Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		struct vm_area_struct *next, unsigned long start,
  82		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  83
  84static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
  85{
  86	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
  87}
  88
  89/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  90void vma_set_page_prot(struct vm_area_struct *vma)
  91{
  92	unsigned long vm_flags = vma->vm_flags;
  93	pgprot_t vm_page_prot;
  94
  95	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  96	if (vma_wants_writenotify(vma, vm_page_prot)) {
  97		vm_flags &= ~VM_SHARED;
  98		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
  99	}
 100	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 101	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 102}
 103
 104/*
 105 * Requires inode->i_mapping->i_mmap_rwsem
 106 */
 107static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 108		struct file *file, struct address_space *mapping)
 109{
 110	if (vma_is_shared_maywrite(vma))
 
 
 111		mapping_unmap_writable(mapping);
 112
 113	flush_dcache_mmap_lock(mapping);
 114	vma_interval_tree_remove(vma, &mapping->i_mmap);
 115	flush_dcache_mmap_unlock(mapping);
 116}
 117
 118/*
 119 * Unlink a file-based vm structure from its interval tree, to hide
 120 * vma from rmap and vmtruncate before freeing its page tables.
 121 */
 122void unlink_file_vma(struct vm_area_struct *vma)
 123{
 124	struct file *file = vma->vm_file;
 125
 126	if (file) {
 127		struct address_space *mapping = file->f_mapping;
 128		i_mmap_lock_write(mapping);
 129		__remove_shared_vm_struct(vma, file, mapping);
 130		i_mmap_unlock_write(mapping);
 131	}
 132}
 133
 134/*
 135 * Close a vm structure and free it.
 136 */
 137static void remove_vma(struct vm_area_struct *vma, bool unreachable)
 138{
 
 
 139	might_sleep();
 140	if (vma->vm_ops && vma->vm_ops->close)
 141		vma->vm_ops->close(vma);
 142	if (vma->vm_file)
 143		fput(vma->vm_file);
 144	mpol_put(vma_policy(vma));
 145	if (unreachable)
 146		__vm_area_free(vma);
 147	else
 148		vm_area_free(vma);
 149}
 150
 151static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
 152						    unsigned long min)
 153{
 154	return mas_prev(&vmi->mas, min);
 155}
 156
 157/*
 158 * check_brk_limits() - Use platform specific check of range & verify mlock
 159 * limits.
 160 * @addr: The address to check
 161 * @len: The size of increase.
 162 *
 163 * Return: 0 on success.
 164 */
 165static int check_brk_limits(unsigned long addr, unsigned long len)
 166{
 167	unsigned long mapped_addr;
 168
 169	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 170	if (IS_ERR_VALUE(mapped_addr))
 171		return mapped_addr;
 172
 173	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 174		? 0 : -EAGAIN;
 175}
 176static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 177		unsigned long addr, unsigned long request, unsigned long flags);
 178SYSCALL_DEFINE1(brk, unsigned long, brk)
 179{
 
 180	unsigned long newbrk, oldbrk, origbrk;
 181	struct mm_struct *mm = current->mm;
 182	struct vm_area_struct *brkvma, *next = NULL;
 183	unsigned long min_brk;
 184	bool populate = false;
 
 185	LIST_HEAD(uf);
 186	struct vma_iterator vmi;
 187
 188	if (mmap_write_lock_killable(mm))
 
 
 189		return -EINTR;
 190
 191	origbrk = mm->brk;
 192
 193#ifdef CONFIG_COMPAT_BRK
 194	/*
 195	 * CONFIG_COMPAT_BRK can still be overridden by setting
 196	 * randomize_va_space to 2, which will still cause mm->start_brk
 197	 * to be arbitrarily shifted
 198	 */
 199	if (current->brk_randomized)
 200		min_brk = mm->start_brk;
 201	else
 202		min_brk = mm->end_data;
 203#else
 204	min_brk = mm->start_brk;
 205#endif
 206	if (brk < min_brk)
 207		goto out;
 208
 209	/*
 210	 * Check against rlimit here. If this check is done later after the test
 211	 * of oldbrk with newbrk then it can escape the test and let the data
 212	 * segment grow beyond its set limit the in case where the limit is
 213	 * not page aligned -Ram Gupta
 214	 */
 215	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 216			      mm->end_data, mm->start_data))
 217		goto out;
 218
 219	newbrk = PAGE_ALIGN(brk);
 220	oldbrk = PAGE_ALIGN(mm->brk);
 221	if (oldbrk == newbrk) {
 222		mm->brk = brk;
 223		goto success;
 224	}
 225
 226	/* Always allow shrinking brk. */
 
 
 
 227	if (brk <= mm->brk) {
 228		/* Search one past newbrk */
 229		vma_iter_init(&vmi, mm, newbrk);
 230		brkvma = vma_find(&vmi, oldbrk);
 231		if (!brkvma || brkvma->vm_start >= oldbrk)
 232			goto out; /* mapping intersects with an existing non-brk vma. */
 233		/*
 234		 * mm->brk must be protected by write mmap_lock.
 235		 * do_vma_munmap() will drop the lock on success,  so update it
 236		 * before calling do_vma_munmap().
 237		 */
 238		mm->brk = brk;
 239		if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
 
 
 240			goto out;
 241
 242		goto success_unlocked;
 
 
 243	}
 244
 245	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 246		goto out;
 247
 248	/*
 249	 * Only check if the next VMA is within the stack_guard_gap of the
 250	 * expansion area
 251	 */
 252	vma_iter_init(&vmi, mm, oldbrk);
 253	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 254	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 255		goto out;
 256
 257	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 258	/* Ok, looks good - let it rip. */
 259	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 260		goto out;
 261
 262	mm->brk = brk;
 263	if (mm->def_flags & VM_LOCKED)
 264		populate = true;
 265
 266success:
 267	mmap_write_unlock(mm);
 268success_unlocked:
 
 
 
 269	userfaultfd_unmap_complete(mm, &uf);
 270	if (populate)
 271		mm_populate(oldbrk, newbrk - oldbrk);
 272	return brk;
 273
 274out:
 275	mm->brk = origbrk;
 276	mmap_write_unlock(mm);
 277	return origbrk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
 281static void validate_mm(struct mm_struct *mm)
 282{
 283	int bug = 0;
 284	int i = 0;
 285	struct vm_area_struct *vma;
 286	VMA_ITERATOR(vmi, mm, 0);
 287
 288	mt_validate(&mm->mm_mt);
 289	for_each_vma(vmi, vma) {
 290#ifdef CONFIG_DEBUG_VM_RB
 291		struct anon_vma *anon_vma = vma->anon_vma;
 292		struct anon_vma_chain *avc;
 293#endif
 294		unsigned long vmi_start, vmi_end;
 295		bool warn = 0;
 296
 297		vmi_start = vma_iter_addr(&vmi);
 298		vmi_end = vma_iter_end(&vmi);
 299		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
 300			warn = 1;
 301
 302		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
 303			warn = 1;
 304
 305		if (warn) {
 306			pr_emerg("issue in %s\n", current->comm);
 307			dump_stack();
 308			dump_vma(vma);
 309			pr_emerg("tree range: %px start %lx end %lx\n", vma,
 310				 vmi_start, vmi_end - 1);
 311			vma_iter_dump_tree(&vmi);
 312		}
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315		if (anon_vma) {
 316			anon_vma_lock_read(anon_vma);
 317			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 318				anon_vma_interval_tree_verify(avc);
 319			anon_vma_unlock_read(anon_vma);
 320		}
 321#endif
 
 
 322		i++;
 323	}
 324	if (i != mm->map_count) {
 325		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
 
 
 
 
 
 
 
 
 
 
 
 326		bug = 1;
 327	}
 328	VM_BUG_ON_MM(bug, mm);
 329}
 330
 331#else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
 332#define validate_mm(mm) do { } while (0)
 333#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334
 335/*
 336 * vma has some anon_vma assigned, and is already inserted on that
 337 * anon_vma's interval trees.
 338 *
 339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 340 * vma must be removed from the anon_vma's interval trees using
 341 * anon_vma_interval_tree_pre_update_vma().
 342 *
 343 * After the update, the vma will be reinserted using
 344 * anon_vma_interval_tree_post_update_vma().
 345 *
 346 * The entire update must be protected by exclusive mmap_lock and by
 347 * the root anon_vma's mutex.
 348 */
 349static inline void
 350anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 351{
 352	struct anon_vma_chain *avc;
 353
 354	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 355		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 356}
 357
 358static inline void
 359anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 360{
 361	struct anon_vma_chain *avc;
 362
 363	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 364		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367static unsigned long count_vma_pages_range(struct mm_struct *mm,
 368		unsigned long addr, unsigned long end)
 369{
 370	VMA_ITERATOR(vmi, mm, addr);
 371	struct vm_area_struct *vma;
 372	unsigned long nr_pages = 0;
 
 
 
 
 
 
 
 
 
 373
 374	for_each_vma_range(vmi, vma, end) {
 375		unsigned long vm_start = max(addr, vma->vm_start);
 376		unsigned long vm_end = min(end, vma->vm_end);
 377
 378		nr_pages += PHYS_PFN(vm_end - vm_start);
 
 
 
 
 379	}
 380
 381	return nr_pages;
 382}
 383
 384static void __vma_link_file(struct vm_area_struct *vma,
 385			    struct address_space *mapping)
 386{
 387	if (vma_is_shared_maywrite(vma))
 388		mapping_allow_writable(mapping);
 
 
 
 389
 390	flush_dcache_mmap_lock(mapping);
 391	vma_interval_tree_insert(vma, &mapping->i_mmap);
 392	flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
 396{
 397	VMA_ITERATOR(vmi, mm, 0);
 398	struct address_space *mapping = NULL;
 399
 400	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
 401	if (vma_iter_prealloc(&vmi, vma))
 402		return -ENOMEM;
 403
 404	vma_start_write(vma);
 
 
 
 405
 406	vma_iter_store(&vmi, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407
 408	if (vma->vm_file) {
 409		mapping = vma->vm_file->f_mapping;
 410		i_mmap_lock_write(mapping);
 411		__vma_link_file(vma, mapping);
 412		i_mmap_unlock_write(mapping);
 413	}
 414
 
 
 
 
 
 
 415	mm->map_count++;
 416	validate_mm(mm);
 417	return 0;
 418}
 419
 420/*
 421 * init_multi_vma_prep() - Initializer for struct vma_prepare
 422 * @vp: The vma_prepare struct
 423 * @vma: The vma that will be altered once locked
 424 * @next: The next vma if it is to be adjusted
 425 * @remove: The first vma to be removed
 426 * @remove2: The second vma to be removed
 427 */
 428static inline void init_multi_vma_prep(struct vma_prepare *vp,
 429		struct vm_area_struct *vma, struct vm_area_struct *next,
 430		struct vm_area_struct *remove, struct vm_area_struct *remove2)
 431{
 432	memset(vp, 0, sizeof(struct vma_prepare));
 433	vp->vma = vma;
 434	vp->anon_vma = vma->anon_vma;
 435	vp->remove = remove;
 436	vp->remove2 = remove2;
 437	vp->adj_next = next;
 438	if (!vp->anon_vma && next)
 439		vp->anon_vma = next->anon_vma;
 440
 441	vp->file = vma->vm_file;
 442	if (vp->file)
 443		vp->mapping = vma->vm_file->f_mapping;
 444
 
 
 
 
 
 445}
 446
 447/*
 448 * init_vma_prep() - Initializer wrapper for vma_prepare struct
 449 * @vp: The vma_prepare struct
 450 * @vma: The vma that will be altered once locked
 451 */
 452static inline void init_vma_prep(struct vma_prepare *vp,
 453				 struct vm_area_struct *vma)
 454{
 455	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 456}
 457
 
 
 
 
 
 
 458
 459/*
 460 * vma_prepare() - Helper function for handling locking VMAs prior to altering
 461 * @vp: The initialized vma_prepare struct
 
 
 
 462 */
 463static inline void vma_prepare(struct vma_prepare *vp)
 
 
 464{
 465	if (vp->file) {
 466		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468		if (vp->adj_next)
 469			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
 470				      vp->adj_next->vm_end);
 
 
 
 
 471
 472		i_mmap_lock_write(vp->mapping);
 473		if (vp->insert && vp->insert->vm_file) {
 474			/*
 475			 * Put into interval tree now, so instantiated pages
 476			 * are visible to arm/parisc __flush_dcache_page
 477			 * throughout; but we cannot insert into address
 478			 * space until vma start or end is updated.
 479			 */
 480			__vma_link_file(vp->insert,
 481					vp->insert->vm_file->f_mapping);
 482		}
 483	}
 484
 485	if (vp->anon_vma) {
 486		anon_vma_lock_write(vp->anon_vma);
 487		anon_vma_interval_tree_pre_update_vma(vp->vma);
 488		if (vp->adj_next)
 489			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
 
 
 
 
 
 490	}
 491
 492	if (vp->file) {
 493		flush_dcache_mmap_lock(vp->mapping);
 494		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
 495		if (vp->adj_next)
 496			vma_interval_tree_remove(vp->adj_next,
 497						 &vp->mapping->i_mmap);
 498	}
 499
 500}
 
 
 
 
 
 
 
 
 
 
 
 
 501
 502/*
 503 * vma_complete- Helper function for handling the unlocking after altering VMAs,
 504 * or for inserting a VMA.
 505 *
 506 * @vp: The vma_prepare struct
 507 * @vmi: The vma iterator
 508 * @mm: The mm_struct
 509 */
 510static inline void vma_complete(struct vma_prepare *vp,
 511				struct vma_iterator *vmi, struct mm_struct *mm)
 512{
 513	if (vp->file) {
 514		if (vp->adj_next)
 515			vma_interval_tree_insert(vp->adj_next,
 516						 &vp->mapping->i_mmap);
 517		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
 518		flush_dcache_mmap_unlock(vp->mapping);
 519	}
 520
 521	if (vp->remove && vp->file) {
 522		__remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
 523		if (vp->remove2)
 524			__remove_shared_vm_struct(vp->remove2, vp->file,
 525						  vp->mapping);
 526	} else if (vp->insert) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527		/*
 528		 * split_vma has split insert from vma, and needs
 529		 * us to insert it before dropping the locks
 530		 * (it may either follow vma or precede it).
 531		 */
 532		vma_iter_store(vmi, vp->insert);
 533		mm->map_count++;
 
 
 
 
 
 
 
 
 534	}
 535
 536	if (vp->anon_vma) {
 537		anon_vma_interval_tree_post_update_vma(vp->vma);
 538		if (vp->adj_next)
 539			anon_vma_interval_tree_post_update_vma(vp->adj_next);
 540		anon_vma_unlock_write(vp->anon_vma);
 541	}
 
 
 542
 543	if (vp->file) {
 544		i_mmap_unlock_write(vp->mapping);
 545		uprobe_mmap(vp->vma);
 546
 547		if (vp->adj_next)
 548			uprobe_mmap(vp->adj_next);
 549	}
 550
 551	if (vp->remove) {
 552again:
 553		vma_mark_detached(vp->remove, true);
 554		if (vp->file) {
 555			uprobe_munmap(vp->remove, vp->remove->vm_start,
 556				      vp->remove->vm_end);
 557			fput(vp->file);
 558		}
 559		if (vp->remove->anon_vma)
 560			anon_vma_merge(vp->vma, vp->remove);
 561		mm->map_count--;
 562		mpol_put(vma_policy(vp->remove));
 563		if (!vp->remove2)
 564			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
 565		vm_area_free(vp->remove);
 566
 567		/*
 568		 * In mprotect's case 6 (see comments on vma_merge),
 569		 * we are removing both mid and next vmas
 
 570		 */
 571		if (vp->remove2) {
 572			vp->remove = vp->remove2;
 573			vp->remove2 = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574			goto again;
 575		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	}
 577	if (vp->insert && vp->file)
 578		uprobe_mmap(vp->insert);
 579	validate_mm(mm);
 580}
 581
 582/*
 583 * dup_anon_vma() - Helper function to duplicate anon_vma
 584 * @dst: The destination VMA
 585 * @src: The source VMA
 586 * @dup: Pointer to the destination VMA when successful.
 587 *
 588 * Returns: 0 on success.
 589 */
 590static inline int dup_anon_vma(struct vm_area_struct *dst,
 591		struct vm_area_struct *src, struct vm_area_struct **dup)
 592{
 593	/*
 594	 * Easily overlooked: when mprotect shifts the boundary, make sure the
 595	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
 596	 * anon pages imported.
 597	 */
 598	if (src->anon_vma && !dst->anon_vma) {
 599		int ret;
 600
 601		vma_assert_write_locked(dst);
 602		dst->anon_vma = src->anon_vma;
 603		ret = anon_vma_clone(dst, src);
 604		if (ret)
 605			return ret;
 606
 607		*dup = dst;
 608	}
 609
 610	return 0;
 611}
 612
 613/*
 614 * vma_expand - Expand an existing VMA
 615 *
 616 * @vmi: The vma iterator
 617 * @vma: The vma to expand
 618 * @start: The start of the vma
 619 * @end: The exclusive end of the vma
 620 * @pgoff: The page offset of vma
 621 * @next: The current of next vma.
 622 *
 623 * Expand @vma to @start and @end.  Can expand off the start and end.  Will
 624 * expand over @next if it's different from @vma and @end == @next->vm_end.
 625 * Checking if the @vma can expand and merge with @next needs to be handled by
 626 * the caller.
 627 *
 628 * Returns: 0 on success
 629 */
 630int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
 631	       unsigned long start, unsigned long end, pgoff_t pgoff,
 632	       struct vm_area_struct *next)
 633{
 634	struct vm_area_struct *anon_dup = NULL;
 635	bool remove_next = false;
 636	struct vma_prepare vp;
 637
 638	vma_start_write(vma);
 639	if (next && (vma != next) && (end == next->vm_end)) {
 640		int ret;
 641
 642		remove_next = true;
 643		vma_start_write(next);
 644		ret = dup_anon_vma(vma, next, &anon_dup);
 645		if (ret)
 646			return ret;
 647	}
 648
 649	init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
 650	/* Not merging but overwriting any part of next is not handled. */
 651	VM_WARN_ON(next && !vp.remove &&
 652		  next != vma && end > next->vm_start);
 653	/* Only handles expanding */
 654	VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
 655
 656	/* Note: vma iterator must be pointing to 'start' */
 657	vma_iter_config(vmi, start, end);
 658	if (vma_iter_prealloc(vmi, vma))
 659		goto nomem;
 660
 661	vma_prepare(&vp);
 662	vma_adjust_trans_huge(vma, start, end, 0);
 663	vma->vm_start = start;
 664	vma->vm_end = end;
 665	vma->vm_pgoff = pgoff;
 666	vma_iter_store(vmi, vma);
 667
 668	vma_complete(&vp, vmi, vma->vm_mm);
 669	return 0;
 670
 671nomem:
 672	if (anon_dup)
 673		unlink_anon_vmas(anon_dup);
 674	return -ENOMEM;
 675}
 676
 677/*
 678 * vma_shrink() - Reduce an existing VMAs memory area
 679 * @vmi: The vma iterator
 680 * @vma: The VMA to modify
 681 * @start: The new start
 682 * @end: The new end
 683 *
 684 * Returns: 0 on success, -ENOMEM otherwise
 685 */
 686int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
 687	       unsigned long start, unsigned long end, pgoff_t pgoff)
 688{
 689	struct vma_prepare vp;
 690
 691	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
 692
 693	if (vma->vm_start < start)
 694		vma_iter_config(vmi, vma->vm_start, start);
 695	else
 696		vma_iter_config(vmi, end, vma->vm_end);
 697
 698	if (vma_iter_prealloc(vmi, NULL))
 699		return -ENOMEM;
 700
 701	vma_start_write(vma);
 702
 703	init_vma_prep(&vp, vma);
 704	vma_prepare(&vp);
 705	vma_adjust_trans_huge(vma, start, end, 0);
 706
 707	vma_iter_clear(vmi);
 708	vma->vm_start = start;
 709	vma->vm_end = end;
 710	vma->vm_pgoff = pgoff;
 711	vma_complete(&vp, vmi, vma->vm_mm);
 712	return 0;
 713}
 714
 715/*
 716 * If the vma has a ->close operation then the driver probably needs to release
 717 * per-vma resources, so we don't attempt to merge those if the caller indicates
 718 * the current vma may be removed as part of the merge.
 719 */
 720static inline bool is_mergeable_vma(struct vm_area_struct *vma,
 721		struct file *file, unsigned long vm_flags,
 722		struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 723		struct anon_vma_name *anon_name, bool may_remove_vma)
 724{
 725	/*
 726	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 727	 * match the flags but dirty bit -- the caller should mark
 728	 * merged VMA as dirty. If dirty bit won't be excluded from
 729	 * comparison, we increase pressure on the memory system forcing
 730	 * the kernel to generate new VMAs when old one could be
 731	 * extended instead.
 732	 */
 733	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 734		return false;
 735	if (vma->vm_file != file)
 736		return false;
 737	if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
 738		return false;
 739	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 740		return false;
 741	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
 742		return false;
 743	return true;
 744}
 745
 746static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 747		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
 
 748{
 749	/*
 750	 * The list_is_singular() test is to avoid merging VMA cloned from
 751	 * parents. This can improve scalability caused by anon_vma lock.
 752	 */
 753	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 754		list_is_singular(&vma->anon_vma_chain)))
 755		return true;
 756	return anon_vma1 == anon_vma2;
 757}
 758
 759/*
 760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 761 * in front of (at a lower virtual address and file offset than) the vma.
 762 *
 763 * We cannot merge two vmas if they have differently assigned (non-NULL)
 764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 765 *
 766 * We don't check here for the merged mmap wrapping around the end of pagecache
 767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
 768 * wrap, nor mmaps which cover the final page at index -1UL.
 769 *
 770 * We assume the vma may be removed as part of the merge.
 771 */
 772static bool
 773can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 774		struct anon_vma *anon_vma, struct file *file,
 775		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 776		struct anon_vma_name *anon_name)
 777{
 778	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
 779	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 780		if (vma->vm_pgoff == vm_pgoff)
 781			return true;
 782	}
 783	return false;
 784}
 785
 786/*
 787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 788 * beyond (at a higher virtual address and file offset than) the vma.
 789 *
 790 * We cannot merge two vmas if they have differently assigned (non-NULL)
 791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 792 *
 793 * We assume that vma is not removed as part of the merge.
 794 */
 795static bool
 796can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 797		struct anon_vma *anon_vma, struct file *file,
 798		pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 799		struct anon_vma_name *anon_name)
 800{
 801	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
 802	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 803		pgoff_t vm_pglen;
 804		vm_pglen = vma_pages(vma);
 805		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 806			return true;
 807	}
 808	return false;
 809}
 810
 811/*
 812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
 813 * figure out whether that can be merged with its predecessor or its
 814 * successor.  Or both (it neatly fills a hole).
 815 *
 816 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 817 * certain not to be mapped by the time vma_merge is called; but when
 818 * called for mprotect, it is certain to be already mapped (either at
 819 * an offset within prev, or at the start of next), and the flags of
 820 * this area are about to be changed to vm_flags - and the no-change
 821 * case has already been eliminated.
 822 *
 823 * The following mprotect cases have to be considered, where **** is
 824 * the area passed down from mprotect_fixup, never extending beyond one
 825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
 826 * at the same address as **** and is of the same or larger span, and
 827 * NNNN the next vma after ****:
 828 *
 829 *     ****             ****                   ****
 830 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
 831 *    cannot merge    might become       might become
 832 *                    PPNNNNNNNNNN       PPPPPPPPPPCC
 833 *    mmap, brk or    case 4 below       case 5 below
 834 *    mremap move:
 835 *                        ****               ****
 836 *                    PPPP    NNNN       PPPPCCCCNNNN
 837 *                    might become       might become
 838 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
 839 *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
 840 *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
 841 *
 842 * It is important for case 8 that the vma CCCC overlapping the
 843 * region **** is never going to extended over NNNN. Instead NNNN must
 844 * be extended in region **** and CCCC must be removed. This way in
 845 * all cases where vma_merge succeeds, the moment vma_merge drops the
 846 * rmap_locks, the properties of the merged vma will be already
 847 * correct for the whole merged range. Some of those properties like
 848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
 849 * be correct for the whole merged range immediately after the
 850 * rmap_locks are released. Otherwise if NNNN would be removed and
 851 * CCCC would be extended over the NNNN range, remove_migration_ptes
 852 * or other rmap walkers (if working on addresses beyond the "end"
 853 * parameter) may establish ptes with the wrong permissions of CCCC
 854 * instead of the right permissions of NNNN.
 855 *
 856 * In the code below:
 857 * PPPP is represented by *prev
 858 * CCCC is represented by *curr or not represented at all (NULL)
 859 * NNNN is represented by *next or not represented at all (NULL)
 860 * **** is not represented - it will be merged and the vma containing the
 861 *      area is returned, or the function will return NULL
 862 */
 863static struct vm_area_struct
 864*vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
 865	   struct vm_area_struct *prev, unsigned long addr, unsigned long end,
 866	   unsigned long vm_flags, struct anon_vma *anon_vma, struct file *file,
 867	   pgoff_t pgoff, struct mempolicy *policy,
 868	   struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
 869	   struct anon_vma_name *anon_name)
 870{
 871	struct vm_area_struct *curr, *next, *res;
 872	struct vm_area_struct *vma, *adjust, *remove, *remove2;
 873	struct vm_area_struct *anon_dup = NULL;
 874	struct vma_prepare vp;
 875	pgoff_t vma_pgoff;
 876	int err = 0;
 877	bool merge_prev = false;
 878	bool merge_next = false;
 879	bool vma_expanded = false;
 880	unsigned long vma_start = addr;
 881	unsigned long vma_end = end;
 882	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 883	long adj_start = 0;
 
 884
 885	/*
 886	 * We later require that vma->vm_flags == vm_flags,
 887	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 888	 */
 889	if (vm_flags & VM_SPECIAL)
 890		return NULL;
 891
 892	/* Does the input range span an existing VMA? (cases 5 - 8) */
 893	curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
 894
 895	if (!curr ||			/* cases 1 - 4 */
 896	    end == curr->vm_end)	/* cases 6 - 8, adjacent VMA */
 897		next = vma_lookup(mm, end);
 898	else
 899		next = NULL;		/* case 5 */
 900
 901	if (prev) {
 902		vma_start = prev->vm_start;
 903		vma_pgoff = prev->vm_pgoff;
 904
 905		/* Can we merge the predecessor? */
 906		if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
 907		    && can_vma_merge_after(prev, vm_flags, anon_vma, file,
 908					   pgoff, vm_userfaultfd_ctx, anon_name)) {
 909			merge_prev = true;
 910			vma_prev(vmi);
 911		}
 912	}
 913
 914	/* Can we merge the successor? */
 915	if (next && mpol_equal(policy, vma_policy(next)) &&
 916	    can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
 917				 vm_userfaultfd_ctx, anon_name)) {
 918		merge_next = true;
 919	}
 920
 921	/* Verify some invariant that must be enforced by the caller. */
 922	VM_WARN_ON(prev && addr <= prev->vm_start);
 923	VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
 924	VM_WARN_ON(addr >= end);
 925
 926	if (!merge_prev && !merge_next)
 927		return NULL; /* Not mergeable. */
 928
 929	if (merge_prev)
 930		vma_start_write(prev);
 931
 932	res = vma = prev;
 933	remove = remove2 = adjust = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934
 935	/* Can we merge both the predecessor and the successor? */
 936	if (merge_prev && merge_next &&
 937	    is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
 938		vma_start_write(next);
 939		remove = next;				/* case 1 */
 940		vma_end = next->vm_end;
 941		err = dup_anon_vma(prev, next, &anon_dup);
 942		if (curr) {				/* case 6 */
 943			vma_start_write(curr);
 944			remove = curr;
 945			remove2 = next;
 946			/*
 947			 * Note that the dup_anon_vma below cannot overwrite err
 948			 * since the first caller would do nothing unless next
 949			 * has an anon_vma.
 950			 */
 951			if (!next->anon_vma)
 952				err = dup_anon_vma(prev, curr, &anon_dup);
 953		}
 954	} else if (merge_prev) {			/* case 2 */
 955		if (curr) {
 956			vma_start_write(curr);
 957			if (end == curr->vm_end) {	/* case 7 */
 958				/*
 959				 * can_vma_merge_after() assumed we would not be
 960				 * removing prev vma, so it skipped the check
 961				 * for vm_ops->close, but we are removing curr
 962				 */
 963				if (curr->vm_ops && curr->vm_ops->close)
 964					err = -EINVAL;
 965				remove = curr;
 966			} else {			/* case 5 */
 967				adjust = curr;
 968				adj_start = (end - curr->vm_start);
 969			}
 970			if (!err)
 971				err = dup_anon_vma(prev, curr, &anon_dup);
 972		}
 973	} else { /* merge_next */
 974		vma_start_write(next);
 975		res = next;
 976		if (prev && addr < prev->vm_end) {	/* case 4 */
 977			vma_start_write(prev);
 978			vma_end = addr;
 979			adjust = next;
 980			adj_start = -(prev->vm_end - addr);
 981			err = dup_anon_vma(next, prev, &anon_dup);
 982		} else {
 983			/*
 984			 * Note that cases 3 and 8 are the ONLY ones where prev
 985			 * is permitted to be (but is not necessarily) NULL.
 
