Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2012-2013 Solarflare Communications Inc.
 
 
 
 
   5 */
   6
   7#include "net_driver.h"
   8#include "rx_common.h"
   9#include "tx_common.h"
  10#include "ef10_regs.h"
  11#include "io.h"
  12#include "mcdi.h"
  13#include "mcdi_pcol.h"
  14#include "mcdi_port.h"
  15#include "mcdi_port_common.h"
  16#include "mcdi_functions.h"
  17#include "nic.h"
  18#include "mcdi_filters.h"
  19#include "workarounds.h"
  20#include "selftest.h"
  21#include "ef10_sriov.h"
  22#include <linux/in.h>
  23#include <linux/jhash.h>
  24#include <linux/wait.h>
  25#include <linux/workqueue.h>
  26#include <net/udp_tunnel.h>
  27
  28/* Hardware control for EF10 architecture including 'Huntington'. */
  29
  30#define EFX_EF10_DRVGEN_EV		7
  31enum {
  32	EFX_EF10_TEST = 1,
  33	EFX_EF10_REFILL,
  34};
  35
  36/* VLAN list entry */
  37struct efx_ef10_vlan {
  38	struct list_head list;
  39	u16 vid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40};
  41
  42static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
  43static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
 
 
 
 
  44
  45static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  46{
  47	efx_dword_t reg;
  48
  49	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  50	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  51		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  52}
  53
  54/* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
  55 * I/O space and BAR 2(&3) for memory.  On SFC9250 (Medford2), there is no I/O
  56 * bar; PFs use BAR 0/1 for memory.
  57 */
  58static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
  59{
  60	switch (efx->pci_dev->device) {
  61	case 0x0b03: /* SFC9250 PF */
  62		return 0;
  63	default:
  64		return 2;
  65	}
  66}
  67
  68/* All VFs use BAR 0/1 for memory */
  69static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
  70{
  71	return 0;
  72}
  73
  74static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  75{
  76	int bar;
  77
  78	bar = efx->type->mem_bar(efx);
  79	return resource_size(&efx->pci_dev->resource[bar]);
  80}
  81
  82static bool efx_ef10_is_vf(struct efx_nic *efx)
  83{
  84	return efx->type->is_vf;
  85}
  86
  87#ifdef CONFIG_SFC_SRIOV
  88static int efx_ef10_get_vf_index(struct efx_nic *efx)
  89{
  90	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
  91	struct efx_ef10_nic_data *nic_data = efx->nic_data;
  92	size_t outlen;
  93	int rc;
  94
  95	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
  96			  sizeof(outbuf), &outlen);
  97	if (rc)
  98		return rc;
  99	if (outlen < sizeof(outbuf))
 100		return -EIO;
 101
 102	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
 103	return 0;
 104}
 105#endif
 106
 107static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
 108{
 109	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
 110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 111	size_t outlen;
 112	int rc;
 113
 114	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 115
 116	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 117			  outbuf, sizeof(outbuf), &outlen);
 118	if (rc)
 119		return rc;
 120	if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
 121		netif_err(efx, drv, efx->net_dev,
 122			  "unable to read datapath firmware capabilities\n");
 123		return -EIO;
 124	}
 125
 126	nic_data->datapath_caps =
 127		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 128
 129	if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
 130		nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
 131				GET_CAPABILITIES_V2_OUT_FLAGS2);
 132		nic_data->piobuf_size = MCDI_WORD(outbuf,
 133				GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
 134	} else {
 135		nic_data->datapath_caps2 = 0;
 136		nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
 137	}
 138
 139	/* record the DPCPU firmware IDs to determine VEB vswitching support.
 140	 */
 141	nic_data->rx_dpcpu_fw_id =
 142		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
 143	nic_data->tx_dpcpu_fw_id =
 144		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
 145
 146	if (!(nic_data->datapath_caps &
 147	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 148		netif_err(efx, probe, efx->net_dev,
 149			  "current firmware does not support an RX prefix\n");
 150		return -ENODEV;
 151	}
 152
 153	if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
 154		u8 vi_window_mode = MCDI_BYTE(outbuf,
 155				GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
 156
 157		rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
 158		if (rc)
 159			return rc;
 160	} else {
 161		/* keep default VI stride */
 162		netif_dbg(efx, probe, efx->net_dev,
 163			  "firmware did not report VI window mode, assuming vi_stride = %u\n",
 164			  efx->vi_stride);
 165	}
 166
 167	if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
 168		efx->num_mac_stats = MCDI_WORD(outbuf,
 169				GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
 170		netif_dbg(efx, probe, efx->net_dev,
 171			  "firmware reports num_mac_stats = %u\n",
 172			  efx->num_mac_stats);
 173	} else {
 174		/* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
 175		netif_dbg(efx, probe, efx->net_dev,
 176			  "firmware did not report num_mac_stats, assuming %u\n",
 177			  efx->num_mac_stats);
 178	}
 179
 180	return 0;
 181}
 182
 183static void efx_ef10_read_licensed_features(struct efx_nic *efx)
 184{
 185	MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
 186	MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
 187	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 188	size_t outlen;
 189	int rc;
 190
 191	MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
 192		       MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
 193	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
 194				outbuf, sizeof(outbuf), &outlen);
 195	if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
 196		return;
 197
 198	nic_data->licensed_features = MCDI_QWORD(outbuf,
 199					 LICENSING_V3_OUT_LICENSED_FEATURES);
 200}
 201
 202static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 203{
 204	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 205	int rc;
 206
 207	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 208			  outbuf, sizeof(outbuf), NULL);
 209	if (rc)
 210		return rc;
 211	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 212	return rc > 0 ? rc : -ERANGE;
 213}
 214
 215static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
 216{
 217	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 218	unsigned int implemented;
 219	unsigned int enabled;
 220	int rc;
 221
 222	nic_data->workaround_35388 = false;
 223	nic_data->workaround_61265 = false;
 224
 225	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
 226
 227	if (rc == -ENOSYS) {
 228		/* Firmware without GET_WORKAROUNDS - not a problem. */
 229		rc = 0;
 230	} else if (rc == 0) {
 231		/* Bug61265 workaround is always enabled if implemented. */
 232		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
 233			nic_data->workaround_61265 = true;
 234
 235		if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 236			nic_data->workaround_35388 = true;
 237		} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
 238			/* Workaround is implemented but not enabled.
 239			 * Try to enable it.
 240			 */
 241			rc = efx_mcdi_set_workaround(efx,
 242						     MC_CMD_WORKAROUND_BUG35388,
 243						     true, NULL);
 244			if (rc == 0)
 245				nic_data->workaround_35388 = true;
 246			/* If we failed to set the workaround just carry on. */
 247			rc = 0;
 248		}
 249	}
 250
 251	netif_dbg(efx, probe, efx->net_dev,
 252		  "workaround for bug 35388 is %sabled\n",
 253		  nic_data->workaround_35388 ? "en" : "dis");
 254	netif_dbg(efx, probe, efx->net_dev,
 255		  "workaround for bug 61265 is %sabled\n",
 256		  nic_data->workaround_61265 ? "en" : "dis");
 257
 258	return rc;
 259}
 260
 261static void efx_ef10_process_timer_config(struct efx_nic *efx,
 262					  const efx_dword_t *data)
 263{
 264	unsigned int max_count;
 265
 266	if (EFX_EF10_WORKAROUND_61265(efx)) {
 267		efx->timer_quantum_ns = MCDI_DWORD(data,
 268			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
 269		efx->timer_max_ns = MCDI_DWORD(data,
 270			GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
 271	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
 272		efx->timer_quantum_ns = MCDI_DWORD(data,
 273			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
 274		max_count = MCDI_DWORD(data,
 275			GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
 276		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 277	} else {
 278		efx->timer_quantum_ns = MCDI_DWORD(data,
 279			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
 280		max_count = MCDI_DWORD(data,
 281			GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
 282		efx->timer_max_ns = max_count * efx->timer_quantum_ns;
 283	}
 284
 285	netif_dbg(efx, probe, efx->net_dev,
 286		  "got timer properties from MC: quantum %u ns; max %u ns\n",
 287		  efx->timer_quantum_ns, efx->timer_max_ns);
 288}
 289
 290static int efx_ef10_get_timer_config(struct efx_nic *efx)
 291{
 292	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
 293	int rc;
 294
 295	rc = efx_ef10_get_timer_workarounds(efx);
 296	if (rc)
 297		return rc;
 298
 299	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
 300				outbuf, sizeof(outbuf), NULL);
 301
 302	if (rc == 0) {
 303		efx_ef10_process_timer_config(efx, outbuf);
 304	} else if (rc == -ENOSYS || rc == -EPERM) {
 305		/* Not available - fall back to Huntington defaults. */
 306		unsigned int quantum;
 307
 308		rc = efx_ef10_get_sysclk_freq(efx);
 309		if (rc < 0)
 310			return rc;
 311
 312		quantum = 1536000 / rc; /* 1536 cycles */
 313		efx->timer_quantum_ns = quantum;
 314		efx->timer_max_ns = efx->type->timer_period_max * quantum;
 315		rc = 0;
 316	} else {
 317		efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
 318				       MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
 319				       NULL, 0, rc);
 320	}
 321
 322	return rc;
 323}
 324
 325static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
 326{
 327	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 328	size_t outlen;
 329	int rc;
 330
 331	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 332
 333	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 334			  outbuf, sizeof(outbuf), &outlen);
 335	if (rc)
 336		return rc;
 337	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 338		return -EIO;
 339
 340	ether_addr_copy(mac_address,
 341			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 342	return 0;
 343}
 344
 345static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
 346{
 347	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
 348	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
 349	size_t outlen;
 350	int num_addrs, rc;
 351
 352	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
 353		       EVB_PORT_ID_ASSIGNED);
 354	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
 355			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
 356
 357	if (rc)
 358		return rc;
 359	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
 360		return -EIO;
 361
 362	num_addrs = MCDI_DWORD(outbuf,
 363			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
 364
 365	WARN_ON(num_addrs != 1);
 366
 367	ether_addr_copy(mac_address,
 368			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
 369
 370	return 0;
 371}
 372
 373static ssize_t link_control_flag_show(struct device *dev,
 374				      struct device_attribute *attr,
 375				      char *buf)
 376{
 377	struct efx_nic *efx = dev_get_drvdata(dev);
 378
 379	return sprintf(buf, "%d\n",
 380		       ((efx->mcdi->fn_flags) &
 381			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
 382		       ? 1 : 0);
 383}
 384
 385static ssize_t primary_flag_show(struct device *dev,
 386				 struct device_attribute *attr,
 387				 char *buf)
 388{
 389	struct efx_nic *efx = dev_get_drvdata(dev);
 390
 391	return sprintf(buf, "%d\n",
 392		       ((efx->mcdi->fn_flags) &
 393			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 394		       ? 1 : 0);
 395}
 396
 397static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
 398{
 399	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 400	struct efx_ef10_vlan *vlan;
 401
 402	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 403
 404	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
 405		if (vlan->vid == vid)
 406			return vlan;
 407	}
 408
 409	return NULL;
 410}
 411
 412static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
 413{
 414	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 415	struct efx_ef10_vlan *vlan;
 416	int rc;
 417
 418	mutex_lock(&nic_data->vlan_lock);
 419
 420	vlan = efx_ef10_find_vlan(efx, vid);
 421	if (vlan) {
 422		/* We add VID 0 on init. 8021q adds it on module init
 423		 * for all interfaces with VLAN filtring feature.
 424		 */
 425		if (vid == 0)
 426			goto done_unlock;
 427		netif_warn(efx, drv, efx->net_dev,
 428			   "VLAN %u already added\n", vid);
 429		rc = -EALREADY;
 430		goto fail_exist;
 431	}
 432
 433	rc = -ENOMEM;
 434	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
 435	if (!vlan)
 436		goto fail_alloc;
 437
 438	vlan->vid = vid;
 439
 440	list_add_tail(&vlan->list, &nic_data->vlan_list);
 441
 442	if (efx->filter_state) {
 443		mutex_lock(&efx->mac_lock);
 444		down_write(&efx->filter_sem);
 445		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
 446		up_write(&efx->filter_sem);
 447		mutex_unlock(&efx->mac_lock);
 448		if (rc)
 449			goto fail_filter_add_vlan;
 450	}
 451
 452done_unlock:
 453	mutex_unlock(&nic_data->vlan_lock);
 454	return 0;
 455
 456fail_filter_add_vlan:
 457	list_del(&vlan->list);
 458	kfree(vlan);
 459fail_alloc:
 460fail_exist:
 461	mutex_unlock(&nic_data->vlan_lock);
 462	return rc;
 463}
 464
 465static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
 466				       struct efx_ef10_vlan *vlan)
 467{
 468	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 469
 470	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
 471
 472	if (efx->filter_state) {
 473		down_write(&efx->filter_sem);
 474		efx_mcdi_filter_del_vlan(efx, vlan->vid);
 475		up_write(&efx->filter_sem);
 476	}
 477
 478	list_del(&vlan->list);
 479	kfree(vlan);
 480}
 481
 482static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
 483{
 484	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 485	struct efx_ef10_vlan *vlan;
 486	int rc = 0;
 487
 488	/* 8021q removes VID 0 on module unload for all interfaces
 489	 * with VLAN filtering feature. We need to keep it to receive
 490	 * untagged traffic.
 491	 */
 492	if (vid == 0)
 493		return 0;
 494
 495	mutex_lock(&nic_data->vlan_lock);
 496
 497	vlan = efx_ef10_find_vlan(efx, vid);
 498	if (!vlan) {
 499		netif_err(efx, drv, efx->net_dev,
 500			  "VLAN %u to be deleted not found\n", vid);
 501		rc = -ENOENT;
 502	} else {
 503		efx_ef10_del_vlan_internal(efx, vlan);
 504	}
 505
 506	mutex_unlock(&nic_data->vlan_lock);
 507
 508	return rc;
 509}
 510
 511static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
 512{
 513	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 514	struct efx_ef10_vlan *vlan, *next_vlan;
 515
 516	mutex_lock(&nic_data->vlan_lock);
 517	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
 518		efx_ef10_del_vlan_internal(efx, vlan);
 519	mutex_unlock(&nic_data->vlan_lock);
 520}
 521
 522static DEVICE_ATTR_RO(link_control_flag);
 523static DEVICE_ATTR_RO(primary_flag);
 524
 525static int efx_ef10_probe(struct efx_nic *efx)
 526{
 527	struct efx_ef10_nic_data *nic_data;
 528	int i, rc;
 529
 
 
 
 
 
 
 
 
 
 
 530	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 531	if (!nic_data)
 532		return -ENOMEM;
 533	efx->nic_data = nic_data;
 534
 535	/* we assume later that we can copy from this buffer in dwords */
 536	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
 537
 538	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 539				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 540	if (rc)
 541		goto fail1;
 542
 543	/* Get the MC's warm boot count.  In case it's rebooting right
 544	 * now, be prepared to retry.
 545	 */
 546	i = 0;
 547	for (;;) {
 548		rc = efx_ef10_get_warm_boot_count(efx);
 549		if (rc >= 0)
 550			break;
 551		if (++i == 5)
 552			goto fail2;
 553		ssleep(1);
 554	}
 555	nic_data->warm_boot_count = rc;
 556
 
 
 557	/* In case we're recovering from a crash (kexec), we want to
 558	 * cancel any outstanding request by the previous user of this
 559	 * function.  We send a special message using the least
 560	 * significant bits of the 'high' (doorbell) register.
 561	 */
 562	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 563
 564	rc = efx_mcdi_init(efx);
 565	if (rc)
 566		goto fail2;
 567
 568	mutex_init(&nic_data->udp_tunnels_lock);
 569	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
 570		nic_data->udp_tunnels[i].type =
 571			TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
 572
 573	/* Reset (most) configuration for this function */
 574	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 575	if (rc)
 576		goto fail3;
 577
 578	/* Enable event logging */
 579	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 580	if (rc)
 581		goto fail3;
 582
 583	rc = device_create_file(&efx->pci_dev->dev,
 584				&dev_attr_link_control_flag);
 585	if (rc)
 586		goto fail3;
 587
 588	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 589	if (rc)
 590		goto fail4;
 591
 592	rc = efx_get_pf_index(efx, &nic_data->pf_index);
 593	if (rc)
 594		goto fail5;
 595
 596	rc = efx_ef10_init_datapath_caps(efx);
 597	if (rc < 0)
 598		goto fail5;
 599
 600	efx_ef10_read_licensed_features(efx);
 601
 602	/* We can have one VI for each vi_stride-byte region.
 603	 * However, until we use TX option descriptors we need up to four
 604	 * TX queues per channel for different checksumming combinations.
 605	 */
 606	if (nic_data->datapath_caps &
 607	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))
 608		efx->tx_queues_per_channel = 4;
 609	else
 610		efx->tx_queues_per_channel = 2;
 611	efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
 612	if (!efx->max_vis) {
 613		netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
 614		rc = -EIO;
 615		goto fail5;
 616	}
 617	efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
 618				  efx->max_vis / efx->tx_queues_per_channel);
 619	efx->max_tx_channels = efx->max_channels;
 620	if (WARN_ON(efx->max_channels == 0)) {
 621		rc = -EIO;
 622		goto fail5;
 623	}
 624
 625	efx->rx_packet_len_offset =
 626		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 627
 628	if (nic_data->datapath_caps &
 629	    (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
 630		efx->net_dev->hw_features |= NETIF_F_RXFCS;
 631
 632	rc = efx_mcdi_port_get_number(efx);
 633	if (rc < 0)
 634		goto fail5;
 635	efx->port_num = rc;
 636
 637	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
 638	if (rc)
 639		goto fail5;
 640
 641	rc = efx_ef10_get_timer_config(efx);
 642	if (rc < 0)
 643		goto fail5;
 644
 645	rc = efx_mcdi_mon_probe(efx);
 646	if (rc && rc != -EPERM)
 647		goto fail5;
 648
 649	efx_ptp_defer_probe_with_channel(efx);
 650
 651#ifdef CONFIG_SFC_SRIOV
 652	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
 653		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
 654		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
 655
 656		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
 657	} else
 658#endif
 659		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
 660
 661	INIT_LIST_HEAD(&nic_data->vlan_list);
 662	mutex_init(&nic_data->vlan_lock);
 663
 664	/* Add unspecified VID to support VLAN filtering being disabled */
 665	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
 666	if (rc)
 667		goto fail_add_vid_unspec;
 
 
 
 
 
 668
 669	/* If VLAN filtering is enabled, we need VID 0 to get untagged
 670	 * traffic.  It is added automatically if 8021q module is loaded,
 671	 * but we can't rely on it since module may be not loaded.
 672	 */
 673	rc = efx_ef10_add_vlan(efx, 0);
 674	if (rc)
 675		goto fail_add_vid_0;
 676
 677	if (nic_data->datapath_caps &
 678	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
 679	    efx->mcdi->fn_flags &
 680	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
 681		efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
 682
 683	return 0;
 684
 685fail_add_vid_0:
 686	efx_ef10_cleanup_vlans(efx);
 687fail_add_vid_unspec:
 688	mutex_destroy(&nic_data->vlan_lock);
 689	efx_ptp_remove(efx);
 690	efx_mcdi_mon_remove(efx);
 691fail5:
 692	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 693fail4:
 694	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 695fail3:
 696	efx_mcdi_detach(efx);
 697
 698	mutex_lock(&nic_data->udp_tunnels_lock);
 699	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 700	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 701	mutex_unlock(&nic_data->udp_tunnels_lock);
 702	mutex_destroy(&nic_data->udp_tunnels_lock);
 703
 704	efx_mcdi_fini(efx);
 705fail2:
 706	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 707fail1:
 708	kfree(nic_data);
 709	efx->nic_data = NULL;
 710	return rc;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713#ifdef EFX_USE_PIO
 714
 715static void efx_ef10_free_piobufs(struct efx_nic *efx)
 716{
 717	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 718	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 719	unsigned int i;
 720	int rc;
 721
 722	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 723
 724	for (i = 0; i < nic_data->n_piobufs; i++) {
 725		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 726			       nic_data->piobuf_handle[i]);
 727		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 728				  NULL, 0, NULL);
 729		WARN_ON(rc);
 730	}
 731
 732	nic_data->n_piobufs = 0;
 733}
 734
 735static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 736{
 737	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 738	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 739	unsigned int i;
 740	size_t outlen;
 741	int rc = 0;
 742
 743	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 744
 745	for (i = 0; i < n; i++) {
 746		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 747					outbuf, sizeof(outbuf), &outlen);
 748		if (rc) {
 749			/* Don't display the MC error if we didn't have space
 750			 * for a VF.
 751			 */
 752			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
 753				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
 754						       0, outbuf, outlen, rc);
 755			break;
 756		}
 757		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 758			rc = -EIO;
 759			break;
 760		}
 761		nic_data->piobuf_handle[i] =
 762			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 763		netif_dbg(efx, probe, efx->net_dev,
 764			  "allocated PIO buffer %u handle %x\n", i,
 765			  nic_data->piobuf_handle[i]);
 766	}
 767
 768	nic_data->n_piobufs = i;
 769	if (rc)
 770		efx_ef10_free_piobufs(efx);
 771	return rc;
 772}
 773
 774static int efx_ef10_link_piobufs(struct efx_nic *efx)
 775{
 776	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 777	MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
 
 
 778	struct efx_channel *channel;
 779	struct efx_tx_queue *tx_queue;
 780	unsigned int offset, index;
 781	int rc;
 782
 783	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 784	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 785
 786	/* Link a buffer to each VI in the write-combining mapping */
 787	for (index = 0; index < nic_data->n_piobufs; ++index) {
 788		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 789			       nic_data->piobuf_handle[index]);
 790		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 791			       nic_data->pio_write_vi_base + index);
 792		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 793				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 794				  NULL, 0, NULL);
 795		if (rc) {
 796			netif_err(efx, drv, efx->net_dev,
 797				  "failed to link VI %u to PIO buffer %u (%d)\n",
 798				  nic_data->pio_write_vi_base + index, index,
 799				  rc);
 800			goto fail;
 801		}
 802		netif_dbg(efx, probe, efx->net_dev,
 803			  "linked VI %u to PIO buffer %u\n",
 804			  nic_data->pio_write_vi_base + index, index);
 805	}
 806
 807	/* Link a buffer to each TX queue */
 808	efx_for_each_channel(channel, efx) {
 809		/* Extra channels, even those with TXQs (PTP), do not require
 810		 * PIO resources.
 811		 */
 812		if (!channel->type->want_pio ||
 813		    channel->channel >= efx->xdp_channel_offset)
 814			continue;
 815
 816		efx_for_each_channel_tx_queue(tx_queue, channel) {
 817			/* We assign the PIO buffers to queues in
 818			 * reverse order to allow for the following
 819			 * special case.
 820			 */
 821			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 822				   tx_queue->channel->channel - 1) *
 823				  efx_piobuf_size);
 824			index = offset / nic_data->piobuf_size;
 825			offset = offset % nic_data->piobuf_size;
 826
 827			/* When the host page size is 4K, the first
 828			 * host page in the WC mapping may be within
 829			 * the same VI page as the last TX queue.  We
 830			 * can only link one buffer to each VI.
 831			 */
 832			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 833				BUG_ON(index != 0);
 834				rc = 0;
 835			} else {
 836				MCDI_SET_DWORD(inbuf,
 837					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 838					       nic_data->piobuf_handle[index]);
 839				MCDI_SET_DWORD(inbuf,
 840					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 841					       tx_queue->queue);
 842				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 843						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 844						  NULL, 0, NULL);
 845			}
 846
 847			if (rc) {
 848				/* This is non-fatal; the TX path just
 849				 * won't use PIO for this queue
 850				 */
 851				netif_err(efx, drv, efx->net_dev,
 852					  "failed to link VI %u to PIO buffer %u (%d)\n",
 853					  tx_queue->queue, index, rc);
 854				tx_queue->piobuf = NULL;
 855			} else {
 856				tx_queue->piobuf =
 857					nic_data->pio_write_base +
 858					index * efx->vi_stride + offset;
 859				tx_queue->piobuf_offset = offset;
 860				netif_dbg(efx, probe, efx->net_dev,
 861					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 862					  tx_queue->queue, index,
 863					  tx_queue->piobuf_offset,
 864					  tx_queue->piobuf);
 865			}
 866		}
 867	}
 868
 869	return 0;
 870
 871fail:
 872	/* inbuf was defined for MC_CMD_LINK_PIOBUF.  We can use the same
 873	 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
 874	 */
 875	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
 876	while (index--) {
 877		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 878			       nic_data->pio_write_vi_base + index);
 879		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 880			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 881			     NULL, 0, NULL);
 882	}
 883	return rc;
 884}
 885
 886static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 887{
 888	struct efx_channel *channel;
 889	struct efx_tx_queue *tx_queue;
 890
 891	/* All our existing PIO buffers went away */
 892	efx_for_each_channel(channel, efx)
 893		efx_for_each_channel_tx_queue(tx_queue, channel)
 894			tx_queue->piobuf = NULL;
 895}
 896
 897#else /* !EFX_USE_PIO */
 898
 899static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 900{
 901	return n == 0 ? 0 : -ENOBUFS;
 902}
 903
 904static int efx_ef10_link_piobufs(struct efx_nic *efx)
 905{
 906	return 0;
 907}
 908
 909static void efx_ef10_free_piobufs(struct efx_nic *efx)
 910{
 911}
 912
 913static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
 914{
 915}
 916
 917#endif /* EFX_USE_PIO */
 918
 919static void efx_ef10_remove(struct efx_nic *efx)
 920{
 921	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 922	int rc;
 923
 924#ifdef CONFIG_SFC_SRIOV
 925	struct efx_ef10_nic_data *nic_data_pf;
 926	struct pci_dev *pci_dev_pf;
 927	struct efx_nic *efx_pf;
 928	struct ef10_vf *vf;
 929
 930	if (efx->pci_dev->is_virtfn) {
 931		pci_dev_pf = efx->pci_dev->physfn;
 932		if (pci_dev_pf) {
 933			efx_pf = pci_get_drvdata(pci_dev_pf);
 934			nic_data_pf = efx_pf->nic_data;
 935			vf = nic_data_pf->vf + nic_data->vf_index;
 936			vf->efx = NULL;
 937		} else
 938			netif_info(efx, drv, efx->net_dev,
 939				   "Could not get the PF id from VF\n");
 940	}
 941#endif
 942
 943	efx_ef10_cleanup_vlans(efx);
 944	mutex_destroy(&nic_data->vlan_lock);
 945
 946	efx_ptp_remove(efx);
 947
 948	efx_mcdi_mon_remove(efx);
 949
 950	efx_mcdi_rx_free_indir_table(efx);
 951
 952	if (nic_data->wc_membase)
 953		iounmap(nic_data->wc_membase);
 954
 955	rc = efx_mcdi_free_vis(efx);
 956	WARN_ON(rc != 0);
 957
 958	if (!nic_data->must_restore_piobufs)
 959		efx_ef10_free_piobufs(efx);
 960
 961	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
 962	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
 963
 964	efx_mcdi_detach(efx);
 965
 966	memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
 967	mutex_lock(&nic_data->udp_tunnels_lock);
 968	(void)efx_ef10_set_udp_tnl_ports(efx, true);
 969	mutex_unlock(&nic_data->udp_tunnels_lock);
 970
 971	mutex_destroy(&nic_data->udp_tunnels_lock);
 972
 973	efx_mcdi_fini(efx);
 974	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 975	kfree(nic_data);
 976}
 977
 978static int efx_ef10_probe_pf(struct efx_nic *efx)
 979{
 980	return efx_ef10_probe(efx);
 981}
 982
 983int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
 984			    u32 *port_flags, u32 *vadaptor_flags,
 985			    unsigned int *vlan_tags)
 986{
 
