Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Initialize MMU support.
  3 *
  4 * Copyright (C) 1998-2003 Hewlett-Packard Co
  5 *	David Mosberger-Tang <davidm@hpl.hp.com>
  6 */
  7#include <linux/kernel.h>
  8#include <linux/init.h>
  9
 10#include <linux/bootmem.h>
 11#include <linux/efi.h>
 12#include <linux/elf.h>
 13#include <linux/memblock.h>
 14#include <linux/mm.h>
 15#include <linux/mmzone.h>
 16#include <linux/module.h>
 17#include <linux/personality.h>
 18#include <linux/reboot.h>
 19#include <linux/slab.h>
 20#include <linux/swap.h>
 21#include <linux/proc_fs.h>
 22#include <linux/bitops.h>
 23#include <linux/kexec.h>
 24
 25#include <asm/dma.h>
 26#include <asm/io.h>
 27#include <asm/machvec.h>
 28#include <asm/numa.h>
 29#include <asm/patch.h>
 30#include <asm/pgalloc.h>
 31#include <asm/sal.h>
 32#include <asm/sections.h>
 33#include <asm/tlb.h>
 34#include <asm/uaccess.h>
 35#include <asm/unistd.h>
 36#include <asm/mca.h>
 37#include <asm/paravirt.h>
 38
 39extern void ia64_tlb_init (void);
 40
 41unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
 42
 43#ifdef CONFIG_VIRTUAL_MEM_MAP
 44unsigned long VMALLOC_END = VMALLOC_END_INIT;
 45EXPORT_SYMBOL(VMALLOC_END);
 46struct page *vmem_map;
 47EXPORT_SYMBOL(vmem_map);
 48#endif
 49
 50struct page *zero_page_memmap_ptr;	/* map entry for zero page */
 51EXPORT_SYMBOL(zero_page_memmap_ptr);
 52
 53void
 54__ia64_sync_icache_dcache (pte_t pte)
 55{
 56	unsigned long addr;
 57	struct page *page;
 58
 59	page = pte_page(pte);
 60	addr = (unsigned long) page_address(page);
 61
 62	if (test_bit(PG_arch_1, &page->flags))
 63		return;				/* i-cache is already coherent with d-cache */
 64
 65	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
 66	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
 67}
 68
 69/*
 70 * Since DMA is i-cache coherent, any (complete) pages that were written via
 71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 72 * flush them when they get mapped into an executable vm-area.
 73 */
 74void
 75dma_mark_clean(void *addr, size_t size)
 76{
 77	unsigned long pg_addr, end;
 78
 79	pg_addr = PAGE_ALIGN((unsigned long) addr);
 80	end = (unsigned long) addr + size;
 81	while (pg_addr + PAGE_SIZE <= end) {
 82		struct page *page = virt_to_page(pg_addr);
 83		set_bit(PG_arch_1, &page->flags);
 84		pg_addr += PAGE_SIZE;
 85	}
 86}
 87
 88inline void
 89ia64_set_rbs_bot (void)
 90{
 91	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
 92
 93	if (stack_size > MAX_USER_STACK_SIZE)
 94		stack_size = MAX_USER_STACK_SIZE;
 95	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
 96}
 97
 98/*
 99 * This performs some platform-dependent address space initialization.
100 * On IA-64, we want to setup the VM area for the register backing
101 * store (which grows upwards) and install the gateway page which is
102 * used for signal trampolines, etc.
103 */
104void
105ia64_init_addr_space (void)
106{
107	struct vm_area_struct *vma;
108
109	ia64_set_rbs_bot();
110
111	/*
112	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113	 * the problem.  When the process attempts to write to the register backing store
114	 * for the first time, it will get a SEGFAULT in this case.