 986			 */
 987			vma = next;			/* case 3 */
 988			vma_start = addr;
 989			vma_end = next->vm_end;
 990			vma_pgoff = next->vm_pgoff - pglen;
 991			if (curr) {			/* case 8 */
 992				vma_pgoff = curr->vm_pgoff;
 993				vma_start_write(curr);
 994				remove = curr;
 995				err = dup_anon_vma(next, curr, &anon_dup);
 996			}
 997		}
 998	}
 999
1000	/* Error in anon_vma clone. */
1001	if (err)
1002		goto anon_vma_fail;
1003
1004	if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1005		vma_expanded = true;
1006
1007	if (vma_expanded) {
1008		vma_iter_config(vmi, vma_start, vma_end);
1009	} else {
1010		vma_iter_config(vmi, adjust->vm_start + adj_start,
1011				adjust->vm_end);
1012	}
1013
1014	if (vma_iter_prealloc(vmi, vma))
1015		goto prealloc_fail;
1016
1017	init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1018	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1019		   vp.anon_vma != adjust->anon_vma);
1020
1021	vma_prepare(&vp);
1022	vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1023
1024	vma->vm_start = vma_start;
1025	vma->vm_end = vma_end;
1026	vma->vm_pgoff = vma_pgoff;
1027
1028	if (vma_expanded)
1029		vma_iter_store(vmi, vma);
1030
1031	if (adj_start) {
1032		adjust->vm_start += adj_start;
1033		adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1034		if (adj_start < 0) {
1035			WARN_ON(vma_expanded);
1036			vma_iter_store(vmi, next);
1037		}
 
 
 
 
1038	}
1039
1040	vma_complete(&vp, vmi, mm);
1041	khugepaged_enter_vma(res, vm_flags);
1042	return res;
1043
1044prealloc_fail:
1045	if (anon_dup)
1046		unlink_anon_vmas(anon_dup);
1047
1048anon_vma_fail:
1049	vma_iter_set(vmi, addr);
1050	vma_iter_load(vmi);
1051	return NULL;
1052}
1053
1054/*
1055 * Rough compatibility check to quickly see if it's even worth looking
1056 * at sharing an anon_vma.
1057 *
1058 * They need to have the same vm_file, and the flags can only differ
1059 * in things that mprotect may change.
1060 *
1061 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1062 * we can merge the two vma's. For example, we refuse to merge a vma if
1063 * there is a vm_ops->close() function, because that indicates that the
1064 * driver is doing some kind of reference counting. But that doesn't
1065 * really matter for the anon_vma sharing case.
1066 */
1067static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1068{
1069	return a->vm_end == b->vm_start &&
1070		mpol_equal(vma_policy(a), vma_policy(b)) &&
1071		a->vm_file == b->vm_file &&
1072		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1073		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1074}
1075
1076/*
1077 * Do some basic sanity checking to see if we can re-use the anon_vma
1078 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1079 * the same as 'old', the other will be the new one that is trying
1080 * to share the anon_vma.
1081 *
1082 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1083 * the anon_vma of 'old' is concurrently in the process of being set up
1084 * by another page fault trying to merge _that_. But that's ok: if it
1085 * is being set up, that automatically means that it will be a singleton
1086 * acceptable for merging, so we can do all of this optimistically. But
1087 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1088 *
1089 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1090 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1091 * is to return an anon_vma that is "complex" due to having gone through
1092 * a fork).
1093 *
1094 * We also make sure that the two vma's are compatible (adjacent,
1095 * and with the same memory policies). That's all stable, even with just
1096 * a read lock on the mmap_lock.
1097 */
1098static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1099{
1100	if (anon_vma_compatible(a, b)) {
1101		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1102
1103		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1104			return anon_vma;
1105	}
1106	return NULL;
1107}
1108
1109/*
1110 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1111 * neighbouring vmas for a suitable anon_vma, before it goes off
1112 * to allocate a new anon_vma.  It checks because a repetitive
1113 * sequence of mprotects and faults may otherwise lead to distinct
1114 * anon_vmas being allocated, preventing vma merge in subsequent
1115 * mprotect.
1116 */
1117struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1118{
1119	MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1120	struct anon_vma *anon_vma = NULL;
1121	struct vm_area_struct *prev, *next;
1122
1123	/* Try next first. */
1124	next = mas_walk(&mas);
1125	if (next) {
1126		anon_vma = reusable_anon_vma(next, vma, next);
1127		if (anon_vma)
1128			return anon_vma;
1129	}
1130
1131	prev = mas_prev(&mas, 0);
1132	VM_BUG_ON_VMA(prev != vma, vma);
1133	prev = mas_prev(&mas, 0);
1134	/* Try prev next. */
1135	if (prev)
1136		anon_vma = reusable_anon_vma(prev, prev, vma);
1137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138	/*
1139	 * We might reach here with anon_vma == NULL if we can't find
1140	 * any reusable anon_vma.
1141	 * There's no absolute need to look only at touching neighbours:
1142	 * we could search further afield for "compatible" anon_vmas.
1143	 * But it would probably just be a waste of time searching,
1144	 * or lead to too many vmas hanging off the same anon_vma.
1145	 * We're trying to allow mprotect remerging later on,
1146	 * not trying to minimize memory used for anon_vmas.
1147	 */
1148	return anon_vma;
1149}
1150
1151/*
1152 * If a hint addr is less than mmap_min_addr change hint to be as
1153 * low as possible but still greater than mmap_min_addr
1154 */
1155static inline unsigned long round_hint_to_min(unsigned long hint)
1156{
1157	hint &= PAGE_MASK;
1158	if (((void *)hint != NULL) &&
1159	    (hint < mmap_min_addr))
1160		return PAGE_ALIGN(mmap_min_addr);
1161	return hint;
1162}
1163
1164bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1165			unsigned long bytes)
1166{
1167	unsigned long locked_pages, limit_pages;
1168
1169	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1170		return true;
1171
1172	locked_pages = bytes >> PAGE_SHIFT;
1173	locked_pages += mm->locked_vm;
1174
1175	limit_pages = rlimit(RLIMIT_MEMLOCK);
1176	limit_pages >>= PAGE_SHIFT;
1177
1178	return locked_pages <= limit_pages;
 
1179}
1180
1181static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1182{
1183	if (S_ISREG(inode->i_mode))
1184		return MAX_LFS_FILESIZE;
1185
1186	if (S_ISBLK(inode->i_mode))
1187		return MAX_LFS_FILESIZE;
1188
1189	if (S_ISSOCK(inode->i_mode))
1190		return MAX_LFS_FILESIZE;
1191
1192	/* Special "we do even unsigned file positions" case */
1193	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1194		return 0;
1195
1196	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1197	return ULONG_MAX;
1198}
1199
1200static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1201				unsigned long pgoff, unsigned long len)
1202{
1203	u64 maxsize = file_mmap_size_max(file, inode);
1204
1205	if (maxsize && len > maxsize)
1206		return false;
1207	maxsize -= len;
1208	if (pgoff > maxsize >> PAGE_SHIFT)
1209		return false;
1210	return true;
1211}
1212
1213/*
1214 * The caller must write-lock current->mm->mmap_lock.
1215 */
1216unsigned long do_mmap(struct file *file, unsigned long addr,
1217			unsigned long len, unsigned long prot,
1218			unsigned long flags, vm_flags_t vm_flags,
1219			unsigned long pgoff, unsigned long *populate,
1220			struct list_head *uf)
1221{
1222	struct mm_struct *mm = current->mm;
1223	int pkey = 0;
1224
1225	*populate = 0;
1226
1227	if (!len)
1228		return -EINVAL;
1229
1230	/*
1231	 * Does the application expect PROT_READ to imply PROT_EXEC?
1232	 *
1233	 * (the exception is when the underlying filesystem is noexec
1234	 *  mounted, in which case we don't add PROT_EXEC.)
1235	 */
1236	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1237		if (!(file && path_noexec(&file->f_path)))
1238			prot |= PROT_EXEC;
1239
1240	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1241	if (flags & MAP_FIXED_NOREPLACE)
1242		flags |= MAP_FIXED;
1243
1244	if (!(flags & MAP_FIXED))
1245		addr = round_hint_to_min(addr);
1246
1247	/* Careful about overflows.. */
1248	len = PAGE_ALIGN(len);
1249	if (!len)
1250		return -ENOMEM;
1251
1252	/* offset overflow? */
1253	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1254		return -EOVERFLOW;
1255
1256	/* Too many mappings? */
1257	if (mm->map_count > sysctl_max_map_count)
1258		return -ENOMEM;
1259
1260	/* Obtain the address to map to. we verify (or select) it and ensure
1261	 * that it represents a valid section of the address space.
1262	 */
1263	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1264	if (IS_ERR_VALUE(addr))
1265		return addr;
1266
1267	if (flags & MAP_FIXED_NOREPLACE) {
1268		if (find_vma_intersection(mm, addr, addr + len))
 
 
1269			return -EEXIST;
1270	}
1271
1272	if (prot == PROT_EXEC) {
1273		pkey = execute_only_pkey(mm);
1274		if (pkey < 0)
1275			pkey = 0;
1276	}
1277
1278	/* Do simple checking here so the lower-level routines won't have
1279	 * to. we assume access permissions have been handled by the open
1280	 * of the memory object, so we don't do any here.
1281	 */
1282	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1283			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1284
1285	if (flags & MAP_LOCKED)
1286		if (!can_do_mlock())
1287			return -EPERM;
1288
1289	if (!mlock_future_ok(mm, vm_flags, len))
1290		return -EAGAIN;
1291
1292	if (file) {
1293		struct inode *inode = file_inode(file);
1294		unsigned long flags_mask;
1295
1296		if (!file_mmap_ok(file, inode, pgoff, len))
1297			return -EOVERFLOW;
1298
1299		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1300
1301		switch (flags & MAP_TYPE) {
1302		case MAP_SHARED:
1303			/*
1304			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1305			 * flags. E.g. MAP_SYNC is dangerous to use with
1306			 * MAP_SHARED as you don't know which consistency model
1307			 * you will get. We silently ignore unsupported flags
1308			 * with MAP_SHARED to preserve backward compatibility.
1309			 */
1310			flags &= LEGACY_MAP_MASK;
1311			fallthrough;
1312		case MAP_SHARED_VALIDATE:
1313			if (flags & ~flags_mask)
1314				return -EOPNOTSUPP;
1315			if (prot & PROT_WRITE) {
1316				if (!(file->f_mode & FMODE_WRITE))
1317					return -EACCES;
1318				if (IS_SWAPFILE(file->f_mapping->host))
1319					return -ETXTBSY;
1320			}
1321
1322			/*
1323			 * Make sure we don't allow writing to an append-only
1324			 * file..
1325			 */
1326			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327				return -EACCES;
1328
 
 
 
 
 
 
1329			vm_flags |= VM_SHARED | VM_MAYSHARE;
1330			if (!(file->f_mode & FMODE_WRITE))
1331				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332			fallthrough;
 
1333		case MAP_PRIVATE:
1334			if (!(file->f_mode & FMODE_READ))
1335				return -EACCES;
1336			if (path_noexec(&file->f_path)) {
1337				if (vm_flags & VM_EXEC)
1338					return -EPERM;
1339				vm_flags &= ~VM_MAYEXEC;
1340			}
1341
1342			if (!file->f_op->mmap)
1343				return -ENODEV;
1344			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345				return -EINVAL;
1346			break;
1347
1348		default:
1349			return -EINVAL;
1350		}
1351	} else {
1352		switch (flags & MAP_TYPE) {
1353		case MAP_SHARED:
1354			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355				return -EINVAL;
1356			/*
1357			 * Ignore pgoff.
1358			 */
1359			pgoff = 0;
1360			vm_flags |= VM_SHARED | VM_MAYSHARE;
1361			break;
1362		case MAP_PRIVATE:
1363			/*
1364			 * Set pgoff according to addr for anon_vma.
1365			 */
1366			pgoff = addr >> PAGE_SHIFT;
1367			break;
1368		default:
1369			return -EINVAL;
1370		}
1371	}
1372
1373	/*
1374	 * Set 'VM_NORESERVE' if we should not account for the
1375	 * memory use of this mapping.
1376	 */
1377	if (flags & MAP_NORESERVE) {
1378		/* We honor MAP_NORESERVE if allowed to overcommit */
1379		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380			vm_flags |= VM_NORESERVE;
1381
1382		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383		if (file && is_file_hugepages(file))
1384			vm_flags |= VM_NORESERVE;
1385	}
1386
1387	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388	if (!IS_ERR_VALUE(addr) &&
1389	    ((vm_flags & VM_LOCKED) ||
1390	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391		*populate = len;
1392	return addr;
1393}
1394
1395unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396			      unsigned long prot, unsigned long flags,
1397			      unsigned long fd, unsigned long pgoff)
1398{
1399	struct file *file = NULL;
1400	unsigned long retval;
1401
 
 
1402	if (!(flags & MAP_ANONYMOUS)) {
1403		audit_mmap_fd(fd, flags);
1404		file = fget(fd);
1405		if (!file)
1406			return -EBADF;
1407		if (is_file_hugepages(file)) {
1408			len = ALIGN(len, huge_page_size(hstate_file(file)));
1409		} else if (unlikely(flags & MAP_HUGETLB)) {
1410			retval = -EINVAL;
1411			goto out_fput;
1412		}
1413	} else if (flags & MAP_HUGETLB) {
 
1414		struct hstate *hs;
1415
1416		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417		if (!hs)
1418			return -EINVAL;
1419
1420		len = ALIGN(len, huge_page_size(hs));
1421		/*
1422		 * VM_NORESERVE is used because the reservations will be
1423		 * taken when vm_ops->mmap() is called
 
 
1424		 */
1425		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426				VM_NORESERVE,
1427				HUGETLB_ANONHUGE_INODE,
1428				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429		if (IS_ERR(file))
1430			return PTR_ERR(file);
1431	}
1432
 
 
1433	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434out_fput:
1435	if (file)
1436		fput(file);
1437	return retval;
1438}
1439
1440SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441		unsigned long, prot, unsigned long, flags,
1442		unsigned long, fd, unsigned long, pgoff)
1443{
1444	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445}
1446
1447#ifdef __ARCH_WANT_SYS_OLD_MMAP
1448struct mmap_arg_struct {
1449	unsigned long addr;
1450	unsigned long len;
1451	unsigned long prot;
1452	unsigned long flags;
1453	unsigned long fd;
1454	unsigned long offset;
1455};
1456
1457SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458{
1459	struct mmap_arg_struct a;
1460
1461	if (copy_from_user(&a, arg, sizeof(a)))
1462		return -EFAULT;
1463	if (offset_in_page(a.offset))
1464		return -EINVAL;
1465
1466	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467			       a.offset >> PAGE_SHIFT);
1468}
1469#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470
1471static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472{
1473	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474}
1475
1476static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477{
1478	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479		(VM_WRITE | VM_SHARED);
1480}
1481
1482static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483{
1484	/* No managed pages to writeback. */
1485	if (vma->vm_flags & VM_PFNMAP)
1486		return false;
1487
1488	return vma->vm_file && vma->vm_file->f_mapping &&
1489		mapping_can_writeback(vma->vm_file->f_mapping);
1490}
1491
1492/*
1493 * Does this VMA require the underlying folios to have their dirty state
1494 * tracked?
1495 */
1496bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497{
1498	/* Only shared, writable VMAs require dirty tracking. */
1499	if (!vma_is_shared_writable(vma))
1500		return false;
1501
1502	/* Does the filesystem need to be notified? */
1503	if (vm_ops_needs_writenotify(vma->vm_ops))
1504		return true;
1505
1506	/*
1507	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1508	 * can writeback, dirty tracking is still required.
1509	 */
1510	return vma_fs_can_writeback(vma);
1511}
1512
1513/*
1514 * Some shared mappings will want the pages marked read-only
1515 * to track write events. If so, we'll downgrade vm_page_prot
1516 * to the private version (using protection_map[] without the
1517 * VM_SHARED bit).
1518 */
1519int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520{
 
 
 
1521	/* If it was private or non-writable, the write bit is already clear */
1522	if (!vma_is_shared_writable(vma))
1523		return 0;
1524
1525	/* The backer wishes to know when pages are first written to? */
1526	if (vm_ops_needs_writenotify(vma->vm_ops))
1527		return 1;
1528
1529	/* The open routine did something to the protections that pgprot_modify
1530	 * won't preserve? */
1531	if (pgprot_val(vm_page_prot) !=
1532	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533		return 0;
1534
1535	/*
1536	 * Do we need to track softdirty? hugetlb does not support softdirty
1537	 * tracking yet.
1538	 */
1539	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540		return 1;
1541
1542	/* Do we need write faults for uffd-wp tracking? */
1543	if (userfaultfd_wp(vma))
1544		return 1;
1545
1546	/* Can the mapping track the dirty pages? */
1547	return vma_fs_can_writeback(vma);
 
1548}
1549
1550/*
1551 * We account for memory if it's a private writeable mapping,
1552 * not hugepages and VM_NORESERVE wasn't set.
1553 */
1554static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555{
1556	/*
1557	 * hugetlb has its own accounting separate from the core VM
1558	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559	 */
1560	if (file && is_file_hugepages(file))
1561		return 0;
1562
1563	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564}
1565
1566/**
1567 * unmapped_area() - Find an area between the low_limit and the high_limit with
1568 * the correct alignment and offset, all from @info. Note: current->mm is used
1569 * for the search.
1570 *
1571 * @info: The unmapped area information including the range [low_limit -
1572 * high_limit), the alignment offset and mask.
1573 *
1574 * Return: A memory address or -ENOMEM.
1575 */
1576static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577{
1578	unsigned long length, gap;
1579	unsigned long low_limit, high_limit;
1580	struct vm_area_struct *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1581
1582	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1583
1584	/* Adjust search length to account for worst case alignment overhead */
1585	length = info->length + info->align_mask;
1586	if (length < info->length)
1587		return -ENOMEM;
1588
1589	low_limit = info->low_limit;
1590	if (low_limit < mmap_min_addr)
1591		low_limit = mmap_min_addr;
1592	high_limit = info->high_limit;
1593retry:
1594	if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1595		return -ENOMEM;
1596
1597	gap = mas.index;
1598	gap += (info->align_offset - gap) & info->align_mask;
1599	tmp = mas_next(&mas, ULONG_MAX);
1600	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1601		if (vm_start_gap(tmp) < gap + length - 1) {
1602			low_limit = tmp->vm_end;
1603			mas_reset(&mas);
1604			goto retry;
 
 
 
 
 
 
 
 
 
 
 
1605		}
1606	} else {
1607		tmp = mas_prev(&mas, 0);
1608		if (tmp && vm_end_gap(tmp) > gap) {
1609			low_limit = vm_end_gap(tmp);
1610			mas_reset(&mas);
1611			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1612		}
1613	}
1614
1615	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616}
1617
1618/**
1619 * unmapped_area_topdown() - Find an area between the low_limit and the
1620 * high_limit with the correct alignment and offset at the highest available
1621 * address, all from @info. Note: current->mm is used for the search.
1622 *
1623 * @info: The unmapped area information including the range [low_limit -
1624 * high_limit), the alignment offset and mask.
1625 *
1626 * Return: A memory address or -ENOMEM.
1627 */
1628static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1629{
1630	unsigned long length, gap, gap_end;
1631	unsigned long low_limit, high_limit;
1632	struct vm_area_struct *tmp;
1633
1634	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1635	/* Adjust search length to account for worst case alignment overhead */
1636	length = info->length + info->align_mask;
1637	if (length < info->length)
1638		return -ENOMEM;
1639
1640	low_limit = info->low_limit;
1641	if (low_limit < mmap_min_addr)
1642		low_limit = mmap_min_addr;
1643	high_limit = info->high_limit;
1644retry:
1645	if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1646		return -ENOMEM;
1647
1648	gap = mas.last + 1 - info->length;
1649	gap -= (gap - info->align_offset) & info->align_mask;
1650	gap_end = mas.last;
1651	tmp = mas_next(&mas, ULONG_MAX);
1652	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1653		if (vm_start_gap(tmp) <= gap_end) {
1654			high_limit = vm_start_gap(tmp);
1655			mas_reset(&mas);
1656			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657		}
1658	} else {
1659		tmp = mas_prev(&mas, 0);
1660		if (tmp && vm_end_gap(tmp) > gap) {
1661			high_limit = tmp->vm_start;
1662			mas_reset(&mas);
1663			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664		}
1665	}
1666
1667	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
1668}
1669
1670/*
1671 * Search for an unmapped address range.
1672 *
1673 * We are looking for a range that:
1674 * - does not intersect with any VMA;
1675 * - is contained within the [low_limit, high_limit) interval;
1676 * - is at least the desired size.
1677 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1678 */
1679unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680{
1681	unsigned long addr;
1682
1683	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1684		addr = unmapped_area_topdown(info);
1685	else
1686		addr = unmapped_area(info);
1687
1688	trace_vm_unmapped_area(addr, info);
1689	return addr;
1690}
1691
1692/* Get an address range which is currently unmapped.
1693 * For shmat() with addr=0.
1694 *
1695 * Ugly calling convention alert:
1696 * Return value with the low bits set means error value,
1697 * ie
1698 *	if (ret & ~PAGE_MASK)
1699 *		error = ret;
1700 *
1701 * This function "knows" that -ENOMEM has the bits set.
1702 */
 
1703unsigned long
1704generic_get_unmapped_area(struct file *filp, unsigned long addr,
1705			  unsigned long len, unsigned long pgoff,
1706			  unsigned long flags)
1707{
1708	struct mm_struct *mm = current->mm;
1709	struct vm_area_struct *vma, *prev;
1710	struct vm_unmapped_area_info info;
1711	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1712
1713	if (len > mmap_end - mmap_min_addr)
1714		return -ENOMEM;
1715
1716	if (flags & MAP_FIXED)
1717		return addr;
1718
1719	if (addr) {
1720		addr = PAGE_ALIGN(addr);
1721		vma = find_vma_prev(mm, addr, &prev);
1722		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1723		    (!vma || addr + len <= vm_start_gap(vma)) &&
1724		    (!prev || addr >= vm_end_gap(prev)))
1725			return addr;
1726	}
1727
1728	info.flags = 0;
1729	info.length = len;
1730	info.low_limit = mm->mmap_base;
1731	info.high_limit = mmap_end;
1732	info.align_mask = 0;
1733	info.align_offset = 0;
1734	return vm_unmapped_area(&info);
1735}
1736
1737#ifndef HAVE_ARCH_UNMAPPED_AREA
1738unsigned long
1739arch_get_unmapped_area(struct file *filp, unsigned long addr,
1740		       unsigned long len, unsigned long pgoff,
1741		       unsigned long flags)
1742{
1743	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1744}
1745#endif
1746
1747/*
1748 * This mmap-allocator allocates new areas top-down from below the
1749 * stack's low limit (the base):
1750 */
 
1751unsigned long
1752generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1753				  unsigned long len, unsigned long pgoff,
1754				  unsigned long flags)
1755{
1756	struct vm_area_struct *vma, *prev;
1757	struct mm_struct *mm = current->mm;
1758	struct vm_unmapped_area_info info;
1759	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1760
1761	/* requested length too big for entire address space */
1762	if (len > mmap_end - mmap_min_addr)
1763		return -ENOMEM;
1764
1765	if (flags & MAP_FIXED)
1766		return addr;
1767
1768	/* requesting a specific address */
1769	if (addr) {
1770		addr = PAGE_ALIGN(addr);
1771		vma = find_vma_prev(mm, addr, &prev);
1772		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1773				(!vma || addr + len <= vm_start_gap(vma)) &&
1774				(!prev || addr >= vm_end_gap(prev)))
1775			return addr;
1776	}
1777
1778	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1779	info.length = len;
1780	info.low_limit = PAGE_SIZE;
1781	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1782	info.align_mask = 0;
1783	info.align_offset = 0;
1784	addr = vm_unmapped_area(&info);
1785
1786	/*
1787	 * A failed mmap() very likely causes application failure,
1788	 * so fall back to the bottom-up function here. This scenario
1789	 * can happen with large stack limits and large mmap()
1790	 * allocations.
1791	 */
1792	if (offset_in_page(addr)) {
1793		VM_BUG_ON(addr != -ENOMEM);
1794		info.flags = 0;
1795		info.low_limit = TASK_UNMAPPED_BASE;
1796		info.high_limit = mmap_end;
1797		addr = vm_unmapped_area(&info);
1798	}
1799
1800	return addr;
1801}
1802
1803#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804unsigned long
1805arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806			       unsigned long len, unsigned long pgoff,
1807			       unsigned long flags)
1808{
1809	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810}
1811#endif
1812
1813unsigned long
1814get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1815		unsigned long pgoff, unsigned long flags)
1816{
1817	unsigned long (*get_area)(struct file *, unsigned long,
1818				  unsigned long, unsigned long, unsigned long);
1819
1820	unsigned long error = arch_mmap_check(addr, len, flags);
1821	if (error)
1822		return error;
1823
1824	/* Careful about overflows.. */
1825	if (len > TASK_SIZE)
1826		return -ENOMEM;
1827
1828	get_area = current->mm->get_unmapped_area;
1829	if (file) {
1830		if (file->f_op->get_unmapped_area)
1831			get_area = file->f_op->get_unmapped_area;
1832	} else if (flags & MAP_SHARED) {
1833		/*
1834		 * mmap_region() will call shmem_zero_setup() to create a file,
1835		 * so use shmem's get_unmapped_area in case it can be huge.
 
1836		 */
 
1837		get_area = shmem_get_unmapped_area;
1838	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1839		/* Ensures that larger anonymous mappings are THP aligned. */
1840		get_area = thp_get_unmapped_area;
1841	}
1842
1843	/* Always treat pgoff as zero for anonymous memory. */
1844	if (!file)
1845		pgoff = 0;
1846
1847	addr = get_area(file, addr, len, pgoff, flags);
1848	if (IS_ERR_VALUE(addr))
1849		return addr;
1850
1851	if (addr > TASK_SIZE - len)
1852		return -ENOMEM;
1853	if (offset_in_page(addr))
1854		return -EINVAL;
1855
1856	error = security_mmap_addr(addr);
1857	return error ? error : addr;
1858}
1859
1860EXPORT_SYMBOL(get_unmapped_area);
1861
1862/**
1863 * find_vma_intersection() - Look up the first VMA which intersects the interval
1864 * @mm: The process address space.
1865 * @start_addr: The inclusive start user address.
1866 * @end_addr: The exclusive end user address.
1867 *
1868 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1869 * start_addr < end_addr.
1870 */
1871struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1872					     unsigned long start_addr,
1873					     unsigned long end_addr)
1874{
1875	unsigned long index = start_addr;
 
1876
1877	mmap_assert_locked(mm);
1878	return mt_find(&mm->mm_mt, &index, end_addr - 1);
1879}
1880EXPORT_SYMBOL(find_vma_intersection);
1881
1882/**
1883 * find_vma() - Find the VMA for a given address, or the next VMA.
1884 * @mm: The mm_struct to check
1885 * @addr: The address
1886 *
1887 * Returns: The VMA associated with addr, or the next VMA.
1888 * May return %NULL in the case of no VMA at addr or above.
1889 */
1890struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1891{
1892	unsigned long index = addr;
1893
1894	mmap_assert_locked(mm);
1895	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
 
 
 
 
 
 
 
 
 
 
1896}
 
1897EXPORT_SYMBOL(find_vma);
1898
1899/**
1900 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1901 * set %pprev to the previous VMA, if any.
1902 * @mm: The mm_struct to check
1903 * @addr: The address
1904 * @pprev: The pointer to set to the previous VMA
1905 *
1906 * Note that RCU lock is missing here since the external mmap_lock() is used
1907 * instead.
1908 *
1909 * Returns: The VMA associated with @addr, or the next vma.
1910 * May return %NULL in the case of no vma at addr or above.
1911 */
1912struct vm_area_struct *
1913find_vma_prev(struct mm_struct *mm, unsigned long addr,
1914			struct vm_area_struct **pprev)
1915{
1916	struct vm_area_struct *vma;
1917	MA_STATE(mas, &mm->mm_mt, addr, addr);
1918
1919	vma = mas_walk(&mas);
1920	*pprev = mas_prev(&mas, 0);
1921	if (!vma)
1922		vma = mas_next(&mas, ULONG_MAX);
 
 
 
 
1923	return vma;
1924}
1925
1926/*
1927 * Verify that the stack growth is acceptable and
1928 * update accounting. This is shared with both the
1929 * grow-up and grow-down cases.
1930 */
1931static int acct_stack_growth(struct vm_area_struct *vma,
1932			     unsigned long size, unsigned long grow)
1933{
1934	struct mm_struct *mm = vma->vm_mm;
1935	unsigned long new_start;
1936
1937	/* address space limit tests */
1938	if (!may_expand_vm(mm, vma->vm_flags, grow))
1939		return -ENOMEM;
1940
1941	/* Stack limit test */
1942	if (size > rlimit(RLIMIT_STACK))
1943		return -ENOMEM;
1944
1945	/* mlock limit tests */
1946	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1947		return -ENOMEM;
 
 
 
 
 
 
 
1948
1949	/* Check to ensure the stack will not grow into a hugetlb-only region */
1950	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1951			vma->vm_end - size;
1952	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1953		return -EFAULT;
1954
1955	/*
1956	 * Overcommit..  This must be the final test, as it will
1957	 * update security statistics.
1958	 */
1959	if (security_vm_enough_memory_mm(mm, grow))
1960		return -ENOMEM;
1961
1962	return 0;
1963}
1964
1965#if defined(CONFIG_STACK_GROWSUP)
1966/*
1967 * PA-RISC uses this for its stack.
1968 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1969 */
1970static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1971{
1972	struct mm_struct *mm = vma->vm_mm;
1973	struct vm_area_struct *next;
1974	unsigned long gap_addr;
1975	int error = 0;
1976	MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1977
1978	if (!(vma->vm_flags & VM_GROWSUP))
1979		return -EFAULT;
1980
1981	/* Guard against exceeding limits of the address space. */
1982	address &= PAGE_MASK;
1983	if (address >= (TASK_SIZE & PAGE_MASK))
1984		return -ENOMEM;
1985	address += PAGE_SIZE;
1986
1987	/* Enforce stack_guard_gap */
1988	gap_addr = address + stack_guard_gap;
1989
1990	/* Guard against overflow */
1991	if (gap_addr < address || gap_addr > TASK_SIZE)
1992		gap_addr = TASK_SIZE;
1993
1994	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1995	if (next && vma_is_accessible(next)) {
 
1996		if (!(next->vm_flags & VM_GROWSUP))
1997			return -ENOMEM;
1998		/* Check that both stack segments have the same anon_vma? */
1999	}
2000
2001	if (next)
2002		mas_prev_range(&mas, address);
2003
2004	__mas_set_range(&mas, vma->vm_start, address - 1);
2005	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2006		return -ENOMEM;
2007
2008	/* We must make sure the anon_vma is allocated. */
2009	if (unlikely(anon_vma_prepare(vma))) {
2010		mas_destroy(&mas);
2011		return -ENOMEM;
2012	}
2013
2014	/* Lock the VMA before expanding to prevent concurrent page faults */
2015	vma_start_write(vma);
2016	/*
2017	 * vma->vm_start/vm_end cannot change under us because the caller
2018	 * is required to hold the mmap_lock in read mode.  We need the
2019	 * anon_vma lock to serialize against concurrent expand_stacks.
2020	 */
2021	anon_vma_lock_write(vma->anon_vma);
2022
2023	/* Somebody else might have raced and expanded it already */
2024	if (address > vma->vm_end) {
2025		unsigned long size, grow;
2026
2027		size = address - vma->vm_start;
2028		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2029
2030		error = -ENOMEM;
2031		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2032			error = acct_stack_growth(vma, size, grow);
2033			if (!error) {
2034				/*
2035				 * We only hold a shared mmap_lock lock here, so
2036				 * we need to protect against concurrent vma
2037				 * expansions.  anon_vma_lock_write() doesn't
2038				 * help here, as we don't guarantee that all
2039				 * growable vmas in a mm share the same root
2040				 * anon vma.  So, we reuse mm->page_table_lock
2041				 * to guard against concurrent vma expansions.
 
