Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
   3 *
   4 * Author: Mike Lavender, mike@steroidmicros.com
   5 *
   6 * Copyright (c) 2005, Intec Automation Inc.
   7 *
   8 * Some parts are based on lart.c by Abraham Van Der Merwe
   9 *
  10 * Cleaned up and generalized based on mtd_dataflash.c
  11 *
  12 * This code is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 */
  17
  18#include <linux/err.h>
  19#include <linux/errno.h>
  20#include <linux/module.h>
  21#include <linux/device.h>
  22#include <linux/interrupt.h>
  23#include <linux/mutex.h>
  24#include <linux/math64.h>
  25#include <linux/slab.h>
  26#include <linux/sched.h>
  27#include <linux/mod_devicetable.h>
  28
  29#include <linux/mtd/cfi.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/partitions.h>
  32#include <linux/of_platform.h>
  33
  34#include <linux/spi/spi.h>
  35#include <linux/spi/flash.h>
  36
  37/* Flash opcodes. */
  38#define	OPCODE_WREN		0x06	/* Write enable */
  39#define	OPCODE_RDSR		0x05	/* Read status register */
  40#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
  41#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
  42#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
  43#define	OPCODE_DUAL_READ        0x3b    /* Read data bytes (Dual SPI) */
  44#define	OPCODE_QUAD_READ        0x6b    /* Read data bytes (Quad SPI) */
  45#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
  46#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
  47#define	OPCODE_BE_4K_PMC	0xd7	/* Erase 4KiB block on PMC chips */
  48#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
  49#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
  50#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
  51#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
  52#define	OPCODE_RDCR             0x35    /* Read configuration register */
  53
  54/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
  55#define	OPCODE_NORM_READ_4B	0x13	/* Read data bytes (low frequency) */
  56#define	OPCODE_FAST_READ_4B	0x0c	/* Read data bytes (high frequency) */
  57#define	OPCODE_DUAL_READ_4B	0x3c    /* Read data bytes (Dual SPI) */
  58#define	OPCODE_QUAD_READ_4B	0x6c    /* Read data bytes (Quad SPI) */
  59#define	OPCODE_PP_4B		0x12	/* Page program (up to 256 bytes) */
  60#define	OPCODE_SE_4B		0xdc	/* Sector erase (usually 64KiB) */
  61
  62/* Used for SST flashes only. */
  63#define	OPCODE_BP		0x02	/* Byte program */
  64#define	OPCODE_WRDI		0x04	/* Write disable */
  65#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */
  66
  67/* Used for Macronix and Winbond flashes. */
  68#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
  69#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */
  70
  71/* Used for Spansion flashes only. */
  72#define	OPCODE_BRWR		0x17	/* Bank register write */
  73
  74/* Status Register bits. */
  75#define	SR_WIP			1	/* Write in progress */
  76#define	SR_WEL			2	/* Write enable latch */
  77/* meaning of other SR_* bits may differ between vendors */
  78#define	SR_BP0			4	/* Block protect 0 */
  79#define	SR_BP1			8	/* Block protect 1 */
  80#define	SR_BP2			0x10	/* Block protect 2 */
  81#define	SR_SRWD			0x80	/* SR write protect */
  82
  83#define SR_QUAD_EN_MX           0x40    /* Macronix Quad I/O */
  84
  85/* Configuration Register bits. */
  86#define CR_QUAD_EN_SPAN		0x2     /* Spansion Quad I/O */
  87
  88/* Define max times to check status register before we give up. */
  89#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
  90#define	MAX_CMD_SIZE		6
  91
  92#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)
  93
  94/****************************************************************************/
  95
  96enum read_type {
  97	M25P80_NORMAL = 0,
  98	M25P80_FAST,
  99	M25P80_DUAL,
 100	M25P80_QUAD,
 101};
 102
 103struct m25p {
 104	struct spi_device	*spi;
 105	struct mutex		lock;
 106	struct mtd_info		mtd;
 107	u16			page_size;
 108	u16			addr_width;
 109	u8			erase_opcode;
 110	u8			read_opcode;
 111	u8			program_opcode;
 112	u8			*command;
 113	enum read_type		flash_read;
 114};
 115
 116static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
 117{
 118	return container_of(mtd, struct m25p, mtd);
 119}
 120
 121/****************************************************************************/
 122
 123/*
 124 * Internal helper functions
 125 */
 126
 127/*
 128 * Read the status register, returning its value in the location
 129 * Return the status register value.
 130 * Returns negative if error occurred.
 131 */
 132static int read_sr(struct m25p *flash)
 133{
 134	ssize_t retval;
 135	u8 code = OPCODE_RDSR;
 136	u8 val;
 137
 138	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
 139
 140	if (retval < 0) {
 141		dev_err(&flash->spi->dev, "error %d reading SR\n",
 142				(int) retval);
 143		return retval;
 144	}
 145
 146	return val;
 147}
 148
 149/*
 150 * Read configuration register, returning its value in the
 151 * location. Return the configuration register value.
 152 * Returns negative if error occured.
 153 */
 154static int read_cr(struct m25p *flash)
 155{
 156	u8 code = OPCODE_RDCR;
 157	int ret;
 158	u8 val;
 159
 160	ret = spi_write_then_read(flash->spi, &code, 1, &val, 1);
 161	if (ret < 0) {
 162		dev_err(&flash->spi->dev, "error %d reading CR\n", ret);
 163		return ret;
 164	}
 165
 166	return val;
 167}
 168
 169/*
 170 * Write status register 1 byte
 171 * Returns negative if error occurred.
