Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 * 
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com 
 
 
 
 
 
  10 */
  11
  12#undef DEBUG
  13
 
  14#include <linux/kernel.h>
  15#include <linux/string.h>
  16#include <linux/init.h>
  17#include <linux/threads.h>
  18#include <linux/spinlock.h>
  19#include <linux/types.h>
  20#include <linux/pci.h>
 
  21#include <linux/delay.h>
  22#include <linux/initrd.h>
  23#include <linux/bitops.h>
  24#include <linux/export.h>
  25#include <linux/kexec.h>
 
  26#include <linux/irq.h>
  27#include <linux/memblock.h>
  28#include <linux/of.h>
  29#include <linux/of_fdt.h>
  30#include <linux/libfdt.h>
  31#include <linux/cpu.h>
  32#include <linux/pgtable.h>
  33#include <linux/seq_buf.h>
  34
 
  35#include <asm/rtas.h>
  36#include <asm/page.h>
  37#include <asm/processor.h>
  38#include <asm/irq.h>
  39#include <asm/io.h>
  40#include <asm/kdump.h>
  41#include <asm/smp.h>
  42#include <asm/mmu.h>
  43#include <asm/paca.h>
  44#include <asm/powernv.h>
 
  45#include <asm/iommu.h>
  46#include <asm/btext.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/pci-bridge.h>
  50#include <asm/kexec.h>
  51#include <asm/opal.h>
  52#include <asm/fadump.h>
  53#include <asm/epapr_hcalls.h>
  54#include <asm/firmware.h>
  55#include <asm/dt_cpu_ftrs.h>
  56#include <asm/drmem.h>
  57#include <asm/ultravisor.h>
  58#include <asm/prom.h>
  59#include <asm/plpks.h>
  60
  61#include <mm/mmu_decl.h>
  62
  63#ifdef DEBUG
  64#define DBG(fmt...) printk(KERN_ERR fmt)
  65#else
  66#define DBG(fmt...)
  67#endif
  68
  69int *chip_id_lookup_table;
  70
  71#ifdef CONFIG_PPC64
  72int __initdata iommu_is_off;
  73int __initdata iommu_force_on;
  74unsigned long tce_alloc_start, tce_alloc_end;
  75u64 ppc64_rma_size;
  76unsigned int boot_cpu_node_count __ro_after_init;
  77#endif
  78static phys_addr_t first_memblock_size;
  79static int __initdata boot_cpu_count;
  80
  81static int __init early_parse_mem(char *p)
  82{
  83	if (!p)
  84		return 1;
  85
  86	memory_limit = PAGE_ALIGN(memparse(p, &p));
  87	DBG("memory limit = 0x%llx\n", memory_limit);
  88
  89	return 0;
  90}
  91early_param("mem", early_parse_mem);
  92
  93/*
  94 * overlaps_initrd - check for overlap with page aligned extension of
  95 * initrd.
  96 */
  97static inline int overlaps_initrd(unsigned long start, unsigned long size)
  98{
  99#ifdef CONFIG_BLK_DEV_INITRD
 100	if (!initrd_start)
 101		return 0;
 102
 103	return	(start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
 104			start <= ALIGN(initrd_end, PAGE_SIZE);
 105#else
 106	return 0;
 107#endif
 108}
 109
 110/**
 111 * move_device_tree - move tree to an unused area, if needed.
 112 *
 113 * The device tree may be allocated beyond our memory limit, or inside the
 114 * crash kernel region for kdump, or within the page aligned range of initrd.
 115 * If so, move it out of the way.
 116 */
 117static void __init move_device_tree(void)
 118{
 119	unsigned long start, size;
 120	void *p;
 121
 122	DBG("-> move_device_tree\n");
 123
 124	start = __pa(initial_boot_params);
 125	size = fdt_totalsize(initial_boot_params);
 126
 127	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
 128	    !memblock_is_memory(start + size - 1) ||
 129	    overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
 130		p = memblock_alloc_raw(size, PAGE_SIZE);
 131		if (!p)
 132			panic("Failed to allocate %lu bytes to move device tree\n",
 133			      size);
 134		memcpy(p, initial_boot_params, size);
 135		initial_boot_params = p;
 136		DBG("Moved device tree to 0x%px\n", p);
 137	}
 138
 139	DBG("<- move_device_tree\n");
 140}
 141
 142/*
 143 * ibm,pa/pi-features is a per-cpu property that contains a string of
 144 * attribute descriptors, each of which has a 2 byte header plus up
 145 * to 254 bytes worth of processor attribute bits.  First header
 146 * byte specifies the number of bytes following the header.
 147 * Second header byte is an "attribute-specifier" type, of which
 148 * zero is the only currently-defined value.
 149 * Implementation:  Pass in the byte and bit offset for the feature
 150 * that we are interested in.  The function will return -1 if the
 151 * pa-features property is missing, or a 1/0 to indicate if the feature
 152 * is supported/not supported.  Note that the bit numbers are
 153 * big-endian to match the definition in PAPR.
 154 */
 155struct ibm_feature {
 156	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
 157	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
 158	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
 159	unsigned int	cpu_user_ftrs2;	/* PPC_FEATURE2_xxx bit */
 160	unsigned char	pabyte;		/* byte number in ibm,pa/pi-features */
 161	unsigned char	pabit;		/* bit number (big-endian) */
 162	unsigned char	invert;		/* if 1, pa bit set => clear feature */
 
 
 
 
 
 
 
 
 
 163};
 164
 165static struct ibm_feature ibm_pa_features[] __initdata = {
 166	{ .pabyte = 0,  .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
 167	{ .pabyte = 0,  .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
 168	{ .pabyte = 0,  .pabit = 3, .cpu_features  = CPU_FTR_CTRL },
 169	{ .pabyte = 0,  .pabit = 6, .cpu_features  = CPU_FTR_NOEXECUTE },
 170	{ .pabyte = 1,  .pabit = 2, .mmu_features  = MMU_FTR_CI_LARGE_PAGE },
 171#ifdef CONFIG_PPC_RADIX_MMU
 172	{ .pabyte = 40, .pabit = 0, .mmu_features  = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
 173#endif
 174	{ .pabyte = 5,  .pabit = 0, .cpu_features  = CPU_FTR_REAL_LE,
 175				    .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
 176	/*
 177	 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
 178	 * we don't want to turn on TM here, so we use the *_COMP versions
 179	 * which are 0 if the kernel doesn't support TM.
 180	 */
 181	{ .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
 182	  .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
 183
 184	{ .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
 185	{ .pabyte = 68, .pabit = 5, .cpu_features = CPU_FTR_DEXCR_NPHIE },
 186};
 187
 188/*
 189 * ibm,pi-features property provides the support of processor specific
 190 * options not described in ibm,pa-features. Right now use byte 0, bit 3
 191 * which indicates the occurrence of DSI interrupt when the paste operation
 192 * on the suspended NX window.
 193 */
 194static struct ibm_feature ibm_pi_features[] __initdata = {
 195	{ .pabyte = 0, .pabit = 3, .mmu_features  = MMU_FTR_NX_DSI },
 196};
 197
 198static void __init scan_features(unsigned long node, const unsigned char *ftrs,
 199				 unsigned long tablelen,
 200				 struct ibm_feature *fp,
 201				 unsigned long ft_size)
 202{
 203	unsigned long i, len, bit;
 204
 205	/* find descriptor with type == 0 */
 206	for (;;) {
 207		if (tablelen < 3)
 208			return;
 209		len = 2 + ftrs[0];
 210		if (tablelen < len)
 211			return;		/* descriptor 0 not found */
 212		if (ftrs[1] == 0)
 213			break;
 214		tablelen -= len;
 215		ftrs += len;
 216	}
 217
 218	/* loop over bits we know about */
 219	for (i = 0; i < ft_size; ++i, ++fp) {
 220		if (fp->pabyte >= ftrs[0])
 221			continue;
 222		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
 223		if (bit ^ fp->invert) {
 224			cur_cpu_spec->cpu_features |= fp->cpu_features;
 225			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
 226			cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
 227			cur_cpu_spec->mmu_features |= fp->mmu_features;
 228		} else {
 229			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
 230			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
 231			cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
 232			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
 233		}
 234	}
 235}
 236
 237static void __init check_cpu_features(unsigned long node, char *name,
 238				      struct ibm_feature *fp,
 239				      unsigned long size)
 240{
 241	const unsigned char *pa_ftrs;
 242	int tablelen;
 243
 244	pa_ftrs = of_get_flat_dt_prop(node, name, &tablelen);
 245	if (pa_ftrs == NULL)
 246		return;
 247
 248	scan_features(node, pa_ftrs, tablelen, fp, size);
 