115	 */
116	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117	if (vma) {
118		INIT_LIST_HEAD(&vma->anon_vma_chain);
119		vma->vm_mm = current->mm;
120		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121		vma->vm_end = vma->vm_start + PAGE_SIZE;
122		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124		down_write(&current->mm->mmap_sem);
125		if (insert_vm_struct(current->mm, vma)) {
126			up_write(&current->mm->mmap_sem);
127			kmem_cache_free(vm_area_cachep, vma);
128			return;
129		}
130		up_write(&current->mm->mmap_sem);
131	}
132
133	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134	if (!(current->personality & MMAP_PAGE_ZERO)) {
135		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136		if (vma) {
137			INIT_LIST_HEAD(&vma->anon_vma_chain);
138			vma->vm_mm = current->mm;
139			vma->vm_end = PAGE_SIZE;
140			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142					VM_DONTEXPAND | VM_DONTDUMP;
143			down_write(&current->mm->mmap_sem);
144			if (insert_vm_struct(current->mm, vma)) {
145				up_write(&current->mm->mmap_sem);
146				kmem_cache_free(vm_area_cachep, vma);
147				return;
148			}
149			up_write(&current->mm->mmap_sem);
150		}
151	}
152}
153
154void
155free_initmem (void)
156{
157	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
158			   -1, "unused kernel");
159}
160
161void __init
162free_initrd_mem (unsigned long start, unsigned long end)
163{
164	/*
165	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
166	 * Thus EFI and the kernel may have different page sizes. It is
167	 * therefore possible to have the initrd share the same page as
168	 * the end of the kernel (given current setup).
169	 *
170	 * To avoid freeing/using the wrong page (kernel sized) we:
171	 *	- align up the beginning of initrd
172	 *	- align down the end of initrd
173	 *
174	 *  |             |
175	 *  |=============| a000
176	 *  |             |
177	 *  |             |
178	 *  |             | 9000
179	 *  |/////////////|
180	 *  |/////////////|
181	 *  |=============| 8000
182	 *  |///INITRD////|
183	 *  |/////////////|
184	 *  |/////////////| 7000
185	 *  |             |
186	 *  |KKKKKKKKKKKKK|
187	 *  |=============| 6000
188	 *  |KKKKKKKKKKKKK|
189	 *  |KKKKKKKKKKKKK|
190	 *  K=kernel using 8KB pages
191	 *
192	 * In this example, we must free page 8000 ONLY. So we must align up
193	 * initrd_start and keep initrd_end as is.
194	 */
195	start = PAGE_ALIGN(start);
196	end = end & PAGE_MASK;
197
198	if (start < end)
199		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
200
201	for (; start < end; start += PAGE_SIZE) {
202		if (!virt_addr_valid(start))
203			continue;
204		free_reserved_page(virt_to_page(start));
205	}
206}
207
208/*
209 * This installs a clean page in the kernel's page table.
210 */
211static struct page * __init
212put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
213{
214	pgd_t *pgd;
215	pud_t *pud;
216	pmd_t *pmd;
217	pte_t *pte;
218
219	if (!PageReserved(page))
220		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
221		       page_address(page));
222
223	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
224
225	{
226		pud = pud_alloc(&init_mm, pgd, address);
227		if (!pud)
228			goto out;
229		pmd = pmd_alloc(&init_mm, pud, address);
230		if (!pmd)
231			goto out;
232		pte = pte_alloc_kernel(pmd, address);
233		if (!pte)
234			goto out;
235		if (!pte_none(*pte))
236			goto out;
237		set_pte(pte, mk_pte(page, pgprot));
238	}
239  out:
240	/* no need for flush_tlb */
241	return page;
242}
243
244static void __init
245setup_gate (void)
246{
247	void *gate_section;
248	struct page *page;
249
250	/*
251	 * Map the gate page twice: once read-only to export the ELF
252	 * headers etc. and once execute-only page to enable
253	 * privilege-promotion via "epc":
254	 */
255	gate_section = paravirt_get_gate_section();
256	page = virt_to_page(ia64_imva(gate_section));
257	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
258#ifdef HAVE_BUGGY_SEGREL
259	page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
260	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
261#else
262	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
263	/* Fill in the holes (if any) with read-only zero pages: */
264	{
265		unsigned long addr;
266
267		for (addr = GATE_ADDR + PAGE_SIZE;
268		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
269		     addr += PAGE_SIZE)
270		{
271			put_kernel_page(ZERO_PAGE(0), addr,
272					PAGE_READONLY);
273			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
274					PAGE_READONLY);
275		}
276	}
277#endif
278	ia64_patch_gate();
279}
280
281void ia64_mmu_init(void *my_cpu_data)
282{
283	unsigned long pta, impl_va_bits;
284	extern void tlb_init(void);
285
286#ifdef CONFIG_DISABLE_VHPT
287#	define VHPT_ENABLE_BIT	0
288#else
289#	define VHPT_ENABLE_BIT	1
290#endif
291
292	/*
293	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
294	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
295	 * virtual address space are implemented but if we pick a large enough page size
296	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
297	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
298	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
299	 * problem in practice.  Alternatively, we could truncate the top of the mapped
300	 * address space to not permit mappings that would overlap with the VMLPT.
