Linux Audio

Check our new training course

Loading...
  1/*
  2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3 *
  4 * Author: Mike Lavender, mike@steroidmicros.com
  5 *
  6 * Copyright (c) 2005, Intec Automation Inc.
  7 *
  8 * Some parts are based on lart.c by Abraham Van Der Merwe
  9 *
 10 * Cleaned up and generalized based on mtd_dataflash.c
 11 *
 12 * This code is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License version 2 as
 14 * published by the Free Software Foundation.
 15 *
 16 */
 17
 18#include <linux/init.h>
 19#include <linux/err.h>
 20#include <linux/errno.h>
 21#include <linux/module.h>
 22#include <linux/device.h>
 23#include <linux/interrupt.h>
 24#include <linux/mutex.h>
 25#include <linux/math64.h>
 26#include <linux/slab.h>
 27#include <linux/sched.h>
 28#include <linux/mod_devicetable.h>
 29
 30#include <linux/mtd/cfi.h>
 31#include <linux/mtd/mtd.h>
 32#include <linux/mtd/partitions.h>
 33#include <linux/of_platform.h>
 34
 35#include <linux/spi/spi.h>
 36#include <linux/spi/flash.h>
 37
 38/* Flash opcodes. */
 39#define	OPCODE_WREN		0x06	/* Write enable */
 40#define	OPCODE_RDSR		0x05	/* Read status register */
 41#define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
 42#define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
 43#define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
 44#define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
 45#define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
 46#define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
 47#define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
 48#define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
 49#define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
 50
 51/* Used for SST flashes only. */
 52#define	OPCODE_BP		0x02	/* Byte program */
 53#define	OPCODE_WRDI		0x04	/* Write disable */
 54#define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */
 55
 56/* Used for Macronix flashes only. */
 57#define	OPCODE_EN4B		0xb7	/* Enter 4-byte mode */
 58#define	OPCODE_EX4B		0xe9	/* Exit 4-byte mode */
 59
 60/* Used for Spansion flashes only. */
 61#define	OPCODE_BRWR		0x17	/* Bank register write */
 62
 63/* Status Register bits. */
 64#define	SR_WIP			1	/* Write in progress */
 65#define	SR_WEL			2	/* Write enable latch */
 66/* meaning of other SR_* bits may differ between vendors */
 67#define	SR_BP0			4	/* Block protect 0 */
 68#define	SR_BP1			8	/* Block protect 1 */
 69#define	SR_BP2			0x10	/* Block protect 2 */
 70#define	SR_SRWD			0x80	/* SR write protect */
 71
 72/* Define max times to check status register before we give up. */
 73#define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
 74#define	MAX_CMD_SIZE		5
 75
 76#ifdef CONFIG_M25PXX_USE_FAST_READ
 77#define OPCODE_READ 	OPCODE_FAST_READ
 78#define FAST_READ_DUMMY_BYTE 1
 79#else
 80#define OPCODE_READ 	OPCODE_NORM_READ
 81#define FAST_READ_DUMMY_BYTE 0
 82#endif
 83
 84#define JEDEC_MFR(_jedec_id)	((_jedec_id) >> 16)
 85
 86/****************************************************************************/
 87
 88struct m25p {
 89	struct spi_device	*spi;
 90	struct mutex		lock;
 91	struct mtd_info		mtd;
 92	u16			page_size;
 93	u16			addr_width;
 94	u8			erase_opcode;
 95	u8			*command;
 96};
 97
 98static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
 99{
100	return container_of(mtd, struct m25p, mtd);
101}
102
103/****************************************************************************/
104
105/*
106 * Internal helper functions
107 */
108
109/*
110 * Read the status register, returning its value in the location
111 * Return the status register value.
112 * Returns negative if error occurred.
113 */
114static int read_sr(struct m25p *flash)
115{
116	ssize_t retval;
117	u8 code = OPCODE_RDSR;
118	u8 val;
119
120	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
121
122	if (retval < 0) {
123		dev_err(&flash->spi->dev, "error %d reading SR\n",
124				(int) retval);
125		return retval;
126	}
127
128	return val;
129}
130
131/*
132 * Write status register 1 byte
133 * Returns negative if error occurred.