 
 987	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 988	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
 989	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
 990	size_t outlen;
 991	int rc;
 992
 993	if (nic_data->datapath_caps &
 994	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
 995		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
 996			       port_id);
 997
 998		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
 999				  outbuf, sizeof(outbuf), &outlen);
1000		if (rc)
1001			return rc;
1002
1003		if (outlen < sizeof(outbuf)) {
1004			rc = -EIO;
1005			return rc;
1006		}
1007	}
1008
1009	if (port_flags)
1010		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1011	if (vadaptor_flags)
1012		*vadaptor_flags =
1013			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014	if (vlan_tags)
1015		*vlan_tags =
1016			MCDI_DWORD(outbuf,
1017				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1018
1019	return 0;
1020}
1021
1022int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1023{
1024	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1025
1026	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1027	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028			    NULL, 0, NULL);
1029}
1030
1031int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1032{
1033	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1034
1035	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1036	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037			    NULL, 0, NULL);
1038}
1039
1040int efx_ef10_vport_add_mac(struct efx_nic *efx,
1041			   unsigned int port_id, const u8 *mac)
1042{
1043	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1044
1045	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1046	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1047
1048	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1049			    sizeof(inbuf), NULL, 0, NULL);
1050}
1051
1052int efx_ef10_vport_del_mac(struct efx_nic *efx,
1053			   unsigned int port_id, const u8 *mac)
1054{
1055	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1056
1057	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1058	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1059
1060	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1061			    sizeof(inbuf), NULL, 0, NULL);
1062}
1063
1064#ifdef CONFIG_SFC_SRIOV
1065static int efx_ef10_probe_vf(struct efx_nic *efx)
1066{
1067	int rc;
1068	struct pci_dev *pci_dev_pf;
1069
1070	/* If the parent PF has no VF data structure, it doesn't know about this
1071	 * VF so fail probe.  The VF needs to be re-created.  This can happen
1072	 * if the PF driver was unloaded while any VF was assigned to a guest
1073	 * (using Xen, only).
1074	 */
1075	pci_dev_pf = efx->pci_dev->physfn;
1076	if (pci_dev_pf) {
1077		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1078		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1079
1080		if (!nic_data_pf->vf) {
1081			netif_info(efx, drv, efx->net_dev,
1082				   "The VF cannot link to its parent PF; "
1083				   "please destroy and re-create the VF\n");
1084			return -EBUSY;
1085		}
1086	}
1087
1088	rc = efx_ef10_probe(efx);
1089	if (rc)
1090		return rc;
1091
1092	rc = efx_ef10_get_vf_index(efx);
1093	if (rc)
1094		goto fail;
1095
1096	if (efx->pci_dev->is_virtfn) {
1097		if (efx->pci_dev->physfn) {
1098			struct efx_nic *efx_pf =
1099				pci_get_drvdata(efx->pci_dev->physfn);
1100			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1101			struct efx_ef10_nic_data *nic_data = efx->nic_data;
1102
1103			nic_data_p->vf[nic_data->vf_index].efx = efx;
1104			nic_data_p->vf[nic_data->vf_index].pci_dev =
1105				efx->pci_dev;
1106		} else
1107			netif_info(efx, drv, efx->net_dev,
1108				   "Could not get the PF id from VF\n");
1109	}
1110
1111	return 0;
 
1112
1113fail:
1114	efx_ef10_remove(efx);
1115	return rc;
1116}
1117#else
1118static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1119{
1120	return 0;
1121}
1122#endif
1123
1124static int efx_ef10_alloc_vis(struct efx_nic *efx,
1125			      unsigned int min_vis, unsigned int max_vis)
1126{
1127	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1128
1129	return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1130				  &nic_data->n_allocated_vis);
1131}
1132
1133/* Note that the failure path of this function does not free
1134 * resources, as this will be done by efx_ef10_remove().
1135 */
1136static int efx_ef10_dimension_resources(struct efx_nic *efx)
1137{
1138	unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1139				     efx_separate_tx_channels ? 2 : 1);
1140	unsigned int channel_vis, pio_write_vi_base, max_vis;
1141	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1142	unsigned int uc_mem_map_size, wc_mem_map_size;
 
1143	void __iomem *membase;
1144	int rc;
1145
1146	channel_vis = max(efx->n_channels,
1147			  ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1148			   efx->tx_queues_per_channel) +
1149			   efx->n_xdp_channels * efx->xdp_tx_per_channel);
1150	if (efx->max_vis && efx->max_vis < channel_vis) {
1151		netif_dbg(efx, drv, efx->net_dev,
1152			  "Reducing channel VIs from %u to %u\n",
1153			  channel_vis, efx->max_vis);
1154		channel_vis = efx->max_vis;
1155	}
1156
1157#ifdef EFX_USE_PIO
1158	/* Try to allocate PIO buffers if wanted and if the full
1159	 * number of PIO buffers would be sufficient to allocate one
1160	 * copy-buffer per TX channel.  Failure is non-fatal, as there
1161	 * are only a small number of PIO buffers shared between all
1162	 * functions of the controller.
1163	 */
1164	if (efx_piobuf_size != 0 &&
1165	    nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1166	    efx->n_tx_channels) {
1167		unsigned int n_piobufs =
1168			DIV_ROUND_UP(efx->n_tx_channels,
1169				     nic_data->piobuf_size / efx_piobuf_size);
1170
1171		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1172		if (rc == -ENOSPC)
1173			netif_dbg(efx, probe, efx->net_dev,
1174				  "out of PIO buffers; cannot allocate more\n");
1175		else if (rc == -EPERM)
1176			netif_dbg(efx, probe, efx->net_dev,
1177				  "not permitted to allocate PIO buffers\n");
1178		else if (rc)
1179			netif_err(efx, probe, efx->net_dev,
1180				  "failed to allocate PIO buffers (%d)\n", rc);
1181		else
1182			netif_dbg(efx, probe, efx->net_dev,
1183				  "allocated %u PIO buffers\n", n_piobufs);
1184	}
1185#else
1186	nic_data->n_piobufs = 0;
1187#endif
1188
1189	/* PIO buffers should be mapped with write-combining enabled,
1190	 * and we want to make single UC and WC mappings rather than
1191	 * several of each (in fact that's the only option if host
1192	 * page size is >4K).  So we may allocate some extra VIs just
1193	 * for writing PIO buffers through.
1194	 *
1195	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1196	 * first 4K of the next VI.  Then the WC mapping begins with
1197	 * the remainder of this last VI.
1198	 */
1199	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1200				     ER_DZ_TX_PIOBUF);
1201	if (nic_data->n_piobufs) {
1202		/* pio_write_vi_base rounds down to give the number of complete
1203		 * VIs inside the UC mapping.
1204		 */
1205		pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1206		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1207					       nic_data->n_piobufs) *
1208					      efx->vi_stride) -
1209				   uc_mem_map_size);
1210		max_vis = pio_write_vi_base + nic_data->n_piobufs;
1211	} else {
1212		pio_write_vi_base = 0;
1213		wc_mem_map_size = 0;
1214		max_vis = channel_vis;
1215	}
1216
1217	/* In case the last attached driver failed to free VIs, do it now */
1218	rc = efx_mcdi_free_vis(efx);
1219	if (rc != 0)
1220		return rc;
1221
1222	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1223	if (rc != 0)
1224		return rc;
1225
1226	if (nic_data->n_allocated_vis < channel_vis) {
1227		netif_info(efx, drv, efx->net_dev,
1228			   "Could not allocate enough VIs to satisfy RSS"
1229			   " requirements. Performance may not be optimal.\n");
1230		/* We didn't get the VIs to populate our channels.
1231		 * We could keep what we got but then we'd have more
1232		 * interrupts than we need.
1233		 * Instead calculate new max_channels and restart
1234		 */
1235		efx->max_channels = nic_data->n_allocated_vis;
1236		efx->max_tx_channels =
1237			nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1238
1239		efx_mcdi_free_vis(efx);
1240		return -EAGAIN;
1241	}
1242
1243	/* If we didn't get enough VIs to map all the PIO buffers, free the
1244	 * PIO buffers
1245	 */
1246	if (nic_data->n_piobufs &&
1247	    nic_data->n_allocated_vis <
1248	    pio_write_vi_base + nic_data->n_piobufs) {
1249		netif_dbg(efx, probe, efx->net_dev,
1250			  "%u VIs are not sufficient to map %u PIO buffers\n",
1251			  nic_data->n_allocated_vis, nic_data->n_piobufs);
1252		efx_ef10_free_piobufs(efx);
1253	}
1254
1255	/* Shrink the original UC mapping of the memory BAR */
1256	membase = ioremap(efx->membase_phys, uc_mem_map_size);
1257	if (!membase) {
1258		netif_err(efx, probe, efx->net_dev,
1259			  "could not shrink memory BAR to %x\n",
1260			  uc_mem_map_size);
1261		return -ENOMEM;
1262	}
1263	iounmap(efx->membase);
1264	efx->membase = membase;
1265
1266	/* Set up the WC mapping if needed */
1267	if (wc_mem_map_size) {
1268		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1269						  uc_mem_map_size,
1270						  wc_mem_map_size);
1271		if (!nic_data->wc_membase) {
1272			netif_err(efx, probe, efx->net_dev,
1273				  "could not allocate WC mapping of size %x\n",
1274				  wc_mem_map_size);
1275			return -ENOMEM;
1276		}
1277		nic_data->pio_write_vi_base = pio_write_vi_base;
1278		nic_data->pio_write_base =
1279			nic_data->wc_membase +
1280			(pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1281			 uc_mem_map_size);
1282
1283		rc = efx_ef10_link_piobufs(efx);
1284		if (rc)
1285			efx_ef10_free_piobufs(efx);
1286	}
1287
1288	netif_dbg(efx, probe, efx->net_dev,
1289		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1290		  &efx->membase_phys, efx->membase, uc_mem_map_size,
1291		  nic_data->wc_membase, wc_mem_map_size);
1292
1293	return 0;
1294}
1295
1296static void efx_ef10_fini_nic(struct efx_nic *efx)
1297{
1298	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1299
1300	spin_lock_bh(&efx->stats_lock);
1301	kfree(nic_data->mc_stats);
1302	nic_data->mc_stats = NULL;
1303	spin_unlock_bh(&efx->stats_lock);
1304}
1305
1306static int efx_ef10_init_nic(struct efx_nic *efx)
1307{
1308	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1309	struct net_device *net_dev = efx->net_dev;
1310	netdev_features_t tun_feats, tso_feats;
1311	int rc;
1312
1313	if (nic_data->must_check_datapath_caps) {
1314		rc = efx_ef10_init_datapath_caps(efx);
1315		if (rc)
1316			return rc;
1317		nic_data->must_check_datapath_caps = false;
1318	}
1319
1320	if (efx->must_realloc_vis) {
1321		/* We cannot let the number of VIs change now */
1322		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1323					nic_data->n_allocated_vis);
1324		if (rc)
1325			return rc;
1326		efx->must_realloc_vis = false;
1327	}
1328
1329	nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1330				     GFP_KERNEL);
1331	if (!nic_data->mc_stats)
1332		return -ENOMEM;
1333
1334	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1335		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1336		if (rc == 0) {
1337			rc = efx_ef10_link_piobufs(efx);
1338			if (rc)
1339				efx_ef10_free_piobufs(efx);
1340		}
1341
1342		/* Log an error on failure, but this is non-fatal.
1343		 * Permission errors are less important - we've presumably
1344		 * had the PIO buffer licence removed.
1345		 */
1346		if (rc == -EPERM)
1347			netif_dbg(efx, drv, efx->net_dev,
1348				  "not permitted to restore PIO buffers\n");
1349		else if (rc)
1350			netif_err(efx, drv, efx->net_dev,
1351				  "failed to restore PIO buffers (%d)\n", rc);
1352		nic_data->must_restore_piobufs = false;
1353	}
1354
1355	/* encap features might change during reset if fw variant changed */
1356	if (efx_has_cap(efx, VXLAN_NVGRE) && !efx_ef10_is_vf(efx))
1357		net_dev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1358	else
1359		net_dev->hw_enc_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1360
1361	tun_feats = NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
1362		    NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM;
1363	tso_feats = NETIF_F_TSO | NETIF_F_TSO6;
1364
1365	if (efx_has_cap(efx, TX_TSO_V2_ENCAP)) {
1366		/* If this is first nic_init, or if it is a reset and a new fw
1367		 * variant has added new features, enable them by default.
1368		 * If the features are not new, maintain their current value.
1369		 */
1370		if (!(net_dev->hw_features & tun_feats))
1371			net_dev->features |= tun_feats;
1372		net_dev->hw_enc_features |= tun_feats | tso_feats;
1373		net_dev->hw_features |= tun_feats;
1374	} else {
1375		net_dev->hw_enc_features &= ~(tun_feats | tso_feats);
1376		net_dev->hw_features &= ~tun_feats;
1377		net_dev->features &= ~tun_feats;
1378	}
1379
1380	/* don't fail init if RSS setup doesn't work */
1381	rc = efx->type->rx_push_rss_config(efx, false,
1382					   efx->rss_context.rx_indir_table, NULL);
1383
1384	return 0;
1385}
1386
1387static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1388{
1389	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1390#ifdef CONFIG_SFC_SRIOV
1391	unsigned int i;
1392#endif
1393
1394	/* All our allocations have been reset */
1395	efx->must_realloc_vis = true;
1396	efx_mcdi_filter_table_reset_mc_allocations(efx);
1397	nic_data->must_restore_piobufs = true;
1398	efx_ef10_forget_old_piobufs(efx);
1399	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1400
1401	/* Driver-created vswitches and vports must be re-created */
1402	nic_data->must_probe_vswitching = true;
1403	efx->vport_id = EVB_PORT_ID_ASSIGNED;
1404#ifdef CONFIG_SFC_SRIOV
1405	if (nic_data->vf)
1406		for (i = 0; i < efx->vf_count; i++)
1407			nic_data->vf[i].vport_id = 0;
1408#endif
1409}
1410
1411static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1412{
1413	if (reason == RESET_TYPE_MC_FAILURE)
1414		return RESET_TYPE_DATAPATH;
1415
1416	return efx_mcdi_map_reset_reason(reason);
1417}
1418
1419static int efx_ef10_map_reset_flags(u32 *flags)
1420{
1421	enum {
1422		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1423				   ETH_RESET_SHARED_SHIFT),
1424		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1425				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1426				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
1427				 ETH_RESET_SHARED_SHIFT)
1428	};
1429
1430	/* We assume for now that our PCI function is permitted to
1431	 * reset everything.
1432	 */
1433
1434	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1435		*flags &= ~EF10_RESET_MC;
1436		return RESET_TYPE_WORLD;
1437	}
1438
1439	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1440		*flags &= ~EF10_RESET_PORT;
1441		return RESET_TYPE_ALL;
1442	}
1443
1444	/* no invisible reset implemented */
1445
1446	return -EINVAL;
1447}
1448
1449static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1450{
1451	int rc = efx_mcdi_reset(efx, reset_type);
1452
1453	/* Unprivileged functions return -EPERM, but need to return success
1454	 * here so that the datapath is brought back up.
1455	 */
1456	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1457		rc = 0;
1458
1459	/* If it was a port reset, trigger reallocation of MC resources.
1460	 * Note that on an MC reset nothing needs to be done now because we'll
1461	 * detect the MC reset later and handle it then.
1462	 * For an FLR, we never get an MC reset event, but the MC has reset all
1463	 * resources assigned to us, so we have to trigger reallocation now.
1464	 */
1465	if ((reset_type == RESET_TYPE_ALL ||
1466	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1467		efx_ef10_table_reset_mc_allocations(efx);
1468	return rc;
1469}
1470
1471#define EF10_DMA_STAT(ext_name, mcdi_name)			\
1472	[EF10_STAT_ ## ext_name] =				\
1473	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1474#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
1475	[EF10_STAT_ ## int_name] =				\
1476	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1477#define EF10_OTHER_STAT(ext_name)				\
1478	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1479
1480static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1481	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1482	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1483	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1484	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1485	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1486	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1487	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1488	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1489	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1490	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1491	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1492	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1493	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1494	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1495	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1496	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1497	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1498	EF10_OTHER_STAT(port_rx_good_bytes),
1499	EF10_OTHER_STAT(port_rx_bad_bytes),
1500	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1501	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1502	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1503	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1504	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1505	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1506	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1507	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1508	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1509	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1510	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1511	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1512	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1513	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1514	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1515	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1516	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1517	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1518	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1519	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1520	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1521	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1522	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1523	EFX_GENERIC_SW_STAT(rx_noskb_drops),
1524	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1525	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1526	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1527	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1528	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1529	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1530	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1531	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1532	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1533	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1534	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1535	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1536	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1537	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1538	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1539	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1540	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1541	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1542	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1543	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1544	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1545	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1546	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1547	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1548	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1549	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1550	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1551	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1552	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1553	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1554	EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1555	EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1556	EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1557	EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1558	EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1559	EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1560	EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1561	EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1562	EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1563	EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1564	EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1565	EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1566	EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1567	EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1568	EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1569	EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1570	EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1571	EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1572	EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1573	EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1574	EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1575	EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1576};
1577
1578#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
1579			       (1ULL << EF10_STAT_port_tx_packets) |	\
1580			       (1ULL << EF10_STAT_port_tx_pause) |	\
1581			       (1ULL << EF10_STAT_port_tx_unicast) |	\
1582			       (1ULL << EF10_STAT_port_tx_multicast) |	\
1583			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
1584			       (1ULL << EF10_STAT_port_rx_bytes) |	\
1585			       (1ULL <<                                 \
1586				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1587			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
1588			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
1589			       (1ULL << EF10_STAT_port_rx_packets) |	\
1590			       (1ULL << EF10_STAT_port_rx_good) |	\
1591			       (1ULL << EF10_STAT_port_rx_bad) |	\
1592			       (1ULL << EF10_STAT_port_rx_pause) |	\
1593			       (1ULL << EF10_STAT_port_rx_control) |	\
1594			       (1ULL << EF10_STAT_port_rx_unicast) |	\
1595			       (1ULL << EF10_STAT_port_rx_multicast) |	\
1596			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
1597			       (1ULL << EF10_STAT_port_rx_lt64) |	\
1598			       (1ULL << EF10_STAT_port_rx_64) |		\
1599			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
1600			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
1601			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
1602			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1603			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1604			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1605			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
1606			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1607			       (1ULL << EF10_STAT_port_rx_overflow) |	\
1608			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1609			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
1610			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1611
1612/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1613 * For a 10G/40G switchable port we do not expose these because they might
1614 * not include all the packets they should.
1615 * On 8000 series NICs these statistics are always provided.
1616 */
1617#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
1618				 (1ULL << EF10_STAT_port_tx_lt64) |	\
1619				 (1ULL << EF10_STAT_port_tx_64) |	\
1620				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1621				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1622				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1623				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1624				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1625				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1626
1627/* These statistics are only provided by the 40G MAC.  For a 10G/40G
1628 * switchable port we do expose these because the errors will otherwise
1629 * be silent.
1630 */
1631#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1632				  (1ULL << EF10_STAT_port_rx_length_error))
1633
1634/* These statistics are only provided if the firmware supports the
1635 * capability PM_AND_RXDP_COUNTERS.
1636 */
1637#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1638	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
1639	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
1640	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
1641	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
1642	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
1643	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
1644	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
1645	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
1646	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
1647	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
1648	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
1649	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1650
1651/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1652 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1653 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1654 * These bits are in the second u64 of the raw mask.
1655 */
1656#define EF10_FEC_STAT_MASK (						\
1657	(1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) |		\
1658	(1ULL << (EF10_STAT_fec_corrected_errors - 64)) |		\
1659	(1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) |	\
1660	(1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) |	\
1661	(1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) |	\
1662	(1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1663
1664/* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1665 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1666 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1667 * These bits are in the second u64 of the raw mask.
1668 */
1669#define EF10_CTPIO_STAT_MASK (						\
1670	(1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) |		\
1671	(1ULL << (EF10_STAT_ctpio_long_write_success - 64)) |		\
1672	(1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) |		\
1673	(1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) |		\
1674	(1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) |		\
1675	(1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) |			\
1676	(1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) |		\
1677	(1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) |		\
1678	(1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) |		\
1679	(1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) |		\
1680	(1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) |		\
1681	(1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) |		\
1682	(1ULL << (EF10_STAT_ctpio_success - 64)) |			\
1683	(1ULL << (EF10_STAT_ctpio_fallback - 64)) |			\
1684	(1ULL << (EF10_STAT_ctpio_poison - 64)) |			\
1685	(1ULL << (EF10_STAT_ctpio_erase - 64)))
1686
1687static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1688{
1689	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1690	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1691	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1692
1693	if (!(efx->mcdi->fn_flags &
1694	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1695		return 0;
1696
1697	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1698		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1699		/* 8000 series have everything even at 40G */
1700		if (nic_data->datapath_caps2 &
1701		    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1702			raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1703	} else {
1704		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1705	}
1706
1707	if (nic_data->datapath_caps &
1708	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1709		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1710
1711	return raw_mask;
1712}
1713
1714static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1715{
1716	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1717	u64 raw_mask[2];
1718
1719	raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1720
1721	/* Only show vadaptor stats when EVB capability is present */
1722	if (nic_data->datapath_caps &
1723	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1724		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1725		raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1726	} else {
1727		raw_mask[1] = 0;
1728	}
1729	/* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1730	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1731		raw_mask[1] |= EF10_FEC_STAT_MASK;
1732
1733	/* CTPIO stats appear in V3. Only show them on devices that actually
1734	 * support CTPIO. Although this driver doesn't use CTPIO others might,
1735	 * and we may be reporting the stats for the underlying port.
1736	 */
1737	if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1738	    (nic_data->datapath_caps2 &
1739	     (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1740		raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1741
1742#if BITS_PER_LONG == 64
1743	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1744	mask[0] = raw_mask[0];
1745	mask[1] = raw_mask[1];
1746#else
1747	BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1748	mask[0] = raw_mask[0] & 0xffffffff;
1749	mask[1] = raw_mask[0] >> 32;
1750	mask[2] = raw_mask[1] & 0xffffffff;
1751#endif
1752}
1753
1754static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1755{
1756	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1757
1758	efx_ef10_get_stat_mask(efx, mask);
1759	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1760				      mask, names);
1761}
1762
1763static void efx_ef10_get_fec_stats(struct efx_nic *efx,
1764				   struct ethtool_fec_stats *fec_stats)
1765{
1766	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1767	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
1768	u64 *stats = nic_data->stats;
 
1769
1770	efx_ef10_get_stat_mask(efx, mask);
1771	if (test_bit(EF10_STAT_fec_corrected_errors, mask))
1772		fec_stats->corrected_blocks.total =
1773			stats[EF10_STAT_fec_corrected_errors];
1774	if (test_bit(EF10_STAT_fec_uncorrected_errors, mask))
1775		fec_stats->uncorrectable_blocks.total =
1776			stats[EF10_STAT_fec_uncorrected_errors];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777}
1778
1779static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1780					   struct rtnl_link_stats64 *core_stats)
 
1781{
1782	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1783	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1784	u64 *stats = nic_data->stats;
1785	size_t stats_count = 0, index;
 
1786
1787	efx_ef10_get_stat_mask(efx, mask);
1788
 
 
 
 
 
 
 
 
 
1789	if (full_stats) {
1790		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1791			if (efx_ef10_stat_desc[index].name) {
1792				*full_stats++ = stats[index];
1793				++stats_count;
1794			}
1795		}
1796	}
1797
1798	if (!core_stats)
1799		return stats_count;
1800
1801	if (nic_data->datapath_caps &
1802			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1803		/* Use vadaptor stats. */
1804		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1805					 stats[EF10_STAT_rx_multicast] +
1806					 stats[EF10_STAT_rx_broadcast];
1807		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1808					 stats[EF10_STAT_tx_multicast] +
1809					 stats[EF10_STAT_tx_broadcast];
1810		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1811				       stats[EF10_STAT_rx_multicast_bytes] +
1812				       stats[EF10_STAT_rx_broadcast_bytes];
1813		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1814				       stats[EF10_STAT_tx_multicast_bytes] +
1815				       stats[EF10_STAT_tx_broadcast_bytes];
1816		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1817					 stats[GENERIC_STAT_rx_noskb_drops];
1818		core_stats->multicast = stats[EF10_STAT_rx_multicast];
 
 
 
1819		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
 
1820		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1821		core_stats->rx_errors = core_stats->rx_crc_errors;
1822		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1823	} else {
1824		/* Use port stats. */
1825		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1826		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1827		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1828		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1829		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1830					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1831					 stats[GENERIC_STAT_rx_noskb_drops];
1832		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1833		core_stats->rx_length_errors =
1834				stats[EF10_STAT_port_rx_gtjumbo] +
1835				stats[EF10_STAT_port_rx_length_error];
1836		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1837		core_stats->rx_frame_errors =
1838				stats[EF10_STAT_port_rx_align_error];
1839		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1840		core_stats->rx_errors = (core_stats->rx_length_errors +
1841					 core_stats->rx_crc_errors +
1842					 core_stats->rx_frame_errors);
1843	}
1844
1845	return stats_count;
1846}
1847
1848static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1849				       struct rtnl_link_stats64 *core_stats)
1850{
1851	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1852	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1853	u64 *stats = nic_data->stats;
1854
1855	efx_ef10_get_stat_mask(efx, mask);
1856
1857	/* If NIC was fini'd (probably resetting), then we can't read
1858	 * updated stats right now.
1859	 */
1860	if (nic_data->mc_stats) {
1861		efx_nic_copy_stats(efx, nic_data->mc_stats);
1862		efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1863				     mask, stats, nic_data->mc_stats, false);
1864	}
1865
1866	/* Update derived statistics */
1867	efx_nic_fix_nodesc_drop_stat(efx,
1868				     &stats[EF10_STAT_port_rx_nodesc_drops]);
1869	/* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1870	 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1871	 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1872	 * Here we calculate port_rx_good_bytes.
1873	 */
1874	stats[EF10_STAT_port_rx_good_bytes] =
1875		stats[EF10_STAT_port_rx_bytes] -
1876		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1877
1878	/* The asynchronous reads used to calculate RX_BAD_BYTES in
1879	 * MC Firmware are done such that we should not see an increase in
1880	 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1881	 * does mean that the stat can decrease at times. Here we do not
1882	 * update the stat unless it has increased or has gone to zero
1883	 * (In the case of the NIC rebooting).
1884	 * Please see Bug 33781 for a discussion of why things work this way.
1885	 */
1886	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1887			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1888	efx_update_sw_stats(efx, stats);
1889
1890	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1891}
1892
1893static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1894	__must_hold(&efx->stats_lock)
1895{
1896	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1897	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1898	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1899	__le64 generation_start, generation_end;
1900	u64 *stats = nic_data->stats;
1901	u32 dma_len = efx->num_mac_stats * sizeof(u64);
1902	struct efx_buffer stats_buf;
1903	__le64 *dma_stats;
1904	int rc;
1905
1906	spin_unlock_bh(&efx->stats_lock);
1907
1908	efx_ef10_get_stat_mask(efx, mask);
1909
1910	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_KERNEL);
1911	if (rc) {
1912		spin_lock_bh(&efx->stats_lock);
1913		return rc;
1914	}
1915
1916	dma_stats = stats_buf.addr;
1917	dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1918
1919	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1920	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1921			      MAC_STATS_IN_DMA, 1);
1922	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1923	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1924
1925	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1926				NULL, 0, NULL);
1927	spin_lock_bh(&efx->stats_lock);
1928	if (rc) {
1929		/* Expect ENOENT if DMA queues have not been set up */
1930		if (rc != -ENOENT || atomic_read(&efx->active_queues))
1931			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1932					       sizeof(inbuf), NULL, 0, rc);
1933		goto out;
1934	}
1935
1936	generation_end = dma_stats[efx->num_mac_stats - 1];
1937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1938		WARN_ON_ONCE(1);
1939		goto out;
1940	}
1941	rmb();
1942	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1943			     stats, stats_buf.addr, false);
1944	rmb();
1945	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1946	if (generation_end != generation_start) {
1947		rc = -EAGAIN;
1948		goto out;
1949	}
1950
1951	efx_update_sw_stats(efx, stats);
1952out:
1953	/* releasing a DMA coherent buffer with BH disabled can panic */
1954	spin_unlock_bh(&efx->stats_lock);
1955	efx_nic_free_buffer(efx, &stats_buf);
1956	spin_lock_bh(&efx->stats_lock);
1957	return rc;
1958}
1959
1960static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1961				       struct rtnl_link_stats64 *core_stats)
1962{
1963	if (efx_ef10_try_update_nic_stats_vf(efx))
1964		return 0;
1965
1966	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1967}
1968
1969static size_t efx_ef10_update_stats_atomic_vf(struct efx_nic *efx, u64 *full_stats,
1970					      struct rtnl_link_stats64 *core_stats)
1971{
1972	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1973
1974	/* In atomic context, cannot update HW stats.  Just update the
1975	 * software stats and return so the caller can continue.
1976	 */
1977	efx_update_sw_stats(efx, nic_data->stats);
1978	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1979}
1980
1981static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1982{
1983	struct efx_nic *efx = channel->efx;
1984	unsigned int mode, usecs;
1985	efx_dword_t timer_cmd;
1986
1987	if (channel->irq_moderation_us) {
1988		mode = 3;
1989		usecs = channel->irq_moderation_us;
1990	} else {
1991		mode = 0;
1992		usecs = 0;
1993	}
1994
1995	if (EFX_EF10_WORKAROUND_61265(efx)) {
1996		MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1997		unsigned int ns = usecs * 1000;
1998
1999		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
2000			       channel->channel);
2001		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
2002		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
2003		MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
2004
2005		efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
2006				   inbuf, sizeof(inbuf), 0, NULL, 0);
2007	} else if (EFX_EF10_WORKAROUND_35388(efx)) {
2008		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2009
2010		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
2011				     EFE_DD_EVQ_IND_TIMER_FLAGS,
2012				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
2013				     ERF_DD_EVQ_IND_TIMER_VAL, ticks);
2014		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
2015				channel->channel);
2016	} else {
2017		unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
2018
2019		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
2020				     ERF_DZ_TC_TIMER_VAL, ticks,
2021				     ERF_FZ_TC_TMR_REL_VAL, ticks);
2022		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
2023				channel->channel);
2024	}
2025}
2026
2027static void efx_ef10_get_wol_vf(struct efx_nic *efx,
2028				struct ethtool_wolinfo *wol) {}
2029
2030static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
2031{
2032	return -EOPNOTSUPP;
2033}
2034
2035static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2036{
2037	wol->supported = 0;
2038	wol->wolopts = 0;
2039	memset(&wol->sopass, 0, sizeof(wol->sopass));
2040}
2041
2042static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
2043{
2044	if (type != 0)
2045		return -EINVAL;
2046	return 0;
2047}
2048
2049static void efx_ef10_mcdi_request(struct efx_nic *efx,
2050				  const efx_dword_t *hdr, size_t hdr_len,
2051				  const efx_dword_t *sdu, size_t sdu_len)
2052{
2053	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2054	u8 *pdu = nic_data->mcdi_buf.addr;
2055
2056	memcpy(pdu, hdr, hdr_len);
2057	memcpy(pdu + hdr_len, sdu, sdu_len);
2058	wmb();
2059
2060	/* The hardware provides 'low' and 'high' (doorbell) registers
2061	 * for passing the 64-bit address of an MCDI request to
2062	 * firmware.  However the dwords are swapped by firmware.  The
2063	 * least significant bits of the doorbell are then 0 for all
2064	 * MCDI requests due to alignment.
2065	 */
2066	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2067		    ER_DZ_MC_DB_LWRD);
2068	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2069		    ER_DZ_MC_DB_HWRD);
2070}
2071
2072static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2073{
2074	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2075	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2076
2077	rmb();
2078	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2079}
2080
2081static void
2082efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2083			    size_t offset, size_t outlen)
2084{
2085	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2086	const u8 *pdu = nic_data->mcdi_buf.addr;
2087
2088	memcpy(outbuf, pdu + offset, outlen);
2089}
2090
2091static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2092{
2093	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2094
2095	/* All our allocations have been reset */
2096	efx_ef10_table_reset_mc_allocations(efx);
2097
2098	/* The datapath firmware might have been changed */
2099	nic_data->must_check_datapath_caps = true;
2100
2101	/* MAC statistics have been cleared on the NIC; clear the local
2102	 * statistic that we update with efx_update_diff_stat().
2103	 */
2104	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2105}
2106
2107static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2108{
2109	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2110	int rc;
2111
2112	rc = efx_ef10_get_warm_boot_count(efx);
2113	if (rc < 0) {
2114		/* The firmware is presumably in the process of
2115		 * rebooting.  However, we are supposed to report each
2116		 * reboot just once, so we must only do that once we
2117		 * can read and store the updated warm boot count.
2118		 */
2119		return 0;
2120	}
2121
2122	if (rc == nic_data->warm_boot_count)
2123		return 0;
2124
2125	nic_data->warm_boot_count = rc;
2126	efx_ef10_mcdi_reboot_detected(efx);
 
