Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Initialize MMU support.
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 */
  8#include <linux/kernel.h>
  9#include <linux/init.h>
 10
 11#include <linux/dma-noncoherent.h>
 12#include <linux/dmar.h>
 13#include <linux/efi.h>
 14#include <linux/elf.h>
 15#include <linux/memblock.h>
 16#include <linux/mm.h>
 17#include <linux/sched/signal.h>
 18#include <linux/mmzone.h>
 19#include <linux/module.h>
 20#include <linux/personality.h>
 21#include <linux/reboot.h>
 22#include <linux/slab.h>
 23#include <linux/swap.h>
 24#include <linux/proc_fs.h>
 25#include <linux/bitops.h>
 26#include <linux/kexec.h>
 27#include <linux/swiotlb.h>
 28
 29#include <asm/dma.h>
 30#include <asm/io.h>
 31#include <asm/numa.h>
 32#include <asm/patch.h>
 33#include <asm/pgalloc.h>
 34#include <asm/sal.h>
 35#include <asm/sections.h>
 36#include <asm/tlb.h>
 37#include <linux/uaccess.h>
 38#include <asm/unistd.h>
 39#include <asm/mca.h>
 40
 41extern void ia64_tlb_init (void);
 42
 43unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
 44
 45#ifdef CONFIG_VIRTUAL_MEM_MAP
 46unsigned long VMALLOC_END = VMALLOC_END_INIT;
 47EXPORT_SYMBOL(VMALLOC_END);
 48struct page *vmem_map;
 49EXPORT_SYMBOL(vmem_map);
 50#endif
 51
 52struct page *zero_page_memmap_ptr;	/* map entry for zero page */
 53EXPORT_SYMBOL(zero_page_memmap_ptr);
 54
 55void
 56__ia64_sync_icache_dcache (pte_t pte)
 57{
 58	unsigned long addr;
 59	struct page *page;
 60
 61	page = pte_page(pte);
 62	addr = (unsigned long) page_address(page);
 63
 64	if (test_bit(PG_arch_1, &page->flags))
 65		return;				/* i-cache is already coherent with d-cache */
 66
 67	flush_icache_range(addr, addr + page_size(page));
 68	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
 69}
 70
 71/*
 72 * Since DMA is i-cache coherent, any (complete) pages that were written via
 73 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 74 * flush them when they get mapped into an executable vm-area.
 75 */
 76void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
 77		size_t size, enum dma_data_direction dir)
 78{
 79	unsigned long pfn = PHYS_PFN(paddr);
 80
 81	do {
 82		set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
 83	} while (++pfn <= PHYS_PFN(paddr + size - 1));
 84}
 85
 86inline void
 87ia64_set_rbs_bot (void)
 88{
 89	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
 90
 91	if (stack_size > MAX_USER_STACK_SIZE)
 92		stack_size = MAX_USER_STACK_SIZE;
 93	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
 94}
 95
 96/*
 97 * This performs some platform-dependent address space initialization.
 98 * On IA-64, we want to setup the VM area for the register backing
 99 * store (which grows upwards) and install the gateway page which is
100 * used for signal trampolines, etc.
101 */
102void
103ia64_init_addr_space (void)
104{
105	struct vm_area_struct *vma;
106
107	ia64_set_rbs_bot();
108
109	/*
110	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
111	 * the problem.  When the process attempts to write to the register backing store
112	 * for the first time, it will get a SEGFAULT in this case.