 
2042				 */
2043				spin_lock(&mm->page_table_lock);
2044				if (vma->vm_flags & VM_LOCKED)
2045					mm->locked_vm += grow;
2046				vm_stat_account(mm, vma->vm_flags, grow);
2047				anon_vma_interval_tree_pre_update_vma(vma);
2048				vma->vm_end = address;
2049				/* Overwrite old entry in mtree. */
2050				mas_store_prealloc(&mas, vma);
2051				anon_vma_interval_tree_post_update_vma(vma);
 
 
 
 
2052				spin_unlock(&mm->page_table_lock);
2053
2054				perf_event_mmap(vma);
2055			}
2056		}
2057	}
2058	anon_vma_unlock_write(vma->anon_vma);
2059	khugepaged_enter_vma(vma, vma->vm_flags);
2060	mas_destroy(&mas);
2061	validate_mm(mm);
2062	return error;
2063}
2064#endif /* CONFIG_STACK_GROWSUP */
2065
2066/*
2067 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2068 * mmap_lock held for writing.
2069 */
2070int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
2071{
2072	struct mm_struct *mm = vma->vm_mm;
2073	MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2074	struct vm_area_struct *prev;
2075	int error = 0;
2076
2077	if (!(vma->vm_flags & VM_GROWSDOWN))
2078		return -EFAULT;
2079
2080	address &= PAGE_MASK;
2081	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2082		return -EPERM;
2083
2084	/* Enforce stack_guard_gap */
2085	prev = mas_prev(&mas, 0);
2086	/* Check that both stack segments have the same anon_vma? */
2087	if (prev) {
2088		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2089		    vma_is_accessible(prev) &&
2090		    (address - prev->vm_end < stack_guard_gap))
2091			return -ENOMEM;
2092	}
2093
2094	if (prev)
2095		mas_next_range(&mas, vma->vm_start);
2096
2097	__mas_set_range(&mas, address, vma->vm_end - 1);
2098	if (mas_preallocate(&mas, vma, GFP_KERNEL))
2099		return -ENOMEM;
2100
2101	/* We must make sure the anon_vma is allocated. */
2102	if (unlikely(anon_vma_prepare(vma))) {
2103		mas_destroy(&mas);
2104		return -ENOMEM;
2105	}
2106
2107	/* Lock the VMA before expanding to prevent concurrent page faults */
2108	vma_start_write(vma);
2109	/*
2110	 * vma->vm_start/vm_end cannot change under us because the caller
2111	 * is required to hold the mmap_lock in read mode.  We need the
2112	 * anon_vma lock to serialize against concurrent expand_stacks.
2113	 */
2114	anon_vma_lock_write(vma->anon_vma);
2115
2116	/* Somebody else might have raced and expanded it already */
2117	if (address < vma->vm_start) {
2118		unsigned long size, grow;
2119
2120		size = vma->vm_end - address;
2121		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2122
2123		error = -ENOMEM;
2124		if (grow <= vma->vm_pgoff) {
2125			error = acct_stack_growth(vma, size, grow);
2126			if (!error) {
2127				/*
2128				 * We only hold a shared mmap_lock lock here, so
2129				 * we need to protect against concurrent vma
2130				 * expansions.  anon_vma_lock_write() doesn't
2131				 * help here, as we don't guarantee that all
2132				 * growable vmas in a mm share the same root
2133				 * anon vma.  So, we reuse mm->page_table_lock
2134				 * to guard against concurrent vma expansions.
 
 
2135				 */
2136				spin_lock(&mm->page_table_lock);
2137				if (vma->vm_flags & VM_LOCKED)
2138					mm->locked_vm += grow;
2139				vm_stat_account(mm, vma->vm_flags, grow);
2140				anon_vma_interval_tree_pre_update_vma(vma);
2141				vma->vm_start = address;
2142				vma->vm_pgoff -= grow;
2143				/* Overwrite old entry in mtree. */
2144				mas_store_prealloc(&mas, vma);
2145				anon_vma_interval_tree_post_update_vma(vma);
 
2146				spin_unlock(&mm->page_table_lock);
2147
2148				perf_event_mmap(vma);
2149			}
2150		}
2151	}
2152	anon_vma_unlock_write(vma->anon_vma);
2153	khugepaged_enter_vma(vma, vma->vm_flags);
2154	mas_destroy(&mas);
2155	validate_mm(mm);
2156	return error;
2157}
2158
2159/* enforced gap between the expanding stack and other mappings. */
2160unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2161
2162static int __init cmdline_parse_stack_guard_gap(char *p)
2163{
2164	unsigned long val;
2165	char *endptr;
2166
2167	val = simple_strtoul(p, &endptr, 10);
2168	if (!*endptr)
2169		stack_guard_gap = val << PAGE_SHIFT;
2170
2171	return 1;
2172}
2173__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2174
2175#ifdef CONFIG_STACK_GROWSUP
2176int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2177{
2178	return expand_upwards(vma, address);
2179}
2180
2181struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2182{
2183	struct vm_area_struct *vma, *prev;
2184
2185	addr &= PAGE_MASK;
2186	vma = find_vma_prev(mm, addr, &prev);
2187	if (vma && (vma->vm_start <= addr))
2188		return vma;
2189	if (!prev)
2190		return NULL;
2191	if (expand_stack_locked(prev, addr))
2192		return NULL;
2193	if (prev->vm_flags & VM_LOCKED)
2194		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2195	return prev;
2196}
2197#else
2198int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2199{
2200	return expand_downwards(vma, address);
2201}
2202
2203struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
2204{
2205	struct vm_area_struct *vma;
2206	unsigned long start;
2207
2208	addr &= PAGE_MASK;
2209	vma = find_vma(mm, addr);
2210	if (!vma)
2211		return NULL;
2212	if (vma->vm_start <= addr)
2213		return vma;
 
 
 
 
 
2214	start = vma->vm_start;
2215	if (expand_stack_locked(vma, addr))
2216		return NULL;
2217	if (vma->vm_flags & VM_LOCKED)
2218		populate_vma_page_range(vma, addr, start, NULL);
2219	return vma;
2220}
2221#endif
2222
2223#if defined(CONFIG_STACK_GROWSUP)
2224
2225#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2226#define vma_expand_down(vma, addr) (-EFAULT)
2227
2228#else
2229
2230#define vma_expand_up(vma,addr) (-EFAULT)
2231#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2232
2233#endif
2234
2235/*
2236 * expand_stack(): legacy interface for page faulting. Don't use unless
2237 * you have to.
2238 *
2239 * This is called with the mm locked for reading, drops the lock, takes
2240 * the lock for writing, tries to look up a vma again, expands it if
2241 * necessary, and downgrades the lock to reading again.
2242 *
2243 * If no vma is found or it can't be expanded, it returns NULL and has
2244 * dropped the lock.
2245 */
2246struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2247{
2248	struct vm_area_struct *vma, *prev;
2249
2250	mmap_read_unlock(mm);
2251	if (mmap_write_lock_killable(mm))
2252		return NULL;
2253
2254	vma = find_vma_prev(mm, addr, &prev);
2255	if (vma && vma->vm_start <= addr)
2256		goto success;
2257
2258	if (prev && !vma_expand_up(prev, addr)) {
2259		vma = prev;
2260		goto success;
2261	}
2262
2263	if (vma && !vma_expand_down(vma, addr))
2264		goto success;
2265
2266	mmap_write_unlock(mm);
2267	return NULL;
2268
2269success:
2270	mmap_write_downgrade(mm);
2271	return vma;
2272}
2273
2274/*
2275 * Ok - we have the memory areas we should free on a maple tree so release them,
2276 * and do the vma updates.
2277 *
2278 * Called with the mm semaphore held.
2279 */
2280static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2281{
2282	unsigned long nr_accounted = 0;
2283	struct vm_area_struct *vma;
2284
2285	/* Update high watermark before we lower total_vm */
2286	update_hiwater_vm(mm);
2287	mas_for_each(mas, vma, ULONG_MAX) {
2288		long nrpages = vma_pages(vma);
2289
2290		if (vma->vm_flags & VM_ACCOUNT)
2291			nr_accounted += nrpages;
2292		vm_stat_account(mm, vma->vm_flags, -nrpages);
2293		remove_vma(vma, false);
2294	}
2295	vm_unacct_memory(nr_accounted);
 
2296}
2297
2298/*
2299 * Get rid of page table information in the indicated region.
2300 *
2301 * Called with the mm semaphore held.
2302 */
2303static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2304		struct vm_area_struct *vma, struct vm_area_struct *prev,
2305		struct vm_area_struct *next, unsigned long start,
2306		unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2307{
 
2308	struct mmu_gather tlb;
2309	unsigned long mt_start = mas->index;
2310
2311	lru_add_drain();
2312	tlb_gather_mmu(&tlb, mm);
2313	update_hiwater_rss(mm);
2314	unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2315	mas_set(mas, mt_start);
2316	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2317				 next ? next->vm_start : USER_PGTABLES_CEILING,
2318				 mm_wr_locked);
2319	tlb_finish_mmu(&tlb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320}
2321
2322/*
2323 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2324 * has already been checked or doesn't make sense to fail.
2325 * VMA Iterator will point to the end VMA.
2326 */
2327static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2328		       unsigned long addr, int new_below)
2329{
2330	struct vma_prepare vp;
2331	struct vm_area_struct *new;
2332	int err;
2333
2334	WARN_ON(vma->vm_start >= addr);
2335	WARN_ON(vma->vm_end <= addr);
2336
2337	if (vma->vm_ops && vma->vm_ops->may_split) {
2338		err = vma->vm_ops->may_split(vma, addr);
2339		if (err)
2340			return err;
2341	}
2342
2343	new = vm_area_dup(vma);
2344	if (!new)
2345		return -ENOMEM;
2346
2347	if (new_below) {
2348		new->vm_end = addr;
2349	} else {
2350		new->vm_start = addr;
2351		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352	}
2353
2354	err = -ENOMEM;
2355	vma_iter_config(vmi, new->vm_start, new->vm_end);
2356	if (vma_iter_prealloc(vmi, new))
2357		goto out_free_vma;
2358
2359	err = vma_dup_policy(vma, new);
2360	if (err)
2361		goto out_free_vmi;
2362
2363	err = anon_vma_clone(new, vma);
2364	if (err)
2365		goto out_free_mpol;
2366
2367	if (new->vm_file)
2368		get_file(new->vm_file);
2369
2370	if (new->vm_ops && new->vm_ops->open)
2371		new->vm_ops->open(new);
2372
2373	vma_start_write(vma);
2374	vma_start_write(new);
2375
2376	init_vma_prep(&vp, vma);
2377	vp.insert = new;
2378	vma_prepare(&vp);
2379	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2380
2381	if (new_below) {
2382		vma->vm_start = addr;
2383		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2384	} else {
2385		vma->vm_end = addr;
2386	}
2387
2388	/* vma_complete stores the new vma */
2389	vma_complete(&vp, vmi, vma->vm_mm);
2390
2391	/* Success. */
2392	if (new_below)
2393		vma_next(vmi);
2394	return 0;
2395
2396out_free_mpol:
 
 
 
 
 
 
2397	mpol_put(vma_policy(new));
2398out_free_vmi:
2399	vma_iter_free(vmi);
2400out_free_vma:
2401	vm_area_free(new);
2402	return err;
2403}
2404
2405/*
2406 * Split a vma into two pieces at address 'addr', a new vma is allocated
2407 * either for the first part or the tail.
2408 */
2409static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2410		     unsigned long addr, int new_below)
2411{
2412	if (vma->vm_mm->map_count >= sysctl_max_map_count)
2413		return -ENOMEM;
2414
2415	return __split_vma(vmi, vma, addr, new_below);
2416}
2417
2418/*
2419 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2420 * context and anonymous VMA name within the range [start, end).
2421 *
2422 * As a result, we might be able to merge the newly modified VMA range with an
2423 * adjacent VMA with identical properties.
2424 *
2425 * If no merge is possible and the range does not span the entirety of the VMA,
2426 * we then need to split the VMA to accommodate the change.
2427 *
2428 * The function returns either the merged VMA, the original VMA if a split was
2429 * required instead, or an error if the split failed.
2430 */
2431struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2432				  struct vm_area_struct *prev,
2433				  struct vm_area_struct *vma,
2434				  unsigned long start, unsigned long end,
2435				  unsigned long vm_flags,
2436				  struct mempolicy *policy,
2437				  struct vm_userfaultfd_ctx uffd_ctx,
2438				  struct anon_vma_name *anon_name)
2439{
2440	pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2441	struct vm_area_struct *merged;
2442
2443	merged = vma_merge(vmi, vma->vm_mm, prev, start, end, vm_flags,
2444			   vma->anon_vma, vma->vm_file, pgoff, policy,
2445			   uffd_ctx, anon_name);
2446	if (merged)
2447		return merged;
2448
2449	if (vma->vm_start < start) {
2450		int err = split_vma(vmi, vma, start, 1);
2451
2452		if (err)
2453			return ERR_PTR(err);
2454	}
2455
2456	if (vma->vm_end > end) {
2457		int err = split_vma(vmi, vma, end, 0);
2458
2459		if (err)
2460			return ERR_PTR(err);
2461	}
2462
2463	return vma;
2464}
2465
2466/*
2467 * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2468 * must ensure that [start, end) does not overlap any existing VMA.
2469 */
2470static struct vm_area_struct
2471*vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2472		   struct vm_area_struct *vma, unsigned long start,
2473		   unsigned long end, pgoff_t pgoff)
2474{
2475	return vma_merge(vmi, vma->vm_mm, prev, start, end, vma->vm_flags,
2476			 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2477			 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2478}
2479
2480/*
2481 * Expand vma by delta bytes, potentially merging with an immediately adjacent
2482 * VMA with identical properties.
2483 */
2484struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2485					struct vm_area_struct *vma,
2486					unsigned long delta)
2487{
2488	pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2489
2490	/* vma is specified as prev, so case 1 or 2 will apply. */
2491	return vma_merge(vmi, vma->vm_mm, vma, vma->vm_end, vma->vm_end + delta,
2492			 vma->vm_flags, vma->anon_vma, vma->vm_file, pgoff,
2493			 vma_policy(vma), vma->vm_userfaultfd_ctx,
2494			 anon_vma_name(vma));
2495}
2496
2497/*
2498 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2499 * @vmi: The vma iterator
2500 * @vma: The starting vm_area_struct
2501 * @mm: The mm_struct
2502 * @start: The aligned start address to munmap.
2503 * @end: The aligned end address to munmap.
2504 * @uf: The userfaultfd list_head
2505 * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2506 * success.
2507 *
2508 * Return: 0 on success and drops the lock if so directed, error and leaves the
2509 * lock held otherwise.
2510 */
2511static int
2512do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2513		    struct mm_struct *mm, unsigned long start,
2514		    unsigned long end, struct list_head *uf, bool unlock)
2515{
2516	struct vm_area_struct *prev, *next = NULL;
2517	struct maple_tree mt_detach;
2518	int count = 0;
2519	int error = -ENOMEM;
2520	unsigned long locked_vm = 0;
2521	MA_STATE(mas_detach, &mt_detach, 0, 0);
2522	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2523	mt_on_stack(mt_detach);
2524
2525	/*
2526	 * If we need to split any vma, do it now to save pain later.
2527	 *
2528	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2529	 * unmapped vm_area_struct will remain in use: so lower split_vma
2530	 * places tmp vma above, and higher split_vma places tmp vma below.
2531	 */
2532
2533	/* Does it split the first one? */
2534	if (start > vma->vm_start) {
 
2535
2536		/*
2537		 * Make sure that map_count on return from munmap() will
2538		 * not exceed its limit; but let map_count go just above
2539		 * its limit temporarily, to help free resources as expected.
2540		 */
2541		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2542			goto map_count_exceeded;
2543
2544		error = __split_vma(vmi, vma, start, 1);
2545		if (error)
2546			goto start_split_failed;
 
2547	}
2548
2549	/*
2550	 * Detach a range of VMAs from the mm. Using next as a temp variable as
2551	 * it is always overwritten.
2552	 */
2553	next = vma;
2554	do {
2555		/* Does it split the end? */
2556		if (next->vm_end > end) {
2557			error = __split_vma(vmi, next, end, 0);
2558			if (error)
2559				goto end_split_failed;
2560		}
2561		vma_start_write(next);
2562		mas_set(&mas_detach, count);
2563		error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2564		if (error)
2565			goto munmap_gather_failed;
2566		vma_mark_detached(next, true);
2567		if (next->vm_flags & VM_LOCKED)
2568			locked_vm += vma_pages(next);
2569
2570		count++;
2571		if (unlikely(uf)) {
2572			/*
2573			 * If userfaultfd_unmap_prep returns an error the vmas
2574			 * will remain split, but userland will get a
2575			 * highly unexpected error anyway. This is no
2576			 * different than the case where the first of the two
2577			 * __split_vma fails, but we don't undo the first
2578			 * split, despite we could. This is unlikely enough
2579			 * failure that it's not worth optimizing it for.
2580			 */
2581			error = userfaultfd_unmap_prep(next, start, end, uf);
2582
2583			if (error)
2584				goto userfaultfd_error;
2585		}
2586#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2587		BUG_ON(next->vm_start < start);
2588		BUG_ON(next->vm_start > end);
2589#endif
2590	} for_each_vma_range(*vmi, next, end);
2591
2592#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2593	/* Make sure no VMAs are about to be lost. */
2594	{
2595		MA_STATE(test, &mt_detach, 0, 0);
2596		struct vm_area_struct *vma_mas, *vma_test;
2597		int test_count = 0;
2598
2599		vma_iter_set(vmi, start);
2600		rcu_read_lock();
2601		vma_test = mas_find(&test, count - 1);
2602		for_each_vma_range(*vmi, vma_mas, end) {
2603			BUG_ON(vma_mas != vma_test);
2604			test_count++;
2605			vma_test = mas_next(&test, count - 1);
2606		}
2607		rcu_read_unlock();
2608		BUG_ON(count != test_count);
2609	}
2610#endif
2611
2612	while (vma_iter_addr(vmi) > start)
2613		vma_iter_prev_range(vmi);
2614
2615	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2616	if (error)
2617		goto clear_tree_failed;
2618
2619	/* Point of no return */
2620	mm->locked_vm -= locked_vm;
2621	mm->map_count -= count;
2622	if (unlock)
2623		mmap_write_downgrade(mm);
2624
2625	prev = vma_iter_prev_range(vmi);
2626	next = vma_next(vmi);
2627	if (next)
2628		vma_iter_prev_range(vmi);
2629
2630	/*
2631	 * We can free page tables without write-locking mmap_lock because VMAs
2632	 * were isolated before we downgraded mmap_lock.
2633	 */
2634	mas_set(&mas_detach, 1);
2635	unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2636		     !unlock);
2637	/* Statistics and freeing VMAs */
2638	mas_set(&mas_detach, 0);
2639	remove_mt(mm, &mas_detach);
2640	validate_mm(mm);
2641	if (unlock)
2642		mmap_read_unlock(mm);
2643
2644	__mt_destroy(&mt_detach);
2645	return 0;
2646
2647clear_tree_failed:
2648userfaultfd_error:
2649munmap_gather_failed:
2650end_split_failed:
2651	mas_set(&mas_detach, 0);
2652	mas_for_each(&mas_detach, next, end)
2653		vma_mark_detached(next, false);
2654
2655	__mt_destroy(&mt_detach);
2656start_split_failed:
2657map_count_exceeded:
2658	validate_mm(mm);
2659	return error;
2660}
2661
2662/*
2663 * do_vmi_munmap() - munmap a given range.
2664 * @vmi: The vma iterator
2665 * @mm: The mm_struct
2666 * @start: The start address to munmap
2667 * @len: The length of the range to munmap
2668 * @uf: The userfaultfd list_head
2669 * @unlock: set to true if the user wants to drop the mmap_lock on success
2670 *
2671 * This function takes a @mas that is either pointing to the previous VMA or set
2672 * to MA_START and sets it up to remove the mapping(s).  The @len will be
2673 * aligned and any arch_unmap work will be preformed.
2674 *
2675 * Return: 0 on success and drops the lock if so directed, error and leaves the
2676 * lock held otherwise.
2677 */
2678int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2679		  unsigned long start, size_t len, struct list_head *uf,
2680		  bool unlock)
2681{
2682	unsigned long end;
2683	struct vm_area_struct *vma;
2684
2685	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2686		return -EINVAL;
2687
2688	end = start + PAGE_ALIGN(len);
2689	if (end == start)
2690		return -EINVAL;
2691
2692	 /* arch_unmap() might do unmaps itself.  */
2693	arch_unmap(mm, start, end);
2694
2695	/* Find the first overlapping VMA */
2696	vma = vma_find(vmi, end);
2697	if (!vma) {
2698		if (unlock)
2699			mmap_write_unlock(mm);
2700		return 0;
2701	}
2702
2703	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2704}
2705
2706/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2707 * @mm: The mm_struct
2708 * @start: The start address to munmap
2709 * @len: The length to be munmapped.
2710 * @uf: The userfaultfd list_head
2711 *
2712 * Return: 0 on success, error otherwise.
2713 */
2714int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2715	      struct list_head *uf)
2716{
2717	VMA_ITERATOR(vmi, mm, start);
2718
2719	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2720}
2721
2722unsigned long mmap_region(struct file *file, unsigned long addr,
2723		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2724		struct list_head *uf)
2725{
2726	struct mm_struct *mm = current->mm;
2727	struct vm_area_struct *vma = NULL;
2728	struct vm_area_struct *next, *prev, *merge;
2729	pgoff_t pglen = len >> PAGE_SHIFT;
2730	unsigned long charged = 0;
2731	unsigned long end = addr + len;
2732	unsigned long merge_start = addr, merge_end = end;
2733	bool writable_file_mapping = false;
2734	pgoff_t vm_pgoff;
2735	int error;
2736	VMA_ITERATOR(vmi, mm, addr);
2737
2738	/* Check against address space limit. */
2739	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2740		unsigned long nr_pages;
2741
 
2742		/*
2743		 * MAP_FIXED may remove pages of mappings that intersects with
2744		 * requested mapping. Account for the pages it would unmap.
 
 
 
 
 
2745		 */
2746		nr_pages = count_vma_pages_range(mm, addr, end);
2747
2748		if (!may_expand_vm(mm, vm_flags,
2749					(len >> PAGE_SHIFT) - nr_pages))
2750			return -ENOMEM;
2751	}
2752
2753	/* Unmap any existing mapping in the area */
2754	if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2755		return -ENOMEM;
2756
2757	/*
2758	 * Private writable mapping: check memory availability
2759	 */
2760	if (accountable_mapping(file, vm_flags)) {
2761		charged = len >> PAGE_SHIFT;
2762		if (security_vm_enough_memory_mm(mm, charged))
2763			return -ENOMEM;
2764		vm_flags |= VM_ACCOUNT;
2765	}
2766
2767	next = vma_next(&vmi);
2768	prev = vma_prev(&vmi);
2769	if (vm_flags & VM_SPECIAL) {
2770		if (prev)
2771			vma_iter_next_range(&vmi);
2772		goto cannot_expand;
2773	}
2774
2775	/* Attempt to expand an old mapping */
2776	/* Check next */
2777	if (next && next->vm_start == end && !vma_policy(next) &&
2778	    can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2779				 NULL_VM_UFFD_CTX, NULL)) {
2780		merge_end = next->vm_end;
2781		vma = next;
2782		vm_pgoff = next->vm_pgoff - pglen;
2783	}
2784
2785	/* Check prev */
2786	if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2787	    (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2788				       pgoff, vma->vm_userfaultfd_ctx, NULL) :
2789		   can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2790				       NULL_VM_UFFD_CTX, NULL))) {
2791		merge_start = prev->vm_start;
2792		vma = prev;
2793		vm_pgoff = prev->vm_pgoff;
2794	} else if (prev) {
2795		vma_iter_next_range(&vmi);
2796	}
2797
2798	/* Actually expand, if possible */
2799	if (vma &&
2800	    !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2801		khugepaged_enter_vma(vma, vm_flags);
2802		goto expanded;
2803	}
2804
2805	if (vma == prev)
2806		vma_iter_set(&vmi, addr);
2807cannot_expand:
2808
2809	/*
2810	 * Determine the object being mapped and call the appropriate
2811	 * specific mapper. the address has already been validated, but
2812	 * not unmapped, but the maps are removed from the list.
2813	 */
2814	vma = vm_area_alloc(mm);
2815	if (!vma) {
2816		error = -ENOMEM;
2817		goto unacct_error;
2818	}
2819
2820	vma_iter_config(&vmi, addr, end);
2821	vma->vm_start = addr;
2822	vma->vm_end = end;
2823	vm_flags_init(vma, vm_flags);
2824	vma->vm_page_prot = vm_get_page_prot(vm_flags);
2825	vma->vm_pgoff = pgoff;
2826
2827	if (file) {
2828		vma->vm_file = get_file(file);
2829		error = call_mmap(file, vma);
2830		if (error)
2831			goto unmap_and_free_vma;
2832
2833		if (vma_is_shared_maywrite(vma)) {
2834			error = mapping_map_writable(file->f_mapping);
2835			if (error)
2836				goto close_and_free_vma;
2837
2838			writable_file_mapping = true;
2839		}
2840
2841		/*
2842		 * Expansion is handled above, merging is handled below.
2843		 * Drivers should not alter the address of the VMA.
2844		 */
2845		error = -EINVAL;
2846		if (WARN_ON((addr != vma->vm_start)))
2847			goto close_and_free_vma;
2848
2849		vma_iter_config(&vmi, addr, end);
2850		/*
2851		 * If vm_flags changed after call_mmap(), we should try merge
2852		 * vma again as we may succeed this time.
2853		 */
2854		if (unlikely(vm_flags != vma->vm_flags && prev)) {
2855			merge = vma_merge_new_vma(&vmi, prev, vma,
2856						  vma->vm_start, vma->vm_end,
2857						  vma->vm_pgoff);
2858			if (merge) {
2859				/*
2860				 * ->mmap() can change vma->vm_file and fput
2861				 * the original file. So fput the vma->vm_file
2862				 * here or we would add an extra fput for file
2863				 * and cause general protection fault
2864				 * ultimately.
2865				 */
2866				fput(vma->vm_file);
2867				vm_area_free(vma);
2868				vma = merge;
2869				/* Update vm_flags to pick up the change. */
2870				vm_flags = vma->vm_flags;
2871				goto unmap_writable;
2872			}
2873		}
2874
2875		vm_flags = vma->vm_flags;
2876	} else if (vm_flags & VM_SHARED) {
2877		error = shmem_zero_setup(vma);
2878		if (error)
2879			goto free_vma;
2880	} else {
2881		vma_set_anonymous(vma);
2882	}
2883
2884	if (map_deny_write_exec(vma, vma->vm_flags)) {
2885		error = -EACCES;
2886		goto close_and_free_vma;
2887	}
2888
2889	/* Allow architectures to sanity-check the vm_flags */
2890	error = -EINVAL;
2891	if (!arch_validate_flags(vma->vm_flags))
2892		goto close_and_free_vma;
2893
2894	error = -ENOMEM;
2895	if (vma_iter_prealloc(&vmi, vma))
2896		goto close_and_free_vma;
2897
2898	/* Lock the VMA since it is modified after insertion into VMA tree */
2899	vma_start_write(vma);
2900	vma_iter_store(&vmi, vma);
2901	mm->map_count++;
2902	if (vma->vm_file) {
2903		i_mmap_lock_write(vma->vm_file->f_mapping);
2904		if (vma_is_shared_maywrite(vma))
2905			mapping_allow_writable(vma->vm_file->f_mapping);
2906
2907		flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2908		vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2909		flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2910		i_mmap_unlock_write(vma->vm_file->f_mapping);
2911	}
2912
2913	/*
2914	 * vma_merge() calls khugepaged_enter_vma() either, the below
2915	 * call covers the non-merge case.
2916	 */
2917	khugepaged_enter_vma(vma, vma->vm_flags);
2918
2919	/* Once vma denies write, undo our temporary denial count */
2920unmap_writable:
2921	if (writable_file_mapping)
2922		mapping_unmap_writable(file->f_mapping);
2923	file = vma->vm_file;
2924	ksm_add_vma(vma);
2925expanded:
2926	perf_event_mmap(vma);
2927
2928	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2929	if (vm_flags & VM_LOCKED) {
2930		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2931					is_vm_hugetlb_page(vma) ||
2932					vma == get_gate_vma(current->mm))
2933			vm_flags_clear(vma, VM_LOCKED_MASK);
2934		else
2935			mm->locked_vm += (len >> PAGE_SHIFT);
2936	}
2937
2938	if (file)
2939		uprobe_mmap(vma);
2940
2941	/*
2942	 * New (or expanded) vma always get soft dirty status.
2943	 * Otherwise user-space soft-dirty page tracker won't
2944	 * be able to distinguish situation when vma area unmapped,
2945	 * then new mapped in-place (which must be aimed as
2946	 * a completely new data area).
2947	 */
2948	vm_flags_set(vma, VM_SOFTDIRTY);
2949
2950	vma_set_page_prot(vma);
2951
2952	validate_mm(mm);
2953	return addr;
2954
2955close_and_free_vma:
2956	if (file && vma->vm_ops && vma->vm_ops->close)
2957		vma->vm_ops->close(vma);
2958
2959	if (file || vma->vm_file) {
2960unmap_and_free_vma:
2961		fput(vma->vm_file);
2962		vma->vm_file = NULL;
2963
2964		vma_iter_set(&vmi, vma->vm_end);
2965		/* Undo any partial mapping done by a device driver. */
2966		unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2967			     vma->vm_end, vma->vm_end, true);
2968	}
2969	if (writable_file_mapping)
2970		mapping_unmap_writable(file->f_mapping);
2971free_vma:
2972	vm_area_free(vma);
2973unacct_error:
2974	if (charged)
2975		vm_unacct_memory(charged);
2976	validate_mm(mm);
2977	return error;
2978}
2979
2980static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2981{
2982	int ret;
2983	struct mm_struct *mm = current->mm;
2984	LIST_HEAD(uf);
2985	VMA_ITERATOR(vmi, mm, start);
2986
2987	if (mmap_write_lock_killable(mm))
2988		return -EINTR;
2989
2990	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2991	if (ret || !unlock)
2992		mmap_write_unlock(mm);
 