 249}
 250
 251#ifdef CONFIG_PPC_64S_HASH_MMU
 252static void __init init_mmu_slb_size(unsigned long node)
 253{
 254	const __be32 *slb_size_ptr;
 255
 256	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
 257			of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
 258
 259	if (slb_size_ptr)
 
 
 
 
 
 
 260		mmu_slb_size = be32_to_cpup(slb_size_ptr);
 
 261}
 262#else
 263#define init_mmu_slb_size(node) do { } while(0)
 264#endif
 265
 266static struct feature_property {
 267	const char *name;
 268	u32 min_value;
 269	unsigned long cpu_feature;
 270	unsigned long cpu_user_ftr;
 271} feature_properties[] __initdata = {
 272#ifdef CONFIG_ALTIVEC
 273	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
 274	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
 275#endif /* CONFIG_ALTIVEC */
 276#ifdef CONFIG_VSX
 277	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
 278	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
 279#endif /* CONFIG_VSX */
 280#ifdef CONFIG_PPC64
 281	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
 282	{"ibm,purr", 1, CPU_FTR_PURR, 0},
 283	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
 284#endif /* CONFIG_PPC64 */
 285};
 286
 287#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
 288static __init void identical_pvr_fixup(unsigned long node)
 289{
 290	unsigned int pvr;
 291	const char *model = of_get_flat_dt_prop(node, "model", NULL);
 292
 293	/*
 294	 * Since 440GR(x)/440EP(x) processors have the same pvr,
 295	 * we check the node path and set bit 28 in the cur_cpu_spec
 296	 * pvr for EP(x) processor version. This bit is always 0 in
 297	 * the "real" pvr. Then we call identify_cpu again with
 298	 * the new logical pvr to enable FPU support.
 299	 */
 300	if (model && strstr(model, "440EP")) {
 301		pvr = cur_cpu_spec->pvr_value | 0x8;
 302		identify_cpu(0, pvr);
 303		DBG("Using logical pvr %x for %s\n", pvr, model);
 304	}
 305}
 306#else
 307#define identical_pvr_fixup(node) do { } while(0)
 308#endif
 309
 310static void __init check_cpu_feature_properties(unsigned long node)
 311{
 312	int i;
 313	struct feature_property *fp = feature_properties;
 314	const __be32 *prop;
 315
 316	for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
 317		prop = of_get_flat_dt_prop(node, fp->name, NULL);
 318		if (prop && be32_to_cpup(prop) >= fp->min_value) {
 319			cur_cpu_spec->cpu_features |= fp->cpu_feature;
 320			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
 321		}
 322	}
 323}
 324
 325static int __init early_init_dt_scan_cpus(unsigned long node,
 326					  const char *uname, int depth,
 327					  void *data)
 328{
 329	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 330	const __be32 *prop;
 331	const __be32 *intserv;
 332	int i, nthreads;
 333	int len;
 334	int found = -1;
 335	int found_thread = 0;
 336
 337	/* We are scanning "cpu" nodes only */
 338	if (type == NULL || strcmp(type, "cpu") != 0)
 339		return 0;
 340
 341	if (IS_ENABLED(CONFIG_PPC64))
 342		boot_cpu_node_count++;
 343
 344	/* Get physical cpuid */
 345	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
 346	if (!intserv)
 347		intserv = of_get_flat_dt_prop(node, "reg", &len);
 348
 349	nthreads = len / sizeof(int);
 
 
 350
 351	/*
 352	 * Now see if any of these threads match our boot cpu.
 353	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
 354	 */
 355	for (i = 0; i < nthreads; i++) {
 356		if (be32_to_cpu(intserv[i]) ==
 357			fdt_boot_cpuid_phys(initial_boot_params)) {
 358			found = boot_cpu_count;
 359			found_thread = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360		}
 361#ifdef CONFIG_SMP
 362		/* logical cpu id is always 0 on UP kernels */
 363		boot_cpu_count++;
 364#endif
 365	}
 366
 367	/* Not the boot CPU */
 368	if (found < 0)
 369		return 0;
 370
 371	DBG("boot cpu: logical %d physical %d\n", found,
 372	    be32_to_cpu(intserv[found_thread]));
 373	boot_cpuid = found;
 374
 375	if (IS_ENABLED(CONFIG_PPC64))
 376		boot_cpu_hwid = be32_to_cpu(intserv[found_thread]);
 377
 378	/*
 379	 * PAPR defines "logical" PVR values for cpus that
 380	 * meet various levels of the architecture:
 381	 * 0x0f000001	Architecture version 2.04
 382	 * 0x0f000002	Architecture version 2.05
 383	 * If the cpu-version property in the cpu node contains
 384	 * such a value, we call identify_cpu again with the
 385	 * logical PVR value in order to use the cpu feature
 386	 * bits appropriate for the architecture level.
 387	 *
 388	 * A POWER6 partition in "POWER6 architected" mode
 389	 * uses the 0x0f000002 PVR value; in POWER5+ mode
 390	 * it uses 0x0f000001.
 391	 *
 392	 * If we're using device tree CPU feature discovery then we don't
 393	 * support the cpu-version property, and it's the responsibility of the
 394	 * firmware/hypervisor to provide the correct feature set for the
 395	 * architecture level via the ibm,powerpc-cpu-features binding.
 396	 */
 397	if (!dt_cpu_ftrs_in_use()) {
 398		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
 399		if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000) {
 400			identify_cpu(0, be32_to_cpup(prop));
 401			seq_buf_printf(&ppc_hw_desc, "0x%04x ", be32_to_cpup(prop));
 402		}
 403
 404		check_cpu_feature_properties(node);
 405		check_cpu_features(node, "ibm,pa-features", ibm_pa_features,
 406				   ARRAY_SIZE(ibm_pa_features));
 407		check_cpu_features(node, "ibm,pi-features", ibm_pi_features,
 408				   ARRAY_SIZE(ibm_pi_features));
 409	}
 410
 411	identical_pvr_fixup(node);
 412	init_mmu_slb_size(node);
 
 
 
 413
 414#ifdef CONFIG_PPC64
 415	if (nthreads == 1)
 416		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
 417	else if (!dt_cpu_ftrs_in_use())
 418		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
 