113	 */
114	vma = vm_area_alloc(current->mm);
115	if (vma) {
116		vma_set_anonymous(vma);
117		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
118		vma->vm_end = vma->vm_start + PAGE_SIZE;
119		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
120		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
121		down_write(&current->mm->mmap_sem);
122		if (insert_vm_struct(current->mm, vma)) {
123			up_write(&current->mm->mmap_sem);
124			vm_area_free(vma);
125			return;
126		}
127		up_write(&current->mm->mmap_sem);
128	}
129
130	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
131	if (!(current->personality & MMAP_PAGE_ZERO)) {
132		vma = vm_area_alloc(current->mm);
133		if (vma) {
134			vma_set_anonymous(vma);
135			vma->vm_end = PAGE_SIZE;
136			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
137			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
138					VM_DONTEXPAND | VM_DONTDUMP;
139			down_write(&current->mm->mmap_sem);
140			if (insert_vm_struct(current->mm, vma)) {
141				up_write(&current->mm->mmap_sem);
142				vm_area_free(vma);
143				return;
144			}
145			up_write(&current->mm->mmap_sem);
146		}
147	}
148}
149
150void
151free_initmem (void)
152{
153	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
154			   -1, "unused kernel");
155}
156
157void __init
158free_initrd_mem (unsigned long start, unsigned long end)
159{
160	/*
161	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
162	 * Thus EFI and the kernel may have different page sizes. It is
163	 * therefore possible to have the initrd share the same page as
164	 * the end of the kernel (given current setup).
165	 *
166	 * To avoid freeing/using the wrong page (kernel sized) we:
167	 *	- align up the beginning of initrd
168	 *	- align down the end of initrd
169	 *
170	 *  |             |
171	 *  |=============| a000
172	 *  |             |
173	 *  |             |
174	 *  |             | 9000
175	 *  |/////////////|
176	 *  |/////////////|
177	 *  |=============| 8000
178	 *  |///INITRD////|
179	 *  |/////////////|
180	 *  |/////////////| 7000
181	 *  |             |
182	 *  |KKKKKKKKKKKKK|
183	 *  |=============| 6000
184	 *  |KKKKKKKKKKKKK|
185	 *  |KKKKKKKKKKKKK|
186	 *  K=kernel using 8KB pages
187	 *
188	 * In this example, we must free page 8000 ONLY. So we must align up
189	 * initrd_start and keep initrd_end as is.
190	 */
191	start = PAGE_ALIGN(start);
192	end = end & PAGE_MASK;
193
194	if (start < end)
195		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
196
197	for (; start < end; start += PAGE_SIZE) {
198		if (!virt_addr_valid(start))
199			continue;
200		free_reserved_page(virt_to_page(start));
201	}
202}
203
204/*
205 * This installs a clean page in the kernel's page table.
206 */
207static struct page * __init
208put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
209{
210	pgd_t *pgd;
211	pud_t *pud;
212	pmd_t *pmd;
213	pte_t *pte;
214