301	 * --davidm 00/12/06
302	 */
303#	define pte_bits			3
304#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
305	/*
306	 * The virtual page table has to cover the entire implemented address space within
307	 * a region even though not all of this space may be mappable.  The reason for
308	 * this is that the Access bit and Dirty bit fault handlers perform
309	 * non-speculative accesses to the virtual page table, so the address range of the
310	 * virtual page table itself needs to be covered by virtual page table.
311	 */
312#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
313#	define POW2(n)			(1ULL << (n))
314
315	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
316
317	if (impl_va_bits < 51 || impl_va_bits > 61)
318		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
319	/*
320	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
321	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
322	 * the test makes sure that our mapped space doesn't overlap the
323	 * unimplemented hole in the middle of the region.
324	 */
325	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
326	    (mapped_space_bits > impl_va_bits - 1))
327		panic("Cannot build a big enough virtual-linear page table"
328		      " to cover mapped address space.\n"
329		      " Try using a smaller page size.\n");
330
331
332	/* place the VMLPT at the end of each page-table mapped region: */
333	pta = POW2(61) - POW2(vmlpt_bits);
334
335	/*
336	 * Set the (virtually mapped linear) page table address.  Bit
337	 * 8 selects between the short and long format, bits 2-7 the
338	 * size of the table, and bit 0 whether the VHPT walker is
339	 * enabled.
340	 */
341	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
342
343	ia64_tlb_init();
344
345#ifdef	CONFIG_HUGETLB_PAGE
346	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
347	ia64_srlz_d();
348#endif
349}
350
351#ifdef CONFIG_VIRTUAL_MEM_MAP
352int vmemmap_find_next_valid_pfn(int node, int i)
353{
354	unsigned long end_address, hole_next_pfn;
355	unsigned long stop_address;
356	pg_data_t *pgdat = NODE_DATA(node);
357
358	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
359	end_address = PAGE_ALIGN(end_address);
360	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
361
362	do {
363		pgd_t *pgd;
364		pud_t *pud;
365		pmd_t *pmd;
366		pte_t *pte;
367
368		pgd = pgd_offset_k(end_address);
369		if (pgd_none(*pgd)) {
370			end_address += PGDIR_SIZE;
371			continue;
372		}
373
374		pud = pud_offset(pgd, end_address);
375		if (pud_none(*pud)) {
376			end_address += PUD_SIZE;
377			continue;
378		}
379
380		pmd = pmd_offset(pud, end_address);
381		if (pmd_none(*pmd)) {
382			end_address += PMD_SIZE;
383			continue;
384		}
385
386		pte = pte_offset_kernel(pmd, end_address);
387retry_pte:
388		if (pte_none(*pte)) {
389			end_address += PAGE_SIZE;
390			pte++;
391			if ((end_address < stop_address) &&
392			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
393				goto retry_pte;
394			continue;
395		}
396		/* Found next valid vmem_map page */
397		break;
398	} while (end_address < stop_address);
399
400	end_address = min(end_address, stop_address);
401	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
402	hole_next_pfn = end_address / sizeof(struct page);
403	return hole_next_pfn - pgdat->node_start_pfn;
404}
405
406int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
407{
408	unsigned long address, start_page, end_page;
409	struct page *map_start, *map_end;
410	int node;
411	pgd_t *pgd;
412	pud_t *pud;
413	pmd_t *pmd;
414	pte_t *pte;
415
416	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
417	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
418
419	start_page = (unsigned long) map_start & PAGE_MASK;
420	end_page = PAGE_ALIGN((unsigned long) map_end);
421	node = paddr_to_nid(__pa(start));
422
423	for (address = start_page; address < end_page; address += PAGE_SIZE) {
424		pgd = pgd_offset_k(address);
425		if (pgd_none(*pgd))
426			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
427		pud = pud_offset(pgd, address);
428
429		if (pud_none(*pud))
430			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
431		pmd = pmd_offset(pud, address);
432
433		if (pmd_none(*pmd))
434			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
435		pte = pte_offset_kernel(pmd, address);
436
437		if (pte_none(*pte))
438			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
439					     PAGE_KERNEL));
440	}
441	return 0;
442}
443
444struct memmap_init_callback_data {
445	struct page *start;
446	struct page *end;
447	int nid;
448	unsigned long zone;
449};
450
451static int __meminit
452virtual_memmap_init(u64 start, u64 end, void *arg)
453{
454	struct memmap_init_callback_data *args;
455	struct page *map_start, *map_end;
456
457	args = (struct memmap_init_callback_data *) arg;
458	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
459	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
460
461	if (map_start < args->start)
462		map_start = args->start;
463	if (map_end > args->end)
464		map_end = args->end;
465
466	/*
467	 * We have to initialize "out of bounds" struct page elements that fit completely
468	 * on the same pages that were allocated for the "in bounds" elements because they
469	 * may be referenced later (and found to be "reserved").