 
 
 
 
 
 
 
2993
2994	userfaultfd_unmap_complete(mm, &uf);
2995	return ret;
2996}
2997
2998int vm_munmap(unsigned long start, size_t len)
2999{
3000	return __vm_munmap(start, len, false);
3001}
3002EXPORT_SYMBOL(vm_munmap);
3003
3004SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3005{
3006	addr = untagged_addr(addr);
 
3007	return __vm_munmap(addr, len, true);
3008}
3009
3010
3011/*
3012 * Emulation of deprecated remap_file_pages() syscall.
3013 */
3014SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3015		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3016{
3017
3018	struct mm_struct *mm = current->mm;
3019	struct vm_area_struct *vma;
3020	unsigned long populate = 0;
3021	unsigned long ret = -EINVAL;
3022	struct file *file;
3023
3024	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3025		     current->comm, current->pid);
3026
3027	if (prot)
3028		return ret;
3029	start = start & PAGE_MASK;
3030	size = size & PAGE_MASK;
3031
3032	if (start + size <= start)
3033		return ret;
3034
3035	/* Does pgoff wrap? */
3036	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3037		return ret;
3038
3039	if (mmap_write_lock_killable(mm))
3040		return -EINTR;
3041
3042	vma = vma_lookup(mm, start);
3043
3044	if (!vma || !(vma->vm_flags & VM_SHARED))
3045		goto out;
3046
 
 
 
3047	if (start + size > vma->vm_end) {
3048		VMA_ITERATOR(vmi, mm, vma->vm_end);
3049		struct vm_area_struct *next, *prev = vma;
3050
3051		for_each_vma_range(vmi, next, start + size) {
3052			/* hole between vmas ? */
3053			if (next->vm_start != prev->vm_end)
3054				goto out;
3055
3056			if (next->vm_file != vma->vm_file)
3057				goto out;
3058
3059			if (next->vm_flags != vma->vm_flags)
3060				goto out;
3061
3062			if (start + size <= next->vm_end)
3063				break;
3064
3065			prev = next;
3066		}
3067
3068		if (!next)
3069			goto out;
3070	}
3071
3072	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3073	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3074	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3075
3076	flags &= MAP_NONBLOCK;
3077	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3078	if (vma->vm_flags & VM_LOCKED)
 
3079		flags |= MAP_LOCKED;
3080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3081	file = get_file(vma->vm_file);
3082	ret = do_mmap(vma->vm_file, start, size,
3083			prot, flags, 0, pgoff, &populate, NULL);
3084	fput(file);
3085out:
3086	mmap_write_unlock(mm);
3087	if (populate)
3088		mm_populate(ret, populate);
3089	if (!IS_ERR_VALUE(ret))
3090		ret = 0;
3091	return ret;
3092}
3093
3094/*
3095 * do_vma_munmap() - Unmap a full or partial vma.
3096 * @vmi: The vma iterator pointing at the vma
3097 * @vma: The first vma to be munmapped
3098 * @start: the start of the address to unmap
3099 * @end: The end of the address to unmap
3100 * @uf: The userfaultfd list_head
3101 * @unlock: Drop the lock on success
3102 *
3103 * unmaps a VMA mapping when the vma iterator is already in position.
3104 * Does not handle alignment.
3105 *
3106 * Return: 0 on success drops the lock of so directed, error on failure and will
3107 * still hold the lock.
3108 */
3109int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3110		unsigned long start, unsigned long end, struct list_head *uf,
3111		bool unlock)
3112{
3113	struct mm_struct *mm = vma->vm_mm;
3114
3115	arch_unmap(mm, start, end);
3116	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3117}
3118
3119/*
3120 * do_brk_flags() - Increase the brk vma if the flags match.
3121 * @vmi: The vma iterator
3122 * @addr: The start address
3123 * @len: The length of the increase
3124 * @vma: The vma,
3125 * @flags: The VMA Flags
3126 *
3127 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3128 * do not match then create a new anonymous VMA.  Eventually we may be able to
3129 * do some brk-specific accounting here.
3130 */
3131static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132		unsigned long addr, unsigned long len, unsigned long flags)
3133{
3134	struct mm_struct *mm = current->mm;
3135	struct vma_prepare vp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3136
3137	/*
3138	 * Check against address space limits by the changed size
3139	 * Note: This happens *after* clearing old mappings in some code paths.
3140	 */
3141	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
 
 
 
3142	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3143		return -ENOMEM;
3144
3145	if (mm->map_count > sysctl_max_map_count)
3146		return -ENOMEM;
3147
3148	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3149		return -ENOMEM;
3150
3151	/*
3152	 * Expand the existing vma if possible; Note that singular lists do not
3153	 * occur after forking, so the expand will only happen on new VMAs.
3154	 */
3155	if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3156	    can_vma_merge_after(vma, flags, NULL, NULL,
3157				addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3158		vma_iter_config(vmi, vma->vm_start, addr + len);
3159		if (vma_iter_prealloc(vmi, vma))
3160			goto unacct_fail;
3161
3162		vma_start_write(vma);
3163
3164		init_vma_prep(&vp, vma);
3165		vma_prepare(&vp);
3166		vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3167		vma->vm_end = addr + len;
3168		vm_flags_set(vma, VM_SOFTDIRTY);
3169		vma_iter_store(vmi, vma);
3170
3171		vma_complete(&vp, vmi, mm);
3172		khugepaged_enter_vma(vma, flags);
3173		goto out;
3174	}
3175
3176	if (vma)
3177		vma_iter_next_range(vmi);
3178	/* create a vma struct for an anonymous mapping */
3179	vma = vm_area_alloc(mm);
3180	if (!vma)
3181		goto unacct_fail;
 
 
3182
3183	vma_set_anonymous(vma);
3184	vma->vm_start = addr;
3185	vma->vm_end = addr + len;
3186	vma->vm_pgoff = addr >> PAGE_SHIFT;
3187	vm_flags_init(vma, flags);
3188	vma->vm_page_prot = vm_get_page_prot(flags);
3189	vma_start_write(vma);
3190	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3191		goto mas_store_fail;
3192
3193	mm->map_count++;
3194	validate_mm(mm);
3195	ksm_add_vma(vma);
3196out:
3197	perf_event_mmap(vma);
3198	mm->total_vm += len >> PAGE_SHIFT;
3199	mm->data_vm += len >> PAGE_SHIFT;
3200	if (flags & VM_LOCKED)
3201		mm->locked_vm += (len >> PAGE_SHIFT);
3202	vm_flags_set(vma, VM_SOFTDIRTY);
3203	return 0;
3204
3205mas_store_fail:
3206	vm_area_free(vma);
3207unacct_fail:
3208	vm_unacct_memory(len >> PAGE_SHIFT);
3209	return -ENOMEM;
3210}
3211
3212int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3213{
3214	struct mm_struct *mm = current->mm;
3215	struct vm_area_struct *vma = NULL;
3216	unsigned long len;
3217	int ret;
3218	bool populate;
3219	LIST_HEAD(uf);
3220	VMA_ITERATOR(vmi, mm, addr);
3221
3222	len = PAGE_ALIGN(request);
3223	if (len < request)
3224		return -ENOMEM;
3225	if (!len)
3226		return 0;
3227
3228	/* Until we need other flags, refuse anything except VM_EXEC. */
3229	if ((flags & (~VM_EXEC)) != 0)
3230		return -EINVAL;
3231
3232	if (mmap_write_lock_killable(mm))
3233		return -EINTR;
3234
3235	ret = check_brk_limits(addr, len);
3236	if (ret)
3237		goto limits_failed;
3238
3239	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3240	if (ret)
3241		goto munmap_failed;
3242
3243	vma = vma_prev(&vmi);
3244	ret = do_brk_flags(&vmi, vma, addr, len, flags);
3245	populate = ((mm->def_flags & VM_LOCKED) != 0);
3246	mmap_write_unlock(mm);
3247	userfaultfd_unmap_complete(mm, &uf);
3248	if (populate && !ret)
3249		mm_populate(addr, len);
3250	return ret;
3251
3252munmap_failed:
3253limits_failed:
3254	mmap_write_unlock(mm);
3255	return ret;
3256}
3257EXPORT_SYMBOL(vm_brk_flags);
3258
 
 
 
 
 
 
3259/* Release all mmaps. */
3260void exit_mmap(struct mm_struct *mm)
3261{
3262	struct mmu_gather tlb;
3263	struct vm_area_struct *vma;
3264	unsigned long nr_accounted = 0;
3265	MA_STATE(mas, &mm->mm_mt, 0, 0);
3266	int count = 0;
3267
3268	/* mm's last user has gone, and its about to be pulled down */
3269	mmu_notifier_release(mm);
3270
3271	mmap_read_lock(mm);
3272	arch_exit_mmap(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273
3274	vma = mas_find(&mas, ULONG_MAX);
3275	if (!vma || unlikely(xa_is_zero(vma))) {
3276		/* Can happen if dup_mmap() received an OOM */
3277		mmap_read_unlock(mm);
3278		mmap_write_lock(mm);
3279		goto destroy;
 
3280	}
3281
 
 
 
 
 
 
3282	lru_add_drain();
3283	flush_cache_mm(mm);
3284	tlb_gather_mmu_fullmm(&tlb, mm);
3285	/* update_hiwater_rss(mm) here? but nobody should be looking */
3286	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3287	unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3288	mmap_read_unlock(mm);
 
3289
3290	/*
3291	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3292	 * because the memory has been already freed.
3293	 */
3294	set_bit(MMF_OOM_SKIP, &mm->flags);
3295	mmap_write_lock(mm);
3296	mt_clear_in_rcu(&mm->mm_mt);
3297	mas_set(&mas, vma->vm_end);
3298	free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3299		      USER_PGTABLES_CEILING, true);
3300	tlb_finish_mmu(&tlb);
3301
3302	/*
3303	 * Walk the list again, actually closing and freeing it, with preemption
3304	 * enabled, without holding any MM locks besides the unreachable
3305	 * mmap_write_lock.
3306	 */
3307	mas_set(&mas, vma->vm_end);
3308	do {
3309		if (vma->vm_flags & VM_ACCOUNT)
3310			nr_accounted += vma_pages(vma);
3311		remove_vma(vma, true);
3312		count++;
3313		cond_resched();
3314		vma = mas_find(&mas, ULONG_MAX);
3315	} while (vma && likely(!xa_is_zero(vma)));
3316
3317	BUG_ON(count != mm->map_count);
3318
3319	trace_exit_mmap(mm);
3320destroy:
3321	__mt_destroy(&mm->mm_mt);
3322	mmap_write_unlock(mm);
3323	vm_unacct_memory(nr_accounted);
3324}
3325
3326/* Insert vm structure into process list sorted by address
3327 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3328 * then i_mmap_rwsem is taken here.
3329 */
3330int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3331{
3332	unsigned long charged = vma_pages(vma);
3333
3334
3335	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
 
3336		return -ENOMEM;
3337
3338	if ((vma->vm_flags & VM_ACCOUNT) &&
3339	     security_vm_enough_memory_mm(mm, charged))
3340		return -ENOMEM;
3341
3342	/*
3343	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3344	 * until its first write fault, when page's anon_vma and index
3345	 * are set.  But now set the vm_pgoff it will almost certainly
3346	 * end up with (unless mremap moves it elsewhere before that
3347	 * first wfault), so /proc/pid/maps tells a consistent story.
3348	 *
3349	 * By setting it to reflect the virtual start address of the
3350	 * vma, merges and splits can happen in a seamless way, just
3351	 * using the existing file pgoff checks and manipulations.
3352	 * Similarly in do_mmap and in do_brk_flags.
3353	 */
3354	if (vma_is_anonymous(vma)) {
3355		BUG_ON(vma->anon_vma);
3356		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3357	}
3358
3359	if (vma_link(mm, vma)) {
3360		if (vma->vm_flags & VM_ACCOUNT)
3361			vm_unacct_memory(charged);
3362		return -ENOMEM;
3363	}
3364
3365	return 0;
3366}
3367
3368/*
3369 * Copy the vma structure to a new location in the same mm,
3370 * prior to moving page table entries, to effect an mremap move.
3371 */
3372struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3373	unsigned long addr, unsigned long len, pgoff_t pgoff,
3374	bool *need_rmap_locks)
3375{
3376	struct vm_area_struct *vma = *vmap;
3377	unsigned long vma_start = vma->vm_start;
3378	struct mm_struct *mm = vma->vm_mm;
3379	struct vm_area_struct *new_vma, *prev;
 
3380	bool faulted_in_anon_vma = true;
3381	VMA_ITERATOR(vmi, mm, addr);
3382
3383	/*
3384	 * If anonymous vma has not yet been faulted, update new pgoff
3385	 * to match new location, to increase its chance of merging.
3386	 */
3387	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3388		pgoff = addr >> PAGE_SHIFT;
3389		faulted_in_anon_vma = false;
3390	}
3391
3392	new_vma = find_vma_prev(mm, addr, &prev);
3393	if (new_vma && new_vma->vm_start < addr + len)
3394		return NULL;	/* should never get here */
3395
3396	new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
 
3397	if (new_vma) {
3398		/*
3399		 * Source vma may have been merged into new_vma
3400		 */
3401		if (unlikely(vma_start >= new_vma->vm_start &&
3402			     vma_start < new_vma->vm_end)) {
3403			/*
3404			 * The only way we can get a vma_merge with
3405			 * self during an mremap is if the vma hasn't
3406			 * been faulted in yet and we were allowed to
3407			 * reset the dst vma->vm_pgoff to the
3408			 * destination address of the mremap to allow
3409			 * the merge to happen. mremap must change the
3410			 * vm_pgoff linearity between src and dst vmas
3411			 * (in turn preventing a vma_merge) to be
3412			 * safe. It is only safe to keep the vm_pgoff
3413			 * linear if there are no pages mapped yet.
3414			 */
3415			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3416			*vmap = vma = new_vma;
3417		}
3418		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3419	} else {
3420		new_vma = vm_area_dup(vma);
3421		if (!new_vma)
3422			goto out;
3423		new_vma->vm_start = addr;
3424		new_vma->vm_end = addr + len;
3425		new_vma->vm_pgoff = pgoff;
3426		if (vma_dup_policy(vma, new_vma))
3427			goto out_free_vma;
3428		if (anon_vma_clone(new_vma, vma))
3429			goto out_free_mempol;
3430		if (new_vma->vm_file)
3431			get_file(new_vma->vm_file);
3432		if (new_vma->vm_ops && new_vma->vm_ops->open)
3433			new_vma->vm_ops->open(new_vma);
3434		if (vma_link(mm, new_vma))
3435			goto out_vma_link;
3436		*need_rmap_locks = false;
3437	}
3438	return new_vma;
3439
3440out_vma_link:
3441	if (new_vma->vm_ops && new_vma->vm_ops->close)
3442		new_vma->vm_ops->close(new_vma);
3443
3444	if (new_vma->vm_file)
3445		fput(new_vma->vm_file);
3446
3447	unlink_anon_vmas(new_vma);
3448out_free_mempol:
3449	mpol_put(vma_policy(new_vma));
3450out_free_vma:
3451	vm_area_free(new_vma);
3452out:
3453	return NULL;
3454}
3455
3456/*
3457 * Return true if the calling process may expand its vm space by the passed
3458 * number of pages
3459 */
3460bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3461{
3462	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3463		return false;
3464
3465	if (is_data_mapping(flags) &&
3466	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3467		/* Workaround for Valgrind */
3468		if (rlimit(RLIMIT_DATA) == 0 &&
3469		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3470			return true;
3471
3472		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3473			     current->comm, current->pid,
3474			     (mm->data_vm + npages) << PAGE_SHIFT,
3475			     rlimit(RLIMIT_DATA),
3476			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3477
3478		if (!ignore_rlimit_data)
3479			return false;
3480	}
3481
3482	return true;
3483}
3484
3485void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3486{
3487	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3488
3489	if (is_exec_mapping(flags))
3490		mm->exec_vm += npages;
3491	else if (is_stack_mapping(flags))
3492		mm->stack_vm += npages;
3493	else if (is_data_mapping(flags))
3494		mm->data_vm += npages;
3495}
3496
3497static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3498
3499/*
3500 * Having a close hook prevents vma merging regardless of flags.
3501 */
3502static void special_mapping_close(struct vm_area_struct *vma)
3503{
3504}
3505
3506static const char *special_mapping_name(struct vm_area_struct *vma)
3507{
3508	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3509}
3510
3511static int special_mapping_mremap(struct vm_area_struct *new_vma)
3512{
3513	struct vm_special_mapping *sm = new_vma->vm_private_data;
3514
3515	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3516		return -EFAULT;
3517
3518	if (sm->mremap)
3519		return sm->mremap(sm, new_vma);
3520
3521	return 0;
3522}
3523
3524static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3525{
3526	/*
3527	 * Forbid splitting special mappings - kernel has expectations over
3528	 * the number of pages in mapping. Together with VM_DONTEXPAND
3529	 * the size of vma should stay the same over the special mapping's
3530	 * lifetime.
3531	 */
3532	return -EINVAL;
3533}
3534
3535static const struct vm_operations_struct special_mapping_vmops = {
3536	.close = special_mapping_close,
3537	.fault = special_mapping_fault,
3538	.mremap = special_mapping_mremap,
3539	.name = special_mapping_name,
3540	/* vDSO code relies that VVAR can't be accessed remotely */
3541	.access = NULL,
3542	.may_split = special_mapping_split,
3543};
3544
3545static const struct vm_operations_struct legacy_special_mapping_vmops = {
3546	.close = special_mapping_close,
3547	.fault = special_mapping_fault,
3548};
3549
3550static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3551{
3552	struct vm_area_struct *vma = vmf->vma;
3553	pgoff_t pgoff;
3554	struct page **pages;
3555
3556	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3557		pages = vma->vm_private_data;
3558	} else {
3559		struct vm_special_mapping *sm = vma->vm_private_data;
3560
3561		if (sm->fault)
3562			return sm->fault(sm, vmf->vma, vmf);
3563
3564		pages = sm->pages;
3565	}
3566
3567	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3568		pgoff--;
3569
3570	if (*pages) {
3571		struct page *page = *pages;
3572		get_page(page);
3573		vmf->page = page;
3574		return 0;
3575	}
3576
3577	return VM_FAULT_SIGBUS;
3578}
3579
3580static struct vm_area_struct *__install_special_mapping(
3581	struct mm_struct *mm,
3582	unsigned long addr, unsigned long len,
3583	unsigned long vm_flags, void *priv,
3584	const struct vm_operations_struct *ops)
3585{
3586	int ret;
3587	struct vm_area_struct *vma;
3588
3589	vma = vm_area_alloc(mm);
3590	if (unlikely(vma == NULL))
3591		return ERR_PTR(-ENOMEM);
3592
3593	vma->vm_start = addr;
3594	vma->vm_end = addr + len;
3595
3596	vm_flags_init(vma, (vm_flags | mm->def_flags |
3597		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3598	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3599
3600	vma->vm_ops = ops;
3601	vma->vm_private_data = priv;
3602
3603	ret = insert_vm_struct(mm, vma);
3604	if (ret)
3605		goto out;
3606
3607	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3608
3609	perf_event_mmap(vma);
3610
3611	return vma;
3612
3613out:
3614	vm_area_free(vma);
3615	return ERR_PTR(ret);
3616}
3617
3618bool vma_is_special_mapping(const struct vm_area_struct *vma,
3619	const struct vm_special_mapping *sm)
3620{
3621	return vma->vm_private_data == sm &&
3622		(vma->vm_ops == &special_mapping_vmops ||
3623		 vma->vm_ops == &legacy_special_mapping_vmops);
3624}
3625
3626/*
3627 * Called with mm->mmap_lock held for writing.
3628 * Insert a new vma covering the given region, with the given flags.
3629 * Its pages are supplied by the given array of struct page *.
3630 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3631 * The region past the last page supplied will always produce SIGBUS.
3632 * The array pointer and the pages it points to are assumed to stay alive
3633 * for as long as this mapping might exist.
3634 */
3635struct vm_area_struct *_install_special_mapping(
3636	struct mm_struct *mm,
3637	unsigned long addr, unsigned long len,
3638	unsigned long vm_flags, const struct vm_special_mapping *spec)
3639{
3640	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3641					&special_mapping_vmops);
3642}
3643
3644int install_special_mapping(struct mm_struct *mm,
3645			    unsigned long addr, unsigned long len,
3646			    unsigned long vm_flags, struct page **pages)
3647{
3648	struct vm_area_struct *vma = __install_special_mapping(
3649		mm, addr, len, vm_flags, (void *)pages,
3650		&legacy_special_mapping_vmops);
3651
3652	return PTR_ERR_OR_ZERO(vma);
3653}
3654
3655static DEFINE_MUTEX(mm_all_locks_mutex);
3656
3657static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3658{
3659	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3660		/*
3661		 * The LSB of head.next can't change from under us
3662		 * because we hold the mm_all_locks_mutex.
3663		 */
3664		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3665		/*
3666		 * We can safely modify head.next after taking the
3667		 * anon_vma->root->rwsem. If some other vma in this mm shares
3668		 * the same anon_vma we won't take it again.
3669		 *
3670		 * No need of atomic instructions here, head.next
3671		 * can't change from under us thanks to the
3672		 * anon_vma->root->rwsem.
3673		 */
3674		if (__test_and_set_bit(0, (unsigned long *)
3675				       &anon_vma->root->rb_root.rb_root.rb_node))
3676			BUG();
3677	}
3678}
3679
3680static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3681{
3682	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3683		/*
3684		 * AS_MM_ALL_LOCKS can't change from under us because
3685		 * we hold the mm_all_locks_mutex.
3686		 *
3687		 * Operations on ->flags have to be atomic because
3688		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3689		 * mm_all_locks_mutex, there may be other cpus
3690		 * changing other bitflags in parallel to us.
3691		 */
3692		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3693			BUG();
3694		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3695	}
3696}
3697
3698/*
3699 * This operation locks against the VM for all pte/vma/mm related
3700 * operations that could ever happen on a certain mm. This includes
3701 * vmtruncate, try_to_unmap, and all page faults.
3702 *
3703 * The caller must take the mmap_lock in write mode before calling
3704 * mm_take_all_locks(). The caller isn't allowed to release the
3705 * mmap_lock until mm_drop_all_locks() returns.
3706 *
3707 * mmap_lock in write mode is required in order to block all operations
3708 * that could modify pagetables and free pages without need of
3709 * altering the vma layout. It's also needed in write mode to avoid new
3710 * anon_vmas to be associated with existing vmas.
3711 *
3712 * A single task can't take more than one mm_take_all_locks() in a row
3713 * or it would deadlock.
3714 *
3715 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3716 * mapping->flags avoid to take the same lock twice, if more than one
3717 * vma in this mm is backed by the same anon_vma or address_space.
3718 *
3719 * We take locks in following order, accordingly to comment at beginning
3720 * of mm/rmap.c:
3721 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3722 *     hugetlb mapping);
3723 *   - all vmas marked locked
3724 *   - all i_mmap_rwsem locks;
3725 *   - all anon_vma->rwseml
3726 *
3727 * We can take all locks within these types randomly because the VM code
3728 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3729 * mm_all_locks_mutex.
3730 *
3731 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3732 * that may have to take thousand of locks.
3733 *
3734 * mm_take_all_locks() can fail if it's interrupted by signals.
3735 */
3736int mm_take_all_locks(struct mm_struct *mm)
3737{
3738	struct vm_area_struct *vma;
3739	struct anon_vma_chain *avc;
3740	MA_STATE(mas, &mm->mm_mt, 0, 0);
3741
3742	mmap_assert_write_locked(mm);
3743
3744	mutex_lock(&mm_all_locks_mutex);
3745
3746	/*
3747	 * vma_start_write() does not have a complement in mm_drop_all_locks()
3748	 * because vma_start_write() is always asymmetrical; it marks a VMA as
3749	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3750	 * is reached.
3751	 */
3752	mas_for_each(&mas, vma, ULONG_MAX) {
3753		if (signal_pending(current))
3754			goto out_unlock;
3755		vma_start_write(vma);
3756	}
3757
3758	mas_set(&mas, 0);
3759	mas_for_each(&mas, vma, ULONG_MAX) {
3760		if (signal_pending(current))
3761			goto out_unlock;
3762		if (vma->vm_file && vma->vm_file->f_mapping &&
3763				is_vm_hugetlb_page(vma))
3764			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3765	}
3766
3767	mas_set(&mas, 0);
3768	mas_for_each(&mas, vma, ULONG_MAX) {
3769		if (signal_pending(current))
3770			goto out_unlock;
3771		if (vma->vm_file && vma->vm_file->f_mapping &&
3772				!is_vm_hugetlb_page(vma))
3773			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3774	}
3775
3776	mas_set(&mas, 0);
3777	mas_for_each(&mas, vma, ULONG_MAX) {
3778		if (signal_pending(current))
3779			goto out_unlock;
3780		if (vma->anon_vma)
3781			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3782				vm_lock_anon_vma(mm, avc->anon_vma);
3783	}
3784
3785	return 0;
3786
3787out_unlock:
3788	mm_drop_all_locks(mm);
3789	return -EINTR;
3790}
3791
3792static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3793{
3794	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3795		/*
3796		 * The LSB of head.next can't change to 0 from under
3797		 * us because we hold the mm_all_locks_mutex.
3798		 *
3799		 * We must however clear the bitflag before unlocking
3800		 * the vma so the users using the anon_vma->rb_root will
3801		 * never see our bitflag.
3802		 *
3803		 * No need of atomic instructions here, head.next
3804		 * can't change from under us until we release the
3805		 * anon_vma->root->rwsem.
3806		 */
3807		if (!__test_and_clear_bit(0, (unsigned long *)
3808					  &anon_vma->root->rb_root.rb_root.rb_node))
3809			BUG();
3810		anon_vma_unlock_write(anon_vma);
3811	}
3812}
3813
3814static void vm_unlock_mapping(struct address_space *mapping)
3815{
3816	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3817		/*
3818		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3819		 * because we hold the mm_all_locks_mutex.
3820		 */
3821		i_mmap_unlock_write(mapping);
3822		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3823					&mapping->flags))
3824			BUG();
3825	}
3826}
3827
3828/*
3829 * The mmap_lock cannot be released by the caller until
3830 * mm_drop_all_locks() returns.
3831 */
3832void mm_drop_all_locks(struct mm_struct *mm)
3833{
3834	struct vm_area_struct *vma;
3835	struct anon_vma_chain *avc;
3836	MA_STATE(mas, &mm->mm_mt, 0, 0);
3837
3838	mmap_assert_write_locked(mm);
3839	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3840
3841	mas_for_each(&mas, vma, ULONG_MAX) {
3842		if (vma->anon_vma)
3843			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3844				vm_unlock_anon_vma(avc->anon_vma);
3845		if (vma->vm_file && vma->vm_file->f_mapping)
3846			vm_unlock_mapping(vma->vm_file->f_mapping);
3847	}
3848
3849	mutex_unlock(&mm_all_locks_mutex);
3850}
3851
3852/*
3853 * initialise the percpu counter for VM
3854 */
3855void __init mmap_init(void)
3856{
3857	int ret;
3858
3859	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3860	VM_BUG_ON(ret);
3861}
3862
3863/*
3864 * Initialise sysctl_user_reserve_kbytes.
3865 *
3866 * This is intended to prevent a user from starting a single memory hogging
3867 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3868 * mode.
3869 *
3870 * The default value is min(3% of free memory, 128MB)
3871 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3872 */
3873static int init_user_reserve(void)
3874{
3875	unsigned long free_kbytes;
3876
3877	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3878
3879	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3880	return 0;
3881}
3882subsys_initcall(init_user_reserve);
3883
3884/*
3885 * Initialise sysctl_admin_reserve_kbytes.
3886 *
3887 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3888 * to log in and kill a memory hogging process.
3889 *
3890 * Systems with more than 256MB will reserve 8MB, enough to recover
3891 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3892 * only reserve 3% of free pages by default.
3893 */
3894static int init_admin_reserve(void)
3895{
3896	unsigned long free_kbytes;
3897
3898	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899
3900	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3901	return 0;
3902}
3903subsys_initcall(init_admin_reserve);
3904
3905/*
3906 * Reinititalise user and admin reserves if memory is added or removed.
3907 *
3908 * The default user reserve max is 128MB, and the default max for the
3909 * admin reserve is 8MB. These are usually, but not always, enough to
3910 * enable recovery from a memory hogging process using login/sshd, a shell,
3911 * and tools like top. It may make sense to increase or even disable the
3912 * reserve depending on the existence of swap or variations in the recovery
3913 * tools. So, the admin may have changed them.
3914 *
3915 * If memory is added and the reserves have been eliminated or increased above
3916 * the default max, then we'll trust the admin.
3917 *
3918 * If memory is removed and there isn't enough free memory, then we
3919 * need to reset the reserves.
3920 *
3921 * Otherwise keep the reserve set by the admin.
3922 */
3923static int reserve_mem_notifier(struct notifier_block *nb,
3924			     unsigned long action, void *data)
3925{
3926	unsigned long tmp, free_kbytes;
3927
3928	switch (action) {
3929	case MEM_ONLINE:
3930		/* Default max is 128MB. Leave alone if modified by operator. */
3931		tmp = sysctl_user_reserve_kbytes;
3932		if (0 < tmp && tmp < (1UL << 17))
3933			init_user_reserve();
3934
3935		/* Default max is 8MB.  Leave alone if modified by operator. */
3936		tmp = sysctl_admin_reserve_kbytes;
3937		if (0 < tmp && tmp < (1UL << 13))
3938			init_admin_reserve();
3939
3940		break;
3941	case MEM_OFFLINE:
3942		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3943
3944		if (sysctl_user_reserve_kbytes > free_kbytes) {
3945			init_user_reserve();
3946			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3947				sysctl_user_reserve_kbytes);
3948		}
3949
3950		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3951			init_admin_reserve();
3952			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3953				sysctl_admin_reserve_kbytes);
3954		}
3955		break;
3956	default:
3957		break;
3958	}
3959	return NOTIFY_OK;
3960}
3961
 