215	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
216
217	{
218		pud = pud_alloc(&init_mm, pgd, address);
219		if (!pud)
220			goto out;
221		pmd = pmd_alloc(&init_mm, pud, address);
222		if (!pmd)
223			goto out;
224		pte = pte_alloc_kernel(pmd, address);
225		if (!pte)
226			goto out;
227		if (!pte_none(*pte))
228			goto out;
229		set_pte(pte, mk_pte(page, pgprot));
230	}
231  out:
232	/* no need for flush_tlb */
233	return page;
234}
235
236static void __init
237setup_gate (void)
238{
239	struct page *page;
240
241	/*
242	 * Map the gate page twice: once read-only to export the ELF
243	 * headers etc. and once execute-only page to enable
244	 * privilege-promotion via "epc":
245	 */
246	page = virt_to_page(ia64_imva(__start_gate_section));
247	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
248#ifdef HAVE_BUGGY_SEGREL
249	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
250	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
251#else
252	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
253	/* Fill in the holes (if any) with read-only zero pages: */
254	{
255		unsigned long addr;
256
257		for (addr = GATE_ADDR + PAGE_SIZE;
258		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
259		     addr += PAGE_SIZE)
260		{
261			put_kernel_page(ZERO_PAGE(0), addr,
262					PAGE_READONLY);
263			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
264					PAGE_READONLY);
265		}
266	}
267#endif
268	ia64_patch_gate();
269}
270
271static struct vm_area_struct gate_vma;
272
273static int __init gate_vma_init(void)
274{
275	vma_init(&gate_vma, NULL);
276	gate_vma.vm_start = FIXADDR_USER_START;
277	gate_vma.vm_end = FIXADDR_USER_END;
278	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
279	gate_vma.vm_page_prot = __P101;
280
281	return 0;
282}
283__initcall(gate_vma_init);
284
285struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
286{
287	return &gate_vma;
288}
289
290int in_gate_area_no_mm(unsigned long addr)
291{
292	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
293		return 1;
294	return 0;
295}
296
297int in_gate_area(struct mm_struct *mm, unsigned long addr)
298{
299	return in_gate_area_no_mm(addr);
300}
301
302void ia64_mmu_init(void *my_cpu_data)
303{
304	unsigned long pta, impl_va_bits;
305	extern void tlb_init(void);
306
307#ifdef CONFIG_DISABLE_VHPT
308#	define VHPT_ENABLE_BIT	0
309#else
310#	define VHPT_ENABLE_BIT	1
311#endif
312
313	/*
314	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
315	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
316	 * virtual address space are implemented but if we pick a large enough page size
317	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
318	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
319	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
320	 * problem in practice.  Alternatively, we could truncate the top of the mapped
321	 * address space to not permit mappings that would overlap with the VMLPT.