 172 */
 173static int write_sr(struct m25p *flash, u8 val)
 174{
 175	flash->command[0] = OPCODE_WRSR;
 176	flash->command[1] = val;
 177
 178	return spi_write(flash->spi, flash->command, 2);
 179}
 180
 181/*
 182 * Set write enable latch with Write Enable command.
 183 * Returns negative if error occurred.
 184 */
 185static inline int write_enable(struct m25p *flash)
 186{
 187	u8	code = OPCODE_WREN;
 188
 189	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
 190}
 191
 192/*
 193 * Send write disble instruction to the chip.
 194 */
 195static inline int write_disable(struct m25p *flash)
 196{
 197	u8	code = OPCODE_WRDI;
 198
 199	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
 200}
 201
 202/*
 203 * Enable/disable 4-byte addressing mode.
 204 */
 205static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
 206{
 207	int status;
 208	bool need_wren = false;
 209
 210	switch (JEDEC_MFR(jedec_id)) {
 211	case CFI_MFR_ST: /* Micron, actually */
 212		/* Some Micron need WREN command; all will accept it */
 213		need_wren = true;
 214	case CFI_MFR_MACRONIX:
 215	case 0xEF /* winbond */:
 216		if (need_wren)
 217			write_enable(flash);
 218
 219		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
 220		status = spi_write(flash->spi, flash->command, 1);
 221
 222		if (need_wren)
 223			write_disable(flash);
 224
 225		return status;
 226	default:
 227		/* Spansion style */
 228		flash->command[0] = OPCODE_BRWR;
 229		flash->command[1] = enable << 7;
 230		return spi_write(flash->spi, flash->command, 2);
 231	}
 232}
 233
 234/*
 235 * Service routine to read status register until ready, or timeout occurs.
 236 * Returns non-zero if error.
 237 */
 238static int wait_till_ready(struct m25p *flash)
 239{
 240	unsigned long deadline;
 241	int sr;
 242
 243	deadline = jiffies + MAX_READY_WAIT_JIFFIES;
 244
 245	do {
 246		if ((sr = read_sr(flash)) < 0)
 247			break;
 248		else if (!(sr & SR_WIP))
 249			return 0;
 250
 251		cond_resched();
 252
 253	} while (!time_after_eq(jiffies, deadline));
 254
 255	return 1;
 256}
 257
 258/*
 259 * Write status Register and configuration register with 2 bytes
 260 * The first byte will be written to the status register, while the
 261 * second byte will be written to the configuration register.
 262 * Return negative if error occured.
 263 */
 264static int write_sr_cr(struct m25p *flash, u16 val)
 265{
 266	flash->command[0] = OPCODE_WRSR;
 267	flash->command[1] = val & 0xff;
 268	flash->command[2] = (val >> 8);
 269
 270	return spi_write(flash->spi, flash->command, 3);
 271}
 272
 273static int macronix_quad_enable(struct m25p *flash)
 274{
 275	int ret, val;
 276	u8 cmd[2];
 277	cmd[0] = OPCODE_WRSR;
 278
 279	val = read_sr(flash);
 280	cmd[1] = val | SR_QUAD_EN_MX;
 281	write_enable(flash);
 282
 283	spi_write(flash->spi, &cmd, 2);
 284
 285	if (wait_till_ready(flash))
 286		return 1;
 287
 288	ret = read_sr(flash);
 289	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
 290		dev_err(&flash->spi->dev, "Macronix Quad bit not set\n");
 291		return -EINVAL;
 292	}
 293
 294	return 0;
 295}
 296
 297static int spansion_quad_enable(struct m25p *flash)
 298{
 299	int ret;
 300	int quad_en = CR_QUAD_EN_SPAN << 8;
 301
 302	write_enable(flash);
 303
 304	ret = write_sr_cr(flash, quad_en);
 305	if (ret < 0) {
 306		dev_err(&flash->spi->dev,
 307			"error while writing configuration register\n");
 308		return -EINVAL;
 309	}
 310
 311	/* read back and check it */
 312	ret = read_cr(flash);
 313	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
 314		dev_err(&flash->spi->dev, "Spansion Quad bit not set\n");
 315		return -EINVAL;
 316	}
 317
 318	return 0;
 319}
 320
 321static int set_quad_mode(struct m25p *flash, u32 jedec_id)
 322{
 323	int status;
 324
 325	switch (JEDEC_MFR(jedec_id)) {
 326	case CFI_MFR_MACRONIX:
 327		status = macronix_quad_enable(flash);
 328		if (status) {
 329			dev_err(&flash->spi->dev,
 330				"Macronix quad-read not enabled\n");
 331			return -EINVAL;
 332		}
 333		return status;
 334	default:
 335		status = spansion_quad_enable(flash);
 336		if (status) {
 337			dev_err(&flash->spi->dev,
 338				"Spansion quad-read not enabled\n");
 339			return -EINVAL;
 340		}
 341		return status;
 342	}
 343}
 344
 345/*
 346 * Erase the whole flash memory
 347 *
 348 * Returns 0 if successful, non-zero otherwise.