470	 */
471	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
472	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
473		    / sizeof(struct page));
474
475	if (map_start < map_end)
476		memmap_init_zone((unsigned long)(map_end - map_start),
477				 args->nid, args->zone, page_to_pfn(map_start),
478				 MEMMAP_EARLY);
479	return 0;
480}
481
482void __meminit
483memmap_init (unsigned long size, int nid, unsigned long zone,
484	     unsigned long start_pfn)
485{
486	if (!vmem_map)
487		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
488	else {
489		struct page *start;
490		struct memmap_init_callback_data args;
491
492		start = pfn_to_page(start_pfn);
493		args.start = start;
494		args.end = start + size;
495		args.nid = nid;
496		args.zone = zone;
497
498		efi_memmap_walk(virtual_memmap_init, &args);
499	}
500}
501
502int
503ia64_pfn_valid (unsigned long pfn)
504{
505	char byte;
506	struct page *pg = pfn_to_page(pfn);
507
508	return     (__get_user(byte, (char __user *) pg) == 0)
509		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
510			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
511}
512EXPORT_SYMBOL(ia64_pfn_valid);
513
514int __init find_largest_hole(u64 start, u64 end, void *arg)
515{
516	u64 *max_gap = arg;
517
518	static u64 last_end = PAGE_OFFSET;
519
520	/* NOTE: this algorithm assumes efi memmap table is ordered */
521
522	if (*max_gap < (start - last_end))
523		*max_gap = start - last_end;
524	last_end = end;
525	return 0;
526}
527
528#endif /* CONFIG_VIRTUAL_MEM_MAP */
529
530int __init register_active_ranges(u64 start, u64 len, int nid)
531{
532	u64 end = start + len;
533
534#ifdef CONFIG_KEXEC
535	if (start > crashk_res.start && start < crashk_res.end)
536		start = crashk_res.end;
537	if (end > crashk_res.start && end < crashk_res.end)
538		end = crashk_res.start;
539#endif
540
541	if (start < end)
542		memblock_add_node(__pa(start), end - start, nid);
543	return 0;
544}
545
546int
547find_max_min_low_pfn (u64 start, u64 end, void *arg)
548{
549	unsigned long pfn_start, pfn_end;
550#ifdef CONFIG_FLATMEM
551	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
552	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
553#else
554	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
555	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
556#endif
557	min_low_pfn = min(min_low_pfn, pfn_start);
558	max_low_pfn = max(max_low_pfn, pfn_end);
559	return 0;
560}
561
562/*
563 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
564 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
565 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
566 * useful for performance testing, but conceivably could also come in handy for debugging
567 * purposes.
568 */
569
570static int nolwsys __initdata;
571
572static int __init
573nolwsys_setup (char *s)
574{
575	nolwsys = 1;
576	return 1;
577}
578
579__setup("nolwsys", nolwsys_setup);
580
581void __init
582mem_init (void)
583{
584	int i;
585
586	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
587	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
588	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
589
590#ifdef CONFIG_PCI
591	/*
592	 * This needs to be called _after_ the command line has been parsed but _before_
593	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
594	 * been freed.