 
 
 
 
 
 
 
 
 
2127
2128	return -EIO;
2129}
2130
2131/* Handle an MSI interrupt
2132 *
2133 * Handle an MSI hardware interrupt.  This routine schedules event
2134 * queue processing.  No interrupt acknowledgement cycle is necessary.
2135 * Also, we never need to check that the interrupt is for us, since
2136 * MSI interrupts cannot be shared.
2137 */
2138static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2139{
2140	struct efx_msi_context *context = dev_id;
2141	struct efx_nic *efx = context->efx;
2142
2143	netif_vdbg(efx, intr, efx->net_dev,
2144		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2145
2146	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2147		/* Note test interrupts */
2148		if (context->index == efx->irq_level)
2149			efx->last_irq_cpu = raw_smp_processor_id();
2150
2151		/* Schedule processing of the channel */
2152		efx_schedule_channel_irq(efx->channel[context->index]);
2153	}
2154
2155	return IRQ_HANDLED;
2156}
2157
2158static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2159{
2160	struct efx_nic *efx = dev_id;
2161	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2162	struct efx_channel *channel;
2163	efx_dword_t reg;
2164	u32 queues;
2165
2166	/* Read the ISR which also ACKs the interrupts */
2167	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
2168	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2169
2170	if (queues == 0)
2171		return IRQ_NONE;
2172
2173	if (likely(soft_enabled)) {
2174		/* Note test interrupts */
2175		if (queues & (1U << efx->irq_level))
2176			efx->last_irq_cpu = raw_smp_processor_id();
2177
2178		efx_for_each_channel(channel, efx) {
2179			if (queues & 1)
2180				efx_schedule_channel_irq(channel);
2181			queues >>= 1;
2182		}
2183	}
2184
2185	netif_vdbg(efx, intr, efx->net_dev,
2186		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2187		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2188
2189	return IRQ_HANDLED;
2190}
2191
2192static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2193{
2194	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2195
2196	if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2197				    NULL) == 0)
2198		return -ENOTSUPP;
2199
2200	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2201
2202	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2203	return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2204			    inbuf, sizeof(inbuf), NULL, 0, NULL);
2205}
2206
2207static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2208{
2209	/* low two bits of label are what we want for type */
2210	BUILD_BUG_ON((EFX_TXQ_TYPE_OUTER_CSUM | EFX_TXQ_TYPE_INNER_CSUM) != 3);
2211	tx_queue->type = tx_queue->label & 3;
2212	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd,
2213				    (tx_queue->ptr_mask + 1) *
2214				    sizeof(efx_qword_t),
2215				    GFP_KERNEL);
2216}
2217
2218/* This writes to the TX_DESC_WPTR and also pushes data */
2219static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2220					 const efx_qword_t *txd)
2221{
2222	unsigned int write_ptr;
2223	efx_oword_t reg;
2224
2225	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2226	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2227	reg.qword[0] = *txd;
2228	efx_writeo_page(tx_queue->efx, &reg,
2229			ER_DZ_TX_DESC_UPD, tx_queue->queue);
2230}
2231
2232/* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2233 */
2234int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
2235			 bool *data_mapped)
2236{
2237	struct efx_tx_buffer *buffer;
2238	u16 inner_ipv4_id = 0;
2239	u16 outer_ipv4_id = 0;
2240	struct tcphdr *tcp;
2241	struct iphdr *ip;
2242	u16 ip_tot_len;
2243	u32 seqnum;
2244	u32 mss;
2245
2246	EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2247
2248	mss = skb_shinfo(skb)->gso_size;
2249
2250	if (unlikely(mss < 4)) {
2251		WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2252		return -EINVAL;
2253	}
2254
2255	if (skb->encapsulation) {
2256		if (!tx_queue->tso_encap)
2257			return -EINVAL;
2258		ip = ip_hdr(skb);
2259		if (ip->version == 4)
2260			outer_ipv4_id = ntohs(ip->id);
2261
2262		ip = inner_ip_hdr(skb);
2263		tcp = inner_tcp_hdr(skb);
2264	} else {
2265		ip = ip_hdr(skb);
2266		tcp = tcp_hdr(skb);
2267	}
2268
2269	/* 8000-series EF10 hardware requires that IP Total Length be
2270	 * greater than or equal to the value it will have in each segment
2271	 * (which is at most mss + 208 + TCP header length), but also less
2272	 * than (0x10000 - inner_network_header).  Otherwise the TCP
2273	 * checksum calculation will be broken for encapsulated packets.
2274	 * We fill in ip->tot_len with 0xff30, which should satisfy the
2275	 * first requirement unless the MSS is ridiculously large (which
2276	 * should be impossible as the driver max MTU is 9216); it is
2277	 * guaranteed to satisfy the second as we only attempt TSO if
2278	 * inner_network_header <= 208.
2279	 */
2280	ip_tot_len = 0x10000 - EFX_TSO2_MAX_HDRLEN;
2281	EFX_WARN_ON_ONCE_PARANOID(mss + EFX_TSO2_MAX_HDRLEN +
2282				  (tcp->doff << 2u) > ip_tot_len);
2283
2284	if (ip->version == 4) {
2285		ip->tot_len = htons(ip_tot_len);
2286		ip->check = 0;
2287		inner_ipv4_id = ntohs(ip->id);
2288	} else {
2289		((struct ipv6hdr *)ip)->payload_len = htons(ip_tot_len);
2290	}
2291
2292	seqnum = ntohl(tcp->seq);
2293
2294	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2295
2296	buffer->flags = EFX_TX_BUF_OPTION;
2297	buffer->len = 0;
2298	buffer->unmap_len = 0;
2299	EFX_POPULATE_QWORD_5(buffer->option,
2300			ESF_DZ_TX_DESC_IS_OPT, 1,
2301			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2302			ESF_DZ_TX_TSO_OPTION_TYPE,
2303			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2304			ESF_DZ_TX_TSO_IP_ID, inner_ipv4_id,
2305			ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2306			);
2307	++tx_queue->insert_count;
2308
2309	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2310
2311	buffer->flags = EFX_TX_BUF_OPTION;
2312	buffer->len = 0;
2313	buffer->unmap_len = 0;
2314	EFX_POPULATE_QWORD_5(buffer->option,
2315			ESF_DZ_TX_DESC_IS_OPT, 1,
2316			ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2317			ESF_DZ_TX_TSO_OPTION_TYPE,
2318			ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2319			ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id,
2320			ESF_DZ_TX_TSO_TCP_MSS, mss
2321			);
2322	++tx_queue->insert_count;
2323
2324	return 0;
2325}
2326
2327static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2328{
2329	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2330	u32 tso_versions = 0;
2331
2332	if (nic_data->datapath_caps &
2333	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2334		tso_versions |= BIT(1);
2335	if (nic_data->datapath_caps2 &
2336	    (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2337		tso_versions |= BIT(2);
2338	return tso_versions;
2339}
2340
2341static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2342{
2343	bool csum_offload = tx_queue->type & EFX_TXQ_TYPE_OUTER_CSUM;
2344	bool inner_csum = tx_queue->type & EFX_TXQ_TYPE_INNER_CSUM;
 
 
 
2345	struct efx_channel *channel = tx_queue->channel;
2346	struct efx_nic *efx = tx_queue->efx;
2347	struct efx_ef10_nic_data *nic_data;
 
2348	efx_qword_t *txd;
2349	int rc;
 
2350
2351	nic_data = efx->nic_data;
 
 
 
 
 
 
 
 
2352
2353	/* Only attempt to enable TX timestamping if we have the license for it,
2354	 * otherwise TXQ init will fail
2355	 */
2356	if (!(nic_data->licensed_features &
2357	      (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2358		tx_queue->timestamping = false;
2359		/* Disable sync events on this channel. */
2360		if (efx->type->ptp_set_ts_sync_events)
2361			efx->type->ptp_set_ts_sync_events(efx, false, false);
2362	}
2363
2364	/* TSOv2 is a limited resource that can only be configured on a limited
2365	 * number of queues. TSO without checksum offload is not really a thing,
2366	 * so we only enable it for those queues.
2367	 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2368	 * for XDP tx.
2369	 */
2370	if (efx_has_cap(efx, TX_TSO_V2)) {
2371		if ((csum_offload || inner_csum) &&
2372		    !tx_queue->timestamping && !tx_queue->xdp_tx) {
2373			tx_queue->tso_version = 2;
2374			netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2375				  channel->channel);
2376		}
2377	} else if (efx_has_cap(efx, TX_TSO)) {
2378		tx_queue->tso_version = 1;
2379	}
2380
2381	rc = efx_mcdi_tx_init(tx_queue);
 
 
 
2382	if (rc)
2383		goto fail;
2384
2385	/* A previous user of this TX queue might have set us up the
2386	 * bomb by writing a descriptor to the TX push collector but
2387	 * not the doorbell.  (Each collector belongs to a port, not a
2388	 * queue or function, so cannot easily be reset.)  We must
2389	 * attempt to push a no-op descriptor in its place.
2390	 */
2391	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2392	tx_queue->insert_count = 1;
2393	txd = efx_tx_desc(tx_queue, 0);
2394	EFX_POPULATE_QWORD_7(*txd,
2395			     ESF_DZ_TX_DESC_IS_OPT, true,
2396			     ESF_DZ_TX_OPTION_TYPE,
2397			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2398			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2399			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload && tx_queue->tso_version != 2,
2400			     ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, inner_csum,
2401			     ESF_DZ_TX_OPTION_INNER_IP_CSUM, inner_csum && tx_queue->tso_version != 2,
2402			     ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2403	tx_queue->write_count = 1;
2404
2405	if (tx_queue->tso_version == 2 && efx_has_cap(efx, TX_TSO_V2_ENCAP))
2406		tx_queue->tso_encap = true;
2407
2408	wmb();
2409	efx_ef10_push_tx_desc(tx_queue, txd);
2410
2411	return;
2412
2413fail:
2414	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2415		    tx_queue->queue);
2416}
2417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2419static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2420{
2421	unsigned int write_ptr;
2422	efx_dword_t reg;
2423
2424	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2425	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2426	efx_writed_page(tx_queue->efx, &reg,
2427			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2428}
2429
2430#define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2431
2432static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2433					  dma_addr_t dma_addr, unsigned int len)
2434{
2435	if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2436		/* If we need to break across multiple descriptors we should
2437		 * stop at a page boundary. This assumes the length limit is
2438		 * greater than the page size.
2439		 */
2440		dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2441
2442		BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2443		len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2444	}
2445
2446	return len;
2447}
2448
2449static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2450{
2451	unsigned int old_write_count = tx_queue->write_count;
2452	struct efx_tx_buffer *buffer;
2453	unsigned int write_ptr;
2454	efx_qword_t *txd;
2455
2456	tx_queue->xmit_pending = false;
2457	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2458		return;
2459
2460	do {
2461		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2462		buffer = &tx_queue->buffer[write_ptr];
2463		txd = efx_tx_desc(tx_queue, write_ptr);
2464		++tx_queue->write_count;
2465
2466		/* Create TX descriptor ring entry */
2467		if (buffer->flags & EFX_TX_BUF_OPTION) {
2468			*txd = buffer->option;
2469			if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2470				/* PIO descriptor */
2471				tx_queue->packet_write_count = tx_queue->write_count;
2472		} else {
2473			tx_queue->packet_write_count = tx_queue->write_count;
2474			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2475			EFX_POPULATE_QWORD_3(
2476				*txd,
2477				ESF_DZ_TX_KER_CONT,
2478				buffer->flags & EFX_TX_BUF_CONT,
2479				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2480				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2481		}
2482	} while (tx_queue->write_count != tx_queue->insert_count);
2483
2484	wmb(); /* Ensure descriptors are written before they are fetched */
2485
2486	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2487		txd = efx_tx_desc(tx_queue,
2488				  old_write_count & tx_queue->ptr_mask);
2489		efx_ef10_push_tx_desc(tx_queue, txd);
2490		++tx_queue->pushes;
2491	} else {
2492		efx_ef10_notify_tx_desc(tx_queue);
2493	}
2494}
2495
2496static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2497{
2498	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2499	unsigned int enabled, implemented;
2500	bool want_workaround_26807;
2501	int rc;
2502
2503	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2504	if (rc == -ENOSYS) {
2505		/* GET_WORKAROUNDS was implemented before this workaround,
2506		 * thus it must be unavailable in this firmware.
2507		 */
2508		nic_data->workaround_26807 = false;
2509		return 0;
2510	}
2511	if (rc)
 
2512		return rc;
2513	want_workaround_26807 =
2514		implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2515	nic_data->workaround_26807 =
2516		!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2517
2518	if (want_workaround_26807 && !nic_data->workaround_26807) {
2519		unsigned int flags;
2520
2521		rc = efx_mcdi_set_workaround(efx,
2522					     MC_CMD_WORKAROUND_BUG26807,
2523					     true, &flags);
2524		if (!rc) {
2525			if (flags &
2526			    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2527				netif_info(efx, drv, efx->net_dev,
2528					   "other functions on NIC have been reset\n");
2529
2530				/* With MCFW v4.6.x and earlier, the
2531				 * boot count will have incremented,
2532				 * so re-read the warm_boot_count
2533				 * value now to ensure this function
2534				 * doesn't think it has changed next
2535				 * time it checks.
2536				 */
2537				rc = efx_ef10_get_warm_boot_count(efx);
2538				if (rc >= 0) {
2539					nic_data->warm_boot_count = rc;
2540					rc = 0;
2541				}
2542			}
2543			nic_data->workaround_26807 = true;
2544		} else if (rc == -EPERM) {
2545			rc = 0;
2546		}
2547	}
2548	return rc;
2549}
2550
2551static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2552{
2553	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2554	int rc = efx_ef10_probe_multicast_chaining(efx);
2555	struct efx_mcdi_filter_vlan *vlan;
2556
2557	if (rc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2558		return rc;
2559	down_write(&efx->filter_sem);
2560	rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2561
2562	if (rc)
2563		goto out_unlock;
 
 
 
 
 
2564
2565	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2566		rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2567		if (rc)
2568			goto fail_add_vlan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569	}
2570	goto out_unlock;
2571
2572fail_add_vlan:
2573	efx_mcdi_filter_table_remove(efx);
2574out_unlock:
2575	up_write(&efx->filter_sem);
2576	return rc;
 
 
 
2577}
2578
2579static void efx_ef10_filter_table_remove(struct efx_nic *efx)
2580{
2581	down_write(&efx->filter_sem);
2582	efx_mcdi_filter_table_remove(efx);
2583	up_write(&efx->filter_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584}
2585
2586/* This creates an entry in the RX descriptor queue */
2587static inline void
2588efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2589{
2590	struct efx_rx_buffer *rx_buf;
2591	efx_qword_t *rxd;
2592
2593	rxd = efx_rx_desc(rx_queue, index);
2594	rx_buf = efx_rx_buffer(rx_queue, index);
2595	EFX_POPULATE_QWORD_2(*rxd,
2596			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2597			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2598}
2599
2600static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2601{
2602	struct efx_nic *efx = rx_queue->efx;
2603	unsigned int write_count;
2604	efx_dword_t reg;
2605
2606	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2607	write_count = rx_queue->added_count & ~7;
2608	if (rx_queue->notified_count == write_count)
2609		return;
2610
2611	do
2612		efx_ef10_build_rx_desc(
2613			rx_queue,
2614			rx_queue->notified_count & rx_queue->ptr_mask);
2615	while (++rx_queue->notified_count != write_count);
2616
2617	wmb();
2618	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2619			     write_count & rx_queue->ptr_mask);
2620	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2621			efx_rx_queue_index(rx_queue));
2622}
2623
2624static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2625
2626static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2627{
2628	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2629	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2630	efx_qword_t event;
2631
2632	EFX_POPULATE_QWORD_2(event,
2633			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2634			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2635
2636	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2637
2638	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2639	 * already swapped the data to little-endian order.
2640	 */
2641	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2642	       sizeof(efx_qword_t));
2643
2644	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2645			   inbuf, sizeof(inbuf), 0,
2646			   efx_ef10_rx_defer_refill_complete, 0);
2647}
2648
2649static void
2650efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2651				  int rc, efx_dword_t *outbuf,
2652				  size_t outlen_actual)
2653{
2654	/* nothing to do */
2655}
2656
 
 
 
 
 
 
 
 
2657static int efx_ef10_ev_init(struct efx_channel *channel)
2658{
 
 
 
 
 
2659	struct efx_nic *efx = channel->efx;
2660	struct efx_ef10_nic_data *nic_data;
2661	bool use_v2, cut_thru;
 
 
 
 
2662
2663	nic_data = efx->nic_data;
2664	use_v2 = nic_data->datapath_caps2 &
2665			    1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2666	cut_thru = !(nic_data->datapath_caps &
2667			      1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2668	return efx_mcdi_ev_init(channel, cut_thru, use_v2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669}
2670
2671static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2672					   unsigned int rx_queue_label)
2673{
2674	struct efx_nic *efx = rx_queue->efx;
2675
2676	netif_info(efx, hw, efx->net_dev,
2677		   "rx event arrived on queue %d labeled as queue %u\n",
2678		   efx_rx_queue_index(rx_queue), rx_queue_label);
2679
2680	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2681}
2682
2683static void
2684efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2685			     unsigned int actual, unsigned int expected)
2686{
2687	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2688	struct efx_nic *efx = rx_queue->efx;
2689
2690	netif_info(efx, hw, efx->net_dev,
2691		   "dropped %d events (index=%d expected=%d)\n",
2692		   dropped, actual, expected);
2693
2694	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2695}
2696
2697/* partially received RX was aborted. clean up. */
2698static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2699{
2700	unsigned int rx_desc_ptr;
2701
2702	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2703		  "scattered RX aborted (dropping %u buffers)\n",
2704		  rx_queue->scatter_n);
2705
2706	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2707
2708	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2709		      0, EFX_RX_PKT_DISCARD);
2710
2711	rx_queue->removed_count += rx_queue->scatter_n;
2712	rx_queue->scatter_n = 0;
2713	rx_queue->scatter_len = 0;
2714	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2715}
2716
2717static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2718					   unsigned int n_packets,
2719					   unsigned int rx_encap_hdr,
2720					   unsigned int rx_l3_class,
2721					   unsigned int rx_l4_class,
2722					   const efx_qword_t *event)
2723{
2724	struct efx_nic *efx = channel->efx;
2725	bool handled = false;
2726
2727	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2728		if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2729			if (!efx->loopback_selftest)
2730				channel->n_rx_eth_crc_err += n_packets;
2731			return EFX_RX_PKT_DISCARD;
2732		}
2733		handled = true;
2734	}
2735	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2736		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2737			     rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2738			     rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2739			     rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2740			     rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2741			netdev_WARN(efx->net_dev,
2742				    "invalid class for RX_IPCKSUM_ERR: event="
2743				    EFX_QWORD_FMT "\n",
2744				    EFX_QWORD_VAL(*event));
2745		if (!efx->loopback_selftest)
2746			*(rx_encap_hdr ?
2747			  &channel->n_rx_outer_ip_hdr_chksum_err :
2748			  &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2749		return 0;
2750	}
2751	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2752		if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2753			     ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2754			       rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2755			      (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2756			       rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2757			netdev_WARN(efx->net_dev,
2758				    "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2759				    EFX_QWORD_FMT "\n",
2760				    EFX_QWORD_VAL(*event));
2761		if (!efx->loopback_selftest)
2762			*(rx_encap_hdr ?
2763			  &channel->n_rx_outer_tcp_udp_chksum_err :
2764			  &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2765		return 0;
2766	}
2767	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2768		if (unlikely(!rx_encap_hdr))
2769			netdev_WARN(efx->net_dev,
2770				    "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2771				    EFX_QWORD_FMT "\n",
2772				    EFX_QWORD_VAL(*event));
2773		else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2774				  rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2775				  rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2776				  rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2777			netdev_WARN(efx->net_dev,
2778				    "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2779				    EFX_QWORD_FMT "\n",
2780				    EFX_QWORD_VAL(*event));
2781		if (!efx->loopback_selftest)
2782			channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2783		return 0;
2784	}
2785	if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2786		if (unlikely(!rx_encap_hdr))
2787			netdev_WARN(efx->net_dev,
2788				    "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2789				    EFX_QWORD_FMT "\n",
2790				    EFX_QWORD_VAL(*event));
2791		else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2792				   rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2793				  (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2794				   rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2795			netdev_WARN(efx->net_dev,
2796				    "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2797				    EFX_QWORD_FMT "\n",
2798				    EFX_QWORD_VAL(*event));
2799		if (!efx->loopback_selftest)
2800			channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2801		return 0;
2802	}
2803
2804	WARN_ON(!handled); /* No error bits were recognised */
2805	return 0;
2806}
2807
2808static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2809				    const efx_qword_t *event)
2810{
2811	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2812	unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2813	unsigned int n_descs, n_packets, i;
2814	struct efx_nic *efx = channel->efx;
2815	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2816	struct efx_rx_queue *rx_queue;
2817	efx_qword_t errors;
2818	bool rx_cont;
2819	u16 flags = 0;
2820
2821	if (unlikely(READ_ONCE(efx->reset_pending)))
2822		return 0;
2823
2824	/* Basic packet information */
2825	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2826	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2827	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2828	rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2829	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2830	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2831	rx_encap_hdr =
2832		nic_data->datapath_caps &
2833			(1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2834		EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2835		ESE_EZ_ENCAP_HDR_NONE;
2836
2837	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2838		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2839			    EFX_QWORD_FMT "\n",
2840			    EFX_QWORD_VAL(*event));
2841
2842	rx_queue = efx_channel_get_rx_queue(channel);
2843
2844	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2845		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2846
2847	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2848		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2849
2850	if (n_descs != rx_queue->scatter_n + 1) {
2851		struct efx_ef10_nic_data *nic_data = efx->nic_data;
2852
2853		/* detect rx abort */
2854		if (unlikely(n_descs == rx_queue->scatter_n)) {
2855			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2856				netdev_WARN(efx->net_dev,
2857					    "invalid RX abort: scatter_n=%u event="
2858					    EFX_QWORD_FMT "\n",
2859					    rx_queue->scatter_n,
2860					    EFX_QWORD_VAL(*event));
2861			efx_ef10_handle_rx_abort(rx_queue);
2862			return 0;
2863		}
2864
2865		/* Check that RX completion merging is valid, i.e.
2866		 * the current firmware supports it and this is a
2867		 * non-scattered packet.
2868		 */
2869		if (!(nic_data->datapath_caps &
2870		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2871		    rx_queue->scatter_n != 0 || rx_cont) {
2872			efx_ef10_handle_rx_bad_lbits(
2873				rx_queue, next_ptr_lbits,
2874				(rx_queue->removed_count +
2875				 rx_queue->scatter_n + 1) &
2876				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2877			return 0;
2878		}
2879
2880		/* Merged completion for multiple non-scattered packets */
2881		rx_queue->scatter_n = 1;
2882		rx_queue->scatter_len = 0;
2883		n_packets = n_descs;
2884		++channel->n_rx_merge_events;
2885		channel->n_rx_merge_packets += n_packets;
2886		flags |= EFX_RX_PKT_PREFIX_LEN;
2887	} else {
2888		++rx_queue->scatter_n;
2889		rx_queue->scatter_len += rx_bytes;
2890		if (rx_cont)
2891			return 0;
2892		n_packets = 1;
2893	}
2894
2895	EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2896				     ESF_DZ_RX_IPCKSUM_ERR, 1,
2897				     ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2898				     ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2899				     ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2900	EFX_AND_QWORD(errors, *event, errors);
2901	if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2902		flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2903							 rx_encap_hdr,
2904							 rx_l3_class, rx_l4_class,
2905							 event);
2906	} else {
2907		bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2908			      rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2909
2910		switch (rx_encap_hdr) {
2911		case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2912			flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2913			if (tcpudp)
2914				flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2915			break;
2916		case ESE_EZ_ENCAP_HDR_GRE:
2917		case ESE_EZ_ENCAP_HDR_NONE:
2918			if (tcpudp)
2919				flags |= EFX_RX_PKT_CSUMMED;
2920			break;
2921		default:
2922			netdev_WARN(efx->net_dev,
2923				    "unknown encapsulation type: event="
2924				    EFX_QWORD_FMT "\n",
2925				    EFX_QWORD_VAL(*event));
2926		}
2927	}
2928
2929	if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2930		flags |= EFX_RX_PKT_TCP;
2931
2932	channel->irq_mod_score += 2 * n_packets;
2933
2934	/* Handle received packet(s) */
2935	for (i = 0; i < n_packets; i++) {
2936		efx_rx_packet(rx_queue,
2937			      rx_queue->removed_count & rx_queue->ptr_mask,
2938			      rx_queue->scatter_n, rx_queue->scatter_len,
2939			      flags);
2940		rx_queue->removed_count += rx_queue->scatter_n;
2941	}
2942
2943	rx_queue->scatter_n = 0;
2944	rx_queue->scatter_len = 0;
2945
2946	return n_packets;
2947}
2948
2949static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2950{
2951	u32 tstamp;
2952
2953	tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2954	tstamp <<= 16;
2955	tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2956
2957	return tstamp;
2958}
2959
2960static int
2961efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2962{
2963	struct efx_nic *efx = channel->efx;
2964	struct efx_tx_queue *tx_queue;
2965	unsigned int tx_ev_desc_ptr;
2966	unsigned int tx_ev_q_label;
2967	unsigned int tx_ev_type;
2968	int work_done;
2969	u64 ts_part;
2970
2971	if (unlikely(READ_ONCE(efx->reset_pending)))
2972		return 0;
2973
2974	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2975		return 0;
2976
2977	/* Get the transmit queue */
 
