden by setting
 274	 * randomize_va_space to 2, which will still cause mm->start_brk
 275	 * to be arbitrarily shifted
 276	 */
 277	if (current->brk_randomized)
 278		min_brk = mm->start_brk;
 279	else
 280		min_brk = mm->end_data;
 281#else
 282	min_brk = mm->start_brk;
 283#endif
 284	if (brk < min_brk)
 285		goto out;
 286
 287	/*
 288	 * Check against rlimit here. If this check is done later after the test
 289	 * of oldbrk with newbrk then it can escape the test and let the data
 290	 * segment grow beyond its set limit the in case where the limit is
 291	 * not page aligned -Ram Gupta
 292	 */
 293	rlim = rlimit(RLIMIT_DATA);
 294	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 295			(mm->end_data - mm->start_data) > rlim)
 296		goto out;
 297
 298	newbrk = PAGE_ALIGN(brk);
 299	oldbrk = PAGE_ALIGN(mm->brk);
 300	if (oldbrk == newbrk)
 301		goto set_brk;
 
 
 302
 303	/* Always allow shrinking brk. */
 304	if (brk <= mm->brk) {
 305		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 306			goto set_brk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307		goto out;
 308	}
 309
 310	/* Check against existing mmap mappings. */
 311	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 
 
 
 
 312		goto out;
 313
 
 314	/* Ok, looks good - let it rip. */
 315	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 316		goto out;
 317
 318set_brk:
 319	mm->brk = brk;
 320	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 321	up_write(&mm->mmap_sem);
 
 
 
 
 
 322	if (populate)
 323		mm_populate(oldbrk, newbrk - oldbrk);
 324	return brk;
 325
 326out:
 327	retval = mm->brk;
 328	up_write(&mm->mmap_sem);
 329	return retval;
 330}
 331
 332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 
 333{
 334	unsigned long max, subtree_gap;
 335	max = vma->vm_start;
 336	if (vma->vm_prev)
 337		max -= vma->vm_prev->vm_end;
 338	if (vma->vm_rb.rb_left) {
 339		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 340				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 341		if (subtree_gap > max)
 342			max = subtree_gap;
 343	}
 344	if (vma->vm_rb.rb_right) {
 345		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 346				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 347		if (subtree_gap > max)
 348			max = subtree_gap;
 349	}
 350	return max;
 351}
 352
 
 
 353#ifdef CONFIG_DEBUG_VM_RB
 354static int browse_rb(struct rb_root *root)
 355{
 356	int i = 0, j, bug = 0;
 357	struct rb_node *nd, *pn = NULL;
 358	unsigned long prev = 0, pend = 0;
 359
 360	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 361		struct vm_area_struct *vma;
 362		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 363		if (vma->vm_start < prev) {
 364			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
 365			bug = 1;
 366		}
 367		if (vma->vm_start < pend) {
 368			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 369			bug = 1;
 370		}
 371		if (vma->vm_start > vma->vm_end) {
 372			printk("vm_end %lx < vm_start %lx\n",
 373				vma->vm_end, vma->vm_start);
 374			bug = 1;
 375		}
 376		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 377			printk("free gap %lx, correct %lx\n",
 378			       vma->rb_subtree_gap,
 379			       vma_compute_subtree_gap(vma));
 380			bug = 1;
 381		}
 382		i++;
 383		pn = nd;
 384		prev = vma->vm_start;
 385		pend = vma->vm_end;
 386	}
 387	j = 0;
 388	for (nd = pn; nd; nd = rb_prev(nd))
 389		j++;
 390	if (i != j) {
 391		printk("backwards %d, forwards %d\n", j, i);
 392		bug = 1;
 393	}
 394	return bug ? -1 : i;
 395}
 396
 397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 398{
 399	struct rb_node *nd;
 400
 401	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 402		struct vm_area_struct *vma;
 403		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 404		BUG_ON(vma != ignore &&
 405		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
 406	}
 407}
 408
 409static void validate_mm(struct mm_struct *mm)
 410{
 411	int bug = 0;
 412	int i = 0;
 413	unsigned long highest_address = 0;
 414	struct vm_area_struct *vma = mm->mmap;
 415	while (vma) {
 416		struct anon_vma_chain *avc;
 417		vma_lock_anon_vma(vma);
 418		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 419			anon_vma_interval_tree_verify(avc);
 420		vma_unlock_anon_vma(vma);
 421		highest_address = vma->vm_end;
 422		vma = vma->vm_next;
 423		i++;
 424	}
 425	if (i != mm->map_count) {
 426		printk("map_count %d vm_next %d\n", mm->map_count, i);
 427		bug = 1;
 428	}
 429	if (highest_address != mm->highest_vm_end) {
 430		printk("mm->highest_vm_end %lx, found %lx\n",
 431		       mm->highest_vm_end, highest_address);
 432		bug = 1;
 433	}
 434	i = browse_rb(&mm->mm_rb);
 435	if (i != mm->map_count) {
 436		printk("map_count %d rb %d\n", mm->map_count, i);
 437		bug = 1;
 438	}
 439	BUG_ON(bug);
 440}
 441#else
 442#define validate_mm_rb(root, ignore) do { } while (0)
 443#define validate_mm(mm) do { } while (0)
 444#endif
 445
 446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 447		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 448
 449/*
 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 452 * in the rbtree.
 453 */
 454static void vma_gap_update(struct vm_area_struct *vma)
 455{
 456	/*
 457	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 458	 * function that does exacltly what we want.
 459	 */
 460	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 461}
 462
 463static inline void vma_rb_insert(struct vm_area_struct *vma,
 464				 struct rb_root *root)
 465{
 466	/* All rb_subtree_gap values must be consistent prior to insertion */
 467	validate_mm_rb(root, NULL);
 468
 469	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 470}
 471
 472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 473{
 474	/*
 475	 * All rb_subtree_gap values must be consistent prior to erase,
 476	 * with the possible exception of the vma being erased.
 477	 */
 478	validate_mm_rb(root, vma);
 479
 480	/*
 481	 * Note rb_erase_augmented is a fairly large inline function,
 482	 * so make sure we instantiate it only once with our desired
 483	 * augmented rbtree callbacks.
 484	 */
 485	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 486}
 487
 488/*
 489 * vma has some anon_vma assigned, and is already inserted on that
 490 * anon_vma's interval trees.
 491 *
 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 493 * vma must be removed from the anon_vma's interval trees using
 494 * anon_vma_interval_tree_pre_update_vma().
 495 *
 496 * After the update, the vma will be reinserted using
 497 * anon_vma_interval_tree_post_update_vma().
 498 *
 499 * The entire update must be protected by exclusive mmap_sem and by
 500 * the root anon_vma's mutex.
 501 */
 502static inline void
 503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 504{
 505	struct anon_vma_chain *avc;
 506
 507	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 508		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 509}
 510
 511static inline void
 512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 513{
 514	struct anon_vma_chain *avc;
 515
 516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 521		unsigned long end, struct vm_area_struct **pprev,
 522		struct rb_node ***rb_link, struct rb_node **rb_parent)
 523{
 524	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 525
 526	__rb_link = &mm->mm_rb.rb_node;
 527	rb_prev = __rb_parent = NULL;
 528
 529	while (*__rb_link) {
 530		struct vm_area_struct *vma_tmp;
 531
 532		__rb_parent = *__rb_link;
 533		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 534
 535		if (vma_tmp->vm_end > addr) {
 536			/* Fail if an existing vma overlaps the area */
 537			if (vma_tmp->vm_start < end)
 538				return -ENOMEM;
 539			__rb_link = &__rb_parent->rb_left;
 540		} else {
 541			rb_prev = __rb_parent;
 542			__rb_link = &__rb_parent->rb_right;
 543		}
 544	}
 545
 546	*pprev = NULL;
 547	if (rb_prev)
 548		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 549	*rb_link = __rb_link;
 550	*rb_parent = __rb_parent;
 551	return 0;
 552}
 553
 554static unsigned long count_vma_pages_range(struct mm_struct *mm,
 555		unsigned long addr, unsigned long end)
 556{
 
 
 557	unsigned long nr_pages = 0;
 558	struct vm_area_struct *vma;
 559
 560	/* Find first overlaping mapping */
 561	vma = find_vma_intersection(mm, addr, end);
 562	if (!vma)
 563		return 0;
 564
 565	nr_pages = (min(end, vma->vm_end) -
 566		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 567
 568	/* Iterate over the rest of the overlaps */
 569	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 570		unsigned long overlap_len;
 571
 572		if (vma->vm_start > end)
 573			break;
 
 574
 575		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 576		nr_pages += overlap_len >> PAGE_SHIFT;
 577	}
 578
 579	return nr_pages;
 580}
 581
 582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 583		struct rb_node **rb_link, struct rb_node *rb_parent)
 584{
 585	/* Update tracking information for the gap following the new vma. */
 586	if (vma->vm_next)
 587		vma_gap_update(vma->vm_next);
 588	else
 589		mm->highest_vm_end = vma->vm_end;
 590
 591	/*
 592	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 593	 * correct insertion point for that vma. As a result, we could not
 594	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 595	 * So, we first insert the vma with a zero rb_subtree_gap value
 596	 * (to be consistent with what we did on the way down), and then
 597	 * immediately update the gap to the correct value. Finally we
 598	 * rebalance the rbtree after all augmented values have been set.
 599	 */
 600	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 601	vma->rb_subtree_gap = 0;
 602	vma_gap_update(vma);
 603	vma_rb_insert(vma, &mm->mm_rb);
 604}
 605
 606static void __vma_link_file(struct vm_area_struct *vma)
 607{
 608	struct file *file;
 
 609
 610	file = vma->vm_file;
 611	if (file) {
 612		struct address_space *mapping = file->f_mapping;
 613
 614		if (vma->vm_flags & VM_DENYWRITE)
 615			atomic_dec(&file_inode(file)->i_writecount);
 616		if (vma->vm_flags & VM_SHARED)
 617			mapping->i_mmap_writable++;
 618
 619		flush_dcache_mmap_lock(mapping);
 620		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 621			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 622		else
 623			vma_interval_tree_insert(vma, &mapping->i_mmap);
 624		flush_dcache_mmap_unlock(mapping);
 625	}
 626}
 627
 628static void
 629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 630	struct vm_area_struct *prev, struct rb_node **rb_link,
 631	struct rb_node *rb_parent)
 632{
 633	__vma_link_list(mm, vma, prev, rb_parent);
 634	__vma_link_rb(mm, vma, rb_link, rb_parent);
 635}
 636
 637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 638			struct vm_area_struct *prev, struct rb_node **rb_link,
 639			struct rb_node *rb_parent)
 640{
 641	struct address_space *mapping = NULL;
 642
 643	if (vma->vm_file)
 644		mapping = vma->vm_file->f_mapping;
 645
 646	if (mapping)
 647		mutex_lock(&mapping->i_mmap_mutex);
 648
 649	__vma_link(mm, vma, prev, rb_link, rb_parent);
 650	__vma_link_file(vma);
 651
 652	if (mapping)
 653		mutex_unlock(&mapping->i_mmap_mutex);
 654
 655	mm->map_count++;
 656	validate_mm(mm);
 
 657}
 658
 659/*
 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 661 * mm's list and rbtree.  It has already been inserted into the interval tree.
 