134 */
135static int write_sr(struct m25p *flash, u8 val)
136{
137	flash->command[0] = OPCODE_WRSR;
138	flash->command[1] = val;
139
140	return spi_write(flash->spi, flash->command, 2);
141}
142
143/*
144 * Set write enable latch with Write Enable command.
145 * Returns negative if error occurred.
146 */
147static inline int write_enable(struct m25p *flash)
148{
149	u8	code = OPCODE_WREN;
150
151	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
152}
153
154/*
155 * Send write disble instruction to the chip.
156 */
157static inline int write_disable(struct m25p *flash)
158{
159	u8	code = OPCODE_WRDI;
160
161	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
162}
163
164/*
165 * Enable/disable 4-byte addressing mode.
166 */
167static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
168{
169	switch (JEDEC_MFR(jedec_id)) {
170	case CFI_MFR_MACRONIX:
171		flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
172		return spi_write(flash->spi, flash->command, 1);
173	default:
174		/* Spansion style */
175		flash->command[0] = OPCODE_BRWR;
176		flash->command[1] = enable << 7;
177		return spi_write(flash->spi, flash->command, 2);
178	}
179}
180
181/*
182 * Service routine to read status register until ready, or timeout occurs.
183 * Returns non-zero if error.
184 */
185static int wait_till_ready(struct m25p *flash)
186{
187	unsigned long deadline;
188	int sr;
189
190	deadline = jiffies + MAX_READY_WAIT_JIFFIES;
191
192	do {
193		if ((sr = read_sr(flash)) < 0)
194			break;
195		else if (!(sr & SR_WIP))
196			return 0;
197
198		cond_resched();
199
200	} while (!time_after_eq(jiffies, deadline));
201
202	return 1;
203}
204
205/*
206 * Erase the whole flash memory
207 *
208 * Returns 0 if successful, non-zero otherwise.
209 */
210static int erase_chip(struct m25p *flash)
211{
212	pr_debug("%s: %s %lldKiB\n", dev_name(&flash->spi->dev), __func__,
213			(long long)(flash->mtd.size >> 10));
214
215	/* Wait until finished previous write command. */
216	if (wait_till_ready(flash))
217		return 1;
218
219	/* Send write enable, then erase commands. */
220	write_enable(flash);
221
222	/* Set up command buffer. */
223	flash->command[0] = OPCODE_CHIP_ERASE;
224
225	spi_write(flash->spi, flash->command, 1);
226
227	return 0;
228}
229
230static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
231{
232	/* opcode is in cmd[0] */
233	cmd[1] = addr >> (flash->addr_width * 8 -  8);
234	cmd[2] = addr >> (flash->addr_width * 8 - 16);
235	cmd[3] = addr >> (flash->addr_width * 8 - 24);
236	cmd[4] = addr >> (flash->addr_width * 8 - 32);
237}
238
239static int m25p_cmdsz(struct m25p *flash)
240{
241	return 1 + flash->addr_width;
242}
243
244/*
245 * Erase one sector of flash memory at offset ``offset'' which is any
246 * address within the sector which should be erased.
247 *
248 * Returns 0 if successful, non-zero otherwise.
249 */
250static int erase_sector(struct m25p *flash, u32 offset)
251{
252	pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash->spi->dev),
253			__func__, flash->mtd.erasesize / 1024, offset);
254
255	/* Wait until finished previous write command. */
256	if (wait_till_ready(flash))
257		return 1;
258
259	/* Send write enable, then erase commands. */
260	write_enable(flash);
261
262	/* Set up command buffer. */
263	flash->command[0] = flash->erase_opcode;
264	m25p_addr2cmd(flash, offset, flash->command);
265
266	spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
267
268	return 0;
269}
270
271/****************************************************************************/
272
273/*
274 * MTD implementation
275 */
276
277/*
278 * Erase an address range on the flash chip.  The address range may extend
279 * one or more erase sectors.  Return an error is there is a problem erasing.