 
 419#endif
 420
 421	return 0;
 422}
 423
 424static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
 425						const char *uname,
 426						int depth, void *data)
 427{
 428	const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
 429
 430	/* Use common scan routine to determine if this is the chosen node */
 431	if (early_init_dt_scan_chosen(data) < 0)
 432		return 0;
 433
 434#ifdef CONFIG_PPC64
 435	/* check if iommu is forced on or off */
 436	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
 437		iommu_is_off = 1;
 438	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
 439		iommu_force_on = 1;
 440#endif
 441
 442	/* mem=x on the command line is the preferred mechanism */
 443	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
 444	if (lprop)
 445		memory_limit = *lprop;
 446
 447#ifdef CONFIG_PPC64
 448	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
 449	if (lprop)
 450		tce_alloc_start = *lprop;
 451	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
 452	if (lprop)
 453		tce_alloc_end = *lprop;
 454#endif
 455
 456#ifdef CONFIG_KEXEC_CORE
 457	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
 458	if (lprop)
 459		crashk_res.start = *lprop;
 460
 461	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
 462	if (lprop)
 463		crashk_res.end = crashk_res.start + *lprop - 1;
 464#endif
 465
 466	/* break now */
 467	return 1;
 468}
 469
 470/*
 471 * Compare the range against max mem limit and update
 472 * size if it cross the limit.
 473 */
 474
 475#ifdef CONFIG_SPARSEMEM
 476static bool __init validate_mem_limit(u64 base, u64 *size)
 477{
 478	u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
 479
 480	if (base >= max_mem)
 481		return false;
 482	if ((base + *size) > max_mem)
 483		*size = max_mem - base;
 484	return true;
 485}
 486#else
 487static bool __init validate_mem_limit(u64 base, u64 *size)
 488{
 489	return true;
 490}
 491#endif
 492
 493#ifdef CONFIG_PPC_PSERIES
 494/*
 495 * Interpret the ibm dynamic reconfiguration memory LMBs.
 
 496 * This contains a list of memory blocks along with NUMA affinity
 497 * information.
 498 */
 499static int  __init early_init_drmem_lmb(struct drmem_lmb *lmb,
 500					const __be32 **usm,
 501					void *data)
 502{
 503	u64 base, size;
 504	int is_kexec_kdump = 0, rngs;
 
 
 505
 506	base = lmb->base_addr;
 507	size = drmem_lmb_size();
 508	rngs = 1;
 
 509
 510	/*
 511	 * Skip this block if the reserved bit is set in flags
 512	 * or if the block is not assigned to this partition.
 513	 */
 514	if ((lmb->flags & DRCONF_MEM_RESERVED) ||
 515	    !(lmb->flags & DRCONF_MEM_ASSIGNED))
 516		return 0;
 517
 518	if (*usm)
 519		is_kexec_kdump = 1;
 
 520
 521	if (is_kexec_kdump) {
 522		/*
 523		 * For each memblock in ibm,dynamic-memory, a
 524		 * corresponding entry in linux,drconf-usable-memory
 525		 * property contains a counter 'p' followed by 'p'
 526		 * (base, size) duple. Now read the counter from
 527		 * linux,drconf-usable-memory property
 528		 */
 529		rngs = dt_mem_next_cell(dt_root_size_cells, usm);
 530		if (!rngs) /* there are no (base, size) duple */
 531			return 0;
 532	}
 533
 534	do {
 
 
 
 
 
 
 
 
 
 
 535		if (is_kexec_kdump) {
 536			base = dt_mem_next_cell(dt_root_addr_cells, usm);
 537			size = dt_mem_next_cell(dt_root_size_cells, usm);
 538		}
 539
 540		if (iommu_is_off) {
 541			if (base >= 0x80000000ul)
 
 
 
 542				continue;
 543			if ((base + size) > 0x80000000ul)
 544				size = 0x80000000ul - base;
 545		}
 546
 547		if (!validate_mem_limit(base, &size))
 548			continue;
 549
 550		DBG("Adding: %llx -> %llx\n", base, size);
 551		memblock_add(base, size);
 552
 553		if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
 554			memblock_mark_hotplug(base, size);
 555	} while (--rngs);
 556
 
 
 
 
 
 
 557	return 0;
 558}
 
 
 559#endif /* CONFIG_PPC_PSERIES */
 560
 561static int __init early_init_dt_scan_memory_ppc(void)
 
 
 562{
 563#ifdef CONFIG_PPC_PSERIES
 564	const void *fdt = initial_boot_params;
 565	int node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
 566
 567	if (node > 0)
 568		walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
 569
 570#endif
 571
 572	return early_init_dt_scan_memory();
 573}
 574
 575/*
 576 * For a relocatable kernel, we need to get the memstart_addr first,
 577 * then use it to calculate the virtual kernel start address. This has
 578 * to happen at a very early stage (before machine_init). In this case,
 579 * we just want to get the memstart_address and would not like to mess the
 580 * memblock at this stage. So introduce a variable to skip the memblock_add()
 581 * for this reason.
 582 */
 583#ifdef CONFIG_RELOCATABLE
 584static int add_mem_to_memblock = 1;
 585#else
 586#define add_mem_to_memblock 1
 587#endif
 588
 589void __init early_init_dt_add_memory_arch(u64 base, u64 size)
 590{
 591#ifdef CONFIG_PPC64
 592	if (iommu_is_off) {
 593		if (base >= 0x80000000ul)
 594			return;
 595		if ((base + size) > 0x80000000ul)
 596			size = 0x80000000ul - base;
 597	}
 598#endif
 599	/* Keep track of the beginning of memory -and- the size of
 600	 * the very first block in the device-tree as it represents
 601	 * the RMA on ppc64 server
 602	 */
 603	if (base < memstart_addr) {
 604		memstart_addr = base;
 605		first_memblock_size = size;
 606	}
 607
 608	/* Add the chunk to the MEMBLOCK list */
 609	if (add_mem_to_memblock) {
 610		if (validate_mem_limit(base, &size))
 611			memblock_add(base, size);
 612	}
 613}
 614
 615static void __init early_reserve_mem_dt(void)
 616{
 617	unsigned long i, dt_root;
 618	int len;
 619	const __be32 *prop;
 620
 621	early_init_fdt_reserve_self();
 622	early_init_fdt_scan_reserved_mem();
 623
 624	dt_root = of_get_flat_dt_root();
 625
 626	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
 627
 628	if (!prop)
 629		return;
 630
 631	DBG("Found new-style reserved-ranges\n");
 632
 633	/* Each reserved range is an (address,size) pair, 2 cells each,
 634	 * totalling 4 cells per range. */
 635	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
 636		u64 base, size;
 637
 638		base = of_read_number(prop + (i * 4) + 0, 2);
 639		size = of_read_number(prop + (i * 4) + 2, 2);
 640
 641		if (size) {
 642			DBG("reserving: %llx -> %llx\n", base, size);
 643			memblock_reserve(base, size);
 644		}
 645	}
 
 
 646}
 647
 648static void __init early_reserve_mem(void)
 649{
 
 650	__be64 *reserve_map;
 
 
 651
 652	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
 653			fdt_off_mem_rsvmap(initial_boot_params));
 
 
 
 
 
 654
 655	/* Look for the new "reserved-regions" property in the DT */
 656	early_reserve_mem_dt();
 657
 658#ifdef CONFIG_BLK_DEV_INITRD
 659	/* Then reserve the initrd, if any */
 660	if (initrd_start && (initrd_end > initrd_start)) {
 661		memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
 662			ALIGN(initrd_end, PAGE_SIZE) -
 663			ALIGN_DOWN(initrd_start, PAGE_SIZE));
 664	}
 665#endif /* CONFIG_BLK_DEV_INITRD */
 666
 667	if (!IS_ENABLED(CONFIG_PPC32))
 668		return;
 669
 670	/* 
 671	 * Handle the case where we might be booting from an old kexec
 672	 * image that setup the mem_rsvmap as pairs of 32-bit values
 673	 */
 674	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
 675		u32 base_32, size_32;
 676		__be32 *reserve_map_32 = (__be32 *)reserve_map;
 677
 678		DBG("Found old 32-bit reserve map\n");
 679
 680		while (1) {
 681			base_32 = be32_to_cpup(reserve_map_32++);
 682			size_32 = be32_to_cpup(reserve_map_32++);
 683			if (size_32 == 0)
 684				break;
 
 
 
