Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Initialize MMU support.
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 */
  8#include <linux/kernel.h>
  9#include <linux/init.h>
 10
 11#include <linux/dma-map-ops.h>
 12#include <linux/dmar.h>
 13#include <linux/efi.h>
 14#include <linux/elf.h>
 15#include <linux/memblock.h>
 16#include <linux/mm.h>
 17#include <linux/sched/signal.h>
 18#include <linux/mmzone.h>
 19#include <linux/module.h>
 20#include <linux/personality.h>
 21#include <linux/reboot.h>
 22#include <linux/slab.h>
 23#include <linux/swap.h>
 24#include <linux/proc_fs.h>
 25#include <linux/bitops.h>
 26#include <linux/kexec.h>
 27#include <linux/swiotlb.h>
 28
 29#include <asm/dma.h>
 30#include <asm/efi.h>
 31#include <asm/io.h>
 32#include <asm/numa.h>
 33#include <asm/patch.h>
 34#include <asm/pgalloc.h>
 35#include <asm/sal.h>
 36#include <asm/sections.h>
 37#include <asm/tlb.h>
 38#include <linux/uaccess.h>
 39#include <asm/unistd.h>
 40#include <asm/mca.h>
 41
 42extern void ia64_tlb_init (void);
 43
 44unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
 45
 46struct page *zero_page_memmap_ptr;	/* map entry for zero page */
 47EXPORT_SYMBOL(zero_page_memmap_ptr);
 48
 49void
 50__ia64_sync_icache_dcache (pte_t pte)
 51{
 52	unsigned long addr;
 53	struct page *page;
 54
 55	page = pte_page(pte);
 56	addr = (unsigned long) page_address(page);
 57
 58	if (test_bit(PG_arch_1, &page->flags))
 59		return;				/* i-cache is already coherent with d-cache */
 60
 61	flush_icache_range(addr, addr + page_size(page));
 62	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
 63}
 64
 65/*
 66 * Since DMA is i-cache coherent, any (complete) pages that were written via
 67 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 68 * flush them when they get mapped into an executable vm-area.
 69 */
 70void arch_dma_mark_clean(phys_addr_t paddr, size_t size)
 71{
 72	unsigned long pfn = PHYS_PFN(paddr);
 73
 74	do {
 75		set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
 76	} while (++pfn <= PHYS_PFN(paddr + size - 1));
 77}
 78
 79inline void
 80ia64_set_rbs_bot (void)
 81{
 82	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
 83
 84	if (stack_size > MAX_USER_STACK_SIZE)
 85		stack_size = MAX_USER_STACK_SIZE;
 86	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
 87}
 88
 89/*
 90 * This performs some platform-dependent address space initialization.
 91 * On IA-64, we want to setup the VM area for the register backing
 92 * store (which grows upwards) and install the gateway page which is
 93 * used for signal trampolines, etc.
 94 */
 95void
 96ia64_init_addr_space (void)
 97{
 98	struct vm_area_struct *vma;
 99
100	ia64_set_rbs_bot();
101
102	/*
103	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
104	 * the problem.  When the process attempts to write to the register backing store
105	 * for the first time, it will get a SEGFAULT in this case.
106	 */
107	vma = vm_area_alloc(current->mm);
108	if (vma) {
109		vma_set_anonymous(vma);
110		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
111		vma->vm_end = vma->vm_start + PAGE_SIZE;
112		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
113		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
114		mmap_write_lock(current->mm);
115		if (insert_vm_struct(current->mm, vma)) {
116			mmap_write_unlock(current->mm);
117			vm_area_free(vma);
118			return;
119		}
120		mmap_write_unlock(current->mm);
121	}
122
123	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
124	if (!(current->personality & MMAP_PAGE_ZERO)) {
125		vma = vm_area_alloc(current->mm);
126		if (vma) {
127			vma_set_anonymous(vma);
128			vma->vm_end = PAGE_SIZE;
129			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
130			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
131					VM_DONTEXPAND | VM_DONTDUMP;
132			mmap_write_lock(current->mm);
133			if (insert_vm_struct(current->mm, vma)) {
134				mmap_write_unlock(current->mm);
135				vm_area_free(vma);
136				return;
137			}
138			mmap_write_unlock(current->mm);
139		}
140	}
141}
142
143void
144free_initmem (void)
145{
146	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
147			   -1, "unused kernel");
148}
149
150void __init
151free_initrd_mem (unsigned long start, unsigned long end)
152{
153	/*
154	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
155	 * Thus EFI and the kernel may have different page sizes. It is
156	 * therefore possible to have the initrd share the same page as
157	 * the end of the kernel (given current setup).
158	 *
159	 * To avoid freeing/using the wrong page (kernel sized) we:
160	 *	- align up the beginning of initrd
161	 *	- align down the end of initrd
162	 *
163	 *  |             |
164	 *  |=============| a000
165	 *  |             |
166	 *  |             |
167	 *  |             | 9000
168	 *  |/////////////|
169	 *  |/////////////|
170	 *  |=============| 8000
171	 *  |///INITRD////|
172	 *  |/////////////|
173	 *  |/////////////| 7000
174	 *  |             |
175	 *  |KKKKKKKKKKKKK|
176	 *  |=============| 6000
177	 *  |KKKKKKKKKKKKK|
178	 *  |KKKKKKKKKKKKK|
179	 *  K=kernel using 8KB pages
180	 *
181	 * In this example, we must free page 8000 ONLY. So we must align up
182	 * initrd_start and keep initrd_end as is.