 349 */
 350static int erase_chip(struct m25p *flash)
 351{
 352	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
 353			(long long)(flash->mtd.size >> 10));
 354
 355	/* Wait until finished previous write command. */
 356	if (wait_till_ready(flash))
 357		return 1;
 358
 359	/* Send write enable, then erase commands. */
 360	write_enable(flash);
 361
 362	/* Set up command buffer. */
 363	flash->command[0] = OPCODE_CHIP_ERASE;
 364
 365	spi_write(flash->spi, flash->command, 1);
 366
 367	return 0;
 368}
 369
 370static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
 371{
 372	/* opcode is in cmd[0] */
 373	cmd[1] = addr >> (flash->addr_width * 8 -  8);
 374	cmd[2] = addr >> (flash->addr_width * 8 - 16);
 375	cmd[3] = addr >> (flash->addr_width * 8 - 24);
 376	cmd[4] = addr >> (flash->addr_width * 8 - 32);
 377}
 378
 379static int m25p_cmdsz(struct m25p *flash)
 380{
 381	return 1 + flash->addr_width;
 382}
 383
 384/*
 385 * Erase one sector of flash memory at offset ``offset'' which is any
 386 * address within the sector which should be erased.
 387 *
 388 * Returns 0 if successful, non-zero otherwise.
 389 */
 390static int erase_sector(struct m25p *flash, u32 offset)
 391{
 392	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
 393			__func__, flash->mtd.erasesize / 1024, offset);
 394
 395	/* Wait until finished previous write command. */
 396	if (wait_till_ready(flash))
 397		return 1;
 398
 399	/* Send write enable, then erase commands. */
 400	write_enable(flash);
 401
 402	/* Set up command buffer. */
 403	flash->command[0] = flash->erase_opcode;
 404	m25p_addr2cmd(flash, offset, flash->command);
 405
 406	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
 407
 408	return 0;
 409}
 410
 411/****************************************************************************/
 412
 413/*
 414 * MTD implementation
 415 */
 416
 417/*
 418 * Erase an address range on the flash chip.  The address range may extend
 419 * one or more erase sectors.  Return an error is there is a problem erasing.
 420 */
 421static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
 422{
 423	struct m25p *flash = mtd_to_m25p(mtd);
 424	u32 addr,len;
 425	uint32_t rem;
 426
 427	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
 428			__func__, (long long)instr->addr,
 429			(long long)instr->len);
 430
 431	div_u64_rem(instr->len, mtd->erasesize, &rem);
 432	if (rem)
 433		return -EINVAL;
 434
 435	addr = instr->addr;
 436	len = instr->len;
 437
 438	mutex_lock(&flash->lock);
 439
 440	/* whole-chip erase? */
 441	if (len == flash->mtd.size) {
 442		if (erase_chip(flash)) {
 443			instr->state = MTD_ERASE_FAILED;
 444			mutex_unlock(&flash->lock);
 445			return -EIO;
 446		}
 447
 448	/* REVISIT in some cases we could speed up erasing large regions
 449	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
 450	 * to use "small sector erase", but that's not always optimal.
 451	 */
 452
 453	/* "sector"-at-a-time erase */
 454	} else {
 455		while (len) {
 456			if (erase_sector(flash, addr)) {
 457				instr->state = MTD_ERASE_FAILED;
 458				mutex_unlock(&flash->lock);
 459				return -EIO;
 460			}
 461
 462			addr += mtd->erasesize;
 463			len -= mtd->erasesize;
 464		}
 465	}
 466
 467	mutex_unlock(&flash->lock);
 468
 469	instr->state = MTD_ERASE_DONE;
 470	mtd_erase_callback(instr);
 471
 472	return 0;
 473}
 474
 475/*
 476 * Dummy Cycle calculation for different type of read.
 477 * It can be used to support more commands with
 478 * different dummy cycle requirements.
 479 */
 480static inline int m25p80_dummy_cycles_read(struct m25p *flash)
 481{
 482	switch (flash->flash_read) {
 483	case M25P80_FAST:
 484	case M25P80_DUAL:
 485	case M25P80_QUAD:
 486		return 1;
 487	case M25P80_NORMAL:
 488		return 0;
 489	default:
 490		dev_err(&flash->spi->dev, "No valid read type supported\n");
 491		return -1;
 492	}
 493}
 494
 495static inline unsigned int m25p80_rx_nbits(const struct m25p *flash)
 496{
 497	switch (flash->flash_read) {
 498	case M25P80_DUAL:
 499		return 2;
 500	case M25P80_QUAD:
 501		return 4;
 502	default:
 503		return 0;
 504	}
 505}
 506
 507/*
 508 * Read an address range from the flash chip.  The address range
 509 * may be any size provided it is within the physical boundaries.