 685			DBG("reserving: %x -> %x\n", base_32, size_32);
 686			memblock_reserve(base_32, size_32);
 687		}
 688		return;
 689	}
 690}
 691
 692#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 693static bool tm_disabled __initdata;
 694
 695static int __init parse_ppc_tm(char *str)
 696{
 697	bool res;
 698
 699	if (kstrtobool(str, &res))
 700		return -EINVAL;
 701
 702	tm_disabled = !res;
 703
 704	return 0;
 705}
 706early_param("ppc_tm", parse_ppc_tm);
 707
 708static void __init tm_init(void)
 709{
 710	if (tm_disabled) {
 711		pr_info("Disabling hardware transactional memory (HTM)\n");
 712		cur_cpu_spec->cpu_user_features2 &=
 713			~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
 714		cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
 715		return;
 716	}
 717
 718	pnv_tm_init();
 719}
 720#else
 721static void tm_init(void) { }
 722#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 723
 724static int __init
 725early_init_dt_scan_model(unsigned long node, const char *uname,
 726			 int depth, void *data)
 727{
 728	const char *prop;
 729
 730	if (depth != 0)
 731		return 0;
 732
 733	prop = of_get_flat_dt_prop(node, "model", NULL);
 734	if (prop)
 735		seq_buf_printf(&ppc_hw_desc, "%s ", prop);
 736
 737	/* break now */
 738	return 1;
 739}
 740
 741#ifdef CONFIG_PPC64
 742static void __init save_fscr_to_task(void)
 743{
 744	/*
 745	 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
 746	 * have configured via the device tree features or via __init_FSCR().
 747	 * That value will then be propagated to pid 1 (init) and all future
 748	 * processes.
 749	 */
 750	if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
 751		init_task.thread.fscr = mfspr(SPRN_FSCR);
 752}
 753#else
 754static inline void save_fscr_to_task(void) {}
 755#endif
 756
 757
 758void __init early_init_devtree(void *params)
 759{
 760	phys_addr_t limit;
 761
 762	DBG(" -> early_init_devtree(%px)\n", params);
 763
 764	/* Too early to BUG_ON(), do it by hand */
 765	if (!early_init_dt_verify(params))
 766		panic("BUG: Failed verifying flat device tree, bad version?");
 767
 768	of_scan_flat_dt(early_init_dt_scan_model, NULL);
 769
 770#ifdef CONFIG_PPC_RTAS
 771	/* Some machines might need RTAS info for debugging, grab it now. */
 772	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
 773#endif
 774
 775#ifdef CONFIG_PPC_POWERNV
 776	/* Some machines might need OPAL info for debugging, grab it now. */
 777	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
 778
 779	/* Scan tree for ultravisor feature */
 780	of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
 781#endif
 782
 783#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
 784	/* scan tree to see if dump is active during last boot */
 785	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
 786#endif
 787
 
 
 
 
 
 
 
 788	/* Retrieve various informations from the /chosen node of the
 789	 * device-tree, including the platform type, initrd location and
 790	 * size, TCE reserve, and more ...
 791	 */
 792	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
 793
 794	/* Scan memory nodes and rebuild MEMBLOCKs */
 795	early_init_dt_scan_root();
 796	early_init_dt_scan_memory_ppc();
 797
 798	/*
 799	 * As generic code authors expect to be able to use static keys
 800	 * in early_param() handlers, we initialize the static keys just
 801	 * before parsing early params (it's fine to call jump_label_init()
 802	 * more than once).
 803	 */
 804	jump_label_init();
 805	parse_early_param();
 806
 807	/* make sure we've parsed cmdline for mem= before this */
 808	if (memory_limit)
 809		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
 810	setup_initial_memory_limit(memstart_addr, first_memblock_size);
 811	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
 812	memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START);
 813	/* If relocatable, reserve first 32k for interrupt vectors etc. */
 814	if (PHYSICAL_START > MEMORY_START)
 815		memblock_reserve(MEMORY_START, 0x8000);
 816	reserve_kdump_trampoline();
 817#if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
 818	/*
 819	 * If we fail to reserve memory for firmware-assisted dump then
 820	 * fallback to kexec based kdump.
 821	 */
 822	if (fadump_reserve_mem() == 0)
 823#endif
 824		reserve_crashkernel();
 825	early_reserve_mem();
 826
 827	/* Ensure that total memory size is page-aligned. */
 
 
 
 828	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
 829	memblock_enforce_memory_limit(limit);
 830
 831#if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
 832	if (!early_radix_enabled())
 833		memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
 834#endif
 835
 836	memblock_allow_resize();
 837	memblock_dump_all();
 838
 839	DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
 840
 841	/* We may need to relocate the flat tree, do it now.
 842	 * FIXME .. and the initrd too? */
 843	move_device_tree();
 844
 845	DBG("Scanning CPUs ...\n");
 846
 847	dt_cpu_ftrs_scan();
 848
 849	// We can now add the CPU name & PVR to the hardware description
 850	seq_buf_printf(&ppc_hw_desc, "%s 0x%04lx ", cur_cpu_spec->cpu_name, mfspr(SPRN_PVR));
 851
 852	/* Retrieve CPU related informations from the flat tree
 853	 * (altivec support, boot CPU ID, ...)
 854	 */
 855	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
 856	if (boot_cpuid < 0) {
 857		printk("Failed to identify boot CPU !\n");
 858		BUG();
 859	}
 860
 861	save_fscr_to_task();
 862
 863#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
 864	/* We'll later wait for secondaries to check in; there are
 865	 * NCPUS-1 non-boot CPUs  :-)
 866	 */
 867	spinning_secondaries = boot_cpu_count - 1;
 868#endif
 869
 870	mmu_early_init_devtree();
 871
 872#ifdef CONFIG_PPC_POWERNV
 873	/* Scan and build the list of machine check recoverable ranges */
 874	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
 875#endif
 876	epapr_paravirt_early_init();
 877
 878	/* Now try to figure out if we are running on LPAR and so on */
 879	pseries_probe_fw_features();
 880
 881	/*
 882	 * Initialize pkey features and default AMR/IAMR values
 883	 */
 884	pkey_early_init_devtree();
 885
 886#ifdef CONFIG_PPC_PS3
 887	/* Identify PS3 firmware */
 888	if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
 889		powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
 890#endif
 891
 892	/* If kexec left a PLPKS password in the DT, get it and clear it */
 893	plpks_early_init_devtree();
 894
 895	tm_init();
 896
 897	DBG(" <- early_init_devtree()\n");
 898}
 899
 900#ifdef CONFIG_RELOCATABLE
 901/*
 902 * This function run before early_init_devtree, so we have to init
 903 * initial_boot_params.
 904 */
 905void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
 906{
 907	/* Setup flat device-tree pointer */
 908	initial_boot_params = params;
 909
 910	/*
 911	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
 912	 * mess the memblock.
 913	 */
 914	add_mem_to_memblock = 0;
 915	early_init_dt_scan_root();
 916	early_init_dt_scan_memory_ppc();
 917	add_mem_to_memblock = 1;
 918
 919	if (size)
 920		*size = first_memblock_size;
 921}
 922#endif
 923
 924/*******
 925 *
 926 * New implementation of the OF "find" APIs, return a refcounted
 927 * object, call of_node_put() when done.  The device tree and list
 928 * are protected by a rw_lock.
 929 *
 930 * Note that property management will need some locking as well,
 931 * this isn't dealt with yet.
 932 *
 933 *******/
 934
 935/**
 936 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
 937 * @np: device node of the device
 938 *
 939 * This looks for a property "ibm,chip-id" in the node or any
 940 * of its parents and returns its content, or -1 if it cannot
 941 * be found.
 942 */
 943int of_get_ibm_chip_id(struct device_node *np)
 944{
 945	of_node_get(np);
 946	while (np) {
 947		u32 chip_id;
 