 
 
 
 662 */
 663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 
 
 664{
 665	struct vm_area_struct *prev;
 666	struct rb_node **rb_link, *rb_parent;
 
 
 
 
 
 
 
 
 
 
 667
 668	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 669			   &prev, &rb_link, &rb_parent))
 670		BUG();
 671	__vma_link(mm, vma, prev, rb_link, rb_parent);
 672	mm->map_count++;
 673}
 674
 675static inline void
 676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 677		struct vm_area_struct *prev)
 
 
 
 
 678{
 679	struct vm_area_struct *next;
 680
 681	vma_rb_erase(vma, &mm->mm_rb);
 682	prev->vm_next = next = vma->vm_next;
 683	if (next)
 684		next->vm_prev = prev;
 685
 686	/* Kill the cache */
 687	vmacache_invalidate(mm);
 688}
 689
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 699{
 700	struct mm_struct *mm = vma->vm_mm;
 701	struct vm_area_struct *next = vma->vm_next;
 702	struct vm_area_struct *importer = NULL;
 703	struct address_space *mapping = NULL;
 704	struct rb_root *root = NULL;
 705	struct anon_vma *anon_vma = NULL;
 706	struct file *file = vma->vm_file;
 707	bool start_changed = false, end_changed = false;
 708	long adjust_next = 0;
 709	int remove_next = 0;
 710
 711	if (next && !insert) {
 712		struct vm_area_struct *exporter = NULL;
 
 713
 714		if (end >= next->vm_end) {
 715			/*
 716			 * vma expands, overlapping all the next, and
 717			 * perhaps the one after too (mprotect case 6).
 718			 */
 719again:			remove_next = 1 + (end > next->vm_end);
 720			end = next->vm_end;
 721			exporter = next;
 722			importer = vma;
 723		} else if (end > next->vm_start) {
 724			/*
 725			 * vma expands, overlapping part of the next:
 726			 * mprotect case 5 shifting the boundary up.
 727			 */
 728			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 729			exporter = next;
 730			importer = vma;
 731		} else if (end < vma->vm_end) {
 732			/*
 733			 * vma shrinks, and !insert tells it's not
 734			 * split_vma inserting another: so it must be
 735			 * mprotect case 4 shifting the boundary down.
 736			 */
 737			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 738			exporter = vma;
 739			importer = next;
 740		}
 741
 742		/*
 743		 * Easily overlooked: when mprotect shifts the boundary,
 744		 * make sure the expanding vma has anon_vma set if the
 745		 * shrinking vma had, to cover any anon pages imported.
 746		 */
 747		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 748			if (anon_vma_clone(importer, exporter))
 749				return -ENOMEM;
 750			importer->anon_vma = exporter->anon_vma;
 751		}
 752	}
 753
 754	if (file) {
 755		mapping = file->f_mapping;
 756		if (!(vma->vm_flags & VM_NONLINEAR)) {
 757			root = &mapping->i_mmap;
 758			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 759
 760			if (adjust_next)
 761				uprobe_munmap(next, next->vm_start,
 762							next->vm_end);
 763		}
 764
 765		mutex_lock(&mapping->i_mmap_mutex);
 766		if (insert) {
 767			/*
 768			 * Put into interval tree now, so instantiated pages
 769			 * are visible to arm/parisc __flush_dcache_page
 770			 * throughout; but we cannot insert into address
 771			 * space until vma start or end is updated.
 772			 */
 773			__vma_link_file(insert);
 
 774		}
 775	}
 776
 777	vma_adjust_trans_huge(vma, start, end, adjust_next);
 778
 779	anon_vma = vma->anon_vma;
 780	if (!anon_vma && adjust_next)
 781		anon_vma = next->anon_vma;
 782	if (anon_vma) {
 783		VM_BUG_ON(adjust_next && next->anon_vma &&
 784			  anon_vma != next->anon_vma);
 785		anon_vma_lock_write(anon_vma);
 786		anon_vma_interval_tree_pre_update_vma(vma);
 787		if (adjust_next)
 788			anon_vma_interval_tree_pre_update_vma(next);
 789	}
 790
 791	if (root) {
 792		flush_dcache_mmap_lock(mapping);
 793		vma_interval_tree_remove(vma, root);
 794		if (adjust_next)
 795			vma_interval_tree_remove(next, root);
 
 796	}
 797
 798	if (start != vma->vm_start) {
 799		vma->vm_start = start;
 800		start_changed = true;
 801	}
 802	if (end != vma->vm_end) {
 803		vma->vm_end = end;
 804		end_changed = true;
 805	}
 806	vma->vm_pgoff = pgoff;
 807	if (adjust_next) {
 808		next->vm_start += adjust_next << PAGE_SHIFT;
 809		next->vm_pgoff += adjust_next;
 810	}
 811
 812	if (root) {
 813		if (adjust_next)
 814			vma_interval_tree_insert(next, root);
 815		vma_interval_tree_insert(vma, root);
 816		flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 817	}
 818
 819	if (remove_next) {
 820		/*
 821		 * vma_merge has merged next into vma, and needs
 822		 * us to remove next before dropping the locks.
 823		 */
 824		__vma_unlink(mm, next, vma);
 825		if (file)
 826			__remove_shared_vm_struct(next, file, mapping);
 827	} else if (insert) {
 828		/*
 829		 * split_vma has split insert from vma, and needs
 830		 * us to insert it before dropping the locks
 831		 * (it may either follow vma or precede it).
 832		 */
 833		__insert_vm_struct(mm, insert);
 834	} else {
 835		if (start_changed)
 836			vma_gap_update(vma);
 837		if (end_changed) {
 838			if (!next)
 839				mm->highest_vm_end = end;
 840			else if (!adjust_next)
 841				vma_gap_update(next);
 842		}
 843	}
 844
 845	if (anon_vma) {
 846		anon_vma_interval_tree_post_update_vma(vma);
 847		if (adjust_next)
 848			anon_vma_interval_tree_post_update_vma(next);
 849		anon_vma_unlock_write(anon_vma);
 850	}
 851	if (mapping)
 852		mutex_unlock(&mapping->i_mmap_mutex);
 853
 854	if (root) {
 855		uprobe_mmap(vma);
 
 856
 857		if (adjust_next)
 858			uprobe_mmap(next);
 859	}
 860
 861	if (remove_next) {
 862		if (file) {
 863			uprobe_munmap(next, next->vm_start, next->vm_end);
 864			fput(file);
 
 
 
 865		}
 866		if (next->anon_vma)
 867			anon_vma_merge(vma, next);
 868		mm->map_count--;
 869		mpol_put(vma_policy(next));
 870		kmem_cache_free(vm_area_cachep, next);
 
 
 
 871		/*
 872		 * In mprotect's case 6 (see comments on vma_merge),
 873		 * we must remove another next too. It would clutter
 874		 * up the code too much to do both in one go.
 875		 */
 876		next = vma->vm_next;
 877		if (remove_next == 2)
 
 878			goto again;
 879		else if (next)
 880			vma_gap_update(next);
 881		else
 882			mm->highest_vm_end = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883	}
 884	if (insert && file)
 885		uprobe_mmap(insert);
 886
 887	validate_mm(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888
 
 
 
 
 
 889	return 0;
 890}
 891
 892/*
 893 * If the vma has a ->close operation then the driver probably needs to release
 894 * per-vma resources, so we don't attempt to merge those.
 
 895 */
 896static inline int is_mergeable_vma(struct vm_area_struct *vma,
 897			struct file *file, unsigned long vm_flags)
 
 
 898{
 899	/*
 900	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 901	 * match the flags but dirty bit -- the caller should mark
 902	 * merged VMA as dirty. If dirty bit won't be excluded from
 903	 * comparison, we increase pressue on the memory system forcing
 904	 * the kernel to generate new VMAs when old one could be
 905	 * extended instead.
 906	 */
 907	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 908		return 0;
 909	if (vma->vm_file != file)
 910		return 0;
 911	if (vma->vm_ops && vma->vm_ops->close)
 912		return 0;
 913	return 1;
 
 
 
 
 914}
 915
 916static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 917					struct anon_vma *anon_vma2,
 918					struct vm_area_struct *vma)
 919{
 920	/*
 921	 * The list_is_singular() test is to avoid merging VMA cloned from
 922	 * parents. This can improve scalability caused by anon_vma lock.
 923	 */
 924	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 925		list_is_singular(&vma->anon_vma_chain)))
 926		return 1;
 927	return anon_vma1 == anon_vma2;
 928}
 929
 930/*
 931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 932 * in front of (at a lower virtual address and file offset than) the vma.
 933 *
 934 * We cannot merge two vmas if they have differently assigned (non-NULL)
 935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 936 *
 937 * We don't check here for the merged mmap wrapping around the end of pagecache
 938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 939 * wrap, nor mmaps which cover the final page at index -1UL.
 