 510 */
 511static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
 512	size_t *retlen, u_char *buf)
 513{
 514	struct m25p *flash = mtd_to_m25p(mtd);
 515	struct spi_transfer t[2];
 516	struct spi_message m;
 517	uint8_t opcode;
 518	int dummy;
 519
 520	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
 521			__func__, (u32)from, len);
 522
 523	spi_message_init(&m);
 524	memset(t, 0, (sizeof t));
 525
 526	dummy =  m25p80_dummy_cycles_read(flash);
 527	if (dummy < 0) {
 528		dev_err(&flash->spi->dev, "No valid read command supported\n");
 529		return -EINVAL;
 530	}
 531
 532	t[0].tx_buf = flash->command;
 533	t[0].len = m25p_cmdsz(flash) + dummy;
 534	spi_message_add_tail(&t[0], &m);
 535
 536	t[1].rx_buf = buf;
 537	t[1].rx_nbits = m25p80_rx_nbits(flash);
 538	t[1].len = len;
 539	spi_message_add_tail(&t[1], &m);
 540
 541	mutex_lock(&flash->lock);
 542
 543	/* Wait till previous write/erase is done. */
 544	if (wait_till_ready(flash)) {
 545		/* REVISIT status return?? */
 546		mutex_unlock(&flash->lock);
 547		return 1;
 548	}
 549
 550	/* Set up the write data buffer. */
 551	opcode = flash->read_opcode;
 552	flash->command[0] = opcode;
 553	m25p_addr2cmd(flash, from, flash->command);
 554
 555	spi_sync(flash->spi, &m);
 556
 557	*retlen = m.actual_length - m25p_cmdsz(flash) - dummy;
 558
 559	mutex_unlock(&flash->lock);
 560
 561	return 0;
 562}
 563
 564/*
 565 * Write an address range to the flash chip.  Data must be written in
 566 * FLASH_PAGESIZE chunks.  The address range may be any size provided
 567 * it is within the physical boundaries.
 568 */
 569static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
 570	size_t *retlen, const u_char *buf)
 571{
 572	struct m25p *flash = mtd_to_m25p(mtd);
 573	u32 page_offset, page_size;
 574	struct spi_transfer t[2];
 575	struct spi_message m;
 576
 577	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
 578			__func__, (u32)to, len);
 579
 580	spi_message_init(&m);
 581	memset(t, 0, (sizeof t));
 582
 583	t[0].tx_buf = flash->command;
 584	t[0].len = m25p_cmdsz(flash);
 585	spi_message_add_tail(&t[0], &m);
 586
 587	t[1].tx_buf = buf;
 588	spi_message_add_tail(&t[1], &m);
 589
 590	mutex_lock(&flash->lock);
 591
 592	/* Wait until finished previous write command. */
 593	if (wait_till_ready(flash)) {
 594		mutex_unlock(&flash->lock);
 595		return 1;
 596	}
 597
 598	write_enable(flash);
 599
 600	/* Set up the opcode in the write buffer. */
 601	flash->command[0] = flash->program_opcode;
 602	m25p_addr2cmd(flash, to, flash->command);
 603
 604	page_offset = to & (flash->page_size - 1);
 605
 606	/* do all the bytes fit onto one page? */
 607	if (page_offset + len <= flash->page_size) {
 608		t[1].len = len;
 609
 610		spi_sync(flash->spi, &m);
 611
 612		*retlen = m.actual_length - m25p_cmdsz(flash);
 613	} else {
 614		u32 i;
 615
 616		/* the size of data remaining on the first page */
 617		page_size = flash->page_size - page_offset;
 618
 619		t[1].len = page_size;
 620		spi_sync(flash->spi, &m);
 621
 622		*retlen = m.actual_length - m25p_cmdsz(flash);
 623
 624		/* write everything in flash->page_size chunks */
 625		for (i = page_size; i < len; i += page_size) {
 626			page_size = len - i;
 627			if (page_size > flash->page_size)
 628				page_size = flash->page_size;
 629
 630			/* write the next page to flash */
 631			m25p_addr2cmd(flash, to + i, flash->command);
 632
 633			t[1].tx_buf = buf + i;
 634			t[1].len = page_size;
 635
 636			wait_till_ready(flash);
 637
 638			write_enable(flash);
 639
 640			spi_sync(flash->spi, &m);
 641
 642			*retlen += m.actual_length - m25p_cmdsz(flash);
 643		}
 644	}
 645
 646	mutex_unlock(&flash->lock);
 647
 648	return 0;
 649}
 650
 651static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
 652		size_t *retlen, const u_char *buf)
 653{
 654	struct m25p *flash = mtd_to_m25p(mtd);
 655	struct spi_transfer t[2];
 656	struct spi_message m;
 657	size_t actual;
 658	int cmd_sz, ret;
 659
 660	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
 661			__func__, (u32)to, len);
 662
 663	spi_message_init(&m);
 664	memset(t, 0, (sizeof t));
 665
 666	t[0].tx_buf = flash->command;
 667	t[0].len = m25p_cmdsz(flash);
 668	spi_message_add_tail(&t[0], &m);
 669
 670	t[1].tx_buf = buf;
 671	spi_message_add_tail(&t[1], &m);
 672
 673	mutex_lock(&flash->lock);
 674
 675	/* Wait until finished previous write command. */
 676	ret = wait_till_ready(flash);
 677	if (ret)
 678		goto time_out;
 679
 680	write_enable(flash);
 681
 682	actual = to % 2;
 683	/* Start write from odd address. */
 684	if (actual) {
 685		flash->command[0] = OPCODE_BP;
 686		m25p_addr2cmd(flash, to, flash->command);
 687
 688		/* write one byte. */
 689		t[1].len = 1;
 690		spi_sync(flash->spi, &m);
 691		ret = wait_till_ready(flash);
 692		if (ret)
 693			goto time_out;
 694		*retlen += m.actual_length - m25p_cmdsz(flash);
 695	}