280 */
281static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
282{
283	struct m25p *flash = mtd_to_m25p(mtd);
284	u32 addr,len;
285	uint32_t rem;
286
287	pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash->spi->dev),
288			__func__, (long long)instr->addr,
289			(long long)instr->len);
290
291	div_u64_rem(instr->len, mtd->erasesize, &rem);
292	if (rem)
293		return -EINVAL;
294
295	addr = instr->addr;
296	len = instr->len;
297
298	mutex_lock(&flash->lock);
299
300	/* whole-chip erase? */
301	if (len == flash->mtd.size) {
302		if (erase_chip(flash)) {
303			instr->state = MTD_ERASE_FAILED;
304			mutex_unlock(&flash->lock);
305			return -EIO;
306		}
307
308	/* REVISIT in some cases we could speed up erasing large regions
309	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
310	 * to use "small sector erase", but that's not always optimal.
311	 */
312
313	/* "sector"-at-a-time erase */
314	} else {
315		while (len) {
316			if (erase_sector(flash, addr)) {
317				instr->state = MTD_ERASE_FAILED;
318				mutex_unlock(&flash->lock);
319				return -EIO;
320			}
321
322			addr += mtd->erasesize;
323			len -= mtd->erasesize;
324		}
325	}
326
327	mutex_unlock(&flash->lock);
328
329	instr->state = MTD_ERASE_DONE;
330	mtd_erase_callback(instr);
331
332	return 0;
333}
334
335/*
336 * Read an address range from the flash chip.  The address range
337 * may be any size provided it is within the physical boundaries.
338 */
339static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
340	size_t *retlen, u_char *buf)
341{
342	struct m25p *flash = mtd_to_m25p(mtd);
343	struct spi_transfer t[2];
344	struct spi_message m;
345
346	pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
347			__func__, (u32)from, len);
348
349	spi_message_init(&m);
350	memset(t, 0, (sizeof t));
351
352	/* NOTE:
353	 * OPCODE_FAST_READ (if available) is faster.
354	 * Should add 1 byte DUMMY_BYTE.
355	 */
356	t[0].tx_buf = flash->command;
357	t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
358	spi_message_add_tail(&t[0], &m);
359
360	t[1].rx_buf = buf;
361	t[1].len = len;
362	spi_message_add_tail(&t[1], &m);
363
364	mutex_lock(&flash->lock);
365
366	/* Wait till previous write/erase is done. */
367	if (wait_till_ready(flash)) {
368		/* REVISIT status return?? */
369		mutex_unlock(&flash->lock);
370		return 1;
371	}
372
373	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
374	 * clocks; and at this writing, every chip this driver handles
375	 * supports that opcode.
376	 */
377
378	/* Set up the write data buffer. */
379	flash->command[0] = OPCODE_READ;
380	m25p_addr2cmd(flash, from, flash->command);
381
382	spi_sync(flash->spi, &m);
383
384	*retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
385
386	mutex_unlock(&flash->lock);
387
388	return 0;
389}
390
391/*
392 * Write an address range to the flash chip.  Data must be written in
393 * FLASH_PAGESIZE chunks.  The address range may be any size provided
394 * it is within the physical boundaries.