 
 940 */
 941static int
 942can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 943	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 944{
 945	if (is_mergeable_vma(vma, file, vm_flags) &&
 946	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 947		if (vma->vm_pgoff == vm_pgoff)
 948			return 1;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 955 * beyond (at a higher virtual address and file offset than) the vma.
 956 *
 957 * We cannot merge two vmas if they have differently assigned (non-NULL)
 958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 
 
 959 */
 960static int
 961can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 962	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 963{
 964	if (is_mergeable_vma(vma, file, vm_flags) &&
 965	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 966		pgoff_t vm_pglen;
 967		vm_pglen = vma_pages(vma);
 968		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 969			return 1;
 970	}
 971	return 0;
 972}
 973
 974/*
 975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 976 * whether that can be merged with its predecessor or its successor.
 977 * Or both (it neatly fills a hole).
 978 *
 979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 980 * certain not to be mapped by the time vma_merge is called; but when
 981 * called for mprotect, it is certain to be already mapped (either at
 982 * an offset within prev, or at the start of next), and the flags of
 983 * this area are about to be changed to vm_flags - and the no-change
 984 * case has already been eliminated.
 985 *
 986 * The following mprotect cases have to be considered, where AAAA is
 987 * the area passed down from mprotect_fixup, never extending beyond one
 988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 989 *
 990 *     AAAA             AAAA                AAAA          AAAA
 991 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 992 *    cannot merge    might become    might become    might become
 993 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 994 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 995 *    mremap move:                                    PPPPNNNNNNNN 8
 996 *        AAAA
 997 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 998 *    might become    case 1 below    case 2 below    case 3 below
 999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002 */
1003struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004			struct vm_area_struct *prev, unsigned long addr,
1005			unsigned long end, unsigned long vm_flags,
1006		     	struct anon_vma *anon_vma, struct file *file,
1007			pgoff_t pgoff, struct mempolicy *policy)
1008{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010	struct vm_area_struct *area, *next;
1011	int err;
1012
1013	/*
1014	 * We later require that vma->vm_flags == vm_flags,
1015	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016	 */
1017	if (vm_flags & VM_SPECIAL)
1018		return NULL;
1019
1020	if (prev)
1021		next = prev->vm_next;
 
 
 
 
1022	else
1023		next = mm->mmap;
1024	area = next;
1025	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1026		next = next->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027
1028	/*
1029	 * Can it merge with the predecessor?
1030	 */
1031	if (prev && prev->vm_end == addr &&
1032  			mpol_equal(vma_policy(prev), policy) &&
1033			can_vma_merge_after(prev, vm_flags,
1034						anon_vma, file, pgoff)) {
1035		/*
1036		 * OK, it can.  Can we now merge in the successor as well?
1037		 */
1038		if (next && end == next->vm_start &&
1039				mpol_equal(policy, vma_policy(next)) &&
1040				can_vma_merge_before(next, vm_flags,
1041					anon_vma, file, pgoff+pglen) &&
1042				is_mergeable_anon_vma(prev->anon_vma,
1043						      next->anon_vma, NULL)) {
1044							/* cases 1, 6 */
1045			err = vma_adjust(prev, prev->vm_start,
1046				next->vm_end, prev->vm_pgoff, NULL);
1047		} else					/* cases 2, 5, 7 */
1048			err = vma_adjust(prev, prev->vm_start,
1049				end, prev->vm_pgoff, NULL);
1050		if (err)
1051			return NULL;
1052		khugepaged_enter_vma_merge(prev);
1053		return prev;
1054	}
1055
1056	/*
1057	 * Can this new request be merged in front of next?
1058	 */
1059	if (next && end == next->vm_start &&
1060 			mpol_equal(policy, vma_policy(next)) &&
1061			can_vma_merge_before(next, vm_flags,
1062					anon_vma, file, pgoff+pglen)) {
1063		if (prev && addr < prev->vm_end)	/* case 4 */
1064			err = vma_adjust(prev, prev->vm_start,
1065				addr, prev->vm_pgoff, NULL);
1066		else					/* cases 3, 8 */
1067			err = vma_adjust(area, addr, next->vm_end,
1068				next->vm_pgoff - pglen, NULL);
1069		if (err)
1070			return NULL;
1071		khugepaged_enter_vma_merge(area);
1072		return area;
 
 
 
 
 
 
 
1073	}
1074
 
 
 
 
 
 
 
 
 
 
 
1075	return NULL;
1076}
1077
1078/*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092{
1093	return a->vm_end == b->vm_start &&
1094		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095		a->vm_file == b->vm_file &&
1096		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098}
1099
1100/*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123{
1124	if (anon_vma_compatible(a, b)) {
1125		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128			return anon_vma;
1129	}
1130	return NULL;
1131}
1132
1133/*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma.  It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142{
1143	struct anon_vma *anon_vma;
1144	struct vm_area_struct *near;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146	near = vma->vm_next;
1147	if (!near)
1148		goto try_prev;
1149
1150	anon_vma = reusable_anon_vma(near, vma, near);
1151	if (anon_vma)
1152		return anon_vma;
1153try_prev:
1154	near = vma->vm_prev;
1155	if (!near)
1156		goto none;
1157
1158	anon_vma = reusable_anon_vma(near, near, vma);
1159	if (anon_vma)
1160		return anon_vma;
1161none:
1162	/*
 
 
1163	 * There's no absolute need to look only at touching neighbours:
1164	 * we could search further afield for "compatible" anon_vmas.
1165	 * But it would probably just be a waste of time searching,
1166	 * or lead to too many vmas hanging off the same anon_vma.
1167	 * We're trying to allow mprotect remerging later on,
1168	 * not trying to minimize memory used for anon_vmas.
1169	 */
1170	return NULL;
1171}
1172
1173#ifdef CONFIG_PROC_FS
1174void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175						struct file *file, long pages)
1176{
1177	const unsigned long stack_flags
1178		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180	mm->total_vm += pages;
1181
1182	if (file) {
1183		mm->shared_vm += pages;
1184		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185			mm->exec_vm += pages;
1186	} else if (flags & stack_flags)
1187		mm->stack_vm += pages;
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1191/*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195static inline unsigned long round_hint_to_min(unsigned long hint)
1196{
1197	hint &= PAGE_MASK;
1198	if (((void *)hint != NULL) &&
1199	    (hint < mmap_min_addr))
1200		return PAGE_ALIGN(mmap_min_addr);
1201	return hint;
1202}
1203
1204static inline int mlock_future_check(struct mm_struct *mm,
1205				     unsigned long flags,
1206				     unsigned long len)
1207{
1208	unsigned long locked, lock_limit;
1209
1210	/*  mlock MCL_FUTURE? */
1211	if (flags & VM_LOCKED) {
1212		locked = len >> PAGE_SHIFT;
1213		locked += mm->locked_vm;
1214		lock_limit = rlimit(RLIMIT_MEMLOCK);
1215		lock_limit >>= PAGE_SHIFT;
1216		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217			return -EAGAIN;
1218	}
1219	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220}
1221
1222/*
1223 * The caller must hold down_write(&current->mm->mmap_sem).
1224 */
1225
1226unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227			unsigned long len, unsigned long prot,
1228			unsigned long flags, unsigned long pgoff,
1229			unsigned long *populate)
 
1230{
1231	struct mm_struct * mm = current->mm;
1232	vm_flags_t vm_flags;
1233
1234	*populate = 0;
1235
 
 
 
1236	/*
1237	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238	 *
1239	 * (the exception is when the underlying filesystem is noexec
1240	 *  mounted, in which case we dont add PROT_EXEC.)
1241	 */
1242	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244			prot |= PROT_EXEC;
1245
1246	if (!len)
1247		return -EINVAL;
 
1248
1249	if (!(flags & MAP_FIXED))
1250		addr = round_hint_to_min(addr);
1251
1252	/* Careful about overflows.. */
1253	len = PAGE_ALIGN(len);
1254	if (!len)
1255		return -ENOMEM;
1256
1257	/* offset overflow? */
1258	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259               return -EOVERFLOW;
1260
1261	/* Too many mappings? */
1262	if (mm->map_count > sysctl_max_map_count)
1263		return -ENOMEM;
1264
1265	/* Obtain the address to map to. we verify (or select) it and ensure
1266	 * that it represents a valid section of the address space.
1267	 */
1268	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269	if (addr & ~PAGE_MASK)
1270		return addr;
1271
 
 
 
 
 
 
 
 
 
 
 
1272	/* Do simple checking here so the lower-level routines won't have
1273	 * to. we assume access permissions have been handled by the open
1274	 * of the memory object, so we don't do any here.
1275	 */
1276	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279	if (flags & MAP_LOCKED)
1280		if (!can_do_mlock())
1281			return -EPERM;
1282
1283	if (mlock_future_check(mm, vm_flags, len))
1284		return -EAGAIN;
1285
1286	if (file) {
1287		struct inode *inode = file_inode(file);
 
 
 
 
 
 
1288
1289		switch (flags & MAP_TYPE) {
1290		case MAP_SHARED:
1291			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294			/*
1295			 * Make sure we don't allow writing to an append-only
1296			 * file..
1297			 */
1298			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299				return -EACCES;
1300
1301			/*
1302			 * Make sure there are no mandatory locks on the file.
1303			 */
1304			if (locks_verify_locked(file))
1305				return -EAGAIN;
1306
1307			vm_flags |= VM_SHARED | VM_MAYSHARE;
1308			if (!(file->f_mode & FMODE_WRITE))
1309				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311			/* fall through */
1312		case MAP_PRIVATE:
1313			if (!(file->f_mode & FMODE_READ))
1314				return -EACCES;
1315			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316				if (vm_flags & VM_EXEC)
1317					return -EPERM;
1318				vm_flags &= ~VM_MAYEXEC;
1319			}
1320
1321			if (!file->f_op->mmap)
1322				return -ENODEV;
1323			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324				return -EINVAL;
1325			break;
1326
1327		default:
1328			return -EINVAL;
1329		}
1330	} else {
1331		switch (flags & MAP_TYPE) {
1332		case MAP_SHARED:
1333			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334				return -EINVAL;
1335			/*
1336			 * Ignore pgoff.
1337			 */
1338			pgoff = 0;
1339			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340			break;
1341		case MAP_PRIVATE:
1342			/*
1343			 * Set pgoff according to addr for anon_vma.
1344			 */
1345			pgoff = addr >> PAGE_SHIFT;
1346			break;
1347		default:
1348			return -EINVAL;
1349		}
1350	}
1351
1352	/*
1353	 * Set 'VM_NORESERVE' if we should not account for the
1354	 * memory use of this mapping.
1355	 */
1356	if (flags & MAP_NORESERVE) {
1357		/* We honor MAP_NORESERVE if allowed to overcommit */
1358		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359			vm_flags |= VM_NORESERVE;
1360
1361		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362		if (file && is_file_hugepages(file))
1363			vm_flags |= VM_NORESERVE;
1364	}
1365
1366	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367	if (!IS_ERR_VALUE(addr) &&
1368	    ((vm_flags & VM_LOCKED) ||
1369	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370		*populate = len;
1371	return addr;
1372}
1373
1374SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375		unsigned long, prot, unsigned long, flags,
1376		unsigned long, fd, unsigned long, pgoff)
1377{
1378	struct file *file = NULL;
1379	unsigned long retval = -EBADF;
1380
1381	if (!(flags & MAP_ANONYMOUS)) {
1382		audit_mmap_fd(fd, flags);
1383		file = fget(fd);
1384		if (!file)
1385			goto out;
1386		if (is_file_hugepages(file))
1387			len = ALIGN(len, huge_page_size(hstate_file(file)));
1388		retval = -EINVAL;
1389		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390			goto out_fput;
 