 696	to += actual;
 697
 698	flash->command[0] = OPCODE_AAI_WP;
 699	m25p_addr2cmd(flash, to, flash->command);
 700
 701	/* Write out most of the data here. */
 702	cmd_sz = m25p_cmdsz(flash);
 703	for (; actual < len - 1; actual += 2) {
 704		t[0].len = cmd_sz;
 705		/* write two bytes. */
 706		t[1].len = 2;
 707		t[1].tx_buf = buf + actual;
 708
 709		spi_sync(flash->spi, &m);
 710		ret = wait_till_ready(flash);
 711		if (ret)
 712			goto time_out;
 713		*retlen += m.actual_length - cmd_sz;
 714		cmd_sz = 1;
 715		to += 2;
 716	}
 717	write_disable(flash);
 718	ret = wait_till_ready(flash);
 719	if (ret)
 720		goto time_out;
 721
 722	/* Write out trailing byte if it exists. */
 723	if (actual != len) {
 724		write_enable(flash);
 725		flash->command[0] = OPCODE_BP;
 726		m25p_addr2cmd(flash, to, flash->command);
 727		t[0].len = m25p_cmdsz(flash);
 728		t[1].len = 1;
 729		t[1].tx_buf = buf + actual;
 730
 731		spi_sync(flash->spi, &m);
 732		ret = wait_till_ready(flash);
 733		if (ret)
 734			goto time_out;
 735		*retlen += m.actual_length - m25p_cmdsz(flash);
 736		write_disable(flash);
 737	}
 738
 739time_out:
 740	mutex_unlock(&flash->lock);
 741	return ret;
 742}
 743
 744static int m25p80_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 745{
 746	struct m25p *flash = mtd_to_m25p(mtd);
 747	uint32_t offset = ofs;
 748	uint8_t status_old, status_new;
 749	int res = 0;
 750
 751	mutex_lock(&flash->lock);
 752	/* Wait until finished previous command */
 753	if (wait_till_ready(flash)) {
 754		res = 1;
 755		goto err;
 756	}
 757
 758	status_old = read_sr(flash);
 759
 760	if (offset < flash->mtd.size-(flash->mtd.size/2))
 761		status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
 762	else if (offset < flash->mtd.size-(flash->mtd.size/4))
 763		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
 764	else if (offset < flash->mtd.size-(flash->mtd.size/8))
 765		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
 766	else if (offset < flash->mtd.size-(flash->mtd.size/16))
 767		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
 768	else if (offset < flash->mtd.size-(flash->mtd.size/32))
 769		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
 770	else if (offset < flash->mtd.size-(flash->mtd.size/64))
 771		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
 772	else
 773		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
 774
 775	/* Only modify protection if it will not unlock other areas */
 776	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) >
 777					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
 778		write_enable(flash);
 779		if (write_sr(flash, status_new) < 0) {
 780			res = 1;
 781			goto err;
 782		}
 783	}
 784
 785err:	mutex_unlock(&flash->lock);
 786	return res;
 787}
 788
 789static int m25p80_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 790{
 791	struct m25p *flash = mtd_to_m25p(mtd);
 792	uint32_t offset = ofs;
 793	uint8_t status_old, status_new;
 794	int res = 0;
 795
 796	mutex_lock(&flash->lock);
 797	/* Wait until finished previous command */
 798	if (wait_till_ready(flash)) {
 799		res = 1;
 800		goto err;
 801	}
 802
 803	status_old = read_sr(flash);
 804
 805	if (offset+len > flash->mtd.size-(flash->mtd.size/64))
 806		status_new = status_old & ~(SR_BP2|SR_BP1|SR_BP0);
 807	else if (offset+len > flash->mtd.size-(flash->mtd.size/32))
 808		status_new = (status_old & ~(SR_BP2|SR_BP1)) | SR_BP0;
 809	else if (offset+len > flash->mtd.size-(flash->mtd.size/16))
 810		status_new = (status_old & ~(SR_BP2|SR_BP0)) | SR_BP1;
 811	else if (offset+len > flash->mtd.size-(flash->mtd.size/8))
 812		status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
 813	else if (offset+len > flash->mtd.size-(flash->mtd.size/4))
 814		status_new = (status_old & ~(SR_BP0|SR_BP1)) | SR_BP2;
 815	else if (offset+len > flash->mtd.size-(flash->mtd.size/2))
 816		status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
 817	else
 818		status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
 819
 820	/* Only modify protection if it will not lock other areas */
 821	if ((status_new&(SR_BP2|SR_BP1|SR_BP0)) <
 822					(status_old&(SR_BP2|SR_BP1|SR_BP0))) {
 823		write_enable(flash);
 824		if (write_sr(flash, status_new) < 0) {
 825			res = 1;
 826			goto err;
 827		}
 828	}
 829
 830err:	mutex_unlock(&flash->lock);
 831	return res;
 832}
 833
 834/****************************************************************************/
 835
 836/*
 837 * SPI device driver setup and teardown
 838 */
 839
 840struct flash_info {
 841	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
 842	 * a high byte of zero plus three data bytes: the manufacturer id,
 843	 * then a two byte device id.
 844	 */
 845	u32		jedec_id;
 846	u16             ext_id;
 847
 848	/* The size listed here is what works with OPCODE_SE, which isn't
 849	 * necessarily called a "sector" by the vendor.