2978	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2979	tx_queue = channel->tx_queue + (tx_ev_q_label % EFX_MAX_TXQ_PER_CHANNEL);
2980
2981	if (!tx_queue->timestamping) {
2982		/* Transmit completion */
2983		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2984		return efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2985	}
2986
2987	/* Transmit timestamps are only available for 8XXX series. They result
2988	 * in up to three events per packet. These occur in order, and are:
2989	 *  - the normal completion event (may be omitted)
2990	 *  - the low part of the timestamp
2991	 *  - the high part of the timestamp
2992	 *
2993	 * It's possible for multiple completion events to appear before the
2994	 * corresponding timestamps. So we can for example get:
2995	 *  COMP N
2996	 *  COMP N+1
2997	 *  TS_LO N
2998	 *  TS_HI N
2999	 *  TS_LO N+1
3000	 *  TS_HI N+1
3001	 *
3002	 * In addition it's also possible for the adjacent completions to be
3003	 * merged, so we may not see COMP N above. As such, the completion
3004	 * events are not very useful here.
3005	 *
3006	 * Each part of the timestamp is itself split across two 16 bit
3007	 * fields in the event.
3008	 */
3009	tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
3010	work_done = 0;
3011
3012	switch (tx_ev_type) {
3013	case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
3014		/* Ignore this event - see above. */
3015		break;
3016
3017	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
3018		ts_part = efx_ef10_extract_event_ts(event);
3019		tx_queue->completed_timestamp_minor = ts_part;
3020		break;
3021
3022	case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
3023		ts_part = efx_ef10_extract_event_ts(event);
3024		tx_queue->completed_timestamp_major = ts_part;
3025
3026		efx_xmit_done_single(tx_queue);
3027		work_done = 1;
3028		break;
3029
3030	default:
3031		netif_err(efx, hw, efx->net_dev,
3032			  "channel %d unknown tx event type %d (data "
3033			  EFX_QWORD_FMT ")\n",
3034			  channel->channel, tx_ev_type,
3035			  EFX_QWORD_VAL(*event));
3036		break;
3037	}
3038
3039	return work_done;
3040}
3041
3042static void
3043efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
3044{
3045	struct efx_nic *efx = channel->efx;
3046	int subcode;
3047
3048	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
3049
3050	switch (subcode) {
3051	case ESE_DZ_DRV_TIMER_EV:
3052	case ESE_DZ_DRV_WAKE_UP_EV:
3053		break;
3054	case ESE_DZ_DRV_START_UP_EV:
3055		/* event queue init complete. ok. */
3056		break;
3057	default:
3058		netif_err(efx, hw, efx->net_dev,
3059			  "channel %d unknown driver event type %d"
3060			  " (data " EFX_QWORD_FMT ")\n",
3061			  channel->channel, subcode,
3062			  EFX_QWORD_VAL(*event));
3063
3064	}
3065}
3066
3067static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
3068						   efx_qword_t *event)
3069{
3070	struct efx_nic *efx = channel->efx;
3071	u32 subcode;
3072
3073	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
3074
3075	switch (subcode) {
3076	case EFX_EF10_TEST:
3077		channel->event_test_cpu = raw_smp_processor_id();
3078		break;
3079	case EFX_EF10_REFILL:
3080		/* The queue must be empty, so we won't receive any rx
3081		 * events, so efx_process_channel() won't refill the
3082		 * queue. Refill it here
3083		 */
3084		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
3085		break;
3086	default:
3087		netif_err(efx, hw, efx->net_dev,
3088			  "channel %d unknown driver event type %u"
3089			  " (data " EFX_QWORD_FMT ")\n",
3090			  channel->channel, (unsigned) subcode,
3091			  EFX_QWORD_VAL(*event));
3092	}
3093}
3094
3095#define EFX_NAPI_MAX_TX 512
3096
3097static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
3098{
3099	struct efx_nic *efx = channel->efx;
3100	efx_qword_t event, *p_event;
3101	unsigned int read_ptr;
3102	int spent_tx = 0;
3103	int spent = 0;
3104	int ev_code;
 
 
3105
3106	if (quota <= 0)
3107		return spent;
3108
3109	read_ptr = channel->eventq_read_ptr;
3110
3111	for (;;) {
3112		p_event = efx_event(channel, read_ptr);
3113		event = *p_event;
3114
3115		if (!efx_event_present(&event))
3116			break;
3117
3118		EFX_SET_QWORD(*p_event);
3119
3120		++read_ptr;
3121
3122		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3123
3124		netif_vdbg(efx, drv, efx->net_dev,
3125			   "processing event on %d " EFX_QWORD_FMT "\n",
3126			   channel->channel, EFX_QWORD_VAL(event));
3127
3128		switch (ev_code) {
3129		case ESE_DZ_EV_CODE_MCDI_EV:
3130			efx_mcdi_process_event(channel, &event);
3131			break;
3132		case ESE_DZ_EV_CODE_RX_EV:
3133			spent += efx_ef10_handle_rx_event(channel, &event);
3134			if (spent >= quota) {
3135				/* XXX can we split a merged event to
3136				 * avoid going over-quota?
3137				 */
3138				spent = quota;
3139				goto out;
3140			}
3141			break;
3142		case ESE_DZ_EV_CODE_TX_EV:
3143			spent_tx += efx_ef10_handle_tx_event(channel, &event);
3144			if (spent_tx >= EFX_NAPI_MAX_TX) {
3145				spent = quota;
3146				goto out;
 
 
3147			}
3148			break;
3149		case ESE_DZ_EV_CODE_DRIVER_EV:
3150			efx_ef10_handle_driver_event(channel, &event);
3151			if (++spent == quota)
3152				goto out;
3153			break;
3154		case EFX_EF10_DRVGEN_EV:
3155			efx_ef10_handle_driver_generated_event(channel, &event);
3156			break;
3157		default:
3158			netif_err(efx, hw, efx->net_dev,
3159				  "channel %d unknown event type %d"
3160				  " (data " EFX_QWORD_FMT ")\n",
3161				  channel->channel, ev_code,
3162				  EFX_QWORD_VAL(event));
3163		}
3164	}
3165
3166out:
3167	channel->eventq_read_ptr = read_ptr;
3168	return spent;
3169}
3170
3171static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3172{
3173	struct efx_nic *efx = channel->efx;
3174	efx_dword_t rptr;
3175
3176	if (EFX_EF10_WORKAROUND_35388(efx)) {
3177		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3178			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3179		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3180			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3181
3182		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3183				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3184				     ERF_DD_EVQ_IND_RPTR,
3185				     (channel->eventq_read_ptr &
3186				      channel->eventq_mask) >>
3187				     ERF_DD_EVQ_IND_RPTR_WIDTH);
3188		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3189				channel->channel);
3190		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3191				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3192				     ERF_DD_EVQ_IND_RPTR,
3193				     channel->eventq_read_ptr &
3194				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3195		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3196				channel->channel);
3197	} else {
3198		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3199				     channel->eventq_read_ptr &
3200				     channel->eventq_mask);
3201		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3202	}
3203}
3204
3205static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3206{
3207	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3208	struct efx_nic *efx = channel->efx;
3209	efx_qword_t event;
3210	int rc;
3211
3212	EFX_POPULATE_QWORD_2(event,
3213			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3214			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
3215
3216	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3217
3218	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3219	 * already swapped the data to little-endian order.
3220	 */
3221	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3222	       sizeof(efx_qword_t));
3223
3224	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3225			  NULL, 0, NULL);
3226	if (rc != 0)
3227		goto fail;
3228
3229	return;
3230
3231fail:
3232	WARN_ON(true);
3233	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3234}
3235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236static void efx_ef10_prepare_flr(struct efx_nic *efx)
3237{
3238	atomic_set(&efx->active_queues, 0);
3239}
3240
3241static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3242{
3243	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3244	u8 mac_old[ETH_ALEN];
3245	int rc, rc2;
3246
3247	/* Only reconfigure a PF-created vport */
3248	if (is_zero_ether_addr(nic_data->vport_mac))
3249		return 0;
3250
3251	efx_device_detach_sync(efx);
3252	efx_net_stop(efx->net_dev);
3253	efx_ef10_filter_table_remove(efx);
 
 
 
3254
3255	rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3256	if (rc)
3257		goto restore_filters;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3258
3259	ether_addr_copy(mac_old, nic_data->vport_mac);
3260	rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3261				    nic_data->vport_mac);
3262	if (rc)
3263		goto restore_vadaptor;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264
3265	rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3266				    efx->net_dev->dev_addr);
3267	if (!rc) {
3268		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269	} else {
3270		rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3271		if (rc2) {
3272			/* Failed to add original MAC, so clear vport_mac */
3273			eth_zero_addr(nic_data->vport_mac);
3274			goto reset_nic;
3275		}
 
 
3276	}
 
 
3277
3278restore_vadaptor:
3279	rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3280	if (rc2)
3281		goto reset_nic;
3282restore_filters:
3283	rc2 = efx_ef10_filter_table_probe(efx);
3284	if (rc2)
3285		goto reset_nic;
3286
3287	rc2 = efx_net_open(efx->net_dev);
3288	if (rc2)
3289		goto reset_nic;
3290
3291	efx_device_attach_if_not_resetting(efx);
 
 
 
 
 
 
3292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293	return rc;
 
3294
3295reset_nic:
3296	netif_err(efx, drv, efx->net_dev,
3297		  "Failed to restore when changing MAC address - scheduling reset\n");
3298	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3299
3300	return rc ? rc : rc2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3301}
3302
3303static int efx_ef10_set_mac_address(struct efx_nic *efx)
 
3304{
3305	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3306	bool was_enabled = efx->port_enabled;
3307	int rc;
3308
3309#ifdef CONFIG_SFC_SRIOV
3310	/* If this function is a VF and we have access to the parent PF,
3311	 * then use the PF control path to attempt to change the VF MAC address.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312	 */
3313	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3314		struct efx_nic *efx_pf = pci_get_drvdata(efx->pci_dev->physfn);
3315		struct efx_ef10_nic_data *nic_data = efx->nic_data;
3316		u8 mac[ETH_ALEN];
3317
3318		/* net_dev->dev_addr can be zeroed by efx_net_stop in
3319		 * efx_ef10_sriov_set_vf_mac, so pass in a copy.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320		 */
3321		ether_addr_copy(mac, efx->net_dev->dev_addr);
 
 
 
 
 
 
3322
3323		rc = efx_ef10_sriov_set_vf_mac(efx_pf, nic_data->vf_index, mac);
3324		if (!rc)
3325			return 0;
3326
3327		netif_dbg(efx, drv, efx->net_dev,
3328			  "Updating VF mac via PF failed (%d), setting directly\n",
3329			  rc);
 
 
 
 
 
 
 
 
 
 
 
 
3330	}
3331#endif
 
3332
3333	efx_device_detach_sync(efx);
3334	efx_net_stop(efx->net_dev);
3335
3336	mutex_lock(&efx->mac_lock);
3337	efx_ef10_filter_table_remove(efx);
3338
3339	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3340			efx->net_dev->dev_addr);
3341	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3342		       efx->vport_id);
3343	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3344				sizeof(inbuf), NULL, 0, NULL);
3345
3346	efx_ef10_filter_table_probe(efx);
3347	mutex_unlock(&efx->mac_lock);
3348
3349	if (was_enabled)
3350		efx_net_open(efx->net_dev);
3351	efx_device_attach_if_not_resetting(efx);
3352
3353	if (rc == -EPERM) {
3354		netif_err(efx, drv, efx->net_dev,
3355			  "Cannot change MAC address; use sfboot to enable"
3356			  " mac-spoofing on this interface\n");
3357	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3358		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3359		 * fall-back to the method of changing the MAC address on the
3360		 * vport.  This only applies to PFs because such versions of
3361		 * MCFW do not support VFs.
3362		 */
3363		rc = efx_ef10_vport_set_mac_address(efx);
3364	} else if (rc) {
3365		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3366				       sizeof(inbuf), NULL, 0, rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3367	}
3368
 
 
 
 
 
 
 
 
 
 
 
 
3369	return rc;
3370}
3371
3372static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3373{
3374	WARN_ON(!mutex_is_locked(&efx->mac_lock));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3375
3376	efx_mcdi_filter_sync_rx_mode(efx);
 
 
3377
3378	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3379		return efx_mcdi_set_mtu(efx);
3380	return efx_mcdi_set_mac(efx);
3381}
3382
3383static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3384{
3385	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3386
3387	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3388	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3389			    NULL, 0, NULL);
3390}
3391
3392/* MC BISTs follow a different poll mechanism to phy BISTs.
3393 * The BIST is done in the poll handler on the MC, and the MCDI command
3394 * will block until the BIST is done.
3395 */
3396static int efx_ef10_poll_bist(struct efx_nic *efx)
3397{
3398	int rc;
3399	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3400	size_t outlen;
3401	u32 result;
3402
3403	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3404			   outbuf, sizeof(outbuf), &outlen);
3405	if (rc != 0)
3406		return rc;
3407
3408	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3409		return -EIO;
3410
3411	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3412	switch (result) {
3413	case MC_CMD_POLL_BIST_PASSED:
3414		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3415		return 0;
3416	case MC_CMD_POLL_BIST_TIMEOUT:
3417		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3418		return -EIO;
3419	case MC_CMD_POLL_BIST_FAILED:
3420		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3421		return -EIO;
3422	default:
3423		netif_err(efx, hw, efx->net_dev,
3424			  "BIST returned unknown result %u", result);
3425		return -EIO;
3426	}
3427}
3428
3429static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3430{
3431	int rc;
3432
3433	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3434
3435	rc = efx_ef10_start_bist(efx, bist_type);
3436	if (rc != 0)
3437		return rc;
3438
3439	return efx_ef10_poll_bist(efx);
3440}
3441
3442static int
3443efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3444{
3445	int rc, rc2;
3446
3447	efx_reset_down(efx, RESET_TYPE_WORLD);
3448
3449	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3450			  NULL, 0, NULL, 0, NULL);
3451	if (rc != 0)
3452		goto out;
3453
3454	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3455	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3456
3457	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3458
3459out:
3460	if (rc == -EPERM)
3461		rc = 0;
3462	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3463	return rc ? rc : rc2;
3464}
3465
3466#ifdef CONFIG_SFC_MTD
3467
3468struct efx_ef10_nvram_type_info {
3469	u16 type, type_mask;
3470	u8 port;
3471	const char *name;
3472};
3473
3474static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3475	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3476	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3477	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3478	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3479	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3480	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3481	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3482	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3483	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3484	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3485	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3486	{ NVRAM_PARTITION_TYPE_MUM_FIRMWARE,	   0,    0, "sfc_mumfw" },
3487	{ NVRAM_PARTITION_TYPE_EXPANSION_UEFI,	   0,    0, "sfc_uefi" },
3488	{ NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0,    0, "sfc_dynamic_cfg_dflt" },
3489	{ NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0,    0, "sfc_exp_rom_cfg_dflt" },
3490	{ NVRAM_PARTITION_TYPE_STATUS,		   0,    0, "sfc_status" },
3491	{ NVRAM_PARTITION_TYPE_BUNDLE,		   0,    0, "sfc_bundle" },
3492	{ NVRAM_PARTITION_TYPE_BUNDLE_METADATA,	   0,    0, "sfc_bundle_metadata" },
3493};
3494#define EF10_NVRAM_PARTITION_COUNT	ARRAY_SIZE(efx_ef10_nvram_types)
3495
3496static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3497					struct efx_mcdi_mtd_partition *part,
3498					unsigned int type,
3499					unsigned long *found)
3500{
3501	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3502	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3503	const struct efx_ef10_nvram_type_info *info;
3504	size_t size, erase_size, outlen;
3505	int type_idx = 0;
3506	bool protected;
3507	int rc;
3508
3509	for (type_idx = 0; ; type_idx++) {
3510		if (type_idx == EF10_NVRAM_PARTITION_COUNT)
 
3511			return -ENODEV;
3512		info = efx_ef10_nvram_types + type_idx;
3513		if ((type & ~info->type_mask) == info->type)
3514			break;
3515	}
3516	if (info->port != efx_port_num(efx))
3517		return -ENODEV;
3518
3519	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3520	if (rc)
3521		return rc;
3522	if (protected &&
3523	    (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3524	     type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3525		/* Hide protected partitions that don't provide defaults. */
3526		return -ENODEV;
3527
3528	if (protected)
3529		/* Protected partitions are read only. */
3530		erase_size = 0;
3531
3532	/* If we've already exposed a partition of this type, hide this
3533	 * duplicate.  All operations on MTDs are keyed by the type anyway,
3534	 * so we can't act on the duplicate.
3535	 */
3536	if (__test_and_set_bit(type_idx, found))
3537		return -EEXIST;
3538
3539	part->nvram_type = type;
3540
3541	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3542	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3543			  outbuf, sizeof(outbuf), &outlen);
3544	if (rc)
3545		return rc;
3546	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3547		return -EIO;
3548	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3549	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3550		part->fw_subtype = MCDI_DWORD(outbuf,
3551					      NVRAM_METADATA_OUT_SUBTYPE);
3552
3553	part->common.dev_type_name = "EF10 NVRAM manager";
3554	part->common.type_name = info->name;
3555
3556	part->common.mtd.type = MTD_NORFLASH;
3557	part->common.mtd.flags = MTD_CAP_NORFLASH;
3558	part->common.mtd.size = size;
3559	part->common.mtd.erasesize = erase_size;
3560	/* sfc_status is read-only */
3561	if (!erase_size)
3562		part->common.mtd.flags |= MTD_NO_ERASE;
3563
3564	return 0;
3565}
3566
3567static int efx_ef10_mtd_probe(struct efx_nic *efx)
3568{
3569	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3570	DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3571	struct efx_mcdi_mtd_partition *parts;
3572	size_t outlen, n_parts_total, i, n_parts;
3573	unsigned int type;
3574	int rc;
3575
3576	ASSERT_RTNL();
3577
3578	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3579	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3580			  outbuf, sizeof(outbuf), &outlen);
3581	if (rc)
3582		return rc;
3583	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3584		return -EIO;
3585
3586	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3587	if (n_parts_total >
3588	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3589		return -EIO;
3590
3591	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3592	if (!parts)
3593		return -ENOMEM;
3594
3595	n_parts = 0;
3596	for (i = 0; i < n_parts_total; i++) {
3597		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3598					i);
3599		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3600						  found);
3601		if (rc == -EEXIST || rc == -ENODEV)
3602			continue;
3603		if (rc)
3604			goto fail;
3605		n_parts++;
3606	}
3607
3608	if (!n_parts) {
3609		kfree(parts);
3610		return 0;
3611	}
3612
3613	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3614fail:
3615	if (rc)
3616		kfree(parts);
3617	return rc;
3618}
3619
3620#endif /* CONFIG_SFC_MTD */
3621
3622static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3623{
3624	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3625}
3626
3627static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3628					    u32 host_time) {}
3629
3630static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3631					   bool temp)
3632{
3633	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3634	int rc;
3635
3636	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3637	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3638	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3639		return 0;
3640	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3641
3642	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3643	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3644	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3645		       channel->channel);
3646
3647	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3648			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3649
3650	if (rc != 0)
3651		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3652						    SYNC_EVENTS_DISABLED;
3653
3654	return rc;
3655}
3656
3657static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3658					    bool temp)
3659{
3660	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3661	int rc;
3662
3663	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3664	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3665		return 0;
3666	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3667		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3668		return 0;
3669	}
3670	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3671					    SYNC_EVENTS_DISABLED;
3672
3673	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3674	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3675	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3676		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3677	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3678		       channel->channel);
3679
3680	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3681			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3682
3683	return rc;
3684}
3685
3686static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3687					   bool temp)
3688{
3689	int (*set)(struct efx_channel *channel, bool temp);
3690	struct efx_channel *channel;
3691
3692	set = en ?
3693	      efx_ef10_rx_enable_timestamping :
3694	      efx_ef10_rx_disable_timestamping;
3695
3696	channel = efx_ptp_channel(efx);
3697	if (channel) {
3698		int rc = set(channel, temp);
3699		if (en && rc != 0) {
3700			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3701			return rc;
3702		}
3703	}
3704
3705	return 0;
3706}
3707
3708static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3709					 struct kernel_hwtstamp_config *init)
3710{
3711	return -EOPNOTSUPP;
3712}
3713
3714static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3715				      struct kernel_hwtstamp_config *init)
3716{
3717	int rc;
3718
3719	switch (init->rx_filter) {
3720	case HWTSTAMP_FILTER_NONE:
3721		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3722		/* if TX timestamping is still requested then leave PTP on */
3723		return efx_ptp_change_mode(efx,
3724					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3725	case HWTSTAMP_FILTER_ALL:
3726	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3727	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3728	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3729	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3730	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3731	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3732	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3733	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3734	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3735	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3736	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3737	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3738	case HWTSTAMP_FILTER_NTP_ALL:
3739		init->rx_filter = HWTSTAMP_FILTER_ALL;
3740		rc = efx_ptp_change_mode(efx, true, 0);
3741		if (!rc)
3742			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3743		if (rc)
3744			efx_ptp_change_mode(efx, false, 0);
3745		return rc;
3746	default:
3747		return -ERANGE;
3748	}
3749}
3750
3751static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3752				     struct netdev_phys_item_id *ppid)
3753{
3754	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3755
3756	if (!is_valid_ether_addr(nic_data->port_id))
3757		return -EOPNOTSUPP;
3758
3759	ppid->id_len = ETH_ALEN;
3760	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3761
3762	return 0;
3763}
3764
3765static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3766{
3767	if (proto != htons(ETH_P_8021Q))
3768		return -EINVAL;
3769
3770	return efx_ef10_add_vlan(efx, vid);
3771}
3772
3773static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3774{
3775	if (proto != htons(ETH_P_8021Q))
3776		return -EINVAL;
3777
3778	return efx_ef10_del_vlan(efx, vid);
3779}
3780
3781/* We rely on the MCDI wiping out our TX rings if it made any changes to the
3782 * ports table, ensuring that any TSO descriptors that were made on a now-
3783 * removed tunnel port will be blown away and won't break things when we try
3784 * to transmit them using the new ports table.
3785 */
3786static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3787{
3788	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3789	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3790	MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3791	bool will_reset = false;
3792	size_t num_entries = 0;
3793	size_t inlen, outlen;
3794	size_t i;
3795	int rc;
3796	efx_dword_t flags_and_num_entries;
3797
3798	WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3799
3800	nic_data->udp_tunnels_dirty = false;
3801
3802	if (!(nic_data->datapath_caps &
3803	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3804		efx_device_attach_if_not_resetting(efx);
3805		return 0;
3806	}
3807
3808	BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3809		     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3810
3811	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3812		if (nic_data->udp_tunnels[i].type !=
3813		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3814			efx_dword_t entry;
3815
3816			EFX_POPULATE_DWORD_2(entry,
3817				TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3818					ntohs(nic_data->udp_tunnels[i].port),
3819				TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3820					nic_data->udp_tunnels[i].type);
3821			*_MCDI_ARRAY_DWORD(inbuf,
3822				SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3823				num_entries++) = entry;
3824		}
3825	}
3826
3827	BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3828		      MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3829		     EFX_WORD_1_LBN);
3830	BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3831		     EFX_WORD_1_WIDTH);
3832	EFX_POPULATE_DWORD_2(flags_and_num_entries,
3833			     MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3834				!!unloading,
3835			     EFX_WORD_1, num_entries);
3836	*_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3837		flags_and_num_entries;
3838
3839	inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3840
3841	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3842				inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3843	if (rc == -EIO) {
3844		/* Most likely the MC rebooted due to another function also
3845		 * setting its tunnel port list. Mark the tunnel port list as
3846		 * dirty, so it will be pushed upon coming up from the reboot.
3847		 */
3848		nic_data->udp_tunnels_dirty = true;
3849		return 0;
3850	}
3851
3852	if (rc) {
3853		/* expected not available on unprivileged functions */
3854		if (rc != -EPERM)
3855			netif_warn(efx, drv, efx->net_dev,
3856				   "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3857	} else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3858		   (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3859		netif_info(efx, drv, efx->net_dev,
3860			   "Rebooting MC due to UDP tunnel port list change\n");
3861		will_reset = true;
3862		if (unloading)
3863			/* Delay for the MC reset to complete. This will make
3864			 * unloading other functions a bit smoother. This is a
3865			 * race, but the other unload will work whichever way
3866			 * it goes, this just avoids an unnecessary error
3867			 * message.
3868			 */
3869			msleep(100);
3870	}
3871	if (!will_reset && !unloading) {
3872		/* The caller will have detached, relying on the MC reset to
3873		 * trigger a re-attach.  Since there won't be an MC reset, we
3874		 * have to do the attach ourselves.
3875		 */
3876		efx_device_attach_if_not_resetting(efx);
3877	}
3878
3879	return rc;
3880}
3881
3882static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3883{
3884	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3885	int rc = 0;
3886
3887	mutex_lock(&nic_data->udp_tunnels_lock);
3888	if (nic_data->udp_tunnels_dirty) {
3889		/* Make sure all TX are stopped while we modify the table, else
3890		 * we might race against an efx_features_check().
3891		 */
3892		efx_device_detach_sync(efx);
3893		rc = efx_ef10_set_udp_tnl_ports(efx, false);
3894	}
3895	mutex_unlock(&nic_data->udp_tunnels_lock);
3896	return rc;
3897}
3898
3899static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3900				     unsigned int table, unsigned int entry,
3901				     struct udp_tunnel_info *ti)
3902{
3903	struct efx_nic *efx = efx_netdev_priv(dev);
3904	struct efx_ef10_nic_data *nic_data;
3905	int efx_tunnel_type, rc;
3906
3907	if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3908		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3909	else
3910		efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3911
3912	nic_data = efx->nic_data;
3913	if (!(nic_data->datapath_caps &
3914	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3915		return -EOPNOTSUPP;
3916
3917	mutex_lock(&nic_data->udp_tunnels_lock);
3918	/* Make sure all TX are stopped while we add to the table, else we
3919	 * might race against an efx_features_check().
3920	 */
3921	efx_device_detach_sync(efx);
3922	nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3923	nic_data->udp_tunnels[entry].port = ti->port;
3924	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3925	mutex_unlock(&nic_data->udp_tunnels_lock);
3926
3927	return rc;
3928}
3929
3930/* Called under the TX lock with the TX queue running, hence no-one can be
3931 * in the middle of updating the UDP tunnels table.  However, they could
3932 * have tried and failed the MCDI, in which case they'll have set the dirty
3933 * flag before dropping their locks.
3934 */
3935static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3936{
3937	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3938	size_t i;
3939
3940	if (!(nic_data->datapath_caps &
3941	      (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3942		return false;
3943
3944	if (nic_data->udp_tunnels_dirty)
3945		/* SW table may not match HW state, so just assume we can't
3946		 * use any UDP tunnel offloads.
3947		 */
3948		return false;
3949
3950	for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3951		if (nic_data->udp_tunnels[i].type !=
3952		    TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3953		    nic_data->udp_tunnels[i].port == port)
3954			return true;
3955
3956	return false;
3957}
3958
3959static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3960				       unsigned int table, unsigned int entry,
3961				       struct udp_tunnel_info *ti)
3962{
3963	struct efx_nic *efx = efx_netdev_priv(dev);
3964	struct efx_ef10_nic_data *nic_data;
3965	int rc;
3966
3967	nic_data = efx->nic_data;
3968
3969	mutex_lock(&nic_data->udp_tunnels_lock);
3970	/* Make sure all TX are stopped while we remove from the table, else we
3971	 * might race against an efx_features_check().
3972	 */
3973	efx_device_detach_sync(efx);
3974	nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3975	nic_data->udp_tunnels[entry].port = 0;
3976	rc = efx_ef10_set_udp_tnl_ports(efx, false);
3977	mutex_unlock(&nic_data->udp_tunnels_lock);
3978
3979	return rc;
3980}
3981
3982static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3983	.set_port	= efx_ef10_udp_tnl_set_port,
3984	.unset_port	= efx_ef10_udp_tnl_unset_port,
3985	.flags          = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3986	.tables         = {
3987		{
3988			.n_entries = 16,
3989			.tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3990					UDP_TUNNEL_TYPE_GENEVE,
3991		},
3992	},
3993};
3994
3995/* EF10 may have multiple datapath firmware variants within a
3996 * single version.  Report which variants are running.
3997 */
3998static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3999					      size_t len)
4000{
4001	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4002
4003	return scnprintf(buf, len, " rx%x tx%x",
4004			 nic_data->rx_dpcpu_fw_id,
4005			 nic_data->tx_dpcpu_fw_id);
4006}
4007
4008static unsigned int ef10_check_caps(const struct efx_nic *efx,
4009				    u8 flag,
4010				    u32 offset)
4011{
4012	const struct efx_ef10_nic_data *nic_data = efx->nic_data;
4013
4014	switch (offset) {
4015	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
4016		return nic_data->datapath_caps & BIT_ULL(flag);
4017	case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
4018		return nic_data->datapath_caps2 & BIT_ULL(flag);
4019	default:
4020		return 0;
4021	}
4022}
4023
4024static unsigned int efx_ef10_recycle_ring_size(const struct efx_nic *efx)
4025{
4026	unsigned int ret = EFX_RECYCLE_RING_SIZE_10G;
4027
4028	/* There is no difference between PFs and VFs. The side is based on
4029	 * the maximum link speed of a given NIC.
4030	 */
4031	switch (efx->pci_dev->device & 0xfff) {
4032	case 0x0903:	/* Farmingdale can do up to 10G */
4033		break;
4034	case 0x0923:	/* Greenport can do up to 40G */
4035	case 0x0a03:	/* Medford can do up to 40G */
4036		ret *= 4;
4037		break;
4038	default:	/* Medford2 can do up to 100G */
4039		ret *= 10;
4040	}
4041
4042	if (IS_ENABLED(CONFIG_PPC64))
4043		ret *= 4;
4044
4045	return ret;
4046}
4047
4048#define EF10_OFFLOAD_FEATURES		\
4049	(NETIF_F_IP_CSUM |		\
4050	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
4051	 NETIF_F_IPV6_CSUM |		\
4052	 NETIF_F_RXHASH |		\
4053	 NETIF_F_NTUPLE |		\
4054	 NETIF_F_SG |			\
4055	 NETIF_F_RXCSUM |		\
4056	 NETIF_F_RXALL)
4057
4058const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4059	.is_vf = true,
4060	.mem_bar = efx_ef10_vf_mem_bar,
4061	.mem_map_size = efx_ef10_mem_map_size,
4062	.probe = efx_ef10_probe_vf,
4063	.remove = efx_ef10_remove,
4064	.dimension_resources = efx_ef10_dimension_resources,
4065	.init = efx_ef10_init_nic,
4066	.fini = efx_ef10_fini_nic,
4067	.map_reset_reason = efx_ef10_map_reset_reason,
4068	.map_reset_flags = efx_ef10_map_reset_flags,
4069	.reset = efx_ef10_reset,
4070	.probe_port = efx_mcdi_port_probe,
4071	.remove_port = efx_mcdi_port_remove,
4072	.fini_dmaq = efx_fini_dmaq,
4073	.prepare_flr = efx_ef10_prepare_flr,
4074	.finish_flr = efx_port_dummy_op_void,
4075	.describe_stats = efx_ef10_describe_stats,
4076	.update_stats = efx_ef10_update_stats_vf,
4077	.update_stats_atomic = efx_ef10_update_stats_atomic_vf,
4078	.start_stats = efx_port_dummy_op_void,
4079	.pull_stats = efx_port_dummy_op_void,
4080	.stop_stats = efx_port_dummy_op_void,
4081	.push_irq_moderation = efx_ef10_push_irq_moderation,
4082	.reconfigure_mac = efx_ef10_mac_reconfigure,
4083	.check_mac_fault = efx_mcdi_mac_check_fault,
4084	.reconfigure_port = efx_mcdi_port_reconfigure,
4085	.get_wol = efx_ef10_get_wol_vf,
4086	.set_wol = efx_ef10_set_wol_vf,
4087	.resume_wol = efx_port_dummy_op_void,
4088	.mcdi_request = efx_ef10_mcdi_request,
4089	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4090	.mcdi_read_response = efx_ef10_mcdi_read_response,
4091	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4092	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4093	.irq_enable_master = efx_port_dummy_op_void,
4094	.irq_test_generate = efx_ef10_irq_test_generate,
4095	.irq_disable_non_ev = efx_port_dummy_op_void,
4096	.irq_handle_msi = efx_ef10_msi_interrupt,
4097	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4098	.tx_probe = efx_ef10_tx_probe,
4099	.tx_init = efx_ef10_tx_init,
4100	.tx_remove = efx_mcdi_tx_remove,
4101	.tx_write = efx_ef10_tx_write,
4102	.tx_limit_len = efx_ef10_tx_limit_len,
4103	.tx_enqueue = __efx_enqueue_skb,
4104	.rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
4105	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4106	.rx_probe = efx_mcdi_rx_probe,
4107	.rx_init = efx_mcdi_rx_init,
4108	.rx_remove = efx_mcdi_rx_remove,
4109	.rx_write = efx_ef10_rx_write,
4110	.rx_defer_refill = efx_ef10_rx_defer_refill,
4111	.rx_packet = __efx_rx_packet,
4112	.ev_probe = efx_mcdi_ev_probe,
4113	.ev_init = efx_ef10_ev_init,
4114	.ev_fini = efx_mcdi_ev_fini,
4115	.ev_remove = efx_mcdi_ev_remove,
4116	.ev_process = efx_ef10_ev_process,
4117	.ev_read_ack = efx_ef10_ev_read_ack,
4118	.ev_test_generate = efx_ef10_ev_test_generate,
4119	.filter_table_probe = efx_ef10_filter_table_probe,
4120	.filter_table_restore = efx_mcdi_filter_table_restore,
4121	.filter_table_remove = efx_ef10_filter_table_remove,
4122	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4123	.filter_insert = efx_mcdi_filter_insert,
4124	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4125	.filter_get_safe = efx_mcdi_filter_get_safe,
4126	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4127	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4128	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4129	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4130#ifdef CONFIG_RFS_ACCEL
4131	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4132#endif
4133#ifdef CONFIG_SFC_MTD
4134	.mtd_probe = efx_port_dummy_op_int,
4135#endif
4136	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4137	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4138	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140#ifdef CONFIG_SFC_SRIOV
4141	.vswitching_probe = efx_ef10_vswitching_probe_vf,
4142	.vswitching_restore = efx_ef10_vswitching_restore_vf,
4143	.vswitching_remove = efx_ef10_vswitching_remove_vf,
4144#endif
4145	.get_mac_address = efx_ef10_get_mac_address_vf,
4146	.set_mac_address = efx_ef10_set_mac_address,
4147
4148	.get_phys_port_id = efx_ef10_get_phys_port_id,
4149	.revision = EFX_REV_HUNT_A0,
4150	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4151	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4152	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4153	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4154	.can_rx_scatter = true,
4155	.always_rx_scatter = true,
4156	.min_interrupt_mode = EFX_INT_MODE_MSIX,
4157	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4158	.offload_features = EF10_OFFLOAD_FEATURES,
4159	.mcdi_max_ver = 2,
4160	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4161	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4162			    1 << HWTSTAMP_FILTER_ALL,
4163	.rx_hash_key_size = 40,
4164	.check_caps = ef10_check_caps,
4165	.print_additional_fwver = efx_ef10_print_additional_fwver,
4166	.sensor_event = efx_mcdi_sensor_event,
4167	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4168};
4169
4170const struct efx_nic_type efx_hunt_a0_nic_type = {
4171	.is_vf = false,
4172	.mem_bar = efx_ef10_pf_mem_bar,
4173	.mem_map_size = efx_ef10_mem_map_size,
4174	.probe = efx_ef10_probe_pf,
4175	.remove = efx_ef10_remove,
4176	.dimension_resources = efx_ef10_dimension_resources,
4177	.init = efx_ef10_init_nic,
4178	.fini = efx_ef10_fini_nic,
4179	.map_reset_reason = efx_ef10_map_reset_reason,
4180	.map_reset_flags = efx_ef10_map_reset_flags,
4181	.reset = efx_ef10_reset,
4182	.probe_port = efx_mcdi_port_probe,
4183	.remove_port = efx_mcdi_port_remove,
4184	.fini_dmaq = efx_fini_dmaq,
4185	.prepare_flr = efx_ef10_prepare_flr,
4186	.finish_flr = efx_port_dummy_op_void,
4187	.describe_stats = efx_ef10_describe_stats,
4188	.update_stats = efx_ef10_update_stats_pf,
4189	.start_stats = efx_mcdi_mac_start_stats,
4190	.pull_stats = efx_mcdi_mac_pull_stats,
4191	.stop_stats = efx_mcdi_mac_stop_stats,
 