 948
 949		/*
 950		 * Skiboot may produce memory nodes that contain more than one
 951		 * cell in chip-id, we only read the first one here.
 952		 */
 953		if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
 954			of_node_put(np);
 955			return chip_id;
 956		}
 957
 958		np = of_get_next_parent(np);
 959	}
 960	return -1;
 961}
 962EXPORT_SYMBOL(of_get_ibm_chip_id);
 963
 964/**
 965 * cpu_to_chip_id - Return the cpus chip-id
 966 * @cpu: The logical cpu number.
 967 *
 968 * Return the value of the ibm,chip-id property corresponding to the given
 969 * logical cpu number. If the chip-id can not be found, returns -1.
 970 */
 971int cpu_to_chip_id(int cpu)
 972{
 973	struct device_node *np;
 974	int ret = -1, idx;
 975
 976	idx = cpu / threads_per_core;
 977	if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1)
 978		return chip_id_lookup_table[idx];
 979
 980	np = of_get_cpu_node(cpu, NULL);
 981	if (np) {
 982		ret = of_get_ibm_chip_id(np);
 983		of_node_put(np);
 984
 985		if (chip_id_lookup_table)
 986			chip_id_lookup_table[idx] = ret;
 987	}
 988
 989	return ret;
 
 990}
 991EXPORT_SYMBOL(cpu_to_chip_id);
 992
 993bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 
 
 
 
 
 
 994{
 995#ifdef CONFIG_SMP
 996	/*
 997	 * Early firmware scanning must use this rather than
 998	 * get_hard_smp_processor_id because we don't have pacas allocated
 999	 * until memory topology is discovered.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000	 */
1001	if (cpu_to_phys_id != NULL)
1002		return (int)phys_id == cpu_to_phys_id[cpu];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003#endif
1004
 
 
1005	return (int)phys_id == get_hard_smp_processor_id(cpu);
1006}
v3.15
 
  1/*
  2 * Procedures for creating, accessing and interpreting the device tree.
  3 *
  4 * Paul Mackerras	August 1996.
  5 * Copyright (C) 1996-2005 Paul Mackerras.
  6 * 
  7 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8 *    {engebret|bergner}@us.ibm.com 
  9 *
 10 *      This program is free software; you can redistribute it and/or
 11 *      modify it under the terms of the GNU General Public License
 12 *      as published by the Free Software Foundation; either version
 13 *      2 of the License, or (at your option) any later version.
 14 */
 15
 16#undef DEBUG
 17
 18#include <stdarg.h>
 19#include <linux/kernel.h>
 20#include <linux/string.h>
 21#include <linux/init.h>
 22#include <linux/threads.h>
 23#include <linux/spinlock.h>
 24#include <linux/types.h>
 25#include <linux/pci.h>
 26#include <linux/stringify.h>
 27#include <linux/delay.h>
 28#include <linux/initrd.h>
 29#include <linux/bitops.h>
 30#include <linux/export.h>
 31#include <linux/kexec.h>
 32#include <linux/debugfs.h>
 33#include <linux/irq.h>
 34#include <linux/memblock.h>
 35#include <linux/of.h>
 36#include <linux/of_fdt.h>
 
 
 
 
 37
 38#include <asm/prom.h>
 39#include <asm/rtas.h>
 40#include <asm/page.h>
 41#include <asm/processor.h>
 42#include <asm/irq.h>
 43#include <asm/io.h>
 44#include <asm/kdump.h>
 45#include <asm/smp.h>
 46#include <asm/mmu.h>
 47#include <asm/paca.h>
 48#include <asm/pgtable.h>
 49#include <asm/pci.h>
 50#include <asm/iommu.h>
 51#include <asm/btext.h>
 52#include <asm/sections.h>
 53#include <asm/machdep.h>
 54#include <asm/pci-bridge.h>
 55#include <asm/kexec.h>
 56#include <asm/opal.h>
 57#include <asm/fadump.h>
 58#include <asm/debug.h>
 
 
 
 
 
 
 59
 60#include <mm/mmu_decl.h>
 61
 62#ifdef DEBUG
 63#define DBG(fmt...) printk(KERN_ERR fmt)
 64#else
 65#define DBG(fmt...)
 66#endif
 67
 
 
 68#ifdef CONFIG_PPC64
 69int __initdata iommu_is_off;
 70int __initdata iommu_force_on;
 71unsigned long tce_alloc_start, tce_alloc_end;
 72u64 ppc64_rma_size;
 
 73#endif
 74static phys_addr_t first_memblock_size;
 75static int __initdata boot_cpu_count;
 76
 77static int __init early_parse_mem(char *p)
 78{
 79	if (!p)
 80		return 1;
 81
 82	memory_limit = PAGE_ALIGN(memparse(p, &p));
 83	DBG("memory limit = 0x%llx\n", memory_limit);
 84
 85	return 0;
 86}
 87early_param("mem", early_parse_mem);
 88
 89/*
 90 * overlaps_initrd - check for overlap with page aligned extension of
 91 * initrd.
 92 */
 93static inline int overlaps_initrd(unsigned long start, unsigned long size)
 94{
 95#ifdef CONFIG_BLK_DEV_INITRD
 96	if (!initrd_start)
 97		return 0;
 98
 99	return	(start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
100			start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
101#else
102	return 0;
103#endif
104}
105
106/**
107 * move_device_tree - move tree to an unused area, if needed.
108 *
109 * The device tree may be allocated beyond our memory limit, or inside the
110 * crash kernel region for kdump, or within the page aligned range of initrd.
111 * If so, move it out of the way.
112 */
113static void __init move_device_tree(void)
114{
115	unsigned long start, size;
116	void *p;
117
118	DBG("-> move_device_tree\n");
119
120	start = __pa(initial_boot_params);
121	size = be32_to_cpu(initial_boot_params->totalsize);
122
123	if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
124			overlaps_crashkernel(start, size) ||
125			overlaps_initrd(start, size)) {
126		p = __va(memblock_alloc(size, PAGE_SIZE));
 
 
 
127		memcpy(p, initial_boot_params, size);
128		initial_boot_params = (struct boot_param_header *)p;
129		DBG("Moved device tree to 0x%p\n", p);
130	}
131
132	DBG("<- move_device_tree\n");
133}
134
135/*
136 * ibm,pa-features is a per-cpu property that contains a string of
137 * attribute descriptors, each of which has a 2 byte header plus up
138 * to 254 bytes worth of processor attribute bits.  First header
139 * byte specifies the number of bytes following the header.
140 * Second header byte is an "attribute-specifier" type, of which
141 * zero is the only currently-defined value.
142 * Implementation:  Pass in the byte and bit offset for the feature
143 * that we are interested in.  The function will return -1 if the
144 * pa-features property is missing, or a 1/0 to indicate if the feature
145 * is supported/not supported.  Note that the bit numbers are
146 * big-endian to match the definition in PAPR.
147 */
148static struct ibm_pa_feature {
149	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
150	unsigned long	mmu_features;	/* MMU_FTR_xxx bit */
151	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
152	unsigned char	pabyte;		/* byte number in ibm,pa-features */
 
153	unsigned char	pabit;		/* bit number (big-endian) */
154	unsigned char	invert;		/* if 1, pa bit set => clear feature */
155} ibm_pa_features[] __initdata = {
156	{0, 0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
157	{0, 0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
158	{0, MMU_FTR_SLB, 0,		0, 2, 0},
159	{CPU_FTR_CTRL, 0, 0,		0, 3, 0},
160	{CPU_FTR_NOEXECUTE, 0, 0,	0, 6, 0},
161	{CPU_FTR_NODSISRALIGN, 0, 0,	1, 1, 1},
162	{0, MMU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
163	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
164};
165
166static void __init scan_features(unsigned long node, unsigned char *ftrs,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167				 unsigned long tablelen,
168				 struct ibm_pa_feature *fp,
169				 unsigned long ft_size)
170{
171	unsigned long i, len, bit;
172
173	/* find descriptor with type == 0 */
174	for (;;) {
175		if (tablelen < 3)
176			return;
177		len = 2 + ftrs[0];
178		if (tablelen < len)
179			return;		/* descriptor 0 not found */
180		if (ftrs[1] == 0)
181			break;
182		tablelen -= len;
183		ftrs += len;
184	}
185
186	/* loop over bits we know about */
187	for (i = 0; i < ft_size; ++i, ++fp) {
188		if (fp->pabyte >= ftrs[0])
189			continue;
190		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
191		if (bit ^ fp->invert) {
192			cur_cpu_spec->cpu_features |= fp->cpu_features;
193			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
 