 850	 */
 851	unsigned	sector_size;
 852	u16		n_sectors;
 853
 854	u16		page_size;
 855	u16		addr_width;
 856
 857	u16		flags;
 858#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
 859#define	M25P_NO_ERASE	0x02		/* No erase command needed */
 860#define	SST_WRITE	0x04		/* use SST byte programming */
 861#define	M25P_NO_FR	0x08		/* Can't do fastread */
 862#define	SECT_4K_PMC	0x10		/* OPCODE_BE_4K_PMC works uniformly */
 863#define	M25P80_DUAL_READ	0x20    /* Flash supports Dual Read */
 864#define	M25P80_QUAD_READ	0x40    /* Flash supports Quad Read */
 865};
 866
 867#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
 868	((kernel_ulong_t)&(struct flash_info) {				\
 869		.jedec_id = (_jedec_id),				\
 870		.ext_id = (_ext_id),					\
 871		.sector_size = (_sector_size),				\
 872		.n_sectors = (_n_sectors),				\
 873		.page_size = 256,					\
 874		.flags = (_flags),					\
 875	})
 876
 877#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
 878	((kernel_ulong_t)&(struct flash_info) {				\
 879		.sector_size = (_sector_size),				\
 880		.n_sectors = (_n_sectors),				\
 881		.page_size = (_page_size),				\
 882		.addr_width = (_addr_width),				\
 883		.flags = (_flags),					\
 884	})
 885
 886/* NOTE: double check command sets and memory organization when you add
 887 * more flash chips.  This current list focusses on newer chips, which
 888 * have been converging on command sets which including JEDEC ID.
 889 */
 890static const struct spi_device_id m25p_ids[] = {
 891	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
 892	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
 893	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
 894
 895	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
 896	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
 897	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
 898
 899	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
 900	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
 901	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
 902	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
 903
 904	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
 905
 906	/* EON -- en25xxx */
 907	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
 908	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
 909	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
 910	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
 911	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
 912	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
 913
 914	/* ESMT */
 915	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
 916
 917	/* Everspin */
 918	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE | M25P_NO_FR) },
 919	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE | M25P_NO_FR) },
 920
 921	/* GigaDevice */
 922	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
 923	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
 924
 925	/* Intel/Numonyx -- xxxs33b */
 926	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
 927	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
 928	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
 929
 930	/* Macronix */
 931	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
 932	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
 933	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
 934	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
 935	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
 936	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
 937	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
 938	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
 939	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
 940	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
 941	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
 942	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ) },
 943	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, M25P80_QUAD_READ) },
 944
 945	/* Micron */
 946	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, 0) },
 947	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, 0) },
 948	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, 0) },
 949	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K) },
 950	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
 951
 952	/* PMC */
 953	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
 954	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
 955	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
 956
 957	/* Spansion -- single (large) sector size only, at least
 958	 * for the chips listed here (without boot sectors).
 959	 */
 960	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, 0) },
 961	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, 0) },
 962	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
 963	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, M25P80_DUAL_READ | M25P80_QUAD_READ) },
 964	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_DUAL_READ | M25P80_QUAD_READ) },
 965	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
 966	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
 967	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
 968	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
 969	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
 970	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
 971	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
 972	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
 973	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
 974	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
 975	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K) },
 976	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
 977	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
 978
 979	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
 980	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
 981	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
 982	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
 983	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
 984	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
 985	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
 986	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
 987	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
 988	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
 989
 990	/* ST Microelectronics -- newer production may have feature updates */
 991	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
 992	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
 993	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
 994	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
 995	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
 996	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
 997	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
 998	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
 999	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
1000	{ "n25q032", INFO(0x20ba16,  0,  64 * 1024,  64, 0) },
1001
1002	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
1003	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
1004	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
1005	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
1006	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
1007	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
1008	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
1009	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
1010	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
1011
1012	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
1013	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
1014	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
1015
1016	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
1017	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
1018	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
1019
1020	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
1021	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
1022	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
1023	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
1024	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
1025
1026	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1027	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
1028	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
1029	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
1030	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
1031	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
1032	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
1033	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
1034	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K) },
1035	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
1036	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
1037	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1038	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
1039	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
1040	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
1041	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
1042
1043	/* Catalyst / On Semiconductor -- non-JEDEC */
1044	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, M25P_NO_ERASE | M25P_NO_FR) },
1045	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, M25P_NO_ERASE | M25P_NO_FR) },
1046	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
1047	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE | M25P_NO_FR) },
1048	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE | M25P_NO_FR) },
1049	{ },
1050};
1051MODULE_DEVICE_TABLE(spi, m25p_ids);
1052
1053static const struct spi_device_id *jedec_probe(struct spi_device *spi)
1054{
1055	int			tmp;
1056	u8			code = OPCODE_RDID;
1057	u8			id[5];
1058	u32			jedec;
1059	u16                     ext_jedec;
1060	struct flash_info	*info;
1061
1062	/* JEDEC also defines an optional "extended device information"
1063	 * string for after vendor-specific data, after the three bytes
1064	 * we use here.  Supporting some chips might require using it.