395 */
396static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
397	size_t *retlen, const u_char *buf)
398{
399	struct m25p *flash = mtd_to_m25p(mtd);
400	u32 page_offset, page_size;
401	struct spi_transfer t[2];
402	struct spi_message m;
403
404	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
405			__func__, (u32)to, len);
406
407	spi_message_init(&m);
408	memset(t, 0, (sizeof t));
409
410	t[0].tx_buf = flash->command;
411	t[0].len = m25p_cmdsz(flash);
412	spi_message_add_tail(&t[0], &m);
413
414	t[1].tx_buf = buf;
415	spi_message_add_tail(&t[1], &m);
416
417	mutex_lock(&flash->lock);
418
419	/* Wait until finished previous write command. */
420	if (wait_till_ready(flash)) {
421		mutex_unlock(&flash->lock);
422		return 1;
423	}
424
425	write_enable(flash);
426
427	/* Set up the opcode in the write buffer. */
428	flash->command[0] = OPCODE_PP;
429	m25p_addr2cmd(flash, to, flash->command);
430
431	page_offset = to & (flash->page_size - 1);
432
433	/* do all the bytes fit onto one page? */
434	if (page_offset + len <= flash->page_size) {
435		t[1].len = len;
436
437		spi_sync(flash->spi, &m);
438
439		*retlen = m.actual_length - m25p_cmdsz(flash);
440	} else {
441		u32 i;
442
443		/* the size of data remaining on the first page */
444		page_size = flash->page_size - page_offset;
445
446		t[1].len = page_size;
447		spi_sync(flash->spi, &m);
448
449		*retlen = m.actual_length - m25p_cmdsz(flash);
450
451		/* write everything in flash->page_size chunks */
452		for (i = page_size; i < len; i += page_size) {
453			page_size = len - i;
454			if (page_size > flash->page_size)
455				page_size = flash->page_size;
456
457			/* write the next page to flash */
458			m25p_addr2cmd(flash, to + i, flash->command);
459
460			t[1].tx_buf = buf + i;
461			t[1].len = page_size;
462
463			wait_till_ready(flash);
464
465			write_enable(flash);
466
467			spi_sync(flash->spi, &m);
468
469			*retlen += m.actual_length - m25p_cmdsz(flash);
470		}
471	}
472
473	mutex_unlock(&flash->lock);
474
475	return 0;
476}
477
478static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
479		size_t *retlen, const u_char *buf)
480{
481	struct m25p *flash = mtd_to_m25p(mtd);
482	struct spi_transfer t[2];
483	struct spi_message m;
484	size_t actual;
485	int cmd_sz, ret;
486
487	pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash->spi->dev),
488			__func__, (u32)to, len);
489
490	spi_message_init(&m);
491	memset(t, 0, (sizeof t));
492
493	t[0].tx_buf = flash->command;
494	t[0].len = m25p_cmdsz(flash);
495	spi_message_add_tail(&t[0], &m);
496
497	t[1].tx_buf = buf;
498	spi_message_add_tail(&t[1], &m);
499
500	mutex_lock(&flash->lock);
501
502	/* Wait until finished previous write command. */
503	ret = wait_till_ready(flash);
504	if (ret)
505		goto time_out;
506
507	write_enable(flash);
508
509	actual = to % 2;
510	/* Start write from odd address. */
511	if (actual) {
512		flash->command[0] = OPCODE_BP;
513		m25p_addr2cmd(flash, to, flash->command);
514
515		/* write one byte. */
516		t[1].len = 1;
517		spi_sync(flash->spi, &m);
518		ret = wait_till_ready(flash);
519		if (ret)
520			goto time_out;
521		*retlen += m.actual_length - m25p_cmdsz(flash);
522	}
523	to += actual;
524
525	flash->command[0] = OPCODE_AAI_WP;
526	m25p_addr2cmd(flash, to, flash->command);
527
528	/* Write out most of the data here. */
529	cmd_sz = m25p_cmdsz(flash);
530	for (; actual < len - 1; actual += 2) {
531		t[0].len = cmd_sz;
532		/* write two bytes. */
533		t[1].len = 2;
534		t[1].tx_buf = buf + actual;
535
536		spi_sync(flash->spi, &m);
537		ret = wait_till_ready(flash);
538		if (ret)
539			goto time_out;
540		*retlen += m.actual_length - cmd_sz;
541		cmd_sz = 1;
542		to += 2;
543	}
544	write_disable(flash);
545	ret = wait_till_ready(flash);
546	if (ret)
547		goto time_out;
548
549	/* Write out trailing byte if it exists. */
550	if (actual != len) {
551		write_enable(flash);
552		flash->command[0] = OPCODE_BP;
553		m25p_addr2cmd(flash, to, flash->command);
554		t[0].len = m25p_cmdsz(flash);
555		t[1].len = 1;
556		t[1].tx_buf = buf + actual;
557
558		spi_sync(flash->spi, &m);
559		ret = wait_till_ready(flash);
560		if (ret)
561			goto time_out;
562		*retlen += m.actual_length - m25p_cmdsz(flash);
563		write_disable(flash);
564	}
565
566time_out:
567	mutex_unlock(&flash->lock);
568	return ret;
569}
570
571/****************************************************************************/
572
573/*
574 * SPI device driver setup and teardown
575 */
576
577struct flash_info {
578	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
579	 * a high byte of zero plus three data bytes: the manufacturer id,
580	 * then a two byte device id.