1391	} else if (flags & MAP_HUGETLB) {
1392		struct user_struct *user = NULL;
1393		struct hstate *hs;
1394
1395		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396		if (!hs)
1397			return -EINVAL;
1398
1399		len = ALIGN(len, huge_page_size(hs));
1400		/*
1401		 * VM_NORESERVE is used because the reservations will be
1402		 * taken when vm_ops->mmap() is called
1403		 * A dummy user value is used because we are not locking
1404		 * memory so no accounting is necessary
1405		 */
1406		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407				VM_NORESERVE,
1408				&user, HUGETLB_ANONHUGE_INODE,
1409				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410		if (IS_ERR(file))
1411			return PTR_ERR(file);
1412	}
1413
1414	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417out_fput:
1418	if (file)
1419		fput(file);
1420out:
1421	return retval;
1422}
1423
 
 
 
 
 
 
 
1424#ifdef __ARCH_WANT_SYS_OLD_MMAP
1425struct mmap_arg_struct {
1426	unsigned long addr;
1427	unsigned long len;
1428	unsigned long prot;
1429	unsigned long flags;
1430	unsigned long fd;
1431	unsigned long offset;
1432};
1433
1434SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435{
1436	struct mmap_arg_struct a;
1437
1438	if (copy_from_user(&a, arg, sizeof(a)))
1439		return -EFAULT;
1440	if (a.offset & ~PAGE_MASK)
1441		return -EINVAL;
1442
1443	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444			      a.offset >> PAGE_SHIFT);
1445}
1446#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448/*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454int vma_wants_writenotify(struct vm_area_struct *vma)
1455{
1456	vm_flags_t vm_flags = vma->vm_flags;
1457
1458	/* If it was private or non-writable, the write bit is already clear */
1459	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460		return 0;
1461
1462	/* The backer wishes to know when pages are first written to? */
1463	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464		return 1;
1465
1466	/* The open routine did something to the protections already? */
1467	if (pgprot_val(vma->vm_page_prot) !=
1468	    pgprot_val(vm_get_page_prot(vm_flags)))
 
1469		return 0;
1470
1471	/* Specialty mapping? */
1472	if (vm_flags & VM_PFNMAP)
1473		return 0;
 
 
 
 
 
 
 
1474
1475	/* Can the mapping track the dirty pages? */
1476	return vma->vm_file && vma->vm_file->f_mapping &&
1477		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478}
1479
1480/*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485{
1486	/*
1487	 * hugetlb has its own accounting separate from the core VM
1488	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489	 */
1490	if (file && is_file_hugepages(file))
1491		return 0;
1492
1493	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494}
1495
1496unsigned long mmap_region(struct file *file, unsigned long addr,
1497		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498{
1499	struct mm_struct *mm = current->mm;
1500	struct vm_area_struct *vma, *prev;
1501	int error;
1502	struct rb_node **rb_link, *rb_parent;
1503	unsigned long charged = 0;
1504
1505	/* Check against address space limit. */
1506	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507		unsigned long nr_pages;
1508
1509		/*
1510		 * MAP_FIXED may remove pages of mappings that intersects with
1511		 * requested mapping. Account for the pages it would unmap.
1512		 */
1513		if (!(vm_flags & MAP_FIXED))
1514			return -ENOMEM;
1515
1516		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1519			return -ENOMEM;
1520	}
1521
1522	/* Clear old maps */
1523	error = -ENOMEM;
1524munmap_back:
1525	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526		if (do_munmap(mm, addr, len))
1527			return -ENOMEM;
1528		goto munmap_back;
1529	}
1530
1531	/*
1532	 * Private writable mapping: check memory availability
1533	 */
1534	if (accountable_mapping(file, vm_flags)) {
1535		charged = len >> PAGE_SHIFT;
1536		if (security_vm_enough_memory_mm(mm, charged))
1537			return -ENOMEM;
1538		vm_flags |= VM_ACCOUNT;
1539	}
1540
1541	/*
1542	 * Can we just expand an old mapping?
1543	 */
1544	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1545	if (vma)
1546		goto out;
1547
1548	/*
1549	 * Determine the object being mapped and call the appropriate
1550	 * specific mapper. the address has already been validated, but
1551	 * not unmapped, but the maps are removed from the list.
1552	 */
1553	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554	if (!vma) {
1555		error = -ENOMEM;
1556		goto unacct_error;
1557	}
1558
1559	vma->vm_mm = mm;
1560	vma->vm_start = addr;
1561	vma->vm_end = addr + len;
1562	vma->vm_flags = vm_flags;
1563	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564	vma->vm_pgoff = pgoff;
1565	INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567	if (file) {
1568		if (vm_flags & VM_DENYWRITE) {
1569			error = deny_write_access(file);
1570			if (error)
1571				goto free_vma;
1572		}
1573		vma->vm_file = get_file(file);
1574		error = file->f_op->mmap(file, vma);
1575		if (error)
1576			goto unmap_and_free_vma;
1577
1578		/* Can addr have changed??
1579		 *
1580		 * Answer: Yes, several device drivers can do it in their
1581		 *         f_op->mmap method. -DaveM
1582		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583		 *      be updated for vma_link()
1584		 */
1585		WARN_ON_ONCE(addr != vma->vm_start);
1586
1587		addr = vma->vm_start;
1588		vm_flags = vma->vm_flags;
1589	} else if (vm_flags & VM_SHARED) {
1590		error = shmem_zero_setup(vma);
1591		if (error)
1592			goto free_vma;
1593	}
1594
1595	if (vma_wants_writenotify(vma)) {
1596		pgprot_t pprot = vma->vm_page_prot;
1597
1598		/* Can vma->vm_page_prot have changed??
1599		 *
1600		 * Answer: Yes, drivers may have changed it in their
1601		 *         f_op->mmap method.
1602		 *
1603		 * Ensures that vmas marked as uncached stay that way.
1604		 */
1605		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608	}
1609
1610	vma_link(mm, vma, prev, rb_link, rb_parent);
1611	/* Once vma denies write, undo our temporary denial count */
1612	if (vm_flags & VM_DENYWRITE)
1613		allow_write_access(file);
1614	file = vma->vm_file;
1615out:
1616	perf_event_mmap(vma);
1617
1618	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619	if (vm_flags & VM_LOCKED) {
1620		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621					vma == get_gate_vma(current->mm)))
1622			mm->locked_vm += (len >> PAGE_SHIFT);
1623		else
1624			vma->vm_flags &= ~VM_LOCKED;
1625	}
1626
1627	if (file)
1628		uprobe_mmap(vma);
1629
1630	/*
1631	 * New (or expanded) vma always get soft dirty status.
1632	 * Otherwise user-space soft-dirty page tracker won't
1633	 * be able to distinguish situation when vma area unmapped,
1634	 * then new mapped in-place (which must be aimed as
1635	 * a completely new data area).
1636	 */
1637	vma->vm_flags |= VM_SOFTDIRTY;
1638
1639	return addr;
1640
1641unmap_and_free_vma:
1642	if (vm_flags & VM_DENYWRITE)
1643		allow_write_access(file);
1644	vma->vm_file = NULL;
1645	fput(file);
1646
1647	/* Undo any partial mapping done by a device driver. */
1648	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649	charged = 0;
1650free_vma:
1651	kmem_cache_free(vm_area_cachep, vma);
1652unacct_error:
1653	if (charged)
1654		vm_unacct_memory(charged);
1655	return error;
1656}
1657
1658unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659{
1660	/*
1661	 * We implement the search by looking for an rbtree node that
1662	 * immediately follows a suitable gap. That is,
1663	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665	 * - gap_end - gap_start >= length
1666	 */
1667
1668	struct mm_struct *mm = current->mm;
1669	struct vm_area_struct *vma;
1670	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672	/* Adjust search length to account for worst case alignment overhead */
1673	length = info->length + info->align_mask;
1674	if (length < info->length)
1675		return -ENOMEM;
1676
1677	/* Adjust search limits by the desired length */
1678	if (info->high_limit < length)
1679		return -ENOMEM;
1680	high_limit = info->high_limit - length;
1681
1682	if (info->low_limit > high_limit)
1683		return -ENOMEM;
1684	low_limit = info->low_limit + length;
1685
1686	/* Check if rbtree root looks promising */
1687	if (RB_EMPTY_ROOT(&mm->mm_rb))
1688		goto check_highest;
1689	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690	if (vma->rb_subtree_gap < length)
1691		goto check_highest;
1692
1693	while (true) {
1694		/* Visit left subtree if it looks promising */
1695		gap_end = vma->vm_start;
1696		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697			struct vm_area_struct *left =
1698				rb_entry(vma->vm_rb.rb_left,
1699					 struct vm_area_struct, vm_rb);
1700			if (left->rb_subtree_gap >= length) {
1701				vma = left;
1702				continue;
1703			}
1704		}
1705
1706		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707check_current:
1708		/* Check if current node has a suitable gap */
1709		if (gap_start > high_limit)
1710			return -ENOMEM;
1711		if (gap_end >= low_limit && gap_end - gap_start >= length)
1712			goto found;
1713
1714		/* Visit right subtree if it looks promising */
1715		if (vma->vm_rb.rb_right) {
1716			struct vm_area_struct *right =
1717				rb_entry(vma->vm_rb.rb_right,
1718					 struct vm_area_struct, vm_rb);
1719			if (right->rb_subtree_gap >= length) {
1720				vma = right;
1721				continue;
1722			}
1723		}
1724
1725		/* Go back up the rbtree to find next candidate node */
1726		while (true) {
1727			struct rb_node *prev = &vma->vm_rb;
1728			if (!rb_parent(prev))
1729				goto check_highest;
1730			vma = rb_entry(rb_parent(prev),
1731				       struct vm_area_struct, vm_rb);
1732			if (prev == vma->vm_rb.rb_left) {
1733				gap_start = vma->vm_prev->vm_end;
1734				gap_end = vma->vm_start;
1735				goto check_current;
1736			}
1737		}
1738	}
1739
1740check_highest:
1741	/* Check highest gap, which does not precede any rbtree node */
1742	gap_start = mm->highest_vm_end;
1743	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744	if (gap_start > high_limit)
1745		return -ENOMEM;
1746
1747found:
1748	/* We found a suitable gap. Clip it with the original low_limit. */
1749	if (gap_start < info->low_limit)
1750		gap_start = info->low_limit;
1751
1752	/* Adjust gap address to the desired alignment */
1753	gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755	VM_BUG_ON(gap_start + info->length > info->high_limit);
1756	VM_BUG_ON(gap_start + info->length > gap_end);
1757	return gap_start;
1758}
1759
1760unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
 