1065	 */
1066	tmp = spi_write_then_read(spi, &code, 1, id, 5);
1067	if (tmp < 0) {
1068		pr_debug("%s: error %d reading JEDEC ID\n",
1069				dev_name(&spi->dev), tmp);
1070		return ERR_PTR(tmp);
1071	}
1072	jedec = id[0];
1073	jedec = jedec << 8;
1074	jedec |= id[1];
1075	jedec = jedec << 8;
1076	jedec |= id[2];
1077
1078	ext_jedec = id[3] << 8 | id[4];
1079
1080	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
1081		info = (void *)m25p_ids[tmp].driver_data;
1082		if (info->jedec_id == jedec) {
1083			if (info->ext_id == 0 || info->ext_id == ext_jedec)
1084				return &m25p_ids[tmp];
1085		}
1086	}
1087	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
1088	return ERR_PTR(-ENODEV);
1089}
1090
1091
1092/*
1093 * board specific setup should have ensured the SPI clock used here
1094 * matches what the READ command supports, at least until this driver
1095 * understands FAST_READ (for clocks over 25 MHz).
1096 */
1097static int m25p_probe(struct spi_device *spi)
1098{
1099	const struct spi_device_id	*id = spi_get_device_id(spi);
1100	struct flash_platform_data	*data;
1101	struct m25p			*flash;
1102	struct flash_info		*info;
1103	unsigned			i;
1104	struct mtd_part_parser_data	ppdata;
1105	struct device_node *np = spi->dev.of_node;
1106	int ret;
1107
1108	/* Platform data helps sort out which chip type we have, as
1109	 * well as how this board partitions it.  If we don't have
1110	 * a chip ID, try the JEDEC id commands; they'll work for most
1111	 * newer chips, even if we don't recognize the particular chip.
1112	 */
1113	data = dev_get_platdata(&spi->dev);
1114	if (data && data->type) {
1115		const struct spi_device_id *plat_id;
1116
1117		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
1118			plat_id = &m25p_ids[i];
1119			if (strcmp(data->type, plat_id->name))
1120				continue;
1121			break;
1122		}
1123
1124		if (i < ARRAY_SIZE(m25p_ids) - 1)
1125			id = plat_id;
1126		else
1127			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
1128	}
1129
1130	info = (void *)id->driver_data;
1131
1132	if (info->jedec_id) {
1133		const struct spi_device_id *jid;
1134
1135		jid = jedec_probe(spi);
1136		if (IS_ERR(jid)) {
1137			return PTR_ERR(jid);
1138		} else if (jid != id) {
1139			/*
1140			 * JEDEC knows better, so overwrite platform ID. We
1141			 * can't trust partitions any longer, but we'll let
1142			 * mtd apply them anyway, since some partitions may be
1143			 * marked read-only, and we don't want to lose that
1144			 * information, even if it's not 100% accurate.
1145			 */
1146			dev_warn(&spi->dev, "found %s, expected %s\n",
1147				 jid->name, id->name);
1148			id = jid;
1149			info = (void *)jid->driver_data;
1150		}
1151	}
1152
1153	flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
1154	if (!flash)
1155		return -ENOMEM;
1156
1157	flash->command = devm_kzalloc(&spi->dev, MAX_CMD_SIZE, GFP_KERNEL);
1158	if (!flash->command)
1159		return -ENOMEM;
1160
1161	flash->spi = spi;
1162	mutex_init(&flash->lock);
1163	spi_set_drvdata(spi, flash);
1164
1165	/*
1166	 * Atmel, SST and Intel/Numonyx serial flash tend to power
1167	 * up with the software protection bits set
1168	 */
1169
1170	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
1171	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
1172	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
1173		write_enable(flash);
1174		write_sr(flash, 0);
1175	}
1176
1177	if (data && data->name)
1178		flash->mtd.name = data->name;
1179	else
1180		flash->mtd.name = dev_name(&spi->dev);
1181
1182	flash->mtd.type = MTD_NORFLASH;
1183	flash->mtd.writesize = 1;
1184	flash->mtd.flags = MTD_CAP_NORFLASH;
1185	flash->mtd.size = info->sector_size * info->n_sectors;
1186	flash->mtd._erase = m25p80_erase;
1187	flash->mtd._read = m25p80_read;
1188
1189	/* flash protection support for STmicro chips */
1190	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
1191		flash->mtd._lock = m25p80_lock;
1192		flash->mtd._unlock = m25p80_unlock;
1193	}
1194
1195	/* sst flash chips use AAI word program */
1196	if (info->flags & SST_WRITE)
1197		flash->mtd._write = sst_write;
1198	else
1199		flash->mtd._write = m25p80_write;
1200
1201	/* prefer "small sector" erase if possible */
1202	if (info->flags & SECT_4K) {
1203		flash->erase_opcode = OPCODE_BE_4K;
1204		flash->mtd.erasesize = 4096;
1205	} else if (info->flags & SECT_4K_PMC) {
1206		flash->erase_opcode = OPCODE_BE_4K_PMC;
1207		flash->mtd.erasesize = 4096;
1208	} else {
1209		flash->erase_opcode = OPCODE_SE;
1210		flash->mtd.erasesize = info->sector_size;
1211	}
1212
1213	if (info->flags & M25P_NO_ERASE)
1214		flash->mtd.flags |= MTD_NO_ERASE;
1215