595	 */
596	platform_dma_init();
597#endif
598
599#ifdef CONFIG_FLATMEM
600	BUG_ON(!mem_map);
601#endif
602
603	set_max_mapnr(max_low_pfn);
604	high_memory = __va(max_low_pfn * PAGE_SIZE);
605	free_all_bootmem();
606	mem_init_print_info(NULL);
607
608	/*
609	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
610	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
611	 * code can tell them apart.
612	 */
613	for (i = 0; i < NR_syscalls; ++i) {
614		extern unsigned long sys_call_table[NR_syscalls];
615		unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
616
617		if (!fsyscall_table[i] || nolwsys)
618			fsyscall_table[i] = sys_call_table[i] | 1;
619	}
620	setup_gate();
621}
622
623#ifdef CONFIG_MEMORY_HOTPLUG
624int arch_add_memory(int nid, u64 start, u64 size)
625{
626	pg_data_t *pgdat;
627	struct zone *zone;
628	unsigned long start_pfn = start >> PAGE_SHIFT;
629	unsigned long nr_pages = size >> PAGE_SHIFT;
630	int ret;
631
632	pgdat = NODE_DATA(nid);
633
634	zone = pgdat->node_zones + ZONE_NORMAL;
635	ret = __add_pages(nid, zone, start_pfn, nr_pages);
636
637	if (ret)
638		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
639		       __func__,  ret);
640
641	return ret;
642}
643
644#ifdef CONFIG_MEMORY_HOTREMOVE
645int arch_remove_memory(u64 start, u64 size)
646{
647	unsigned long start_pfn = start >> PAGE_SHIFT;
648	unsigned long nr_pages = size >> PAGE_SHIFT;
649	struct zone *zone;
650	int ret;
651
652	zone = page_zone(pfn_to_page(start_pfn));
653	ret = __remove_pages(zone, start_pfn, nr_pages);
654	if (ret)
655		pr_warn("%s: Problem encountered in __remove_pages() as"
656			" ret=%d\n", __func__,  ret);
657
658	return ret;
659}
660#endif
661#endif
662
663/*
664 * Even when CONFIG_IA32_SUPPORT is not enabled it is
665 * useful to have the Linux/x86 domain registered to
666 * avoid an attempted module load when emulators call
667 * personality(PER_LINUX32). This saves several milliseconds
668 * on each such call.
669 */
670static struct exec_domain ia32_exec_domain;
671
672static int __init
673per_linux32_init(void)
674{
675	ia32_exec_domain.name = "Linux/x86";
676	ia32_exec_domain.handler = NULL;
677	ia32_exec_domain.pers_low = PER_LINUX32;
678	ia32_exec_domain.pers_high = PER_LINUX32;
679	ia32_exec_domain.signal_map = default_exec_domain.signal_map;
680	ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
681	register_exec_domain(&ia32_exec_domain);
682
683	return 0;
684}
685
686__initcall(per_linux32_init);
687
688/**
689 * show_mem - give short summary of memory stats
690 *
691 * Shows a simple page count of reserved and used pages in the system.
692 * For discontig machines, it does this on a per-pgdat basis.
693 */
694void show_mem(unsigned int filter)
695{
696	int total_reserved = 0;
697	unsigned long total_present = 0;
698	pg_data_t *pgdat;
699
700	printk(KERN_INFO "Mem-info:\n");
701	show_free_areas(filter);
702	printk(KERN_INFO "Node memory in pages:\n");
703	for_each_online_pgdat(pgdat) {
704		unsigned long present;
705		unsigned long flags;
706		int reserved = 0;
707		int nid = pgdat->node_id;
708		int zoneid;
709
710		if (skip_free_areas_node(filter, nid))
711			continue;
712		pgdat_resize_lock(pgdat, &flags);
713
714		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
715			struct zone *zone = &pgdat->node_zones[zoneid];
716			if (!populated_zone(zone))
717				continue;
718
719			reserved += zone->present_pages - zone->managed_pages;
720		}
721		present = pgdat->node_present_pages;
722
723		pgdat_resize_unlock(pgdat, &flags);
724		total_present += present;
725		total_reserved += reserved;
726		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, ",
727		       nid, present, reserved);
728	}
729	printk(KERN_INFO "%ld pages of RAM\n", total_present);
730	printk(KERN_INFO "%d reserved pages\n", total_reserved);
731	printk(KERN_INFO "Total of %ld pages in page table cache\n",
732	       quicklist_total_size());
733	printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
734}