1761{
1762	struct mm_struct *mm = current->mm;
1763	struct vm_area_struct *vma;
1764	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
 
1766	/* Adjust search length to account for worst case alignment overhead */
1767	length = info->length + info->align_mask;
1768	if (length < info->length)
1769		return -ENOMEM;
1770
1771	/*
1772	 * Adjust search limits by the desired length.
1773	 * See implementation comment at top of unmapped_area().
1774	 */
1775	gap_end = info->high_limit;
1776	if (gap_end < length)
1777		return -ENOMEM;
1778	high_limit = gap_end - length;
1779
1780	if (info->low_limit > high_limit)
1781		return -ENOMEM;
1782	low_limit = info->low_limit + length;
1783
1784	/* Check highest gap, which does not precede any rbtree node */
1785	gap_start = mm->highest_vm_end;
1786	if (gap_start <= high_limit)
1787		goto found_highest;
1788
1789	/* Check if rbtree root looks promising */
1790	if (RB_EMPTY_ROOT(&mm->mm_rb))
1791		return -ENOMEM;
1792	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793	if (vma->rb_subtree_gap < length)
1794		return -ENOMEM;
1795
1796	while (true) {
1797		/* Visit right subtree if it looks promising */
1798		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800			struct vm_area_struct *right =
1801				rb_entry(vma->vm_rb.rb_right,
1802					 struct vm_area_struct, vm_rb);
1803			if (right->rb_subtree_gap >= length) {
1804				vma = right;
1805				continue;
1806			}
1807		}
 
1808
1809check_current:
1810		/* Check if current node has a suitable gap */
1811		gap_end = vma->vm_start;
1812		if (gap_end < low_limit)
1813			return -ENOMEM;
1814		if (gap_start <= high_limit && gap_end - gap_start >= length)
1815			goto found;
1816
1817		/* Visit left subtree if it looks promising */
1818		if (vma->vm_rb.rb_left) {
1819			struct vm_area_struct *left =
1820				rb_entry(vma->vm_rb.rb_left,
1821					 struct vm_area_struct, vm_rb);
1822			if (left->rb_subtree_gap >= length) {
1823				vma = left;
1824				continue;
1825			}
1826		}
 
 
1827
1828		/* Go back up the rbtree to find next candidate node */
1829		while (true) {
1830			struct rb_node *prev = &vma->vm_rb;
1831			if (!rb_parent(prev))
1832				return -ENOMEM;
1833			vma = rb_entry(rb_parent(prev),
1834				       struct vm_area_struct, vm_rb);
1835			if (prev == vma->vm_rb.rb_right) {
1836				gap_start = vma->vm_prev ?
1837					vma->vm_prev->vm_end : 0;
1838				goto check_current;
1839			}
1840		}
1841	}
1842
1843found:
1844	/* We found a suitable gap. Clip it with the original high_limit. */
1845	if (gap_end > info->high_limit)
1846		gap_end = info->high_limit;
1847
1848found_highest:
1849	/* Compute highest gap address at the desired alignment */
1850	gap_end -= info->length;
1851	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853	VM_BUG_ON(gap_end < info->low_limit);
1854	VM_BUG_ON(gap_end < gap_start);
1855	return gap_end;
1856}
1857
1858/* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 *	if (ret & ~PAGE_MASK)
1865 *		error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869#ifndef HAVE_ARCH_UNMAPPED_AREA
1870unsigned long
1871arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872		unsigned long len, unsigned long pgoff, unsigned long flags)
 
1873{
1874	struct mm_struct *mm = current->mm;
1875	struct vm_area_struct *vma;
1876	struct vm_unmapped_area_info info;
 
1877
1878	if (len > TASK_SIZE - mmap_min_addr)
1879		return -ENOMEM;
1880
1881	if (flags & MAP_FIXED)
1882		return addr;
1883
1884	if (addr) {
1885		addr = PAGE_ALIGN(addr);
1886		vma = find_vma(mm, addr);
1887		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888		    (!vma || addr + len <= vma->vm_start))
 
1889			return addr;
1890	}
1891
1892	info.flags = 0;
1893	info.length = len;
1894	info.low_limit = mm->mmap_base;
1895	info.high_limit = TASK_SIZE;
1896	info.align_mask = 0;
 
1897	return vm_unmapped_area(&info);
1898}
1899#endif	
 
 
 
 
 
 
 
 
 
1900
1901/*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906unsigned long
1907arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908			  const unsigned long len, const unsigned long pgoff,
1909			  const unsigned long flags)
1910{
1911	struct vm_area_struct *vma;
1912	struct mm_struct *mm = current->mm;
1913	unsigned long addr = addr0;
1914	struct vm_unmapped_area_info info;
 
1915
1916	/* requested length too big for entire address space */
1917	if (len > TASK_SIZE - mmap_min_addr)
1918		return -ENOMEM;
1919
1920	if (flags & MAP_FIXED)
1921		return addr;
1922
1923	/* requesting a specific address */
1924	if (addr) {
1925		addr = PAGE_ALIGN(addr);
1926		vma = find_vma(mm, addr);
1927		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928				(!vma || addr + len <= vma->vm_start))
 
1929			return addr;
1930	}
1931
1932	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933	info.length = len;
1934	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935	info.high_limit = mm->mmap_base;
1936	info.align_mask = 0;
 
1937	addr = vm_unmapped_area(&info);
1938
1939	/*
1940	 * A failed mmap() very likely causes application failure,
1941	 * so fall back to the bottom-up function here. This scenario
1942	 * can happen with large stack limits and large mmap()
1943	 * allocations.
1944	 */
1945	if (addr & ~PAGE_MASK) {
1946		VM_BUG_ON(addr != -ENOMEM);
1947		info.flags = 0;
1948		info.low_limit = TASK_UNMAPPED_BASE;
1949		info.high_limit = TASK_SIZE;
1950		addr = vm_unmapped_area(&info);
1951	}
1952
1953	return addr;
1954}
 
 
 
 
 
 
 
 
 
1955#endif
1956
1957unsigned long
1958get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959		unsigned long pgoff, unsigned long flags)
1960{
1961	unsigned long (*get_area)(struct file *, unsigned long,
1962				  unsigned long, unsigned long, unsigned long);
1963
1964	unsigned long error = arch_mmap_check(addr, len, flags);
1965	if (error)
1966		return error;
1967
1968	/* Careful about overflows.. */
1969	if (len > TASK_SIZE)
1970		return -ENOMEM;
1971
1972	get_area = current->mm->get_unmapped_area;
1973	if (file && file->f_op->get_unmapped_area)
1974		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1975	addr = get_area(file, addr, len, pgoff, flags);
1976	if (IS_ERR_VALUE(addr))
1977		return addr;
1978
1979	if (addr > TASK_SIZE - len)
1980		return -ENOMEM;
1981	if (addr & ~PAGE_MASK)
1982		return -EINVAL;
1983
1984	addr = arch_rebalance_pgtables(addr, len);
1985	error = security_mmap_addr(addr);
1986	return error ? error : addr;
1987}
1988
1989EXPORT_SYMBOL(get_unmapped_area);
1990
1991/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
1993{
1994	struct rb_node *rb_node;
1995	struct vm_area_struct *vma;
1996
1997	/* Check the cache first. */
1998	vma = vmacache_find(mm, addr);
1999	if (likely(vma))
2000		return vma;
2001
2002	rb_node = mm->mm_rb.rb_node;
2003	vma = NULL;
2004
2005	while (rb_node) {
2006		struct vm_area_struct *tmp;
 
 
 
 
 
 
2007
2008		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010		if (tmp->vm_end > addr) {
2011			vma = tmp;
2012			if (tmp->vm_start <= addr)
2013				break;
2014			rb_node = rb_node->rb_left;
2015		} else
2016			rb_node = rb_node->rb_right;
2017	}
2018
2019	if (vma)
2020		vmacache_update(addr, vma);
2021	return vma;
2022}
2023
2024EXPORT_SYMBOL(find_vma);
2025
2026/*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 
 
 
 
 
 
 
 
 
 
2028 */
2029struct vm_area_struct *
2030find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031			struct vm_area_struct **pprev)
2032{
2033	struct vm_area_struct *vma;
 
2034
2035	vma = find_vma(mm, addr);
2036	if (vma) {
2037		*pprev = vma->vm_prev;
2038	} else {
2039		struct rb_node *rb_node = mm->mm_rb.rb_node;
2040		*pprev = NULL;
2041		while (rb_node) {
2042			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043			rb_node = rb_node->rb_right;
2044		}
2045	}
2046	return vma;
2047}
2048
2049/*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	struct rlimit *rlim = current->signal->rlim;
2058	unsigned long new_start;
2059
2060	/* address space limit tests */
2061	if (!may_expand_vm(mm, grow))
2062		return -ENOMEM;
2063
2064	/* Stack limit test */
2065	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066		return -ENOMEM;
2067
2068	/* mlock limit tests */
2069	if (vma->vm_flags & VM_LOCKED) {
2070		unsigned long locked;
2071		unsigned long limit;
2072		locked = mm->locked_vm + grow;
2073		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074		limit >>= PAGE_SHIFT;
2075		if (locked > limit && !capable(CAP_IPC_LOCK))
2076			return -ENOMEM;
2077	}
2078
2079	/* Check to ensure the stack will not grow into a hugetlb-only region */
2080	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081			vma->vm_end - size;
2082	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083		return -EFAULT;
2084
2085	/*
2086	 * Overcommit..  This must be the final test, as it will
2087	 * update security statistics.
2088	 */
2089	if (security_vm_enough_memory_mm(mm, grow))
2090		return -ENOMEM;
2091
2092	/* Ok, everything looks good - let it rip */
2093	if (vma->vm_flags & VM_LOCKED)
2094		mm->locked_vm += grow;
2095	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096	return 0;
2097}
2098
2099#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100/*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103 */
2104int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105{
2106	int error;
 
 
 