194			cur_cpu_spec->mmu_features |= fp->mmu_features;
195		} else {
196			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
197			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
 
198			cur_cpu_spec->mmu_features &= ~fp->mmu_features;
199		}
200	}
201}
202
203static void __init check_cpu_pa_features(unsigned long node)
 
 
204{
205	unsigned char *pa_ftrs;
206	unsigned long tablelen;
207
208	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
209	if (pa_ftrs == NULL)
210		return;
211
212	scan_features(node, pa_ftrs, tablelen,
213		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
214}
215
216#ifdef CONFIG_PPC_STD_MMU_64
217static void __init check_cpu_slb_size(unsigned long node)
218{
219	__be32 *slb_size_ptr;
 
 
 
220
221	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
222	if (slb_size_ptr != NULL) {
223		mmu_slb_size = be32_to_cpup(slb_size_ptr);
224		return;
225	}
226	slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
227	if (slb_size_ptr != NULL) {
228		mmu_slb_size = be32_to_cpup(slb_size_ptr);
229	}
230}
231#else
232#define check_cpu_slb_size(node) do { } while(0)
233#endif
234
235static struct feature_property {
236	const char *name;
237	u32 min_value;
238	unsigned long cpu_feature;
239	unsigned long cpu_user_ftr;
240} feature_properties[] __initdata = {
241#ifdef CONFIG_ALTIVEC
242	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
243	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
244#endif /* CONFIG_ALTIVEC */
245#ifdef CONFIG_VSX
246	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
247	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
248#endif /* CONFIG_VSX */
249#ifdef CONFIG_PPC64
250	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
251	{"ibm,purr", 1, CPU_FTR_PURR, 0},
252	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
253#endif /* CONFIG_PPC64 */
254};
255
256#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
257static inline void identical_pvr_fixup(unsigned long node)
258{
259	unsigned int pvr;
260	char *model = of_get_flat_dt_prop(node, "model", NULL);
261
262	/*
263	 * Since 440GR(x)/440EP(x) processors have the same pvr,
264	 * we check the node path and set bit 28 in the cur_cpu_spec
265	 * pvr for EP(x) processor version. This bit is always 0 in
266	 * the "real" pvr. Then we call identify_cpu again with
267	 * the new logical pvr to enable FPU support.
268	 */
269	if (model && strstr(model, "440EP")) {
270		pvr = cur_cpu_spec->pvr_value | 0x8;
271		identify_cpu(0, pvr);
272		DBG("Using logical pvr %x for %s\n", pvr, model);
273	}
274}
275#else
276#define identical_pvr_fixup(node) do { } while(0)
277#endif
278
279static void __init check_cpu_feature_properties(unsigned long node)
280{
281	unsigned long i;
282	struct feature_property *fp = feature_properties;
283	const __be32 *prop;
284
285	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
286		prop = of_get_flat_dt_prop(node, fp->name, NULL);
287		if (prop && be32_to_cpup(prop) >= fp->min_value) {
288			cur_cpu_spec->cpu_features |= fp->cpu_feature;
289			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
290		}
291	}
292}
293
294static int __init early_init_dt_scan_cpus(unsigned long node,
295					  const char *uname, int depth,
296					  void *data)
297{
298	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
299	const __be32 *prop;
300	const __be32 *intserv;
301	int i, nthreads;
302	unsigned long len;
303	int found = -1;
304	int found_thread = 0;
305
306	/* We are scanning "cpu" nodes only */
307	if (type == NULL || strcmp(type, "cpu") != 0)
308		return 0;
309
 
 
 
310	/* Get physical cpuid */
311	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
312	if (intserv) {
313		nthreads = len / sizeof(int);
314	} else {
315		intserv = of_get_flat_dt_prop(node, "reg", NULL);
316		nthreads = 1;
317	}
318
319	/*
320	 * Now see if any of these threads match our boot cpu.
321	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
322	 */
323	for (i = 0; i < nthreads; i++) {
324		/*
325		 * version 2 of the kexec param format adds the phys cpuid of
326		 * booted proc.
327		 */
328		if (be32_to_cpu(initial_boot_params->version) >= 2) {
329			if (be32_to_cpu(intserv[i]) ==
330			    be32_to_cpu(initial_boot_params->boot_cpuid_phys)) {
331				found = boot_cpu_count;
332				found_thread = i;
333			}
334		} else {
335			/*
336			 * Check if it's the boot-cpu, set it's hw index now,
337			 * unfortunately this format did not support booting
338			 * off secondary threads.
339			 */
340			if (of_get_flat_dt_prop(node,
341					"linux,boot-cpu", NULL) != NULL)
342				found = boot_cpu_count;
343		}
344#ifdef CONFIG_SMP
345		/* logical cpu id is always 0 on UP kernels */
346		boot_cpu_count++;
347#endif
348	}
349
350	/* Not the boot CPU */
351	if (found < 0)
352		return 0;
353
354	DBG("boot cpu: logical %d physical %d\n", found,
355	    be32_to_cpu(intserv[found_thread]));
356	boot_cpuid = found;
357	set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
 
 
358
359	/*
360	 * PAPR defines "logical" PVR values for cpus that
361	 * meet various levels of the architecture:
362	 * 0x0f000001	Architecture version 2.04
363	 * 0x0f000002	Architecture version 2.05
364	 * If the cpu-version property in the cpu node contains
365	 * such a value, we call identify_cpu again with the
366	 * logical PVR value in order to use the cpu feature
367	 * bits appropriate for the architecture level.
368	 *
369	 * A POWER6 partition in "POWER6 architected" mode
370	 * uses the 0x0f000002 PVR value; in POWER5+ mode
371	 * it uses 0x0f000001.
372	 */
373	prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
374	if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
375		identify_cpu(0, be32_to_cpup(prop));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376
377	identical_pvr_fixup(node);
378
379	check_cpu_feature_properties(node);
380	check_cpu_pa_features(node);
381	check_cpu_slb_size(node);
382
383#ifdef CONFIG_PPC64
384	if (nthreads > 1)
 
 
385		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
386	else
387		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
388#endif
 
389	return 0;
390}
391
392int __init early_init_dt_scan_chosen_ppc(unsigned long node, const char *uname,
393					 int depth, void *data)
 
394{
395	unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
396
397	/* Use common scan routine to determine if this is the chosen node */
398	if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
399		return 0;
400
401#ifdef CONFIG_PPC64
402	/* check if iommu is forced on or off */
403	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
404		iommu_is_off = 1;
405	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
406		iommu_force_on = 1;
407#endif
408
409	/* mem=x on the command line is the preferred mechanism */
410	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
411	if (lprop)
412		memory_limit = *lprop;
413
414#ifdef CONFIG_PPC64
415	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
416	if (lprop)
417		tce_alloc_start = *lprop;
418	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
419	if (lprop)
420		tce_alloc_end = *lprop;
421#endif
422
423#ifdef CONFIG_KEXEC
424	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
425	if (lprop)
426		crashk_res.start = *lprop;
427
428	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
429	if (lprop)
430		crashk_res.end = crashk_res.start + *lprop - 1;
431#endif
432
433	/* break now */
434	return 1;
435}
436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437#ifdef CONFIG_PPC_PSERIES
438/*
439 * Interpret the ibm,dynamic-memory property in the
440 * /ibm,dynamic-reconfiguration-memory node.
441 * This contains a list of memory blocks along with NUMA affinity
442 * information.
443 */
444static int __init early_init_dt_scan_drconf_memory(unsigned long node)
 