183	 */
184	start = PAGE_ALIGN(start);
185	end = end & PAGE_MASK;
186
187	if (start < end)
188		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
189
190	for (; start < end; start += PAGE_SIZE) {
191		if (!virt_addr_valid(start))
192			continue;
193		free_reserved_page(virt_to_page(start));
194	}
195}
196
197/*
198 * This installs a clean page in the kernel's page table.
199 */
200static struct page * __init
201put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
202{
203	pgd_t *pgd;
204	p4d_t *p4d;
205	pud_t *pud;
206	pmd_t *pmd;
207	pte_t *pte;
208
209	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
210
211	{
212		p4d = p4d_alloc(&init_mm, pgd, address);
213		if (!p4d)
214			goto out;
215		pud = pud_alloc(&init_mm, p4d, address);
216		if (!pud)
217			goto out;
218		pmd = pmd_alloc(&init_mm, pud, address);
219		if (!pmd)
220			goto out;
221		pte = pte_alloc_kernel(pmd, address);
222		if (!pte)
223			goto out;
224		if (!pte_none(*pte))
225			goto out;
226		set_pte(pte, mk_pte(page, pgprot));
227	}
228  out:
229	/* no need for flush_tlb */
230	return page;
231}
232
233static void __init
234setup_gate (void)
235{
236	struct page *page;
237
238	/*
239	 * Map the gate page twice: once read-only to export the ELF
240	 * headers etc. and once execute-only page to enable
241	 * privilege-promotion via "epc":
242	 */
243	page = virt_to_page(ia64_imva(__start_gate_section));
244	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
245#ifdef HAVE_BUGGY_SEGREL
246	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
247	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
248#else
249	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
250	/* Fill in the holes (if any) with read-only zero pages: */
251	{
252		unsigned long addr;
253
254		for (addr = GATE_ADDR + PAGE_SIZE;
255		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
256		     addr += PAGE_SIZE)
257		{
258			put_kernel_page(ZERO_PAGE(0), addr,
259					PAGE_READONLY);
260			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
261					PAGE_READONLY);
262		}
263	}
264#endif
265	ia64_patch_gate();
266}
267
268static struct vm_area_struct gate_vma;
269
270static int __init gate_vma_init(void)
271{
272	vma_init(&gate_vma, NULL);
273	gate_vma.vm_start = FIXADDR_USER_START;
274	gate_vma.vm_end = FIXADDR_USER_END;
275	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
276	gate_vma.vm_page_prot = __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX);
277
278	return 0;
279}
280__initcall(gate_vma_init);
281
282struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
283{
284	return &gate_vma;
285}
286
287int in_gate_area_no_mm(unsigned long addr)
288{
289	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
290		return 1;
291	return 0;
292}
293
294int in_gate_area(struct mm_struct *mm, unsigned long addr)
295{
296	return in_gate_area_no_mm(addr);
297}
298
299void ia64_mmu_init(void *my_cpu_data)
300{
301	unsigned long pta, impl_va_bits;
302	extern void tlb_init(void);
303
304#ifdef CONFIG_DISABLE_VHPT
305#	define VHPT_ENABLE_BIT	0
306#else
307#	define VHPT_ENABLE_BIT	1
308#endif
309
310	/*
311	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
312	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
313	 * virtual address space are implemented but if we pick a large enough page size
314	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
315	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
316	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
317	 * problem in practice.  Alternatively, we could truncate the top of the mapped
318	 * address space to not permit mappings that would overlap with the VMLPT.
319	 * --davidm 00/12/06
320	 */
321#	define pte_bits			3
322#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
323	/*
324	 * The virtual page table has to cover the entire implemented address space within
325	 * a region even though not all of this space may be mappable.  The reason for
326	 * this is that the Access bit and Dirty bit fault handlers perform
327	 * non-speculative accesses to the virtual page table, so the address range of the
328	 * virtual page table itself needs to be covered by virtual page table.
329	 */
330#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
331#	define POW2(n)			(1ULL << (n))
332
333	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
334
335	if (impl_va_bits < 51 || impl_va_bits > 61)
336		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
337	/*
338	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
339	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
340	 * the test makes sure that our mapped space doesn't overlap the
341	 * unimplemented hole in the middle of the region.
342	 */
343	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
344	    (mapped_space_bits > impl_va_bits - 1))
345		panic("Cannot build a big enough virtual-linear page table"
346		      " to cover mapped address space.\n"
347		      " Try using a smaller page size.\n");
348
349
350	/* place the VMLPT at the end of each page-table mapped region: */
351	pta = POW2(61) - POW2(vmlpt_bits);
352
353	/*
354	 * Set the (virtually mapped linear) page table address.  Bit
355	 * 8 selects between the short and long format, bits 2-7 the
356	 * size of the table, and bit 0 whether the VHPT walker is
357	 * enabled.