 
2107
2108	if (!(vma->vm_flags & VM_GROWSUP))
2109		return -EFAULT;
2110
2111	/*
2112	 * We must make sure the anon_vma is allocated
2113	 * so that the anon_vma locking is not a noop.
2114	 */
2115	if (unlikely(anon_vma_prepare(vma)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116		return -ENOMEM;
2117	vma_lock_anon_vma(vma);
2118
 
 
 
 
 
 
 
 
2119	/*
2120	 * vma->vm_start/vm_end cannot change under us because the caller
2121	 * is required to hold the mmap_sem in read mode.  We need the
2122	 * anon_vma lock to serialize against concurrent expand_stacks.
2123	 * Also guard against wrapping around to address 0.
2124	 */
2125	if (address < PAGE_ALIGN(address+4))
2126		address = PAGE_ALIGN(address+4);
2127	else {
2128		vma_unlock_anon_vma(vma);
2129		return -ENOMEM;
2130	}
2131	error = 0;
2132
2133	/* Somebody else might have raced and expanded it already */
2134	if (address > vma->vm_end) {
2135		unsigned long size, grow;
2136
2137		size = address - vma->vm_start;
2138		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140		error = -ENOMEM;
2141		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142			error = acct_stack_growth(vma, size, grow);
2143			if (!error) {
2144				/*
2145				 * vma_gap_update() doesn't support concurrent
2146				 * updates, but we only hold a shared mmap_sem
2147				 * lock here, so we need to protect against
2148				 * concurrent vma expansions.
2149				 * vma_lock_anon_vma() doesn't help here, as
2150				 * we don't guarantee that all growable vmas
2151				 * in a mm share the same root anon vma.
2152				 * So, we reuse mm->page_table_lock to guard
2153				 * against concurrent vma expansions.
2154				 */
2155				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2156				anon_vma_interval_tree_pre_update_vma(vma);
2157				vma->vm_end = address;
 
 
2158				anon_vma_interval_tree_post_update_vma(vma);
2159				if (vma->vm_next)
2160					vma_gap_update(vma->vm_next);
2161				else
2162					vma->vm_mm->highest_vm_end = address;
2163				spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165				perf_event_mmap(vma);
2166			}
2167		}
2168	}
2169	vma_unlock_anon_vma(vma);
2170	khugepaged_enter_vma_merge(vma);
2171	validate_mm(vma->vm_mm);
 
2172	return error;
2173}
2174#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176/*
2177 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
2178 */
2179int expand_downwards(struct vm_area_struct *vma,
2180				   unsigned long address)
2181{
2182	int error;
 
 
 
2183
2184	/*
2185	 * We must make sure the anon_vma is allocated
2186	 * so that the anon_vma locking is not a noop.
2187	 */
2188	if (unlikely(anon_vma_prepare(vma)))
2189		return -ENOMEM;
2190
2191	address &= PAGE_MASK;
2192	error = security_mmap_addr(address);
2193	if (error)
2194		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195
2196	vma_lock_anon_vma(vma);
 
 
 
 
2197
 
 
2198	/*
2199	 * vma->vm_start/vm_end cannot change under us because the caller
2200	 * is required to hold the mmap_sem in read mode.  We need the
2201	 * anon_vma lock to serialize against concurrent expand_stacks.
2202	 */
 
2203
2204	/* Somebody else might have raced and expanded it already */
2205	if (address < vma->vm_start) {
2206		unsigned long size, grow;
2207
2208		size = vma->vm_end - address;
2209		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211		error = -ENOMEM;
2212		if (grow <= vma->vm_pgoff) {
2213			error = acct_stack_growth(vma, size, grow);
2214			if (!error) {
2215				/*
2216				 * vma_gap_update() doesn't support concurrent
2217				 * updates, but we only hold a shared mmap_sem
2218				 * lock here, so we need to protect against
2219				 * concurrent vma expansions.
2220				 * vma_lock_anon_vma() doesn't help here, as
2221				 * we don't guarantee that all growable vmas
2222				 * in a mm share the same root anon vma.
2223				 * So, we reuse mm->page_table_lock to guard
2224				 * against concurrent vma expansions.
2225				 */
2226				spin_lock(&vma->vm_mm->page_table_lock);
 
 
 
2227				anon_vma_interval_tree_pre_update_vma(vma);
2228				vma->vm_start = address;
2229				vma->vm_pgoff -= grow;
 
 
2230				anon_vma_interval_tree_post_update_vma(vma);
2231				vma_gap_update(vma);
2232				spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234				perf_event_mmap(vma);
2235			}
2236		}
2237	}
2238	vma_unlock_anon_vma(vma);
2239	khugepaged_enter_vma_merge(vma);
2240	validate_mm(vma->vm_mm);
 
2241	return error;
2242}
2243
2244/*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
 
 
 
 
 
2255#ifdef CONFIG_STACK_GROWSUP
2256int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257{
2258	struct vm_area_struct *next;
2259
2260	address &= PAGE_MASK;
2261	next = vma->vm_next;
2262	if (next && next->vm_start == address + PAGE_SIZE) {
2263		if (!(next->vm_flags & VM_GROWSUP))
2264			return -ENOMEM;
2265	}
2266	return expand_upwards(vma, address);
2267}
2268
2269struct vm_area_struct *
2270find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271{
2272	struct vm_area_struct *vma, *prev;
2273
2274	addr &= PAGE_MASK;
2275	vma = find_vma_prev(mm, addr, &prev);
2276	if (vma && (vma->vm_start <= addr))
2277		return vma;
2278	if (!prev || expand_stack(prev, addr))
 
 
2279		return NULL;
2280	if (prev->vm_flags & VM_LOCKED)
2281		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282	return prev;
2283}
2284#else
2285int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286{
2287	struct vm_area_struct *prev;
2288
2289	address &= PAGE_MASK;
2290	prev = vma->vm_prev;
2291	if (prev && prev->vm_end == address) {
2292		if (!(prev->vm_flags & VM_GROWSDOWN))
2293			return -ENOMEM;
2294	}
2295	return expand_downwards(vma, address);
2296}
2297
2298struct vm_area_struct *
2299find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300{
2301	struct vm_area_struct * vma;
2302	unsigned long start;
2303
2304	addr &= PAGE_MASK;
2305	vma = find_vma(mm,addr);
2306	if (!vma)
2307		return NULL;
2308	if (vma->vm_start <= addr)
2309		return vma;
2310	if (!(vma->vm_flags & VM_GROWSDOWN))
2311		return NULL;
2312	start = vma->vm_start;
2313	if (expand_stack(vma, addr))
2314		return NULL;
2315	if (vma->vm_flags & VM_LOCKED)
2316		__mlock_vma_pages_range(vma, addr, start, NULL);
2317	return vma;
2318}
2319#endif
2320
 
 
 
 
 
 
 
 
 
 
 
 
2321/*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2324 *
2325 * Called with the mm semaphore held.
2326 */
2327static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328{
2329	unsigned long nr_accounted = 0;
 
2330
2331	/* Update high watermark before we lower total_vm */
2332	update_hiwater_vm(mm);
2333	do {
2334		long nrpages = vma_pages(vma);
2335
2336		if (vma->vm_flags & VM_ACCOUNT)
2337			nr_accounted += nrpages;
2338		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339		vma = remove_vma(vma);
2340	} while (vma);
2341	vm_unacct_memory(nr_accounted);
2342	validate_mm(mm);
2343}
2344
2345/*
2346 * Get rid of page table information in the indicated region.
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350static void unmap_region(struct mm_struct *mm,
2351		struct vm_area_struct *vma, struct vm_area_struct *prev,
2352		unsigned long start, unsigned long end)
 
2353{
2354	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355	struct mmu_gather tlb;
 
2356
2357	lru_add_drain();
2358	tlb_gather_mmu(&tlb, mm, start, end);
2359	update_hiwater_rss(mm);
2360	unmap_vmas(&tlb, vma, start, end);
2361	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362				 next ? next->vm_start : USER_PGTABLES_CEILING);
2363	tlb_finish_mmu(&tlb, start, end);
 
 
2364}
2365
2366/*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
 
2369 */
2370static void
2371detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372	struct vm_area_struct *prev, unsigned long end)
2373{
2374	struct vm_area_struct **insertion_point;
2375	struct vm_area_struct *tail_vma = NULL;
 
2376
2377	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378	vma->vm_prev = NULL;
2379	do {
2380		vma_rb_erase(vma, &mm->mm_rb);
2381		mm->map_count--;
2382		tail_vma = vma;
2383		vma = vma->vm_next;
2384	} while (vma && vma->vm_start < end);
2385	*insertion_point = vma;
2386	if (vma) {
2387		vma->vm_prev = prev;
2388		vma_gap_update(vma);
2389	} else
2390		mm->highest_vm_end = prev ? prev->vm_end : 0;
2391	tail_vma->vm_next = NULL;
2392
2393	/* Kill the cache */
2394	vmacache_invalidate(mm);
2395}
2396
2397/*
2398 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402	      unsigned long addr, int new_below)
2403{
2404	struct vm_area_struct *new;
2405	int err = -ENOMEM;
2406
2407	if (is_vm_hugetlb_page(vma) && (addr &
2408					~(huge_page_mask(hstate_vma(vma)))))
2409		return -EINVAL;
2410
2411	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412	if (!new)
2413		goto out_err;
2414
2415	/* most fields are the same, copy all, and then fixup */
2416	*new = *vma;
2417
2418	INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420	if (new_below)
2421		new->vm_end = addr;
2422	else {
2423		new->vm_start = addr;
2424		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425	}
2426
 
 
 
 
 
2427	err = vma_dup_policy(vma, new);
2428	if (err)
2429		goto out_free_vma;
2430
2431	if (anon_vma_clone(new, vma))
 
2432		goto out_free_mpol;
2433
2434	if (new->vm_file)
2435		get_file(new->vm_file);
2436
2437	if (new->vm_ops && new->vm_ops->open)
2438		new->vm_ops->open(new);
2439
2440	if (new_below)
2441		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442			((addr - new->vm_start) >> PAGE_SHIFT), new);
2443	else
2444		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
 
 
 
 
 
 
 
 
 
 
 
 
2445
2446	/* Success. */
2447	if (!err)
2448		return 0;
 
2449
2450	/* Clean everything up if vma_adjust failed. */
2451	if (new->vm_ops && new->vm_ops->close)
2452		new->vm_ops->close(new);
2453	if (new->vm_file)
2454		fput(new->vm_file);
2455	unlink_anon_vmas(new);
2456 out_free_mpol:
2457	mpol_put(vma_policy(new));
2458 out_free_vma:
2459	kmem_cache_free(vm_area_cachep, new);
2460 out_err:
 