4192	.push_irq_moderation = efx_ef10_push_irq_moderation,
4193	.reconfigure_mac = efx_ef10_mac_reconfigure,
4194	.check_mac_fault = efx_mcdi_mac_check_fault,
4195	.reconfigure_port = efx_mcdi_port_reconfigure,
4196	.get_wol = efx_ef10_get_wol,
4197	.set_wol = efx_ef10_set_wol,
4198	.resume_wol = efx_port_dummy_op_void,
4199	.get_fec_stats = efx_ef10_get_fec_stats,
4200	.test_chip = efx_ef10_test_chip,
4201	.test_nvram = efx_mcdi_nvram_test_all,
4202	.mcdi_request = efx_ef10_mcdi_request,
4203	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
4204	.mcdi_read_response = efx_ef10_mcdi_read_response,
4205	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4206	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4207	.irq_enable_master = efx_port_dummy_op_void,
4208	.irq_test_generate = efx_ef10_irq_test_generate,
4209	.irq_disable_non_ev = efx_port_dummy_op_void,
4210	.irq_handle_msi = efx_ef10_msi_interrupt,
4211	.irq_handle_legacy = efx_ef10_legacy_interrupt,
4212	.tx_probe = efx_ef10_tx_probe,
4213	.tx_init = efx_ef10_tx_init,
4214	.tx_remove = efx_mcdi_tx_remove,
4215	.tx_write = efx_ef10_tx_write,
4216	.tx_limit_len = efx_ef10_tx_limit_len,
4217	.tx_enqueue = __efx_enqueue_skb,
4218	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4219	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4220	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4221	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4222	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4223	.rx_probe = efx_mcdi_rx_probe,
4224	.rx_init = efx_mcdi_rx_init,
4225	.rx_remove = efx_mcdi_rx_remove,
4226	.rx_write = efx_ef10_rx_write,
4227	.rx_defer_refill = efx_ef10_rx_defer_refill,
4228	.rx_packet = __efx_rx_packet,
4229	.ev_probe = efx_mcdi_ev_probe,
4230	.ev_init = efx_ef10_ev_init,
4231	.ev_fini = efx_mcdi_ev_fini,
4232	.ev_remove = efx_mcdi_ev_remove,
4233	.ev_process = efx_ef10_ev_process,
4234	.ev_read_ack = efx_ef10_ev_read_ack,
4235	.ev_test_generate = efx_ef10_ev_test_generate,
4236	.filter_table_probe = efx_ef10_filter_table_probe,
4237	.filter_table_restore = efx_mcdi_filter_table_restore,
4238	.filter_table_remove = efx_ef10_filter_table_remove,
4239	.filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4240	.filter_insert = efx_mcdi_filter_insert,
4241	.filter_remove_safe = efx_mcdi_filter_remove_safe,
4242	.filter_get_safe = efx_mcdi_filter_get_safe,
4243	.filter_clear_rx = efx_mcdi_filter_clear_rx,
4244	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4245	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4246	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4247#ifdef CONFIG_RFS_ACCEL
4248	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
 
4249#endif
4250#ifdef CONFIG_SFC_MTD
4251	.mtd_probe = efx_ef10_mtd_probe,
4252	.mtd_rename = efx_mcdi_mtd_rename,
4253	.mtd_read = efx_mcdi_mtd_read,
4254	.mtd_erase = efx_mcdi_mtd_erase,
4255	.mtd_write = efx_mcdi_mtd_write,
4256	.mtd_sync = efx_mcdi_mtd_sync,
4257#endif
4258	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
4259	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4260	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4261	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4262	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4263	.udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4264	.udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4265#ifdef CONFIG_SFC_SRIOV
4266	.sriov_configure = efx_ef10_sriov_configure,
4267	.sriov_init = efx_ef10_sriov_init,
4268	.sriov_fini = efx_ef10_sriov_fini,
4269	.sriov_wanted = efx_ef10_sriov_wanted,
4270	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4271	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4272	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4273	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4274	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4275	.vswitching_probe = efx_ef10_vswitching_probe_pf,
4276	.vswitching_restore = efx_ef10_vswitching_restore_pf,
4277	.vswitching_remove = efx_ef10_vswitching_remove_pf,
4278#endif
4279	.get_mac_address = efx_ef10_get_mac_address_pf,
4280	.set_mac_address = efx_ef10_set_mac_address,
4281	.tso_versions = efx_ef10_tso_versions,
4282
4283	.get_phys_port_id = efx_ef10_get_phys_port_id,
4284	.revision = EFX_REV_HUNT_A0,
4285	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4286	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4287	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4288	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4289	.can_rx_scatter = true,
4290	.always_rx_scatter = true,
4291	.option_descriptors = true,
4292	.min_interrupt_mode = EFX_INT_MODE_LEGACY,
4293	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4294	.offload_features = EF10_OFFLOAD_FEATURES,
 
4295	.mcdi_max_ver = 2,
4296	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4297	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4298			    1 << HWTSTAMP_FILTER_ALL,
4299	.rx_hash_key_size = 40,
4300	.check_caps = ef10_check_caps,
4301	.print_additional_fwver = efx_ef10_print_additional_fwver,
4302	.sensor_event = efx_mcdi_sensor_event,
4303	.rx_recycle_ring_size = efx_ef10_recycle_ring_size,
4304};
v3.15
 
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2012-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10#include "net_driver.h"
 
 
  11#include "ef10_regs.h"
  12#include "io.h"
  13#include "mcdi.h"
  14#include "mcdi_pcol.h"
 
 
 
  15#include "nic.h"
 
  16#include "workarounds.h"
  17#include "selftest.h"
 
  18#include <linux/in.h>
  19#include <linux/jhash.h>
  20#include <linux/wait.h>
  21#include <linux/workqueue.h>
 
  22
  23/* Hardware control for EF10 architecture including 'Huntington'. */
  24
  25#define EFX_EF10_DRVGEN_EV		7
  26enum {
  27	EFX_EF10_TEST = 1,
  28	EFX_EF10_REFILL,
  29};
  30
  31/* The reserved RSS context value */
  32#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
  33
  34/* The filter table(s) are managed by firmware and we have write-only
  35 * access.  When removing filters we must identify them to the
  36 * firmware by a 64-bit handle, but this is too wide for Linux kernel
  37 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
  38 * be able to tell in advance whether a requested insertion will
  39 * replace an existing filter.  Therefore we maintain a software hash
  40 * table, which should be at least as large as the hardware hash
  41 * table.
  42 *
  43 * Huntington has a single 8K filter table shared between all filter
  44 * types and both ports.
  45 */
  46#define HUNT_FILTER_TBL_ROWS 8192
  47
  48struct efx_ef10_filter_table {
  49/* The RX match field masks supported by this fw & hw, in order of priority */
  50	enum efx_filter_match_flags rx_match_flags[
  51		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
  52	unsigned int rx_match_count;
  53
  54	struct {
  55		unsigned long spec;	/* pointer to spec plus flag bits */
  56/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
  57 * used to mark and sweep MAC filters for the device address lists.
  58 */
  59#define EFX_EF10_FILTER_FLAG_BUSY	1UL
  60#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
  61#define EFX_EF10_FILTER_FLAGS		3UL
  62		u64 handle;		/* firmware handle */
  63	} *entry;
  64	wait_queue_head_t waitq;
  65/* Shadow of net_device address lists, guarded by mac_lock */
  66#define EFX_EF10_FILTER_DEV_UC_MAX	32
  67#define EFX_EF10_FILTER_DEV_MC_MAX	256
  68	struct {
  69		u8 addr[ETH_ALEN];
  70		u16 id;
  71	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
  72	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
  73	int dev_uc_count;		/* negative for PROMISC */
  74	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
  75};
  76
  77/* An arbitrary search limit for the software hash table */
  78#define EFX_EF10_FILTER_SEARCH_LIMIT 200
  79
  80static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
  81static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
  82static void efx_ef10_filter_table_remove(struct efx_nic *efx);
  83
  84static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
  85{
  86	efx_dword_t reg;
  87
  88	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
  89	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
  90		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
  91}
  92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
  94{
  95	return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96}
 
  97
  98static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
  99{
 100	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
 101	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 102	size_t outlen;
 103	int rc;
 104
 105	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
 106
 107	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
 108			  outbuf, sizeof(outbuf), &outlen);
 109	if (rc)
 110		return rc;
 111	if (outlen < sizeof(outbuf)) {
 112		netif_err(efx, drv, efx->net_dev,
 113			  "unable to read datapath firmware capabilities\n");
 114		return -EIO;
 115	}
 116
 117	nic_data->datapath_caps =
 118		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
 119
 120	if (!(nic_data->datapath_caps &
 121	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
 122		netif_err(efx, drv, efx->net_dev,
 123			  "current firmware does not support TSO\n");
 124		return -ENODEV;
 
 
 
 125	}
 126
 
 
 
 
 
 
 
 127	if (!(nic_data->datapath_caps &
 128	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
 129		netif_err(efx, probe, efx->net_dev,
 130			  "current firmware does not support an RX prefix\n");
 131		return -ENODEV;
 132	}
 133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134	return 0;
 135}
 136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
 138{
 139	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
 140	int rc;
 141
 142	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
 143			  outbuf, sizeof(outbuf), NULL);
 144	if (rc)
 145		return rc;
 146	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
 147	return rc > 0 ? rc : -ERANGE;
 148}
 149
 150static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151{
 152	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
 153	size_t outlen;
 154	int rc;
 155
 156	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
 157
 158	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
 159			  outbuf, sizeof(outbuf), &outlen);
 160	if (rc)
 161		return rc;
 162	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
 163		return -EIO;
 164
 165	ether_addr_copy(mac_address,
 166			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
 167	return 0;
 168}
 169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 170static int efx_ef10_probe(struct efx_nic *efx)
 171{
 172	struct efx_ef10_nic_data *nic_data;
 173	int i, rc;
 174
 175	/* We can have one VI for each 8K region.  However, until we
 176	 * use TX option descriptors we need two TX queues per channel.
 177	 */
 178	efx->max_channels =
 179		min_t(unsigned int,
 180		      EFX_MAX_CHANNELS,
 181		      resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
 182		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
 183	BUG_ON(efx->max_channels == 0);
 184
 185	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
 186	if (!nic_data)
 187		return -ENOMEM;
 188	efx->nic_data = nic_data;
 189
 
 
 
 190	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
 191				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
 192	if (rc)
 193		goto fail1;
 194
 195	/* Get the MC's warm boot count.  In case it's rebooting right
 196	 * now, be prepared to retry.
 197	 */
 198	i = 0;
 199	for (;;) {
 200		rc = efx_ef10_get_warm_boot_count(efx);
 201		if (rc >= 0)
 202			break;
 203		if (++i == 5)
 204			goto fail2;
 205		ssleep(1);
 206	}
 207	nic_data->warm_boot_count = rc;
 208
 209	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
 210
 211	/* In case we're recovering from a crash (kexec), we want to
 212	 * cancel any outstanding request by the previous user of this
 213	 * function.  We send a special message using the least
 214	 * significant bits of the 'high' (doorbell) register.
 215	 */
 216	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
 217
 218	rc = efx_mcdi_init(efx);
 219	if (rc)
 220		goto fail2;
 221
 
 
 
 
 
 222	/* Reset (most) configuration for this function */
 223	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
 224	if (rc)
 225		goto fail3;
 226
 227	/* Enable event logging */
 228	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
 229	if (rc)
 230		goto fail3;
 231
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	rc = efx_ef10_init_datapath_caps(efx);
 233	if (rc < 0)
 234		goto fail3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235
 236	efx->rx_packet_len_offset =
 237		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
 238
 
 
 
 
 239	rc = efx_mcdi_port_get_number(efx);
 240	if (rc < 0)
 241		goto fail3;
 242	efx->port_num = rc;
 243
 244	rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
 245	if (rc)
 246		goto fail3;
 247
 248	rc = efx_ef10_get_sysclk_freq(efx);
 249	if (rc < 0)
 250		goto fail3;
 251	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252
 253	/* Check whether firmware supports bug 35388 workaround */
 254	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
 255	if (rc == 0)
 256		nic_data->workaround_35388 = true;
 257	else if (rc != -ENOSYS && rc != -ENOENT)
 258		goto fail3;
 259	netif_dbg(efx, probe, efx->net_dev,
 260		  "workaround for bug 35388 is %sabled\n",
 261		  nic_data->workaround_35388 ? "en" : "dis");
 262
 263	rc = efx_mcdi_mon_probe(efx);
 
 
 
 
 264	if (rc)
 265		goto fail3;
 266
 267	efx_ptp_probe(efx, NULL);
 
 
 
 
 268
 269	return 0;
 270
 
 
 
 
 
 
 
 
 
 
 271fail3:
 
 
 
 
 
 
 
 
 272	efx_mcdi_fini(efx);
 273fail2:
 274	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 275fail1:
 276	kfree(nic_data);
 277	efx->nic_data = NULL;
 278	return rc;
 279}
 280
 281static int efx_ef10_free_vis(struct efx_nic *efx)
 282{
 283	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
 284	size_t outlen;
 285	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
 286				    outbuf, sizeof(outbuf), &outlen);
 287
 288	/* -EALREADY means nothing to free, so ignore */
 289	if (rc == -EALREADY)
 290		rc = 0;
 291	if (rc)
 292		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
 293				       rc);
 294	return rc;
 295}
 296
 297#ifdef EFX_USE_PIO
 298
 299static void efx_ef10_free_piobufs(struct efx_nic *efx)
 300{
 301	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 302	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
 303	unsigned int i;
 304	int rc;
 305
 306	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
 307
 308	for (i = 0; i < nic_data->n_piobufs; i++) {
 309		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
 310			       nic_data->piobuf_handle[i]);
 311		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
 312				  NULL, 0, NULL);
 313		WARN_ON(rc);
 314	}
 315
 316	nic_data->n_piobufs = 0;
 317}
 318
 319static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 320{
 321	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 322	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
 323	unsigned int i;
 324	size_t outlen;
 325	int rc = 0;
 326
 327	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
 328
 329	for (i = 0; i < n; i++) {
 330		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
 331				  outbuf, sizeof(outbuf), &outlen);
 332		if (rc)
 
 
 
 
 
 
 333			break;
 
 334		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
 335			rc = -EIO;
 336			break;
 337		}
 338		nic_data->piobuf_handle[i] =
 339			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
 340		netif_dbg(efx, probe, efx->net_dev,
 341			  "allocated PIO buffer %u handle %x\n", i,
 342			  nic_data->piobuf_handle[i]);
 343	}
 344
 345	nic_data->n_piobufs = i;
 346	if (rc)
 347		efx_ef10_free_piobufs(efx);
 348	return rc;
 349}
 350
 351static int efx_ef10_link_piobufs(struct efx_nic *efx)
 352{
 353	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 354	MCDI_DECLARE_BUF(inbuf,
 355			 max(MC_CMD_LINK_PIOBUF_IN_LEN,
 356			     MC_CMD_UNLINK_PIOBUF_IN_LEN));
 357	struct efx_channel *channel;
 358	struct efx_tx_queue *tx_queue;
 359	unsigned int offset, index;
 360	int rc;
 361
 362	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
 363	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
 364
 365	/* Link a buffer to each VI in the write-combining mapping */
 366	for (index = 0; index < nic_data->n_piobufs; ++index) {
 367		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
 368			       nic_data->piobuf_handle[index]);
 369		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
 370			       nic_data->pio_write_vi_base + index);
 371		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 372				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 373				  NULL, 0, NULL);
 374		if (rc) {
 375			netif_err(efx, drv, efx->net_dev,
 376				  "failed to link VI %u to PIO buffer %u (%d)\n",
 377				  nic_data->pio_write_vi_base + index, index,
 378				  rc);
 379			goto fail;
 380		}
 381		netif_dbg(efx, probe, efx->net_dev,
 382			  "linked VI %u to PIO buffer %u\n",
 383			  nic_data->pio_write_vi_base + index, index);
 384	}
 385
 386	/* Link a buffer to each TX queue */
 387	efx_for_each_channel(channel, efx) {
 
 
 
 
 
 
 
 388		efx_for_each_channel_tx_queue(tx_queue, channel) {
 389			/* We assign the PIO buffers to queues in
 390			 * reverse order to allow for the following
 391			 * special case.
 392			 */
 393			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
 394				   tx_queue->channel->channel - 1) *
 395				  efx_piobuf_size);
 396			index = offset / ER_DZ_TX_PIOBUF_SIZE;
 397			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
 398
 399			/* When the host page size is 4K, the first
 400			 * host page in the WC mapping may be within
 401			 * the same VI page as the last TX queue.  We
 402			 * can only link one buffer to each VI.
 403			 */
 404			if (tx_queue->queue == nic_data->pio_write_vi_base) {
 405				BUG_ON(index != 0);
 406				rc = 0;
 407			} else {
 408				MCDI_SET_DWORD(inbuf,
 409					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
 410					       nic_data->piobuf_handle[index]);
 411				MCDI_SET_DWORD(inbuf,
 412					       LINK_PIOBUF_IN_TXQ_INSTANCE,
 413					       tx_queue->queue);
 414				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
 415						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
 416						  NULL, 0, NULL);
 417			}
 418
 419			if (rc) {
 420				/* This is non-fatal; the TX path just
 421				 * won't use PIO for this queue
 422				 */
 423				netif_err(efx, drv, efx->net_dev,
 424					  "failed to link VI %u to PIO buffer %u (%d)\n",
 425					  tx_queue->queue, index, rc);
 426				tx_queue->piobuf = NULL;
 427			} else {
 428				tx_queue->piobuf =
 429					nic_data->pio_write_base +
 430					index * EFX_VI_PAGE_SIZE + offset;
 431				tx_queue->piobuf_offset = offset;
 432				netif_dbg(efx, probe, efx->net_dev,
 433					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
 434					  tx_queue->queue, index,
 435					  tx_queue->piobuf_offset,
 436					  tx_queue->piobuf);
 437			}
 438		}
 439	}
 440
 441	return 0;
 442
 443fail:
 
 
 
 
 444	while (index--) {
 445		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
 446			       nic_data->pio_write_vi_base + index);
 447		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
 448			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
 449			     NULL, 0, NULL);
 450	}
 451	return rc;
 452}
 453
 
 
 
 
 
 
 
 
 
 
 
 454#else /* !EFX_USE_PIO */
 455
 456static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
 457{
 458	return n == 0 ? 0 : -ENOBUFS;
 459}
 460
 461static int efx_ef10_link_piobufs(struct efx_nic *efx)
 462{
 463	return 0;
 464}
 465
 466static void efx_ef10_free_piobufs(struct efx_nic *efx)
 467{
 468}
 469
 
 
 
 
 470#endif /* EFX_USE_PIO */
 471
 472static void efx_ef10_remove(struct efx_nic *efx)
 473{
 474	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 475	int rc;
 476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477	efx_ptp_remove(efx);
 478
 479	efx_mcdi_mon_remove(efx);
 480
 481	efx_ef10_rx_free_indir_table(efx);
 482
 483	if (nic_data->wc_membase)
 484		iounmap(nic_data->wc_membase);
 485
 486	rc = efx_ef10_free_vis(efx);
 487	WARN_ON(rc != 0);
 488
 489	if (!nic_data->must_restore_piobufs)
 490		efx_ef10_free_piobufs(efx);
 491
 
 
 
 
 
 
 
 
 
 
 
 
 492	efx_mcdi_fini(efx);
 493	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
 494	kfree(nic_data);
 495}
 496
 497static int efx_ef10_alloc_vis(struct efx_nic *efx,
 498			      unsigned int min_vis, unsigned int max_vis)
 
 
 
 
 
 
 499{
 500	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
 501	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
 502	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
 503	size_t outlen;
 504	int rc;
 505
 506	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
 507	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
 508	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
 509			  outbuf, sizeof(outbuf), &outlen);
 510	if (rc != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 511		return rc;
 512
 513	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
 514		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515
 516	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
 517		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
 518
 519	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
 520	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
 
 
 
 
 
 521	return 0;
 522}
 
 
 
 
 
 
 
 
 
 
 523
 524/* Note that the failure path of this function does not free
 525 * resources, as this will be done by efx_ef10_remove().
 526 */
 527static int efx_ef10_dimension_resources(struct efx_nic *efx)
 528{
 
 
 
 529	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 530	unsigned int uc_mem_map_size, wc_mem_map_size;
 531	unsigned int min_vis, pio_write_vi_base, max_vis;
 532	void __iomem *membase;
 533	int rc;
 534
 535	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
 
 
 
 
 
 
 
 
 
 536
 537#ifdef EFX_USE_PIO
 538	/* Try to allocate PIO buffers if wanted and if the full
 539	 * number of PIO buffers would be sufficient to allocate one
 540	 * copy-buffer per TX channel.  Failure is non-fatal, as there
 541	 * are only a small number of PIO buffers shared between all
 542	 * functions of the controller.
 543	 */
 544	if (efx_piobuf_size != 0 &&
 545	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
 546	    efx->n_tx_channels) {
 547		unsigned int n_piobufs =
 548			DIV_ROUND_UP(efx->n_tx_channels,
 549				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
 550
 551		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
 552		if (rc)
 
 
 
 
 