1216	ppdata.of_node = spi->dev.of_node;
1217	flash->mtd.dev.parent = &spi->dev;
1218	flash->page_size = info->page_size;
1219	flash->mtd.writebufsize = flash->page_size;
1220
1221	if (np) {
1222		/* If we were instantiated by DT, use it */
1223		if (of_property_read_bool(np, "m25p,fast-read"))
1224			flash->flash_read = M25P80_FAST;
1225		else
1226			flash->flash_read = M25P80_NORMAL;
1227	} else {
1228		/* If we weren't instantiated by DT, default to fast-read */
1229		flash->flash_read = M25P80_FAST;
1230	}
1231
1232	/* Some devices cannot do fast-read, no matter what DT tells us */
1233	if (info->flags & M25P_NO_FR)
1234		flash->flash_read = M25P80_NORMAL;
1235
1236	/* Quad/Dual-read mode takes precedence over fast/normal */
1237	if (spi->mode & SPI_RX_QUAD && info->flags & M25P80_QUAD_READ) {
1238		ret = set_quad_mode(flash, info->jedec_id);
1239		if (ret) {
1240			dev_err(&flash->spi->dev, "quad mode not supported\n");
1241			return ret;
1242		}
1243		flash->flash_read = M25P80_QUAD;
1244	} else if (spi->mode & SPI_RX_DUAL && info->flags & M25P80_DUAL_READ) {
1245		flash->flash_read = M25P80_DUAL;
1246	}
1247
1248	/* Default commands */
1249	switch (flash->flash_read) {
1250	case M25P80_QUAD:
1251		flash->read_opcode = OPCODE_QUAD_READ;
1252		break;
1253	case M25P80_DUAL:
1254		flash->read_opcode = OPCODE_DUAL_READ;
1255		break;
1256	case M25P80_FAST:
1257		flash->read_opcode = OPCODE_FAST_READ;
1258		break;
1259	case M25P80_NORMAL:
1260		flash->read_opcode = OPCODE_NORM_READ;
1261		break;
1262	default:
1263		dev_err(&flash->spi->dev, "No Read opcode defined\n");
1264		return -EINVAL;
1265	}
1266
1267	flash->program_opcode = OPCODE_PP;
1268
1269	if (info->addr_width)
1270		flash->addr_width = info->addr_width;
1271	else if (flash->mtd.size > 0x1000000) {
1272		/* enable 4-byte addressing if the device exceeds 16MiB */
1273		flash->addr_width = 4;
1274		if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
1275			/* Dedicated 4-byte command set */
1276			switch (flash->flash_read) {
1277			case M25P80_QUAD:
1278				flash->read_opcode = OPCODE_QUAD_READ_4B;
1279				break;
1280			case M25P80_DUAL:
1281				flash->read_opcode = OPCODE_DUAL_READ_4B;
1282				break;
1283			case M25P80_FAST:
1284				flash->read_opcode = OPCODE_FAST_READ_4B;
1285				break;
1286			case M25P80_NORMAL:
1287				flash->read_opcode = OPCODE_NORM_READ_4B;
1288				break;
1289			}
1290			flash->program_opcode = OPCODE_PP_4B;
1291			/* No small sector erase for 4-byte command set */
1292			flash->erase_opcode = OPCODE_SE_4B;
1293			flash->mtd.erasesize = info->sector_size;
1294		} else
1295			set_4byte(flash, info->jedec_id, 1);
1296	} else {
1297		flash->addr_width = 3;
1298	}
1299
1300	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
1301			(long long)flash->mtd.size >> 10);
1302
1303	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1304			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1305		flash->mtd.name,
1306		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
1307		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
1308		flash->mtd.numeraseregions);
1309
1310	if (flash->mtd.numeraseregions)
1311		for (i = 0; i < flash->mtd.numeraseregions; i++)
1312			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1313				".erasesize = 0x%.8x (%uKiB), "
1314				".numblocks = %d }\n",
1315				i, (long long)flash->mtd.eraseregions[i].offset,
1316				flash->mtd.eraseregions[i].erasesize,
1317				flash->mtd.eraseregions[i].erasesize / 1024,
1318				flash->mtd.eraseregions[i].numblocks);
1319
1320
1321	/* partitions should match sector boundaries; and it may be good to
1322	 * use readonly partitions for writeprotected sectors (BP2..BP0).
1323	 */
1324	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
1325			data ? data->parts : NULL,
1326			data ? data->nr_parts : 0);
1327}
1328
1329
1330static int m25p_remove(struct spi_device *spi)
1331{
1332	struct m25p	*flash = spi_get_drvdata(spi);
1333
1334	/* Clean up MTD stuff. */
1335	return mtd_device_unregister(&flash->mtd);
1336}
1337
1338
1339static struct spi_driver m25p80_driver = {
1340	.driver = {
1341		.name	= "m25p80",
1342		.owner	= THIS_MODULE,
1343	},
1344	.id_table	= m25p_ids,
1345	.probe	= m25p_probe,
1346	.remove	= m25p_remove,
1347
1348	/* REVISIT: many of these chips have deep power-down modes, which
1349	 * should clearly be entered on suspend() to minimize power use.
1350	 * And also when they're otherwise idle...
1351	 */
1352};
1353
1354module_spi_driver(m25p80_driver);
1355
1356MODULE_LICENSE("GPL");
1357MODULE_AUTHOR("Mike Lavender");
1358MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");