 
 
 
3962static int __meminit init_reserve_notifier(void)
3963{
3964	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3965		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3966
3967	return 0;
3968}
3969subsys_initcall(init_reserve_notifier);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
 
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
 
 
 
  56#include "internal.h"
  57
  58#ifndef arch_mmap_check
  59#define arch_mmap_check(addr, len, flags)	(0)
  60#endif
  61
  62#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  63const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  64const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  65int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  66#endif
  67#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  68const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  69const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  70int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  71#endif
  72
  73static bool ignore_rlimit_data;
  74core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  75
  76static void unmap_region(struct mm_struct *mm,
  77		struct vm_area_struct *vma, struct vm_area_struct *prev,
  78		unsigned long start, unsigned long end);
  79
  80/* description of effects of mapping type and prot in current implementation.
  81 * this is due to the limited x86 page protection hardware.  The expected
  82 * behavior is in parens:
  83 *
  84 * map_type	prot
  85 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  86 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  87 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  88 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  89 *
  90 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  91 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  92 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  93 *
  94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  95 * MAP_PRIVATE:
  96 *								r: (no) no
  97 *								w: (no) no
  98 *								x: (yes) yes
  99 */
 100pgprot_t protection_map[16] __ro_after_init = {
 101	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 102	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 103};
 104
 105#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 106static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 107{
 108	return prot;
 109}
 110#endif
 111
 112pgprot_t vm_get_page_prot(unsigned long vm_flags)
 113{
 114	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 115				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 116			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 117
 118	return arch_filter_pgprot(ret);
 119}
 120EXPORT_SYMBOL(vm_get_page_prot);
 121
 122static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 123{
 124	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 125}
 126
 127/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 128void vma_set_page_prot(struct vm_area_struct *vma)
 129{
 130	unsigned long vm_flags = vma->vm_flags;
 131	pgprot_t vm_page_prot;
 132
 133	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 134	if (vma_wants_writenotify(vma, vm_page_prot)) {
 135		vm_flags &= ~VM_SHARED;
 136		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 137	}
 138	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 139	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 140}
 141
 142/*
 143 * Requires inode->i_mapping->i_mmap_rwsem
 144 */
 145static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 146		struct file *file, struct address_space *mapping)
 147{
 148	if (vma->vm_flags & VM_DENYWRITE)
 149		atomic_inc(&file_inode(file)->i_writecount);
 150	if (vma->vm_flags & VM_SHARED)
 151		mapping_unmap_writable(mapping);
 152
 153	flush_dcache_mmap_lock(mapping);
 154	vma_interval_tree_remove(vma, &mapping->i_mmap);
 155	flush_dcache_mmap_unlock(mapping);
 156}
 157
 158/*
 159 * Unlink a file-based vm structure from its interval tree, to hide
 160 * vma from rmap and vmtruncate before freeing its page tables.
 161 */
 162void unlink_file_vma(struct vm_area_struct *vma)
 163{
 164	struct file *file = vma->vm_file;
 165
 166	if (file) {
 167		struct address_space *mapping = file->f_mapping;
 168		i_mmap_lock_write(mapping);
 169		__remove_shared_vm_struct(vma, file, mapping);
 170		i_mmap_unlock_write(mapping);
 171	}
 172}
 173
 174/*
 175 * Close a vm structure and free it, returning the next.
 176 */
 177static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 178{
 179	struct vm_area_struct *next = vma->vm_next;
 180
 181	might_sleep();
 182	if (vma->vm_ops && vma->vm_ops->close)
 183		vma->vm_ops->close(vma);
 184	if (vma->vm_file)
 185		fput(vma->vm_file);
 186	mpol_put(vma_policy(vma));
 187	vm_area_free(vma);
 188	return next;
 
 
 
 
 
 
 
 
 189}
 190
 191static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 192		struct list_head *uf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193SYSCALL_DEFINE1(brk, unsigned long, brk)
 194{
 195	unsigned long retval;
 196	unsigned long newbrk, oldbrk, origbrk;
 197	struct mm_struct *mm = current->mm;
 198	struct vm_area_struct *next;
 199	unsigned long min_brk;
 200	bool populate;
 201	bool downgraded = false;
 202	LIST_HEAD(uf);
 
 203
 204	brk = untagged_addr(brk);
 205
 206	if (down_write_killable(&mm->mmap_sem))
 207		return -EINTR;
 208
 209	origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212	/*
 213	 * CONFIG_COMPAT_BRK can still be overridden by setting
 214	 * randomize_va_space to 2, which will still cause mm->start_brk
 215	 * to be arbitrarily shifted
 216	 */
 217	if (current->brk_randomized)
 218		min_brk = mm->start_brk;
 219	else
 220		min_brk = mm->end_data;
 221#else
 222	min_brk = mm->start_brk;
 223#endif
 224	if (brk < min_brk)
 225		goto out;
 226
 227	/*
 228	 * Check against rlimit here. If this check is done later after the test
 229	 * of oldbrk with newbrk then it can escape the test and let the data
 230	 * segment grow beyond its set limit the in case where the limit is
 231	 * not page aligned -Ram Gupta
 232	 */
 233	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234			      mm->end_data, mm->start_data))
 235		goto out;
 236
 237	newbrk = PAGE_ALIGN(brk);
 238	oldbrk = PAGE_ALIGN(mm->brk);
 239	if (oldbrk == newbrk) {
 240		mm->brk = brk;
 241		goto success;
 242	}
 243
 244	/*
 245	 * Always allow shrinking brk.
 246	 * __do_munmap() may downgrade mmap_sem to read.
 247	 */
 248	if (brk <= mm->brk) {
 249		int ret;
 250
 
 
 
 251		/*
 252		 * mm->brk must to be protected by write mmap_sem so update it
 253		 * before downgrading mmap_sem. When __do_munmap() fails,
 254		 * mm->brk will be restored from origbrk.
 255		 */
 256		mm->brk = brk;
 257		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258		if (ret < 0) {
 259			mm->brk = origbrk;
 260			goto out;
 261		} else if (ret == 1) {
 262			downgraded = true;
 263		}
 264		goto success;
 265	}
 266
 267	/* Check against existing mmap mappings. */
 268	next = find_vma(mm, oldbrk);
 
 
 
 
 
 
 
 269	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270		goto out;
 271
 
 272	/* Ok, looks good - let it rip. */
 273	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274		goto out;
 
 275	mm->brk = brk;
 
 
 276
 277success:
 278	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279	if (downgraded)
 280		up_read(&mm->mmap_sem);
 281	else
 282		up_write(&mm->mmap_sem);
 283	userfaultfd_unmap_complete(mm, &uf);
 284	if (populate)
 285		mm_populate(oldbrk, newbrk - oldbrk);
 286	return brk;
 287
 288out:
 289	retval = origbrk;
 290	up_write(&mm->mmap_sem);
 291	return retval;
 292}
 293
 294static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 295{
 296	unsigned long gap, prev_end;
 297
 298	/*
 299	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 300	 * allow two stack_guard_gaps between them here, and when choosing
 301	 * an unmapped area; whereas when expanding we only require one.
 302	 * That's a little inconsistent, but keeps the code here simpler.
 303	 */
 304	gap = vm_start_gap(vma);
 305	if (vma->vm_prev) {
 306		prev_end = vm_end_gap(vma->vm_prev);
 307		if (gap > prev_end)
 308			gap -= prev_end;
 309		else
 310			gap = 0;
 311	}
 312	return gap;
 313}
 314
 315#ifdef CONFIG_DEBUG_VM_RB
 316static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 317{
 318	unsigned long max = vma_compute_gap(vma), subtree_gap;
 319	if (vma->vm_rb.rb_left) {
 320		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 321				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 322		if (subtree_gap > max)
 323			max = subtree_gap;
 324	}
 325	if (vma->vm_rb.rb_right) {
 326		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 327				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 328		if (subtree_gap > max)
 329			max = subtree_gap;
 330	}
 331	return max;
 332}
 333
 334static int browse_rb(struct mm_struct *mm)
 335{
 336	struct rb_root *root = &mm->mm_rb;
 337	int i = 0, j, bug = 0;
 338	struct rb_node *nd, *pn = NULL;
 339	unsigned long prev = 0, pend = 0;
 340
 341	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 342		struct vm_area_struct *vma;
 343		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 344		if (vma->vm_start < prev) {
 345			pr_emerg("vm_start %lx < prev %lx\n",
 346				  vma->vm_start, prev);
 347			bug = 1;
 348		}
 349		if (vma->vm_start < pend) {
 350			pr_emerg("vm_start %lx < pend %lx\n",
 351				  vma->vm_start, pend);
 352			bug = 1;
 353		}
 354		if (vma->vm_start > vma->vm_end) {
 355			pr_emerg("vm_start %lx > vm_end %lx\n",
 356				  vma->vm_start, vma->vm_end);
 357			bug = 1;
 358		}
 359		spin_lock(&mm->page_table_lock);
 360		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 361			pr_emerg("free gap %lx, correct %lx\n",
 362			       vma->rb_subtree_gap,
 363			       vma_compute_subtree_gap(vma));
 364			bug = 1;
 365		}
 366		spin_unlock(&mm->page_table_lock);
 367		i++;
 368		pn = nd;
 369		prev = vma->vm_start;
 370		pend = vma->vm_end;
 371	}
 372	j = 0;
 373	for (nd = pn; nd; nd = rb_prev(nd))
 374		j++;
 375	if (i != j) {
 376		pr_emerg("backwards %d, forwards %d\n", j, i);
 377		bug = 1;
 378	}
 379	return bug ? -1 : i;
 380}
 381
 382static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 383{
 384	struct rb_node *nd;
 385
 386	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 387		struct vm_area_struct *vma;
 388		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 389		VM_BUG_ON_VMA(vma != ignore &&
 390			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 391			vma);
 392	}
 393}
 394
 
 395static void validate_mm(struct mm_struct *mm)
 396{
 397	int bug = 0;
 398	int i = 0;
 399	unsigned long highest_address = 0;
 400	struct vm_area_struct *vma = mm->mmap;
 401
 402	while (vma) {
 
 
 403		struct anon_vma *anon_vma = vma->anon_vma;
 404		struct anon_vma_chain *avc;
 
 
 
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406		if (anon_vma) {
 407			anon_vma_lock_read(anon_vma);
 408			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 409				anon_vma_interval_tree_verify(avc);
 410			anon_vma_unlock_read(anon_vma);
 411		}
 412
 413		highest_address = vm_end_gap(vma);
 414		vma = vma->vm_next;
 415		i++;
 416	}
 417	if (i != mm->map_count) {
 418		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 419		bug = 1;
 420	}
 421	if (highest_address != mm->highest_vm_end) {
 422		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 423			  mm->highest_vm_end, highest_address);
 424		bug = 1;
 425	}
 426	i = browse_rb(mm);
 427	if (i != mm->map_count) {
 428		if (i != -1)
 429			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 430		bug = 1;
 431	}
 432	VM_BUG_ON_MM(bug, mm);
 433}
 434#else
 435#define validate_mm_rb(root, ignore) do { } while (0)
 436#define validate_mm(mm) do { } while (0)
 437#endif
 438
 439RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 440			 struct vm_area_struct, vm_rb,
 441			 unsigned long, rb_subtree_gap, vma_compute_gap)
 442
 443/*
 444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 446 * in the rbtree.
 447 */
 448static void vma_gap_update(struct vm_area_struct *vma)
 449{
 450	/*
 451	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 452	 * a callback function that does exactly what we want.
 453	 */
 454	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 455}
 456
 457static inline void vma_rb_insert(struct vm_area_struct *vma,
 458				 struct rb_root *root)
 459{
 460	/* All rb_subtree_gap values must be consistent prior to insertion */
 461	validate_mm_rb(root, NULL);
 462
 463	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 464}
 465
 466static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 467{
 468	/*
 469	 * Note rb_erase_augmented is a fairly large inline function,
 470	 * so make sure we instantiate it only once with our desired
 471	 * augmented rbtree callbacks.
 472	 */
 473	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 474}
 475
 476static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 477						struct rb_root *root,
 478						struct vm_area_struct *ignore)
 479{
 480	/*
 481	 * All rb_subtree_gap values must be consistent prior to erase,
 482	 * with the possible exception of the "next" vma being erased if
 483	 * next->vm_start was reduced.
 484	 */
 485	validate_mm_rb(root, ignore);
 486
 487	__vma_rb_erase(vma, root);
 488}
 489
 490static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 491					 struct rb_root *root)
 492{
 493	/*
 494	 * All rb_subtree_gap values must be consistent prior to erase,
 495	 * with the possible exception of the vma being erased.
 496	 */
 497	validate_mm_rb(root, vma);
 498
 499	__vma_rb_erase(vma, root);
 500}
 501
 502/*
 503 * vma has some anon_vma assigned, and is already inserted on that
 504 * anon_vma's interval trees.
 505 *
 506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 507 * vma must be removed from the anon_vma's interval trees using
 508 * anon_vma_interval_tree_pre_update_vma().
 509 *
 510 * After the update, the vma will be reinserted using
 511 * anon_vma_interval_tree_post_update_vma().
 512 *
 513 * The entire update must be protected by exclusive mmap_sem and by
 514 * the root anon_vma's mutex.
 515 */
 516static inline void
 517anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 518{
 519	struct anon_vma_chain *avc;
 520
 521	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 522		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 523}
 524
 525static inline void
 526anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 527{
 528	struct anon_vma_chain *avc;
 529
 530	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 531		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 532}
 533
 534static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 535		unsigned long end, struct vm_area_struct **pprev,
 536		struct rb_node ***rb_link, struct rb_node **rb_parent)
 537{
 538	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 539
 540	__rb_link = &mm->mm_rb.rb_node;
 541	rb_prev = __rb_parent = NULL;
 542
 543	while (*__rb_link) {
 544		struct vm_area_struct *vma_tmp;
 545
 546		__rb_parent = *__rb_link;
 547		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 548
 549		if (vma_tmp->vm_end > addr) {
 550			/* Fail if an existing vma overlaps the area */
 551			if (vma_tmp->vm_start < end)
 552				return -ENOMEM;
 553			__rb_link = &__rb_parent->rb_left;
 554		} else {
 555			rb_prev = __rb_parent;
 556			__rb_link = &__rb_parent->rb_right;
 557		}
 558	}
 559
 560	*pprev = NULL;
 561	if (rb_prev)
 562		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 563	*rb_link = __rb_link;
 564	*rb_parent = __rb_parent;
 565	return 0;
 566}
 567
 568static unsigned long count_vma_pages_range(struct mm_struct *mm,
 569		unsigned long addr, unsigned long end)
 570{
 
 
 571	unsigned long nr_pages = 0;
 572	struct vm_area_struct *vma;
 573
 574	/* Find first overlaping mapping */
 575	vma = find_vma_intersection(mm, addr, end);
 576	if (!vma)
 577		return 0;
 578
 579	nr_pages = (min(end, vma->vm_end) -
 580		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 581
 582	/* Iterate over the rest of the overlaps */
 583	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 584		unsigned long overlap_len;
 585
 586		if (vma->vm_start > end)
 587			break;
 588
 589		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 590		nr_pages += overlap_len >> PAGE_SHIFT;
 591	}
 592
 593	return nr_pages;
 594}
 595
 596void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 597		struct rb_node **rb_link, struct rb_node *rb_parent)
 598{
 599	/* Update tracking information for the gap following the new vma. */
 600	if (vma->vm_next)
 601		vma_gap_update(vma->vm_next);
 602	else
 603		mm->highest_vm_end = vm_end_gap(vma);
 604
 605	/*
 606	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 607	 * correct insertion point for that vma. As a result, we could not
 608	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 609	 * So, we first insert the vma with a zero rb_subtree_gap value
 610	 * (to be consistent with what we did on the way down), and then
 611	 * immediately update the gap to the correct value. Finally we
 612	 * rebalance the rbtree after all augmented values have been set.
 613	 */
 614	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 615	vma->rb_subtree_gap = 0;
 616	vma_gap_update(vma);
 617	vma_rb_insert(vma, &mm->mm_rb);
 618}
 619
 620static void __vma_link_file(struct vm_area_struct *vma)
 621{
 622	struct file *file;
 
 623
 624	file = vma->vm_file;
 625	if (file) {
 626		struct address_space *mapping = file->f_mapping;
 627
 628		if (vma->vm_flags & VM_DENYWRITE)
 629			atomic_dec(&file_inode(file)->i_writecount);
 630		if (vma->vm_flags & VM_SHARED)
 631			atomic_inc(&mapping->i_mmap_writable);
 632
 633		flush_dcache_mmap_lock(mapping);
 634		vma_interval_tree_insert(vma, &mapping->i_mmap);
 635		flush_dcache_mmap_unlock(mapping);
 636	}
 637}
 638
 639static void
 640__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 641	struct vm_area_struct *prev, struct rb_node **rb_link,
 642	struct rb_node *rb_parent)
 643{
 644	__vma_link_list(mm, vma, prev, rb_parent);
 645	__vma_link_rb(mm, vma, rb_link, rb_parent);
 646}
 647
 648static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 649			struct vm_area_struct *prev, struct rb_node **rb_link,
 650			struct rb_node *rb_parent)
 651{
 652	struct address_space *mapping = NULL;
 653
 654	if (vma->vm_file) {
 655		mapping = vma->vm_file->f_mapping;
 656		i_mmap_lock_write(mapping);
 
 
 657	}
 658
 659	__vma_link(mm, vma, prev, rb_link, rb_parent);
 660	__vma_link_file(vma);
 661
 662	if (mapping)
 663		i_mmap_unlock_write(mapping);
 664
 665	mm->map_count++;
 666	validate_mm(mm);
 
 667}
 668
 669/*
 670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 671 * mm's list and rbtree.  It has already been inserted into the interval tree.
 
 
 
 
 672 */
 673static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 
 
 674{
 675	struct vm_area_struct *prev;
 676	struct rb_node **rb_link, *rb_parent;
 
 
 
 
 
 
 
 
 
 
 677
 678	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 679			   &prev, &rb_link, &rb_parent))
 680		BUG();
 681	__vma_link(mm, vma, prev, rb_link, rb_parent);
 682	mm->map_count++;
 683}
 684
 685static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 686						struct vm_area_struct *vma,
 687						struct vm_area_struct *prev,
 688						bool has_prev,
 689						struct vm_area_struct *ignore)
 
 
 690{
 691	struct vm_area_struct *next;
 692
 693	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 694	next = vma->vm_next;
 695	if (has_prev)
 696		prev->vm_next = next;
 697	else {
 698		prev = vma->vm_prev;
 699		if (prev)
 700			prev->vm_next = next;
 701		else
 702			mm->mmap = next;
 703	}
 704	if (next)
 705		next->vm_prev = prev;
 706
 707	/* Kill the cache */
 708	vmacache_invalidate(mm);
 709}
 710
 711static inline void __vma_unlink_prev(struct mm_struct *mm,
 712				     struct vm_area_struct *vma,
 713				     struct vm_area_struct *prev)
 714{
 715	__vma_unlink_common(mm, vma, prev, true, vma);
 716}
 717
 718/*
 719 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 720 * is already present in an i_mmap tree without adjusting the tree.
 721 * The following helper function should be used when such adjustments
 722 * are necessary.  The "insert" vma (if any) is to be inserted
 723 * before we drop the necessary locks.
 724 */
 725int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 726	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 727	struct vm_area_struct *expand)
 728{
 729	struct mm_struct *mm = vma->vm_mm;
 730	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 731	struct address_space *mapping = NULL;
 732	struct rb_root_cached *root = NULL;
 733	struct anon_vma *anon_vma = NULL;
 734	struct file *file = vma->vm_file;
 735	bool start_changed = false, end_changed = false;
 736	long adjust_next = 0;
 737	int remove_next = 0;
 738
 739	if (next && !insert) {
 740		struct vm_area_struct *exporter = NULL, *importer = NULL;
 741
 742		if (end >= next->vm_end) {
 743			/*
 744			 * vma expands, overlapping all the next, and
 745			 * perhaps the one after too (mprotect case 6).
 746			 * The only other cases that gets here are
 747			 * case 1, case 7 and case 8.
 748			 */
 749			if (next == expand) {
 750				/*
 751				 * The only case where we don't expand "vma"
 752				 * and we expand "next" instead is case 8.
 753				 */
 754				VM_WARN_ON(end != next->vm_end);
 755				/*
 756				 * remove_next == 3 means we're
 757				 * removing "vma" and that to do so we
 758				 * swapped "vma" and "next".
 759				 */
 760				remove_next = 3;
 761				VM_WARN_ON(file != next->vm_file);
 762				swap(vma, next);
 763			} else {
 764				VM_WARN_ON(expand != vma);
 765				/*
 766				 * case 1, 6, 7, remove_next == 2 is case 6,
 767				 * remove_next == 1 is case 1 or 7.
 768				 */
 769				remove_next = 1 + (end > next->vm_end);
 770				VM_WARN_ON(remove_next == 2 &&
 771					   end != next->vm_next->vm_end);
 772				VM_WARN_ON(remove_next == 1 &&
 773					   end != next->vm_end);
 774				/* trim end to next, for case 6 first pass */
 775				end = next->vm_end;
 776			}
 777
 778			exporter = next;
 779			importer = vma;
 780
 781			/*
 782			 * If next doesn't have anon_vma, import from vma after
 783			 * next, if the vma overlaps with it.
 784			 */
 785			if (remove_next == 2 && !next->anon_vma)
 786				exporter = next->vm_next;
 787
 788		} else if (end > next->vm_start) {
 789			/*
 790			 * vma expands, overlapping part of the next:
 791			 * mprotect case 5 shifting the boundary up.
 792			 */
 793			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 794			exporter = next;
 795			importer = vma;
 796			VM_WARN_ON(expand != importer);
 797		} else if (end < vma->vm_end) {
 798			/*
 799			 * vma shrinks, and !insert tells it's not
 800			 * split_vma inserting another: so it must be
 801			 * mprotect case 4 shifting the boundary down.
 802			 */
 803			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 804			exporter = vma;
 805			importer = next;
 806			VM_WARN_ON(expand != importer);
 807		}
 808
 809		/*
 810		 * Easily overlooked: when mprotect shifts the boundary,
 811		 * make sure the expanding vma has anon_vma set if the
 812		 * shrinking vma had, to cover any anon pages imported.
 813		 */
 814		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 815			int error;
 816
 817			importer->anon_vma = exporter->anon_vma;
 818			error = anon_vma_clone(importer, exporter);
 819			if (error)
 820				return error;
 821		}
 822	}
 823again:
 824	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 825
 826	if (file) {
 827		mapping = file->f_mapping;
 828		root = &mapping->i_mmap;
 829		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 830
 831		if (adjust_next)
 832			uprobe_munmap(next, next->vm_start, next->vm_end);
 833
 834		i_mmap_lock_write(mapping);
 835		if (insert) {
 836			/*
 837			 * Put into interval tree now, so instantiated pages
 838			 * are visible to arm/parisc __flush_dcache_page
 839			 * throughout; but we cannot insert into address
 840			 * space until vma start or end is updated.
 841			 */
 842			__vma_link_file(insert);
 
 843		}
 844	}
 845
 846	anon_vma = vma->anon_vma;
 847	if (!anon_vma && adjust_next)
 848		anon_vma = next->anon_vma;
 849	if (anon_vma) {
 850		VM_WARN_ON(adjust_next && next->anon_vma &&
 851			   anon_vma != next->anon_vma);
 852		anon_vma_lock_write(anon_vma);
 853		anon_vma_interval_tree_pre_update_vma(vma);
 854		if (adjust_next)
 855			anon_vma_interval_tree_pre_update_vma(next);
 856	}
 857
 858	if (root) {
 859		flush_dcache_mmap_lock(mapping);
 860		vma_interval_tree_remove(vma, root);
 861		if (adjust_next)
 862			vma_interval_tree_remove(next, root);
 
 863	}
 864
 865	if (start != vma->vm_start) {
 866		vma->vm_start = start;
 867		start_changed = true;
 868	}
 869	if (end != vma->vm_end) {
 870		vma->vm_end = end;
 871		end_changed = true;
 872	}
 873	vma->vm_pgoff = pgoff;
 874	if (adjust_next) {
 875		next->vm_start += adjust_next << PAGE_SHIFT;
 876		next->vm_pgoff += adjust_next;
 877	}
 878
 879	if (root) {
 880		if (adjust_next)
 881			vma_interval_tree_insert(next, root);
 882		vma_interval_tree_insert(vma, root);
 883		flush_dcache_mmap_unlock(mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 884	}
 885
 886	if (remove_next) {
 887		/*
 888		 * vma_merge has merged next into vma, and needs
 889		 * us to remove next before dropping the locks.
 890		 */
 891		if (remove_next != 3)
 892			__vma_unlink_prev(mm, next, vma);
 893		else
 894			/*
 895			 * vma is not before next if they've been
 896			 * swapped.
 897			 *
 898			 * pre-swap() next->vm_start was reduced so
 899			 * tell validate_mm_rb to ignore pre-swap()
 900			 * "next" (which is stored in post-swap()
 901			 * "vma").
 902			 */
 903			__vma_unlink_common(mm, next, NULL, false, vma);
 904		if (file)
 905			__remove_shared_vm_struct(next, file, mapping);
 906	} else if (insert) {
 907		/*
 908		 * split_vma has split insert from vma, and needs
 909		 * us to insert it before dropping the locks
 910		 * (it may either follow vma or precede it).
 911		 */
 912		__insert_vm_struct(mm, insert);
 913	} else {
 914		if (start_changed)
 915			vma_gap_update(vma);
 916		if (end_changed) {
 917			if (!next)
 918				mm->highest_vm_end = vm_end_gap(vma);
 919			else if (!adjust_next)
 920				vma_gap_update(next);
 921		}
 922	}
 923
 924	if (anon_vma) {
 925		anon_vma_interval_tree_post_update_vma(vma);
 926		if (adjust_next)
 927			anon_vma_interval_tree_post_update_vma(next);
 928		anon_vma_unlock_write(anon_vma);
 929	}
 930	if (mapping)
 931		i_mmap_unlock_write(mapping);
 932
 933	if (root) {
 934		uprobe_mmap(vma);
 
 935
 936		if (adjust_next)
 937			uprobe_mmap(next);
 938	}
 939
 940	if (remove_next) {
 941		if (file) {
 942			uprobe_munmap(next, next->vm_start, next->vm_end);
 943			fput(file);
 
 
 
 944		}
 945		if (next->anon_vma)
 946			anon_vma_merge(vma, next);
 947		mm->map_count--;
 948		mpol_put(vma_policy(next));
 949		vm_area_free(next);
 
 
 
 950		/*
 951		 * In mprotect's case 6 (see comments on vma_merge),
 952		 * we must remove another next too. It would clutter
 953		 * up the code too much to do both in one go.
 954		 */
 955		if (remove_next != 3) {
 956			/*
 957			 * If "next" was removed and vma->vm_end was
 958			 * expanded (up) over it, in turn
 959			 * "next->vm_prev->vm_end" changed and the
 960			 * "vma->vm_next" gap must be updated.
 961			 */
 962			next = vma->vm_next;
 963		} else {
 964			/*
 965			 * For the scope of the comment "next" and
 966			 * "vma" considered pre-swap(): if "vma" was
 967			 * removed, next->vm_start was expanded (down)
 968			 * over it and the "next" gap must be updated.
 969			 * Because of the swap() the post-swap() "vma"
 970			 * actually points to pre-swap() "next"
 971			 * (post-swap() "next" as opposed is now a
 972			 * dangling pointer).
 973			 */
 974			next = vma;
 975		}
 976		if (remove_next == 2) {
 977			remove_next = 1;
 978			end = next->vm_end;
 979			goto again;
 980		}
 981		else if (next)
 982			vma_gap_update(next);
 983		else {
 984			/*
 985			 * If remove_next == 2 we obviously can't
 986			 * reach this path.
 987			 *
 988			 * If remove_next == 3 we can't reach this
 989			 * path because pre-swap() next is always not
 990			 * NULL. pre-swap() "next" is not being
 991			 * removed and its next->vm_end is not altered
 992			 * (and furthermore "end" already matches
 993			 * next->vm_end in remove_next == 3).
 994			 *
 995			 * We reach this only in the remove_next == 1
 996			 * case if the "next" vma that was removed was
 997			 * the highest vma of the mm. However in such
 998			 * case next->vm_end == "end" and the extended
 999			 * "vma" has vma->vm_end == next->vm_end so
1000			 * mm->highest_vm_end doesn't need any update
1001			 * in remove_next == 1 case.
1002			 */
1003			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1004		}
1005	}
1006	if (insert && file)
1007		uprobe_mmap(insert);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	validate_mm(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
 
 
 
 
 
1011	return 0;
1012}
1013
1014/*
1015 * If the vma has a ->close operation then the driver probably needs to release
1016 * per-vma resources, so we don't attempt to merge those.
 