581	 */
582	u32		jedec_id;
583	u16             ext_id;
584
585	/* The size listed here is what works with OPCODE_SE, which isn't
586	 * necessarily called a "sector" by the vendor.
587	 */
588	unsigned	sector_size;
589	u16		n_sectors;
590
591	u16		page_size;
592	u16		addr_width;
593
594	u16		flags;
595#define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
596#define	M25P_NO_ERASE	0x02		/* No erase command needed */
597};
598
599#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
600	((kernel_ulong_t)&(struct flash_info) {				\
601		.jedec_id = (_jedec_id),				\
602		.ext_id = (_ext_id),					\
603		.sector_size = (_sector_size),				\
604		.n_sectors = (_n_sectors),				\
605		.page_size = 256,					\
606		.flags = (_flags),					\
607	})
608
609#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width)	\
610	((kernel_ulong_t)&(struct flash_info) {				\
611		.sector_size = (_sector_size),				\
612		.n_sectors = (_n_sectors),				\
613		.page_size = (_page_size),				\
614		.addr_width = (_addr_width),				\
615		.flags = M25P_NO_ERASE,					\
616	})
617
618/* NOTE: double check command sets and memory organization when you add
619 * more flash chips.  This current list focusses on newer chips, which
620 * have been converging on command sets which including JEDEC ID.
621 */
622static const struct spi_device_id m25p_ids[] = {
623	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
624	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
625	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
626
627	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
628	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
629	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
630
631	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
632	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
633	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
634	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
635
636	/* EON -- en25xxx */
637	{ "en25f32", INFO(0x1c3116, 0, 64 * 1024,  64, SECT_4K) },
638	{ "en25p32", INFO(0x1c2016, 0, 64 * 1024,  64, 0) },
639	{ "en25q32b", INFO(0x1c3016, 0, 64 * 1024,  64, 0) },
640	{ "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
641
642	/* Everspin */
643	{ "mr25h256", CAT25_INFO(  32 * 1024, 1, 256, 2) },
644
645	/* Intel/Numonyx -- xxxs33b */
646	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
647	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
648	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
649
650	/* Macronix */
651	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
652	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
653	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
654	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
655	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
656	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
657	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
658	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
659	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
660	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
661
662	/* Spansion -- single (large) sector size only, at least
663	 * for the chips listed here (without boot sectors).
664	 */
665	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
666	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
667	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
668	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
669	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SECT_4K) },
670	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
671	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
672	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, 0) },
673	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
674	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
675	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
676	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
677	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, 0) },
678	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, 0) },
679	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K) },
680	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
681
682	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
683	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K) },
684	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
685	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
686	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
687	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K) },
688	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K) },
689	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K) },
690	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K) },
691
692	/* ST Microelectronics -- newer production may have feature updates */
693	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
694	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
695	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
696	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
697	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
698	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
699	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
700	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
701	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
702
703	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
704	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
705	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
706	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
707	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
708	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
709	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
710	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
711	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
712
713	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
714	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
715	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
716
717	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
718	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
719
720	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
721	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
722	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
723	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
724
725	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
726	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
727	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
728	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
729	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
730	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
731	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
732	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
733	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
734	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
735	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
736
737	/* Catalyst / On Semiconductor -- non-JEDEC */
738	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1) },
739	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2) },
740	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
741	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
742	{ "cat25128", CAT25_INFO(2048, 8, 64, 2) },
743	{ },
744};
745MODULE_DEVICE_TABLE(spi, m25p_ids);
746
747static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
748{
749	int			tmp;
750	u8			code = OPCODE_RDID;
751	u8			id[5];
752	u32			jedec;
753	u16                     ext_jedec;
754	struct flash_info	*info;
755
756	/* JEDEC also defines an optional "extended device information"
757	 * string for after vendor-specific data, after the three bytes
758	 * we use here.  Supporting some chips might require using it.