2461	return err;
2462}
2463
2464/*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469	      unsigned long addr, int new_below)
2470{
2471	if (mm->map_count >= sysctl_max_map_count)
2472		return -ENOMEM;
2473
2474	return __split_vma(mm, vma, addr, new_below);
2475}
2476
2477/* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work.  This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
 
 
 
 
 
 
 
 
2481 */
2482int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
 
 
 
 
 
 
2483{
2484	unsigned long end;
2485	struct vm_area_struct *vma, *prev, *last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2486
2487	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
2489
2490	if ((len = PAGE_ALIGN(len)) == 0)
2491		return -EINVAL;
 
 
 
 
 
 
 
2492
2493	/* Find the first overlapping VMA */
2494	vma = find_vma(mm, start);
2495	if (!vma)
2496		return 0;
2497	prev = vma->vm_prev;
2498	/* we have  start < vma->vm_end  */
2499
2500	/* if it doesn't overlap, we have nothing.. */
2501	end = start + len;
2502	if (vma->vm_start >= end)
2503		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2504
2505	/*
2506	 * If we need to split any vma, do it now to save pain later.
2507	 *
2508	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509	 * unmapped vm_area_struct will remain in use: so lower split_vma
2510	 * places tmp vma above, and higher split_vma places tmp vma below.
2511	 */
 
 
2512	if (start > vma->vm_start) {
2513		int error;
2514
2515		/*
2516		 * Make sure that map_count on return from munmap() will
2517		 * not exceed its limit; but let map_count go just above
2518		 * its limit temporarily, to help free resources as expected.
2519		 */
2520		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521			return -ENOMEM;
2522
2523		error = __split_vma(mm, vma, start, 0);
2524		if (error)
2525			return error;
2526		prev = vma;
2527	}
2528
2529	/* Does it split the last one? */
2530	last = find_vma(mm, end);
2531	if (last && end > last->vm_start) {
2532		int error = __split_vma(mm, last, end, 1);
 
 
 
 
 
 
 
 
 
 
 
2533		if (error)
2534			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535	}
2536	vma = prev? prev->vm_next: mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538	/*
2539	 * unlock any mlock()ed ranges before detaching vmas
 
 
2540	 */
2541	if (mm->locked_vm) {
2542		struct vm_area_struct *tmp = vma;
2543		while (tmp && tmp->vm_start < end) {
2544			if (tmp->vm_flags & VM_LOCKED) {
2545				mm->locked_vm -= vma_pages(tmp);
2546				munlock_vma_pages_all(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547			}
2548			tmp = tmp->vm_next;
2549		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	}
2551
2552	/*
2553	 * Remove the vma's, and unmap the actual pages
 
2554	 */
2555	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556	unmap_region(mm, vma, prev, start, end);
 
 
 
 
 
 
 
 
2557
2558	/* Fix up all other VM information */
2559	remove_vma_list(mm, vma);
 
 
 
 
 
 
 
2560
2561	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562}
2563
2564int vm_munmap(unsigned long start, size_t len)
2565{
2566	int ret;
2567	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
2568
2569	down_write(&mm->mmap_sem);
2570	ret = do_munmap(mm, start, len);
2571	up_write(&mm->mmap_sem);
2572	return ret;
2573}
 
 
 
 
 
2574EXPORT_SYMBOL(vm_munmap);
2575
2576SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577{
2578	profile_munmap(addr);
2579	return vm_munmap(addr, len);
2580}
2581
2582static inline void verify_mm_writelocked(struct mm_struct *mm)
2583{
2584#ifdef CONFIG_DEBUG_VM
2585	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586		WARN_ON(1);
2587		up_read(&mm->mmap_sem);
2588	}
2589#endif
2590}
2591
2592/*
2593 *  this is really a simplified "do_mmap".  it only handles
2594 *  anonymous maps.  eventually we may be able to do some
2595 *  brk-specific accounting here.
2596 */
2597static unsigned long do_brk(unsigned long addr, unsigned long len)
 
2598{
2599	struct mm_struct * mm = current->mm;
2600	struct vm_area_struct * vma, * prev;
2601	unsigned long flags;
2602	struct rb_node ** rb_link, * rb_parent;
2603	pgoff_t pgoff = addr >> PAGE_SHIFT;
2604	int error;
2605
2606	len = PAGE_ALIGN(len);
2607	if (!len)
2608		return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609
2610	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
 
 
 
 
 
 
 
 
2611
2612	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613	if (error & ~PAGE_MASK)
2614		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2615
2616	error = mlock_future_check(mm, mm->def_flags, len);
2617	if (error)
2618		return error;
2619
2620	/*
2621	 * mm->mmap_sem is required to protect against another thread
2622	 * changing the mappings in case we sleep.
2623	 */
2624	verify_mm_writelocked(mm);
 
 
 
 
 
 
 
 
 
 
 
 
2625
2626	/*
2627	 * Clear old maps.  this also does some error checking for us
 
2628	 */
2629 munmap_back:
2630	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631		if (do_munmap(mm, addr, len))
2632			return -ENOMEM;
2633		goto munmap_back;
2634	}
2635
2636	/* Check against address space limits *after* clearing old maps... */
2637	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638		return -ENOMEM;
2639
2640	if (mm->map_count > sysctl_max_map_count)
2641		return -ENOMEM;
2642
2643	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644		return -ENOMEM;
2645
2646	/* Can we just expand an old private anonymous mapping? */
2647	vma = vma_merge(mm, prev, addr, addr + len, flags,
2648					NULL, NULL, pgoff, NULL);
2649	if (vma)
2650		goto out;
2651
2652	/*
2653	 * create a vma struct for an anonymous mapping
 
2654	 */
2655	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656	if (!vma) {
2657		vm_unacct_memory(len >> PAGE_SHIFT);
2658		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659	}
2660
2661	INIT_LIST_HEAD(&vma->anon_vma_chain);
2662	vma->vm_mm = mm;
 
 
 
 
 
 
2663	vma->vm_start = addr;
2664	vma->vm_end = addr + len;
2665	vma->vm_pgoff = pgoff;
2666	vma->vm_flags = flags;
2667	vma->vm_page_prot = vm_get_page_prot(flags);
2668	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
2669out:
2670	perf_event_mmap(vma);
2671	mm->total_vm += len >> PAGE_SHIFT;
 
2672	if (flags & VM_LOCKED)
2673		mm->locked_vm += (len >> PAGE_SHIFT);
2674	vma->vm_flags |= VM_SOFTDIRTY;
2675	return addr;
 
 
 
 
 
 
2676}
2677
2678unsigned long vm_brk(unsigned long addr, unsigned long len)
2679{
2680	struct mm_struct *mm = current->mm;
2681	unsigned long ret;
 
 
2682	bool populate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683
2684	down_write(&mm->mmap_sem);
2685	ret = do_brk(addr, len);
2686	populate = ((mm->def_flags & VM_LOCKED) != 0);
2687	up_write(&mm->mmap_sem);
2688	if (populate)
 
2689		mm_populate(addr, len);
2690	return ret;
 
 
 
 
 
2691}
2692EXPORT_SYMBOL(vm_brk);
2693
2694/* Release all mmaps. */
2695void exit_mmap(struct mm_struct *mm)
2696{
2697	struct mmu_gather tlb;
2698	struct vm_area_struct *vma;
2699	unsigned long nr_accounted = 0;
 
 
2700
2701	/* mm's last user has gone, and its about to be pulled down */
2702	mmu_notifier_release(mm);
2703
2704	if (mm->locked_vm) {
2705		vma = mm->mmap;
2706		while (vma) {
2707			if (vma->vm_flags & VM_LOCKED)
2708				munlock_vma_pages_all(vma);
2709			vma = vma->vm_next;
2710		}
2711	}
2712
2713	arch_exit_mmap(mm);
2714
2715	vma = mm->mmap;
2716	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2717		return;
 
 
 
 
2718
2719	lru_add_drain();
2720	flush_cache_mm(mm);
2721	tlb_gather_mmu(&tlb, mm, 0, -1);
2722	/* update_hiwater_rss(mm) here? but nobody should be looking */
2723	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2724	unmap_vmas(&tlb, vma, 0, -1);
 
2725
2726	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
 
 
2728
2729	/*
2730	 * Walk the list again, actually closing and freeing it,
2731	 * with preemption enabled, without holding any MM locks.
 
2732	 */
2733	while (vma) {
 
2734		if (vma->vm_flags & VM_ACCOUNT)
2735			nr_accounted += vma_pages(vma);
2736		vma = remove_vma(vma);
2737	}
 
 
 
 
 
 
 
 
 
 
2738	vm_unacct_memory(nr_accounted);
2739
2740	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742}
2743
2744/* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749{
2750	struct vm_area_struct *prev;
2751	struct rb_node **rb_link, *rb_parent;
 
 
 
 
 
 
 
2752
2753	/*
2754	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755	 * until its first write fault, when page's anon_vma and index
2756	 * are set.  But now set the vm_pgoff it will almost certainly
2757	 * end up with (unless mremap moves it elsewhere before that
2758	 * first wfault), so /proc/pid/maps tells a consistent story.
2759	 *
2760	 * By setting it to reflect the virtual start address of the
2761	 * vma, merges and splits can happen in a seamless way, just
2762	 * using the existing file pgoff checks and manipulations.
2763	 * Similarly in do_mmap_pgoff and in do_brk.
2764	 */
2765	if (!vma->vm_file) {
2766		BUG_ON(vma->anon_vma);
2767		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768	}
2769	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770			   &prev, &rb_link, &rb_parent))
2771		return -ENOMEM;
2772	if ((vma->vm_flags & VM_ACCOUNT) &&
2773	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774		return -ENOMEM;
 
2775
2776	vma_link(mm, vma, prev, rb_link, rb_parent);
2777	return 0;
2778}
2779
2780/*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785	unsigned long addr, unsigned long len, pgoff_t pgoff,
2786	bool *need_rmap_locks)
2787{
2788	struct vm_area_struct *vma = *vmap;
2789	unsigned long vma_start = vma->vm_start;
2790	struct mm_struct *mm = vma->vm_mm;
2791	struct vm_area_struct *new_vma, *prev;
2792	struct rb_node **rb_link, *rb_parent;
2793	bool faulted_in_anon_vma = true;
 