 
 553			netif_err(efx, probe, efx->net_dev,
 554				  "failed to allocate PIO buffers (%d)\n", rc);
 555		else
 556			netif_dbg(efx, probe, efx->net_dev,
 557				  "allocated %u PIO buffers\n", n_piobufs);
 558	}
 559#else
 560	nic_data->n_piobufs = 0;
 561#endif
 562
 563	/* PIO buffers should be mapped with write-combining enabled,
 564	 * and we want to make single UC and WC mappings rather than
 565	 * several of each (in fact that's the only option if host
 566	 * page size is >4K).  So we may allocate some extra VIs just
 567	 * for writing PIO buffers through.
 568	 *
 569	 * The UC mapping contains (min_vis - 1) complete VIs and the
 570	 * first half of the next VI.  Then the WC mapping begins with
 571	 * the second half of this last VI.
 572	 */
 573	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
 574				     ER_DZ_TX_PIOBUF);
 575	if (nic_data->n_piobufs) {
 576		/* pio_write_vi_base rounds down to give the number of complete
 577		 * VIs inside the UC mapping.
 578		 */
 579		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
 580		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
 581					       nic_data->n_piobufs) *
 582					      EFX_VI_PAGE_SIZE) -
 583				   uc_mem_map_size);
 584		max_vis = pio_write_vi_base + nic_data->n_piobufs;
 585	} else {
 586		pio_write_vi_base = 0;
 587		wc_mem_map_size = 0;
 588		max_vis = min_vis;
 589	}
 590
 591	/* In case the last attached driver failed to free VIs, do it now */
 592	rc = efx_ef10_free_vis(efx);
 593	if (rc != 0)
 594		return rc;
 595
 596	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
 597	if (rc != 0)
 598		return rc;
 599
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600	/* If we didn't get enough VIs to map all the PIO buffers, free the
 601	 * PIO buffers
 602	 */
 603	if (nic_data->n_piobufs &&
 604	    nic_data->n_allocated_vis <
 605	    pio_write_vi_base + nic_data->n_piobufs) {
 606		netif_dbg(efx, probe, efx->net_dev,
 607			  "%u VIs are not sufficient to map %u PIO buffers\n",
 608			  nic_data->n_allocated_vis, nic_data->n_piobufs);
 609		efx_ef10_free_piobufs(efx);
 610	}
 611
 612	/* Shrink the original UC mapping of the memory BAR */
 613	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
 614	if (!membase) {
 615		netif_err(efx, probe, efx->net_dev,
 616			  "could not shrink memory BAR to %x\n",
 617			  uc_mem_map_size);
 618		return -ENOMEM;
 619	}
 620	iounmap(efx->membase);
 621	efx->membase = membase;
 622
 623	/* Set up the WC mapping if needed */
 624	if (wc_mem_map_size) {
 625		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
 626						  uc_mem_map_size,
 627						  wc_mem_map_size);
 628		if (!nic_data->wc_membase) {
 629			netif_err(efx, probe, efx->net_dev,
 630				  "could not allocate WC mapping of size %x\n",
 631				  wc_mem_map_size);
 632			return -ENOMEM;
 633		}
 634		nic_data->pio_write_vi_base = pio_write_vi_base;
 635		nic_data->pio_write_base =
 636			nic_data->wc_membase +
 637			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
 638			 uc_mem_map_size);
 639
 640		rc = efx_ef10_link_piobufs(efx);
 641		if (rc)
 642			efx_ef10_free_piobufs(efx);
 643	}
 644
 645	netif_dbg(efx, probe, efx->net_dev,
 646		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
 647		  &efx->membase_phys, efx->membase, uc_mem_map_size,
 648		  nic_data->wc_membase, wc_mem_map_size);
 649
 650	return 0;
 651}
 652
 
 
 
 
 
 
 
 
 
 
 653static int efx_ef10_init_nic(struct efx_nic *efx)
 654{
 655	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
 656	int rc;
 657
 658	if (nic_data->must_check_datapath_caps) {
 659		rc = efx_ef10_init_datapath_caps(efx);
 660		if (rc)
 661			return rc;
 662		nic_data->must_check_datapath_caps = false;
 663	}
 664
 665	if (nic_data->must_realloc_vis) {
 666		/* We cannot let the number of VIs change now */
 667		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
 668					nic_data->n_allocated_vis);
 669		if (rc)
 670			return rc;
 671		nic_data->must_realloc_vis = false;
 672	}
 673
 
 
 
 
 
 674	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
 675		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
 676		if (rc == 0) {
 677			rc = efx_ef10_link_piobufs(efx);
 678			if (rc)
 679				efx_ef10_free_piobufs(efx);
 680		}
 681
 682		/* Log an error on failure, but this is non-fatal */
 683		if (rc)
 
 
 
 
 
 
 684			netif_err(efx, drv, efx->net_dev,
 685				  "failed to restore PIO buffers (%d)\n", rc);
 686		nic_data->must_restore_piobufs = false;
 687	}
 688
 689	efx_ef10_rx_push_rss_config(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 690	return 0;
 691}
 692
 693static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
 694{
 695	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
 
 696
 697	/* All our allocations have been reset */
 698	nic_data->must_realloc_vis = true;
 699	nic_data->must_restore_filters = true;
 700	nic_data->must_restore_piobufs = true;
 701	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 704static int efx_ef10_map_reset_flags(u32 *flags)
 705{
 706	enum {
 707		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
 708				   ETH_RESET_SHARED_SHIFT),
 709		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
 710				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
 711				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
 712				 ETH_RESET_SHARED_SHIFT)
 713	};
 714
 715	/* We assume for now that our PCI function is permitted to
 716	 * reset everything.
 717	 */
 718
 719	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
 720		*flags &= ~EF10_RESET_MC;
 721		return RESET_TYPE_WORLD;
 722	}
 723
 724	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
 725		*flags &= ~EF10_RESET_PORT;
 726		return RESET_TYPE_ALL;
 727	}
 728
 729	/* no invisible reset implemented */
 730
 731	return -EINVAL;
 732}
 733
 734static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
 735{
 736	int rc = efx_mcdi_reset(efx, reset_type);
 737
 
 
 
 
 
 
 738	/* If it was a port reset, trigger reallocation of MC resources.
 739	 * Note that on an MC reset nothing needs to be done now because we'll
 740	 * detect the MC reset later and handle it then.
 741	 * For an FLR, we never get an MC reset event, but the MC has reset all
 742	 * resources assigned to us, so we have to trigger reallocation now.
 743	 */
 744	if ((reset_type == RESET_TYPE_ALL ||
 745	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
 746		efx_ef10_reset_mc_allocations(efx);
 747	return rc;
 748}
 749
 750#define EF10_DMA_STAT(ext_name, mcdi_name)			\
 751	[EF10_STAT_ ## ext_name] =				\
 752	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
 753#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
 754	[EF10_STAT_ ## int_name] =				\
 755	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
 756#define EF10_OTHER_STAT(ext_name)				\
 757	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
 758
 759static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
 760	EF10_DMA_STAT(tx_bytes, TX_BYTES),
 761	EF10_DMA_STAT(tx_packets, TX_PKTS),
 762	EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
 763	EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
 764	EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
 765	EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
 766	EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
 767	EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
 768	EF10_DMA_STAT(tx_64, TX_64_PKTS),
 769	EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
 770	EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
 771	EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
 772	EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
 773	EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
 774	EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
 775	EF10_DMA_STAT(rx_bytes, RX_BYTES),
 776	EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
 777	EF10_OTHER_STAT(rx_good_bytes),
 778	EF10_OTHER_STAT(rx_bad_bytes),
 779	EF10_DMA_STAT(rx_packets, RX_PKTS),
 780	EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
 781	EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
 782	EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
 783	EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
 784	EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
 785	EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
 786	EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
 787	EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
 788	EF10_DMA_STAT(rx_64, RX_64_PKTS),
 789	EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
 790	EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
 791	EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
 792	EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
 793	EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
 794	EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
 795	EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
 796	EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
 797	EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
 798	EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
 799	EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
 800	EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
 801	EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
 802	EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
 803	EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
 804	EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
 805	EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
 806	EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
 807	EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
 808	EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
 809	EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
 810	EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
 811	EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
 812	EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813};
 814
 815#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |		\
 816			       (1ULL << EF10_STAT_tx_packets) |		\
 817			       (1ULL << EF10_STAT_tx_pause) |		\
 818			       (1ULL << EF10_STAT_tx_unicast) |		\
 819			       (1ULL << EF10_STAT_tx_multicast) |	\
 820			       (1ULL << EF10_STAT_tx_broadcast) |	\
 821			       (1ULL << EF10_STAT_rx_bytes) |		\
 822			       (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
 823			       (1ULL << EF10_STAT_rx_good_bytes) |	\
 824			       (1ULL << EF10_STAT_rx_bad_bytes) |	\
 825			       (1ULL << EF10_STAT_rx_packets) |		\
 826			       (1ULL << EF10_STAT_rx_good) |		\
 827			       (1ULL << EF10_STAT_rx_bad) |		\
 828			       (1ULL << EF10_STAT_rx_pause) |		\
 829			       (1ULL << EF10_STAT_rx_control) |		\
 830			       (1ULL << EF10_STAT_rx_unicast) |		\
 831			       (1ULL << EF10_STAT_rx_multicast) |	\
 832			       (1ULL << EF10_STAT_rx_broadcast) |	\
 833			       (1ULL << EF10_STAT_rx_lt64) |		\
 834			       (1ULL << EF10_STAT_rx_64) |		\
 835			       (1ULL << EF10_STAT_rx_65_to_127) |	\
 836			       (1ULL << EF10_STAT_rx_128_to_255) |	\
 837			       (1ULL << EF10_STAT_rx_256_to_511) |	\
 838			       (1ULL << EF10_STAT_rx_512_to_1023) |	\
 839			       (1ULL << EF10_STAT_rx_1024_to_15xx) |	\
 840			       (1ULL << EF10_STAT_rx_15xx_to_jumbo) |	\
 841			       (1ULL << EF10_STAT_rx_gtjumbo) |		\
 842			       (1ULL << EF10_STAT_rx_bad_gtjumbo) |	\
 843			       (1ULL << EF10_STAT_rx_overflow) |	\
 844			       (1ULL << EF10_STAT_rx_nodesc_drops))
 845
 846/* These statistics are only provided by the 10G MAC.  For a 10G/40G
 847 * switchable port we do not expose these because they might not
 848 * include all the packets they should.
 
 
 
 
 849 */
 850#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |	\
 851				 (1ULL << EF10_STAT_tx_lt64) |		\
 852				 (1ULL << EF10_STAT_tx_64) |		\
 853				 (1ULL << EF10_STAT_tx_65_to_127) |	\
 854				 (1ULL << EF10_STAT_tx_128_to_255) |	\
 855				 (1ULL << EF10_STAT_tx_256_to_511) |	\
 856				 (1ULL << EF10_STAT_tx_512_to_1023) |	\
 857				 (1ULL << EF10_STAT_tx_1024_to_15xx) |	\
 858				 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
 859
 860/* These statistics are only provided by the 40G MAC.  For a 10G/40G
 861 * switchable port we do expose these because the errors will otherwise
 862 * be silent.
 863 */
 864#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |	\
 865				  (1ULL << EF10_STAT_rx_length_error))
 866
 867/* These statistics are only provided if the firmware supports the
 868 * capability PM_AND_RXDP_COUNTERS.
 869 */
 870#define HUNT_PM_AND_RXDP_STAT_MASK (					\
 871	(1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |			\
 872	(1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |			\
 873	(1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |			\
 874	(1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |			\
 875	(1ULL << EF10_STAT_rx_pm_trunc_qbb) |				\
 876	(1ULL << EF10_STAT_rx_pm_discard_qbb) |				\
 877	(1ULL << EF10_STAT_rx_pm_discard_mapping) |			\
 878	(1ULL << EF10_STAT_rx_dp_q_disabled_packets) |			\
 879	(1ULL << EF10_STAT_rx_dp_di_dropped_packets) |			\
 880	(1ULL << EF10_STAT_rx_dp_streaming_packets) |			\
 881	(1ULL << EF10_STAT_rx_dp_hlb_fetch) |				\
 882	(1ULL << EF10_STAT_rx_dp_hlb_wait))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883
 884static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
 885{
 886	u64 raw_mask = HUNT_COMMON_STAT_MASK;
 887	u32 port_caps = efx_mcdi_phy_get_caps(efx);
 888	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 889
 890	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
 
 
 
 
 891		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
 892	else
 
 
 
 
 893		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
 
 894
 895	if (nic_data->datapath_caps &
 896	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
 897		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
 898
 899	return raw_mask;
 900}
 901
 902static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
 903{
 904	u64 raw_mask = efx_ef10_raw_stat_mask(efx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906#if BITS_PER_LONG == 64
 907	mask[0] = raw_mask;
 
 
 908#else
 909	mask[0] = raw_mask & 0xffffffff;
 910	mask[1] = raw_mask >> 32;
 
 
 911#endif
 912}
 913
 914static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
 915{
 916	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 917
 918	efx_ef10_get_stat_mask(efx, mask);
 919	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
 920				      mask, names);
 921}
 922
 923static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
 
 924{
 
 925	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 926	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 927	__le64 generation_start, generation_end;
 928	u64 *stats = nic_data->stats;
 929	__le64 *dma_stats;
 930
 931	efx_ef10_get_stat_mask(efx, mask);
 932
 933	dma_stats = efx->stats_buffer.addr;
 934	nic_data = efx->nic_data;
 935
 936	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
 937	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
 938		return 0;
 939	rmb();
 940	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
 941			     stats, efx->stats_buffer.addr, false);
 942	rmb();
 943	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
 944	if (generation_end != generation_start)
 945		return -EAGAIN;
 946
 947	/* Update derived statistics */
 948	efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
 949	stats[EF10_STAT_rx_good_bytes] =
 950		stats[EF10_STAT_rx_bytes] -
 951		stats[EF10_STAT_rx_bytes_minus_good_bytes];
 952	efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
 953			     stats[EF10_STAT_rx_bytes_minus_good_bytes]);
 954
 955	return 0;
 956}
 957
 958
 959static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
 960				    struct rtnl_link_stats64 *core_stats)
 961{
 962	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
 963	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 964	u64 *stats = nic_data->stats;
 965	size_t stats_count = 0, index;
 966	int retry;
 967
 968	efx_ef10_get_stat_mask(efx, mask);
 969
 970	/* If we're unlucky enough to read statistics during the DMA, wait
 971	 * up to 10ms for it to finish (typically takes <500us)
 972	 */
 973	for (retry = 0; retry < 100; ++retry) {
 974		if (efx_ef10_try_update_nic_stats(efx) == 0)
 975			break;
 976		udelay(100);
 977	}
 978
 979	if (full_stats) {
 980		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
 981			if (efx_ef10_stat_desc[index].name) {
 982				*full_stats++ = stats[index];
 983				++stats_count;
 984			}
 985		}
 986	}
 987
 988	if (core_stats) {
 989		core_stats->rx_packets = stats[EF10_STAT_rx_packets];
 990		core_stats->tx_packets = stats[EF10_STAT_tx_packets];
 991		core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
 992		core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
 993		core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994		core_stats->multicast = stats[EF10_STAT_rx_multicast];
 995		core_stats->rx_length_errors =
 996			stats[EF10_STAT_rx_gtjumbo] +
 997			stats[EF10_STAT_rx_length_error];
 998		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
 999		core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1000		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001		core_stats->rx_errors = (core_stats->rx_length_errors +
1002					 core_stats->rx_crc_errors +
1003					 core_stats->rx_frame_errors);
1004	}
1005
1006	return stats_count;
1007}
1008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1010{
1011	struct efx_nic *efx = channel->efx;
1012	unsigned int mode, value;
1013	efx_dword_t timer_cmd;
1014
1015	if (channel->irq_moderation) {
1016		mode = 3;
1017		value = channel->irq_moderation - 1;
1018	} else {
1019		mode = 0;
1020		value = 0;
1021	}
1022
1023	if (EFX_EF10_WORKAROUND_35388(efx)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1025				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1026				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1027				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1028		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1029				channel->channel);
1030	} else {
1031		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1032				     ERF_DZ_TC_TIMER_VAL, value);
 
 
 
1033		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1034				channel->channel);
1035	}
1036}
1037
 
 
 
 
 
 
 
 
1038static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1039{
1040	wol->supported = 0;
1041	wol->wolopts = 0;
1042	memset(&wol->sopass, 0, sizeof(wol->sopass));
1043}
1044
1045static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1046{
1047	if (type != 0)
1048		return -EINVAL;
1049	return 0;
1050}
1051
1052static void efx_ef10_mcdi_request(struct efx_nic *efx,
1053				  const efx_dword_t *hdr, size_t hdr_len,
1054				  const efx_dword_t *sdu, size_t sdu_len)
1055{
1056	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1057	u8 *pdu = nic_data->mcdi_buf.addr;
1058
1059	memcpy(pdu, hdr, hdr_len);
1060	memcpy(pdu + hdr_len, sdu, sdu_len);
1061	wmb();
1062
1063	/* The hardware provides 'low' and 'high' (doorbell) registers
1064	 * for passing the 64-bit address of an MCDI request to
1065	 * firmware.  However the dwords are swapped by firmware.  The
1066	 * least significant bits of the doorbell are then 0 for all
1067	 * MCDI requests due to alignment.
1068	 */
1069	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1070		    ER_DZ_MC_DB_LWRD);
1071	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1072		    ER_DZ_MC_DB_HWRD);
1073}
1074
1075static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1076{
1077	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1078	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1079
1080	rmb();
1081	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1082}
1083
1084static void
1085efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1086			    size_t offset, size_t outlen)
1087{
1088	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1089	const u8 *pdu = nic_data->mcdi_buf.addr;
1090
1091	memcpy(outbuf, pdu + offset, outlen);
1092}
1093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1095{
1096	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1097	int rc;
1098
1099	rc = efx_ef10_get_warm_boot_count(efx);
1100	if (rc < 0) {
1101		/* The firmware is presumably in the process of
1102		 * rebooting.  However, we are supposed to report each
1103		 * reboot just once, so we must only do that once we
1104		 * can read and store the updated warm boot count.
1105		 */
1106		return 0;
1107	}
1108
1109	if (rc == nic_data->warm_boot_count)
1110		return 0;
1111
1112	nic_data->warm_boot_count = rc;
1113
1114	/* All our allocations have been reset */
1115	efx_ef10_reset_mc_allocations(efx);
1116
1117	/* The datapath firmware might have been changed */
1118	nic_data->must_check_datapath_caps = true;
1119
1120	/* MAC statistics have been cleared on the NIC; clear the local
1121	 * statistic that we update with efx_update_diff_stat().
1122	 */
1123	nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1124
1125	return -EIO;
1126}
1127
1128/* Handle an MSI interrupt
1129 *
1130 * Handle an MSI hardware interrupt.  This routine schedules event
1131 * queue processing.  No interrupt acknowledgement cycle is necessary.
1132 * Also, we never need to check that the interrupt is for us, since
1133 * MSI interrupts cannot be shared.
1134 */
1135static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1136{
1137	struct efx_msi_context *context = dev_id;
1138	struct efx_nic *efx = context->efx;
1139
1140	netif_vdbg(efx, intr, efx->net_dev,
1141		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1142
1143	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1144		/* Note test interrupts */
1145		if (context->index == efx->irq_level)
1146			efx->last_irq_cpu = raw_smp_processor_id();
1147
1148		/* Schedule processing of the channel */
1149		efx_schedule_channel_irq(efx->channel[context->index]);
1150	}
1151
1152	return IRQ_HANDLED;
1153}
1154
1155static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1156{
1157	struct efx_nic *efx = dev_id;
1158	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1159	struct efx_channel *channel;
1160	efx_dword_t reg;
1161	u32 queues;
1162
1163	/* Read the ISR which also ACKs the interrupts */
1164	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1165	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1166
1167	if (queues == 0)
1168		return IRQ_NONE;
1169
1170	if (likely(soft_enabled)) {
1171		/* Note test interrupts */
1172		if (queues & (1U << efx->irq_level))
1173			efx->last_irq_cpu = raw_smp_processor_id();
1174
1175		efx_for_each_channel(channel, efx) {
1176			if (queues & 1)
1177				efx_schedule_channel_irq(channel);
1178			queues >>= 1;
1179		}
1180	}
1181
1182	netif_vdbg(efx, intr, efx->net_dev,
1183		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1184		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1185
1186	return IRQ_HANDLED;
1187}
1188
1189static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1190{
1191	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1192
 
 
 
 
1193	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1194
1195	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1196	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1197			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1198}
1199
1200static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1201{
1202	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
 
 
 
1203				    (tx_queue->ptr_mask + 1) *
1204				    sizeof(efx_qword_t),
1205				    GFP_KERNEL);
1206}
1207
1208/* This writes to the TX_DESC_WPTR and also pushes data */
1209static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1210					 const efx_qword_t *txd)
1211{
1212	unsigned int write_ptr;
1213	efx_oword_t reg;
1214
1215	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1216	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1217	reg.qword[0] = *txd;
1218	efx_writeo_page(tx_queue->efx, &reg,
1219			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1220}
1221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1223{
1224	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1225						       EFX_BUF_SIZE));
1226	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1227	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1228	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1229	struct efx_channel *channel = tx_queue->channel;
1230	struct efx_nic *efx = tx_queue->efx;
1231	size_t inlen, outlen;
1232	dma_addr_t dma_addr;
1233	efx_qword_t *txd;
1234	int rc;
1235	int i;
1236
1237	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1238	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1239	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1240	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1241	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1242			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1243			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1244	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1245	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1246
1247	dma_addr = tx_queue->txd.buf.dma_addr;
 
 
 
 
 
 
 
 
 
1248
1249	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1250		  tx_queue->queue, entries, (u64)dma_addr);
1251
1252	for (i = 0; i < entries; ++i) {
1253		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1254		dma_addr += EFX_BUF_SIZE;
 
 
 
 
 
 
 
 
 
1255	}
1256
1257	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1258
1259	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1260			  outbuf, sizeof(outbuf), &outlen);
1261	if (rc)
1262		goto fail;
1263
1264	/* A previous user of this TX queue might have set us up the
1265	 * bomb by writing a descriptor to the TX push collector but
1266	 * not the doorbell.  (Each collector belongs to a port, not a
1267	 * queue or function, so cannot easily be reset.)  We must
1268	 * attempt to push a no-op descriptor in its place.
1269	 */
1270	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1271	tx_queue->insert_count = 1;
1272	txd = efx_tx_desc(tx_queue, 0);
1273	EFX_POPULATE_QWORD_4(*txd,
1274			     ESF_DZ_TX_DESC_IS_OPT, true,
1275			     ESF_DZ_TX_OPTION_TYPE,
1276			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1277			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1278			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
 
 
 
1279	tx_queue->write_count = 1;
 
 
 
 
1280	wmb();
1281	efx_ef10_push_tx_desc(tx_queue, txd);
1282
1283	return;
1284
1285fail:
1286	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1287		    tx_queue->queue);
1288}
1289
1290static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1291{
1292	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1293	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1294	struct efx_nic *efx = tx_queue->efx;
1295	size_t outlen;
1296	int rc;
1297
1298	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1299		       tx_queue->queue);
1300
1301	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1302			  outbuf, sizeof(outbuf), &outlen);
1303
1304	if (rc && rc != -EALREADY)
1305		goto fail;
1306
1307	return;
1308
1309fail:
1310	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1311			       outbuf, outlen, rc);
1312}
1313
1314static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1315{
1316	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1317}
1318
1319/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1320static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1321{
1322	unsigned int write_ptr;
1323	efx_dword_t reg;
1324
1325	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1326	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1327	efx_writed_page(tx_queue->efx, &reg,
1328			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1329}
1330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1331static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1332{
1333	unsigned int old_write_count = tx_queue->write_count;
1334	struct efx_tx_buffer *buffer;
1335	unsigned int write_ptr;
1336	efx_qword_t *txd;
1337
1338	BUG_ON(tx_queue->write_count == tx_queue->insert_count);
 
 
1339
1340	do {
1341		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1342		buffer = &tx_queue->buffer[write_ptr];
1343		txd = efx_tx_desc(tx_queue, write_ptr);
1344		++tx_queue->write_count;
1345
1346		/* Create TX descriptor ring entry */
1347		if (buffer->flags & EFX_TX_BUF_OPTION) {
1348			*txd = buffer->option;
 
 
 
1349		} else {
 
1350			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1351			EFX_POPULATE_QWORD_3(
1352				*txd,
1353				ESF_DZ_TX_KER_CONT,
1354				buffer->flags & EFX_TX_BUF_CONT,
1355				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1356				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1357		}
1358	} while (tx_queue->write_count != tx_queue->insert_count);
1359
1360	wmb(); /* Ensure descriptors are written before they are fetched */
1361
1362	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1363		txd = efx_tx_desc(tx_queue,
1364				  old_write_count & tx_queue->ptr_mask);
1365		efx_ef10_push_tx_desc(tx_queue, txd);
1366		++tx_queue->pushes;
1367	} else {
1368		efx_ef10_notify_tx_desc(tx_queue);
1369	}
1370}
1371
1372static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1373{
1374	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1375	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1376	size_t outlen;
1377	int rc;
1378
1379	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1380		       EVB_PORT_ID_ASSIGNED);
1381	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1382		       MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1383	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1384		       EFX_MAX_CHANNELS);
1385
1386	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1387		outbuf, sizeof(outbuf), &outlen);
1388	if (rc != 0)
1389		return rc;
1390
1391	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1392		return -EIO;
1393
1394	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1395
1396	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397}
1398
1399static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1400{
1401	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1402	int rc;
 
1403
1404	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1405		       context);
1406
1407	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1408			    NULL, 0, NULL);
1409	WARN_ON(rc != 0);
1410}
1411
1412static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1413{
1414	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1415	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1416	int i, rc;
1417
1418	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1419		       context);
1420	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1421		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1422
1423	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1424		MCDI_PTR(tablebuf,
1425			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1426				(u8) efx->rx_indir_table[i];
1427
1428	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1429			  sizeof(tablebuf), NULL, 0, NULL);
1430	if (rc != 0)
1431		return rc;
 
 
1432
1433	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1434		       context);
1435	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1436		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1437	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1438		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1439			efx->rx_hash_key[i];
1440
1441	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1442			    sizeof(keybuf), NULL, 0, NULL);
1443}
1444
1445static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1446{
1447	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1448
1449	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1450		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1451	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1452}
1453
1454static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1455{
1456	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1457	int rc;
1458
1459	netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1460
1461	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1462		rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1463		if (rc != 0)
1464			goto fail;
1465	}
 