759	 */
760	tmp = spi_write_then_read(spi, &code, 1, id, 5);
761	if (tmp < 0) {
762		pr_debug("%s: error %d reading JEDEC ID\n",
763				dev_name(&spi->dev), tmp);
764		return ERR_PTR(tmp);
765	}
766	jedec = id[0];
767	jedec = jedec << 8;
768	jedec |= id[1];
769	jedec = jedec << 8;
770	jedec |= id[2];
771
772	ext_jedec = id[3] << 8 | id[4];
773
774	for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
775		info = (void *)m25p_ids[tmp].driver_data;
776		if (info->jedec_id == jedec) {
777			if (info->ext_id != 0 && info->ext_id != ext_jedec)
778				continue;
779			return &m25p_ids[tmp];
780		}
781	}
782	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
783	return ERR_PTR(-ENODEV);
784}
785
786
787/*
788 * board specific setup should have ensured the SPI clock used here
789 * matches what the READ command supports, at least until this driver
790 * understands FAST_READ (for clocks over 25 MHz).
791 */
792static int __devinit m25p_probe(struct spi_device *spi)
793{
794	const struct spi_device_id	*id = spi_get_device_id(spi);
795	struct flash_platform_data	*data;
796	struct m25p			*flash;
797	struct flash_info		*info;
798	unsigned			i;
799	struct mtd_part_parser_data	ppdata;
800
801#ifdef CONFIG_MTD_OF_PARTS
802	if (!of_device_is_available(spi->dev.of_node))
803		return -ENODEV;
804#endif
805
806	/* Platform data helps sort out which chip type we have, as
807	 * well as how this board partitions it.  If we don't have
808	 * a chip ID, try the JEDEC id commands; they'll work for most
809	 * newer chips, even if we don't recognize the particular chip.
810	 */
811	data = spi->dev.platform_data;
812	if (data && data->type) {
813		const struct spi_device_id *plat_id;
814
815		for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
816			plat_id = &m25p_ids[i];
817			if (strcmp(data->type, plat_id->name))
818				continue;
819			break;
820		}
821
822		if (i < ARRAY_SIZE(m25p_ids) - 1)
823			id = plat_id;
824		else
825			dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
826	}
827
828	info = (void *)id->driver_data;
829
830	if (info->jedec_id) {
831		const struct spi_device_id *jid;
832
833		jid = jedec_probe(spi);
834		if (IS_ERR(jid)) {
835			return PTR_ERR(jid);
836		} else if (jid != id) {
837			/*
838			 * JEDEC knows better, so overwrite platform ID. We
839			 * can't trust partitions any longer, but we'll let
840			 * mtd apply them anyway, since some partitions may be
841			 * marked read-only, and we don't want to lose that
842			 * information, even if it's not 100% accurate.