2794
2795	/*
2796	 * If anonymous vma has not yet been faulted, update new pgoff
2797	 * to match new location, to increase its chance of merging.
2798	 */
2799	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800		pgoff = addr >> PAGE_SHIFT;
2801		faulted_in_anon_vma = false;
2802	}
2803
2804	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
 
2805		return NULL;	/* should never get here */
2806	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2808	if (new_vma) {
2809		/*
2810		 * Source vma may have been merged into new_vma
2811		 */
2812		if (unlikely(vma_start >= new_vma->vm_start &&
2813			     vma_start < new_vma->vm_end)) {
2814			/*
2815			 * The only way we can get a vma_merge with
2816			 * self during an mremap is if the vma hasn't
2817			 * been faulted in yet and we were allowed to
2818			 * reset the dst vma->vm_pgoff to the
2819			 * destination address of the mremap to allow
2820			 * the merge to happen. mremap must change the
2821			 * vm_pgoff linearity between src and dst vmas
2822			 * (in turn preventing a vma_merge) to be
2823			 * safe. It is only safe to keep the vm_pgoff
2824			 * linear if there are no pages mapped yet.
2825			 */
2826			VM_BUG_ON(faulted_in_anon_vma);
2827			*vmap = vma = new_vma;
2828		}
2829		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830	} else {
2831		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832		if (new_vma) {
2833			*new_vma = *vma;
2834			new_vma->vm_start = addr;
2835			new_vma->vm_end = addr + len;
2836			new_vma->vm_pgoff = pgoff;
2837			if (vma_dup_policy(vma, new_vma))
2838				goto out_free_vma;
2839			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840			if (anon_vma_clone(new_vma, vma))
2841				goto out_free_mempol;
2842			if (new_vma->vm_file)
2843				get_file(new_vma->vm_file);
2844			if (new_vma->vm_ops && new_vma->vm_ops->open)
2845				new_vma->vm_ops->open(new_vma);
2846			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847			*need_rmap_locks = false;
2848		}
2849	}
2850	return new_vma;
2851
2852 out_free_mempol:
 
 
 
 
 
 
 
 
2853	mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855	kmem_cache_free(vm_area_cachep, new_vma);
 
2856	return NULL;
2857}
2858
2859/*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
2862 */
2863int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864{
2865	unsigned long cur = mm->total_vm;	/* pages */
2866	unsigned long lim;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2867
2868	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
2869
2870	if (cur + npages > lim)
2871		return 0;
2872	return 1;
2873}
2874
 
 
 
 
 
 
 
 
 
 
2875
2876static int special_mapping_fault(struct vm_area_struct *vma,
2877				struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878{
 
2879	pgoff_t pgoff;
2880	struct page **pages;
2881
2882	/*
2883	 * special mappings have no vm_file, and in that case, the mm
2884	 * uses vm_pgoff internally. So we have to subtract it from here.
2885	 * We are allowed to do this because we are the mm; do not copy
2886	 * this code into drivers!
2887	 */
2888	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
2889
2890	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891		pgoff--;
2892
2893	if (*pages) {
2894		struct page *page = *pages;
2895		get_page(page);
2896		vmf->page = page;
2897		return 0;
2898	}
2899
2900	return VM_FAULT_SIGBUS;
2901}
2902
2903/*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906static void special_mapping_close(struct vm_area_struct *vma)
2907{
2908}
2909
2910static const struct vm_operations_struct special_mapping_vmops = {
2911	.close = special_mapping_close,
2912	.fault = special_mapping_fault,
2913};
2914
2915/*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925			    unsigned long addr, unsigned long len,
2926			    unsigned long vm_flags, struct page **pages)
2927{
2928	int ret;
2929	struct vm_area_struct *vma;
2930
2931	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932	if (unlikely(vma == NULL))
2933		return ERR_PTR(-ENOMEM);
2934
2935	INIT_LIST_HEAD(&vma->anon_vma_chain);
2936	vma->vm_mm = mm;
2937	vma->vm_start = addr;
2938	vma->vm_end = addr + len;
2939
2940	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
 
2941	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943	vma->vm_ops = &special_mapping_vmops;
2944	vma->vm_private_data = pages;
2945
2946	ret = insert_vm_struct(mm, vma);
2947	if (ret)
2948		goto out;
2949
2950	mm->total_vm += len >> PAGE_SHIFT;
2951
2952	perf_event_mmap(vma);
2953
2954	return vma;
2955
2956out:
2957	kmem_cache_free(vm_area_cachep, vma);
2958	return ERR_PTR(ret);
2959}
2960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2961int install_special_mapping(struct mm_struct *mm,
2962			    unsigned long addr, unsigned long len,
2963			    unsigned long vm_flags, struct page **pages)
2964{
2965	struct vm_area_struct *vma = _install_special_mapping(mm,
2966			    addr, len, vm_flags, pages);
 
2967
2968	if (IS_ERR(vma))
2969		return PTR_ERR(vma);
2970	return 0;
2971}
2972
2973static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976{
2977	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978		/*
2979		 * The LSB of head.next can't change from under us
2980		 * because we hold the mm_all_locks_mutex.
2981		 */
2982		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983		/*
2984		 * We can safely modify head.next after taking the
2985		 * anon_vma->root->rwsem. If some other vma in this mm shares
2986		 * the same anon_vma we won't take it again.
2987		 *
2988		 * No need of atomic instructions here, head.next
2989		 * can't change from under us thanks to the
2990		 * anon_vma->root->rwsem.
2991		 */
2992		if (__test_and_set_bit(0, (unsigned long *)
2993				       &anon_vma->root->rb_root.rb_node))
2994			BUG();
2995	}
2996}
2997
2998static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999{
3000	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001		/*
3002		 * AS_MM_ALL_LOCKS can't change from under us because
3003		 * we hold the mm_all_locks_mutex.
3004		 *
3005		 * Operations on ->flags have to be atomic because
3006		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007		 * mm_all_locks_mutex, there may be other cpus
3008		 * changing other bitflags in parallel to us.
3009		 */
3010		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011			BUG();
3012		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013	}
3014}
3015
3016/*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
 
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048int mm_take_all_locks(struct mm_struct *mm)
3049{
3050	struct vm_area_struct *vma;
3051	struct anon_vma_chain *avc;
 
3052
3053	BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055	mutex_lock(&mm_all_locks_mutex);
3056
3057	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3058		if (signal_pending(current))
3059			goto out_unlock;
3060		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
 
3061			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062	}
3063
3064	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
3065		if (signal_pending(current))
3066			goto out_unlock;
3067		if (vma->anon_vma)
3068			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069				vm_lock_anon_vma(mm, avc->anon_vma);
3070	}
3071
3072	return 0;
3073
3074out_unlock:
3075	mm_drop_all_locks(mm);
3076	return -EINTR;
3077}
3078
3079static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080{
3081	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082		/*
3083		 * The LSB of head.next can't change to 0 from under
3084		 * us because we hold the mm_all_locks_mutex.
3085		 *
3086		 * We must however clear the bitflag before unlocking
3087		 * the vma so the users using the anon_vma->rb_root will
3088		 * never see our bitflag.
3089		 *
3090		 * No need of atomic instructions here, head.next
3091		 * can't change from under us until we release the
3092		 * anon_vma->root->rwsem.
3093		 */
3094		if (!__test_and_clear_bit(0, (unsigned long *)
3095					  &anon_vma->root->rb_root.rb_node))
3096			BUG();
3097		anon_vma_unlock_write(anon_vma);
3098	}
3099}
3100
3101static void vm_unlock_mapping(struct address_space *mapping)
3102{
3103	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104		/*
3105		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106		 * because we hold the mm_all_locks_mutex.
3107		 */
3108		mutex_unlock(&mapping->i_mmap_mutex);
3109		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110					&mapping->flags))
3111			BUG();
3112	}
3113}
3114
3115/*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119void mm_drop_all_locks(struct mm_struct *mm)
3120{
3121	struct vm_area_struct *vma;
3122	struct anon_vma_chain *avc;
 
3123
3124	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128		if (vma->anon_vma)
3129			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130				vm_unlock_anon_vma(avc->anon_vma);
3131		if (vma->vm_file && vma->vm_file->f_mapping)
3132			vm_unlock_mapping(vma->vm_file->f_mapping);
3133	}
3134
3135	mutex_unlock(&mm_all_locks_mutex);
3136}
3137
3138/*
3139 * initialise the VMA slab
3140 */
3141void __init mmap_init(void)
3142{
3143	int ret;
3144
3145	ret = percpu_counter_init(&vm_committed_as, 0);
3146	VM_BUG_ON(ret);
3147}
3148
3149/*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159static int init_user_reserve(void)
3160{
3161	unsigned long free_kbytes;
3162
3163	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166	return 0;
3167}
3168subsys_initcall(init_user_reserve);
3169
3170/*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180static int init_admin_reserve(void)
3181{
3182	unsigned long free_kbytes;
3183
3184	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187	return 0;
3188}
3189subsys_initcall(init_admin_reserve);
3190
3191/*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209static int reserve_mem_notifier(struct notifier_block *nb,
3210			     unsigned long action, void *data)
3211{
3212	unsigned long tmp, free_kbytes;
3213
3214	switch (action) {
3215	case MEM_ONLINE:
3216		/* Default max is 128MB. Leave alone if modified by operator. */
3217		tmp = sysctl_user_reserve_kbytes;
3218		if (0 < tmp && tmp < (1UL << 17))
3219			init_user_reserve();
3220
3221		/* Default max is 8MB.  Leave alone if modified by operator. */
3222		tmp = sysctl_admin_reserve_kbytes;
3223		if (0 < tmp && tmp < (1UL << 13))
3224			init_admin_reserve();
3225
3226		break;
3227	case MEM_OFFLINE:
3228		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230		if (sysctl_user_reserve_kbytes > free_kbytes) {
3231			init_user_reserve();
3232			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233				sysctl_user_reserve_kbytes);
3234		}
3235
3236		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237			init_admin_reserve();
3238			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239				sysctl_admin_reserve_kbytes);
3240		}
3241		break;
3242	default:
3243		break;
3244	}
3245	return NOTIFY_OK;
3246}
3247
3248static struct notifier_block reserve_mem_nb = {
3249	.notifier_call = reserve_mem_notifier,
3250};
3251
3252static int __meminit init_reserve_notifier(void)
3253{
3254	if (register_hotmemory_notifier(&reserve_mem_nb))
3255		printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257	return 0;
3258}
3259subsys_initcall(init_reserve_notifier);