1466
1467	rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1468	if (rc != 0)
1469		goto fail;
1470
1471	return;
1472
1473fail:
1474	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1475}
1476
1477static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1478{
1479	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1480				    (rx_queue->ptr_mask + 1) *
1481				    sizeof(efx_qword_t),
1482				    GFP_KERNEL);
1483}
1484
1485static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1486{
1487	MCDI_DECLARE_BUF(inbuf,
1488			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1489						EFX_BUF_SIZE));
1490	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1491	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1492	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1493	struct efx_nic *efx = rx_queue->efx;
1494	size_t inlen, outlen;
1495	dma_addr_t dma_addr;
1496	int rc;
1497	int i;
1498
1499	rx_queue->scatter_n = 0;
1500	rx_queue->scatter_len = 0;
1501
1502	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1503	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1504	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1505	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1506		       efx_rx_queue_index(rx_queue));
1507	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1508			      INIT_RXQ_IN_FLAG_PREFIX, 1,
1509			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1510	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1511	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1512
1513	dma_addr = rx_queue->rxd.buf.dma_addr;
1514
1515	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1516		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1517
1518	for (i = 0; i < entries; ++i) {
1519		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1520		dma_addr += EFX_BUF_SIZE;
1521	}
1522
1523	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1524
1525	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1526			  outbuf, sizeof(outbuf), &outlen);
1527	if (rc)
1528		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1529			    efx_rx_queue_index(rx_queue));
1530}
1531
1532static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1533{
1534	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1535	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1536	struct efx_nic *efx = rx_queue->efx;
1537	size_t outlen;
1538	int rc;
1539
1540	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1541		       efx_rx_queue_index(rx_queue));
1542
1543	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1544			  outbuf, sizeof(outbuf), &outlen);
1545
1546	if (rc && rc != -EALREADY)
1547		goto fail;
1548
1549	return;
1550
1551fail:
1552	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1553			       outbuf, outlen, rc);
1554}
1555
1556static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1557{
1558	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1559}
1560
1561/* This creates an entry in the RX descriptor queue */
1562static inline void
1563efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1564{
1565	struct efx_rx_buffer *rx_buf;
1566	efx_qword_t *rxd;
1567
1568	rxd = efx_rx_desc(rx_queue, index);
1569	rx_buf = efx_rx_buffer(rx_queue, index);
1570	EFX_POPULATE_QWORD_2(*rxd,
1571			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1572			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1573}
1574
1575static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1576{
1577	struct efx_nic *efx = rx_queue->efx;
1578	unsigned int write_count;
1579	efx_dword_t reg;
1580
1581	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1582	write_count = rx_queue->added_count & ~7;
1583	if (rx_queue->notified_count == write_count)
1584		return;
1585
1586	do
1587		efx_ef10_build_rx_desc(
1588			rx_queue,
1589			rx_queue->notified_count & rx_queue->ptr_mask);
1590	while (++rx_queue->notified_count != write_count);
1591
1592	wmb();
1593	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1594			     write_count & rx_queue->ptr_mask);
1595	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1596			efx_rx_queue_index(rx_queue));
1597}
1598
1599static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1600
1601static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1602{
1603	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1604	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1605	efx_qword_t event;
1606
1607	EFX_POPULATE_QWORD_2(event,
1608			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1609			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1610
1611	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1612
1613	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1614	 * already swapped the data to little-endian order.
1615	 */
1616	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1617	       sizeof(efx_qword_t));
1618
1619	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1620			   inbuf, sizeof(inbuf), 0,
1621			   efx_ef10_rx_defer_refill_complete, 0);
1622}
1623
1624static void
1625efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1626				  int rc, efx_dword_t *outbuf,
1627				  size_t outlen_actual)
1628{
1629	/* nothing to do */
1630}
1631
1632static int efx_ef10_ev_probe(struct efx_channel *channel)
1633{
1634	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1635				    (channel->eventq_mask + 1) *
1636				    sizeof(efx_qword_t),
1637				    GFP_KERNEL);
1638}
1639
1640static int efx_ef10_ev_init(struct efx_channel *channel)
1641{
1642	MCDI_DECLARE_BUF(inbuf,
1643			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1644						EFX_BUF_SIZE));
1645	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1646	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1647	struct efx_nic *efx = channel->efx;
1648	struct efx_ef10_nic_data *nic_data;
1649	bool supports_rx_merge;
1650	size_t inlen, outlen;
1651	dma_addr_t dma_addr;
1652	int rc;
1653	int i;
1654
1655	nic_data = efx->nic_data;
1656	supports_rx_merge =
1657		!!(nic_data->datapath_caps &
1658		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1659
1660	/* Fill event queue with all ones (i.e. empty events) */
1661	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1662
1663	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1664	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1665	/* INIT_EVQ expects index in vector table, not absolute */
1666	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1667	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1668			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1669			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1670			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1671			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1672	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1673		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1674	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1675	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1676	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1677		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1678	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1679
1680	dma_addr = channel->eventq.buf.dma_addr;
1681	for (i = 0; i < entries; ++i) {
1682		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1683		dma_addr += EFX_BUF_SIZE;
1684	}
1685
1686	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1687
1688	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1689			  outbuf, sizeof(outbuf), &outlen);
1690	/* IRQ return is ignored */
1691	return rc;
1692}
1693
1694static void efx_ef10_ev_fini(struct efx_channel *channel)
1695{
1696	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1697	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1698	struct efx_nic *efx = channel->efx;
1699	size_t outlen;
1700	int rc;
1701
1702	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1703
1704	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1705			  outbuf, sizeof(outbuf), &outlen);
1706
1707	if (rc && rc != -EALREADY)
1708		goto fail;
1709
1710	return;
1711
1712fail:
1713	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1714			       outbuf, outlen, rc);
1715}
1716
1717static void efx_ef10_ev_remove(struct efx_channel *channel)
1718{
1719	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1720}
1721
1722static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1723					   unsigned int rx_queue_label)
1724{
1725	struct efx_nic *efx = rx_queue->efx;
1726
1727	netif_info(efx, hw, efx->net_dev,
1728		   "rx event arrived on queue %d labeled as queue %u\n",
1729		   efx_rx_queue_index(rx_queue), rx_queue_label);
1730
1731	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1732}
1733
1734static void
1735efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1736			     unsigned int actual, unsigned int expected)
1737{
1738	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1739	struct efx_nic *efx = rx_queue->efx;
1740
1741	netif_info(efx, hw, efx->net_dev,
1742		   "dropped %d events (index=%d expected=%d)\n",
1743		   dropped, actual, expected);
1744
1745	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1746}
1747
1748/* partially received RX was aborted. clean up. */
1749static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1750{
1751	unsigned int rx_desc_ptr;
1752
1753	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1754		  "scattered RX aborted (dropping %u buffers)\n",
1755		  rx_queue->scatter_n);
1756
1757	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1758
1759	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1760		      0, EFX_RX_PKT_DISCARD);
1761
1762	rx_queue->removed_count += rx_queue->scatter_n;
1763	rx_queue->scatter_n = 0;
1764	rx_queue->scatter_len = 0;
1765	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1766}
1767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1769				    const efx_qword_t *event)
1770{
1771	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
 
1772	unsigned int n_descs, n_packets, i;
1773	struct efx_nic *efx = channel->efx;
 
1774	struct efx_rx_queue *rx_queue;
 
1775	bool rx_cont;
1776	u16 flags = 0;
1777
1778	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1779		return 0;
1780
1781	/* Basic packet information */
1782	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1783	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1784	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1785	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
 
1786	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
 
 
 
 
 
1787
1788	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1789		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1790			    EFX_QWORD_FMT "\n",
1791			    EFX_QWORD_VAL(*event));
1792
1793	rx_queue = efx_channel_get_rx_queue(channel);
1794
1795	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1796		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1797
1798	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1799		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1800
1801	if (n_descs != rx_queue->scatter_n + 1) {
1802		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803
1804		/* detect rx abort */
1805		if (unlikely(n_descs == rx_queue->scatter_n)) {
1806			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1807				netdev_WARN(efx->net_dev,
1808					    "invalid RX abort: scatter_n=%u event="
1809					    EFX_QWORD_FMT "\n",
1810					    rx_queue->scatter_n,
1811					    EFX_QWORD_VAL(*event));
1812			efx_ef10_handle_rx_abort(rx_queue);
1813			return 0;
1814		}
1815
1816		/* Check that RX completion merging is valid, i.e.
1817		 * the current firmware supports it and this is a
1818		 * non-scattered packet.
1819		 */
1820		if (!(nic_data->datapath_caps &
1821		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1822		    rx_queue->scatter_n != 0 || rx_cont) {
1823			efx_ef10_handle_rx_bad_lbits(
1824				rx_queue, next_ptr_lbits,
1825				(rx_queue->removed_count +
1826				 rx_queue->scatter_n + 1) &
1827				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1828			return 0;
1829		}
1830
1831		/* Merged completion for multiple non-scattered packets */
1832		rx_queue->scatter_n = 1;
1833		rx_queue->scatter_len = 0;
1834		n_packets = n_descs;
1835		++channel->n_rx_merge_events;
1836		channel->n_rx_merge_packets += n_packets;
1837		flags |= EFX_RX_PKT_PREFIX_LEN;
1838	} else {
1839		++rx_queue->scatter_n;
1840		rx_queue->scatter_len += rx_bytes;
1841		if (rx_cont)
1842			return 0;
1843		n_packets = 1;
1844	}
1845
1846	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1847		flags |= EFX_RX_PKT_DISCARD;
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1850		channel->n_rx_ip_hdr_chksum_err += n_packets;
1851	} else if (unlikely(EFX_QWORD_FIELD(*event,
1852					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1853		channel->n_rx_tcp_udp_chksum_err += n_packets;
1854	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1855		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1856		flags |= EFX_RX_PKT_CSUMMED;
 
 
 
 
 
 
 
 
 
1857	}
1858
1859	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1860		flags |= EFX_RX_PKT_TCP;
1861
1862	channel->irq_mod_score += 2 * n_packets;
1863
1864	/* Handle received packet(s) */
1865	for (i = 0; i < n_packets; i++) {
1866		efx_rx_packet(rx_queue,
1867			      rx_queue->removed_count & rx_queue->ptr_mask,
1868			      rx_queue->scatter_n, rx_queue->scatter_len,
1869			      flags);
1870		rx_queue->removed_count += rx_queue->scatter_n;
1871	}
1872
1873	rx_queue->scatter_n = 0;
1874	rx_queue->scatter_len = 0;
1875
1876	return n_packets;
1877}
1878
 
 
 
 
 
 
 
 
 
 
 
1879static int
1880efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1881{
1882	struct efx_nic *efx = channel->efx;
1883	struct efx_tx_queue *tx_queue;
1884	unsigned int tx_ev_desc_ptr;
1885	unsigned int tx_ev_q_label;
1886	int tx_descs = 0;
 
 
1887
1888	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1889		return 0;
1890
1891	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1892		return 0;
1893
1894	/* Transmit completion */
1895	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1896	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1897	tx_queue = efx_channel_get_tx_queue(channel,
1898					    tx_ev_q_label % EFX_TXQ_TYPES);
1899	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1900		    tx_queue->ptr_mask);
1901	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902
1903	return tx_descs;
1904}
1905
1906static void
1907efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1908{
1909	struct efx_nic *efx = channel->efx;
1910	int subcode;
1911
1912	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1913
1914	switch (subcode) {
1915	case ESE_DZ_DRV_TIMER_EV:
1916	case ESE_DZ_DRV_WAKE_UP_EV:
1917		break;
1918	case ESE_DZ_DRV_START_UP_EV:
1919		/* event queue init complete. ok. */
1920		break;
1921	default:
1922		netif_err(efx, hw, efx->net_dev,
1923			  "channel %d unknown driver event type %d"
1924			  " (data " EFX_QWORD_FMT ")\n",
1925			  channel->channel, subcode,
1926			  EFX_QWORD_VAL(*event));
1927
1928	}
1929}
1930
1931static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1932						   efx_qword_t *event)
1933{
1934	struct efx_nic *efx = channel->efx;
1935	u32 subcode;
1936
1937	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1938
1939	switch (subcode) {
1940	case EFX_EF10_TEST:
1941		channel->event_test_cpu = raw_smp_processor_id();
1942		break;
1943	case EFX_EF10_REFILL:
1944		/* The queue must be empty, so we won't receive any rx
1945		 * events, so efx_process_channel() won't refill the
1946		 * queue. Refill it here
1947		 */
1948		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1949		break;
1950	default:
1951		netif_err(efx, hw, efx->net_dev,
1952			  "channel %d unknown driver event type %u"
1953			  " (data " EFX_QWORD_FMT ")\n",
1954			  channel->channel, (unsigned) subcode,
1955			  EFX_QWORD_VAL(*event));
1956	}
1957}
1958
 
 
1959static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1960{
1961	struct efx_nic *efx = channel->efx;
1962	efx_qword_t event, *p_event;
1963	unsigned int read_ptr;
 
 
1964	int ev_code;
1965	int tx_descs = 0;
1966	int spent = 0;
1967
1968	if (quota <= 0)
1969		return spent;
1970
1971	read_ptr = channel->eventq_read_ptr;
1972
1973	for (;;) {
1974		p_event = efx_event(channel, read_ptr);
1975		event = *p_event;
1976
1977		if (!efx_event_present(&event))
1978			break;
1979
1980		EFX_SET_QWORD(*p_event);
1981
1982		++read_ptr;
1983
1984		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1985
1986		netif_vdbg(efx, drv, efx->net_dev,
1987			   "processing event on %d " EFX_QWORD_FMT "\n",
1988			   channel->channel, EFX_QWORD_VAL(event));
1989
1990		switch (ev_code) {
1991		case ESE_DZ_EV_CODE_MCDI_EV:
1992			efx_mcdi_process_event(channel, &event);
1993			break;
1994		case ESE_DZ_EV_CODE_RX_EV:
1995			spent += efx_ef10_handle_rx_event(channel, &event);
1996			if (spent >= quota) {
1997				/* XXX can we split a merged event to
1998				 * avoid going over-quota?
1999				 */
2000				spent = quota;
2001				goto out;
2002			}
2003			break;
2004		case ESE_DZ_EV_CODE_TX_EV:
2005			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2006			if (tx_descs > efx->txq_entries) {
2007				spent = quota;
2008				goto out;
2009			} else if (++spent == quota) {
2010				goto out;
2011			}
2012			break;
2013		case ESE_DZ_EV_CODE_DRIVER_EV:
2014			efx_ef10_handle_driver_event(channel, &event);
2015			if (++spent == quota)
2016				goto out;
2017			break;
2018		case EFX_EF10_DRVGEN_EV:
2019			efx_ef10_handle_driver_generated_event(channel, &event);
2020			break;
2021		default:
2022			netif_err(efx, hw, efx->net_dev,
2023				  "channel %d unknown event type %d"
2024				  " (data " EFX_QWORD_FMT ")\n",
2025				  channel->channel, ev_code,
2026				  EFX_QWORD_VAL(event));
2027		}
2028	}
2029
2030out:
2031	channel->eventq_read_ptr = read_ptr;
2032	return spent;
2033}
2034
2035static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2036{
2037	struct efx_nic *efx = channel->efx;
2038	efx_dword_t rptr;
2039
2040	if (EFX_EF10_WORKAROUND_35388(efx)) {
2041		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2042			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2043		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2044			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2045
2046		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2047				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2048				     ERF_DD_EVQ_IND_RPTR,
2049				     (channel->eventq_read_ptr &
2050				      channel->eventq_mask) >>
2051				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2052		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2053				channel->channel);
2054		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2055				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2056				     ERF_DD_EVQ_IND_RPTR,
2057				     channel->eventq_read_ptr &
2058				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2059		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2060				channel->channel);
2061	} else {
2062		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2063				     channel->eventq_read_ptr &
2064				     channel->eventq_mask);
2065		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2066	}
2067}
2068
2069static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2070{
2071	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2072	struct efx_nic *efx = channel->efx;
2073	efx_qword_t event;
2074	int rc;
2075
2076	EFX_POPULATE_QWORD_2(event,
2077			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2078			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2079
2080	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2081
2082	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2083	 * already swapped the data to little-endian order.
2084	 */
2085	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2086	       sizeof(efx_qword_t));
2087
2088	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2089			  NULL, 0, NULL);
2090	if (rc != 0)
2091		goto fail;
2092
2093	return;
2094
2095fail:
2096	WARN_ON(true);
2097	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2098}
2099
2100void efx_ef10_handle_drain_event(struct efx_nic *efx)
2101{
2102	if (atomic_dec_and_test(&efx->active_queues))
2103		wake_up(&efx->flush_wq);
2104
2105	WARN_ON(atomic_read(&efx->active_queues) < 0);
2106}
2107
2108static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2109{
2110	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2111	struct efx_channel *channel;
2112	struct efx_tx_queue *tx_queue;
2113	struct efx_rx_queue *rx_queue;
2114	int pending;
2115
2116	/* If the MC has just rebooted, the TX/RX queues will have already been
2117	 * torn down, but efx->active_queues needs to be set to zero.
2118	 */
2119	if (nic_data->must_realloc_vis) {
2120		atomic_set(&efx->active_queues, 0);
2121		return 0;
2122	}
2123
2124	/* Do not attempt to write to the NIC during EEH recovery */
2125	if (efx->state != STATE_RECOVERY) {
2126		efx_for_each_channel(channel, efx) {
2127			efx_for_each_channel_rx_queue(rx_queue, channel)
2128				efx_ef10_rx_fini(rx_queue);
2129			efx_for_each_channel_tx_queue(tx_queue, channel)
2130				efx_ef10_tx_fini(tx_queue);
2131		}
2132
2133		wait_event_timeout(efx->flush_wq,
2134				   atomic_read(&efx->active_queues) == 0,
2135				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2136		pending = atomic_read(&efx->active_queues);
2137		if (pending) {
2138			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2139				  pending);
2140			return -ETIMEDOUT;
2141		}
2142	}
2143
2144	return 0;
2145}
2146
2147static void efx_ef10_prepare_flr(struct efx_nic *efx)
2148{
2149	atomic_set(&efx->active_queues, 0);
2150}
2151
2152static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2153				  const struct efx_filter_spec *right)
2154{
2155	if ((left->match_flags ^ right->match_flags) |
2156	    ((left->flags ^ right->flags) &
2157	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2158		return false;
2159
2160	return memcmp(&left->outer_vid, &right->outer_vid,
2161		      sizeof(struct efx_filter_spec) -
2162		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2163}
2164
2165static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2166{
2167	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2168	return jhash2((const u32 *)&spec->outer_vid,
2169		      (sizeof(struct efx_filter_spec) -
2170		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2171		      0);
2172	/* XXX should we randomise the initval? */
2173}
2174
2175/* Decide whether a filter should be exclusive or else should allow
2176 * delivery to additional recipients.  Currently we decide that
2177 * filters for specific local unicast MAC and IP addresses are
2178 * exclusive.
2179 */
2180static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2181{
2182	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2183	    !is_multicast_ether_addr(spec->loc_mac))
2184		return true;
2185
2186	if ((spec->match_flags &
2187	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2188	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2189		if (spec->ether_type == htons(ETH_P_IP) &&
2190		    !ipv4_is_multicast(spec->loc_host[0]))
2191			return true;
2192		if (spec->ether_type == htons(ETH_P_IPV6) &&
2193		    ((const u8 *)spec->loc_host)[0] != 0xff)
2194			return true;
2195	}
2196
2197	return false;
2198}
2199
2200static struct efx_filter_spec *
2201efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2202			   unsigned int filter_idx)
2203{
2204	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2205					  ~EFX_EF10_FILTER_FLAGS);
2206}
2207
2208static unsigned int
2209efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2210			   unsigned int filter_idx)
2211{
2212	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2213}
2214
2215static void
2216efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2217			  unsigned int filter_idx,
2218			  const struct efx_filter_spec *spec,
2219			  unsigned int flags)
2220{
2221	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2222}
2223
2224static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2225				      const struct efx_filter_spec *spec,
2226				      efx_dword_t *inbuf, u64 handle,
2227				      bool replacing)
2228{
2229	struct efx_ef10_nic_data *nic_data = efx->nic_data;
 
 
2230
2231	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
 
 
2232
2233	if (replacing) {
2234		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2235			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2236		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2237	} else {
2238		u32 match_fields = 0;
2239
2240		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2241			       efx_ef10_filter_is_exclusive(spec) ?
2242			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2243			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2244
2245		/* Convert match flags and values.  Unlike almost
2246		 * everything else in MCDI, these fields are in
2247		 * network byte order.
2248		 */
2249		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2250			match_fields |=
2251				is_multicast_ether_addr(spec->loc_mac) ?
2252				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2253				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2254#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2255		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2256			match_fields |=					     \
2257				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2258				mcdi_field ## _LBN;			     \
2259			BUILD_BUG_ON(					     \
2260				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2261				sizeof(spec->gen_field));		     \
2262			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2263			       &spec->gen_field, sizeof(spec->gen_field));   \
2264		}
2265		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2266		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2267		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2268		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2269		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2270		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2271		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2272		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2273		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2274		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2275#undef COPY_FIELD
2276		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2277			       match_fields);
2278	}
2279
2280	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2281	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2282		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2283		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2284		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2285	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2286		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2287	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2288		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2289		       0 : spec->dmaq_id);
2290	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2291		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2292		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2293		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2294	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2295		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2296			       spec->rss_context !=
2297			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2298			       spec->rss_context : nic_data->rx_rss_context);
2299}
2300
2301static int efx_ef10_filter_push(struct efx_nic *efx,
2302				const struct efx_filter_spec *spec,
2303				u64 *handle, bool replacing)
2304{
2305	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2306	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2307	int rc;
2308
2309	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2310	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2311			  outbuf, sizeof(outbuf), NULL);
2312	if (rc == 0)
2313		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2314	if (rc == -ENOSPC)
2315		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2316	return rc;
2317}
2318
2319static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2320					enum efx_filter_match_flags match_flags)
2321{
2322	unsigned int match_pri;
2323
2324	for (match_pri = 0;
2325	     match_pri < table->rx_match_count;
2326	     match_pri++)
2327		if (table->rx_match_flags[match_pri] == match_flags)
2328			return match_pri;
2329
2330	return -EPROTONOSUPPORT;
2331}
2332
2333static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2334				  struct efx_filter_spec *spec,
2335				  bool replace_equal)
2336{
2337	struct efx_ef10_filter_table *table = efx->filter_state;
2338	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2339	struct efx_filter_spec *saved_spec;
2340	unsigned int match_pri, hash;
2341	unsigned int priv_flags;
2342	bool replacing = false;
2343	int ins_index = -1;
2344	DEFINE_WAIT(wait);
2345	bool is_mc_recip;
2346	s32 rc;
2347
2348	/* For now, only support RX filters */
2349	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2350	    EFX_FILTER_FLAG_RX)
2351		return -EINVAL;
2352
2353	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2354	if (rc < 0)
2355		return rc;
2356	match_pri = rc;
2357
2358	hash = efx_ef10_filter_hash(spec);
2359	is_mc_recip = efx_filter_is_mc_recipient(spec);
2360	if (is_mc_recip)
2361		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2362
2363	/* Find any existing filters with the same match tuple or
2364	 * else a free slot to insert at.  If any of them are busy,
2365	 * we have to wait and retry.
2366	 */
2367	for (;;) {
2368		unsigned int depth = 1;
2369		unsigned int i;
2370
2371		spin_lock_bh(&efx->filter_lock);
2372
2373		for (;;) {
2374			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2375			saved_spec = efx_ef10_filter_entry_spec(table, i);
2376
2377			if (!saved_spec) {
2378				if (ins_index < 0)
2379					ins_index = i;
2380			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2381				if (table->entry[i].spec &
2382				    EFX_EF10_FILTER_FLAG_BUSY)
2383					break;
2384				if (spec->priority < saved_spec->priority &&
2385				    spec->priority != EFX_FILTER_PRI_AUTO) {
2386					rc = -EPERM;
2387					goto out_unlock;
2388				}
2389				if (!is_mc_recip) {
2390					/* This is the only one */
2391					if (spec->priority ==
2392					    saved_spec->priority &&
2393					    !replace_equal) {
2394						rc = -EEXIST;
2395						goto out_unlock;
2396					}
2397					ins_index = i;
2398					goto found;
2399				} else if (spec->priority >
2400					   saved_spec->priority ||
2401					   (spec->priority ==
2402					    saved_spec->priority &&
2403					    replace_equal)) {
2404					if (ins_index < 0)
2405						ins_index = i;
2406					else
2407						__set_bit(depth, mc_rem_map);
2408				}
2409			}
2410
2411			/* Once we reach the maximum search depth, use
2412			 * the first suitable slot or return -EBUSY if
2413			 * there was none
2414			 */
2415			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2416				if (ins_index < 0) {
2417					rc = -EBUSY;
2418					goto out_unlock;
2419				}
2420				goto found;
2421			}
2422
2423			++depth;
2424		}
2425
2426		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2427		spin_unlock_bh(&efx->filter_lock);
2428		schedule();
2429	}
2430
2431found:
2432	/* Create a software table entry if necessary, and mark it
2433	 * busy.  We might yet fail to insert, but any attempt to
2434	 * insert a conflicting filter while we're waiting for the
2435	 * firmware must find the busy entry.
2436	 */
2437	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2438	if (saved_spec) {
2439		if (spec->priority == EFX_FILTER_PRI_AUTO &&
2440		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2441			/* Just make sure it won't be removed */
2442			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2443				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2444			table->entry[ins_index].spec &=
2445				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2446			rc = ins_index;
2447			goto out_unlock;
2448		}
2449		replacing = true;
2450		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2451	} else {
2452		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2453		if (!saved_spec) {
2454			rc = -ENOMEM;
2455			goto out_unlock;
 
2456		}
2457		*saved_spec = *spec;
2458		priv_flags = 0;
2459	}
2460	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2461				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2462
2463	/* Mark lower-priority multicast recipients busy prior to removal */
2464	if (is_mc_recip) {
2465		unsigned int depth, i;
 
 
 
 
 
 
 
 
 
2466
2467		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2468			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2469			if (test_bit(depth, mc_rem_map))
2470				table->entry[i].spec |=
2471					EFX_EF10_FILTER_FLAG_BUSY;
2472		}
2473	}
2474
2475	spin_unlock_bh(&efx->filter_lock);
2476
2477	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2478				  replacing);
2479
2480	/* Finalise the software table entry */
2481	spin_lock_bh(&efx->filter_lock);
2482	if (rc == 0) {
2483		if (replacing) {
2484			/* Update the fields that may differ */
2485			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2486				saved_spec->flags |=
2487					EFX_FILTER_FLAG_RX_OVER_AUTO;
2488			saved_spec->priority = spec->priority;
2489			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2490			saved_spec->flags |= spec->flags;
2491			saved_spec->rss_context = spec->rss_context;
2492			saved_spec->dmaq_id = spec->dmaq_id;
2493		}
2494	} else if (!replacing) {
2495		kfree(saved_spec);
2496		saved_spec = NULL;
2497	}
2498	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2499
2500	/* Remove and finalise entries for lower-priority multicast
2501	 * recipients
2502	 */
2503	if (is_mc_recip) {
2504		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2505		unsigned int depth, i;
2506
2507		memset(inbuf, 0, sizeof(inbuf));
2508
2509		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2510			if (!test_bit(depth, mc_rem_map))
2511				continue;
2512
2513			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2514			saved_spec = efx_ef10_filter_entry_spec(table, i);
2515			priv_flags = efx_ef10_filter_entry_flags(table, i);
2516
2517			if (rc == 0) {
2518				spin_unlock_bh(&efx->filter_lock);
2519				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2520					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2521				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2522					       table->entry[i].handle);
2523				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2524						  inbuf, sizeof(inbuf),
2525						  NULL, 0, NULL);
2526				spin_lock_bh(&efx->filter_lock);
2527			}
2528
2529			if (rc == 0) {
2530				kfree(saved_spec);
2531				saved_spec = NULL;
2532				priv_flags = 0;
2533			} else {
2534				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2535			}
2536			efx_ef10_filter_set_entry(table, i, saved_spec,
2537						  priv_flags);
2538		}
2539	}
2540
2541	/* If successful, return the inserted filter ID */
2542	if (rc == 0)
2543		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2544
2545	wake_up_all(&table->waitq);
2546out_unlock:
2547	spin_unlock_bh(&efx->filter_lock);
2548	finish_wait(&table->waitq, &wait);
2549	return rc;
2550}
2551
2552static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2553{
2554	/* no need to do anything here on EF10 */
2555}
2556
2557/* Remove a filter.
2558 * If !by_index, remove by ID
2559 * If by_index, remove by index
2560 * Filter ID may come from userland and must be range-checked.
2561 */
2562static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2563					   unsigned int priority_mask,
2564					   u32 filter_id, bool by_index)
2565{
2566	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2567	struct efx_ef10_filter_table *table = efx->filter_state;
2568	MCDI_DECLARE_BUF(inbuf,
2569			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2570			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2571	struct efx_filter_spec *spec;
2572	DEFINE_WAIT(wait);
2573	int rc;
2574
2575	/* Find the software table entry and mark it busy.  Don't
2576	 * remove it yet; any attempt to update while we're waiting
2577	 * for the firmware must find the busy entry.
2578	 */
2579	for (;;) {
2580		spin_lock_bh(&efx->filter_lock);
2581		if (!(table->entry[filter_idx].spec &
2582		      EFX_EF10_FILTER_FLAG_BUSY))
2583			break;
2584		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2585		spin_unlock_bh(&efx->filter_lock);
2586		schedule();
2587	}
2588
2589	spec = efx_ef10_filter_entry_spec(table, filter_idx);
2590	if (!spec ||
2591	    (!by_index &&
2592	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2593	     filter_id / HUNT_FILTER_TBL_ROWS)) {
2594		rc = -ENOENT;
2595		goto out_unlock;
2596	}
2597
2598	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2599	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2600		/* Just remove flags */
2601		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2602		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2603		rc = 0;
2604		goto out_unlock;
2605	}
2606
2607	if (!(priority_mask & (1U << spec->priority))) {
2608		rc = -ENOENT;
2609		goto out_unlock;
2610	}
2611
2612	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2613	spin_unlock_bh(&efx->filter_lock);
2614
2615	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2616		/* Reset to an automatic filter */
2617
2618		struct efx_filter_spec new_spec = *spec;
2619
2620		new_spec.priority = EFX_FILTER_PRI_AUTO;
2621		new_spec.flags = (EFX_FILTER_FLAG_RX |
2622				  EFX_FILTER_FLAG_RX_RSS);
2623		new_spec.dmaq_id = 0;
2624		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2625		rc = efx_ef10_filter_push(efx, &new_spec,
2626					  &table->entry[filter_idx].handle,
2627					  true);
2628
2629		spin_lock_bh(&efx->filter_lock);
2630		if (rc == 0)
2631			*spec = new_spec;
2632	} else {
2633		/* Really remove the filter */
2634
2635		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2636			       efx_ef10_filter_is_exclusive(spec) ?
2637			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
2638			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2639		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2640			       table->entry[filter_idx].handle);
2641		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2642				  inbuf, sizeof(inbuf), NULL, 0, NULL);
2643
2644		spin_lock_bh(&efx->filter_lock);
2645		if (rc == 0) {
2646			kfree(spec);
2647			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2648		}
2649	}
2650
2651	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2652	wake_up_all(&table->waitq);
2653out_unlock:
2654	spin_unlock_bh(&efx->filter_lock);
2655	finish_wait(&table->waitq, &wait);
2656	return rc;
2657}
2658
2659static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2660				       enum efx_filter_priority priority,
2661				       u32 filter_id)
2662{
2663	return efx_ef10_filter_remove_internal(efx, 1U << priority,
2664					       filter_id, false);
2665}
2666
2667static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2668				    enum efx_filter_priority priority,
2669				    u32 filter_id, struct efx_filter_spec *spec)
2670{
2671	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2672	struct efx_ef10_filter_table *table = efx->filter_state;
2673	const struct efx_filter_spec *saved_spec;
2674	int rc;
2675
2676	spin_lock_bh(&efx->filter_lock);
2677	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2678	if (saved_spec && saved_spec->priority == priority &&
2679	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2680	    filter_id / HUNT_FILTER_TBL_ROWS) {
2681		*spec = *saved_spec;
2682		rc = 0;
2683	} else {
2684		rc = -ENOENT;
2685	}
2686	spin_unlock_bh(&efx->filter_lock);
2687	return rc;
2688}
2689
2690static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2691				     enum efx_filter_priority priority)
2692{
2693	unsigned int priority_mask;
2694	unsigned int i;
2695	int rc;
2696
2697	priority_mask = (((1U << (priority + 1)) - 1) &
2698			 ~(1U << EFX_FILTER_PRI_AUTO));
2699
2700	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2701		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2702						     i, true);
2703		if (rc && rc != -ENOENT)
2704			return rc;
2705	}
2706
2707	return 0;
2708}
2709
2710static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2711					 enum efx_filter_priority priority)
2712{
2713	struct efx_ef10_filter_table *table = efx->filter_state;
2714	unsigned int filter_idx;
2715	s32 count = 0;
2716
2717	spin_lock_bh(&efx->filter_lock);
2718	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2719		if (table->entry[filter_idx].spec &&
2720		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2721		    priority)
2722			++count;
2723	}
2724	spin_unlock_bh(&efx->filter_lock);
2725	return count;
2726}
2727
2728static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2729{
2730	struct efx_ef10_filter_table *table = efx->filter_state;
2731
2732	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2733}
2734
2735static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2736				      enum efx_filter_priority priority,
2737				      u32 *buf, u32 size)
2738{
2739	struct efx_ef10_filter_table *table = efx->filter_state;
2740	struct efx_filter_spec *spec;
2741	unsigned int filter_idx;
2742	s32 count = 0;
2743
2744	spin_lock_bh(&efx->filter_lock);
2745	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2746		spec = efx_ef10_filter_entry_spec(table, filter_idx);
2747		if (spec && spec->priority == priority) {
2748			if (count == size) {
2749				count = -EMSGSIZE;
2750				break;
2751			}
2752			buf[count++] = (efx_ef10_filter_rx_match_pri(
2753						table, spec->match_flags) *
2754					HUNT_FILTER_TBL_ROWS +
2755					filter_idx);
2756		}
2757	}
2758	spin_unlock_bh(&efx->filter_lock);
2759	return count;
2760}
2761
2762#ifdef CONFIG_RFS_ACCEL
2763
2764static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2765
2766static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2767				      struct efx_filter_spec *spec)
2768{
2769	struct efx_ef10_filter_table *table = efx->filter_state;
2770	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2771	struct efx_filter_spec *saved_spec;
2772	unsigned int hash, i, depth = 1;
2773	bool replacing = false;
2774	int ins_index = -1;
2775	u64 cookie;
2776	s32 rc;
2777
2778	/* Must be an RX filter without RSS and not for a multicast
2779	 * destination address (RFS only works for connected sockets).
2780	 * These restrictions allow us to pass only a tiny amount of
2781	 * data through to the completion function.
2782	 */
2783	EFX_WARN_ON_PARANOID(spec->flags !=
2784			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2785	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2786	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2787
2788	hash = efx_ef10_filter_hash(spec);
2789
2790	spin_lock_bh(&efx->filter_lock);
2791
2792	/* Find any existing filter with the same match tuple or else
2793	 * a free slot to insert at.  If an existing filter is busy,
2794	 * we have to give up.
2795	 */
2796	for (;;) {
2797		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2798		saved_spec = efx_ef10_filter_entry_spec(table, i);
 