843			 */
844			dev_warn(&spi->dev, "found %s, expected %s\n",
845				 jid->name, id->name);
846			id = jid;
847			info = (void *)jid->driver_data;
848		}
849	}
850
851	flash = kzalloc(sizeof *flash, GFP_KERNEL);
852	if (!flash)
853		return -ENOMEM;
854	flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
855	if (!flash->command) {
856		kfree(flash);
857		return -ENOMEM;
858	}
859
860	flash->spi = spi;
861	mutex_init(&flash->lock);
862	dev_set_drvdata(&spi->dev, flash);
863
864	/*
865	 * Atmel, SST and Intel/Numonyx serial flash tend to power
866	 * up with the software protection bits set
867	 */
868
869	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
870	    JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
871	    JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
872		write_enable(flash);
873		write_sr(flash, 0);
874	}
875
876	if (data && data->name)
877		flash->mtd.name = data->name;
878	else
879		flash->mtd.name = dev_name(&spi->dev);
880
881	flash->mtd.type = MTD_NORFLASH;
882	flash->mtd.writesize = 1;
883	flash->mtd.flags = MTD_CAP_NORFLASH;
884	flash->mtd.size = info->sector_size * info->n_sectors;
885	flash->mtd._erase = m25p80_erase;
886	flash->mtd._read = m25p80_read;
887
888	/* sst flash chips use AAI word program */
889	if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
890		flash->mtd._write = sst_write;
891	else
892		flash->mtd._write = m25p80_write;
893
894	/* prefer "small sector" erase if possible */
895	if (info->flags & SECT_4K) {
896		flash->erase_opcode = OPCODE_BE_4K;
897		flash->mtd.erasesize = 4096;
898	} else {
899		flash->erase_opcode = OPCODE_SE;
900		flash->mtd.erasesize = info->sector_size;
901	}
902
903	if (info->flags & M25P_NO_ERASE)
904		flash->mtd.flags |= MTD_NO_ERASE;
905
906	ppdata.of_node = spi->dev.of_node;
907	flash->mtd.dev.parent = &spi->dev;
908	flash->page_size = info->page_size;
909	flash->mtd.writebufsize = flash->page_size;
910
911	if (info->addr_width)
912		flash->addr_width = info->addr_width;
913	else {
914		/* enable 4-byte addressing if the device exceeds 16MiB */
915		if (flash->mtd.size > 0x1000000) {
916			flash->addr_width = 4;
917			set_4byte(flash, info->jedec_id, 1);
918		} else
919			flash->addr_width = 3;
920	}
921
922	dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
923			(long long)flash->mtd.size >> 10);
924
925	pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
926			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
927		flash->mtd.name,
928		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
929		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
930		flash->mtd.numeraseregions);
931
932	if (flash->mtd.numeraseregions)
933		for (i = 0; i < flash->mtd.numeraseregions; i++)
934			pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
935				".erasesize = 0x%.8x (%uKiB), "
936				".numblocks = %d }\n",
937				i, (long long)flash->mtd.eraseregions[i].offset,
938				flash->mtd.eraseregions[i].erasesize,
939				flash->mtd.eraseregions[i].erasesize / 1024,
940				flash->mtd.eraseregions[i].numblocks);
941
942
943	/* partitions should match sector boundaries; and it may be good to
944	 * use readonly partitions for writeprotected sectors (BP2..BP0).
945	 */
946	return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
947			data ? data->parts : NULL,
948			data ? data->nr_parts : 0);
949}
950
951
952static int __devexit m25p_remove(struct spi_device *spi)
953{
954	struct m25p	*flash = dev_get_drvdata(&spi->dev);
955	int		status;
956
957	/* Clean up MTD stuff. */
958	status = mtd_device_unregister(&flash->mtd);
959	if (status == 0) {
960		kfree(flash->command);
961		kfree(flash);
962	}
963	return 0;
964}
965
966
967static struct spi_driver m25p80_driver = {
968	.driver = {
969		.name	= "m25p80",
970		.owner	= THIS_MODULE,
971	},
972	.id_table	= m25p_ids,
973	.probe	= m25p_probe,
974	.remove	= __devexit_p(m25p_remove),
975
976	/* REVISIT: many of these chips have deep power-down modes, which
977	 * should clearly be entered on suspend() to minimize power use.
978	 * And also when they're otherwise idle...
979	 */
980};
981
982module_spi_driver(m25p80_driver);
983
984MODULE_LICENSE("GPL");
985MODULE_AUTHOR("Mike Lavender");
986MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");