322	 * --davidm 00/12/06
323	 */
324#	define pte_bits			3
325#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
326	/*
327	 * The virtual page table has to cover the entire implemented address space within
328	 * a region even though not all of this space may be mappable.  The reason for
329	 * this is that the Access bit and Dirty bit fault handlers perform
330	 * non-speculative accesses to the virtual page table, so the address range of the
331	 * virtual page table itself needs to be covered by virtual page table.
332	 */
333#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
334#	define POW2(n)			(1ULL << (n))
335
336	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
337
338	if (impl_va_bits < 51 || impl_va_bits > 61)
339		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
340	/*
341	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
342	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
343	 * the test makes sure that our mapped space doesn't overlap the
344	 * unimplemented hole in the middle of the region.
345	 */
346	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
347	    (mapped_space_bits > impl_va_bits - 1))
348		panic("Cannot build a big enough virtual-linear page table"
349		      " to cover mapped address space.\n"
350		      " Try using a smaller page size.\n");
351
352
353	/* place the VMLPT at the end of each page-table mapped region: */
354	pta = POW2(61) - POW2(vmlpt_bits);
355
356	/*
357	 * Set the (virtually mapped linear) page table address.  Bit
358	 * 8 selects between the short and long format, bits 2-7 the
359	 * size of the table, and bit 0 whether the VHPT walker is
360	 * enabled.
361	 */
362	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
363
364	ia64_tlb_init();
365
366#ifdef	CONFIG_HUGETLB_PAGE
367	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
368	ia64_srlz_d();
369#endif
370}
371
372#ifdef CONFIG_VIRTUAL_MEM_MAP
373int vmemmap_find_next_valid_pfn(int node, int i)
374{
375	unsigned long end_address, hole_next_pfn;
376	unsigned long stop_address;
377	pg_data_t *pgdat = NODE_DATA(node);
378
379	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
380	end_address = PAGE_ALIGN(end_address);
381	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
382
383	do {
384		pgd_t *pgd;
385		pud_t *pud;
386		pmd_t *pmd;
387		pte_t *pte;
388
389		pgd = pgd_offset_k(end_address);
390		if (pgd_none(*pgd)) {
391			end_address += PGDIR_SIZE;
392			continue;
393		}
394
395		pud = pud_offset(pgd, end_address);
396		if (pud_none(*pud)) {
397			end_address += PUD_SIZE;
398			continue;
399		}
400
401		pmd = pmd_offset(pud, end_address);
402		if (pmd_none(*pmd)) {
403			end_address += PMD_SIZE;
404			continue;
405		}
406
407		pte = pte_offset_kernel(pmd, end_address);
408retry_pte:
409		if (pte_none(*pte)) {
410			end_address += PAGE_SIZE;
411			pte++;
412			if ((end_address < stop_address) &&
413			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
414				goto retry_pte;
415			continue;
416		}
417		/* Found next valid vmem_map page */
418		break;
419	} while (end_address < stop_address);
420
421	end_address = min(end_address, stop_address);
422	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
423	hole_next_pfn = end_address / sizeof(struct page);
424	return hole_next_pfn - pgdat->node_start_pfn;
425}
426
427int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
428{
429	unsigned long address, start_page, end_page;
430	struct page *map_start, *map_end;
431	int node;
432	pgd_t *pgd;
433	pud_t *pud;
434	pmd_t *pmd;
435	pte_t *pte;
436
437	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
438	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
439
440	start_page = (unsigned long) map_start & PAGE_MASK;
441	end_page = PAGE_ALIGN((unsigned long) map_end);
442	node = paddr_to_nid(__pa(start));
443
444	for (address = start_page; address < end_page; address += PAGE_SIZE) {
445		pgd = pgd_offset_k(address);
446		if (pgd_none(*pgd)) {
447			pud = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
448			if (!pud)
449				goto err_alloc;
450			pgd_populate(&init_mm, pgd, pud);
451		}
452		pud = pud_offset(pgd, address);
453
454		if (pud_none(*pud)) {
455			pmd = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
456			if (!pmd)
457				goto err_alloc;
458			pud_populate(&init_mm, pud, pmd);
459		}
460		pmd = pmd_offset(pud, address);
461
462		if (pmd_none(*pmd)) {
463			pte = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node);
464			if (!pte)
465				goto err_alloc;
466			pmd_populate_kernel(&init_mm, pmd, pte);
467		}
468		pte = pte_offset_kernel(pmd, address);
469
470		if (pte_none(*pte)) {
471			void *page = memblock_alloc_node(PAGE_SIZE, PAGE_SIZE,
472							 node);
473			if (!page)
474				goto err_alloc;
475			set_pte(pte, pfn_pte(__pa(page) >> PAGE_SHIFT,
476					     PAGE_KERNEL));
477		}
478	}
479	return 0;
480
481err_alloc:
482	panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d\n",
483	      __func__, PAGE_SIZE, PAGE_SIZE, node);
484	return -ENOMEM;
485}
486
487struct memmap_init_callback_data {
488	struct page *start;
489	struct page *end;
490	int nid;
491	unsigned long zone;
492};
493
494static int __meminit
495virtual_memmap_init(u64 start, u64 end, void *arg)
496{
497	struct memmap_init_callback_data *args;
498	struct page *map_start, *map_end;
499
500	args = (struct memmap_init_callback_data *) arg;
501	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
502	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
503
504	if (map_start < args->start)
505		map_start = args->start;
506	if (map_end > args->end)
507		map_end = args->end;
508
509	/*
510	 * We have to initialize "out of bounds" struct page elements that fit completely
511	 * on the same pages that were allocated for the "in bounds" elements because they
512	 * may be referenced later (and found to be "reserved").