1017 */
1018static inline int is_mergeable_vma(struct vm_area_struct *vma,
1019				struct file *file, unsigned long vm_flags,
1020				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 
1021{
1022	/*
1023	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1024	 * match the flags but dirty bit -- the caller should mark
1025	 * merged VMA as dirty. If dirty bit won't be excluded from
1026	 * comparison, we increase pressure on the memory system forcing
1027	 * the kernel to generate new VMAs when old one could be
1028	 * extended instead.
1029	 */
1030	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1031		return 0;
1032	if (vma->vm_file != file)
1033		return 0;
1034	if (vma->vm_ops && vma->vm_ops->close)
1035		return 0;
1036	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1037		return 0;
1038	return 1;
 
 
1039}
1040
1041static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1042					struct anon_vma *anon_vma2,
1043					struct vm_area_struct *vma)
1044{
1045	/*
1046	 * The list_is_singular() test is to avoid merging VMA cloned from
1047	 * parents. This can improve scalability caused by anon_vma lock.
1048	 */
1049	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1050		list_is_singular(&vma->anon_vma_chain)))
1051		return 1;
1052	return anon_vma1 == anon_vma2;
1053}
1054
1055/*
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * in front of (at a lower virtual address and file offset than) the vma.
1058 *
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061 *
1062 * We don't check here for the merged mmap wrapping around the end of pagecache
1063 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1064 * wrap, nor mmaps which cover the final page at index -1UL.
 
 
1065 */
1066static int
1067can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1068		     struct anon_vma *anon_vma, struct file *file,
1069		     pgoff_t vm_pgoff,
1070		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1071{
1072	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1073	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1074		if (vma->vm_pgoff == vm_pgoff)
1075			return 1;
1076	}
1077	return 0;
1078}
1079
1080/*
1081 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1082 * beyond (at a higher virtual address and file offset than) the vma.
1083 *
1084 * We cannot merge two vmas if they have differently assigned (non-NULL)
1085 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 
 
1086 */
1087static int
1088can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1089		    struct anon_vma *anon_vma, struct file *file,
1090		    pgoff_t vm_pgoff,
1091		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1092{
1093	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1094	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1095		pgoff_t vm_pglen;
1096		vm_pglen = vma_pages(vma);
1097		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1098			return 1;
1099	}
1100	return 0;
1101}
1102
1103/*
1104 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1105 * whether that can be merged with its predecessor or its successor.
1106 * Or both (it neatly fills a hole).
1107 *
1108 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1109 * certain not to be mapped by the time vma_merge is called; but when
1110 * called for mprotect, it is certain to be already mapped (either at
1111 * an offset within prev, or at the start of next), and the flags of
1112 * this area are about to be changed to vm_flags - and the no-change
1113 * case has already been eliminated.
1114 *
1115 * The following mprotect cases have to be considered, where AAAA is
1116 * the area passed down from mprotect_fixup, never extending beyond one
1117 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1118 *
1119 *     AAAA             AAAA                AAAA          AAAA
1120 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1121 *    cannot merge    might become    might become    might become
1122 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1123 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1124 *    mremap move:                                    PPPPXXXXXXXX 8
1125 *        AAAA
1126 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1127 *    might become    case 1 below    case 2 below    case 3 below
1128 *
1129 * It is important for case 8 that the vma NNNN overlapping the
1130 * region AAAA is never going to extended over XXXX. Instead XXXX must
1131 * be extended in region AAAA and NNNN must be removed. This way in
1132 * all cases where vma_merge succeeds, the moment vma_adjust drops the
 
 
 
 
 
1133 * rmap_locks, the properties of the merged vma will be already
1134 * correct for the whole merged range. Some of those properties like
1135 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1136 * be correct for the whole merged range immediately after the
1137 * rmap_locks are released. Otherwise if XXXX would be removed and
1138 * NNNN would be extended over the XXXX range, remove_migration_ptes
1139 * or other rmap walkers (if working on addresses beyond the "end"
1140 * parameter) may establish ptes with the wrong permissions of NNNN
1141 * instead of the right permissions of XXXX.
1142 */
1143struct vm_area_struct *vma_merge(struct mm_struct *mm,
1144			struct vm_area_struct *prev, unsigned long addr,
1145			unsigned long end, unsigned long vm_flags,
1146			struct anon_vma *anon_vma, struct file *file,
1147			pgoff_t pgoff, struct mempolicy *policy,
1148			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1149{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1151	struct vm_area_struct *area, *next;
1152	int err;
1153
1154	/*
1155	 * We later require that vma->vm_flags == vm_flags,
1156	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1157	 */
1158	if (vm_flags & VM_SPECIAL)
1159		return NULL;
1160
1161	if (prev)
1162		next = prev->vm_next;
 
 
 
 
1163	else
1164		next = mm->mmap;
1165	area = next;
1166	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1167		next = next->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169	/* verify some invariant that must be enforced by the caller */
1170	VM_WARN_ON(prev && addr <= prev->vm_start);
1171	VM_WARN_ON(area && end > area->vm_end);
1172	VM_WARN_ON(addr >= end);
1173
1174	/*
1175	 * Can it merge with the predecessor?
1176	 */
1177	if (prev && prev->vm_end == addr &&
1178			mpol_equal(vma_policy(prev), policy) &&
1179			can_vma_merge_after(prev, vm_flags,
1180					    anon_vma, file, pgoff,
1181					    vm_userfaultfd_ctx)) {
1182		/*
1183		 * OK, it can.  Can we now merge in the successor as well?
1184		 */
1185		if (next && end == next->vm_start &&
1186				mpol_equal(policy, vma_policy(next)) &&
1187				can_vma_merge_before(next, vm_flags,
1188						     anon_vma, file,
1189						     pgoff+pglen,
1190						     vm_userfaultfd_ctx) &&
1191				is_mergeable_anon_vma(prev->anon_vma,
1192						      next->anon_vma, NULL)) {
1193							/* cases 1, 6 */
1194			err = __vma_adjust(prev, prev->vm_start,
1195					 next->vm_end, prev->vm_pgoff, NULL,
1196					 prev);
1197		} else					/* cases 2, 5, 7 */
1198			err = __vma_adjust(prev, prev->vm_start,
1199					 end, prev->vm_pgoff, NULL, prev);
1200		if (err)
1201			return NULL;
1202		khugepaged_enter_vma_merge(prev, vm_flags);
1203		return prev;
1204	}
1205
1206	/*
1207	 * Can this new request be merged in front of next?
1208	 */
1209	if (next && end == next->vm_start &&
1210			mpol_equal(policy, vma_policy(next)) &&
1211			can_vma_merge_before(next, vm_flags,
1212					     anon_vma, file, pgoff+pglen,
1213					     vm_userfaultfd_ctx)) {
1214		if (prev && addr < prev->vm_end)	/* case 4 */
1215			err = __vma_adjust(prev, prev->vm_start,
1216					 addr, prev->vm_pgoff, NULL, next);
1217		else {					/* cases 3, 8 */
1218			err = __vma_adjust(area, addr, next->vm_end,
1219					 next->vm_pgoff - pglen, NULL, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1220			/*
1221			 * In case 3 area is already equal to next and
1222			 * this is a noop, but in case 8 "area" has
1223			 * been removed and next was expanded over it.
1224			 */
1225			area = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226		}
1227		if (err)
1228			return NULL;
1229		khugepaged_enter_vma_merge(area, vm_flags);
1230		return area;
1231	}
1232
 
 
 
 
 
 
 
 
 
 
 
1233	return NULL;
1234}
1235
1236/*
1237 * Rough compatbility check to quickly see if it's even worth looking
1238 * at sharing an anon_vma.
1239 *
1240 * They need to have the same vm_file, and the flags can only differ
1241 * in things that mprotect may change.
1242 *
1243 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1244 * we can merge the two vma's. For example, we refuse to merge a vma if
1245 * there is a vm_ops->close() function, because that indicates that the
1246 * driver is doing some kind of reference counting. But that doesn't
1247 * really matter for the anon_vma sharing case.
1248 */
1249static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1250{
1251	return a->vm_end == b->vm_start &&
1252		mpol_equal(vma_policy(a), vma_policy(b)) &&
1253		a->vm_file == b->vm_file &&
1254		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1255		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1256}
1257
1258/*
1259 * Do some basic sanity checking to see if we can re-use the anon_vma
1260 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1261 * the same as 'old', the other will be the new one that is trying
1262 * to share the anon_vma.
1263 *
1264 * NOTE! This runs with mm_sem held for reading, so it is possible that
1265 * the anon_vma of 'old' is concurrently in the process of being set up
1266 * by another page fault trying to merge _that_. But that's ok: if it
1267 * is being set up, that automatically means that it will be a singleton
1268 * acceptable for merging, so we can do all of this optimistically. But
1269 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1270 *
1271 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1272 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1273 * is to return an anon_vma that is "complex" due to having gone through
1274 * a fork).
1275 *
1276 * We also make sure that the two vma's are compatible (adjacent,
1277 * and with the same memory policies). That's all stable, even with just
1278 * a read lock on the mm_sem.
1279 */
1280static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1281{
1282	if (anon_vma_compatible(a, b)) {
1283		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1284
1285		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1286			return anon_vma;
1287	}
1288	return NULL;
1289}
1290
1291/*
1292 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1293 * neighbouring vmas for a suitable anon_vma, before it goes off
1294 * to allocate a new anon_vma.  It checks because a repetitive
1295 * sequence of mprotects and faults may otherwise lead to distinct
1296 * anon_vmas being allocated, preventing vma merge in subsequent
1297 * mprotect.
1298 */
1299struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1300{
1301	struct anon_vma *anon_vma;
1302	struct vm_area_struct *near;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303
1304	near = vma->vm_next;
1305	if (!near)
1306		goto try_prev;
1307
1308	anon_vma = reusable_anon_vma(near, vma, near);
1309	if (anon_vma)
1310		return anon_vma;
1311try_prev:
1312	near = vma->vm_prev;
1313	if (!near)
1314		goto none;
1315
1316	anon_vma = reusable_anon_vma(near, near, vma);
1317	if (anon_vma)
1318		return anon_vma;
1319none:
1320	/*
 
 
1321	 * There's no absolute need to look only at touching neighbours:
1322	 * we could search further afield for "compatible" anon_vmas.
1323	 * But it would probably just be a waste of time searching,
1324	 * or lead to too many vmas hanging off the same anon_vma.
1325	 * We're trying to allow mprotect remerging later on,
1326	 * not trying to minimize memory used for anon_vmas.
1327	 */
1328	return NULL;
1329}
1330
1331/*
1332 * If a hint addr is less than mmap_min_addr change hint to be as
1333 * low as possible but still greater than mmap_min_addr
1334 */
1335static inline unsigned long round_hint_to_min(unsigned long hint)
1336{
1337	hint &= PAGE_MASK;
1338	if (((void *)hint != NULL) &&
1339	    (hint < mmap_min_addr))
1340		return PAGE_ALIGN(mmap_min_addr);
1341	return hint;
1342}
1343
1344static inline int mlock_future_check(struct mm_struct *mm,
1345				     unsigned long flags,
1346				     unsigned long len)
1347{
1348	unsigned long locked, lock_limit;
1349
1350	/*  mlock MCL_FUTURE? */
1351	if (flags & VM_LOCKED) {
1352		locked = len >> PAGE_SHIFT;
1353		locked += mm->locked_vm;
1354		lock_limit = rlimit(RLIMIT_MEMLOCK);
1355		lock_limit >>= PAGE_SHIFT;
1356		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1357			return -EAGAIN;
1358	}
1359	return 0;
1360}
1361
1362static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1363{
1364	if (S_ISREG(inode->i_mode))
1365		return MAX_LFS_FILESIZE;
1366
1367	if (S_ISBLK(inode->i_mode))
1368		return MAX_LFS_FILESIZE;
1369
1370	if (S_ISSOCK(inode->i_mode))
1371		return MAX_LFS_FILESIZE;
1372
1373	/* Special "we do even unsigned file positions" case */
1374	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1375		return 0;
1376
1377	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1378	return ULONG_MAX;
1379}
1380
1381static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1382				unsigned long pgoff, unsigned long len)
1383{
1384	u64 maxsize = file_mmap_size_max(file, inode);
1385
1386	if (maxsize && len > maxsize)
1387		return false;
1388	maxsize -= len;
1389	if (pgoff > maxsize >> PAGE_SHIFT)
1390		return false;
1391	return true;
1392}
1393
1394/*
1395 * The caller must hold down_write(&current->mm->mmap_sem).
1396 */
1397unsigned long do_mmap(struct file *file, unsigned long addr,
1398			unsigned long len, unsigned long prot,
1399			unsigned long flags, vm_flags_t vm_flags,
1400			unsigned long pgoff, unsigned long *populate,
1401			struct list_head *uf)
1402{
1403	struct mm_struct *mm = current->mm;
1404	int pkey = 0;
1405
1406	*populate = 0;
1407
1408	if (!len)
1409		return -EINVAL;
1410
1411	/*
1412	 * Does the application expect PROT_READ to imply PROT_EXEC?
1413	 *
1414	 * (the exception is when the underlying filesystem is noexec
1415	 *  mounted, in which case we dont add PROT_EXEC.)
1416	 */
1417	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1418		if (!(file && path_noexec(&file->f_path)))
1419			prot |= PROT_EXEC;
1420
1421	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1422	if (flags & MAP_FIXED_NOREPLACE)
1423		flags |= MAP_FIXED;
1424
1425	if (!(flags & MAP_FIXED))
1426		addr = round_hint_to_min(addr);
1427
1428	/* Careful about overflows.. */
1429	len = PAGE_ALIGN(len);
1430	if (!len)
1431		return -ENOMEM;
1432
1433	/* offset overflow? */
1434	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1435		return -EOVERFLOW;
1436
1437	/* Too many mappings? */
1438	if (mm->map_count > sysctl_max_map_count)
1439		return -ENOMEM;
1440
1441	/* Obtain the address to map to. we verify (or select) it and ensure
1442	 * that it represents a valid section of the address space.
1443	 */
1444	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1445	if (offset_in_page(addr))
1446		return addr;
1447
1448	if (flags & MAP_FIXED_NOREPLACE) {
1449		struct vm_area_struct *vma = find_vma(mm, addr);
1450
1451		if (vma && vma->vm_start < addr + len)
1452			return -EEXIST;
1453	}
1454
1455	if (prot == PROT_EXEC) {
1456		pkey = execute_only_pkey(mm);
1457		if (pkey < 0)
1458			pkey = 0;
1459	}
1460
1461	/* Do simple checking here so the lower-level routines won't have
1462	 * to. we assume access permissions have been handled by the open
1463	 * of the memory object, so we don't do any here.
1464	 */
1465	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1466			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1467
1468	if (flags & MAP_LOCKED)
1469		if (!can_do_mlock())
1470			return -EPERM;
1471
1472	if (mlock_future_check(mm, vm_flags, len))
1473		return -EAGAIN;
1474
1475	if (file) {
1476		struct inode *inode = file_inode(file);
1477		unsigned long flags_mask;
1478
1479		if (!file_mmap_ok(file, inode, pgoff, len))
1480			return -EOVERFLOW;
1481
1482		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1483
1484		switch (flags & MAP_TYPE) {
1485		case MAP_SHARED:
1486			/*
1487			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1488			 * flags. E.g. MAP_SYNC is dangerous to use with
1489			 * MAP_SHARED as you don't know which consistency model
1490			 * you will get. We silently ignore unsupported flags
1491			 * with MAP_SHARED to preserve backward compatibility.
1492			 */
1493			flags &= LEGACY_MAP_MASK;
1494			/* fall through */
1495		case MAP_SHARED_VALIDATE:
1496			if (flags & ~flags_mask)
1497				return -EOPNOTSUPP;
1498			if (prot & PROT_WRITE) {
1499				if (!(file->f_mode & FMODE_WRITE))
1500					return -EACCES;
1501				if (IS_SWAPFILE(file->f_mapping->host))
1502					return -ETXTBSY;
1503			}
1504
1505			/*
1506			 * Make sure we don't allow writing to an append-only
1507			 * file..
1508			 */
1509			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1510				return -EACCES;
1511
1512			/*
1513			 * Make sure there are no mandatory locks on the file.
1514			 */
1515			if (locks_verify_locked(file))
1516				return -EAGAIN;
1517
1518			vm_flags |= VM_SHARED | VM_MAYSHARE;
1519			if (!(file->f_mode & FMODE_WRITE))
1520				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1521
1522			/* fall through */
1523		case MAP_PRIVATE:
1524			if (!(file->f_mode & FMODE_READ))
1525				return -EACCES;
1526			if (path_noexec(&file->f_path)) {
1527				if (vm_flags & VM_EXEC)
1528					return -EPERM;
1529				vm_flags &= ~VM_MAYEXEC;
1530			}
1531
1532			if (!file->f_op->mmap)
1533				return -ENODEV;
1534			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1535				return -EINVAL;
1536			break;
1537
1538		default:
1539			return -EINVAL;
1540		}
1541	} else {
1542		switch (flags & MAP_TYPE) {
1543		case MAP_SHARED:
1544			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545				return -EINVAL;
1546			/*
1547			 * Ignore pgoff.
1548			 */
1549			pgoff = 0;
1550			vm_flags |= VM_SHARED | VM_MAYSHARE;
1551			break;
1552		case MAP_PRIVATE:
1553			/*
1554			 * Set pgoff according to addr for anon_vma.
1555			 */
1556			pgoff = addr >> PAGE_SHIFT;
1557			break;
1558		default:
1559			return -EINVAL;
1560		}
1561	}
1562
1563	/*
1564	 * Set 'VM_NORESERVE' if we should not account for the
1565	 * memory use of this mapping.
1566	 */
1567	if (flags & MAP_NORESERVE) {
1568		/* We honor MAP_NORESERVE if allowed to overcommit */
1569		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1570			vm_flags |= VM_NORESERVE;
1571
1572		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1573		if (file && is_file_hugepages(file))
1574			vm_flags |= VM_NORESERVE;
1575	}
1576
1577	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1578	if (!IS_ERR_VALUE(addr) &&
1579	    ((vm_flags & VM_LOCKED) ||
1580	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1581		*populate = len;
1582	return addr;
1583}
1584
1585unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1586			      unsigned long prot, unsigned long flags,
1587			      unsigned long fd, unsigned long pgoff)
1588{
1589	struct file *file = NULL;
1590	unsigned long retval;
1591
1592	addr = untagged_addr(addr);
1593
1594	if (!(flags & MAP_ANONYMOUS)) {
1595		audit_mmap_fd(fd, flags);
1596		file = fget(fd);
1597		if (!file)
1598			return -EBADF;
1599		if (is_file_hugepages(file))
1600			len = ALIGN(len, huge_page_size(hstate_file(file)));
1601		retval = -EINVAL;
1602		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1603			goto out_fput;
 
1604	} else if (flags & MAP_HUGETLB) {
1605		struct user_struct *user = NULL;
1606		struct hstate *hs;
1607
1608		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1609		if (!hs)
1610			return -EINVAL;
1611
1612		len = ALIGN(len, huge_page_size(hs));
1613		/*
1614		 * VM_NORESERVE is used because the reservations will be
1615		 * taken when vm_ops->mmap() is called
1616		 * A dummy user value is used because we are not locking
1617		 * memory so no accounting is necessary
1618		 */
1619		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1620				VM_NORESERVE,
1621				&user, HUGETLB_ANONHUGE_INODE,
1622				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1623		if (IS_ERR(file))
1624			return PTR_ERR(file);
1625	}
1626
1627	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1628
1629	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1630out_fput:
1631	if (file)
1632		fput(file);
1633	return retval;
1634}
1635
1636SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1637		unsigned long, prot, unsigned long, flags,
1638		unsigned long, fd, unsigned long, pgoff)
1639{
1640	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1641}
1642
1643#ifdef __ARCH_WANT_SYS_OLD_MMAP
1644struct mmap_arg_struct {
1645	unsigned long addr;
1646	unsigned long len;
1647	unsigned long prot;
1648	unsigned long flags;
1649	unsigned long fd;
1650	unsigned long offset;
1651};
1652
1653SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1654{
1655	struct mmap_arg_struct a;
1656
1657	if (copy_from_user(&a, arg, sizeof(a)))
1658		return -EFAULT;
1659	if (offset_in_page(a.offset))
1660		return -EINVAL;
1661
1662	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1663			       a.offset >> PAGE_SHIFT);
1664}
1665#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1666
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1667/*
1668 * Some shared mappings will want the pages marked read-only
1669 * to track write events. If so, we'll downgrade vm_page_prot
1670 * to the private version (using protection_map[] without the
1671 * VM_SHARED bit).
1672 */
1673int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1674{
1675	vm_flags_t vm_flags = vma->vm_flags;
1676	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1677
1678	/* If it was private or non-writable, the write bit is already clear */
1679	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1680		return 0;
1681
1682	/* The backer wishes to know when pages are first written to? */
1683	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1684		return 1;
1685
1686	/* The open routine did something to the protections that pgprot_modify
1687	 * won't preserve? */
1688	if (pgprot_val(vm_page_prot) !=
1689	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1690		return 0;
1691
1692	/* Do we need to track softdirty? */
1693	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
 
 
 
1694		return 1;
1695
1696	/* Specialty mapping? */
1697	if (vm_flags & VM_PFNMAP)
1698		return 0;
1699
1700	/* Can the mapping track the dirty pages? */
1701	return vma->vm_file && vma->vm_file->f_mapping &&
1702		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1703}
1704
1705/*
1706 * We account for memory if it's a private writeable mapping,
1707 * not hugepages and VM_NORESERVE wasn't set.
1708 */
1709static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1710{
1711	/*
1712	 * hugetlb has its own accounting separate from the core VM
1713	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1714	 */
1715	if (file && is_file_hugepages(file))
1716		return 0;
1717
1718	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1719}
1720
1721unsigned long mmap_region(struct file *file, unsigned long addr,
1722		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1723		struct list_head *uf)
 
 
 
 
 
 
 
 
1724{
1725	struct mm_struct *mm = current->mm;
1726	struct vm_area_struct *vma, *prev;
1727	int error;
1728	struct rb_node **rb_link, *rb_parent;
1729	unsigned long charged = 0;
1730
1731	/* Check against address space limit. */
1732	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1733		unsigned long nr_pages;
1734
1735		/*
1736		 * MAP_FIXED may remove pages of mappings that intersects with
1737		 * requested mapping. Account for the pages it would unmap.
1738		 */
1739		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1740
1741		if (!may_expand_vm(mm, vm_flags,
1742					(len >> PAGE_SHIFT) - nr_pages))
1743			return -ENOMEM;
1744	}
1745
1746	/* Clear old maps */
1747	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1748			      &rb_parent)) {
1749		if (do_munmap(mm, addr, len, uf))
1750			return -ENOMEM;
1751	}
1752
1753	/*
1754	 * Private writable mapping: check memory availability
1755	 */
1756	if (accountable_mapping(file, vm_flags)) {
1757		charged = len >> PAGE_SHIFT;
1758		if (security_vm_enough_memory_mm(mm, charged))
1759			return -ENOMEM;
1760		vm_flags |= VM_ACCOUNT;
1761	}
1762
1763	/*
1764	 * Can we just expand an old mapping?
1765	 */
1766	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1768	if (vma)
1769		goto out;
1770
1771	/*
1772	 * Determine the object being mapped and call the appropriate
1773	 * specific mapper. the address has already been validated, but
1774	 * not unmapped, but the maps are removed from the list.
1775	 */
1776	vma = vm_area_alloc(mm);
1777	if (!vma) {
1778		error = -ENOMEM;
1779		goto unacct_error;
1780	}
1781
1782	vma->vm_start = addr;
1783	vma->vm_end = addr + len;
1784	vma->vm_flags = vm_flags;
1785	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786	vma->vm_pgoff = pgoff;
1787
1788	if (file) {
1789		if (vm_flags & VM_DENYWRITE) {
1790			error = deny_write_access(file);
1791			if (error)
1792				goto free_vma;
1793		}
1794		if (vm_flags & VM_SHARED) {
1795			error = mapping_map_writable(file->f_mapping);
1796			if (error)
1797				goto allow_write_and_free_vma;
1798		}
1799
1800		/* ->mmap() can change vma->vm_file, but must guarantee that
1801		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1802		 * and map writably if VM_SHARED is set. This usually means the
1803		 * new file must not have been exposed to user-space, yet.
1804		 */
1805		vma->vm_file = get_file(file);
1806		error = call_mmap(file, vma);
1807		if (error)
1808			goto unmap_and_free_vma;
1809
1810		/* Can addr have changed??
1811		 *
1812		 * Answer: Yes, several device drivers can do it in their
1813		 *         f_op->mmap method. -DaveM
1814		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1815		 *      be updated for vma_link()
1816		 */
1817		WARN_ON_ONCE(addr != vma->vm_start);
1818
1819		addr = vma->vm_start;
1820		vm_flags = vma->vm_flags;
1821	} else if (vm_flags & VM_SHARED) {
1822		error = shmem_zero_setup(vma);
1823		if (error)
1824			goto free_vma;
1825	} else {
1826		vma_set_anonymous(vma);
1827	}
1828
1829	vma_link(mm, vma, prev, rb_link, rb_parent);
1830	/* Once vma denies write, undo our temporary denial count */
1831	if (file) {
1832		if (vm_flags & VM_SHARED)
1833			mapping_unmap_writable(file->f_mapping);
1834		if (vm_flags & VM_DENYWRITE)
1835			allow_write_access(file);
1836	}
1837	file = vma->vm_file;
1838out:
1839	perf_event_mmap(vma);
1840
1841	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1842	if (vm_flags & VM_LOCKED) {
1843		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1844					is_vm_hugetlb_page(vma) ||
1845					vma == get_gate_vma(current->mm))
1846			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1847		else
1848			mm->locked_vm += (len >> PAGE_SHIFT);
1849	}
1850
1851	if (file)
1852		uprobe_mmap(vma);
1853
1854	/*
1855	 * New (or expanded) vma always get soft dirty status.
1856	 * Otherwise user-space soft-dirty page tracker won't
1857	 * be able to distinguish situation when vma area unmapped,
1858	 * then new mapped in-place (which must be aimed as
1859	 * a completely new data area).
1860	 */
1861	vma->vm_flags |= VM_SOFTDIRTY;
1862
1863	vma_set_page_prot(vma);
1864
1865	return addr;
1866
1867unmap_and_free_vma:
1868	vma->vm_file = NULL;
1869	fput(file);
1870
1871	/* Undo any partial mapping done by a device driver. */
1872	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1873	charged = 0;
1874	if (vm_flags & VM_SHARED)
1875		mapping_unmap_writable(file->f_mapping);
1876allow_write_and_free_vma:
1877	if (vm_flags & VM_DENYWRITE)
1878		allow_write_access(file);
1879free_vma:
1880	vm_area_free(vma);
1881unacct_error:
1882	if (charged)
1883		vm_unacct_memory(charged);
1884	return error;
1885}
1886
1887unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1888{
1889	/*
1890	 * We implement the search by looking for an rbtree node that
1891	 * immediately follows a suitable gap. That is,
1892	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1893	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1894	 * - gap_end - gap_start >= length
1895	 */
1896
1897	struct mm_struct *mm = current->mm;
1898	struct vm_area_struct *vma;
1899	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1900
1901	/* Adjust search length to account for worst case alignment overhead */
1902	length = info->length + info->align_mask;
1903	if (length < info->length)
1904		return -ENOMEM;
1905
1906	/* Adjust search limits by the desired length */
1907	if (info->high_limit < length)
1908		return -ENOMEM;
1909	high_limit = info->high_limit - length;
1910
1911	if (info->low_limit > high_limit)
1912		return -ENOMEM;
1913	low_limit = info->low_limit + length;
1914
1915	/* Check if rbtree root looks promising */
1916	if (RB_EMPTY_ROOT(&mm->mm_rb))
1917		goto check_highest;
1918	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919	if (vma->rb_subtree_gap < length)
1920		goto check_highest;
1921
1922	while (true) {
1923		/* Visit left subtree if it looks promising */
1924		gap_end = vm_start_gap(vma);
1925		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1926			struct vm_area_struct *left =
1927				rb_entry(vma->vm_rb.rb_left,
1928					 struct vm_area_struct, vm_rb);
1929			if (left->rb_subtree_gap >= length) {
1930				vma = left;
1931				continue;
1932			}
1933		}
1934
1935		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1936check_current:
1937		/* Check if current node has a suitable gap */
1938		if (gap_start > high_limit)
1939			return -ENOMEM;
1940		if (gap_end >= low_limit &&
1941		    gap_end > gap_start && gap_end - gap_start >= length)
1942			goto found;
1943
1944		/* Visit right subtree if it looks promising */
1945		if (vma->vm_rb.rb_right) {
1946			struct vm_area_struct *right =
1947				rb_entry(vma->vm_rb.rb_right,
1948					 struct vm_area_struct, vm_rb);
1949			if (right->rb_subtree_gap >= length) {
1950				vma = right;
1951				continue;
1952			}
1953		}
1954
1955		/* Go back up the rbtree to find next candidate node */
1956		while (true) {
1957			struct rb_node *prev = &vma->vm_rb;
1958			if (!rb_parent(prev))
1959				goto check_highest;
1960			vma = rb_entry(rb_parent(prev),
1961				       struct vm_area_struct, vm_rb);
1962			if (prev == vma->vm_rb.rb_left) {
1963				gap_start = vm_end_gap(vma->vm_prev);
1964				gap_end = vm_start_gap(vma);
1965				goto check_current;
1966			}
1967		}
1968	}
1969
1970check_highest:
1971	/* Check highest gap, which does not precede any rbtree node */
1972	gap_start = mm->highest_vm_end;
1973	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1974	if (gap_start > high_limit)
1975		return -ENOMEM;
1976
1977found:
1978	/* We found a suitable gap. Clip it with the original low_limit. */
1979	if (gap_start < info->low_limit)
1980		gap_start = info->low_limit;
1981
1982	/* Adjust gap address to the desired alignment */
1983	gap_start += (info->align_offset - gap_start) & info->align_mask;
1984
1985	VM_BUG_ON(gap_start + info->length > info->high_limit);
1986	VM_BUG_ON(gap_start + info->length > gap_end);
1987	return gap_start;
1988}
1989
1990unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
 