 
445{
446	__be32 *dm, *ls, *usm;
447	unsigned long l, n, flags;
448	u64 base, size, memblock_size;
449	unsigned int is_kexec_kdump = 0, rngs;
450
451	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
452	if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
453		return 0;
454	memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
455
456	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
457	if (dm == NULL || l < sizeof(__be32))
 
 
 
 
458		return 0;
459
460	n = of_read_number(dm++, 1);	/* number of entries */
461	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
462		return 0;
463
464	/* check if this is a kexec/kdump kernel. */
465	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
466						 &l);
467	if (usm != NULL)
468		is_kexec_kdump = 1;
 
 
 
 
 
 
 
469
470	for (; n != 0; --n) {
471		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
472		flags = of_read_number(&dm[3], 1);
473		/* skip DRC index, pad, assoc. list index, flags */
474		dm += 4;
475		/* skip this block if the reserved bit is set in flags (0x80)
476		   or if the block is not assigned to this partition (0x8) */
477		if ((flags & 0x80) || !(flags & 0x8))
478			continue;
479		size = memblock_size;
480		rngs = 1;
481		if (is_kexec_kdump) {
482			/*
483			 * For each memblock in ibm,dynamic-memory, a corresponding
484			 * entry in linux,drconf-usable-memory property contains
485			 * a counter 'p' followed by 'p' (base, size) duple.
486			 * Now read the counter from
487			 * linux,drconf-usable-memory property
488			 */
489			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
490			if (!rngs) /* there are no (base, size) duple */
491				continue;
 
 
492		}
493		do {
494			if (is_kexec_kdump) {
495				base = dt_mem_next_cell(dt_root_addr_cells,
496							 &usm);
497				size = dt_mem_next_cell(dt_root_size_cells,
498							 &usm);
499			}
500			if (iommu_is_off) {
501				if (base >= 0x80000000ul)
502					continue;
503				if ((base + size) > 0x80000000ul)
504					size = 0x80000000ul - base;
505			}
506			memblock_add(base, size);
507		} while (--rngs);
508	}
509	memblock_dump_all();
510	return 0;
511}
512#else
513#define early_init_dt_scan_drconf_memory(node)	0
514#endif /* CONFIG_PPC_PSERIES */
515
516static int __init early_init_dt_scan_memory_ppc(unsigned long node,
517						const char *uname,
518						int depth, void *data)
519{
520	if (depth == 1 &&
521	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
522		return early_init_dt_scan_drconf_memory(node);
523	
524	return early_init_dt_scan_memory(node, uname, depth, data);
 
 
 
 
 
525}
526
527/*
528 * For a relocatable kernel, we need to get the memstart_addr first,
529 * then use it to calculate the virtual kernel start address. This has
530 * to happen at a very early stage (before machine_init). In this case,
531 * we just want to get the memstart_address and would not like to mess the
532 * memblock at this stage. So introduce a variable to skip the memblock_add()
533 * for this reason.
534 */
535#ifdef CONFIG_RELOCATABLE
536static int add_mem_to_memblock = 1;
537#else
538#define add_mem_to_memblock 1
539#endif
540
541void __init early_init_dt_add_memory_arch(u64 base, u64 size)
542{
543#ifdef CONFIG_PPC64
544	if (iommu_is_off) {
545		if (base >= 0x80000000ul)
546			return;
547		if ((base + size) > 0x80000000ul)
548			size = 0x80000000ul - base;
549	}
550#endif
551	/* Keep track of the beginning of memory -and- the size of
552	 * the very first block in the device-tree as it represents
553	 * the RMA on ppc64 server
554	 */
555	if (base < memstart_addr) {
556		memstart_addr = base;
557		first_memblock_size = size;
558	}
559
560	/* Add the chunk to the MEMBLOCK list */
561	if (add_mem_to_memblock)
562		memblock_add(base, size);
 
 
563}
564
565static void __init early_reserve_mem_dt(void)
566{
567	unsigned long i, len, dt_root;
 
568	const __be32 *prop;
569
 
 
 
570	dt_root = of_get_flat_dt_root();
571
572	prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
573
574	if (!prop)
575		return;
576
577	DBG("Found new-style reserved-ranges\n");
578
579	/* Each reserved range is an (address,size) pair, 2 cells each,
580	 * totalling 4 cells per range. */
581	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
582		u64 base, size;
583
584		base = of_read_number(prop + (i * 4) + 0, 2);
585		size = of_read_number(prop + (i * 4) + 2, 2);
586
587		if (size) {
588			DBG("reserving: %llx -> %llx\n", base, size);
589			memblock_reserve(base, size);
590		}
591	}
592
593	early_init_fdt_scan_reserved_mem();
594}
595
596static void __init early_reserve_mem(void)
597{
598	u64 base, size;
599	__be64 *reserve_map;
600	unsigned long self_base;
601	unsigned long self_size;
602
603	reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
604			be32_to_cpu(initial_boot_params->off_mem_rsvmap));
605
606	/* before we do anything, lets reserve the dt blob */
607	self_base = __pa((unsigned long)initial_boot_params);
608	self_size = be32_to_cpu(initial_boot_params->totalsize);
609	memblock_reserve(self_base, self_size);
610
611	/* Look for the new "reserved-regions" property in the DT */
612	early_reserve_mem_dt();
613
614#ifdef CONFIG_BLK_DEV_INITRD
615	/* Then reserve the initrd, if any */
616	if (initrd_start && (initrd_end > initrd_start)) {
617		memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
618			_ALIGN_UP(initrd_end, PAGE_SIZE) -
619			_ALIGN_DOWN(initrd_start, PAGE_SIZE));
620	}
621#endif /* CONFIG_BLK_DEV_INITRD */
622
623#ifdef CONFIG_PPC32
 
 
624	/* 
625	 * Handle the case where we might be booting from an old kexec
626	 * image that setup the mem_rsvmap as pairs of 32-bit values
627	 */
628	if (be64_to_cpup(reserve_map) > 0xffffffffull) {
629		u32 base_32, size_32;
630		__be32 *reserve_map_32 = (__be32 *)reserve_map;
631
632		DBG("Found old 32-bit reserve map\n");
633
634		while (1) {
635			base_32 = be32_to_cpup(reserve_map_32++);
636			size_32 = be32_to_cpup(reserve_map_32++);
637			if (size_32 == 0)
638				break;
639			/* skip if the reservation is for the blob */
640			if (base_32 == self_base && size_32 == self_size)
641				continue;
642			DBG("reserving: %x -> %x\n", base_32, size_32);
643			memblock_reserve(base_32, size_32);
644		}
645		return;
646	}
647#endif
648	DBG("Processing reserve map\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
649
650	/* Handle the reserve map in the fdt blob if it exists */
651	while (1) {
652		base = be64_to_cpup(reserve_map++);
653		size = be64_to_cpup(reserve_map++);
654		if (size == 0)
655			break;
656		DBG("reserving: %llx -> %llx\n", base, size);
657		memblock_reserve(base, size);
658	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
659}
 
 
 
 
660
661void __init early_init_devtree(void *params)
662{
663	phys_addr_t limit;
664
665	DBG(" -> early_init_devtree(%p)\n", params);
666
667	/* Setup flat device-tree pointer */
668	initial_boot_params = params;
 
 
 