513	 */
514	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
515	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
516		    / sizeof(struct page));
517
518	if (map_start < map_end)
519		memmap_init_zone((unsigned long)(map_end - map_start),
520				 args->nid, args->zone, page_to_pfn(map_start),
521				 MEMMAP_EARLY, NULL);
522	return 0;
523}
524
525void __meminit
526memmap_init (unsigned long size, int nid, unsigned long zone,
527	     unsigned long start_pfn)
528{
529	if (!vmem_map) {
530		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
531				NULL);
532	} else {
533		struct page *start;
534		struct memmap_init_callback_data args;
535
536		start = pfn_to_page(start_pfn);
537		args.start = start;
538		args.end = start + size;
539		args.nid = nid;
540		args.zone = zone;
541
542		efi_memmap_walk(virtual_memmap_init, &args);
543	}
544}
545
546int
547ia64_pfn_valid (unsigned long pfn)
548{
549	char byte;
550	struct page *pg = pfn_to_page(pfn);
551
552	return     (__get_user(byte, (char __user *) pg) == 0)
553		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
554			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
555}
556EXPORT_SYMBOL(ia64_pfn_valid);
557
558int __init find_largest_hole(u64 start, u64 end, void *arg)
559{
560	u64 *max_gap = arg;
561
562	static u64 last_end = PAGE_OFFSET;
563
564	/* NOTE: this algorithm assumes efi memmap table is ordered */
565
566	if (*max_gap < (start - last_end))
567		*max_gap = start - last_end;
568	last_end = end;
569	return 0;
570}
571
572#endif /* CONFIG_VIRTUAL_MEM_MAP */
573
574int __init register_active_ranges(u64 start, u64 len, int nid)
575{
576	u64 end = start + len;
577
578#ifdef CONFIG_KEXEC
579	if (start > crashk_res.start && start < crashk_res.end)
580		start = crashk_res.end;
581	if (end > crashk_res.start && end < crashk_res.end)
582		end = crashk_res.start;
583#endif
584
585	if (start < end)
586		memblock_add_node(__pa(start), end - start, nid);
587	return 0;
588}
589
590int
591find_max_min_low_pfn (u64 start, u64 end, void *arg)
592{
593	unsigned long pfn_start, pfn_end;
594#ifdef CONFIG_FLATMEM
595	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
596	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
597#else
598	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
599	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
600#endif
601	min_low_pfn = min(min_low_pfn, pfn_start);
602	max_low_pfn = max(max_low_pfn, pfn_end);
603	return 0;
604}
605
606/*
607 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
608 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
609 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
610 * useful for performance testing, but conceivably could also come in handy for debugging
611 * purposes.
612 */
613
614static int nolwsys __initdata;
615
616static int __init
617nolwsys_setup (char *s)
618{
619	nolwsys = 1;
620	return 1;
621}
622
623__setup("nolwsys", nolwsys_setup);
624
625void __init
626mem_init (void)
627{
628	int i;
629
630	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
631	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
632	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
633
634	/*
635	 * This needs to be called _after_ the command line has been parsed but
636	 * _before_ any drivers that may need the PCI DMA interface are
637	 * initialized or bootmem has been freed.
638	 */
639#ifdef CONFIG_INTEL_IOMMU
640	detect_intel_iommu();
641	if (!iommu_detected)
642#endif
643#ifdef CONFIG_SWIOTLB
644		swiotlb_init(1);
645#endif
646
647#ifdef CONFIG_FLATMEM
648	BUG_ON(!mem_map);
649#endif
650
651	set_max_mapnr(max_low_pfn);
652	high_memory = __va(max_low_pfn * PAGE_SIZE);
653	memblock_free_all();
654	mem_init_print_info(NULL);
655
656	/*
657	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
658	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
659	 * code can tell them apart.
660	 */
661	for (i = 0; i < NR_syscalls; ++i) {
662		extern unsigned long fsyscall_table[NR_syscalls];
663		extern unsigned long sys_call_table[NR_syscalls];
664
665		if (!fsyscall_table[i] || nolwsys)
666			fsyscall_table[i] = sys_call_table[i] | 1;
667	}
668	setup_gate();
669}
670
671#ifdef CONFIG_MEMORY_HOTPLUG
672int arch_add_memory(int nid, u64 start, u64 size,
673			struct mhp_restrictions *restrictions)
674{
675	unsigned long start_pfn = start >> PAGE_SHIFT;
676	unsigned long nr_pages = size >> PAGE_SHIFT;
677	int ret;
678
679	ret = __add_pages(nid, start_pfn, nr_pages, restrictions);
680	if (ret)
681		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
682		       __func__,  ret);
683
684	return ret;
685}
686
687void arch_remove_memory(int nid, u64 start, u64 size,
688			struct vmem_altmap *altmap)
689{
690	unsigned long start_pfn = start >> PAGE_SHIFT;
691	unsigned long nr_pages = size >> PAGE_SHIFT;
692	struct zone *zone;
693
694	zone = page_zone(pfn_to_page(start_pfn));
695	__remove_pages(zone, start_pfn, nr_pages, altmap);
696}
697#endif