1991{
1992	struct mm_struct *mm = current->mm;
1993	struct vm_area_struct *vma;
1994	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1995
 
1996	/* Adjust search length to account for worst case alignment overhead */
1997	length = info->length + info->align_mask;
1998	if (length < info->length)
1999		return -ENOMEM;
2000
2001	/*
2002	 * Adjust search limits by the desired length.
2003	 * See implementation comment at top of unmapped_area().
2004	 */
2005	gap_end = info->high_limit;
2006	if (gap_end < length)
2007		return -ENOMEM;
2008	high_limit = gap_end - length;
2009
2010	if (info->low_limit > high_limit)
2011		return -ENOMEM;
2012	low_limit = info->low_limit + length;
2013
2014	/* Check highest gap, which does not precede any rbtree node */
2015	gap_start = mm->highest_vm_end;
2016	if (gap_start <= high_limit)
2017		goto found_highest;
2018
2019	/* Check if rbtree root looks promising */
2020	if (RB_EMPTY_ROOT(&mm->mm_rb))
2021		return -ENOMEM;
2022	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2023	if (vma->rb_subtree_gap < length)
2024		return -ENOMEM;
2025
2026	while (true) {
2027		/* Visit right subtree if it looks promising */
2028		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2029		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2030			struct vm_area_struct *right =
2031				rb_entry(vma->vm_rb.rb_right,
2032					 struct vm_area_struct, vm_rb);
2033			if (right->rb_subtree_gap >= length) {
2034				vma = right;
2035				continue;
2036			}
2037		}
2038
2039check_current:
2040		/* Check if current node has a suitable gap */
2041		gap_end = vm_start_gap(vma);
2042		if (gap_end < low_limit)
2043			return -ENOMEM;
2044		if (gap_start <= high_limit &&
2045		    gap_end > gap_start && gap_end - gap_start >= length)
2046			goto found;
2047
2048		/* Visit left subtree if it looks promising */
2049		if (vma->vm_rb.rb_left) {
2050			struct vm_area_struct *left =
2051				rb_entry(vma->vm_rb.rb_left,
2052					 struct vm_area_struct, vm_rb);
2053			if (left->rb_subtree_gap >= length) {
2054				vma = left;
2055				continue;
2056			}
2057		}
2058
2059		/* Go back up the rbtree to find next candidate node */
2060		while (true) {
2061			struct rb_node *prev = &vma->vm_rb;
2062			if (!rb_parent(prev))
2063				return -ENOMEM;
2064			vma = rb_entry(rb_parent(prev),
2065				       struct vm_area_struct, vm_rb);
2066			if (prev == vma->vm_rb.rb_right) {
2067				gap_start = vma->vm_prev ?
2068					vm_end_gap(vma->vm_prev) : 0;
2069				goto check_current;
2070			}
2071		}
2072	}
2073
2074found:
2075	/* We found a suitable gap. Clip it with the original high_limit. */
2076	if (gap_end > info->high_limit)
2077		gap_end = info->high_limit;
2078
2079found_highest:
2080	/* Compute highest gap address at the desired alignment */
2081	gap_end -= info->length;
2082	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2083
2084	VM_BUG_ON(gap_end < info->low_limit);
2085	VM_BUG_ON(gap_end < gap_start);
2086	return gap_end;
2087}
2088
 
 
 
 
 
 
 
 
 
 
 
 
2089
2090#ifndef arch_get_mmap_end
2091#define arch_get_mmap_end(addr)	(TASK_SIZE)
2092#endif
 
2093
2094#ifndef arch_get_mmap_base
2095#define arch_get_mmap_base(addr, base) (base)
2096#endif
2097
2098/* Get an address range which is currently unmapped.
2099 * For shmat() with addr=0.
2100 *
2101 * Ugly calling convention alert:
2102 * Return value with the low bits set means error value,
2103 * ie
2104 *	if (ret & ~PAGE_MASK)
2105 *		error = ret;
2106 *
2107 * This function "knows" that -ENOMEM has the bits set.
2108 */
2109#ifndef HAVE_ARCH_UNMAPPED_AREA
2110unsigned long
2111arch_get_unmapped_area(struct file *filp, unsigned long addr,
2112		unsigned long len, unsigned long pgoff, unsigned long flags)
 
2113{
2114	struct mm_struct *mm = current->mm;
2115	struct vm_area_struct *vma, *prev;
2116	struct vm_unmapped_area_info info;
2117	const unsigned long mmap_end = arch_get_mmap_end(addr);
2118
2119	if (len > mmap_end - mmap_min_addr)
2120		return -ENOMEM;
2121
2122	if (flags & MAP_FIXED)
2123		return addr;
2124
2125	if (addr) {
2126		addr = PAGE_ALIGN(addr);
2127		vma = find_vma_prev(mm, addr, &prev);
2128		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2129		    (!vma || addr + len <= vm_start_gap(vma)) &&
2130		    (!prev || addr >= vm_end_gap(prev)))
2131			return addr;
2132	}
2133
2134	info.flags = 0;
2135	info.length = len;
2136	info.low_limit = mm->mmap_base;
2137	info.high_limit = mmap_end;
2138	info.align_mask = 0;
 
2139	return vm_unmapped_area(&info);
2140}
 
 
 
 
 
 
 
 
 
2141#endif
2142
2143/*
2144 * This mmap-allocator allocates new areas top-down from below the
2145 * stack's low limit (the base):
2146 */
2147#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2148unsigned long
2149arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2150			  unsigned long len, unsigned long pgoff,
2151			  unsigned long flags)
2152{
2153	struct vm_area_struct *vma, *prev;
2154	struct mm_struct *mm = current->mm;
2155	struct vm_unmapped_area_info info;
2156	const unsigned long mmap_end = arch_get_mmap_end(addr);
2157
2158	/* requested length too big for entire address space */
2159	if (len > mmap_end - mmap_min_addr)
2160		return -ENOMEM;
2161
2162	if (flags & MAP_FIXED)
2163		return addr;
2164
2165	/* requesting a specific address */
2166	if (addr) {
2167		addr = PAGE_ALIGN(addr);
2168		vma = find_vma_prev(mm, addr, &prev);
2169		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2170				(!vma || addr + len <= vm_start_gap(vma)) &&
2171				(!prev || addr >= vm_end_gap(prev)))
2172			return addr;
2173	}
2174
2175	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2176	info.length = len;
2177	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2178	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2179	info.align_mask = 0;
 
2180	addr = vm_unmapped_area(&info);
2181
2182	/*
2183	 * A failed mmap() very likely causes application failure,
2184	 * so fall back to the bottom-up function here. This scenario
2185	 * can happen with large stack limits and large mmap()
2186	 * allocations.
2187	 */
2188	if (offset_in_page(addr)) {
2189		VM_BUG_ON(addr != -ENOMEM);
2190		info.flags = 0;
2191		info.low_limit = TASK_UNMAPPED_BASE;
2192		info.high_limit = mmap_end;
2193		addr = vm_unmapped_area(&info);
2194	}
2195
2196	return addr;
2197}
 
 
 
 
 
 
 
 
 
2198#endif
2199
2200unsigned long
2201get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2202		unsigned long pgoff, unsigned long flags)
2203{
2204	unsigned long (*get_area)(struct file *, unsigned long,
2205				  unsigned long, unsigned long, unsigned long);
2206
2207	unsigned long error = arch_mmap_check(addr, len, flags);
2208	if (error)
2209		return error;
2210
2211	/* Careful about overflows.. */
2212	if (len > TASK_SIZE)
2213		return -ENOMEM;
2214
2215	get_area = current->mm->get_unmapped_area;
2216	if (file) {
2217		if (file->f_op->get_unmapped_area)
2218			get_area = file->f_op->get_unmapped_area;
2219	} else if (flags & MAP_SHARED) {
2220		/*
2221		 * mmap_region() will call shmem_zero_setup() to create a file,
2222		 * so use shmem's get_unmapped_area in case it can be huge.
2223		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2224		 */
2225		pgoff = 0;
2226		get_area = shmem_get_unmapped_area;
 
 
 
2227	}
2228
 
 
 
 
2229	addr = get_area(file, addr, len, pgoff, flags);
2230	if (IS_ERR_VALUE(addr))
2231		return addr;
2232
2233	if (addr > TASK_SIZE - len)
2234		return -ENOMEM;
2235	if (offset_in_page(addr))
2236		return -EINVAL;
2237
2238	error = security_mmap_addr(addr);
2239	return error ? error : addr;
2240}
2241
2242EXPORT_SYMBOL(get_unmapped_area);
2243
2244/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2245struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
2246{
2247	struct rb_node *rb_node;
2248	struct vm_area_struct *vma;
2249
2250	/* Check the cache first. */
2251	vma = vmacache_find(mm, addr);
2252	if (likely(vma))
2253		return vma;
2254
2255	rb_node = mm->mm_rb.rb_node;
2256
2257	while (rb_node) {
2258		struct vm_area_struct *tmp;
2259
2260		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 
 
 
 
 
2261
2262		if (tmp->vm_end > addr) {
2263			vma = tmp;
2264			if (tmp->vm_start <= addr)
2265				break;
2266			rb_node = rb_node->rb_left;
2267		} else
2268			rb_node = rb_node->rb_right;
2269	}
2270
2271	if (vma)
2272		vmacache_update(addr, vma);
2273	return vma;
2274}
2275
2276EXPORT_SYMBOL(find_vma);
2277
2278/*
2279 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 
 
 
 
 
 
 
 
 
 
2280 */
2281struct vm_area_struct *
2282find_vma_prev(struct mm_struct *mm, unsigned long addr,
2283			struct vm_area_struct **pprev)
2284{
2285	struct vm_area_struct *vma;
 
2286
2287	vma = find_vma(mm, addr);
2288	if (vma) {
2289		*pprev = vma->vm_prev;
2290	} else {
2291		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2292
2293		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2294	}
2295	return vma;
2296}
2297
2298/*
2299 * Verify that the stack growth is acceptable and
2300 * update accounting. This is shared with both the
2301 * grow-up and grow-down cases.
2302 */
2303static int acct_stack_growth(struct vm_area_struct *vma,
2304			     unsigned long size, unsigned long grow)
2305{
2306	struct mm_struct *mm = vma->vm_mm;
2307	unsigned long new_start;
2308
2309	/* address space limit tests */
2310	if (!may_expand_vm(mm, vma->vm_flags, grow))
2311		return -ENOMEM;
2312
2313	/* Stack limit test */
2314	if (size > rlimit(RLIMIT_STACK))
2315		return -ENOMEM;
2316
2317	/* mlock limit tests */
2318	if (vma->vm_flags & VM_LOCKED) {
2319		unsigned long locked;
2320		unsigned long limit;
2321		locked = mm->locked_vm + grow;
2322		limit = rlimit(RLIMIT_MEMLOCK);
2323		limit >>= PAGE_SHIFT;
2324		if (locked > limit && !capable(CAP_IPC_LOCK))
2325			return -ENOMEM;
2326	}
2327
2328	/* Check to ensure the stack will not grow into a hugetlb-only region */
2329	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2330			vma->vm_end - size;
2331	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2332		return -EFAULT;
2333
2334	/*
2335	 * Overcommit..  This must be the final test, as it will
2336	 * update security statistics.
2337	 */
2338	if (security_vm_enough_memory_mm(mm, grow))
2339		return -ENOMEM;
2340
2341	return 0;
2342}
2343
2344#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2345/*
2346 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2347 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2348 */
2349int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2350{
2351	struct mm_struct *mm = vma->vm_mm;
2352	struct vm_area_struct *next;
2353	unsigned long gap_addr;
2354	int error = 0;
 
2355
2356	if (!(vma->vm_flags & VM_GROWSUP))
2357		return -EFAULT;
2358
2359	/* Guard against exceeding limits of the address space. */
2360	address &= PAGE_MASK;
2361	if (address >= (TASK_SIZE & PAGE_MASK))
2362		return -ENOMEM;
2363	address += PAGE_SIZE;
2364
2365	/* Enforce stack_guard_gap */
2366	gap_addr = address + stack_guard_gap;
2367
2368	/* Guard against overflow */
2369	if (gap_addr < address || gap_addr > TASK_SIZE)
2370		gap_addr = TASK_SIZE;
2371
2372	next = vma->vm_next;
2373	if (next && next->vm_start < gap_addr &&
2374			(next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2375		if (!(next->vm_flags & VM_GROWSUP))
2376			return -ENOMEM;
2377		/* Check that both stack segments have the same anon_vma? */
2378	}
2379
 
 
 
 
 
 
 
2380	/* We must make sure the anon_vma is allocated. */
2381	if (unlikely(anon_vma_prepare(vma)))
 
2382		return -ENOMEM;
 
2383
 
 
2384	/*
2385	 * vma->vm_start/vm_end cannot change under us because the caller
2386	 * is required to hold the mmap_sem in read mode.  We need the
2387	 * anon_vma lock to serialize against concurrent expand_stacks.
2388	 */
2389	anon_vma_lock_write(vma->anon_vma);
2390
2391	/* Somebody else might have raced and expanded it already */
2392	if (address > vma->vm_end) {
2393		unsigned long size, grow;
2394
2395		size = address - vma->vm_start;
2396		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2397
2398		error = -ENOMEM;
2399		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2400			error = acct_stack_growth(vma, size, grow);
2401			if (!error) {
2402				/*
2403				 * vma_gap_update() doesn't support concurrent
2404				 * updates, but we only hold a shared mmap_sem
2405				 * lock here, so we need to protect against
2406				 * concurrent vma expansions.
2407				 * anon_vma_lock_write() doesn't help here, as
2408				 * we don't guarantee that all growable vmas
2409				 * in a mm share the same root anon vma.
2410				 * So, we reuse mm->page_table_lock to guard
2411				 * against concurrent vma expansions.
2412				 */
2413				spin_lock(&mm->page_table_lock);
2414				if (vma->vm_flags & VM_LOCKED)
2415					mm->locked_vm += grow;
2416				vm_stat_account(mm, vma->vm_flags, grow);
2417				anon_vma_interval_tree_pre_update_vma(vma);
2418				vma->vm_end = address;
 
 
2419				anon_vma_interval_tree_post_update_vma(vma);
2420				if (vma->vm_next)
2421					vma_gap_update(vma->vm_next);
2422				else
2423					mm->highest_vm_end = vm_end_gap(vma);
2424				spin_unlock(&mm->page_table_lock);
2425
2426				perf_event_mmap(vma);
2427			}
2428		}
2429	}
2430	anon_vma_unlock_write(vma->anon_vma);
2431	khugepaged_enter_vma_merge(vma, vma->vm_flags);
 
2432	validate_mm(mm);
2433	return error;
2434}
2435#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2436
2437/*
2438 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
2439 */
2440int expand_downwards(struct vm_area_struct *vma,
2441				   unsigned long address)
2442{
2443	struct mm_struct *mm = vma->vm_mm;
 
2444	struct vm_area_struct *prev;
2445	int error = 0;
2446
 
 
 
2447	address &= PAGE_MASK;
2448	if (address < mmap_min_addr)
2449		return -EPERM;
2450
2451	/* Enforce stack_guard_gap */
2452	prev = vma->vm_prev;
2453	/* Check that both stack segments have the same anon_vma? */
2454	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2455			(prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2456		if (address - prev->vm_end < stack_guard_gap)
 
2457			return -ENOMEM;
2458	}
2459
 
 
 
 
 
 
 
2460	/* We must make sure the anon_vma is allocated. */
2461	if (unlikely(anon_vma_prepare(vma)))
 
2462		return -ENOMEM;
 
2463
 
 
2464	/*
2465	 * vma->vm_start/vm_end cannot change under us because the caller
2466	 * is required to hold the mmap_sem in read mode.  We need the
2467	 * anon_vma lock to serialize against concurrent expand_stacks.
2468	 */
2469	anon_vma_lock_write(vma->anon_vma);
2470
2471	/* Somebody else might have raced and expanded it already */
2472	if (address < vma->vm_start) {
2473		unsigned long size, grow;
2474
2475		size = vma->vm_end - address;
2476		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2477
2478		error = -ENOMEM;
2479		if (grow <= vma->vm_pgoff) {
2480			error = acct_stack_growth(vma, size, grow);
2481			if (!error) {
2482				/*
2483				 * vma_gap_update() doesn't support concurrent
2484				 * updates, but we only hold a shared mmap_sem
2485				 * lock here, so we need to protect against
2486				 * concurrent vma expansions.
2487				 * anon_vma_lock_write() doesn't help here, as
2488				 * we don't guarantee that all growable vmas
2489				 * in a mm share the same root anon vma.
2490				 * So, we reuse mm->page_table_lock to guard
2491				 * against concurrent vma expansions.
2492				 */
2493				spin_lock(&mm->page_table_lock);
2494				if (vma->vm_flags & VM_LOCKED)
2495					mm->locked_vm += grow;
2496				vm_stat_account(mm, vma->vm_flags, grow);
2497				anon_vma_interval_tree_pre_update_vma(vma);
2498				vma->vm_start = address;
2499				vma->vm_pgoff -= grow;
 
 
2500				anon_vma_interval_tree_post_update_vma(vma);
2501				vma_gap_update(vma);
2502				spin_unlock(&mm->page_table_lock);
2503
2504				perf_event_mmap(vma);
2505			}
2506		}
2507	}
2508	anon_vma_unlock_write(vma->anon_vma);
2509	khugepaged_enter_vma_merge(vma, vma->vm_flags);
 
2510	validate_mm(mm);
2511	return error;
2512}
2513
2514/* enforced gap between the expanding stack and other mappings. */
2515unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2516
2517static int __init cmdline_parse_stack_guard_gap(char *p)
2518{
2519	unsigned long val;
2520	char *endptr;
2521
2522	val = simple_strtoul(p, &endptr, 10);
2523	if (!*endptr)
2524		stack_guard_gap = val << PAGE_SHIFT;
2525
2526	return 0;
2527}
2528__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2529
2530#ifdef CONFIG_STACK_GROWSUP
2531int expand_stack(struct vm_area_struct *vma, unsigned long address)
2532{
2533	return expand_upwards(vma, address);
2534}
2535
2536struct vm_area_struct *
2537find_extend_vma(struct mm_struct *mm, unsigned long addr)
2538{
2539	struct vm_area_struct *vma, *prev;
2540
2541	addr &= PAGE_MASK;
2542	vma = find_vma_prev(mm, addr, &prev);
2543	if (vma && (vma->vm_start <= addr))
2544		return vma;
2545	/* don't alter vm_end if the coredump is running */
2546	if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
 
2547		return NULL;
2548	if (prev->vm_flags & VM_LOCKED)
2549		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2550	return prev;
2551}
2552#else
2553int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554{
2555	return expand_downwards(vma, address);
2556}
2557
2558struct vm_area_struct *
2559find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560{
2561	struct vm_area_struct *vma;
2562	unsigned long start;
2563
2564	addr &= PAGE_MASK;
2565	vma = find_vma(mm, addr);
2566	if (!vma)
2567		return NULL;
2568	if (vma->vm_start <= addr)
2569		return vma;
2570	if (!(vma->vm_flags & VM_GROWSDOWN))
2571		return NULL;
2572	/* don't alter vm_start if the coredump is running */
2573	if (!mmget_still_valid(mm))
2574		return NULL;
2575	start = vma->vm_start;
2576	if (expand_stack(vma, addr))
2577		return NULL;
2578	if (vma->vm_flags & VM_LOCKED)
2579		populate_vma_page_range(vma, addr, start, NULL);
2580	return vma;
2581}
2582#endif
2583
2584EXPORT_SYMBOL_GPL(find_extend_vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2585
2586/*
2587 * Ok - we have the memory areas we should free on the vma list,
2588 * so release them, and do the vma updates.
2589 *
2590 * Called with the mm semaphore held.
2591 */
2592static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2593{
2594	unsigned long nr_accounted = 0;
 
2595
2596	/* Update high watermark before we lower total_vm */
2597	update_hiwater_vm(mm);
2598	do {
2599		long nrpages = vma_pages(vma);
2600
2601		if (vma->vm_flags & VM_ACCOUNT)
2602			nr_accounted += nrpages;
2603		vm_stat_account(mm, vma->vm_flags, -nrpages);
2604		vma = remove_vma(vma);
2605	} while (vma);
2606	vm_unacct_memory(nr_accounted);
2607	validate_mm(mm);
2608}
2609
2610/*
2611 * Get rid of page table information in the indicated region.
2612 *
2613 * Called with the mm semaphore held.
2614 */
2615static void unmap_region(struct mm_struct *mm,
2616		struct vm_area_struct *vma, struct vm_area_struct *prev,
2617		unsigned long start, unsigned long end)
 
2618{
2619	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2620	struct mmu_gather tlb;
 
2621
2622	lru_add_drain();
2623	tlb_gather_mmu(&tlb, mm, start, end);
2624	update_hiwater_rss(mm);
2625	unmap_vmas(&tlb, vma, start, end);
2626	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2627				 next ? next->vm_start : USER_PGTABLES_CEILING);
2628	tlb_finish_mmu(&tlb, start, end);
2629}
2630
2631/*
2632 * Create a list of vma's touched by the unmap, removing them from the mm's
2633 * vma list as we go..
2634 */
2635static void
2636detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2637	struct vm_area_struct *prev, unsigned long end)
2638{
2639	struct vm_area_struct **insertion_point;
2640	struct vm_area_struct *tail_vma = NULL;
2641
2642	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2643	vma->vm_prev = NULL;
2644	do {
2645		vma_rb_erase(vma, &mm->mm_rb);
2646		mm->map_count--;
2647		tail_vma = vma;
2648		vma = vma->vm_next;
2649	} while (vma && vma->vm_start < end);
2650	*insertion_point = vma;
2651	if (vma) {
2652		vma->vm_prev = prev;
2653		vma_gap_update(vma);
2654	} else
2655		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2656	tail_vma->vm_next = NULL;
2657
2658	/* Kill the cache */
2659	vmacache_invalidate(mm);
2660}
2661
2662/*
2663 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2664 * has already been checked or doesn't make sense to fail.
 