2799
2800		if (!saved_spec) {
2801			if (ins_index < 0)
2802				ins_index = i;
2803		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2804			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2805				rc = -EBUSY;
2806				goto fail_unlock;
2807			}
2808			if (spec->priority < saved_spec->priority) {
2809				rc = -EPERM;
2810				goto fail_unlock;
2811			}
2812			ins_index = i;
2813			break;
2814		}
2815
2816		/* Once we reach the maximum search depth, use the
2817		 * first suitable slot or return -EBUSY if there was
2818		 * none
2819		 */
2820		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2821			if (ins_index < 0) {
2822				rc = -EBUSY;
2823				goto fail_unlock;
2824			}
2825			break;
2826		}
2827
2828		++depth;
2829	}
 
2830
2831	/* Create a software table entry if necessary, and mark it
2832	 * busy.  We might yet fail to insert, but any attempt to
2833	 * insert a conflicting filter while we're waiting for the
2834	 * firmware must find the busy entry.
2835	 */
2836	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2837	if (saved_spec) {
2838		replacing = true;
2839	} else {
2840		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2841		if (!saved_spec) {
2842			rc = -ENOMEM;
2843			goto fail_unlock;
2844		}
2845		*saved_spec = *spec;
2846	}
2847	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2848				  EFX_EF10_FILTER_FLAG_BUSY);
2849
2850	spin_unlock_bh(&efx->filter_lock);
 
2851
2852	/* Pack up the variables needed on completion */
2853	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2854
2855	efx_ef10_filter_push_prep(efx, spec, inbuf,
2856				  table->entry[ins_index].handle, replacing);
2857	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2858			   MC_CMD_FILTER_OP_OUT_LEN,
2859			   efx_ef10_filter_rfs_insert_complete, cookie);
 
 
 
 
 
 
 
 
2860
2861	return ins_index;
2862
2863fail_unlock:
2864	spin_unlock_bh(&efx->filter_lock);
2865	return rc;
2866}
2867
2868static void
2869efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2870				    int rc, efx_dword_t *outbuf,
2871				    size_t outlen_actual)
2872{
2873	struct efx_ef10_filter_table *table = efx->filter_state;
2874	unsigned int ins_index, dmaq_id;
2875	struct efx_filter_spec *spec;
2876	bool replacing;
2877
2878	/* Unpack the cookie */
2879	replacing = cookie >> 31;
2880	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2881	dmaq_id = cookie & 0xffff;
2882
2883	spin_lock_bh(&efx->filter_lock);
2884	spec = efx_ef10_filter_entry_spec(table, ins_index);
2885	if (rc == 0) {
2886		table->entry[ins_index].handle =
2887			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2888		if (replacing)
2889			spec->dmaq_id = dmaq_id;
2890	} else if (!replacing) {
2891		kfree(spec);
2892		spec = NULL;
2893	}
2894	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2895	spin_unlock_bh(&efx->filter_lock);
2896
2897	wake_up_all(&table->waitq);
2898}
2899
2900static void
2901efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2902				    unsigned long filter_idx,
2903				    int rc, efx_dword_t *outbuf,
2904				    size_t outlen_actual);
2905
2906static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2907					   unsigned int filter_idx)
2908{
2909	struct efx_ef10_filter_table *table = efx->filter_state;
2910	struct efx_filter_spec *spec =
2911		efx_ef10_filter_entry_spec(table, filter_idx);
2912	MCDI_DECLARE_BUF(inbuf,
2913			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2914			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2915
2916	if (!spec ||
2917	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2918	    spec->priority != EFX_FILTER_PRI_HINT ||
2919	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2920				 flow_id, filter_idx))
2921		return false;
2922
2923	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2924		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
2925	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2926		       table->entry[filter_idx].handle);
2927	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2928			       efx_ef10_filter_rfs_expire_complete, filter_idx))
2929		return false;
2930
2931	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2932	return true;
2933}
2934
2935static void
2936efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2937				    unsigned long filter_idx,
2938				    int rc, efx_dword_t *outbuf,
2939				    size_t outlen_actual)
2940{
2941	struct efx_ef10_filter_table *table = efx->filter_state;
2942	struct efx_filter_spec *spec =
2943		efx_ef10_filter_entry_spec(table, filter_idx);
2944
2945	spin_lock_bh(&efx->filter_lock);
2946	if (rc == 0) {
2947		kfree(spec);
2948		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2949	}
2950	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2951	wake_up_all(&table->waitq);
2952	spin_unlock_bh(&efx->filter_lock);
2953}
2954
2955#endif /* CONFIG_RFS_ACCEL */
2956
2957static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2958{
2959	int match_flags = 0;
2960
2961#define MAP_FLAG(gen_flag, mcdi_field) {				\
2962		u32 old_mcdi_flags = mcdi_flags;			\
2963		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
2964				mcdi_field ## _LBN);			\
2965		if (mcdi_flags != old_mcdi_flags)			\
2966			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
2967	}
2968	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2969	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2970	MAP_FLAG(REM_HOST, SRC_IP);
2971	MAP_FLAG(LOC_HOST, DST_IP);
2972	MAP_FLAG(REM_MAC, SRC_MAC);
2973	MAP_FLAG(REM_PORT, SRC_PORT);
2974	MAP_FLAG(LOC_MAC, DST_MAC);
2975	MAP_FLAG(LOC_PORT, DST_PORT);
2976	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2977	MAP_FLAG(INNER_VID, INNER_VLAN);
2978	MAP_FLAG(OUTER_VID, OUTER_VLAN);
2979	MAP_FLAG(IP_PROTO, IP_PROTO);
2980#undef MAP_FLAG
2981
2982	/* Did we map them all? */
2983	if (mcdi_flags)
2984		return -EINVAL;
2985
2986	return match_flags;
2987}
2988
2989static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2990{
2991	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
2992	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
2993	unsigned int pd_match_pri, pd_match_count;
2994	struct efx_ef10_filter_table *table;
2995	size_t outlen;
2996	int rc;
2997
2998	table = kzalloc(sizeof(*table), GFP_KERNEL);
2999	if (!table)
3000		return -ENOMEM;
3001
3002	/* Find out which RX filter types are supported, and their priorities */
3003	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3004		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3005	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3006			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3007			  &outlen);
3008	if (rc)
3009		goto fail;
3010	pd_match_count = MCDI_VAR_ARRAY_LEN(
3011		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3012	table->rx_match_count = 0;
3013
3014	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3015		u32 mcdi_flags =
3016			MCDI_ARRAY_DWORD(
3017				outbuf,
3018				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3019				pd_match_pri);
3020		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3021		if (rc < 0) {
3022			netif_dbg(efx, probe, efx->net_dev,
3023				  "%s: fw flags %#x pri %u not supported in driver\n",
3024				  __func__, mcdi_flags, pd_match_pri);
3025		} else {
3026			netif_dbg(efx, probe, efx->net_dev,
3027				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3028				  __func__, mcdi_flags, pd_match_pri,
3029				  rc, table->rx_match_count);
3030			table->rx_match_flags[table->rx_match_count++] = rc;
3031		}
3032	}
3033
3034	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3035	if (!table->entry) {
3036		rc = -ENOMEM;
3037		goto fail;
3038	}
3039
3040	efx->filter_state = table;
3041	init_waitqueue_head(&table->waitq);
3042	return 0;
3043
3044fail:
3045	kfree(table);
3046	return rc;
3047}
3048
3049static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3050{
3051	struct efx_ef10_filter_table *table = efx->filter_state;
3052	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3053	struct efx_filter_spec *spec;
3054	unsigned int filter_idx;
3055	bool failed = false;
3056	int rc;
3057
3058	if (!nic_data->must_restore_filters)
3059		return;
3060
3061	spin_lock_bh(&efx->filter_lock);
3062
3063	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3064		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3065		if (!spec)
3066			continue;
3067
3068		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3069		spin_unlock_bh(&efx->filter_lock);
3070
3071		rc = efx_ef10_filter_push(efx, spec,
3072					  &table->entry[filter_idx].handle,
3073					  false);
3074		if (rc)
3075			failed = true;
3076
3077		spin_lock_bh(&efx->filter_lock);
3078		if (rc) {
3079			kfree(spec);
3080			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3081		} else {
3082			table->entry[filter_idx].spec &=
3083				~EFX_EF10_FILTER_FLAG_BUSY;
3084		}
3085	}
3086
3087	spin_unlock_bh(&efx->filter_lock);
3088
3089	if (failed)
3090		netif_err(efx, hw, efx->net_dev,
3091			  "unable to restore all filters\n");
3092	else
3093		nic_data->must_restore_filters = false;
3094}
3095
3096static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3097{
3098	struct efx_ef10_filter_table *table = efx->filter_state;
3099	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3100	struct efx_filter_spec *spec;
3101	unsigned int filter_idx;
3102	int rc;
3103
3104	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3105		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3106		if (!spec)
3107			continue;
3108
3109		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3110			       efx_ef10_filter_is_exclusive(spec) ?
3111			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3112			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3113		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3114			       table->entry[filter_idx].handle);
3115		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3116				  NULL, 0, NULL);
3117		if (rc)
3118			netdev_WARN(efx->net_dev,
3119				    "filter_idx=%#x handle=%#llx\n",
3120				    filter_idx,
3121				    table->entry[filter_idx].handle);
3122		kfree(spec);
3123	}
3124
3125	vfree(table->entry);
3126	kfree(table);
3127}
3128
3129static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3130{
3131	struct efx_ef10_filter_table *table = efx->filter_state;
3132	struct net_device *net_dev = efx->net_dev;
3133	struct efx_filter_spec spec;
3134	bool remove_failed = false;
3135	struct netdev_hw_addr *uc;
3136	struct netdev_hw_addr *mc;
3137	unsigned int filter_idx;
3138	int i, n, rc;
3139
3140	if (!efx_dev_registered(efx))
3141		return;
3142
3143	/* Mark old filters that may need to be removed */
3144	spin_lock_bh(&efx->filter_lock);
3145	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3146	for (i = 0; i < n; i++) {
3147		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3148		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3149	}
3150	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3151	for (i = 0; i < n; i++) {
3152		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3153		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3154	}
3155	spin_unlock_bh(&efx->filter_lock);
3156
3157	/* Copy/convert the address lists; add the primary station
3158	 * address and broadcast address
3159	 */
3160	netif_addr_lock_bh(net_dev);
3161	if (net_dev->flags & IFF_PROMISC ||
3162	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3163		table->dev_uc_count = -1;
3164	} else {
3165		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3166		ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3167		i = 1;
3168		netdev_for_each_uc_addr(uc, net_dev) {
3169			ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3170			i++;
3171		}
3172	}
3173	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3174	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3175		table->dev_mc_count = -1;
3176	} else {
3177		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3178		eth_broadcast_addr(table->dev_mc_list[0].addr);
3179		i = 1;
3180		netdev_for_each_mc_addr(mc, net_dev) {
3181			ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3182			i++;
3183		}
3184	}
3185	netif_addr_unlock_bh(net_dev);
3186
3187	/* Insert/renew unicast filters */
3188	if (table->dev_uc_count >= 0) {
3189		for (i = 0; i < table->dev_uc_count; i++) {
3190			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3191					   EFX_FILTER_FLAG_RX_RSS,
3192					   0);
3193			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3194						 table->dev_uc_list[i].addr);
3195			rc = efx_ef10_filter_insert(efx, &spec, true);
3196			if (rc < 0) {
3197				/* Fall back to unicast-promisc */
3198				while (i--)
3199					efx_ef10_filter_remove_safe(
3200						efx, EFX_FILTER_PRI_AUTO,
3201						table->dev_uc_list[i].id);
3202				table->dev_uc_count = -1;
3203				break;
3204			}
3205			table->dev_uc_list[i].id = rc;
3206		}
3207	}
3208	if (table->dev_uc_count < 0) {
3209		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3210				   EFX_FILTER_FLAG_RX_RSS,
3211				   0);
3212		efx_filter_set_uc_def(&spec);
3213		rc = efx_ef10_filter_insert(efx, &spec, true);
3214		if (rc < 0) {
3215			WARN_ON(1);
3216			table->dev_uc_count = 0;
3217		} else {
3218			table->dev_uc_list[0].id = rc;
3219		}
3220	}
3221
3222	/* Insert/renew multicast filters */
3223	if (table->dev_mc_count >= 0) {
3224		for (i = 0; i < table->dev_mc_count; i++) {
3225			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3226					   EFX_FILTER_FLAG_RX_RSS,
3227					   0);
3228			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3229						 table->dev_mc_list[i].addr);
3230			rc = efx_ef10_filter_insert(efx, &spec, true);
3231			if (rc < 0) {
3232				/* Fall back to multicast-promisc */
3233				while (i--)
3234					efx_ef10_filter_remove_safe(
3235						efx, EFX_FILTER_PRI_AUTO,
3236						table->dev_mc_list[i].id);
3237				table->dev_mc_count = -1;
3238				break;
3239			}
3240			table->dev_mc_list[i].id = rc;
3241		}
3242	}
3243	if (table->dev_mc_count < 0) {
3244		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3245				   EFX_FILTER_FLAG_RX_RSS,
3246				   0);
3247		efx_filter_set_mc_def(&spec);
3248		rc = efx_ef10_filter_insert(efx, &spec, true);
3249		if (rc < 0) {
3250			WARN_ON(1);
3251			table->dev_mc_count = 0;
3252		} else {
3253			table->dev_mc_list[0].id = rc;
3254		}
3255	}
3256
3257	/* Remove filters that weren't renewed.  Since nothing else
3258	 * changes the AUTO_OLD flag or removes these filters, we
3259	 * don't need to hold the filter_lock while scanning for
3260	 * these filters.
3261	 */
3262	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3263		if (ACCESS_ONCE(table->entry[i].spec) &
3264		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3265			if (efx_ef10_filter_remove_internal(
3266				    efx, 1U << EFX_FILTER_PRI_AUTO,
3267				    i, true) < 0)
3268				remove_failed = true;
3269		}
3270	}
3271	WARN_ON(remove_failed);
3272}
3273
3274static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3275{
3276	efx_ef10_filter_sync_rx_mode(efx);
3277
 
 
3278	return efx_mcdi_set_mac(efx);
3279}
3280
3281static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3282{
3283	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3284
3285	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3286	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3287			    NULL, 0, NULL);
3288}
3289
3290/* MC BISTs follow a different poll mechanism to phy BISTs.
3291 * The BIST is done in the poll handler on the MC, and the MCDI command
3292 * will block until the BIST is done.
3293 */
3294static int efx_ef10_poll_bist(struct efx_nic *efx)
3295{
3296	int rc;
3297	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3298	size_t outlen;
3299	u32 result;
3300
3301	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3302			   outbuf, sizeof(outbuf), &outlen);
3303	if (rc != 0)
3304		return rc;
3305
3306	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3307		return -EIO;
3308
3309	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3310	switch (result) {
3311	case MC_CMD_POLL_BIST_PASSED:
3312		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3313		return 0;
3314	case MC_CMD_POLL_BIST_TIMEOUT:
3315		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3316		return -EIO;
3317	case MC_CMD_POLL_BIST_FAILED:
3318		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3319		return -EIO;
3320	default:
3321		netif_err(efx, hw, efx->net_dev,
3322			  "BIST returned unknown result %u", result);
3323		return -EIO;
3324	}
3325}
3326
3327static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3328{
3329	int rc;
3330
3331	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3332
3333	rc = efx_ef10_start_bist(efx, bist_type);
3334	if (rc != 0)
3335		return rc;
3336
3337	return efx_ef10_poll_bist(efx);
3338}
3339
3340static int
3341efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3342{
3343	int rc, rc2;
3344
3345	efx_reset_down(efx, RESET_TYPE_WORLD);
3346
3347	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3348			  NULL, 0, NULL, 0, NULL);
3349	if (rc != 0)
3350		goto out;
3351
3352	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3353	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3354
3355	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3356
3357out:
 
 
3358	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3359	return rc ? rc : rc2;
3360}
3361
3362#ifdef CONFIG_SFC_MTD
3363
3364struct efx_ef10_nvram_type_info {
3365	u16 type, type_mask;
3366	u8 port;
3367	const char *name;
3368};
3369
3370static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3371	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3372	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3373	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3374	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3375	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3376	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3377	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3378	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3379	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3380	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3381	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
 
 
 
 
 
 
 
3382};
 
3383
3384static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3385					struct efx_mcdi_mtd_partition *part,
3386					unsigned int type)
 
3387{
3388	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3389	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3390	const struct efx_ef10_nvram_type_info *info;
3391	size_t size, erase_size, outlen;
 
3392	bool protected;
3393	int rc;
3394
3395	for (info = efx_ef10_nvram_types; ; info++) {
3396		if (info ==
3397		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3398			return -ENODEV;
 
3399		if ((type & ~info->type_mask) == info->type)
3400			break;
3401	}
3402	if (info->port != efx_port_num(efx))
3403		return -ENODEV;
3404
3405	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3406	if (rc)
3407		return rc;
 
 
 
 
 
 
3408	if (protected)
3409		return -ENODEV; /* hide it */
 
 
 
 
 
 
 
 
3410
3411	part->nvram_type = type;
3412
3413	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3414	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3415			  outbuf, sizeof(outbuf), &outlen);
3416	if (rc)
3417		return rc;
3418	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3419		return -EIO;
3420	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3421	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3422		part->fw_subtype = MCDI_DWORD(outbuf,
3423					      NVRAM_METADATA_OUT_SUBTYPE);
3424
3425	part->common.dev_type_name = "EF10 NVRAM manager";
3426	part->common.type_name = info->name;
3427
3428	part->common.mtd.type = MTD_NORFLASH;
3429	part->common.mtd.flags = MTD_CAP_NORFLASH;
3430	part->common.mtd.size = size;
3431	part->common.mtd.erasesize = erase_size;
 
 
 
3432
3433	return 0;
3434}
3435
3436static int efx_ef10_mtd_probe(struct efx_nic *efx)
3437{
3438	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
 
3439	struct efx_mcdi_mtd_partition *parts;
3440	size_t outlen, n_parts_total, i, n_parts;
3441	unsigned int type;
3442	int rc;
3443
3444	ASSERT_RTNL();
3445
3446	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3447	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3448			  outbuf, sizeof(outbuf), &outlen);
3449	if (rc)
3450		return rc;
3451	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3452		return -EIO;
3453
3454	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3455	if (n_parts_total >
3456	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3457		return -EIO;
3458
3459	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3460	if (!parts)
3461		return -ENOMEM;
3462
3463	n_parts = 0;
3464	for (i = 0; i < n_parts_total; i++) {
3465		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3466					i);
3467		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3468		if (rc == 0)
3469			n_parts++;
3470		else if (rc != -ENODEV)
 
3471			goto fail;
 
 
 
 
 
 
3472	}
3473
3474	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3475fail:
3476	if (rc)
3477		kfree(parts);
3478	return rc;
3479}
3480
3481#endif /* CONFIG_SFC_MTD */
3482
3483static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3484{
3485	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3486}
3487
 
 
 
3488static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3489					   bool temp)
3490{
3491	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3492	int rc;
3493
3494	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3495	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3496	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3497		return 0;
3498	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3499
3500	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3501	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3502	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3503		       channel->channel);
3504
3505	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3506			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3507
3508	if (rc != 0)
3509		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3510						    SYNC_EVENTS_DISABLED;
3511
3512	return rc;
3513}
3514
3515static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3516					    bool temp)
3517{
3518	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3519	int rc;
3520
3521	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3522	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3523		return 0;
3524	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3525		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3526		return 0;
3527	}
3528	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3529					    SYNC_EVENTS_DISABLED;
3530
3531	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3532	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3533	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3534		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3535	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3536		       channel->channel);
3537
3538	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3539			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3540
3541	return rc;
3542}
3543
3544static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3545					   bool temp)
3546{
3547	int (*set)(struct efx_channel *channel, bool temp);
3548	struct efx_channel *channel;
3549
3550	set = en ?
3551	      efx_ef10_rx_enable_timestamping :
3552	      efx_ef10_rx_disable_timestamping;
3553
3554	efx_for_each_channel(channel, efx) {
 
3555		int rc = set(channel, temp);
3556		if (en && rc != 0) {
3557			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3558			return rc;
3559		}
3560	}
3561
3562	return 0;
3563}
3564
 
 
 
 
 
 
3565static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3566				      struct hwtstamp_config *init)
3567{
3568	int rc;
3569
3570	switch (init->rx_filter) {
3571	case HWTSTAMP_FILTER_NONE:
3572		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3573		/* if TX timestamping is still requested then leave PTP on */
3574		return efx_ptp_change_mode(efx,
3575					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3576	case HWTSTAMP_FILTER_ALL:
3577	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3578	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3579	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3580	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3581	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3582	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3583	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3584	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3585	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3586	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3587	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3588	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 
3589		init->rx_filter = HWTSTAMP_FILTER_ALL;
3590		rc = efx_ptp_change_mode(efx, true, 0);
3591		if (!rc)
3592			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3593		if (rc)
3594			efx_ptp_change_mode(efx, false, 0);
3595		return rc;
3596	default:
3597		return -ERANGE;
3598	}
3599}
3600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3601const struct efx_nic_type efx_hunt_a0_nic_type = {
 
 
3602	.mem_map_size = efx_ef10_mem_map_size,
3603	.probe = efx_ef10_probe,
3604	.remove = efx_ef10_remove,
3605	.dimension_resources = efx_ef10_dimension_resources,
3606	.init = efx_ef10_init_nic,
3607	.fini = efx_port_dummy_op_void,
3608	.map_reset_reason = efx_mcdi_map_reset_reason,
3609	.map_reset_flags = efx_ef10_map_reset_flags,
3610	.reset = efx_ef10_reset,
3611	.probe_port = efx_mcdi_port_probe,
3612	.remove_port = efx_mcdi_port_remove,
3613	.fini_dmaq = efx_ef10_fini_dmaq,
3614	.prepare_flr = efx_ef10_prepare_flr,
3615	.finish_flr = efx_port_dummy_op_void,
3616	.describe_stats = efx_ef10_describe_stats,
3617	.update_stats = efx_ef10_update_stats,
3618	.start_stats = efx_mcdi_mac_start_stats,
3619	.pull_stats = efx_mcdi_mac_pull_stats,
3620	.stop_stats = efx_mcdi_mac_stop_stats,
3621	.set_id_led = efx_mcdi_set_id_led,
3622	.push_irq_moderation = efx_ef10_push_irq_moderation,
3623	.reconfigure_mac = efx_ef10_mac_reconfigure,
3624	.check_mac_fault = efx_mcdi_mac_check_fault,
3625	.reconfigure_port = efx_mcdi_port_reconfigure,
3626	.get_wol = efx_ef10_get_wol,
3627	.set_wol = efx_ef10_set_wol,
3628	.resume_wol = efx_port_dummy_op_void,
 
3629	.test_chip = efx_ef10_test_chip,
3630	.test_nvram = efx_mcdi_nvram_test_all,
3631	.mcdi_request = efx_ef10_mcdi_request,
3632	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3633	.mcdi_read_response = efx_ef10_mcdi_read_response,
3634	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
 
3635	.irq_enable_master = efx_port_dummy_op_void,
3636	.irq_test_generate = efx_ef10_irq_test_generate,
3637	.irq_disable_non_ev = efx_port_dummy_op_void,
3638	.irq_handle_msi = efx_ef10_msi_interrupt,
3639	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3640	.tx_probe = efx_ef10_tx_probe,
3641	.tx_init = efx_ef10_tx_init,
3642	.tx_remove = efx_ef10_tx_remove,
3643	.tx_write = efx_ef10_tx_write,
3644	.rx_push_rss_config = efx_ef10_rx_push_rss_config,
3645	.rx_probe = efx_ef10_rx_probe,
3646	.rx_init = efx_ef10_rx_init,
3647	.rx_remove = efx_ef10_rx_remove,
 
 
 
 
 
 
3648	.rx_write = efx_ef10_rx_write,
3649	.rx_defer_refill = efx_ef10_rx_defer_refill,
3650	.ev_probe = efx_ef10_ev_probe,
 
3651	.ev_init = efx_ef10_ev_init,
3652	.ev_fini = efx_ef10_ev_fini,
3653	.ev_remove = efx_ef10_ev_remove,
3654	.ev_process = efx_ef10_ev_process,
3655	.ev_read_ack = efx_ef10_ev_read_ack,
3656	.ev_test_generate = efx_ef10_ev_test_generate,
3657	.filter_table_probe = efx_ef10_filter_table_probe,
3658	.filter_table_restore = efx_ef10_filter_table_restore,
3659	.filter_table_remove = efx_ef10_filter_table_remove,
3660	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3661	.filter_insert = efx_ef10_filter_insert,
3662	.filter_remove_safe = efx_ef10_filter_remove_safe,
3663	.filter_get_safe = efx_ef10_filter_get_safe,
3664	.filter_clear_rx = efx_ef10_filter_clear_rx,
3665	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
3666	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3667	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3668#ifdef CONFIG_RFS_ACCEL
3669	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
3670	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3671#endif
3672#ifdef CONFIG_SFC_MTD
3673	.mtd_probe = efx_ef10_mtd_probe,
3674	.mtd_rename = efx_mcdi_mtd_rename,
3675	.mtd_read = efx_mcdi_mtd_read,
3676	.mtd_erase = efx_mcdi_mtd_erase,
3677	.mtd_write = efx_mcdi_mtd_write,
3678	.mtd_sync = efx_mcdi_mtd_sync,
3679#endif
3680	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
3681	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3682	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3683
 
3684	.revision = EFX_REV_HUNT_A0,
3685	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3686	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3687	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3688	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3689	.can_rx_scatter = true,
3690	.always_rx_scatter = true,
3691	.max_interrupt_mode = EFX_INT_MODE_MSIX,
 
3692	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3693	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3694			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
3695	.mcdi_max_ver = 2,
3696	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3697	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3698			    1 << HWTSTAMP_FILTER_ALL,
 
 
 
 
 
3699};