669
670#ifdef CONFIG_PPC_RTAS
671	/* Some machines might need RTAS info for debugging, grab it now. */
672	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
673#endif
674
675#ifdef CONFIG_PPC_POWERNV
676	/* Some machines might need OPAL info for debugging, grab it now. */
677	of_scan_flat_dt(early_init_dt_scan_opal, NULL);
 
 
 
678#endif
679
680#ifdef CONFIG_FA_DUMP
681	/* scan tree to see if dump is active during last boot */
682	of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
683#endif
684
685	/* Pre-initialize the cmd_line with the content of boot_commmand_line,
686	 * which will be empty except when the content of the variable has
687	 * been overriden by a bootloading mechanism. This happens typically
688	 * with HAL takeover
689	 */
690	strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
691
692	/* Retrieve various informations from the /chosen node of the
693	 * device-tree, including the platform type, initrd location and
694	 * size, TCE reserve, and more ...
695	 */
696	of_scan_flat_dt(early_init_dt_scan_chosen_ppc, cmd_line);
697
698	/* Scan memory nodes and rebuild MEMBLOCKs */
699	of_scan_flat_dt(early_init_dt_scan_root, NULL);
700	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
701
702	/* Save command line for /proc/cmdline and then parse parameters */
703	strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
 
 
 
 
 
704	parse_early_param();
705
706	/* make sure we've parsed cmdline for mem= before this */
707	if (memory_limit)
708		first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
709	setup_initial_memory_limit(memstart_addr, first_memblock_size);
710	/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
711	memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
712	/* If relocatable, reserve first 32k for interrupt vectors etc. */
713	if (PHYSICAL_START > MEMORY_START)
714		memblock_reserve(MEMORY_START, 0x8000);
715	reserve_kdump_trampoline();
716#ifdef CONFIG_FA_DUMP
717	/*
718	 * If we fail to reserve memory for firmware-assisted dump then
719	 * fallback to kexec based kdump.
720	 */
721	if (fadump_reserve_mem() == 0)
722#endif
723		reserve_crashkernel();
724	early_reserve_mem();
725
726	/*
727	 * Ensure that total memory size is page-aligned, because otherwise
728	 * mark_bootmem() gets upset.
729	 */
730	limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
731	memblock_enforce_memory_limit(limit);
732
 
 
 
 
 
733	memblock_allow_resize();
734	memblock_dump_all();
735
736	DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
737
738	/* We may need to relocate the flat tree, do it now.
739	 * FIXME .. and the initrd too? */
740	move_device_tree();
741
742	allocate_pacas();
 
 
743
744	DBG("Scanning CPUs ...\n");
 
745
746	/* Retrieve CPU related informations from the flat tree
747	 * (altivec support, boot CPU ID, ...)
748	 */
749	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
750	if (boot_cpuid < 0) {
751		printk("Failed to indentify boot CPU !\n");
752		BUG();
753	}
754
 
 
755#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
756	/* We'll later wait for secondaries to check in; there are
757	 * NCPUS-1 non-boot CPUs  :-)
758	 */
759	spinning_secondaries = boot_cpu_count - 1;
760#endif
761
 
 
762#ifdef CONFIG_PPC_POWERNV
763	/* Scan and build the list of machine check recoverable ranges */
764	of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
765#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
766
767	DBG(" <- early_init_devtree()\n");
768}
769
770#ifdef CONFIG_RELOCATABLE
771/*
772 * This function run before early_init_devtree, so we have to init
773 * initial_boot_params.
774 */
775void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
776{
777	/* Setup flat device-tree pointer */
778	initial_boot_params = params;
779
780	/*
781	 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
782	 * mess the memblock.
783	 */
784	add_mem_to_memblock = 0;
785	of_scan_flat_dt(early_init_dt_scan_root, NULL);
786	of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
787	add_mem_to_memblock = 1;
788
789	if (size)
790		*size = first_memblock_size;
791}
792#endif
793
794/*******
795 *
796 * New implementation of the OF "find" APIs, return a refcounted
797 * object, call of_node_put() when done.  The device tree and list
798 * are protected by a rw_lock.
799 *
800 * Note that property management will need some locking as well,
801 * this isn't dealt with yet.
802 *
803 *******/
804
805/**
806 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
807 * @np: device node of the device
808 *
809 * This looks for a property "ibm,chip-id" in the node or any
810 * of its parents and returns its content, or -1 if it cannot
811 * be found.
812 */
813int of_get_ibm_chip_id(struct device_node *np)
814{
815	of_node_get(np);
816	while(np) {
817		struct device_node *old = np;
818		const __be32 *prop;
819
820		prop = of_get_property(np, "ibm,chip-id", NULL);
821		if (prop) {
 
 
 
822			of_node_put(np);
823			return be32_to_cpup(prop);
824		}
825		np = of_get_parent(np);
826		of_node_put(old);
827	}
828	return -1;
829}
 
830
831/**
832 * cpu_to_chip_id - Return the cpus chip-id
833 * @cpu: The logical cpu number.
834 *
835 * Return the value of the ibm,chip-id property corresponding to the given
836 * logical cpu number. If the chip-id can not be found, returns -1.
837 */
838int cpu_to_chip_id(int cpu)
839{
840	struct device_node *np;
 
 
 
 
 
841
842	np = of_get_cpu_node(cpu, NULL);
843	if (!np)
844		return -1;
 
 
 
 
 
845
846	of_node_put(np);
847	return of_get_ibm_chip_id(np);
848}
849EXPORT_SYMBOL(cpu_to_chip_id);
850
851#ifdef CONFIG_PPC_PSERIES
852/*
853 * Fix up the uninitialized fields in a new device node:
854 * name, type and pci-specific fields
855 */
856
857static int of_finish_dynamic_node(struct device_node *node)
858{
859	struct device_node *parent = of_get_parent(node);
860	int err = 0;
861	const phandle *ibm_phandle;
862
863	node->name = of_get_property(node, "name", NULL);
864	node->type = of_get_property(node, "device_type", NULL);
865
866	if (!node->name)
867		node->name = "<NULL>";
868	if (!node->type)
869		node->type = "<NULL>";
870
871	if (!parent) {
872		err = -ENODEV;
873		goto out;
874	}
875
876	/* We don't support that function on PowerMac, at least
877	 * not yet
878	 */
879	if (machine_is(powermac))
880		return -ENODEV;
881
882	/* fix up new node's phandle field */
883	if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL)))
884		node->phandle = *ibm_phandle;
885
886out:
887	of_node_put(parent);
888	return err;
889}
890
891static int prom_reconfig_notifier(struct notifier_block *nb,
892				  unsigned long action, void *node)
893{
894	int err;
895
896	switch (action) {
897	case OF_RECONFIG_ATTACH_NODE:
898		err = of_finish_dynamic_node(node);
899		if (err < 0)
900			printk(KERN_ERR "finish_node returned %d\n", err);
901		break;
902	default:
903		err = 0;
904		break;
905	}
906	return notifier_from_errno(err);
907}
908
909static struct notifier_block prom_reconfig_nb = {
910	.notifier_call = prom_reconfig_notifier,
911	.priority = 10, /* This one needs to run first */
912};
913
914static int __init prom_reconfig_setup(void)
915{
916	return of_reconfig_notifier_register(&prom_reconfig_nb);
917}
918__initcall(prom_reconfig_setup);
919#endif
920
921bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
922{
923	return (int)phys_id == get_hard_smp_processor_id(cpu);
924}
925
926#if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
927static struct debugfs_blob_wrapper flat_dt_blob;
928
929static int __init export_flat_device_tree(void)
930{
931	struct dentry *d;
932
933	flat_dt_blob.data = initial_boot_params;
934	flat_dt_blob.size = be32_to_cpu(initial_boot_params->totalsize);
935
936	d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
937				powerpc_debugfs_root, &flat_dt_blob);
938	if (!d)
939		return 1;
940
941	return 0;
942}
943__initcall(export_flat_device_tree);
944#endif