358	 */
359	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
360
361	ia64_tlb_init();
362
363#ifdef	CONFIG_HUGETLB_PAGE
364	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
365	ia64_srlz_d();
366#endif
367}
368
369int __init register_active_ranges(u64 start, u64 len, int nid)
370{
371	u64 end = start + len;
372
373#ifdef CONFIG_KEXEC
374	if (start > crashk_res.start && start < crashk_res.end)
375		start = crashk_res.end;
376	if (end > crashk_res.start && end < crashk_res.end)
377		end = crashk_res.start;
378#endif
379
380	if (start < end)
381		memblock_add_node(__pa(start), end - start, nid, MEMBLOCK_NONE);
382	return 0;
383}
384
385int
386find_max_min_low_pfn (u64 start, u64 end, void *arg)
387{
388	unsigned long pfn_start, pfn_end;
389#ifdef CONFIG_FLATMEM
390	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
391	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
392#else
393	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
394	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
395#endif
396	min_low_pfn = min(min_low_pfn, pfn_start);
397	max_low_pfn = max(max_low_pfn, pfn_end);
398	return 0;
399}
400
401/*
402 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
403 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
404 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
405 * useful for performance testing, but conceivably could also come in handy for debugging
406 * purposes.
407 */
408
409static int nolwsys __initdata;
410
411static int __init
412nolwsys_setup (char *s)
413{
414	nolwsys = 1;
415	return 1;
416}
417
418__setup("nolwsys", nolwsys_setup);
419
420void __init
421mem_init (void)
422{
423	int i;
424
425	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
426	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
427	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
428
429	/*
430	 * This needs to be called _after_ the command line has been parsed but
431	 * _before_ any drivers that may need the PCI DMA interface are
432	 * initialized or bootmem has been freed.
433	 */
434	do {
435#ifdef CONFIG_INTEL_IOMMU
436		detect_intel_iommu();
437		if (iommu_detected)
438			break;
439#endif
440		swiotlb_init(true, SWIOTLB_VERBOSE);
441	} while (0);
442
443#ifdef CONFIG_FLATMEM
444	BUG_ON(!mem_map);
445#endif
446
447	set_max_mapnr(max_low_pfn);
448	high_memory = __va(max_low_pfn * PAGE_SIZE);
449	memblock_free_all();
450
451	/*
452	 * For fsyscall entrypoints with no light-weight handler, use the ordinary
453	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
454	 * code can tell them apart.
455	 */
456	for (i = 0; i < NR_syscalls; ++i) {
457		extern unsigned long fsyscall_table[NR_syscalls];
458		extern unsigned long sys_call_table[NR_syscalls];
459
460		if (!fsyscall_table[i] || nolwsys)
461			fsyscall_table[i] = sys_call_table[i] | 1;
462	}
463	setup_gate();
464}
465
466#ifdef CONFIG_MEMORY_HOTPLUG
467int arch_add_memory(int nid, u64 start, u64 size,
468		    struct mhp_params *params)
469{
470	unsigned long start_pfn = start >> PAGE_SHIFT;
471	unsigned long nr_pages = size >> PAGE_SHIFT;
472	int ret;
473
474	if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
475		return -EINVAL;
476
477	ret = __add_pages(nid, start_pfn, nr_pages, params);
478	if (ret)
479		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
480		       __func__,  ret);
481
482	return ret;
483}
484
485void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
486{
487	unsigned long start_pfn = start >> PAGE_SHIFT;
488	unsigned long nr_pages = size >> PAGE_SHIFT;
489
490	__remove_pages(start_pfn, nr_pages, altmap);
491}
492#endif
493
494static const pgprot_t protection_map[16] = {
495	[VM_NONE]					= PAGE_NONE,
496	[VM_READ]					= PAGE_READONLY,
497	[VM_WRITE]					= PAGE_READONLY,
498	[VM_WRITE | VM_READ]				= PAGE_READONLY,
499	[VM_EXEC]					= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
500								   _PAGE_AR_X_RX),
501	[VM_EXEC | VM_READ]				= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
502								   _PAGE_AR_RX),
503	[VM_EXEC | VM_WRITE]				= PAGE_COPY_EXEC,
504	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_COPY_EXEC,
505	[VM_SHARED]					= PAGE_NONE,
506	[VM_SHARED | VM_READ]				= PAGE_READONLY,
507	[VM_SHARED | VM_WRITE]				= PAGE_SHARED,
508	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
509	[VM_SHARED | VM_EXEC]				= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
510								   _PAGE_AR_X_RX),
511	[VM_SHARED | VM_EXEC | VM_READ]			= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
512								   _PAGE_AR_RX),
513	[VM_SHARED | VM_EXEC | VM_WRITE]		= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
514								   _PAGE_AR_RWX),
515	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __pgprot(__ACCESS_BITS | _PAGE_PL_3 |
516								   _PAGE_AR_RWX)
517};
518DECLARE_VM_GET_PAGE_PROT