2665 */
2666int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2667		unsigned long addr, int new_below)
2668{
 
2669	struct vm_area_struct *new;
2670	int err;
2671
2672	if (vma->vm_ops && vma->vm_ops->split) {
2673		err = vma->vm_ops->split(vma, addr);
 
 
 
2674		if (err)
2675			return err;
2676	}
2677
2678	new = vm_area_dup(vma);
2679	if (!new)
2680		return -ENOMEM;
2681
2682	if (new_below)
2683		new->vm_end = addr;
2684	else {
2685		new->vm_start = addr;
2686		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2687	}
2688
 
 
 
 
 
2689	err = vma_dup_policy(vma, new);
2690	if (err)
2691		goto out_free_vma;
2692
2693	err = anon_vma_clone(new, vma);
2694	if (err)
2695		goto out_free_mpol;
2696
2697	if (new->vm_file)
2698		get_file(new->vm_file);
2699
2700	if (new->vm_ops && new->vm_ops->open)
2701		new->vm_ops->open(new);
2702
2703	if (new_below)
2704		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2705			((addr - new->vm_start) >> PAGE_SHIFT), new);
2706	else
2707		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
 
 
 
 
 
 
 
 
 
 
 
 
2708
2709	/* Success. */
2710	if (!err)
2711		return 0;
 
2712
2713	/* Clean everything up if vma_adjust failed. */
2714	if (new->vm_ops && new->vm_ops->close)
2715		new->vm_ops->close(new);
2716	if (new->vm_file)
2717		fput(new->vm_file);
2718	unlink_anon_vmas(new);
2719 out_free_mpol:
2720	mpol_put(vma_policy(new));
2721 out_free_vma:
 
 
2722	vm_area_free(new);
2723	return err;
2724}
2725
2726/*
2727 * Split a vma into two pieces at address 'addr', a new vma is allocated
2728 * either for the first part or the tail.
2729 */
2730int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731	      unsigned long addr, int new_below)
2732{
2733	if (mm->map_count >= sysctl_max_map_count)
2734		return -ENOMEM;
2735
2736	return __split_vma(mm, vma, addr, new_below);
2737}
2738
2739/* Munmap is split into 2 main parts -- this part which finds
2740 * what needs doing, and the areas themselves, which do the
2741 * work.  This now handles partial unmappings.
2742 * Jeremy Fitzhardinge <jeremy@goop.org>
 
 
 
 
 
 
 
 
2743 */
2744int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2745		struct list_head *uf, bool downgrade)
 
 
 
 
 
 
2746{
2747	unsigned long end;
2748	struct vm_area_struct *vma, *prev, *last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749
2750	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2751		return -EINVAL;
2752
2753	len = PAGE_ALIGN(len);
2754	end = start + len;
2755	if (len == 0)
2756		return -EINVAL;
 
 
 
 
 
 
 
 
 
2757
2758	/*
2759	 * arch_unmap() might do unmaps itself.  It must be called
2760	 * and finish any rbtree manipulation before this code
2761	 * runs and also starts to manipulate the rbtree.
2762	 */
2763	arch_unmap(mm, start, end);
 
 
 
2764
2765	/* Find the first overlapping VMA */
2766	vma = find_vma(mm, start);
2767	if (!vma)
2768		return 0;
2769	prev = vma->vm_prev;
2770	/* we have  start < vma->vm_end  */
2771
2772	/* if it doesn't overlap, we have nothing.. */
2773	if (vma->vm_start >= end)
2774		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2775
2776	/*
2777	 * If we need to split any vma, do it now to save pain later.
2778	 *
2779	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2780	 * unmapped vm_area_struct will remain in use: so lower split_vma
2781	 * places tmp vma above, and higher split_vma places tmp vma below.
2782	 */
 
 
2783	if (start > vma->vm_start) {
2784		int error;
2785
2786		/*
2787		 * Make sure that map_count on return from munmap() will
2788		 * not exceed its limit; but let map_count go just above
2789		 * its limit temporarily, to help free resources as expected.
2790		 */
2791		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2792			return -ENOMEM;
2793
2794		error = __split_vma(mm, vma, start, 0);
2795		if (error)
2796			return error;
2797		prev = vma;
2798	}
2799
2800	/* Does it split the last one? */
2801	last = find_vma(mm, end);
2802	if (last && end > last->vm_start) {
2803		int error = __split_vma(mm, last, end, 1);
 
 
 
 
 
 
 
 
 
 
 
2804		if (error)
2805			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806	}
2807	vma = prev ? prev->vm_next : mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808
2809	if (unlikely(uf)) {
2810		/*
2811		 * If userfaultfd_unmap_prep returns an error the vmas
2812		 * will remain splitted, but userland will get a
2813		 * highly unexpected error anyway. This is no
2814		 * different than the case where the first of the two
2815		 * __split_vma fails, but we don't undo the first
2816		 * split, despite we could. This is unlikely enough
2817		 * failure that it's not worth optimizing it for.
2818		 */
2819		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2820		if (error)
2821			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2822	}
2823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824	/*
2825	 * unlock any mlock()ed ranges before detaching vmas
 
 
2826	 */
2827	if (mm->locked_vm) {
2828		struct vm_area_struct *tmp = vma;
2829		while (tmp && tmp->vm_start < end) {
2830			if (tmp->vm_flags & VM_LOCKED) {
2831				mm->locked_vm -= vma_pages(tmp);
2832				munlock_vma_pages_all(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833			}
 
2834
2835			tmp = tmp->vm_next;
2836		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2837	}
2838
2839	/* Detach vmas from rbtree */
2840	detach_vmas_to_be_unmapped(mm, vma, prev, end);
 
 
 
 
 
 
 
 
 
 
 
 
2841
2842	if (downgrade)
2843		downgrade_write(&mm->mmap_sem);
 
 
 
 
 
 
 
2844
2845	unmap_region(mm, vma, prev, start, end);
 
2846
2847	/* Fix up all other VM information */
2848	remove_vma_list(mm, vma);
 
 
 
 
 
 
2849
2850	return downgrade ? 1 : 0;
2851}
 
 
 
 
 
 
 
 
 
 
 
2852
2853int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2854	      struct list_head *uf)
2855{
2856	return __do_munmap(mm, start, len, uf, false);
 
 
 
 
 
 
 
 
 
 
2857}
2858
2859static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2860{
2861	int ret;
2862	struct mm_struct *mm = current->mm;
2863	LIST_HEAD(uf);
 
2864
2865	if (down_write_killable(&mm->mmap_sem))
2866		return -EINTR;
2867
2868	ret = __do_munmap(mm, start, len, &uf, downgrade);
2869	/*
2870	 * Returning 1 indicates mmap_sem is downgraded.
2871	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2872	 * it to 0 before return.
2873	 */
2874	if (ret == 1) {
2875		up_read(&mm->mmap_sem);
2876		ret = 0;
2877	} else
2878		up_write(&mm->mmap_sem);
2879
2880	userfaultfd_unmap_complete(mm, &uf);
2881	return ret;
2882}
2883
2884int vm_munmap(unsigned long start, size_t len)
2885{
2886	return __vm_munmap(start, len, false);
2887}
2888EXPORT_SYMBOL(vm_munmap);
2889
2890SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2891{
2892	addr = untagged_addr(addr);
2893	profile_munmap(addr);
2894	return __vm_munmap(addr, len, true);
2895}
2896
2897
2898/*
2899 * Emulation of deprecated remap_file_pages() syscall.
2900 */
2901SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2902		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2903{
2904
2905	struct mm_struct *mm = current->mm;
2906	struct vm_area_struct *vma;
2907	unsigned long populate = 0;
2908	unsigned long ret = -EINVAL;
2909	struct file *file;
2910
2911	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2912		     current->comm, current->pid);
2913
2914	if (prot)
2915		return ret;
2916	start = start & PAGE_MASK;
2917	size = size & PAGE_MASK;
2918
2919	if (start + size <= start)
2920		return ret;
2921
2922	/* Does pgoff wrap? */
2923	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2924		return ret;
2925
2926	if (down_write_killable(&mm->mmap_sem))
2927		return -EINTR;
2928
2929	vma = find_vma(mm, start);
2930
2931	if (!vma || !(vma->vm_flags & VM_SHARED))
2932		goto out;
2933
2934	if (start < vma->vm_start)
2935		goto out;
2936
2937	if (start + size > vma->vm_end) {
2938		struct vm_area_struct *next;
 
2939
2940		for (next = vma->vm_next; next; next = next->vm_next) {
2941			/* hole between vmas ? */
2942			if (next->vm_start != next->vm_prev->vm_end)
2943				goto out;
2944
2945			if (next->vm_file != vma->vm_file)
2946				goto out;
2947
2948			if (next->vm_flags != vma->vm_flags)
2949				goto out;
2950
2951			if (start + size <= next->vm_end)
2952				break;
 
 
2953		}
2954
2955		if (!next)
2956			goto out;
2957	}
2958
2959	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2960	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2961	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2962
2963	flags &= MAP_NONBLOCK;
2964	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2965	if (vma->vm_flags & VM_LOCKED) {
2966		struct vm_area_struct *tmp;
2967		flags |= MAP_LOCKED;
2968
2969		/* drop PG_Mlocked flag for over-mapped range */
2970		for (tmp = vma; tmp->vm_start >= start + size;
2971				tmp = tmp->vm_next) {
2972			/*
2973			 * Split pmd and munlock page on the border
2974			 * of the range.
2975			 */
2976			vma_adjust_trans_huge(tmp, start, start + size, 0);
2977
2978			munlock_vma_pages_range(tmp,
2979					max(tmp->vm_start, start),
2980					min(tmp->vm_end, start + size));
2981		}
2982	}
2983
2984	file = get_file(vma->vm_file);
2985	ret = do_mmap_pgoff(vma->vm_file, start, size,
2986			prot, flags, pgoff, &populate, NULL);
2987	fput(file);
2988out:
2989	up_write(&mm->mmap_sem);
2990	if (populate)
2991		mm_populate(ret, populate);
2992	if (!IS_ERR_VALUE(ret))
2993		ret = 0;
2994	return ret;
2995}
2996
2997/*
2998 *  this is really a simplified "do_mmap".  it only handles
2999 *  anonymous maps.  eventually we may be able to do some
3000 *  brk-specific accounting here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001 */
3002static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
 
3003{
3004	struct mm_struct *mm = current->mm;
3005	struct vm_area_struct *vma, *prev;
3006	struct rb_node **rb_link, *rb_parent;
3007	pgoff_t pgoff = addr >> PAGE_SHIFT;
3008	int error;
3009
3010	/* Until we need other flags, refuse anything except VM_EXEC. */
3011	if ((flags & (~VM_EXEC)) != 0)
3012		return -EINVAL;
3013	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3014
3015	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3016	if (offset_in_page(error))
3017		return error;
3018
3019	error = mlock_future_check(mm, mm->def_flags, len);
3020	if (error)
3021		return error;
3022
3023	/*
3024	 * Clear old maps.  this also does some error checking for us
 
3025	 */
3026	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3027			      &rb_parent)) {
3028		if (do_munmap(mm, addr, len, uf))
3029			return -ENOMEM;
3030	}
3031
3032	/* Check against address space limits *after* clearing old maps... */
3033	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3034		return -ENOMEM;
3035
3036	if (mm->map_count > sysctl_max_map_count)
3037		return -ENOMEM;
3038
3039	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3040		return -ENOMEM;
3041
3042	/* Can we just expand an old private anonymous mapping? */
3043	vma = vma_merge(mm, prev, addr, addr + len, flags,
3044			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3045	if (vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3046		goto out;
 
3047
3048	/*
3049	 * create a vma struct for an anonymous mapping
3050	 */
3051	vma = vm_area_alloc(mm);
3052	if (!vma) {
3053		vm_unacct_memory(len >> PAGE_SHIFT);
3054		return -ENOMEM;
3055	}
3056
3057	vma_set_anonymous(vma);
3058	vma->vm_start = addr;
3059	vma->vm_end = addr + len;
3060	vma->vm_pgoff = pgoff;
3061	vma->vm_flags = flags;
3062	vma->vm_page_prot = vm_get_page_prot(flags);
3063	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
3064out:
3065	perf_event_mmap(vma);
3066	mm->total_vm += len >> PAGE_SHIFT;
3067	mm->data_vm += len >> PAGE_SHIFT;
3068	if (flags & VM_LOCKED)
3069		mm->locked_vm += (len >> PAGE_SHIFT);
3070	vma->vm_flags |= VM_SOFTDIRTY;
3071	return 0;
 
 
 
 
 
 
3072}
3073
3074int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3075{
3076	struct mm_struct *mm = current->mm;
 
3077	unsigned long len;
3078	int ret;
3079	bool populate;
3080	LIST_HEAD(uf);
 
3081
3082	len = PAGE_ALIGN(request);
3083	if (len < request)
3084		return -ENOMEM;
3085	if (!len)
3086		return 0;
3087
3088	if (down_write_killable(&mm->mmap_sem))
 
 
 
 
3089		return -EINTR;
3090
3091	ret = do_brk_flags(addr, len, flags, &uf);
 
 
 
 
 
 
 
 
 
3092	populate = ((mm->def_flags & VM_LOCKED) != 0);
3093	up_write(&mm->mmap_sem);
3094	userfaultfd_unmap_complete(mm, &uf);
3095	if (populate && !ret)
3096		mm_populate(addr, len);
3097	return ret;
 
 
 
 
 
3098}
3099EXPORT_SYMBOL(vm_brk_flags);
3100
3101int vm_brk(unsigned long addr, unsigned long len)
3102{
3103	return vm_brk_flags(addr, len, 0);
3104}
3105EXPORT_SYMBOL(vm_brk);
3106
3107/* Release all mmaps. */
3108void exit_mmap(struct mm_struct *mm)
3109{
3110	struct mmu_gather tlb;
3111	struct vm_area_struct *vma;
3112	unsigned long nr_accounted = 0;
 
 
3113
3114	/* mm's last user has gone, and its about to be pulled down */
3115	mmu_notifier_release(mm);
3116
3117	if (unlikely(mm_is_oom_victim(mm))) {
3118		/*
3119		 * Manually reap the mm to free as much memory as possible.
3120		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3121		 * this mm from further consideration.  Taking mm->mmap_sem for
3122		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3123		 * reaper will not run on this mm again after mmap_sem is
3124		 * dropped.
3125		 *
3126		 * Nothing can be holding mm->mmap_sem here and the above call
3127		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3128		 * __oom_reap_task_mm() will not block.
3129		 *
3130		 * This needs to be done before calling munlock_vma_pages_all(),
3131		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3132		 * reliably test it.
3133		 */
3134		(void)__oom_reap_task_mm(mm);
3135
3136		set_bit(MMF_OOM_SKIP, &mm->flags);
3137		down_write(&mm->mmap_sem);
3138		up_write(&mm->mmap_sem);
3139	}
3140
3141	if (mm->locked_vm) {
3142		vma = mm->mmap;
3143		while (vma) {
3144			if (vma->vm_flags & VM_LOCKED)
3145				munlock_vma_pages_all(vma);
3146			vma = vma->vm_next;
3147		}
3148	}
3149
3150	arch_exit_mmap(mm);
3151
3152	vma = mm->mmap;
3153	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3154		return;
3155
3156	lru_add_drain();
3157	flush_cache_mm(mm);
3158	tlb_gather_mmu(&tlb, mm, 0, -1);
3159	/* update_hiwater_rss(mm) here? but nobody should be looking */
3160	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3161	unmap_vmas(&tlb, vma, 0, -1);
3162	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3163	tlb_finish_mmu(&tlb, 0, -1);
3164
3165	/*
3166	 * Walk the list again, actually closing and freeing it,
3167	 * with preemption enabled, without holding any MM locks.
3168	 */
3169	while (vma) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3170		if (vma->vm_flags & VM_ACCOUNT)
3171			nr_accounted += vma_pages(vma);
3172		vma = remove_vma(vma);
3173	}
 
 
 
 
 
 
 
 
 
 
3174	vm_unacct_memory(nr_accounted);
3175}
3176
3177/* Insert vm structure into process list sorted by address
3178 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3179 * then i_mmap_rwsem is taken here.
3180 */
3181int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3182{
3183	struct vm_area_struct *prev;
3184	struct rb_node **rb_link, *rb_parent;
3185
3186	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3187			   &prev, &rb_link, &rb_parent))
3188		return -ENOMEM;
 
3189	if ((vma->vm_flags & VM_ACCOUNT) &&
3190	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3191		return -ENOMEM;
3192
3193	/*
3194	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3195	 * until its first write fault, when page's anon_vma and index
3196	 * are set.  But now set the vm_pgoff it will almost certainly
3197	 * end up with (unless mremap moves it elsewhere before that
3198	 * first wfault), so /proc/pid/maps tells a consistent story.
3199	 *
3200	 * By setting it to reflect the virtual start address of the
3201	 * vma, merges and splits can happen in a seamless way, just
3202	 * using the existing file pgoff checks and manipulations.
3203	 * Similarly in do_mmap_pgoff and in do_brk.
3204	 */
3205	if (vma_is_anonymous(vma)) {
3206		BUG_ON(vma->anon_vma);
3207		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3208	}
3209
3210	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
3211	return 0;
3212}
3213
3214/*
3215 * Copy the vma structure to a new location in the same mm,
3216 * prior to moving page table entries, to effect an mremap move.
3217 */
3218struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3219	unsigned long addr, unsigned long len, pgoff_t pgoff,
3220	bool *need_rmap_locks)
3221{
3222	struct vm_area_struct *vma = *vmap;
3223	unsigned long vma_start = vma->vm_start;
3224	struct mm_struct *mm = vma->vm_mm;
3225	struct vm_area_struct *new_vma, *prev;
3226	struct rb_node **rb_link, *rb_parent;
3227	bool faulted_in_anon_vma = true;
 
3228
3229	/*
3230	 * If anonymous vma has not yet been faulted, update new pgoff
3231	 * to match new location, to increase its chance of merging.
3232	 */
3233	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3234		pgoff = addr >> PAGE_SHIFT;
3235		faulted_in_anon_vma = false;
3236	}
3237
3238	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
 
3239		return NULL;	/* should never get here */
3240	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3241			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3242			    vma->vm_userfaultfd_ctx);
3243	if (new_vma) {
3244		/*
3245		 * Source vma may have been merged into new_vma
3246		 */
3247		if (unlikely(vma_start >= new_vma->vm_start &&
3248			     vma_start < new_vma->vm_end)) {
3249			/*
3250			 * The only way we can get a vma_merge with
3251			 * self during an mremap is if the vma hasn't
3252			 * been faulted in yet and we were allowed to
3253			 * reset the dst vma->vm_pgoff to the
3254			 * destination address of the mremap to allow
3255			 * the merge to happen. mremap must change the
3256			 * vm_pgoff linearity between src and dst vmas
3257			 * (in turn preventing a vma_merge) to be
3258			 * safe. It is only safe to keep the vm_pgoff
3259			 * linear if there are no pages mapped yet.
3260			 */
3261			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3262			*vmap = vma = new_vma;
3263		}
3264		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3265	} else {
3266		new_vma = vm_area_dup(vma);
3267		if (!new_vma)
3268			goto out;
3269		new_vma->vm_start = addr;
3270		new_vma->vm_end = addr + len;
3271		new_vma->vm_pgoff = pgoff;
3272		if (vma_dup_policy(vma, new_vma))
3273			goto out_free_vma;
3274		if (anon_vma_clone(new_vma, vma))
3275			goto out_free_mempol;
3276		if (new_vma->vm_file)
3277			get_file(new_vma->vm_file);
3278		if (new_vma->vm_ops && new_vma->vm_ops->open)
3279			new_vma->vm_ops->open(new_vma);
3280		vma_link(mm, new_vma, prev, rb_link, rb_parent);
 
3281		*need_rmap_locks = false;
3282	}
3283	return new_vma;
3284
 
 
 
 
 
 
 
 
3285out_free_mempol:
3286	mpol_put(vma_policy(new_vma));
3287out_free_vma:
3288	vm_area_free(new_vma);
3289out:
3290	return NULL;
3291}
3292
3293/*
3294 * Return true if the calling process may expand its vm space by the passed
3295 * number of pages
3296 */
3297bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3298{
3299	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3300		return false;
3301
3302	if (is_data_mapping(flags) &&
3303	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3304		/* Workaround for Valgrind */
3305		if (rlimit(RLIMIT_DATA) == 0 &&
3306		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3307			return true;
3308
3309		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3310			     current->comm, current->pid,
3311			     (mm->data_vm + npages) << PAGE_SHIFT,
3312			     rlimit(RLIMIT_DATA),
3313			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3314
3315		if (!ignore_rlimit_data)
3316			return false;
3317	}
3318
3319	return true;
3320}
3321
3322void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3323{
3324	mm->total_vm += npages;
3325
3326	if (is_exec_mapping(flags))
3327		mm->exec_vm += npages;
3328	else if (is_stack_mapping(flags))
3329		mm->stack_vm += npages;
3330	else if (is_data_mapping(flags))
3331		mm->data_vm += npages;
3332}
3333
3334static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3335
3336/*
3337 * Having a close hook prevents vma merging regardless of flags.
3338 */
3339static void special_mapping_close(struct vm_area_struct *vma)
3340{
3341}
3342
3343static const char *special_mapping_name(struct vm_area_struct *vma)
3344{
3345	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3346}
3347
3348static int special_mapping_mremap(struct vm_area_struct *new_vma)
3349{
3350	struct vm_special_mapping *sm = new_vma->vm_private_data;
3351
3352	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3353		return -EFAULT;
3354
3355	if (sm->mremap)
3356		return sm->mremap(sm, new_vma);
3357
3358	return 0;
3359}
3360
 
 
 
 
 
 
 
 
 
 
 
3361static const struct vm_operations_struct special_mapping_vmops = {
3362	.close = special_mapping_close,
3363	.fault = special_mapping_fault,
3364	.mremap = special_mapping_mremap,
3365	.name = special_mapping_name,
 
 
 
3366};
3367
3368static const struct vm_operations_struct legacy_special_mapping_vmops = {
3369	.close = special_mapping_close,
3370	.fault = special_mapping_fault,
3371};
3372
3373static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3374{
3375	struct vm_area_struct *vma = vmf->vma;
3376	pgoff_t pgoff;
3377	struct page **pages;
3378
3379	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3380		pages = vma->vm_private_data;
3381	} else {
3382		struct vm_special_mapping *sm = vma->vm_private_data;
3383
3384		if (sm->fault)
3385			return sm->fault(sm, vmf->vma, vmf);
3386
3387		pages = sm->pages;
3388	}
3389
3390	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3391		pgoff--;
3392
3393	if (*pages) {
3394		struct page *page = *pages;
3395		get_page(page);
3396		vmf->page = page;
3397		return 0;
3398	}
3399
3400	return VM_FAULT_SIGBUS;
3401}
3402
3403static struct vm_area_struct *__install_special_mapping(
3404	struct mm_struct *mm,
3405	unsigned long addr, unsigned long len,
3406	unsigned long vm_flags, void *priv,
3407	const struct vm_operations_struct *ops)
3408{
3409	int ret;
3410	struct vm_area_struct *vma;
3411
3412	vma = vm_area_alloc(mm);
3413	if (unlikely(vma == NULL))
3414		return ERR_PTR(-ENOMEM);
3415
3416	vma->vm_start = addr;
3417	vma->vm_end = addr + len;
3418
3419	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
 
3420	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3421
3422	vma->vm_ops = ops;
3423	vma->vm_private_data = priv;
3424
3425	ret = insert_vm_struct(mm, vma);
3426	if (ret)
3427		goto out;
3428
3429	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3430
3431	perf_event_mmap(vma);
3432
3433	return vma;
3434
3435out:
3436	vm_area_free(vma);
3437	return ERR_PTR(ret);
3438}
3439
3440bool vma_is_special_mapping(const struct vm_area_struct *vma,
3441	const struct vm_special_mapping *sm)
3442{
3443	return vma->vm_private_data == sm &&
3444		(vma->vm_ops == &special_mapping_vmops ||
3445		 vma->vm_ops == &legacy_special_mapping_vmops);
3446}
3447
3448/*
3449 * Called with mm->mmap_sem held for writing.
3450 * Insert a new vma covering the given region, with the given flags.
3451 * Its pages are supplied by the given array of struct page *.
3452 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3453 * The region past the last page supplied will always produce SIGBUS.
3454 * The array pointer and the pages it points to are assumed to stay alive
3455 * for as long as this mapping might exist.
3456 */
3457struct vm_area_struct *_install_special_mapping(
3458	struct mm_struct *mm,
3459	unsigned long addr, unsigned long len,
3460	unsigned long vm_flags, const struct vm_special_mapping *spec)
3461{
3462	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3463					&special_mapping_vmops);
3464}
3465
3466int install_special_mapping(struct mm_struct *mm,
3467			    unsigned long addr, unsigned long len,
3468			    unsigned long vm_flags, struct page **pages)
3469{
3470	struct vm_area_struct *vma = __install_special_mapping(
3471		mm, addr, len, vm_flags, (void *)pages,
3472		&legacy_special_mapping_vmops);
3473
3474	return PTR_ERR_OR_ZERO(vma);
3475}
3476
3477static DEFINE_MUTEX(mm_all_locks_mutex);
3478
3479static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3480{
3481	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3482		/*
3483		 * The LSB of head.next can't change from under us
3484		 * because we hold the mm_all_locks_mutex.
3485		 */
3486		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3487		/*
3488		 * We can safely modify head.next after taking the
3489		 * anon_vma->root->rwsem. If some other vma in this mm shares
3490		 * the same anon_vma we won't take it again.
3491		 *
3492		 * No need of atomic instructions here, head.next
3493		 * can't change from under us thanks to the
3494		 * anon_vma->root->rwsem.
3495		 */
3496		if (__test_and_set_bit(0, (unsigned long *)
3497				       &anon_vma->root->rb_root.rb_root.rb_node))
3498			BUG();
3499	}
3500}
3501
3502static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3503{
3504	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3505		/*
3506		 * AS_MM_ALL_LOCKS can't change from under us because
3507		 * we hold the mm_all_locks_mutex.
3508		 *
3509		 * Operations on ->flags have to be atomic because
3510		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3511		 * mm_all_locks_mutex, there may be other cpus
3512		 * changing other bitflags in parallel to us.
3513		 */
3514		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3515			BUG();
3516		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3517	}
3518}
3519
3520/*
3521 * This operation locks against the VM for all pte/vma/mm related
3522 * operations that could ever happen on a certain mm. This includes
3523 * vmtruncate, try_to_unmap, and all page faults.
3524 *
3525 * The caller must take the mmap_sem in write mode before calling
3526 * mm_take_all_locks(). The caller isn't allowed to release the
3527 * mmap_sem until mm_drop_all_locks() returns.
3528 *
3529 * mmap_sem in write mode is required in order to block all operations
3530 * that could modify pagetables and free pages without need of
3531 * altering the vma layout. It's also needed in write mode to avoid new
3532 * anon_vmas to be associated with existing vmas.
3533 *
3534 * A single task can't take more than one mm_take_all_locks() in a row
3535 * or it would deadlock.
3536 *
3537 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3538 * mapping->flags avoid to take the same lock twice, if more than one
3539 * vma in this mm is backed by the same anon_vma or address_space.
3540 *
3541 * We take locks in following order, accordingly to comment at beginning
3542 * of mm/rmap.c:
3543 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3544 *     hugetlb mapping);
 
3545 *   - all i_mmap_rwsem locks;
3546 *   - all anon_vma->rwseml
3547 *
3548 * We can take all locks within these types randomly because the VM code
3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3550 * mm_all_locks_mutex.
3551 *
3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3553 * that may have to take thousand of locks.
3554 *
3555 * mm_take_all_locks() can fail if it's interrupted by signals.
3556 */
3557int mm_take_all_locks(struct mm_struct *mm)
3558{
3559	struct vm_area_struct *vma;
3560	struct anon_vma_chain *avc;
 
3561
3562	BUG_ON(down_read_trylock(&mm->mmap_sem));
3563
3564	mutex_lock(&mm_all_locks_mutex);
3565
3566	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3567		if (signal_pending(current))
3568			goto out_unlock;
3569		if (vma->vm_file && vma->vm_file->f_mapping &&
3570				is_vm_hugetlb_page(vma))
3571			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572	}
3573
3574	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
3575		if (signal_pending(current))
3576			goto out_unlock;
3577		if (vma->vm_file && vma->vm_file->f_mapping &&
3578				!is_vm_hugetlb_page(vma))
3579			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3580	}
3581
3582	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 
3583		if (signal_pending(current))
3584			goto out_unlock;
3585		if (vma->anon_vma)
3586			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587				vm_lock_anon_vma(mm, avc->anon_vma);
3588	}
3589
3590	return 0;
3591
3592out_unlock:
3593	mm_drop_all_locks(mm);
3594	return -EINTR;
3595}
3596
3597static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3598{
3599	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3600		/*
3601		 * The LSB of head.next can't change to 0 from under
3602		 * us because we hold the mm_all_locks_mutex.
3603		 *
3604		 * We must however clear the bitflag before unlocking
3605		 * the vma so the users using the anon_vma->rb_root will
3606		 * never see our bitflag.
3607		 *
3608		 * No need of atomic instructions here, head.next
3609		 * can't change from under us until we release the
3610		 * anon_vma->root->rwsem.
3611		 */
3612		if (!__test_and_clear_bit(0, (unsigned long *)
3613					  &anon_vma->root->rb_root.rb_root.rb_node))
3614			BUG();
3615		anon_vma_unlock_write(anon_vma);
3616	}
3617}
3618
3619static void vm_unlock_mapping(struct address_space *mapping)
3620{
3621	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3622		/*
3623		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3624		 * because we hold the mm_all_locks_mutex.
3625		 */
3626		i_mmap_unlock_write(mapping);
3627		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3628					&mapping->flags))
3629			BUG();
3630	}
3631}
3632
3633/*
3634 * The mmap_sem cannot be released by the caller until
3635 * mm_drop_all_locks() returns.
3636 */
3637void mm_drop_all_locks(struct mm_struct *mm)
3638{
3639	struct vm_area_struct *vma;
3640	struct anon_vma_chain *avc;
 
3641
3642	BUG_ON(down_read_trylock(&mm->mmap_sem));
3643	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3644
3645	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3646		if (vma->anon_vma)
3647			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3648				vm_unlock_anon_vma(avc->anon_vma);
3649		if (vma->vm_file && vma->vm_file->f_mapping)
3650			vm_unlock_mapping(vma->vm_file->f_mapping);
3651	}
3652
3653	mutex_unlock(&mm_all_locks_mutex);
3654}
3655
3656/*
3657 * initialise the percpu counter for VM
3658 */
3659void __init mmap_init(void)
3660{
3661	int ret;
3662
3663	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3664	VM_BUG_ON(ret);
3665}
3666
3667/*
3668 * Initialise sysctl_user_reserve_kbytes.
3669 *
3670 * This is intended to prevent a user from starting a single memory hogging
3671 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3672 * mode.
3673 *
3674 * The default value is min(3% of free memory, 128MB)
3675 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3676 */
3677static int init_user_reserve(void)
3678{
3679	unsigned long free_kbytes;
3680
3681	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682
3683	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3684	return 0;
3685}
3686subsys_initcall(init_user_reserve);
3687
3688/*
3689 * Initialise sysctl_admin_reserve_kbytes.
3690 *
3691 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3692 * to log in and kill a memory hogging process.
3693 *
3694 * Systems with more than 256MB will reserve 8MB, enough to recover
3695 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3696 * only reserve 3% of free pages by default.
3697 */
3698static int init_admin_reserve(void)
3699{
3700	unsigned long free_kbytes;
3701
3702	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3703
3704	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3705	return 0;
3706}
3707subsys_initcall(init_admin_reserve);
3708
3709/*
3710 * Reinititalise user and admin reserves if memory is added or removed.
3711 *
3712 * The default user reserve max is 128MB, and the default max for the
3713 * admin reserve is 8MB. These are usually, but not always, enough to
3714 * enable recovery from a memory hogging process using login/sshd, a shell,
3715 * and tools like top. It may make sense to increase or even disable the
3716 * reserve depending on the existence of swap or variations in the recovery
3717 * tools. So, the admin may have changed them.
3718 *
3719 * If memory is added and the reserves have been eliminated or increased above
3720 * the default max, then we'll trust the admin.
3721 *
3722 * If memory is removed and there isn't enough free memory, then we
3723 * need to reset the reserves.
3724 *
3725 * Otherwise keep the reserve set by the admin.
3726 */
3727static int reserve_mem_notifier(struct notifier_block *nb,
3728			     unsigned long action, void *data)
3729{
3730	unsigned long tmp, free_kbytes;
3731
3732	switch (action) {
3733	case MEM_ONLINE:
3734		/* Default max is 128MB. Leave alone if modified by operator. */
3735		tmp = sysctl_user_reserve_kbytes;
3736		if (0 < tmp && tmp < (1UL << 17))
3737			init_user_reserve();
3738
3739		/* Default max is 8MB.  Leave alone if modified by operator. */
3740		tmp = sysctl_admin_reserve_kbytes;
3741		if (0 < tmp && tmp < (1UL << 13))
3742			init_admin_reserve();
3743
3744		break;
3745	case MEM_OFFLINE:
3746		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3747
3748		if (sysctl_user_reserve_kbytes > free_kbytes) {
3749			init_user_reserve();
3750			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3751				sysctl_user_reserve_kbytes);
3752		}
3753
3754		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3755			init_admin_reserve();
3756			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3757				sysctl_admin_reserve_kbytes);
3758		}
3759		break;
3760	default:
3761		break;
3762	}
3763	return NOTIFY_OK;
3764}
3765
3766static struct notifier_block reserve_mem_nb = {
3767	.notifier_call = reserve_mem_notifier,
3768};
3769
3770static int __meminit init_reserve_notifier(void)
3771{
3772	if (register_hotmemory_notifier(&reserve_mem_nb))
3773		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3774
3775	return 0;
3776}
3777subsys_initcall(init_reserve_notifier);